code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import baseaa def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): return baseaa.baaencode(string.encode('utf-8' ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : bytes ): return baseaa.baadecode(SCREAMING_SNAKE_CASE__ ).decode('utf-8' ) if __name__ == "__main__": _A = 'Hello World!' _A = baseaa_encode(test) print(encoded) _A = baseaa_decode(encoded) print(decoded)
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
import warnings from ..trainer import Trainer from ..utils import logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_=None , **A_ ) -> Union[str, Any]: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , A_ , ) super().__init__(args=A_ , **A_ )
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
import string def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase ='' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase =string.ascii_uppercase.find(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =num - key if num < 0: __UpperCamelCase =num + len(string.ascii_uppercase ) __UpperCamelCase =translated + string.ascii_uppercase[num] else: __UpperCamelCase =translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _UpperCAmelCase ( ): __UpperCamelCase =input('Encrypted message: ' ) __UpperCamelCase =message.upper() decrypt(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _A = logging.get_logger(__name__) _A = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "gptj" UpperCAmelCase__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A_=50400 , A_=2048 , A_=4096 , A_=28 , A_=16 , A_=64 , A_=None , A_="gelu_new" , A_=0.0 , A_=0.0 , A_=0.0 , A_=1E-5 , A_=0.02 , A_=True , A_=50256 , A_=50256 , A_=False , **A_ , ) -> Tuple: __UpperCamelCase =vocab_size __UpperCamelCase =n_positions __UpperCamelCase =n_embd __UpperCamelCase =n_layer __UpperCamelCase =n_head __UpperCamelCase =n_inner __UpperCamelCase =rotary_dim __UpperCamelCase =activation_function __UpperCamelCase =resid_pdrop __UpperCamelCase =embd_pdrop __UpperCamelCase =attn_pdrop __UpperCamelCase =layer_norm_epsilon __UpperCamelCase =initializer_range __UpperCamelCase =use_cache __UpperCamelCase =bos_token_id __UpperCamelCase =eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = "default" , A_ = None , A_ = False , ) -> Optional[int]: super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , 'pad_token_id' , A_ ): # TODO: how to do that better? __UpperCamelCase =0 @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) __UpperCamelCase ={0: 'batch', 1: 'past_sequence + sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'sequence'} return common_inputs @property def _a ( self ) -> int: return self._config.n_layer @property def _a ( self ) -> int: return self._config.n_head def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: __UpperCamelCase =super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() __UpperCamelCase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __UpperCamelCase , __UpperCamelCase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCamelCase =seqlen + 2 __UpperCamelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase =[ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] __UpperCamelCase =common_inputs['attention_mask'] if self.use_past: __UpperCamelCase =ordered_inputs['attention_mask'].dtype __UpperCamelCase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def _a ( self ) -> int: return 13
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): __UpperCamelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCamelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Dict ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase =datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase =16 elif accelerator.mixed_precision != "no": __UpperCamelCase =8 else: __UpperCamelCase =None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __UpperCamelCase =2 # Initialize accelerator __UpperCamelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config['lr'] __UpperCamelCase =int(config['num_epochs'] ) __UpperCamelCase =int(config['seed'] ) __UpperCamelCase =int(config['batch_size'] ) __UpperCamelCase =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase =batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase =MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase =model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.loss __UpperCamelCase =loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __UpperCamelCase =0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase =accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __UpperCamelCase =predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
import pytest import datasets # Import fixture modules as plugins _A = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __UpperCamelCase =tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase =test_hf_cache_home / 'datasets' __UpperCamelCase =test_hf_cache_home / 'metrics' __UpperCamelCase =test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE__ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ , scope='session' ) def _UpperCAmelCase ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , SCREAMING_SNAKE_CASE__ )
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=128 , A_=32 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> str: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Optional[int]: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def _a ( self ) -> str: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.prepare_config_and_inputs() __UpperCamelCase =True __UpperCamelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =NezhaModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =True __UpperCamelCase =NezhaModel(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , encoder_hidden_states=A_ , ) __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =NezhaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =NezhaForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =NezhaForPreTraining(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =NezhaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =self.num_labels __UpperCamelCase =NezhaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =NezhaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =NezhaForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> str: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Dict = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True def _a ( self , A_ , A_ , A_=False ) -> Optional[Any]: __UpperCamelCase =super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def _a ( self ) -> Optional[Any]: __UpperCamelCase =NezhaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> int: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _a ( self ) -> List[str]: # This regression test was failing with PyTorch < 1.3 ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase =None self.model_tester.create_and_check_model_as_decoder( A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =NezhaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __UpperCamelCase =True __UpperCamelCase =model_class(config=A_ ) __UpperCamelCase =self._prepare_for_class(A_ , A_ ) __UpperCamelCase =torch.jit.trace( A_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , 'bert.pt' ) ) __UpperCamelCase =torch.jit.load(os.path.join(A_ , 'bert.pt' ) , map_location=A_ ) loaded(inputs_dict['input_ids'].to(A_ ) , inputs_dict['attention_mask'].to(A_ ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) __UpperCamelCase =torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase =model(A_ , attention_mask=A_ )[0] __UpperCamelCase =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) ) @slow def _a ( self ) -> Any: __UpperCamelCase =NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) __UpperCamelCase =torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase =model(A_ , attention_mask=A_ )[0] __UpperCamelCase =torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) )
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _A = True except (ImportError, AttributeError): _A = object def _UpperCAmelCase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): pass _A = False _A = logging.get_logger('transformers-cli/serving') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Namespace ): __UpperCamelCase =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE__ , args.host , args.port , args.workers ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : dict class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[int]] class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any class UpperCAmelCase__ ( A_ ): """simple docstring""" @staticmethod def _a ( A_ ) -> Union[str, Any]: __UpperCamelCase =parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=A_ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=A_ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=A_ , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=A_ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=A_ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=A_ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=A_ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=A_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =pipeline __UpperCamelCase =host __UpperCamelCase =port __UpperCamelCase =workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'Serving model over {host}:{port}' ) __UpperCamelCase =FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=A_ , response_class=A_ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=A_ , response_class=A_ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=A_ , response_class=A_ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=A_ , response_class=A_ , methods=['POST'] , ), ] , timeout=600 , ) def _a ( self ) -> int: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _a ( self ) -> str: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _a ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) ) -> Optional[Any]: try: __UpperCamelCase =self._pipeline.tokenizer.tokenize(A_ ) if return_ids: __UpperCamelCase =self._pipeline.tokenizer.convert_tokens_to_ids(A_ ) return ServeTokenizeResult(tokens=A_ , tokens_ids=A_ ) else: return ServeTokenizeResult(tokens=A_ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(A_ )} ) def _a ( self , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , A_ = Body(A_ , embed=A_ ) , ) -> Optional[int]: try: __UpperCamelCase =self._pipeline.tokenizer.decode(A_ , A_ , A_ ) return ServeDeTokenizeResult(model='' , text=A_ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(A_ )} ) async def _a ( self , A_=Body(A_ , embed=A_ ) ) -> int: # Check we don't have empty string if len(A_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __UpperCamelCase =self._pipeline(A_ ) return ServeForwardResult(output=A_ ) except Exception as e: raise HTTPException(500 , {'error': str(A_ )} )
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
_A = 'Alexander Joslin' import operator as op from .stack import Stack def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase ={'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} __UpperCamelCase =Stack() __UpperCamelCase =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE__ ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE__ ) elif i == ")": # RULE 4 __UpperCamelCase =operator_stack.peek() operator_stack.pop() __UpperCamelCase =operand_stack.peek() operand_stack.pop() __UpperCamelCase =operand_stack.peek() operand_stack.pop() __UpperCamelCase =operators[opr](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) operand_stack.push(SCREAMING_SNAKE_CASE__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=0.6 , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =mask_ratio __UpperCamelCase =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCamelCase =(image_size // patch_size) ** 2 __UpperCamelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self ) -> int: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =ViTMAEModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> int: __UpperCamelCase =ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) __UpperCamelCase =(self.image_size // self.patch_size) ** 2 __UpperCamelCase =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCamelCase =1 __UpperCamelCase =ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase =model(A_ ) __UpperCamelCase =self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self ) -> Any: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCAmelCase__ : List[Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False def _a ( self ) -> Union[str, Any]: __UpperCamelCase =ViTMAEModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def _a ( self ) -> Dict: pass def _a ( self ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> str: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def _a ( self , A_ , A_ , A_ ) -> str: # make masks reproducible np.random.seed(2 ) __UpperCamelCase =int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCamelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCamelCase =torch.from_numpy(A_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCamelCase =pt_noise super().check_pt_tf_models(A_ , A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) model.to(A_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) __UpperCamelCase =outputs[0].cpu().numpy() __UpperCamelCase =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __UpperCamelCase =model_class.from_pretrained(A_ ) model.to(A_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) # Make sure we don't have nans __UpperCamelCase =after_outputs[0].cpu().numpy() __UpperCamelCase =0 __UpperCamelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Dict: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Union[str, Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Optional[Any]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def _a ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self ) -> str: pass @slow def _a ( self ) -> Any: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTMAEModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def _a ( self ) -> Any: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCamelCase =ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCamelCase =ViTMAEConfig() __UpperCamelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCamelCase =np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ , noise=torch.from_numpy(A_ ).to(device=A_ ) ) # verify the logits __UpperCamelCase =torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(A_ ) , atol=1E-4 ) )
713
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = (UniPCMultistepScheduler,) UpperCAmelCase__ : Tuple = (("num_inference_steps", 2_5),) def _a ( self , **A_ ) -> Dict: __UpperCamelCase ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**A_ ) return config def _a ( self , A_=0 , **A_ ) -> str: __UpperCamelCase =dict(self.forward_default_kwargs ) __UpperCamelCase =kwargs.pop('num_inference_steps' , A_ ) __UpperCamelCase =self.dummy_sample __UpperCamelCase =0.1 * sample __UpperCamelCase =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase =self.get_scheduler_config(**A_ ) __UpperCamelCase =scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals __UpperCamelCase =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) __UpperCamelCase =scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals __UpperCamelCase =dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase , __UpperCamelCase =sample, sample for t in range(A_ , time_step + scheduler.config.solver_order + 1 ): __UpperCamelCase =scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample __UpperCamelCase =new_scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , A_=0 , **A_ ) -> Union[str, Any]: __UpperCamelCase =dict(self.forward_default_kwargs ) __UpperCamelCase =kwargs.pop('num_inference_steps' , A_ ) __UpperCamelCase =self.dummy_sample __UpperCamelCase =0.1 * sample __UpperCamelCase =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __UpperCamelCase =self.get_scheduler_config() __UpperCamelCase =scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCamelCase =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) __UpperCamelCase =scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) __UpperCamelCase =dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCamelCase =scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample __UpperCamelCase =new_scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , A_=None , **A_ ) -> Union[str, Any]: if scheduler is None: __UpperCamelCase =self.scheduler_classes[0] __UpperCamelCase =self.get_scheduler_config(**A_ ) __UpperCamelCase =scheduler_class(**A_ ) __UpperCamelCase =self.scheduler_classes[0] __UpperCamelCase =self.get_scheduler_config(**A_ ) __UpperCamelCase =scheduler_class(**A_ ) __UpperCamelCase =10 __UpperCamelCase =self.dummy_model() __UpperCamelCase =self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase =model(A_ , A_ ) __UpperCamelCase =scheduler.step(A_ , A_ , A_ ).prev_sample return sample def _a ( self ) -> int: __UpperCamelCase =dict(self.forward_default_kwargs ) __UpperCamelCase =kwargs.pop('num_inference_steps' , A_ ) for scheduler_class in self.scheduler_classes: __UpperCamelCase =self.get_scheduler_config() __UpperCamelCase =scheduler_class(**A_ ) __UpperCamelCase =self.dummy_sample __UpperCamelCase =0.1 * sample if num_inference_steps is not None and hasattr(A_ , 'set_timesteps' ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , 'set_timesteps' ): __UpperCamelCase =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCamelCase =[residual + 0.2, residual + 0.15, residual + 0.10] __UpperCamelCase =dummy_past_residuals[: scheduler.config.solver_order] __UpperCamelCase =scheduler.timesteps[5] __UpperCamelCase =scheduler.timesteps[6] __UpperCamelCase =scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample __UpperCamelCase =scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCamelCase =UniPCMultistepScheduler(**self.get_scheduler_config() ) __UpperCamelCase =self.full_loop(scheduler=A_ ) __UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 __UpperCamelCase =DPMSolverSinglestepScheduler.from_config(scheduler.config ) __UpperCamelCase =DEISMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase =DPMSolverMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase =UniPCMultistepScheduler.from_config(scheduler.config ) __UpperCamelCase =self.full_loop(scheduler=A_ ) __UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def _a ( self ) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _a ( self ) -> List[str]: self.check_over_configs(thresholding=A_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , solver_order=A_ , solver_type=A_ , ) def _a ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _a ( self ) -> Optional[int]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A_ , solver_type=A_ , prediction_type=A_ , ) __UpperCamelCase =self.full_loop( solver_order=A_ , solver_type=A_ , prediction_type=A_ , ) assert not torch.isnan(A_ ).any(), "Samples have nan numbers" def _a ( self ) -> str: self.check_over_configs(lower_order_final=A_ ) self.check_over_configs(lower_order_final=A_ ) def _a ( self ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A_ , time_step=0 ) def _a ( self ) -> Tuple: __UpperCamelCase =self.full_loop() __UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def _a ( self ) -> str: __UpperCamelCase =self.full_loop(prediction_type='v_prediction' ) __UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def _a ( self ) -> Dict: __UpperCamelCase =self.scheduler_classes[0] __UpperCamelCase =self.get_scheduler_config(thresholding=A_ , dynamic_thresholding_ratio=0 ) __UpperCamelCase =scheduler_class(**A_ ) __UpperCamelCase =10 __UpperCamelCase =self.dummy_model() __UpperCamelCase =self.dummy_sample_deter.half() scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase =model(A_ , A_ ) __UpperCamelCase =scheduler.step(A_ , A_ , A_ ).prev_sample assert sample.dtype == torch.floataa def _a ( self , **A_ ) -> str: for scheduler_class in self.scheduler_classes: __UpperCamelCase =self.get_scheduler_config(**A_ ) __UpperCamelCase =scheduler_class(**A_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
714
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
'''simple docstring''' import requests _A = '' # <-- Put your OpenWeatherMap appid here! _A = 'https://api.openweathermap.org/data/2.5/' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "Chicago" , SCREAMING_SNAKE_CASE__ : str = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "Kolkata, India" , SCREAMING_SNAKE_CASE__ : str = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float = 55.68 , SCREAMING_SNAKE_CASE__ : float = 12.57 , SCREAMING_SNAKE_CASE__ : str = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _A = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
716
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
0
from __future__ import annotations class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_=None ) -> Any: __UpperCamelCase =data __UpperCamelCase =None def __repr__( self ) -> Tuple: __UpperCamelCase =[] __UpperCamelCase =self while temp: string_rep.append(f'{temp.data}' ) __UpperCamelCase =temp.next return "->".join(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list ): if not elements_list: raise Exception('The Elements List is empty' ) __UpperCamelCase =__UpperCamelCase =Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =Node(elements_list[i] ) __UpperCamelCase =current.next return head def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Node ): if head_node is not None and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): print_reverse(head_node.next ) print(head_node.data ) def _UpperCAmelCase ( ): from doctest import testmod testmod() __UpperCamelCase =make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE__ ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
717
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[] create_all_state(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , [] , SCREAMING_SNAKE_CASE__ ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[int]] , ): if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE__ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE__ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE__ , level - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_list.pop() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ): for i in total_list: print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = 4 _A = 2 _A = generate_all_combinations(n, k) print_all_state(total_list)
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _A = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _A = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(rows * cols * num_images ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) __UpperCamelCase =data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.one_hot on tensors.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =labels_dense.shape[0] __UpperCamelCase =numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes __UpperCamelCase =numpy.zeros((num_labels, num_classes) ) __UpperCamelCase =1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( A_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ) -> List[str]: __UpperCamelCase , __UpperCamelCase =random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCamelCase =dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __UpperCamelCase =10000 __UpperCamelCase =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __UpperCamelCase =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCamelCase =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCamelCase =images.astype(numpy.floataa ) __UpperCamelCase =numpy.multiply(A_ , 1.0 / 255.0 ) __UpperCamelCase =images __UpperCamelCase =labels __UpperCamelCase =0 __UpperCamelCase =0 @property def _a ( self ) -> Tuple: return self._images @property def _a ( self ) -> Dict: return self._labels @property def _a ( self ) -> List[str]: return self._num_examples @property def _a ( self ) -> Dict: return self._epochs_completed def _a ( self , A_ , A_=False , A_=True ) -> Any: if fake_data: __UpperCamelCase =[1] * 784 __UpperCamelCase =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) __UpperCamelCase =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perma] __UpperCamelCase =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCamelCase =self._num_examples - start __UpperCamelCase =self._images[start : self._num_examples] __UpperCamelCase =self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perm] __UpperCamelCase =self.labels[perm] # Start next epoch __UpperCamelCase =0 __UpperCamelCase =batch_size - rest_num_examples __UpperCamelCase =self._index_in_epoch __UpperCamelCase =self._images[start:end] __UpperCamelCase =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCamelCase =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please write your own downloading logic.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: __UpperCamelCase =f.size() print('Successfully downloaded' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'bytes.' ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=50_00 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =fake() __UpperCamelCase =fake() __UpperCamelCase =fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check __UpperCamelCase =DEFAULT_SOURCE_URL __UpperCamelCase ='train-images-idx3-ubyte.gz' __UpperCamelCase ='train-labels-idx1-ubyte.gz' __UpperCamelCase ='t10k-images-idx3-ubyte.gz' __UpperCamelCase ='t10k-labels-idx1-ubyte.gz' __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =( 'Validation size should be between 0 and ' F'{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =train_images[:validation_size] __UpperCamelCase =train_labels[:validation_size] __UpperCamelCase =train_images[validation_size:] __UpperCamelCase =train_labels[validation_size:] __UpperCamelCase ={'dtype': dtype, 'reshape': reshape, 'seed': seed} __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
719
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'spiece.model'} _A = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _A = { 'google/reformer-crime-and-punishment': 52_4288, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = ["input_ids", "attention_mask"] def __init__( self , A_ , A_="</s>" , A_="<unk>" , A_=[] , A_ = None , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_ , unk_token=A_ , additional_special_tokens=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _a ( self ) -> Union[str, Any]: return self.sp_model.get_piece_size() def _a ( self ) -> Dict[str, int]: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> Any: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> str: return self.sp_model.piece_to_id(A_ ) def _a ( self , A_ ) -> Dict: if index < self.sp_model.get_piece_size(): __UpperCamelCase =self.sp_model.IdToPiece(A_ ) return token def _a ( self , A_ ) -> Tuple: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
720
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1000 , ) -> List[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =coordinate_size __UpperCamelCase =shape_size __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase =text_seq_length __UpperCamelCase =(image_size // patch_size) ** 2 + 1 __UpperCamelCase =self.text_seq_length + self.image_seq_length def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __UpperCamelCase =bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase =bbox[i, j, 3] __UpperCamelCase =bbox[i, j, 1] __UpperCamelCase =tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase =bbox[i, j, 2] __UpperCamelCase =bbox[i, j, 0] __UpperCamelCase =tmp_coordinate __UpperCamelCase =tf.constant(A_ ) __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFLayoutLMvaModel(config=A_ ) # text + image __UpperCamelCase =model(A_ , pixel_values=A_ , training=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , training=A_ , ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase =model(A_ , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase =model({'pixel_values': pixel_values} , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =self.num_labels __UpperCamelCase =TFLayoutLMvaForSequenceClassification(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFLayoutLMvaForTokenClassification(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =2 __UpperCamelCase =TFLayoutLMvaForQuestionAnswering(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , training=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> str: __UpperCamelCase =self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ : List[str] = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Dict: return True def _a ( self , A_ , A_ , A_=False ) -> dict: __UpperCamelCase =copy.deepcopy(A_ ) if model_class in get_values(A_ ): __UpperCamelCase ={ k: tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _a ( self ) -> List[str]: __UpperCamelCase =TFLayoutLMvaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> int: self.config_tester.run_common_tests() def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) if getattr(A_ , 'hf_compute_loss' , A_ ): # The number of elements in the loss should be the same as the number of elements in the label __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A_ )[0] ] __UpperCamelCase =added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class.pop('input_ids' ) __UpperCamelCase =model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __UpperCamelCase =prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __UpperCamelCase =-100 __UpperCamelCase =tf.convert_to_tensor(A_ ) __UpperCamelCase =model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) # Get keys that were added with the _prepare_for_class function __UpperCamelCase =prepared_for_class.keys() - inputs_dict.keys() __UpperCamelCase =inspect.signature(model.call ).parameters __UpperCamelCase =list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __UpperCamelCase ={0: 'input_ids'} for label_key in label_keys: __UpperCamelCase =signature_names.index(A_ ) __UpperCamelCase =label_key __UpperCamelCase =sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __UpperCamelCase =[] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __UpperCamelCase =prepared_for_class[value] __UpperCamelCase =tuple(A_ ) # Send to model __UpperCamelCase =model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _a ( self ) -> Optional[int]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> List[Any]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> Optional[int]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> int: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> Any: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) @slow def _a ( self ) -> str: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: __UpperCamelCase =TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='tf' ).pixel_values __UpperCamelCase =tf.constant([[1, 2]] ) __UpperCamelCase =tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __UpperCamelCase =model(input_ids=A_ , bbox=A_ , pixel_values=A_ , training=A_ ) # verify the logits __UpperCamelCase =(1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , A_ ) __UpperCamelCase =tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1E-4 ) )
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Union[str, Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Optional[int]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =DistilBertModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =DistilBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =DistilBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =self.num_labels __UpperCamelCase =DistilBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =DistilBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =DistilBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Optional[Any] = True def _a ( self ) -> Optional[Any]: __UpperCamelCase =DistilBertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , dim=37 ) def _a ( self ) -> List[Any]: self.config_tester.run_common_tests() def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> List[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =DistilBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase =True __UpperCamelCase =model_class(config=A_ ) __UpperCamelCase =self._prepare_for_class(A_ , A_ ) __UpperCamelCase =torch.jit.trace( A_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , 'traced_model.pt' ) ) __UpperCamelCase =torch.jit.load(os.path.join(A_ , 'traced_model.pt' ) , map_location=A_ ) loaded(inputs_dict['input_ids'].to(A_ ) , inputs_dict['attention_mask'].to(A_ ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Tuple: __UpperCamelCase =DistilBertModel.from_pretrained('distilbert-base-uncased' ) __UpperCamelCase =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase =model(A_ , attention_mask=A_ )[0] __UpperCamelCase =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : List[Any]=1_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=10_26 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE__ : Dict="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __UpperCamelCase , __UpperCamelCase =generate_datasets( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCamelCase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __UpperCamelCase =load_gpta('gpt2' ).to(SCREAMING_SNAKE_CASE__ ) print('computing perplexity on objective set' ) __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).item() print('perplexity on objective set:' , SCREAMING_SNAKE_CASE__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=15 , SCREAMING_SNAKE_CASE__ : Dict=1_28 , SCREAMING_SNAKE_CASE__ : List[str]=1_00 , SCREAMING_SNAKE_CASE__ : List[Any]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model __UpperCamelCase =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __UpperCamelCase =SecondaryLearner(SCREAMING_SNAKE_CASE__ ) # Train secondary learner __UpperCamelCase =train_secondary_learner( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_epochs=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , eval_freq=1_00 , igf_model_path=SCREAMING_SNAKE_CASE__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=10_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=recopy_gpta , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gpt2_finetuned.pt" , ): __UpperCamelCase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =max_steps // (len(SCREAMING_SNAKE_CASE__ )) + 1 __UpperCamelCase =0 __UpperCamelCase =torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =recopy_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.train() if secondary_learner is not None: secondary_learner.to(SCREAMING_SNAKE_CASE__ ) secondary_learner.eval() __UpperCamelCase =[] __UpperCamelCase =0 __UpperCamelCase =[] __UpperCamelCase =[] # Compute the performance of the transformer model at the beginning __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print('Test perplexity, step' , SCREAMING_SNAKE_CASE__ , ':' , SCREAMING_SNAKE_CASE__ ) for epoch in range(int(SCREAMING_SNAKE_CASE__ ) ): for step, example in enumerate(SCREAMING_SNAKE_CASE__ ): torch.cuda.empty_cache() __UpperCamelCase =random.randint(0 , example.size(2 ) - context_len - 1 ) __UpperCamelCase =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =True if secondary_learner is not None: __UpperCamelCase =secondary_learner.forward( torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(SCREAMING_SNAKE_CASE__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __UpperCamelCase =-1 if predicted_q < threshold: __UpperCamelCase =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __UpperCamelCase =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCamelCase =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print('Test perplexity, step' , SCREAMING_SNAKE_CASE__ , ':' , SCREAMING_SNAKE_CASE__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=SCREAMING_SNAKE_CASE__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=SCREAMING_SNAKE_CASE__ , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=SCREAMING_SNAKE_CASE__ , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=SCREAMING_SNAKE_CASE__ , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=SCREAMING_SNAKE_CASE__ , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=SCREAMING_SNAKE_CASE__ , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=SCREAMING_SNAKE_CASE__ , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=SCREAMING_SNAKE_CASE__ , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __UpperCamelCase =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __UpperCamelCase =training_secondary_learner( SCREAMING_SNAKE_CASE__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __UpperCamelCase =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __UpperCamelCase , __UpperCamelCase =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE__ , secondary_learner=SCREAMING_SNAKE_CASE__ , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
import numpy as np def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray ): return 1 / (1 + np.exp(-vector )) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray ): return vector * sigmoid(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = 'RegNetConfig' # Base docstring _A = 'facebook/regnet-y-040' _A = [1, 1088, 7, 7] # Image classification docstring _A = 'facebook/regnet-y-040' _A = 'tabby, tabby cat' _A = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , ) -> Dict: super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase =tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) __UpperCamelCase =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) __UpperCamelCase =ACTaFN[activation] if activation is not None else tf.identity def _a ( self , A_ ) -> Tuple: __UpperCamelCase =self.convolution(self.padding(A_ ) ) __UpperCamelCase =self.normalization(A_ ) __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , **A_ ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =config.num_channels __UpperCamelCase =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _a ( self , A_ ) -> Any: __UpperCamelCase =shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase =tf.transpose(A_ , perm=(0, 2, 3, 1) ) __UpperCamelCase =self.embedder(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ = 2 , **A_ ) -> int: super().__init__(**A_ ) __UpperCamelCase =tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) __UpperCamelCase =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def _a ( self , A_ , A_ = False ) -> tf.Tensor: return self.normalization(self.convolution(A_ ) , training=A_ ) class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , **A_ ) -> Dict: super().__init__(**A_ ) __UpperCamelCase =tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) __UpperCamelCase =[ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _a ( self , A_ ) -> Optional[int]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase =self.pooler(A_ ) for layer_module in self.attention: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =hidden_state * pooled return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ ) -> int: super().__init__(**A_ ) __UpperCamelCase =in_channels != out_channels or stride != 1 __UpperCamelCase =max(1 , out_channels // config.groups_width ) __UpperCamelCase =( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase =[ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] __UpperCamelCase =ACTaFN[config.hidden_act] def _a ( self , A_ ) -> Tuple: __UpperCamelCase =hidden_state for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =self.shortcut(A_ ) hidden_state += residual __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =in_channels != out_channels or stride != 1 __UpperCamelCase =max(1 , out_channels // config.groups_width ) __UpperCamelCase =( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __UpperCamelCase =[ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] __UpperCamelCase =ACTaFN[config.hidden_act] def _a ( self , A_ ) -> int: __UpperCamelCase =hidden_state for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =self.shortcut(A_ ) hidden_state += residual __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ ) -> Dict: super().__init__(**A_ ) __UpperCamelCase =TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __UpperCamelCase =[ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def _a ( self , A_ ) -> Optional[Any]: for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , **A_ ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __UpperCamelCase =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=f'stages.{i+1}' ) ) def _a ( self , A_ , A_ = False , A_ = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase =hidden_states + (hidden_state,) __UpperCamelCase =stage_module(A_ ) if output_hidden_states: __UpperCamelCase =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = RegNetConfig def __init__( self , A_ , **A_ ) -> Optional[int]: super().__init__(**A_ ) __UpperCamelCase =config __UpperCamelCase =TFRegNetEmbeddings(A_ , name='embedder' ) __UpperCamelCase =TFRegNetEncoder(A_ , name='encoder' ) __UpperCamelCase =tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def _a ( self , A_ , A_ = None , A_ = None , A_ = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.embedder(A_ , training=A_ ) __UpperCamelCase =self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) __UpperCamelCase =encoder_outputs[0] __UpperCamelCase =self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase =tf.transpose(A_ , perm=(0, 3, 1, 2) ) __UpperCamelCase =tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase =tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = RegNetConfig UpperCAmelCase__ : Optional[int] = "regnet" UpperCAmelCase__ : Tuple = "pixel_values" @property def _a ( self ) -> int: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _A = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _A = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , A_ , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , *A_ , **A_ ) -> str: super().__init__(A_ , *A_ , **A_ ) __UpperCamelCase =TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self , A_ , A_ = None , A_ = None , A_=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , A_ , ) class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" def __init__( self , A_ , *A_ , **A_ ) -> Optional[Any]: super().__init__(A_ , *A_ , **A_ ) __UpperCamelCase =config.num_labels __UpperCamelCase =TFRegNetMainLayer(A_ , name='regnet' ) # classification head __UpperCamelCase =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) __UpperCamelCase =outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase =self.classifier[0](A_ ) __UpperCamelCase =self.classifier[1](A_ ) __UpperCamelCase =None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: __UpperCamelCase =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
_A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) order.append(SCREAMING_SNAKE_CASE__ ) return order def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return component def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] __UpperCamelCase ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE__ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =order[len(SCREAMING_SNAKE_CASE__ ) - i - 1] if not visited[vert]: __UpperCamelCase =find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) components_list.append(SCREAMING_SNAKE_CASE__ ) return components_list
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> List[Any]: super().__init__(*A_ , **A_ ) self.check_model_type(A_ ) def _a ( self , A_=None , A_=None , A_=None , **A_ ) -> List[Any]: __UpperCamelCase , __UpperCamelCase ={}, {} if padding is not None: __UpperCamelCase =padding if truncation is not None: __UpperCamelCase =truncation if top_k is not None: __UpperCamelCase =top_k return preprocess_params, {}, postprocess_params def __call__( self , A_ , A_ = None , **A_ ) -> Tuple: if isinstance(A_ , (Image.Image, str) ) and isinstance(A_ , A_ ): __UpperCamelCase ={'image': image, 'question': question} else: __UpperCamelCase =image __UpperCamelCase =super().__call__(A_ , **A_ ) return results def _a ( self , A_ , A_=False , A_=False ) -> Dict: __UpperCamelCase =load_image(inputs['image'] ) __UpperCamelCase =self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=A_ , truncation=A_ ) __UpperCamelCase =self.image_processor(images=A_ , return_tensors=self.framework ) model_inputs.update(A_ ) return model_inputs def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =self.model(**A_ ) return model_outputs def _a ( self , A_ , A_=5 ) -> str: if top_k > self.model.config.num_labels: __UpperCamelCase =self.model.config.num_labels if self.framework == "pt": __UpperCamelCase =model_outputs.logits.sigmoid()[0] __UpperCamelCase , __UpperCamelCase =probs.topk(A_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase =scores.tolist() __UpperCamelCase =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(A_ , A_ )]
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
from typing import Dict, Optional import numpy as np import datasets _A = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' _A = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' _A = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): if label_map is not None: for old_id, new_id in label_map.items(): __UpperCamelCase =new_id # turn into Numpy arrays __UpperCamelCase =np.array(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.array(SCREAMING_SNAKE_CASE__ ) if reduce_labels: __UpperCamelCase =2_55 __UpperCamelCase =label - 1 __UpperCamelCase =2_55 __UpperCamelCase =label != ignore_index __UpperCamelCase =np.not_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =pred_label[mask] __UpperCamelCase =np.array(SCREAMING_SNAKE_CASE__ )[mask] __UpperCamelCase =pred_label[pred_label == label] __UpperCamelCase =np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] __UpperCamelCase =np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] __UpperCamelCase =np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] __UpperCamelCase =area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): __UpperCamelCase =np.zeros((num_labels,) , dtype=np.floataa ) __UpperCamelCase =np.zeros((num_labels,) , dtype=np.floataa ) __UpperCamelCase =np.zeros((num_labels,) , dtype=np.floataa ) __UpperCamelCase =np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =total_intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # compute metrics __UpperCamelCase ={} __UpperCamelCase =total_area_intersect.sum() / total_area_label.sum() __UpperCamelCase =total_area_intersect / total_area_union __UpperCamelCase =total_area_intersect / total_area_label __UpperCamelCase =np.nanmean(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.nanmean(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =all_acc __UpperCamelCase =iou __UpperCamelCase =acc if nan_to_num is not None: __UpperCamelCase ={metric: np.nan_to_num(SCREAMING_SNAKE_CASE__ , nan=SCREAMING_SNAKE_CASE__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _a ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def _a ( self , A_ , A_ , A_ , A_ , A_ = None , A_ = None , A_ = False , ) -> Optional[int]: __UpperCamelCase =mean_iou( results=A_ , gt_seg_maps=A_ , num_labels=A_ , ignore_index=A_ , nan_to_num=A_ , label_map=A_ , reduce_labels=A_ , ) return iou_result
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[Any]: __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __UpperCamelCase ={ 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], 'do_convert_rgb': True, } __UpperCamelCase =os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def _a ( self , **A_ ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , **A_ ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , **A_ ) -> Any: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Dict: __UpperCamelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase =[Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_rust_tokenizer() __UpperCamelCase =self.get_image_processor() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase =ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase =ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __UpperCamelCase =self.get_image_processor(do_normalize=A_ ) __UpperCamelCase =ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =image_processor(A_ , return_tensors='np' ) __UpperCamelCase =processor(images=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> str: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='Alexandra,T-shirt的价格是15便士。' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='Alexandra,T-shirt的价格是15便士。' __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _a ( self ) -> List[Any]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='Alexandra,T-shirt的价格是15便士。' __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
713
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "naver-clova-ix/donut-base-finetuned-docvqa" UpperCAmelCase__ : List[Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) UpperCAmelCase__ : List[Any] = "document_qa" UpperCAmelCase__ : Optional[int] = AutoProcessor UpperCAmelCase__ : Optional[Any] = VisionEncoderDecoderModel UpperCAmelCase__ : str = ["image", "text"] UpperCAmelCase__ : int = ["text"] def __init__( self , *A_ , **A_ ) -> int: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*A_ , **A_ ) def _a ( self , A_ , A_ ) -> List[str]: __UpperCamelCase ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase =task_prompt.replace('{user_input}' , A_ ) __UpperCamelCase =self.pre_processor.tokenizer( A_ , add_special_tokens=A_ , return_tensors='pt' ).input_ids __UpperCamelCase =self.pre_processor(A_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self , A_ ) -> Tuple: return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A_ , ).sequences def _a ( self , A_ ) -> List[str]: __UpperCamelCase =self.pre_processor.batch_decode(A_ )[0] __UpperCamelCase =sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __UpperCamelCase =sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __UpperCamelCase =re.sub(r'<.*?>' , '' , A_ , count=1 ).strip() # remove first task start token __UpperCamelCase =self.pre_processor.tokenajson(A_ ) return sequence["answer"]
714
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
0
_A = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: # Return True if there is node that has not iterated. __UpperCamelCase =[False] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[s] __UpperCamelCase =True while queue: __UpperCamelCase =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =True __UpperCamelCase =u return visited[t] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: __UpperCamelCase =[-1] * (len(SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =0 __UpperCamelCase =[] __UpperCamelCase =[i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =float('Inf' ) __UpperCamelCase =sink while s != source: # Find the minimum value in select path __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) __UpperCamelCase =parent[s] max_flow += path_flow __UpperCamelCase =sink while v != source: __UpperCamelCase =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase =parent[v] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _A = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _A = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCAmelCase ( ): __UpperCamelCase =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __UpperCamelCase =bs[:] __UpperCamelCase =0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 __UpperCamelCase =[chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =set() __UpperCamelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase =char return pairs class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> Tuple: __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase =json.load(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =errors # how to handle errors in decoding __UpperCamelCase =bytes_to_unicode() __UpperCamelCase ={v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: __UpperCamelCase =merges_handle.read().split('\n' )[1:-1] __UpperCamelCase =[tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase =dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase ={} __UpperCamelCase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase =re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def _a ( self ) -> List[str]: return len(self.encoder ) def _a ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self , A_ ) -> List[Any]: if token in self.cache: return self.cache[token] __UpperCamelCase =tuple(A_ ) __UpperCamelCase =get_pairs(A_ ) if not pairs: return token while True: __UpperCamelCase =min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase =bigram __UpperCamelCase =[] __UpperCamelCase =0 while i < len(A_ ): try: __UpperCamelCase =word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase =j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase =tuple(A_ ) __UpperCamelCase =new_word if len(A_ ) == 1: break else: __UpperCamelCase =get_pairs(A_ ) __UpperCamelCase =' '.join(A_ ) __UpperCamelCase =word return word def _a ( self , A_ ) -> int: __UpperCamelCase =[] for token in re.findall(self.pat , A_ ): __UpperCamelCase =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def _a ( self , A_ ) -> Union[str, Any]: return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def _a ( self , A_ ) -> Any: return self.decoder.get(A_ ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =''.join(A_ ) __UpperCamelCase =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) __UpperCamelCase =0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase =token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , A_ , A_=False , **A_ ) -> Optional[int]: __UpperCamelCase =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): __UpperCamelCase =' ' + text return (text, kwargs)
716
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _A = logging.get_logger(__name__) def _UpperCAmelCase ( ): # Get the sagemaker specific mp parameters from smp_options variable. __UpperCamelCase =os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __UpperCamelCase =json.loads(SCREAMING_SNAKE_CASE__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __UpperCamelCase =os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __UpperCamelCase =json.loads(SCREAMING_SNAKE_CASE__ ) if not mpi_options.get('sagemaker_mpi_enabled' , SCREAMING_SNAKE_CASE__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def _a ( self ) -> Optional[Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , A_ , ) @cached_property def _a ( self ) -> "torch.device": logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: __UpperCamelCase =torch.device('cpu' ) __UpperCamelCase =0 elif is_sagemaker_model_parallel_available(): __UpperCamelCase =smp.local_rank() __UpperCamelCase =torch.device('cuda' , A_ ) __UpperCamelCase =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) __UpperCamelCase =int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) __UpperCamelCase =torch.device('cuda' , self.local_rank ) __UpperCamelCase =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __UpperCamelCase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __UpperCamelCase =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) __UpperCamelCase =torch.device('cuda' , self.local_rank ) __UpperCamelCase =1 if device.type == "cuda": torch.cuda.set_device(A_ ) return device @property def _a ( self ) -> List[Any]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self ) -> int: return not is_sagemaker_model_parallel_available() @property def _a ( self ) -> List[str]: return False
717
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "xlm-roberta" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Dict: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =use_cache __UpperCamelCase =classifier_dropout class UpperCAmelCase__ ( A_ ): """simple docstring""" @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 637_8137.0 _A = 635_6752.31_4245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
719
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = ConsistencyModelPipeline UpperCAmelCase__ : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCAmelCase__ : Optional[Any] = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def _a ( self ) -> int: __UpperCamelCase =UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _a ( self ) -> Optional[int]: __UpperCamelCase =UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _a ( self , A_=False ) -> Optional[int]: if class_cond: __UpperCamelCase =self.dummy_cond_unet else: __UpperCamelCase =self.dummy_uncond_unet # Default to CM multistep sampler __UpperCamelCase =CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase ={ 'unet': unet, 'scheduler': scheduler, } return components def _a ( self , A_ , A_=0 ) -> int: if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _a ( self ) -> Optional[int]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =ConsistencyModelPipeline(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> Union[str, Any]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components(class_cond=A_ ) __UpperCamelCase =ConsistencyModelPipeline(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =0 __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> Optional[int]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =ConsistencyModelPipeline(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =1 __UpperCamelCase =None __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> List[Any]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components(class_cond=A_ ) __UpperCamelCase =ConsistencyModelPipeline(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase =1 __UpperCamelCase =None __UpperCamelCase =0 __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , A_=0 , A_=False , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) -> Any: __UpperCamelCase =torch.manual_seed(A_ ) __UpperCamelCase ={ 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __UpperCamelCase =self.get_fixed_latents(seed=A_ , device=A_ , dtype=A_ , shape=A_ ) __UpperCamelCase =latents return inputs def _a ( self , A_=0 , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) -> List[str]: if type(A_ ) == str: __UpperCamelCase =torch.device(A_ ) __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase =randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) return latents def _a ( self ) -> int: __UpperCamelCase =UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __UpperCamelCase =CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase =ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs() __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _a ( self ) -> Union[str, Any]: __UpperCamelCase =UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __UpperCamelCase =CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase =ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs() __UpperCamelCase =1 __UpperCamelCase =None __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _a ( self ) -> Tuple: __UpperCamelCase =UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __UpperCamelCase =CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase =ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs(get_fixed_latents=A_ , device=A_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _a ( self ) -> Any: __UpperCamelCase =UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __UpperCamelCase =CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCamelCase =ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_inputs(get_fixed_latents=A_ , device=A_ ) __UpperCamelCase =1 __UpperCamelCase =None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __UpperCamelCase =pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
720
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCAmelCase__ ( unittest.TestCase ): @slow def _a ( self ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModel.from_pretrained(A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModel.from_pretrained(A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForPreTraining.from_pretrained(A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForPreTraining.from_pretrained(A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> Tuple: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForCausalLM.from_pretrained(A_ , from_pt=A_ ) __UpperCamelCase , __UpperCamelCase =TFAutoModelForCausalLM.from_pretrained( A_ , output_loading_info=A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForCausalLM.from_pretrained(A_ , from_tf=A_ ) __UpperCamelCase , __UpperCamelCase =AutoModelForCausalLM.from_pretrained( A_ , output_loading_info=A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> Any: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelWithLMHead.from_pretrained(A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelWithLMHead.from_pretrained(A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForMaskedLM.from_pretrained(A_ , from_pt=A_ ) __UpperCamelCase , __UpperCamelCase =TFAutoModelForMaskedLM.from_pretrained( A_ , output_loading_info=A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForMaskedLM.from_pretrained(A_ , from_tf=A_ ) __UpperCamelCase , __UpperCamelCase =AutoModelForMaskedLM.from_pretrained( A_ , output_loading_info=A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForSeqaSeqLM.from_pretrained(A_ , from_pt=A_ ) __UpperCamelCase , __UpperCamelCase =TFAutoModelForSeqaSeqLM.from_pretrained( A_ , output_loading_info=A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ , from_tf=A_ ) __UpperCamelCase , __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained( A_ , output_loading_info=A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForSequenceClassification.from_pretrained(A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained(A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) @slow def _a ( self ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =TFAutoModelForQuestionAnswering.from_pretrained(A_ , from_pt=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) __UpperCamelCase =AutoModelForQuestionAnswering.from_pretrained(A_ , from_tf=A_ ) self.assertIsNotNone(A_ ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =TFAutoModelWithLMHead.from_pretrained(A_ , from_pt=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) __UpperCamelCase =AutoModelWithLMHead.from_pretrained(A_ , from_tf=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) def _a ( self ) -> Dict: __UpperCamelCase =TFAutoModelWithLMHead.from_pretrained(A_ , from_pt=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 ) __UpperCamelCase =AutoModelWithLMHead.from_pretrained(A_ , from_tf=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=A_ ) , 14410 )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _A = '__DUMMY_TRANSFORMERS_USER__' _A = 'Dummy User' _A = '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' _A = 'https://hub-ci.huggingface.co' _A = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _A = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _A = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def _UpperCAmelCase ( ): return HfApi(endpoint=SCREAMING_SNAKE_CASE__ ) @pytest.fixture(scope='session' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : HfApi ): __UpperCamelCase =HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): def _cleanup_repo(SCREAMING_SNAKE_CASE__ : Dict ): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE__ : List[Any] ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__ ) return _temporary_repo @pytest.fixture(scope='session' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =F'repo_txt_data-{int(time.time() * 10E3 )}' __UpperCamelCase =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =F'repo_zipped_txt_data-{int(time.time() * 10E3 )}' __UpperCamelCase =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : HfApi , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =F'repo_zipped_img_data-{int(time.time() * 10E3 )}' __UpperCamelCase =F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ): return hf_private_dataset_repo_zipped_img_data_
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) __UpperCamelCase =components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) __UpperCamelCase =components[:-1] + [test_fn.replace('.py' , '' )] __UpperCamelCase ='.'.join(SCREAMING_SNAKE_CASE__ ) return test_module_path def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =get_module_path(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =importlib.import_module(SCREAMING_SNAKE_CASE__ ) return test_module def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] __UpperCamelCase =get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] __UpperCamelCase =get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , 'all_model_classes' , [] ) if len(SCREAMING_SNAKE_CASE__ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =test_class() if hasattr(SCREAMING_SNAKE_CASE__ , 'setUp' ): test.setUp() __UpperCamelCase =None if hasattr(SCREAMING_SNAKE_CASE__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __UpperCamelCase =test.model_tester.__class__ return model_tester def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for test_class in test_classes: __UpperCamelCase =get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) for test_class in test_classes} return test_tester_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =get_model_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_test_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_model_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_to_tester_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE__ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {to_json(SCREAMING_SNAKE_CASE__ ): to_json(SCREAMING_SNAKE_CASE__ ) for k, v in o.items()} else: return o
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
0
from ...configuration_utils import PretrainedConfig _A = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = "tapas" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=[3, 256, 256, 2, 256, 256, 10] , A_=0.02 , A_=1E-12 , A_=0 , A_=10.0 , A_=0 , A_=1.0 , A_=None , A_=1.0 , A_=False , A_=None , A_=1.0 , A_=1.0 , A_=False , A_=False , A_="ratio" , A_=None , A_=None , A_=64 , A_=32 , A_=False , A_=True , A_=False , A_=False , A_=True , A_=False , A_=None , A_=None , **A_ , ) -> str: super().__init__(pad_token_id=A_ , **A_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_sizes __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps # Fine-tuning task hyperparameters __UpperCamelCase =positive_label_weight __UpperCamelCase =num_aggregation_labels __UpperCamelCase =aggregation_loss_weight __UpperCamelCase =use_answer_as_supervision __UpperCamelCase =answer_loss_importance __UpperCamelCase =use_normalized_answer_loss __UpperCamelCase =huber_loss_delta __UpperCamelCase =temperature __UpperCamelCase =aggregation_temperature __UpperCamelCase =use_gumbel_for_cells __UpperCamelCase =use_gumbel_for_aggregation __UpperCamelCase =average_approximation_function __UpperCamelCase =cell_selection_preference __UpperCamelCase =answer_loss_cutoff __UpperCamelCase =max_num_rows __UpperCamelCase =max_num_columns __UpperCamelCase =average_logits_per_cell __UpperCamelCase =select_one_column __UpperCamelCase =allow_empty_column_selection __UpperCamelCase =init_cell_selection_weights_to_zero __UpperCamelCase =reset_position_index_per_cell __UpperCamelCase =disable_per_token_loss # Aggregation hyperparameters __UpperCamelCase =aggregation_labels __UpperCamelCase =no_aggregation_label_index if isinstance(self.aggregation_labels , A_ ): __UpperCamelCase ={int(A_ ): v for k, v in aggregation_labels.items()}
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
from __future__ import annotations import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =str(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[n] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if len(str(SCREAMING_SNAKE_CASE__ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE__ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE__ )[:3] ) ): return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 11 ): __UpperCamelCase =[] __UpperCamelCase =13 while len(SCREAMING_SNAKE_CASE__ ) != count: if validate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =list_truncated_nums(SCREAMING_SNAKE_CASE__ ) if all(is_prime(SCREAMING_SNAKE_CASE__ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE__ ) num += 2 return list_truncated_primes def _UpperCAmelCase ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' import functools def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __UpperCamelCase =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =prime_factors(SCREAMING_SNAKE_CASE__ ) if is_square_free(SCREAMING_SNAKE_CASE__ ): return -1 if len(SCREAMING_SNAKE_CASE__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _A = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _UpperCAmelCase ( ): __UpperCamelCase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCamelCase =get_sagemaker_input() else: __UpperCamelCase =get_cluster_input() return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('config' , description=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate config command' , description=SCREAMING_SNAKE_CASE__ ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_user_input() if args.config_file is not None: __UpperCamelCase =args.config_file else: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(SCREAMING_SNAKE_CASE__ ) else: config.to_yaml_file(SCREAMING_SNAKE_CASE__ ) print(F'accelerate configuration saved at {config_file}' ) def _UpperCAmelCase ( ): __UpperCamelCase =config_command_parser() __UpperCamelCase =parser.parse_args() config_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import numpy as np from transformers import Pipeline def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , **A_ ) -> Union[str, Any]: __UpperCamelCase ={} if "second_text" in kwargs: __UpperCamelCase =kwargs['second_text'] return preprocess_kwargs, {}, {} def _a ( self , A_ , A_=None ) -> Dict: return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def _a ( self , A_ ) -> Any: return self.model(**A_ ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =model_outputs.logits[0].numpy() __UpperCamelCase =softmax(A_ ) __UpperCamelCase =np.argmax(A_ ) __UpperCamelCase =self.model.config.idalabel[best_class] __UpperCamelCase =probabilities[best_class].item() __UpperCamelCase =logits.tolist() return {"label": label, "score": score, "logits": logits}
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[float] ): if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): __UpperCamelCase =( 'Expected a list of numbers as input, found ' F'{type(SCREAMING_SNAKE_CASE__ ).__name__}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =F'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Missing an input' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
from __future__ import annotations import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE__ : int | float , SCREAMING_SNAKE_CASE__ : int | float , SCREAMING_SNAKE_CASE__ : int = 1_00 , ): __UpperCamelCase =x_start __UpperCamelCase =fnc(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0.0 for _ in range(SCREAMING_SNAKE_CASE__ ): # Approximates curve as a sequence of linear lines and sums their length __UpperCamelCase =(x_end - x_start) / steps + xa __UpperCamelCase =fnc(SCREAMING_SNAKE_CASE__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __UpperCamelCase =xa __UpperCamelCase =fxa return length if __name__ == "__main__": def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _A = 10 while i <= 10_0000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = FlaxAutoencoderKL @property def _a ( self ) -> int: __UpperCamelCase =4 __UpperCamelCase =3 __UpperCamelCase =(32, 32) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =jax.random.uniform(A_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _a ( self ) -> Optional[Any]: __UpperCamelCase ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A : Tuple = 16 _A : int = 32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): __UpperCamelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCamelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Any ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase =datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase =16 elif accelerator.mixed_precision != "no": __UpperCamelCase =8 else: __UpperCamelCase =None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A : List[Any] = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __UpperCamelCase =2 # Initialize accelerator __UpperCamelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config['lr'] __UpperCamelCase =int(config['num_epochs'] ) __UpperCamelCase =int(config['seed'] ) __UpperCamelCase =int(config['batch_size'] ) __UpperCamelCase =evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=SCREAMING_SNAKE_CASE__ ) def inner_training_loop(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase =model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
713
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCAmelCase ( ): __UpperCamelCase ='mock-s3-bucket' __UpperCamelCase =F's3://{mock_bucket}' __UpperCamelCase =extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path.startswith('s3://' ) is False __UpperCamelCase ='./local/path' __UpperCamelCase =extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path == new_dataset_path def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is True __UpperCamelCase =fsspec.filesystem('file' ) __UpperCamelCase =is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} __UpperCamelCase =input_paths[compression_fs_class.protocol] if input_path is None: __UpperCamelCase =F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.basename(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase ={'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} __UpperCamelCase =compressed_file_paths[protocol] __UpperCamelCase ='dataset.jsonl' __UpperCamelCase =F'{protocol}://{member_file_path}::{compressed_file_path}' __UpperCamelCase , *__UpperCamelCase =fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ ) assert fs.isfile(SCREAMING_SNAKE_CASE__ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(SCREAMING_SNAKE_CASE__ ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def _UpperCAmelCase ( ): __UpperCamelCase ='bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ ) with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(SCREAMING_SNAKE_CASE__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
714
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ) -> List[str]: print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[str, Any]: __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : UNetaDModel UpperCAmelCase__ : ScoreSdeVeScheduler def __init__( self , A_ , A_ ) -> Tuple: super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 2000 , A_ = None , A_ = "pil" , A_ = True , **A_ , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCamelCase =self.unet.config.sample_size __UpperCamelCase =(batch_size, 3, img_size, img_size) __UpperCamelCase =self.unet __UpperCamelCase =randn_tensor(A_ , generator=A_ ) * self.scheduler.init_noise_sigma __UpperCamelCase =sample.to(self.device ) self.scheduler.set_timesteps(A_ ) self.scheduler.set_sigmas(A_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase =self.unet(A_ , A_ ).sample __UpperCamelCase =self.scheduler.step_correct(A_ , A_ , generator=A_ ).prev_sample # prediction step __UpperCamelCase =model(A_ , A_ ).sample __UpperCamelCase =self.scheduler.step_pred(A_ , A_ , A_ , generator=A_ ) __UpperCamelCase , __UpperCamelCase =output.prev_sample, output.prev_sample_mean __UpperCamelCase =sample_mean.clamp(0 , 1 ) __UpperCamelCase =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase =self.numpy_to_pil(A_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A_ )
716
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[int] ): if not nums: return 0 __UpperCamelCase =nums[0] __UpperCamelCase =0 for num in nums[1:]: __UpperCamelCase , __UpperCamelCase =( max_excluding + num, max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
717
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _A = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : int = 1_0_0_0_0 UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ParquetConfig def _a ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def _a ( self , A_ ) -> Optional[Any]: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __UpperCamelCase =dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): __UpperCamelCase =data_files if isinstance(A_ , A_ ): __UpperCamelCase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase =[dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __UpperCamelCase =[] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): __UpperCamelCase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase =[dl_manager.iter_files(A_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A_ ): with open(A_ , 'rb' ) as f: __UpperCamelCase =datasets.Features.from_arrow_schema(pq.read_schema(A_ ) ) break splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={'files': files} ) ) return splits def _a ( self , A_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCamelCase =table_cast(A_ , self.info.features.arrow_schema ) return pa_table def _a ( self , A_ ) -> Dict: __UpperCamelCase =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): with open(A_ , 'rb' ) as f: __UpperCamelCase =pq.ParquetFile(A_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __UpperCamelCase =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(A_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(A_ )}: {e}' ) raise
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
719
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = ["pixel_values"] def __init__( self , A_ = True , A_ = 1 / 255 , A_ = True , A_ = 8 , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_pad __UpperCamelCase =pad_size def _a ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None ) -> str: __UpperCamelCase , __UpperCamelCase =get_image_size(A_ ) __UpperCamelCase =(old_height // size + 1) * size - old_height __UpperCamelCase =(old_width // size + 1) * size - old_width return pad(A_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> Tuple: __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =do_pad if do_pad is not None else self.do_pad __UpperCamelCase =pad_size if pad_size is not None else self.pad_size __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images] if do_pad: __UpperCamelCase =[self.pad(A_ , size=A_ ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
720
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : Union[str, Any] = "" UpperCAmelCase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCAmelCase__ : str = None # compression type in fsspec. ex: "gzip" UpperCAmelCase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , A_ = "" , A_ = None , A_ = None , **A_ ) -> Optional[Any]: super().__init__(self , **A_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCamelCase =fsspec.open( A_ , mode='rb' , protocol=A_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCamelCase =os.path.basename(self.file.path.split('::' )[0] ) __UpperCamelCase =( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) __UpperCamelCase =None @classmethod def _a ( cls , A_ ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(A_ ).lstrip('/' ) def _a ( self ) -> List[str]: if self.dir_cache is None: __UpperCamelCase ={**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} __UpperCamelCase ={f['name']: f} def _a ( self , A_ ) -> Dict: return self.file.open().read() def _a ( self , A_ , A_ = "rb" , A_=None , A_=True , A_=None , **A_ , ) -> Union[str, Any]: __UpperCamelCase =self._strip_protocol(A_ ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : int = "bz2" UpperCAmelCase__ : Union[str, Any] = "bz2" UpperCAmelCase__ : Dict = ".bz2" class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : Any = "gzip" UpperCAmelCase__ : Optional[int] = "gzip" UpperCAmelCase__ : List[Any] = ".gz" class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : Union[str, Any] = "lz4" UpperCAmelCase__ : List[Any] = "lz4" UpperCAmelCase__ : Optional[int] = ".lz4" class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : Optional[int] = "xz" UpperCAmelCase__ : Optional[Any] = "xz" UpperCAmelCase__ : Dict = ".xz" class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Union[str, Any] = ".zst" def __init__( self , A_ , A_ = "rb" , A_ = None , A_ = None , A_ = DEFAULT_BLOCK_SIZE , **A_ , ) -> str: super().__init__( fo=A_ , mode=A_ , target_protocol=A_ , target_options=A_ , block_size=A_ , **A_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCamelCase =self.file.__enter__ class UpperCAmelCase__ : def __init__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =file_ def __enter__( self ) -> Any: self._file.__enter__() return self def __exit__( self , *A_ , **A_ ) -> List[str]: self._file.__exit__(*A_ , **A_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _a ( self ) -> List[str]: return next(self._file ) def __getattr__( self , A_ ) -> List[Any]: return getattr(self._file , A_ ) def fixed_enter(*A_ , **A_ ): return WrappedFile(_enter(*A_ , **A_ ) ) __UpperCamelCase =fixed_enter
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Dict: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Any: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> int: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =NystromformerModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =NystromformerForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =NystromformerForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =NystromformerForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =self.num_labels __UpperCamelCase =NystromformerForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =NystromformerForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : List[str] = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False def _a ( self ) -> str: __UpperCamelCase =NystromformerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> List[Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =NystromformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __UpperCamelCase =model(A_ )[0] __UpperCamelCase =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase ='the [MASK] of Belgium is Brussels' __UpperCamelCase =AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =tokenizer(A_ , return_tensors='pt' ) with torch.no_grad(): __UpperCamelCase =model(encoding.input_ids ).logits __UpperCamelCase =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A_ ) , 'capital' )
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=A_ , ) assert hasattr(self , 'env' ) def _a ( self , A_ ) -> Dict: # configuration for running training on smdistributed Model Parallel __UpperCamelCase ={ 'enabled': True, 'processes_per_host': 8, } __UpperCamelCase ={ 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __UpperCamelCase ={'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __UpperCamelCase ='trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=A_ , py_version='py36' , ) def _a ( self , A_ ) -> Optional[int]: TrainingJobAnalytics(A_ ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def _a ( self , A_ ) -> Union[str, Any]: # create estimator __UpperCamelCase =self.create_estimator(A_ ) # run training estimator.fit() # result dataframe __UpperCamelCase =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __UpperCamelCase =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A_ )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> Optional[int]: __UpperCamelCase =params __UpperCamelCase =np.array(A_ ) __UpperCamelCase =np.array([len(A_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A_ ) -> Any: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Dict: return len(self.lengths ) def _a ( self ) -> str: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _a ( self ) -> int: __UpperCamelCase =self.params.max_model_input_size __UpperCamelCase =self.lengths > max_len logger.info(f'Splitting {sum(A_ )} too long sequences.' ) def divide_chunks(A_ , A_ ): return [l[i : i + n] for i in range(0 , len(A_ ) , A_ )] __UpperCamelCase =[] __UpperCamelCase =[] if self.params.mlm: __UpperCamelCase , __UpperCamelCase =self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: __UpperCamelCase , __UpperCamelCase =self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCamelCase =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCamelCase =np.insert(A_ , 0 , A_ ) if sub_s[-1] != sep_id: __UpperCamelCase =np.insert(A_ , len(A_ ) , A_ ) assert len(A_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A_ ) new_tok_ids.extend(A_ ) new_lengths.extend([len(A_ ) for l in sub_seqs] ) __UpperCamelCase =np.array(A_ ) __UpperCamelCase =np.array(A_ ) def _a ( self ) -> Any: __UpperCamelCase =len(self ) __UpperCamelCase =self.lengths > 11 __UpperCamelCase =self.token_ids[indices] __UpperCamelCase =self.lengths[indices] __UpperCamelCase =len(self ) logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def _a ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: __UpperCamelCase =self.params.special_tok_ids['unk_token'] __UpperCamelCase =len(self ) __UpperCamelCase =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCamelCase =(unk_occs / self.lengths) < 0.5 __UpperCamelCase =self.token_ids[indices] __UpperCamelCase =self.lengths[indices] __UpperCamelCase =len(self ) logger.info(f'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def _a ( self ) -> Any: if not self.params.is_master: return logger.info(f'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _a ( self , A_ ) -> str: __UpperCamelCase =[t[0] for t in batch] __UpperCamelCase =[t[1] for t in batch] assert len(A_ ) == len(A_ ) # Max for paddings __UpperCamelCase =max(A_ ) # Pad token ids if self.params.mlm: __UpperCamelCase =self.params.special_tok_ids['pad_token'] else: __UpperCamelCase =self.params.special_tok_ids['unk_token'] __UpperCamelCase =[list(t.astype(A_ ) ) + [pad_idx] * (max_seq_len_ - len(A_ )) for t in token_ids] assert len(tk_ ) == len(A_ ) assert all(len(A_ ) == max_seq_len_ for t in tk_ ) __UpperCamelCase =torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCamelCase =torch.tensor(A_ ) # (bs) return tk_t, lg_t
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _A = logging.get_logger('transformers.models.speecht5') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): hf_model.apply_weight_norm() __UpperCamelCase =checkpoint['input_conv.weight_g'] __UpperCamelCase =checkpoint['input_conv.weight_v'] __UpperCamelCase =checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): __UpperCamelCase =checkpoint[F'upsamples.{i}.1.weight_g'] __UpperCamelCase =checkpoint[F'upsamples.{i}.1.weight_v'] __UpperCamelCase =checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __UpperCamelCase =checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] __UpperCamelCase =checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] __UpperCamelCase =checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] __UpperCamelCase =checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] __UpperCamelCase =checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] __UpperCamelCase =checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] __UpperCamelCase =checkpoint['output_conv.1.weight_g'] __UpperCamelCase =checkpoint['output_conv.1.weight_v'] __UpperCamelCase =checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): if config_path is not None: __UpperCamelCase =SpeechTaHifiGanConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =SpeechTaHifiGanConfig() __UpperCamelCase =SpeechTaHifiGan(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ ) load_weights(orig_checkpoint['model']['generator'] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.load(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =stats[0].reshape(-1 ) __UpperCamelCase =stats[1].reshape(-1 ) __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ).float() __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ).float() model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _A = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _A = 50_0000 _A , _A = os.path.split(__file__) _A = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : datasets.Dataset , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : datasets.Dataset , **SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =dataset.filter(**SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase ={'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase =datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __UpperCamelCase =generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return tokenizer(examples['text'] ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='numpy' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='pandas' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] _A = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] _A = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) _A = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) _A = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): for tf_name, hf_name in patterns: __UpperCamelCase =k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ): __UpperCamelCase =BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch_model.state_dict() __UpperCamelCase ={} # separating decoder weights __UpperCamelCase ={k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __UpperCamelCase ={k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __UpperCamelCase =[k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue __UpperCamelCase =DECODER_PATTERNS __UpperCamelCase =rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __UpperCamelCase =v.T __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __UpperCamelCase =[k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue __UpperCamelCase =REMAINING_PATTERNS __UpperCamelCase =rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __UpperCamelCase =v.T __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __UpperCamelCase =mapping['model.embed_positions.weight'] __UpperCamelCase =mapping.pop('model.embed_positions.weight' ) __UpperCamelCase , __UpperCamelCase =torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={} __UpperCamelCase =['global_step'] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='converting tf checkpoint to dict' ): __UpperCamelCase =any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =array return tf_weights def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : dict ): __UpperCamelCase =get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = True , ) -> str: __UpperCamelCase =[file for file in os.listdir(A_ ) if os.path.isfile(os.path.join(A_ , A_ ) )] if identifier is not None: __UpperCamelCase =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(A_ , A_ ): for n_ in n_identifier: __UpperCamelCase =[file for file in files if n_ not in file] else: __UpperCamelCase =[file for file in files if n_identifier not in file] __UpperCamelCase =ignore_files or [] ignore_files.append('__init__.py' ) __UpperCamelCase =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , A_ ) if only_modules: __UpperCamelCase =file.split('.' )[0] try: __UpperCamelCase =getattr(A_ , A_ ) __UpperCamelCase =doctest.DocTestSuite(A_ ) __UpperCamelCase =unittest.TextTestRunner().run(A_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __UpperCamelCase =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='modeling' __UpperCamelCase =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(A_ , identifier=A_ , ignore_files=A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='tokenization' self.analyze_directory(A_ , identifier=A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='configuration' self.analyze_directory(A_ , identifier=A_ ) def _a ( self ) -> Any: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase =['configuration', 'modeling', 'tokenization'] self.analyze_directory(A_ , n_identifier=A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =Path('docs/source' ) __UpperCamelCase =['favicon.ico'] self.analyze_directory(A_ , ignore_files=A_ , only_modules=A_ )
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _A = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['MobileViTFeatureExtractor'] _A = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
# Imports import numpy as np class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_=None , A_=None , A_=None , A_=None , A_=None ) -> Any: self.set_matricies(red=A_ , green=A_ , blue=A_ , red_edge=A_ , nir=A_ ) def _a ( self , A_=None , A_=None , A_=None , A_=None , A_=None ) -> int: if red is not None: __UpperCamelCase =red if green is not None: __UpperCamelCase =green if blue is not None: __UpperCamelCase =blue if red_edge is not None: __UpperCamelCase =red_edge if nir is not None: __UpperCamelCase =nir return True def _a ( self , A_="" , A_=None , A_=None , A_=None , A_=None , A_=None ) -> Optional[int]: self.set_matricies(red=A_ , green=A_ , blue=A_ , red_edge=A_ , nir=A_ ) __UpperCamelCase ={ 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def _a ( self ) -> Any: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _a ( self ) -> Union[str, Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _a ( self ) -> Dict: return self.nir * (self.red / (self.green**2)) def _a ( self ) -> List[str]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _a ( self ) -> List[Any]: return (self.nir - self.red) / (self.nir + self.red) def _a ( self ) -> Dict: return (self.nir - self.blue) / (self.nir + self.blue) def _a ( self ) -> Optional[Any]: return (self.redEdge - self.red) / (self.redEdge + self.red) def _a ( self ) -> Tuple: return (self.nir - self.green) / (self.nir + self.green) def _a ( self ) -> int: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _a ( self ) -> Dict: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _a ( self ) -> List[Any]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _a ( self ) -> int: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _a ( self , A_=0.08 , A_=1.22 , A_=0.03 ) -> Optional[int]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _a ( self ) -> Optional[int]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _a ( self ) -> Tuple: return (self.nir / self.green) - 1 def _a ( self ) -> List[str]: return (self.nir / self.redEdge) - 1 def _a ( self ) -> List[Any]: return (self.red - self.blue) / self.red def _a ( self ) -> Tuple: __UpperCamelCase =self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _a ( self ) -> int: return self.nir - self.green def _a ( self ) -> List[str]: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _a ( self ) -> Tuple: __UpperCamelCase =(2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _a ( self , A_=0.16 ) -> str: return (self.nir - self.green) / (self.nir + self.green + y) def _a ( self , A_=0.5 ) -> Optional[Any]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _a ( self ) -> int: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _a ( self , A_=None , A_=None ) -> Optional[int]: return (self.nir - b) / (a * self.red) def _a ( self ) -> Optional[int]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _a ( self ) -> Tuple: return (self.red + self.green + self.blue) / 30.5 def _a ( self ) -> Union[str, Any]: return self.nir / self.red def _a ( self ) -> Optional[Any]: return (self.rvi() - 1) / (self.rvi() + 1) def _a ( self ) -> Optional[int]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _a ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _a ( self ) -> Any: return self.nir / (self.nir + self.red + self.green) def _a ( self ) -> Any: return self.red / (self.nir + self.red + self.green) def _a ( self ) -> Union[str, Any]: return (self.green - self.red) / (self.green + self.red) def _a ( self ) -> Dict: return (self.red - self.green) / (self.red + self.green) def _a ( self ) -> str: __UpperCamelCase =np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __UpperCamelCase =np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _a ( self ) -> Optional[Any]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _a ( self ) -> Any: return self.nir / self.red def _a ( self ) -> Any: return (self.ndvi() + 0.5) ** (1 / 2) def _a ( self ) -> Tuple: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "mra" def __init__( self , A_=50265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1E-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =block_per_row __UpperCamelCase =approx_mode __UpperCamelCase =initial_prior_first_n_blocks __UpperCamelCase =initial_prior_diagonal_n_blocks
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING _A = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, "{attribute}"' in modeling_source or F'getattr(self.config, "{attribute}"' in modeling_source ): __UpperCamelCase =True # Deal with multi-line cases elif ( re.search( rF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , SCREAMING_SNAKE_CASE__ , ) is not None ): __UpperCamelCase =True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __UpperCamelCase =True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __UpperCamelCase =[ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __UpperCamelCase =['encoder_no_repeat_ngram_size'] # Special cases to be allowed __UpperCamelCase =True if not attribute_used: __UpperCamelCase =False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __UpperCamelCase =True elif attribute in ["tie_word_embeddings"] and default_value is False: __UpperCamelCase =True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __UpperCamelCase =True elif attribute.endswith('_token_id' ): __UpperCamelCase =True # configuration class specific cases if not case_allowed: __UpperCamelCase =SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __UpperCamelCase =allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =dict(inspect.signature(config_class.__init__ ).parameters ) __UpperCamelCase =[x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __UpperCamelCase =[signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __UpperCamelCase ={} if len(config_class.attribute_map ) > 0: __UpperCamelCase ={v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __UpperCamelCase =inspect.getsourcefile(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.dirname(SCREAMING_SNAKE_CASE__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __UpperCamelCase =[os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith('modeling_' )] # Get the source code strings __UpperCamelCase =[] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as fp: modeling_sources.append(fp.read() ) __UpperCamelCase =[] for config_param, default_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # `attributes` here is all the variant names for `config_param` __UpperCamelCase =[config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase ={} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __UpperCamelCase =[ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __UpperCamelCase =check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =unused_attributes if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase ='The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": check_config_attributes()
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = VideoToVideoSDPipeline UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase__ : int = False # No `output_type`. UpperCAmelCase__ : int = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _a ( self ) -> int: torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase =CLIPTextModel(A_ ) __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _a ( self , A_ , A_=0 ) -> Optional[Any]: # 3 frames __UpperCamelCase =floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _a ( self ) -> Tuple: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =VideoToVideoSDPipeline(**A_ ) __UpperCamelCase =sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase ='np' __UpperCamelCase =sd_pipe(**A_ ).frames __UpperCamelCase =frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase =np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _a ( self ) -> int: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _a ( self ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _a ( self ) -> Any: pass def _a ( self ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Tuple: __UpperCamelCase =VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase =torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase =torch.randn((1, 10, 3, 1024, 576) , generator=A_ ) __UpperCamelCase =video.to('cuda' ) __UpperCamelCase ='Spiderman is surfing' __UpperCamelCase =pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='pt' ).frames __UpperCamelCase =np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0
import os import pytest from attr import dataclass _A : List[str] = 'us-east-1' # defaults region @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Tuple = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } UpperCAmelCase__ : Union[str, Any] = {**hyperparameters, "max_steps": 1_0_0_0} @property def _a ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _a ( self ) -> str: return f'{self.framework}-transfromers-test' @property def _a ( self ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def _a ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =SageMakerTestEnvironment(framework=request.cls.framework )
713
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): if edge <= 0 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
714
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[Any]: if subparsers is not None: __UpperCamelCase =subparsers.add_parser('env' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: __UpperCamelCase =torch.__version__ __UpperCamelCase =torch.cuda.is_available() __UpperCamelCase =is_xpu_available() __UpperCamelCase =is_npu_available() __UpperCamelCase ='Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =load_config_from_file(args.config_file ).to_dict() __UpperCamelCase ={ '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'PyTorch XPU available': str(SCREAMING_SNAKE_CASE__ ), 'PyTorch NPU available': str(SCREAMING_SNAKE_CASE__ ), 'System RAM': F'{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB', } if pt_cuda_available: __UpperCamelCase =torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __UpperCamelCase =( '\n'.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else F'\t{accelerate_config}' ) print(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =accelerate_config return info def _UpperCAmelCase ( ) -> Tuple: __UpperCamelCase =env_command_parser() __UpperCamelCase =parser.parse_args() env_command(SCREAMING_SNAKE_CASE__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=A_ ).to(A_ ) __UpperCamelCase =AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase =tokenizer('Hello there' , return_tensors='pt' ).input_ids __UpperCamelCase =tokenizer('Hi I am' , return_tensors='pt' ).input_ids __UpperCamelCase =model(input_ids.to(A_ ) , labels=labels.to(A_ ) ).loss __UpperCamelCase =-(labels.shape[-1] * loss.item()) __UpperCamelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
716
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = PegasusTokenizer UpperCAmelCase__ : Union[str, Any] = PegasusTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[str] = True def _a ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =PegasusTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> int: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def _a ( self , **A_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Optional[Any]: return ("This is a test", "This is a test") def _a ( self ) -> List[Any]: __UpperCamelCase ='</s>' __UpperCamelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(A_ ) , 1103 ) def _a ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _a ( self ) -> Dict: __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __UpperCamelCase =rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] __UpperCamelCase =py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCamelCase ='<mask_1> To ensure a <mask_2> flow of bank resolutions.' __UpperCamelCase =[2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase =tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __UpperCamelCase ='To ensure a smooth flow of bank resolutions.' __UpperCamelCase =[413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase =tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _a ( self ) -> List[Any]: __UpperCamelCase =['This is going to be way too long.' * 150, 'short example'] __UpperCamelCase =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase =self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='pt' ) __UpperCamelCase =self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. @slow def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase ={'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = PegasusTokenizer UpperCAmelCase__ : Union[str, Any] = PegasusTokenizerFast UpperCAmelCase__ : Dict = True UpperCAmelCase__ : int = True def _a ( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =PegasusTokenizer(A_ , offset=0 , mask_token_sent=A_ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> Union[str, Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def _a ( self , **A_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Optional[int]: return ("This is a test", "This is a test") def _a ( self ) -> List[str]: __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __UpperCamelCase =rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] __UpperCamelCase =py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) @require_torch def _a ( self ) -> Dict: __UpperCamelCase =['This is going to be way too long.' * 1000, 'short example'] __UpperCamelCase =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase =self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='pt' ) __UpperCamelCase =self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. def _a ( self ) -> Any: __UpperCamelCase =( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __UpperCamelCase =self._large_tokenizer(A_ ).input_ids self.assertListEqual( A_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
717
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __UpperCamelCase =os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __UpperCamelCase =convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __UpperCamelCase =convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return flax_state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, jnp.ndarray] , SCREAMING_SNAKE_CASE__ : str , ): def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ : Tuple[str] ) -> bool: return len(set(SCREAMING_SNAKE_CASE__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm __UpperCamelCase =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __UpperCamelCase =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __UpperCamelCase =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # embedding __UpperCamelCase =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # conv layer __UpperCamelCase =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __UpperCamelCase =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __UpperCamelCase =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __UpperCamelCase =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __UpperCamelCase =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __UpperCamelCase =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __UpperCamelCase =pt_tuple_key[-2] + '_v' if name is not None: __UpperCamelCase =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): # convert pytorch tensor to numpy __UpperCamelCase ={k: v.numpy() for k, v in pt_state_dict.items()} __UpperCamelCase =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __UpperCamelCase =flax_model.params['params'] else: __UpperCamelCase =flax_model.params __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __UpperCamelCase =flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={} __UpperCamelCase =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __UpperCamelCase =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __UpperCamelCase =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase =pt_tuple_key[1:] # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase =rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary __UpperCamelCase =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): import torch # Load the index __UpperCamelCase ={} for shard_file in shard_filenames: # load using msgpack utils __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={k: v.numpy() for k, v in pt_state_dict.items()} __UpperCamelCase =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __UpperCamelCase =flax_model.params['params'] __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __UpperCamelCase =flax_model.params __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __UpperCamelCase =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __UpperCamelCase =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase =pt_tuple_key[1:] # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase =rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary __UpperCamelCase =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue if "var" in flax_key[-1]: __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown __UpperCamelCase =jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as state_f: try: __UpperCamelCase =from_bytes(SCREAMING_SNAKE_CASE__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __UpperCamelCase =flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __UpperCamelCase =jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =pt_model.state_dict() __UpperCamelCase =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __UpperCamelCase =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __UpperCamelCase =[] __UpperCamelCase =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __UpperCamelCase =flax_key_tuple[0] == pt_model.base_model_prefix __UpperCamelCase ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __UpperCamelCase =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __UpperCamelCase =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # conv layer __UpperCamelCase =flax_key_tuple[:-1] + ('weight',) __UpperCamelCase =jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # linear layer __UpperCamelCase =flax_key_tuple[:-1] + ('weight',) __UpperCamelCase =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCamelCase =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __UpperCamelCase =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __UpperCamelCase =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __UpperCamelCase ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __UpperCamelCase ='.'.join(SCREAMING_SNAKE_CASE__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __UpperCamelCase ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __UpperCamelCase =key.split('.' ) __UpperCamelCase =None if key_components[-3::2] == ["parametrizations", "original0"]: __UpperCamelCase =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __UpperCamelCase =key_components[-2] + '_v' if name is not None: __UpperCamelCase =key_components[:-3] + [name] __UpperCamelCase ='.'.join(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =key if flax_key in special_pt_names: __UpperCamelCase =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __UpperCamelCase =np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list __UpperCamelCase =list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
from collections import Counter from timeit import timeit def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): if len(SCREAMING_SNAKE_CASE__ ) == 0: return True __UpperCamelCase =input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase ={} for character in lower_case_input_str: __UpperCamelCase =character_freq_dict.get(SCREAMING_SNAKE_CASE__ , 0 ) + 1 __UpperCamelCase =0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): print('\nFor string = ' , SCREAMING_SNAKE_CASE__ , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(SCREAMING_SNAKE_CASE__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(SCREAMING_SNAKE_CASE__ ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": _A = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _A = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
719
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =3_84 if "tiny" in model_name: __UpperCamelCase =[3, 3, 9, 3] __UpperCamelCase =[96, 1_92, 3_84, 7_68] if "small" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[96, 1_92, 3_84, 7_68] if "base" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[1_28, 2_56, 5_12, 10_24] __UpperCamelCase =5_12 if "large" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[1_92, 3_84, 7_68, 15_36] __UpperCamelCase =7_68 if "xlarge" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[2_56, 5_12, 10_24, 20_48] __UpperCamelCase =10_24 # set label information __UpperCamelCase =1_50 __UpperCamelCase ='huggingface/label-files' __UpperCamelCase ='ade20k-id2label.json' __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =ConvNextConfig( depths=SCREAMING_SNAKE_CASE__ , hidden_sizes=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __UpperCamelCase =UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =[] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase ={ 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } __UpperCamelCase =model_name_to_url[model_name] __UpperCamelCase =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['state_dict'] __UpperCamelCase =get_upernet_config(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: __UpperCamelCase =key.replace('bn' , 'batch_norm' ) __UpperCamelCase =val # rename keys __UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image __UpperCamelCase ='https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' ) __UpperCamelCase =SegformerImageProcessor() __UpperCamelCase =processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values with torch.no_grad(): __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) if model_name == "upernet-convnext-tiny": __UpperCamelCase =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCamelCase =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCamelCase =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCamelCase =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCamelCase =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
720
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): UpperCAmelCase__ : int = ["pixel_values"] def __init__( self , A_ = True , A_ = 32 , A_=PILImageResampling.BILINEAR , A_ = True , **A_ , ) -> None: __UpperCamelCase =do_resize __UpperCamelCase =do_rescale __UpperCamelCase =size_divisor __UpperCamelCase =resample super().__init__(**A_ ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: __UpperCamelCase , __UpperCamelCase =get_image_size(A_ ) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase =height // size_divisor * size_divisor __UpperCamelCase =width // size_divisor * size_divisor __UpperCamelCase =resize(A_ , (new_h, new_w) , resample=A_ , data_format=A_ , **A_ ) return image def _a ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: return rescale(image=A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_=None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> BatchFeature: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for img in images] if do_resize: __UpperCamelCase =[self.resize(A_ , size_divisor=A_ , resample=A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(A_ , scale=1 / 255 ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: __UpperCamelCase =con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
0
from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_=None , A_=None , A_=None , **A_ ) -> int: if tokenize_kwargs is None: __UpperCamelCase ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __UpperCamelCase =truncation __UpperCamelCase =tokenize_kwargs __UpperCamelCase ={} if return_tensors is not None: __UpperCamelCase =return_tensors return preprocess_params, {}, postprocess_params def _a ( self , A_ , **A_ ) -> Dict[str, GenericTensor]: __UpperCamelCase =self.framework __UpperCamelCase =self.tokenizer(A_ , return_tensors=A_ , **A_ ) return model_inputs def _a ( self , A_ ) -> Dict: __UpperCamelCase =self.model(**A_ ) return model_outputs def _a ( self , A_ , A_=False ) -> int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *A_ , **A_ ) -> Any: return super().__call__(*A_ , **A_ )
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _A = get_tests_dir('fixtures/dummy-config.json') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Union[str, Any]: __UpperCamelCase =0 def _a ( self ) -> List[Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def _a ( self ) -> List[Any]: __UpperCamelCase =AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =AutoConfig.for_model('roberta' ) self.assertIsInstance(A_ , A_ ) def _a ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCamelCase =os.path.join(A_ , 'fake-roberta' ) os.makedirs(A_ , exist_ok=A_ ) with open(os.path.join(A_ , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertEqual(type(A_ ) , A_ ) def _a ( self ) -> Union[str, Any]: try: AutoConfig.register('custom' , A_ ) # Wrong model type will raise an error with self.assertRaises(A_ ): AutoConfig.register('model' , A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoConfig.register('bert' , A_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase =CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase =AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_ , A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _a ( self ) -> Union[str, Any]: with self.assertRaisesRegex( A_ , 'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase =AutoConfig.from_pretrained('bert-base' ) def _a ( self ) -> List[str]: with self.assertRaisesRegex( A_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase =AutoConfig.from_pretrained(A_ , revision='aaaaaa' ) def _a ( self ) -> Union[str, Any]: with self.assertRaisesRegex( A_ , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def _a ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A_ ): __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase =AutoConfig.from_pretrained(A_ , trust_remote_code=A_ ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def _a ( self ) -> str: class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = "new-model" try: AutoConfig.register('new-model' , A_ ) # If remote code is not set, the default is to use local __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub __UpperCamelCase =AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): __UpperCamelCase =ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=SCREAMING_SNAKE_CASE__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() def _UpperCAmelCase ( ): __UpperCamelCase =parse_args() # Import training_script as a module. __UpperCamelCase =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCamelCase =script_fpath.stem __UpperCamelCase =importlib.import_module(SCREAMING_SNAKE_CASE__ ) # Patch sys.argv __UpperCamelCase =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =1.5 __UpperCamelCase =int(factor * num_class_images ) __UpperCamelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=SCREAMING_SNAKE_CASE__ , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=SCREAMING_SNAKE_CASE__ ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __UpperCamelCase =client.query(text=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) >= factor * num_class_images or num_images > 1E4: break else: __UpperCamelCase =int(factor * num_images ) __UpperCamelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=SCREAMING_SNAKE_CASE__ , aesthetic_weight=0.1 , ) __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(desc='downloading real regularization images' , total=SCREAMING_SNAKE_CASE__ ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __UpperCamelCase =class_images[count] count += 1 try: __UpperCamelCase =requests.get(images['url'] ) if img.status_code == 2_00: __UpperCamelCase =Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser('' , add_help=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_00 , type=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() if __name__ == "__main__": _A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __UpperCamelCase =ksize + 1 __UpperCamelCase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE__ ): for x in range(SCREAMING_SNAKE_CASE__ ): # distance from center __UpperCamelCase =x - ksize // 2 __UpperCamelCase =y - ksize // 2 # degree to radiant __UpperCamelCase =theta / 1_80 * np.pi __UpperCamelCase =np.cos(_theta ) __UpperCamelCase =np.sin(_theta ) # get kernel x __UpperCamelCase =cos_theta * px + sin_theta * py # get kernel y __UpperCamelCase =-sin_theta * px + cos_theta * py # fill kernel __UpperCamelCase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _A = imread('../image_data/lena.jpg') # turn image in gray scale value _A = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _A = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _A = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _A = out / out.max() * 255 _A = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ) -> int: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =num_channels __UpperCamelCase =embeddings_size __UpperCamelCase =hidden_sizes __UpperCamelCase =depths __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_act __UpperCamelCase =num_labels __UpperCamelCase =scope __UpperCamelCase =len(A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =RegNetModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =RegNetForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCAmelCase__ : List[Any] = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False def _a ( self ) -> Union[str, Any]: __UpperCamelCase =RegNetModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def _a ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> List[str]: return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _a ( self ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _a ( self ) -> Union[str, Any]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self ) -> Dict: def check_hidden_states_output(A_ , A_ , A_ ): __UpperCamelCase =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) __UpperCamelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase =self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase =layer_type __UpperCamelCase =True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase =True check_hidden_states_output(A_ , A_ , A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def _a ( self ) -> List[Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =RegNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Any: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> List[str]: __UpperCamelCase =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-0.4180, -1.5051, -3.4836] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =0 __UpperCamelCase =sum(SCREAMING_SNAKE_CASE__ ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , ): if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE__ ) == max_sum: result.append(SCREAMING_SNAKE_CASE__ ) return for index in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE__ , remaining_nums_sum - nums[index] , ) _A = [3, 34, 4, 12, 5, 2] _A = 9 _A = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _A = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls ) -> Any: __UpperCamelCase =TOKEN HfFolder.save_token(A_ ) @classmethod def _a ( cls ) -> Dict: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def _a ( self ) -> Tuple: __UpperCamelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase =FlaxBertModel(A_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) __UpperCamelCase =FlaxBertModel.from_pretrained(f'{USER}/test-model-flax' ) __UpperCamelCase =flatten_dict(unfreeze(model.params ) ) __UpperCamelCase =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A_ , 1E-3 , msg=f'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(A_ , repo_id='test-model-flax' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =FlaxBertModel.from_pretrained(f'{USER}/test-model-flax' ) __UpperCamelCase =flatten_dict(unfreeze(model.params ) ) __UpperCamelCase =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A_ , 1E-3 , msg=f'{key} not identical' ) def _a ( self ) -> List[Any]: __UpperCamelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase =FlaxBertModel(A_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) __UpperCamelCase =FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase =flatten_dict(unfreeze(model.params ) ) __UpperCamelCase =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A_ , 1E-3 , msg=f'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( A_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase =flatten_dict(unfreeze(model.params ) ) __UpperCamelCase =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(A_ , 1E-3 , msg=f'{key} not identical' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =True __UpperCamelCase =flatten_dict(modela.params ) __UpperCamelCase =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: __UpperCamelCase =False return models_are_equal @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase =FlaxBertModel(A_ ) __UpperCamelCase ='bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(A_ , A_ ) ) with self.assertRaises(A_ ): __UpperCamelCase =FlaxBertModel.from_pretrained(A_ ) __UpperCamelCase =FlaxBertModel.from_pretrained(A_ , subfolder=A_ ) self.assertTrue(check_models_equal(A_ , A_ ) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase =FlaxBertModel(A_ ) __UpperCamelCase ='bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(A_ , A_ ) , max_shard_size='10KB' ) with self.assertRaises(A_ ): __UpperCamelCase =FlaxBertModel.from_pretrained(A_ ) __UpperCamelCase =FlaxBertModel.from_pretrained(A_ , subfolder=A_ ) self.assertTrue(check_models_equal(A_ , A_ ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase ='bert' __UpperCamelCase ='hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(A_ ): __UpperCamelCase =FlaxBertModel.from_pretrained(A_ ) __UpperCamelCase =FlaxBertModel.from_pretrained(A_ , subfolder=A_ ) self.assertIsNotNone(A_ ) def _a ( self ) -> Any: __UpperCamelCase ='bert' __UpperCamelCase ='hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(A_ ): __UpperCamelCase =FlaxBertModel.from_pretrained(A_ ) __UpperCamelCase =FlaxBertModel.from_pretrained(A_ , subfolder=A_ ) self.assertIsNotNone(A_ )
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): __UpperCamelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCamelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase =datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase =16 elif accelerator.mixed_precision != "no": __UpperCamelCase =8 else: __UpperCamelCase =None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __UpperCamelCase =2 # New Code # __UpperCamelCase =int(args.gradient_accumulation_steps ) # Initialize accelerator __UpperCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config['lr'] __UpperCamelCase =int(config['num_epochs'] ) __UpperCamelCase =int(config['seed'] ) __UpperCamelCase =int(config['batch_size'] ) __UpperCamelCase =evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase =model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase__ : """simple docstring""" @property def _a ( self ) -> Dict: return self.get_dummy_input() @property def _a ( self ) -> Dict: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _a ( self , A_=True , A_=False , A_=False , A_=False , ) -> str: __UpperCamelCase =4 __UpperCamelCase =32 __UpperCamelCase =(32, 32) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =torch.device(A_ ) __UpperCamelCase =(batch_size, num_channels) + sizes __UpperCamelCase =randn_tensor(A_ , generator=A_ , device=A_ ) __UpperCamelCase ={'hidden_states': hidden_states} if include_temb: __UpperCamelCase =128 __UpperCamelCase =randn_tensor((batch_size, temb_channels) , generator=A_ , device=A_ ) if include_res_hidden_states_tuple: __UpperCamelCase =torch.manual_seed(1 ) __UpperCamelCase =(randn_tensor(A_ , generator=A_ , device=A_ ),) if include_encoder_hidden_states: __UpperCamelCase =floats_tensor((batch_size, 32, 32) ).to(A_ ) if include_skip_sample: __UpperCamelCase =randn_tensor(((batch_size, 3) + sizes) , generator=A_ , device=A_ ) return dummy_input def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": __UpperCamelCase =32 if self.block_type == "mid": init_dict.pop('out_channels' ) __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self , A_ ) -> int: __UpperCamelCase , __UpperCamelCase =self.prepare_init_args_and_inputs_for_common() __UpperCamelCase =self.block_class(**A_ ) unet_block.to(A_ ) unet_block.eval() with torch.no_grad(): __UpperCamelCase =unet_block(**A_ ) if isinstance(A_ , A_ ): __UpperCamelCase =output[0] self.assertEqual(output.shape , self.output_shape ) __UpperCamelCase =output[0, -1, -3:, -3:] __UpperCamelCase =torch.tensor(A_ ).to(A_ ) assert torch_all_close(output_slice.flatten() , A_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =self.prepare_init_args_and_inputs_for_common() __UpperCamelCase =self.block_class(**A_ ) model.to(A_ ) model.train() __UpperCamelCase =model(**A_ ) if isinstance(A_ , A_ ): __UpperCamelCase =output[0] __UpperCamelCase =torch.device(A_ ) __UpperCamelCase =randn_tensor(output.shape , device=A_ ) __UpperCamelCase =torch.nn.functional.mse_loss(A_ , A_ ) loss.backward()
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A : Optional[Any] = logging.get_logger(__name__) _A : Dict = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "deta" UpperCAmelCase__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=None , A_=900 , A_=2048 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=1024 , A_=8 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=True , A_=False , A_="sine" , A_=5 , A_=4 , A_=4 , A_=True , A_=300 , A_=True , A_=True , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , A_=0.25 , **A_ , ) -> int: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(A_ , A_ ): __UpperCamelCase =backbone_config.pop('model_type' ) __UpperCamelCase =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase =config_class.from_dict(A_ ) __UpperCamelCase =backbone_config __UpperCamelCase =num_queries __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =init_xavier_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =auxiliary_loss __UpperCamelCase =position_embedding_type # deformable attributes __UpperCamelCase =num_feature_levels __UpperCamelCase =encoder_n_points __UpperCamelCase =decoder_n_points __UpperCamelCase =two_stage __UpperCamelCase =two_stage_num_proposals __UpperCamelCase =with_box_refine __UpperCamelCase =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =mask_loss_coefficient __UpperCamelCase =dice_loss_coefficient __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient __UpperCamelCase =focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return self.encoder_attention_heads @property def _a ( self ) -> int: return self.d_model def _a ( self ) -> Dict: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.backbone_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
713
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : nn.Module UpperCAmelCase__ : List[nn.Module] = field(default_factory=A_ ) UpperCAmelCase__ : list = field(default_factory=A_ ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def _a ( self ) -> Optional[Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : nn.Module UpperCAmelCase__ : nn.Module UpperCAmelCase__ : int = 1 UpperCAmelCase__ : List = field(default_factory=A_ ) UpperCAmelCase__ : List = field(default_factory=A_ ) UpperCAmelCase__ : bool = True def __call__( self , A_ ) -> List[str]: __UpperCamelCase =Tracker(self.dest )(A_ ).parametrized __UpperCamelCase =Tracker(self.src )(A_ ).parametrized __UpperCamelCase =list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) __UpperCamelCase =list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(A_ )} operations while' f' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self , A_ ) -> Optional[int]: super().__init__() __UpperCamelCase =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' __UpperCamelCase =len(A_ ) + 1 feature_blocks.append((f'res{block_index}', v) ) __UpperCamelCase =nn.ModuleDict(A_ ) def _a ( self , A_ ) -> int: return get_trunk_forward_outputs( A_ , out_feat_keys=A_ , feature_blocks=self._feature_blocks , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_ ) -> str: __UpperCamelCase =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , A_ ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: __UpperCamelCase =self.convert_name_to_timm(A_ ) __UpperCamelCase =partial(lambda: (timm.create_model(A_ , pretrained=A_ ).eval(), None) ) else: __UpperCamelCase =super().__getitem__(A_ ) return val class UpperCAmelCase__ ( A_ ): """simple docstring""" def __getitem__( self , A_ ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: __UpperCamelCase =RegNetModel else: __UpperCamelCase =RegNetForImageClassification return val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Tuple[str, str]] ): for from_key, to_key in keys: __UpperCamelCase =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True , ): print(F'Converting {name}...' ) with torch.no_grad(): __UpperCamelCase , __UpperCamelCase =from_model_func() __UpperCamelCase =our_model_func(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =ModuleTransfer(src=SCREAMING_SNAKE_CASE__ , dest=SCREAMING_SNAKE_CASE__ , raise_if_mismatch=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((1, 3, 2_24, 2_24) ) module_transfer(SCREAMING_SNAKE_CASE__ ) if from_state_dict is not None: __UpperCamelCase =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __UpperCamelCase =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] __UpperCamelCase =manually_copy_vissl_head(SCREAMING_SNAKE_CASE__ , our_model.state_dict() , SCREAMING_SNAKE_CASE__ ) our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =( our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else our_outputs.last_hidden_state ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =from_output[-1] if type(SCREAMING_SNAKE_CASE__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __UpperCamelCase =our_outputs.hidden_states[-1] assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =2_24 if 'seer' not in name else 3_84 # we can use the convnext one __UpperCamelCase =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) print(F'Pushed {name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } __UpperCamelCase =NameToOurModelFuncMap() __UpperCamelCase =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __UpperCamelCase =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , model_dir=str(SCREAMING_SNAKE_CASE__ ) , map_location='cpu' ) __UpperCamelCase =model_func() # check if we have a head, if yes add it __UpperCamelCase =files['classy_state_dict']['base_model']['model'] __UpperCamelCase =model_state_dict['trunk'] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) return model.eval(), model_state_dict["heads"] # pretrained __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __UpperCamelCase =partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( SCREAMING_SNAKE_CASE__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( SCREAMING_SNAKE_CASE__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
714
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
0