code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase ( snake_case__): if isinstance(snake_case__ , snake_case__): raise TypeError("'float' object cannot be interpreted as an integer") if isinstance(snake_case__ , snake_case__): raise TypeError("'str' object cannot be interpreted as an integer") if num == 0: return "0b0" lowerCAmelCase_ : str = False if num < 0: lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Dict = -num lowerCAmelCase_ : list[int] = [] while num > 0: binary.insert(0 , num % 2) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__) for e in binary) return "0b" + "".join(str(snake_case__) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) set_seed(770) _lowercase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } _lowercase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } _lowercase = os.path.dirname(os.path.abspath(__file__)) _lowercase = os.path.join(os.path.expanduser('''~'''), '''.cache''') _lowercase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def UpperCamelCase ( snake_case__ , snake_case__=False): lowerCAmelCase_ : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(snake_case__ , REMOTE_MODEL_PATHS[key]["file_name"]) def UpperCamelCase ( snake_case__ , snake_case__): os.makedirs(snake_case__ , exist_ok=snake_case__) hf_hub_download(repo_id=snake_case__ , filename=snake_case__ , local_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=False , snake_case__="text"): if model_type == "text": lowerCAmelCase_ : Optional[Any] = BarkSemanticModel lowerCAmelCase_ : str = BarkSemanticConfig lowerCAmelCase_ : Any = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase_ : Any = BarkCoarseModel lowerCAmelCase_ : int = BarkCoarseConfig lowerCAmelCase_ : List[Any] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase_ : Tuple = BarkFineModel lowerCAmelCase_ : List[str] = BarkFineConfig lowerCAmelCase_ : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase_ : Optional[Any] = F'''{model_type}_small''' if use_small else model_type lowerCAmelCase_ : int = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case__): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''') _download(model_info["repo_id"] , model_info["file_name"]) lowerCAmelCase_ : Dict = torch.load(snake_case__ , map_location=snake_case__) # this is a hack lowerCAmelCase_ : Union[str, Any] = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowerCAmelCase_ : Optional[int] = model_args["vocab_size"] lowerCAmelCase_ : Any = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase_ : Dict = model_args.pop("n_head") lowerCAmelCase_ : Union[str, Any] = model_args.pop("n_embd") lowerCAmelCase_ : str = model_args.pop("n_layer") lowerCAmelCase_ : Union[str, Any] = ConfigClass(**checkpoint["model_args"]) lowerCAmelCase_ : Optional[Any] = ModelClass(config=snake_case__) lowerCAmelCase_ : Dict = GenerationConfigClass() lowerCAmelCase_ : str = model_generation_config lowerCAmelCase_ : str = checkpoint["model"] # fixup checkpoint lowerCAmelCase_ : Union[str, Any] = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(snake_case__): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase_ : List[Any] = k[len(snake_case__) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase_ : Tuple = new_k.replace(snake_case__ , new_layer_name_dict[old_layer_name]) lowerCAmelCase_ : List[str] = state_dict.pop(snake_case__) lowerCAmelCase_ : Optional[Any] = set(state_dict.keys()) - set(model.state_dict().keys()) lowerCAmelCase_ : Optional[int] = {k for k in extra_keys if not k.endswith(".attn.bias")} lowerCAmelCase_ : str = set(model.state_dict().keys()) - set(state_dict.keys()) lowerCAmelCase_ : List[Any] = {k for k in missing_keys if not k.endswith(".attn.bias")} if len(snake_case__) != 0: raise ValueError(F'''extra keys found: {extra_keys}''') if len(snake_case__) != 0: raise ValueError(F'''missing keys: {missing_keys}''') model.load_state_dict(snake_case__ , strict=snake_case__) lowerCAmelCase_ : Any = model.num_parameters(exclude_embeddings=snake_case__) lowerCAmelCase_ : Dict = checkpoint["best_val_loss"].item() logger.info(F'''model loaded: {round(n_params/1e6 , 1)}M params, {round(snake_case__ , 3)} loss''') model.eval() model.to(snake_case__) del checkpoint, state_dict return model def UpperCamelCase ( snake_case__ , snake_case__=False , snake_case__="text"): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase_ : Optional[Any] = "cpu" # do conversion on cpu lowerCAmelCase_ : int = _get_ckpt_path(snake_case__ , use_small=snake_case__) lowerCAmelCase_ : Optional[int] = _load_model(snake_case__ , snake_case__ , model_type=snake_case__ , use_small=snake_case__) # load bark initial model lowerCAmelCase_ : Optional[Any] = _bark_load_model(snake_case__ , "cpu" , model_type=snake_case__ , use_small=snake_case__) if model_type == "text": lowerCAmelCase_ : int = bark_model["model"] if model.num_parameters(exclude_embeddings=snake_case__) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters") # check if same output as the bark model lowerCAmelCase_ : List[Any] = 5 lowerCAmelCase_ : List[Any] = 10 if model_type in ["text", "coarse"]: lowerCAmelCase_ : Any = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int) lowerCAmelCase_ : str = bark_model(snake_case__)[0] lowerCAmelCase_ : List[str] = model(snake_case__) # take last logits lowerCAmelCase_ : Dict = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : List[Any] = 8 lowerCAmelCase_ : Dict = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int) lowerCAmelCase_ : Optional[int] = model(snake_case__ , snake_case__) lowerCAmelCase_ : Tuple = bark_model(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape") if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal") Path(snake_case__).mkdir(exist_ok=snake_case__) model.save_pretrained(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase_ : Dict = os.path.join(snake_case__ , snake_case__) lowerCAmelCase_ : List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(snake_case__ , "config.json")) lowerCAmelCase_ : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(snake_case__ , "config.json")) lowerCAmelCase_ : Tuple = BarkFineConfig.from_pretrained(os.path.join(snake_case__ , "config.json")) lowerCAmelCase_ : Optional[int] = EncodecConfig.from_pretrained("facebook/encodec_24khz") lowerCAmelCase_ : Dict = BarkSemanticModel.from_pretrained(snake_case__) lowerCAmelCase_ : List[Any] = BarkCoarseModel.from_pretrained(snake_case__) lowerCAmelCase_ : Tuple = BarkFineModel.from_pretrained(snake_case__) lowerCAmelCase_ : str = EncodecModel.from_pretrained("facebook/encodec_24khz") lowerCAmelCase_ : Any = BarkConfig.from_sub_model_configs( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : str = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config) lowerCAmelCase_ : Tuple = BarkModel(snake_case__) lowerCAmelCase_ : Optional[Any] = semantic lowerCAmelCase_ : Union[str, Any] = coarseAcoustic lowerCAmelCase_ : int = fineAcoustic lowerCAmelCase_ : Tuple = codec lowerCAmelCase_ : List[Any] = bark_generation_config Path(snake_case__).mkdir(exist_ok=snake_case__) bark.save_pretrained(snake_case__ , repo_id=snake_case__ , push_to_hub=snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') _lowercase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
def UpperCamelCase ( snake_case__ , snake_case__): return base * power(snake_case__ , (exponent - 1)) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') _lowercase = int(input('''Enter the base: ''').strip()) _lowercase = int(input('''Enter the exponent: ''').strip()) _lowercase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowercase = 1 / result print(f"{base} to the power of {exponent} is {result}")
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'Wav2Vec2FeatureExtractor' UpperCamelCase_ = 'AutoTokenizer' def __init__( self : Optional[int] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.feature_extractor lowerCAmelCase_ : Tuple = False @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] ,lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' try: return super().from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " ,lowerCAmelCase__ ,) lowerCAmelCase_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : int = WavaVecaCTCTokenizer.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) return cls(feature_extractor=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ) def __call__( self : List[Any] ,*lowerCAmelCase__ : Optional[int] ,**lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ ,**lowerCAmelCase__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase_ : List[Any] = kwargs.pop("raw_speech" ) else: lowerCAmelCase_ : Union[str, Any] = kwargs.pop("audio" ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = kwargs.pop("sampling_rate" ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = kwargs.pop("text" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : str = args[0] lowerCAmelCase_ : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase_ : str = self.feature_extractor(lowerCAmelCase__ ,*lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,**lowerCAmelCase__ ) if text is not None: lowerCAmelCase_ : Dict = self.tokenizer(lowerCAmelCase__ ,**lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase_ : int = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self : str ,*lowerCAmelCase__ : List[Any] ,**lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = kwargs.pop("input_features" ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("labels" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : List[str] = args[0] lowerCAmelCase_ : str = args[1:] if input_features is not None: lowerCAmelCase_ : Optional[Any] = self.feature_extractor.pad(lowerCAmelCase__ ,*lowerCAmelCase__ ,**lowerCAmelCase__ ) if labels is not None: lowerCAmelCase_ : Optional[int] = self.tokenizer.pad(lowerCAmelCase__ ,**lowerCAmelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase_ : Any = labels["input_ids"] return input_features def UpperCAmelCase_ ( self : Optional[Any] ,*lowerCAmelCase__ : Optional[Any] ,**lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,*lowerCAmelCase__ : Union[str, Any] ,**lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) @contextmanager def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase_ : int = True lowerCAmelCase_ : int = self.tokenizer yield lowerCAmelCase_ : int = self.feature_extractor lowerCAmelCase_ : Tuple = False
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : str = pipeline( task="zero-shot-audio-classification" ,model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowerCAmelCase_ : List[Any] = load_dataset("ashraq/esc50" ) lowerCAmelCase_ : Tuple = dataset["train"]["audio"][-1]["array"] lowerCAmelCase_ : str = audio_classifier(lowerCAmelCase__ ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] ,) @unittest.skip("No models are available in TF" ) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' pass @slow @require_torch def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = pipeline( task="zero-shot-audio-classification" ,model="laion/clap-htsat-unfused" ,) # This is an audio of a dog lowerCAmelCase_ : Optional[int] = load_dataset("ashraq/esc50" ) lowerCAmelCase_ : Optional[int] = dataset["train"]["audio"][-1]["array"] lowerCAmelCase_ : int = audio_classifier(lowerCAmelCase__ ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] ,) lowerCAmelCase_ : str = audio_classifier([audio] * 5 ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 ,) lowerCAmelCase_ : List[str] = audio_classifier( [audio] * 5 ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ,batch_size=5 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 ,) @unittest.skip("No models are available in TF" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __snake_case : """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[Any] ,) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[Any] = 13 lowerCAmelCase_ : Any = 7 lowerCAmelCase_ : int = True lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = True lowerCAmelCase_ : List[Any] = 99 lowerCAmelCase_ : List[str] = 32 lowerCAmelCase_ : str = 2 lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : str = 37 lowerCAmelCase_ : Union[str, Any] = "gelu" lowerCAmelCase_ : List[Any] = 0.1 lowerCAmelCase_ : Optional[int] = 0.1 lowerCAmelCase_ : Tuple = 5_12 lowerCAmelCase_ : Optional[int] = 16 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : Optional[int] = 0.02 lowerCAmelCase_ : Tuple = 3 lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : List[str] = None def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase_ : Dict = None if self.use_input_mask: lowerCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : int = None lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase_ : List[Any] = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = TFDistilBertModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase_ : Dict = model(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = [input_ids, input_mask] lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, } lowerCAmelCase_ : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : int = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) lowerCAmelCase_ : int = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.num_choices lowerCAmelCase_ : Dict = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) lowerCAmelCase_ : Any = tf.tile(tf.expand_dims(lowerCAmelCase__ ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase_ : str = tf.tile(tf.expand_dims(lowerCAmelCase__ ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase_ : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } lowerCAmelCase_ : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Union[str, Any] = TFDistilBertForTokenClassification(lowerCAmelCase__ ) lowerCAmelCase_ : Any = {"input_ids": input_ids, "attention_mask": input_mask} lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Optional[Any] = config_and_inputs lowerCAmelCase_ : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = TFDistilBertModelTester(self ) lowerCAmelCase_ : Tuple = ConfigTester(self ,config_class=lowerCAmelCase__ ,dim=37 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase_ : int = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase_ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase_ : int = model(lowerCAmelCase__ )[0] lowerCAmelCase_ : List[Any] = [1, 6, 7_68] self.assertEqual(output.shape ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,lowerCAmelCase__ ,atol=1e-4 )
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from __future__ import annotations _lowercase = list[tuple[int, int]] _lowercase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowercase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : float ,lowerCAmelCase__ : Node | None ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = pos_x lowerCAmelCase_ : Tuple = pos_y lowerCAmelCase_ : Union[str, Any] = (pos_y, pos_x) lowerCAmelCase_ : Optional[int] = goal_x lowerCAmelCase_ : Any = goal_y lowerCAmelCase_ : int = g_cost lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[Any] = self.calculate_heuristic() def UpperCAmelCase_ ( self : Any ) -> float: '''simple docstring''' lowerCAmelCase_ : Dict = abs(self.pos_x - self.goal_x ) lowerCAmelCase_ : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] ,lowerCAmelCase__ : Dict ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : tuple[int, int] ,lowerCAmelCase__ : tuple[int, int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_99_99 ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = [self.start] lowerCAmelCase_ : list[Node] = [] lowerCAmelCase_ : Union[str, Any] = False def UpperCAmelCase_ ( self : Any ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : Optional[Any] = True return self.retrace_path(lowerCAmelCase__ ) self.closed_nodes.append(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_successors(lowerCAmelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase__ ) else: # retrieve the best current path lowerCAmelCase_ : List[str] = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase__ ) else: self.open_nodes.append(lowerCAmelCase__ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Node ) -> list[Node]: '''simple docstring''' lowerCAmelCase_ : Any = [] for action in delta: lowerCAmelCase_ : Any = parent.pos_x + action[1] lowerCAmelCase_ : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase__ ,lowerCAmelCase__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowerCAmelCase__ ,) ) return successors def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node | None ) -> Path: '''simple docstring''' lowerCAmelCase_ : int = node lowerCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : str = current_node.parent path.reverse() return path if __name__ == "__main__": _lowercase = (0, 0) _lowercase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _lowercase = GreedyBestFirst(init, goal) _lowercase = greedy_bf.search() if path: for pos_x, pos_y in path: _lowercase = 2 for elem in grid: print(elem)
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'openai-gpt' UpperCamelCase_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[int] ,lowerCAmelCase__ : Dict=4_04_78 ,lowerCAmelCase__ : Tuple=5_12 ,lowerCAmelCase__ : Dict=7_68 ,lowerCAmelCase__ : List[Any]=12 ,lowerCAmelCase__ : List[Any]=12 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Any=0.1 ,lowerCAmelCase__ : Optional[Any]=0.1 ,lowerCAmelCase__ : List[str]=0.1 ,lowerCAmelCase__ : Dict=1e-5 ,lowerCAmelCase__ : Union[str, Any]=0.02 ,lowerCAmelCase__ : Union[str, Any]="cls_index" ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : int=0.1 ,**lowerCAmelCase__ : str ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Optional[int] = n_positions lowerCAmelCase_ : Tuple = n_embd lowerCAmelCase_ : Any = n_layer lowerCAmelCase_ : Union[str, Any] = n_head lowerCAmelCase_ : Optional[int] = afn lowerCAmelCase_ : Optional[Any] = resid_pdrop lowerCAmelCase_ : Union[str, Any] = embd_pdrop lowerCAmelCase_ : Union[str, Any] = attn_pdrop lowerCAmelCase_ : List[str] = layer_norm_epsilon lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : str = summary_type lowerCAmelCase_ : Union[str, Any] = summary_use_proj lowerCAmelCase_ : Any = summary_activation lowerCAmelCase_ : Dict = summary_first_dropout lowerCAmelCase_ : Any = summary_proj_to_labels super().__init__(**lowerCAmelCase__ )
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _lowercase = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') _lowercase = parser.parse_args() if args.model_type == "roberta": _lowercase = RobertaForMaskedLM.from_pretrained(args.model_name) _lowercase = '''roberta''' elif args.model_type == "gpt2": _lowercase = GPTaLMHeadModel.from_pretrained(args.model_name) _lowercase = '''transformer''' _lowercase = model.state_dict() _lowercase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _lowercase = state_dict[f"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _lowercase = f"{prefix}.embeddings.{w}.weight" _lowercase = state_dict[param_name] for w in ["weight", "bias"]: _lowercase = f"{prefix}.embeddings.LayerNorm.{w}" _lowercase = state_dict[param_name] # Transformer Blocks # _lowercase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _lowercase = state_dict[ f"{prefix}.h.{teacher_idx}.{layer}.{w}" ] _lowercase = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _lowercase = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _lowercase = state_dict[f"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: _lowercase = state_dict[f"lm_head.dense.{w}"] _lowercase = state_dict[f"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _lowercase = state_dict[f"{prefix}.ln_f.{w}"] _lowercase = state_dict['''lm_head.weight'''] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
from __future__ import annotations from dataclasses import dataclass @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = None UpperCamelCase_ = None def UpperCamelCase ( snake_case__): # Validation def is_valid_tree(snake_case__) -> bool: if node is None: return True if not isinstance(snake_case__ , snake_case__): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(snake_case__): raise ValueError( "Each node should be type of TreeNode and data should be float.") def is_binary_search_tree_recursive_check( snake_case__ , snake_case__ , snake_case__) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case__ , node.data) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case__) ) return is_binary_search_tree_recursive_check(snake_case__ , -float("inf") , float("inf")) if __name__ == "__main__": import doctest doctest.testmod()
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = data def __iter__( self : Dict ) -> Union[str, Any]: '''simple docstring''' for element in self.data: yield element def UpperCamelCase ( snake_case__=True): lowerCAmelCase_ : Dict = Accelerator(even_batches=snake_case__) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if iterable: lowerCAmelCase_ : str = DummyIterableDataset(torch.as_tensor(range(snake_case__))) else: lowerCAmelCase_ : Any = TensorDataset(torch.as_tensor(range(snake_case__))) lowerCAmelCase_ : Optional[int] = DataLoader(snake_case__ , batch_size=snake_case__) lowerCAmelCase_ : List[str] = accelerator.prepare(snake_case__) return dl def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase_ : Tuple = create_dataloader(accelerator=snake_case__ , dataset_size=snake_case__ , batch_size=snake_case__) lowerCAmelCase_ : List[str] = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( snake_case__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( snake_case__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCamelCase ( ): lowerCAmelCase_ : Optional[int] = create_accelerator(even_batches=snake_case__) verify_dataloader_batch_sizes( snake_case__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( snake_case__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = create_accelerator(even_batches=snake_case__) lowerCAmelCase_ : str = torch.nn.Linear(1 , 1) lowerCAmelCase_ : Optional[Any] = accelerator.prepare(snake_case__) lowerCAmelCase_ : List[Any] = create_dataloader(snake_case__ , dataset_size=3 , batch_size=1) lowerCAmelCase_ : List[str] = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(snake_case__): lowerCAmelCase_ : List[str] = ddp_model(batch[0].float()) lowerCAmelCase_ : List[str] = output.sum() loss.backward() batch_idxs.append(snake_case__) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCamelCase ( snake_case__): with warnings.catch_warnings(record=snake_case__) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , snake_case__) assert "only supported for multi-GPU" in str(w[-1].message) def UpperCamelCase ( ): lowerCAmelCase_ : int = True lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : int = create_accelerator(even_batches=snake_case__) lowerCAmelCase_ : Union[str, Any] = torch.nn.Linear(1 , 1) lowerCAmelCase_ : Dict = accelerator.prepare(snake_case__) lowerCAmelCase_ : Tuple = create_dataloader(snake_case__ , dataset_size=3 , batch_size=1) lowerCAmelCase_ : Tuple = create_dataloader(snake_case__ , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=snake_case__): lowerCAmelCase_ : int = train_dl.batch_sampler.even_batches lowerCAmelCase_ : Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Dict = create_accelerator(even_batches=snake_case__) lowerCAmelCase_ : int = torch.nn.Linear(1 , 1) lowerCAmelCase_ : Union[str, Any] = accelerator.prepare(snake_case__) create_dataloader(snake_case__ , dataset_size=3 , batch_size=1 , iterable=snake_case__) lowerCAmelCase_ : List[str] = create_dataloader(snake_case__ , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore") try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=snake_case__): lowerCAmelCase_ : List[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = create_accelerator() lowerCAmelCase_ : int = torch.nn.Linear(1 , 1) lowerCAmelCase_ : Optional[Any] = accelerator.prepare(snake_case__) create_dataloader(snake_case__ , dataset_size=3 , batch_size=1 , iterable=snake_case__) with warnings.catch_warnings(record=snake_case__) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=snake_case__): pass assert issubclass(w[-1].category , snake_case__) assert "only supported for map-style datasets" in str(w[-1].message) def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes") test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled") test_can_disable_even_batches() accelerator.print("Test joining uneven inputs") test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs") test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types") test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning") lowerCAmelCase_ : Any = accelerator.state.distributed_type lowerCAmelCase_ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(snake_case__) lowerCAmelCase_ : Union[str, Any] = original_state if __name__ == "__main__": main()
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowercase = trt.Logger(trt.Logger.WARNING) _lowercase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowercase = logging.getLogger(__name__) _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowercase = parser.parse_args() if args.tokenizer_name: _lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowercase = args.per_device_eval_batch_size _lowercase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowercase = True _lowercase = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowercase = '''temp_engine/bert-fp16.engine''' if args.inta: _lowercase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowercase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowercase = [network.get_input(i) for i in range(network.num_inputs)] _lowercase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowercase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowercase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowercase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = np.asarray(inputs["input_ids"] , dtype=np.intaa) lowerCAmelCase_ : Tuple = np.asarray(inputs["attention_mask"] , dtype=np.intaa) lowerCAmelCase_ : Any = np.asarray(inputs["token_type_ids"] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case__) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case__) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case__) # start time lowerCAmelCase_ : str = time.time() # Run inference context.execute_async( bindings=[int(snake_case__) for d_inp in d_inputs] + [int(snake_case__), int(snake_case__)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__) cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase_ : List[str] = time.time() lowerCAmelCase_ : Optional[Any] = end_time - start_time lowerCAmelCase_ : Dict = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowercase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowercase = raw_datasets['''validation'''].column_names _lowercase = '''question''' if '''question''' in column_names else column_names[0] _lowercase = '''context''' if '''context''' in column_names else column_names[1] _lowercase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowercase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _lowercase = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( snake_case__): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase_ : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase_ : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=snake_case__ , stride=args.doc_stride , return_overflowing_tokens=snake_case__ , return_offsets_mapping=snake_case__ , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase_ : List[str] = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase_ : Optional[int] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase_ : Any = tokenized_examples.sequence_ids(snake_case__) lowerCAmelCase_ : Any = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase_ : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples _lowercase = raw_datasets['''validation'''] # Validation Feature Creation _lowercase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowercase = default_data_collator _lowercase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowercase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase_ : Union[str, Any] = postprocess_qa_predictions( examples=snake_case__ , features=snake_case__ , predictions=snake_case__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase_ : int = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase_ : Tuple = [{"id": k, "prediction_text": v} for k, v in predictions.items()] lowerCAmelCase_ : List[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__ , label_ids=snake_case__) _lowercase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( snake_case__): return trt.volume(engine.get_binding_shape(snake_case__)) * engine.get_binding_dtype(snake_case__).itemsize # Allocate device memory for inputs and outputs. _lowercase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowercase = cuda.mem_alloc(h_outputa.nbytes) _lowercase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowercase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") _lowercase = 0.0 _lowercase = 0 _lowercase = timeit.default_timer() _lowercase = None for step, batch in enumerate(eval_dataloader): _lowercase , _lowercase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowercase , _lowercase = outputs _lowercase = torch.tensor(start_logits) _lowercase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowercase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowercase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowercase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowercase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowercase = nested_truncate(all_preds, len(eval_dataset)) _lowercase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) _lowercase = post_processing_function(eval_examples, eval_dataset, all_preds) _lowercase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = (EulerDiscreteScheduler,) UpperCamelCase_ = 1_0 def UpperCAmelCase_ ( self : Any ,**lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] ,[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ ,beta_end=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.scheduler_classes[0] lowerCAmelCase_ : Tuple = self.get_scheduler_config() lowerCAmelCase_ : str = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = self.dummy_model() lowerCAmelCase_ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Tuple = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = output.prev_sample lowerCAmelCase_ : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase_ : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = self.dummy_model() lowerCAmelCase_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowerCAmelCase_ : int = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = output.prev_sample lowerCAmelCase_ : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config() lowerCAmelCase_ : List[Any] = scheduler_class(**lowerCAmelCase__ ,use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = self.dummy_model() lowerCAmelCase_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : Optional[Any] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowerCAmelCase_ : List[str] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ) lowerCAmelCase_ : str = output.prev_sample lowerCAmelCase_ : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCAmelCase_ : Any = n - k # Calculate C(n,k) for i in range(snake_case__): result *= n - i result //= i + 1 return result def UpperCamelCase ( snake_case__): return binomial_coefficient(2 * node_count , snake_case__) // (node_count + 1) def UpperCamelCase ( snake_case__): if n < 0: raise ValueError("factorial() not defined for negative values") lowerCAmelCase_ : Union[str, Any] = 1 for i in range(1 , n + 1): result *= i return result def UpperCamelCase ( snake_case__): return catalan_number(snake_case__) * factorial(snake_case__) if __name__ == "__main__": _lowercase = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " f"binary trees and {catalan_number(node_count)} binary search trees." )
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowercase = HfArgumentParser(InitializationArguments) _lowercase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowercase = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) _lowercase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowercase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : int ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[Any]=3 ,lowerCAmelCase__ : Any=32 ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : Union[str, Any]=10 ,lowerCAmelCase__ : int=[10, 20, 30, 40] ,lowerCAmelCase__ : int=[1, 1, 2, 1] ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Dict="relu" ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : Dict=None ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : Optional[int] = embeddings_size lowerCAmelCase_ : List[str] = hidden_sizes lowerCAmelCase_ : Union[str, Any] = depths lowerCAmelCase_ : int = is_training lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : Tuple = scope lowerCAmelCase_ : int = len(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = FlaxRegNetModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : Any = FlaxRegNetForImageClassification(config=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Optional[Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : List[Any] = FlaxRegNetModelTester(self ) lowerCAmelCase_ : int = ConfigTester(self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' return def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : List[Any] = model_class(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Any = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) ,expected_num_stages + 1 ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Dict = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : int ,**lowerCAmelCase__ : Optional[int] ): return model(pixel_values=lowerCAmelCase__ ,**lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase_ : int = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_ : Tuple = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCamelCase ( ): lowerCAmelCase_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) lowerCAmelCase_ : int = self.default_image_processor lowerCAmelCase_ : List[str] = prepare_img() lowerCAmelCase_ : int = image_processor(images=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits lowerCAmelCase_ : Any = (1, 10_00) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) )
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def UpperCamelCase ( ): lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument("-f") lowerCAmelCase_ : List[Any] = parser.parse_args() return args.f class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,"run_glue_deebert.py" ) with patch.object(lowerCAmelCase__ ,"argv" ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ ,0.666 ) @slow @require_torch_non_multi_gpu def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ )
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = "huggingface/label-files" lowerCAmelCase_ : Tuple = "imagenet-1k-id2label.json" lowerCAmelCase_ : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset") , "r")) lowerCAmelCase_ : List[str] = {int(snake_case__): v for k, v in idalabel.items()} lowerCAmelCase_ : str = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : int = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Optional[int] = BitConfig( conv_layer=snake_case__ , num_labels=10_00 , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def UpperCamelCase ( snake_case__): if "stem.conv" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("stem.conv" , "bit.embedder.convolution") if "blocks" in name: lowerCAmelCase_ : str = name.replace("blocks" , "layers") if "head.fc" in name: lowerCAmelCase_ : Optional[int] = name.replace("head.fc" , "classifier.1") if name.startswith("norm"): lowerCAmelCase_ : int = "bit." + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : str = "bit.encoder." + name return name def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_ : Optional[int] = Image.open(requests.get(snake_case__ , stream=snake_case__).raw) return im @torch.no_grad() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=False): lowerCAmelCase_ : str = get_config(snake_case__) # load original model from timm lowerCAmelCase_ : str = create_model(snake_case__ , pretrained=snake_case__) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Dict = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : Optional[Any] = state_dict.pop(snake_case__) lowerCAmelCase_ : List[str] = val.squeeze() if "head" in key else val # load HuggingFace model lowerCAmelCase_ : List[Any] = BitForImageClassification(snake_case__) model.eval() model.load_state_dict(snake_case__) # create image processor lowerCAmelCase_ : List[str] = create_transform(**resolve_data_config({} , model=snake_case__)) lowerCAmelCase_ : str = transform.transforms lowerCAmelCase_ : str = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCAmelCase_ : Optional[int] = BitImageProcessor( do_resize=snake_case__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=snake_case__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : Optional[int] = prepare_img() lowerCAmelCase_ : Optional[int] = transform(snake_case__).unsqueeze(0) lowerCAmelCase_ : str = processor(snake_case__ , return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(snake_case__ , snake_case__) # verify logits with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(snake_case__) lowerCAmelCase_ : List[str] = outputs.logits print("Logits:" , logits[0, :3]) print("Predicted class:" , model.config.idalabel[logits.argmax(-1).item()]) lowerCAmelCase_ : Optional[int] = timm_model(snake_case__) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(snake_case__).mkdir(exist_ok=snake_case__) print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''') model.save_pretrained(snake_case__) processor.save_pretrained(snake_case__) if push_to_hub: print(F'''Pushing model {model_name} and processor to the hub''') model.push_to_hub(F'''ybelkada/{model_name}''') processor.push_to_hub(F'''ybelkada/{model_name}''') if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) _lowercase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
def UpperCamelCase ( snake_case__ = 1_00_00_00): lowerCAmelCase_ : int = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case__): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
from __future__ import annotations _lowercase = [True] * 1000001 _lowercase = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): _lowercase = False i += 1 def UpperCamelCase ( snake_case__): return seive[n] def UpperCamelCase ( snake_case__): return any(digit in "02468" for digit in str(snake_case__)) def UpperCamelCase ( snake_case__ = 1_00_00_00): lowerCAmelCase_ : Union[str, Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2): if is_prime(snake_case__) and not contains_an_even_digit(snake_case__): lowerCAmelCase_ : Optional[Any] = str(snake_case__) lowerCAmelCase_ : str = [int(str_num[j:] + str_num[:j]) for j in range(len(snake_case__))] if all(is_prime(snake_case__) for i in list_nums): result.append(snake_case__) return result def UpperCamelCase ( ): return len(find_circular_primes()) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
from math import pi, sqrt, tan def UpperCamelCase ( snake_case__): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase ( snake_case__): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def UpperCamelCase ( snake_case__): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def UpperCamelCase ( snake_case__ , snake_case__): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") lowerCAmelCase_ : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase ( snake_case__ , snake_case__): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def UpperCamelCase ( snake_case__ , snake_case__): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(snake_case__ , 2) * torus_radius * tube_radius def UpperCamelCase ( snake_case__ , snake_case__): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def UpperCamelCase ( snake_case__): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def UpperCamelCase ( snake_case__ , snake_case__): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") lowerCAmelCase_ : int = (sidea + sidea + sidea) / 2 lowerCAmelCase_ : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def UpperCamelCase ( snake_case__ , snake_case__): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def UpperCamelCase ( snake_case__): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def UpperCamelCase ( snake_case__ , snake_case__): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def UpperCamelCase ( snake_case__ , snake_case__): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(snake_case__ , snake_case__) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
import json import sys def UpperCamelCase ( snake_case__ , snake_case__): with open(snake_case__ , encoding="utf-8") as f: lowerCAmelCase_ : str = json.load(snake_case__) lowerCAmelCase_ : Optional[Any] = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(snake_case__): lowerCAmelCase_ : Optional[Any] = results[benchmark_name] lowerCAmelCase_ : Union[str, Any] = benchmark_name.split("/")[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''') lowerCAmelCase_ : str = "| metric |" lowerCAmelCase_ : Optional[int] = "|--------|" lowerCAmelCase_ : Tuple = "| new / old (diff) |" for metric_name in sorted(snake_case__): lowerCAmelCase_ : Tuple = benchmark_res[metric_name] lowerCAmelCase_ : Optional[int] = metric_vals["new"] lowerCAmelCase_ : Dict = metric_vals.get("old" , snake_case__) lowerCAmelCase_ : Tuple = metric_vals.get("diff" , snake_case__) lowerCAmelCase_ : List[Any] = F''' {new_val:f}''' if isinstance(snake_case__ , (int, float)) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(snake_case__ , (int, float)) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(snake_case__ , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>") with open(snake_case__ , "w" , encoding="utf-8") as f: f.writelines("\n".join(snake_case__)) if __name__ == "__main__": _lowercase = sys.argv[1] _lowercase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import math def UpperCamelCase ( snake_case__): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( snake_case__ = 1_00_01): try: lowerCAmelCase_ : List[Any] = int(snake_case__) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int.") from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one.") lowerCAmelCase_ : list[int] = [] lowerCAmelCase_ : List[str] = 2 while len(snake_case__) < nth: if is_prime(snake_case__): primes.append(snake_case__) num += 1 else: num += 1 return primes[len(snake_case__) - 1] if __name__ == "__main__": print(f"{solution() = }")
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): # Initialise PyTorch model lowerCAmelCase_ : Optional[Any] = BigBirdConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') if is_trivia_qa: lowerCAmelCase_ : List[str] = BigBirdForQuestionAnswering(snake_case__) else: lowerCAmelCase_ : str = BigBirdForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case__ , snake_case__ , is_trivia_qa=snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
import math def UpperCamelCase ( snake_case__): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( snake_case__ = 0.1): lowerCAmelCase_ : Any = 3 lowerCAmelCase_ : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(snake_case__) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) lowerCAmelCase_ : List[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() lowerCAmelCase_ : str = [sys.executable] + distributed_args execute_subprocess_async(lowerCAmelCase__ ,env=os.environ.copy() )
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase_ : Dict = DisjunctiveConstraint(lowerCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids ,lowerCAmelCase__ ) ) with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint(lowerCAmelCase__ ) # fails here def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase_ : str = DisjunctiveConstraint(lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = dc.update(1 ) lowerCAmelCase_ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = dc.update(2 ) lowerCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = dc.update(3 ) lowerCAmelCase_ : List[str] = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase_ : Any = DisjunctiveConstraint(lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _lowercase = parse(importlib.metadata.version('''torch''')) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}''') lowerCAmelCase_ : Dict = STR_OPERATION_TO_FUNC[operation] if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Any = parse(importlib.metadata.version(snake_case__)) return operation(snake_case__ , parse(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): return compare_versions(snake_case__ , snake_case__ , snake_case__)
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = [] lowerCAmelCase_ : Optional[int] = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCAmelCase_ : Union[str, Any] = len(snake_case__) if (len(snake_case__) > 7) else 7 # Print table header for output print( "Symbol".center(8) , "Stack".center(snake_case__) , "Postfix".center(snake_case__) , sep=" | " , ) print("-" * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case__) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case__) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case__) == 0: stack.append(snake_case__) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case__) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(snake_case__) # push x to stack print( x.center(8) , ("".join(snake_case__)).ljust(snake_case__) , ("".join(snake_case__)).ljust(snake_case__) , sep=" | " , ) # Output in tabular format while len(snake_case__) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( " ".center(8) , ("".join(snake_case__)).ljust(snake_case__) , ("".join(snake_case__)).ljust(snake_case__) , sep=" | " , ) # Output in tabular format return "".join(snake_case__) # return Postfix as str def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = list(infix[::-1]) # reverse the infix equation for i in range(len(snake_case__)): if infix[i] == "(": lowerCAmelCase_ : str = ")" # change "(" to ")" elif infix[i] == ")": lowerCAmelCase_ : Optional[Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(snake_case__)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _lowercase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , "rb") as fp: lowerCAmelCase_ : List[Any] = pickle.load(snake_case__ , encoding="latin1") # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCAmelCase_ : List[str] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''') lowerCAmelCase_ : Tuple = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__) lowerCAmelCase_ : int = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , snake_case__) lowerCAmelCase_ : List[Any] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''') torch.save(snake_case__ , snake_case__) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCAmelCase_ : Tuple = os.path.abspath(snake_case__) lowerCAmelCase_ : str = os.path.abspath(snake_case__) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''') # Initialise PyTorch model if transfo_xl_config_file == "": lowerCAmelCase_ : Tuple = TransfoXLConfig() else: lowerCAmelCase_ : Tuple = TransfoXLConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') lowerCAmelCase_ : Union[str, Any] = TransfoXLLMHeadModel(snake_case__) lowerCAmelCase_ : List[str] = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__) # Save pytorch-model lowerCAmelCase_ : int = os.path.join(snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = os.path.join(snake_case__ , snake_case__) print(F'''Save PyTorch model to {os.path.abspath(snake_case__)}''') torch.save(model.state_dict() , snake_case__) print(F'''Save configuration file to {os.path.abspath(snake_case__)}''') with open(snake_case__ , "w" , encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'trocr' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : str ,lowerCAmelCase__ : List[str]=5_02_65 ,lowerCAmelCase__ : str=10_24 ,lowerCAmelCase__ : Optional[int]=12 ,lowerCAmelCase__ : Tuple=16 ,lowerCAmelCase__ : Dict=40_96 ,lowerCAmelCase__ : int="gelu" ,lowerCAmelCase__ : Union[str, Any]=5_12 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : List[str]=0.02 ,lowerCAmelCase__ : Tuple=0.0 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : Optional[Any]=1 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : Union[str, Any]=2 ,**lowerCAmelCase__ : Tuple ,) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Tuple = d_model lowerCAmelCase_ : List[Any] = decoder_layers lowerCAmelCase_ : Optional[Any] = decoder_attention_heads lowerCAmelCase_ : int = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = activation_function lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Any = activation_dropout lowerCAmelCase_ : Optional[int] = init_std lowerCAmelCase_ : Dict = decoder_layerdrop lowerCAmelCase_ : int = use_cache lowerCAmelCase_ : Dict = scale_embedding lowerCAmelCase_ : Optional[Any] = use_learned_position_embeddings lowerCAmelCase_ : Any = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,decoder_start_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import copy import re class __snake_case : """simple docstring""" UpperCamelCase_ = 'hp' UpperCamelCase_ = {} UpperCamelCase_ = None @classmethod def UpperCAmelCase_ ( cls : List[str] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = prefix lowerCAmelCase_ : List[Any] = defaults cls.build_naming_info() @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: return "" lowerCAmelCase_ : Dict = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(lowerCAmelCase__ ) + 1 ): lowerCAmelCase_ : Tuple = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowerCAmelCase_ : Any = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : str = "" while integer != 0: lowerCAmelCase_ : Dict = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowerCAmelCase_ : Tuple = 0 while True: lowerCAmelCase_ : Optional[Any] = word + "#" + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: lowerCAmelCase_ : str = sword break lowerCAmelCase_ : Union[str, Any] = short_word lowerCAmelCase_ : Dict = word return short_word @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = param_name.split("_" ) lowerCAmelCase_ : Dict = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ ,lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowerCAmelCase_ : Tuple = ["", "_"] for separator in separators: lowerCAmelCase_ : List[Any] = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: lowerCAmelCase_ : List[str] = shortname lowerCAmelCase_ : Optional[int] = param_name return shortname return param_name @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Dict = TrialShortNamer.shortname_for_key(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = short_name lowerCAmelCase_ : Union[str, Any] = param_name @classmethod def UpperCAmelCase_ ( cls : Any ) -> Optional[int]: '''simple docstring''' if cls.NAMING_INFO is not None: return lowerCAmelCase_ : Optional[int] = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowerCAmelCase_ : Optional[int] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = info @classmethod def UpperCAmelCase_ ( cls : Any ,lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowerCAmelCase_ : Tuple = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowerCAmelCase_ : Optional[int] = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Any = 1 if v else 0 lowerCAmelCase_ : List[Any] = "" if isinstance(lowerCAmelCase__ ,(int, float) ) else "-" lowerCAmelCase_ : Dict = f'''{key}{sep}{v}''' name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : int ,lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowerCAmelCase_ : Union[str, Any] = [] else: lowerCAmelCase_ : Union[str, Any] = repr.split("_" ) lowerCAmelCase_ : Tuple = {} for value in values: if "-" in value: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = value.split("-" ) else: lowerCAmelCase_ : List[Any] = re.sub("[0-9.]" ,"" ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = float(re.sub("[^0-9.]" ,"" ,lowerCAmelCase__ ) ) lowerCAmelCase_ : str = cls.NAMING_INFO["reverse_short_param"][p_k] lowerCAmelCase_ : int = p_v for k in cls.DEFAULTS: if k not in parameters: lowerCAmelCase_ : List[Any] = cls.DEFAULTS[k] return parameters
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
def UpperCamelCase ( snake_case__): return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Any = number while duplicate > 0: lowerCAmelCase_ , lowerCAmelCase_ : str = divmod(snake_case__ , 10) fact_sum += factorial(snake_case__) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') _lowercase = int(input('''Enter number: ''').strip()) print( f"{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number." )
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'bert' def __init__( self : List[str] ,lowerCAmelCase__ : List[Any]=3_05_22 ,lowerCAmelCase__ : List[str]=7_68 ,lowerCAmelCase__ : Optional[int]=12 ,lowerCAmelCase__ : List[Any]=12 ,lowerCAmelCase__ : int=30_72 ,lowerCAmelCase__ : List[Any]="gelu" ,lowerCAmelCase__ : Tuple=0.1 ,lowerCAmelCase__ : Tuple=0.1 ,lowerCAmelCase__ : List[str]=5_12 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : Union[str, Any]=1e-1_2 ,lowerCAmelCase__ : List[Any]=0 ,lowerCAmelCase__ : Any="absolute" ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : Optional[Any] ,) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Optional[int] = layer_norm_eps lowerCAmelCase_ : Dict = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : Tuple = classifier_dropout class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
from __future__ import annotations import math def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Dict = u for i in range(1 , snake_case__): lowerCAmelCase_ : Tuple = temp * (u - i) return temp def UpperCamelCase ( ): lowerCAmelCase_ : Dict = int(input("enter the numbers of values: ")) lowerCAmelCase_ : list[list[float]] = [] for _ in range(snake_case__): y.append([]) for i in range(snake_case__): for j in range(snake_case__): y[i].append(snake_case__) lowerCAmelCase_ : int = 0 print("enter the values of parameters in a list: ") lowerCAmelCase_ : Tuple = list(map(snake_case__ , input().split())) print("enter the values of corresponding parameters: ") for i in range(snake_case__): lowerCAmelCase_ : int = float(input()) lowerCAmelCase_ : Tuple = int(input("enter the value to interpolate: ")) lowerCAmelCase_ : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , snake_case__): for j in range(n - i): lowerCAmelCase_ : List[str] = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase_ : List[Any] = y[0][0] for i in range(1 , snake_case__): summ += (ucal(snake_case__ , snake_case__) * y[0][i]) / math.factorial(snake_case__) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str=7 ,lowerCAmelCase__ : List[str]=3 ,lowerCAmelCase__ : Any=18 ,lowerCAmelCase__ : Dict=30 ,lowerCAmelCase__ : Optional[int]=4_00 ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] ,) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : List[str] = min_resolution lowerCAmelCase_ : Optional[int] = max_resolution lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Dict = size if size is not None else {"height": 18, "width": 20} lowerCAmelCase_ : Dict = do_thumbnail lowerCAmelCase_ : List[str] = do_align_axis lowerCAmelCase_ : Union[str, Any] = do_pad lowerCAmelCase_ : Union[str, Any] = do_normalize lowerCAmelCase_ : str = image_mean lowerCAmelCase_ : Union[str, Any] = image_std def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_thumbnail" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_align_long_axis" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_pad" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_std" ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 20} ) lowerCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{"height": 84, "width": 42} ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,Image.Image ) # Test not batched input lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : Optional[int] = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,np.ndarray ) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : str = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : Tuple = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,)
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __snake_case : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *lowerCAmelCase__ : Any ,**lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( snake_case__): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _lowercase = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = pipeline( "document-question-answering" ,model=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,image_processor=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = INVOICE_URL lowerCAmelCase_ : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) ,lowerCAmelCase__ ,"" ) ) ) lowerCAmelCase_ : List[Any] = "What is the placebo?" lowerCAmelCase_ : Optional[int] = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Dict = dqa_pipeline(lowerCAmelCase__ ,top_k=2 ) self.assertEqual( lowerCAmelCase__ ,[ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 ,) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = pipeline("document-question-answering" ,model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCAmelCase_ : int = INVOICE_URL lowerCAmelCase_ : int = "How many cats are there?" lowerCAmelCase_ : List[str] = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCAmelCase_ : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = dqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase_ : Dict = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual(lowerCAmelCase__ ,[] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase_ : Optional[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Any = [] lowerCAmelCase_ : int = [] lowerCAmelCase_ : List[Any] = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,words=lowerCAmelCase__ ,boxes=lowerCAmelCase__ ,top_k=2 ) self.assertEqual(lowerCAmelCase__ ,[] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = pipeline( "document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,) lowerCAmelCase_ : Any = INVOICE_URL lowerCAmelCase_ : Optional[Any] = "What is the invoice number?" lowerCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] ,) lowerCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] ,) lowerCAmelCase_ : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 ,) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = pipeline( "document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,max_seq_len=50 ,) lowerCAmelCase_ : int = INVOICE_URL lowerCAmelCase_ : Dict = "What is the invoice number?" lowerCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ,) lowerCAmelCase_ : str = dqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ,) lowerCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 ,) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = pipeline( "document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=lowerCAmelCase__ ,revision="3dc6de3" ,) lowerCAmelCase_ : str = INVOICE_URL lowerCAmelCase_ : Tuple = "What is the invoice number?" lowerCAmelCase_ : Tuple = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ,) lowerCAmelCase_ : Optional[Any] = dqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ,) lowerCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 ,) lowerCAmelCase_ : Tuple = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) ,lowerCAmelCase__ ,"" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ : Optional[int] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ,) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = pipeline( "document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=lowerCAmelCase__ ,revision="3dc6de3" ,max_seq_len=50 ,) lowerCAmelCase_ : Any = INVOICE_URL lowerCAmelCase_ : int = "What is the invoice number?" lowerCAmelCase_ : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ,) lowerCAmelCase_ : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 ,) lowerCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) ,lowerCAmelCase__ ,"" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ : Union[str, Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ,) @slow @require_torch def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = pipeline( "document-question-answering" ,model="naver-clova-ix/donut-base-finetuned-docvqa" ,tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) ,feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" ,) lowerCAmelCase_ : int = INVOICE_URL lowerCAmelCase_ : Optional[Any] = "What is the invoice number?" lowerCAmelCase_ : List[Any] = dqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' pass
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowercase = logging.get_logger(__name__) _lowercase = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _lowercase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _lowercase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'whisper' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any]=5_18_65 ,lowerCAmelCase__ : Union[str, Any]=80 ,lowerCAmelCase__ : Optional[Any]=6 ,lowerCAmelCase__ : Optional[int]=4 ,lowerCAmelCase__ : Any=6 ,lowerCAmelCase__ : Dict=4 ,lowerCAmelCase__ : Dict=15_36 ,lowerCAmelCase__ : Tuple=15_36 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : List[str]=5_02_57 ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Tuple="gelu" ,lowerCAmelCase__ : List[Any]=2_56 ,lowerCAmelCase__ : Any=0.0 ,lowerCAmelCase__ : int=0.0 ,lowerCAmelCase__ : Tuple=0.0 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : Optional[Any]=False ,lowerCAmelCase__ : List[str]=15_00 ,lowerCAmelCase__ : List[Any]=4_48 ,lowerCAmelCase__ : Any=5_02_56 ,lowerCAmelCase__ : Optional[Any]=5_02_56 ,lowerCAmelCase__ : Optional[Any]=5_02_56 ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : Dict=[2_20, 5_02_56] ,lowerCAmelCase__ : List[str]=False ,lowerCAmelCase__ : Tuple=2_56 ,lowerCAmelCase__ : List[str]=False ,lowerCAmelCase__ : Optional[int]=0.05 ,lowerCAmelCase__ : Dict=10 ,lowerCAmelCase__ : List[str]=2 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Dict=10 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : str=7 ,**lowerCAmelCase__ : Optional[int] ,) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : int = num_mel_bins lowerCAmelCase_ : Dict = d_model lowerCAmelCase_ : str = encoder_layers lowerCAmelCase_ : Any = encoder_attention_heads lowerCAmelCase_ : Dict = decoder_layers lowerCAmelCase_ : int = decoder_attention_heads lowerCAmelCase_ : Any = decoder_ffn_dim lowerCAmelCase_ : List[str] = encoder_ffn_dim lowerCAmelCase_ : int = dropout lowerCAmelCase_ : Optional[int] = attention_dropout lowerCAmelCase_ : Union[str, Any] = activation_dropout lowerCAmelCase_ : List[str] = activation_function lowerCAmelCase_ : Tuple = init_std lowerCAmelCase_ : Dict = encoder_layerdrop lowerCAmelCase_ : str = decoder_layerdrop lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Union[str, Any] = max_source_positions lowerCAmelCase_ : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ : List[str] = classifier_proj_size lowerCAmelCase_ : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : List[str] = apply_spec_augment lowerCAmelCase_ : Any = mask_time_prob lowerCAmelCase_ : List[Any] = mask_time_length lowerCAmelCase_ : Optional[Any] = mask_time_min_masks lowerCAmelCase_ : Optional[Any] = mask_feature_prob lowerCAmelCase_ : List[Any] = mask_feature_length lowerCAmelCase_ : Optional[Any] = mask_feature_min_masks lowerCAmelCase_ : List[str] = median_filter_width super().__init__( pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,is_encoder_decoder=lowerCAmelCase__ ,decoder_start_token_id=lowerCAmelCase__ ,suppress_tokens=lowerCAmelCase__ ,begin_suppress_tokens=lowerCAmelCase__ ,**lowerCAmelCase__ ,) class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase_ : Tuple = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowerCAmelCase_ : Dict = {0: "batch"} else: lowerCAmelCase_ : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ ,direction="inputs" ) return common_inputs def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional["TensorType"] = None ,lowerCAmelCase__ : int = 2_20_50 ,lowerCAmelCase__ : float = 5.0 ,lowerCAmelCase__ : int = 2_20 ,) -> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict() lowerCAmelCase_ : Optional[Any] = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=lowerCAmelCase__ ,framework=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,time_duration=lowerCAmelCase__ ,frequency=lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = encoder_inputs["input_features"].shape[2] lowerCAmelCase_ : str = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ : Tuple = super().generate_dummy_inputs( preprocessor.tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = encoder_inputs.pop("input_features" ) lowerCAmelCase_ : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ : Optional[Any] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1e-3
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowercase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'maskformer' UpperCamelCase_ = {'hidden_size': 'mask_feature_size'} UpperCamelCase_ = ['resnet', 'swin'] UpperCamelCase_ = ['detr'] def __init__( self : Dict ,lowerCAmelCase__ : int = 2_56 ,lowerCAmelCase__ : int = 2_56 ,lowerCAmelCase__ : float = 0.1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[Dict] = None ,lowerCAmelCase__ : Optional[Dict] = None ,lowerCAmelCase__ : float = 0.02 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 20.0 ,lowerCAmelCase__ : Optional[bool] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase_ : int = SwinConfig( image_size=3_84 ,in_channels=3 ,patch_size=4 ,embed_dim=1_28 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = backbone_config.pop("model_type" ) lowerCAmelCase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : int = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase_ : List[str] = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase_ : Tuple = ( decoder_config.pop("model_type" ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[Any] = CONFIG_MAPPING[decoder_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = backbone_config lowerCAmelCase_ : str = decoder_config # main feature dimension for the model lowerCAmelCase_ : Tuple = fpn_feature_size lowerCAmelCase_ : List[Any] = mask_feature_size # initializer lowerCAmelCase_ : Optional[int] = init_std lowerCAmelCase_ : Optional[Any] = init_xavier_std # Hungarian matcher && loss lowerCAmelCase_ : Optional[int] = cross_entropy_weight lowerCAmelCase_ : Tuple = dice_weight lowerCAmelCase_ : str = mask_weight lowerCAmelCase_ : List[str] = use_auxiliary_loss lowerCAmelCase_ : Optional[int] = no_object_weight lowerCAmelCase_ : Tuple = output_auxiliary_logits lowerCAmelCase_ : Union[str, Any] = self.decoder_config.encoder_attention_heads lowerCAmelCase_ : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] ,lowerCAmelCase__ : PretrainedConfig ,lowerCAmelCase__ : PretrainedConfig ,**lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return cls( backbone_config=lowerCAmelCase__ ,decoder_config=lowerCAmelCase__ ,**lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : Tuple ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Any = self.backbone_config.to_dict() lowerCAmelCase_ : Any = self.decoder_config.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = [int(snake_case__) for i in ip_va_address.split(".") if i.isdigit()] return len(snake_case__) == 4 and all(0 <= int(snake_case__) <= 2_54 for octet in octets) if __name__ == "__main__": _lowercase = input().strip() _lowercase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
def UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog" , ): lowerCAmelCase_ : List[str] = set() # Replace all the whitespace in our sentence lowerCAmelCase_ : Tuple = input_str.replace(" " , "") for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(snake_case__) == 26 def UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog" , ): lowerCAmelCase_ : Union[str, Any] = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase_ : Any = True elif char.isupper(): lowerCAmelCase_ : Union[str, Any] = True return all(snake_case__) def UpperCamelCase ( snake_case__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()}) == 26 def UpperCamelCase ( ): from timeit import timeit lowerCAmelCase_ : str = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=snake_case__)) print(timeit("is_pangram_faster()" , setup=snake_case__)) print(timeit("is_pangram_fastest()" , setup=snake_case__)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = None UpperCamelCase_ = None _lowercase = namedtuple('''CoinsDistribResult''', '''moves excess''') def UpperCamelCase ( snake_case__): if root is None: return 0 # Validation def count_nodes(snake_case__) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(snake_case__) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(snake_case__) != count_coins(snake_case__): raise ValueError("The nodes number should be same as the number of coins") # Main calculation def get_distrib(snake_case__) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1) lowerCAmelCase_ , lowerCAmelCase_ : int = get_distrib(node.left) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_distrib(node.right) lowerCAmelCase_ : Optional[Any] = 1 - left_distrib_excess lowerCAmelCase_ : Tuple = 1 - right_distrib_excess lowerCAmelCase_ : List[Any] = ( left_distrib_moves + right_distrib_moves + abs(snake_case__) + abs(snake_case__) ) lowerCAmelCase_ : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(snake_case__ , snake_case__) return get_distrib(snake_case__)[0] if __name__ == "__main__": import doctest doctest.testmod()
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase_ = Features({'text': Value('string' )} ) UpperCamelCase_ = Features({} ) UpperCamelCase_ = "text" @property def UpperCAmelCase_ ( self : List[Any] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'dpt' def __init__( self : List[Any] ,lowerCAmelCase__ : Dict=7_68 ,lowerCAmelCase__ : Optional[Any]=12 ,lowerCAmelCase__ : int=12 ,lowerCAmelCase__ : Dict=30_72 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : List[Any]=0.0 ,lowerCAmelCase__ : str=0.0 ,lowerCAmelCase__ : Tuple=0.02 ,lowerCAmelCase__ : int=1e-1_2 ,lowerCAmelCase__ : Optional[Any]=3_84 ,lowerCAmelCase__ : int=16 ,lowerCAmelCase__ : List[Any]=3 ,lowerCAmelCase__ : Optional[int]=False ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Dict=[2, 5, 8, 11] ,lowerCAmelCase__ : List[Any]="project" ,lowerCAmelCase__ : Optional[int]=[4, 2, 1, 0.5] ,lowerCAmelCase__ : Any=[96, 1_92, 3_84, 7_68] ,lowerCAmelCase__ : Optional[Any]=2_56 ,lowerCAmelCase__ : Tuple=-1 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]=0.4 ,lowerCAmelCase__ : Any=2_55 ,lowerCAmelCase__ : List[str]=0.1 ,lowerCAmelCase__ : Optional[Any]=[1, 10_24, 24, 24] ,lowerCAmelCase__ : str=[0, 1] ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : str ,) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase_ : str = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCAmelCase_ : int = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): logger.info("Initializing the config with a `BiT` backbone." ) lowerCAmelCase_ : Union[str, Any] = BitConfig(**lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Dict = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase_ : List[str] = backbone_featmap_shape lowerCAmelCase_ : Union[str, Any] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: lowerCAmelCase_ : int = None lowerCAmelCase_ : int = None lowerCAmelCase_ : int = [] lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : str = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : int = qkv_bias lowerCAmelCase_ : Optional[int] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) lowerCAmelCase_ : Any = readout_type lowerCAmelCase_ : str = reassemble_factors lowerCAmelCase_ : List[str] = neck_hidden_sizes lowerCAmelCase_ : int = fusion_hidden_size lowerCAmelCase_ : List[str] = head_in_index lowerCAmelCase_ : Any = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase_ : Dict = use_auxiliary_head lowerCAmelCase_ : List[str] = auxiliary_loss_weight lowerCAmelCase_ : Optional[Any] = semantic_loss_ignore_index lowerCAmelCase_ : Tuple = semantic_classifier_dropout def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Dict = self.__class__.model_type return output
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
_lowercase = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } _lowercase = {value: key for key, value in encode_dict.items()} def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces") return encoded def UpperCamelCase ( snake_case__): if set(snake_case__) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces") lowerCAmelCase_ : Optional[Any] = "" for word in coded.split(): while len(snake_case__) != 0: decoded += decode_dict[word[:5]] lowerCAmelCase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCamelCase ( snake_case__ = True , *snake_case__ , **snake_case__): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.") lowerCAmelCase_ : Union[str, Any] = False if main_process_only: lowerCAmelCase_ : str = PartialState().local_process_index == 0 return _tqdm(*snake_case__ , **snake_case__ , disable=snake_case__)
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} _lowercase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } _lowercase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } _lowercase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } _lowercase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ["input_ids"] UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Optional[int]=False ,lowerCAmelCase__ : Optional[int]="utf8" ,lowerCAmelCase__ : Tuple="[UNK]" ,lowerCAmelCase__ : Optional[int]="[SEP]" ,lowerCAmelCase__ : Any="[PAD]" ,lowerCAmelCase__ : Optional[Any]="[CLS]" ,lowerCAmelCase__ : Tuple="[MASK]" ,lowerCAmelCase__ : Optional[Dict[str, Any]] = None ,**lowerCAmelCase__ : List[Any] ,) -> None: '''simple docstring''' lowerCAmelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,vocab_file=lowerCAmelCase__ ,encoding=lowerCAmelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Any = do_lower_case lowerCAmelCase_ : List[str] = sentencepiece_model_ckpt lowerCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase_ : List[Any] = self.load_vocab(filepath=lowerCAmelCase__ ) else: lowerCAmelCase_ : List[str] = {self.sp_model.id_to_piece(lowerCAmelCase__ ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase_ : List[str] = {v: k for k, v in self.vocab.items()} def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' if text is None: return None lowerCAmelCase_ : Dict = self.tokenize(lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = "", [] for i, ch in enumerate(lowerCAmelCase__ ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase_ : str = self.SP_CHAR_MAPPING.get(lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = unicodedata.normalize("NFKC" ,lowerCAmelCase__ ) if self.is_whitespace(lowerCAmelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(lowerCAmelCase__ ) ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase_ : int = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase_ : List[Any] = token[1:] lowerCAmelCase_ : Dict = text[offset:].index(lowerCAmelCase__ ) + offset lowerCAmelCase_ : Tuple = start + len(lowerCAmelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase_ : str = end return token_mapping @property def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def __getstate__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.__dict__.copy() lowerCAmelCase_ : List[Any] = None return state def __setstate__( self : Optional[int] ,lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): lowerCAmelCase_ : List[Any] = {} lowerCAmelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(lowerCAmelCase__ ,lowerCAmelCase__ ) for c in text) ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=False ,lowerCAmelCase__ : int=64 ,lowerCAmelCase__ : Union[str, Any]=0.1 ) -> Optional[Any]: '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: lowerCAmelCase_ : Union[str, Any] = True if self.sp_model_kwargs.get("alpha" ) is not None: lowerCAmelCase_ : Tuple = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: lowerCAmelCase_ : Any = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: lowerCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(lowerCAmelCase__ ) else: lowerCAmelCase_ : Optional[int] = self.sp_model.SampleEncodeAsPieces(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = [] for pi, piece in enumerate(lowerCAmelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(lowerCAmelCase__ ) and pi != 0: new_pieces.append(lowerCAmelCase__ ) continue else: continue lowerCAmelCase_ : Any = 0 for i, chunk in enumerate(lowerCAmelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(lowerCAmelCase__ ) or self.is_punct(lowerCAmelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : int = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : int = i if len(lowerCAmelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ ," " ).strip() return out_string def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ ," " ).strip() return out_string def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' return self.vocab.get(lowerCAmelCase__ ,self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.reverse_vocab.get(lowerCAmelCase__ ,self.unk_token ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] lowerCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str=None ) -> Any: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : List[str]=False ) -> List[str]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(lowerCAmelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(lowerCAmelCase__ ) + 1) + [1] * (len(lowerCAmelCase__ ) + 3) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(lowerCAmelCase__ ) == 1: lowerCAmelCase_ : List[Any] = unicodedata.category(lowerCAmelCase__ ) if cat == "Zs": return True return False def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {} with io.open(lowerCAmelCase__ ,"r" ,encoding="utf-8" ) as f: for index, line in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = line.rstrip("\n" ) lowerCAmelCase_ : Optional[Any] = int(lowerCAmelCase__ ) return token_to_idx def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = 0 if os.path.isdir(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(token + "\n" ) index += 1 lowerCAmelCase_ : List[str] = os.path.join(lowerCAmelCase__ ,"sentencepiece.bpe.model" ) with open(lowerCAmelCase__ ,"wb" ) as fi: lowerCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (vocab_file,)
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import numpy as np def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = int(np.ceil((x_end - xa) / h)) lowerCAmelCase_ : int = np.zeros((n + 1,)) lowerCAmelCase_ : Optional[int] = ya lowerCAmelCase_ : Optional[Any] = xa for k in range(snake_case__): lowerCAmelCase_ : int = f(snake_case__ , y[k]) lowerCAmelCase_ : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowerCAmelCase_ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowerCAmelCase_ : Tuple = f(x + h , y[k] + h * ka) lowerCAmelCase_ : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
_lowercase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase_ : Any = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(snake_case__)}''' ) raise ValueError(snake_case__) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowercase = get_logger(__name__) class __snake_case ( enum.Enum ): """simple docstring""" UpperCamelCase_ = 'all_checks' UpperCamelCase_ = 'basic_checks' UpperCamelCase_ = 'no_checks' class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(snake_case__) - set(snake_case__)) > 0: raise ExpectedMoreDownloadedFiles(str(set(snake_case__) - set(snake_case__))) if len(set(snake_case__) - set(snake_case__)) > 0: raise UnexpectedDownloadedFile(str(set(snake_case__) - set(snake_case__))) lowerCAmelCase_ : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase_ : Optional[Any] = " for " + verification_name if verification_name is not None else "" if len(snake_case__) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error") logger.info("All the checksums matched successfully" + for_verification_name) class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" class __snake_case ( snake_case__ ): """simple docstring""" def UpperCamelCase ( snake_case__ , snake_case__): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(snake_case__) - set(snake_case__)) > 0: raise ExpectedMoreSplits(str(set(snake_case__) - set(snake_case__))) if len(set(snake_case__) - set(snake_case__)) > 0: raise UnexpectedSplits(str(set(snake_case__) - set(snake_case__))) lowerCAmelCase_ : Union[str, Any] = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(snake_case__) > 0: raise NonMatchingSplitsSizesError(str(snake_case__)) logger.info("All the splits matched successfully.") def UpperCamelCase ( snake_case__ , snake_case__ = True): if record_checksum: lowerCAmelCase_ : Optional[Any] = shaaaa() with open(snake_case__ , "rb") as f: for chunk in iter(lambda: f.read(1 << 20) , b""): m.update(snake_case__) lowerCAmelCase_ : Optional[int] = m.hexdigest() else: lowerCAmelCase_ : str = None return {"num_bytes": os.path.getsize(snake_case__), "checksum": checksum} def UpperCamelCase ( snake_case__): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowercase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Union[str, Any] = state_dict.pop(snake_case__) lowerCAmelCase_ : Dict = val def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase_ : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model") lowerCAmelCase_ : int = value else: lowerCAmelCase_ : Any = value return new_state_dict def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = "" # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase_ : Dict = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''') lowerCAmelCase_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : List[str] = in_proj_weight[:2_56, :] lowerCAmelCase_ : Union[str, Any] = in_proj_bias[:2_56] lowerCAmelCase_ : Tuple = in_proj_weight[2_56:5_12, :] lowerCAmelCase_ : int = in_proj_bias[2_56:5_12] lowerCAmelCase_ : Optional[int] = in_proj_weight[-2_56:, :] lowerCAmelCase_ : List[Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention lowerCAmelCase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''') lowerCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Optional[int] = in_proj_weight[:2_56, :] lowerCAmelCase_ : Tuple = in_proj_bias[:2_56] lowerCAmelCase_ : Dict = in_proj_weight[2_56:5_12, :] lowerCAmelCase_ : Optional[int] = in_proj_bias[2_56:5_12] lowerCAmelCase_ : Dict = in_proj_weight[-2_56:, :] lowerCAmelCase_ : Dict = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase_ : Tuple = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''') lowerCAmelCase_ : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase_ : Union[str, Any] = in_proj_weight_cross_attn[:2_56, :] lowerCAmelCase_ : Any = in_proj_bias_cross_attn[:2_56] lowerCAmelCase_ : Tuple = in_proj_weight_cross_attn[2_56:5_12, :] lowerCAmelCase_ : Tuple = in_proj_bias_cross_attn[2_56:5_12] lowerCAmelCase_ : Any = in_proj_weight_cross_attn[-2_56:, :] lowerCAmelCase_ : Optional[int] = in_proj_bias_cross_attn[-2_56:] def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : str = image.size lowerCAmelCase_ : List[str] = max(snake_case__ , snake_case__) lowerCAmelCase_ : Any = 8_00 if "detection" in checkpoint_url else 10_00 lowerCAmelCase_ : Union[str, Any] = target_max_size / current_max_size lowerCAmelCase_ : Any = image.resize((int(round(scale * width)), int(round(scale * height)))) return resized_image def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = F.to_tensor(snake_case__) lowerCAmelCase_ : Tuple = F.normalize(snake_case__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225]) return image @torch.no_grad() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): logger.info("Converting model...") # load original state dict lowerCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(snake_case__ , map_location="cpu") # rename keys for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[Any] = rename_backbone_keys(snake_case__) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase_ : Any = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): lowerCAmelCase_ : str = state_dict.pop(snake_case__) lowerCAmelCase_ : Optional[int] = val # create HuggingFace model and load state dict lowerCAmelCase_ : Dict = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowerCAmelCase_ : Optional[int] = 15 lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Union[str, Any] = {0: "table", 1: "table rotated"} lowerCAmelCase_ : str = idalabel lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} else: lowerCAmelCase_ : str = 1_25 lowerCAmelCase_ : Optional[Any] = 6 lowerCAmelCase_ : List[str] = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : List[Any] = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00) lowerCAmelCase_ : List[str] = TableTransformerForObjectDetection(snake_case__) model.load_state_dict(snake_case__) model.eval() # verify our conversion lowerCAmelCase_ : Optional[int] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowerCAmelCase_ : int = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=snake_case__) lowerCAmelCase_ : Optional[int] = Image.open(snake_case__).convert("RGB") lowerCAmelCase_ : Union[str, Any] = normalize(resize(snake_case__ , snake_case__)).unsqueeze(0) lowerCAmelCase_ : Union[str, Any] = model(snake_case__) if "detection" in checkpoint_url: lowerCAmelCase_ : str = (1, 15, 3) lowerCAmelCase_ : Dict = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]]) lowerCAmelCase_ : List[str] = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]]) else: lowerCAmelCase_ : Tuple = (1, 1_25, 7) lowerCAmelCase_ : Any = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]]) lowerCAmelCase_ : Any = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(snake_case__).mkdir(exist_ok=snake_case__) model.save_pretrained(snake_case__) image_processor.save_pretrained(snake_case__) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub...") lowerCAmelCase_ : List[Any] = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(snake_case__) image_processor.push_to_hub(snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowercase = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : List[Any] ,*lowerCAmelCase__ : List[Any] ,**lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ ) requires_backends(self ,"vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int=None ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = {} if top_k is not None: lowerCAmelCase_ : Optional[int] = top_k return {}, {}, postprocess_params def __call__( self : List[str] ,lowerCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = load_image(lowerCAmelCase__ ) lowerCAmelCase_ : int = self.image_processor(images=lowerCAmelCase__ ,return_tensors=self.framework ) return model_inputs def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model(**lowerCAmelCase__ ) return model_outputs def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : str=5 ) -> Optional[Any]: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ : List[str] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ : int = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": lowerCAmelCase_ : Any = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowerCAmelCase_ : List[str] = tf.math.top_k(lowerCAmelCase__ ,k=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ : int = scores.tolist() lowerCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ ,lowerCAmelCase__ )]
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : str=13 ,lowerCAmelCase__ : List[Any]=10 ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Any=32 ,lowerCAmelCase__ : Union[str, Any]=5 ,lowerCAmelCase__ : Dict=4 ,lowerCAmelCase__ : Optional[int]=37 ,lowerCAmelCase__ : str="gelu" ,lowerCAmelCase__ : int=0.1 ,lowerCAmelCase__ : int=0.1 ,lowerCAmelCase__ : List[Any]=10 ,lowerCAmelCase__ : int=0.02 ,lowerCAmelCase__ : str="divided_space_time" ,lowerCAmelCase__ : int=None ,) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Any = num_frames lowerCAmelCase_ : str = is_training lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = attention_type lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Union[str, Any] = scope lowerCAmelCase_ : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowerCAmelCase_ : List[str] = (image_size // patch_size) ** 2 lowerCAmelCase_ : int = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = TimesformerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,) lowerCAmelCase_ : List[Any] = self.num_labels return config def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ) # verify the logits shape lowerCAmelCase_ : int = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = config_and_inputs lowerCAmelCase_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase_ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : List[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : str = TimesformerModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester( self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ,hidden_size=37 ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCAmelCase__ ) return inputs_dict def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCAmelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ ,nn.Linear ) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' if not self.has_attentions: pass else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = self.model_tester.seq_length lowerCAmelCase_ : Optional[Any] = self.model_tester.num_frames lowerCAmelCase_ : Any = True lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : str = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) lowerCAmelCase_ : List[str] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Dict = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[Any] ): lowerCAmelCase_ : Tuple = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = outputs.hidden_states lowerCAmelCase_ : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) ,lowerCAmelCase__ ) lowerCAmelCase_ : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Dict = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset") lowerCAmelCase_ : Any = np.load(snake_case__) return list(snake_case__) @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : str = prepare_video() lowerCAmelCase_ : int = image_processor(video[:8] ,return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ : int = model(**lowerCAmelCase__ ) # verify the logits lowerCAmelCase_ : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) )
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import qiskit def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = qiskit.Aer.get_backend("aer_simulator") # Create a Quantum Circuit acting on the q register lowerCAmelCase_ : Tuple = qiskit.QuantumCircuit(snake_case__ , snake_case__) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1]) # Execute the circuit on the qasm simulator lowerCAmelCase_ : Tuple = qiskit.execute(snake_case__ , snake_case__ , shots=10_00) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case__) if __name__ == "__main__": _lowercase = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case__) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix lowerCAmelCase_ : Dict = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase_ : int = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase_ , lowerCAmelCase_ : Dict = matrix[1][1], matrix[0][0] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case__)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case__) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase_ : int = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creating cofactor matrix lowerCAmelCase_ : Tuple = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] lowerCAmelCase_ : Optional[int] = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) lowerCAmelCase_ : Dict = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) lowerCAmelCase_ : Union[str, Any] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) lowerCAmelCase_ : List[str] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) lowerCAmelCase_ : List[str] = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) lowerCAmelCase_ : Any = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) lowerCAmelCase_ : Any = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) lowerCAmelCase_ : Any = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) lowerCAmelCase_ : List[str] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase_ : Optional[Any] = array(snake_case__) for i in range(3): for j in range(3): lowerCAmelCase_ : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase_ : Any = array(snake_case__) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(snake_case__) # Calculate the inverse of the matrix return [[float(d(snake_case__)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3.")
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(snake_case__): if len(snake_case__) < i + 1: data_lists.append([]) data_lists[i].append(float(snake_case__)) return data_lists def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(snake_case__ , snake_case__): lowerCAmelCase_ : Dict = min(snake_case__) lowerCAmelCase_ : str = max(snake_case__) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: lowerCAmelCase_ : List[Any] = F'''Invalid weight of {weight:f} provided''' raise ValueError(snake_case__) score_lists.append(snake_case__) return score_lists def UpperCamelCase ( snake_case__): lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(snake_case__): lowerCAmelCase_ : Optional[Any] = final_scores[j] + ele return final_scores def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : int = get_data(snake_case__) lowerCAmelCase_ : int = calculate_each_score(snake_case__ , snake_case__) lowerCAmelCase_ : Optional[Any] = generate_final_scores(snake_case__) # append scores to source data for i, ele in enumerate(snake_case__): source_data[i].append(snake_case__) return source_data
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'upernet' def __init__( self : Dict ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Tuple=5_12 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : List[str]=[1, 2, 3, 6] ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Union[str, Any]=0.4 ,lowerCAmelCase__ : Tuple=3_84 ,lowerCAmelCase__ : Dict=2_56 ,lowerCAmelCase__ : Dict=1 ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : Tuple=2_55 ,**lowerCAmelCase__ : Optional[int] ,) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Dict = backbone_config.get("model_type" ) lowerCAmelCase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : str = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = backbone_config lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = pool_scales lowerCAmelCase_ : Any = use_auxiliary_head lowerCAmelCase_ : int = auxiliary_loss_weight lowerCAmelCase_ : Union[str, Any] = auxiliary_in_channels lowerCAmelCase_ : List[Any] = auxiliary_channels lowerCAmelCase_ : Union[str, Any] = auxiliary_num_convs lowerCAmelCase_ : Optional[int] = auxiliary_concat_input lowerCAmelCase_ : int = loss_ignore_index def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : List[str] = self.backbone_config.to_dict() lowerCAmelCase_ : Optional[int] = self.__class__.model_type return output
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'conditional_detr' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : int=3_00 ,lowerCAmelCase__ : List[Any]=6 ,lowerCAmelCase__ : int=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Tuple=6 ,lowerCAmelCase__ : str=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : str="relu" ,lowerCAmelCase__ : List[str]=2_56 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[int]=0.0 ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : List[str]=1.0 ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : int="sine" ,lowerCAmelCase__ : int="resnet50" ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : List[str]=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Dict=1 ,lowerCAmelCase__ : Any=1 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Tuple=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Union[str, Any]=0.25 ,**lowerCAmelCase__ : Optional[int] ,) -> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ : Dict = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Dict = backbone_config.get("model_type" ) lowerCAmelCase_ : Tuple = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = use_timm_backbone lowerCAmelCase_ : Optional[int] = backbone_config lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : int = num_queries lowerCAmelCase_ : Union[str, Any] = d_model lowerCAmelCase_ : Tuple = encoder_ffn_dim lowerCAmelCase_ : Union[str, Any] = encoder_layers lowerCAmelCase_ : List[Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim lowerCAmelCase_ : Optional[int] = decoder_layers lowerCAmelCase_ : Tuple = decoder_attention_heads lowerCAmelCase_ : Tuple = dropout lowerCAmelCase_ : List[Any] = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Tuple = init_std lowerCAmelCase_ : Optional[Any] = init_xavier_std lowerCAmelCase_ : List[Any] = encoder_layerdrop lowerCAmelCase_ : List[str] = decoder_layerdrop lowerCAmelCase_ : int = encoder_layers lowerCAmelCase_ : List[Any] = auxiliary_loss lowerCAmelCase_ : int = position_embedding_type lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : Dict = use_pretrained_backbone lowerCAmelCase_ : str = dilation # Hungarian matcher lowerCAmelCase_ : List[str] = class_cost lowerCAmelCase_ : Union[str, Any] = bbox_cost lowerCAmelCase_ : Dict = giou_cost # Loss coefficients lowerCAmelCase_ : Tuple = mask_loss_coefficient lowerCAmelCase_ : str = dice_loss_coefficient lowerCAmelCase_ : Dict = cls_loss_coefficient lowerCAmelCase_ : str = bbox_loss_coefficient lowerCAmelCase_ : Optional[int] = giou_loss_coefficient lowerCAmelCase_ : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ ,**lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Any = self.__class__.model_type return output class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = version.parse('1.11' ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase_ ( self : int ) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' return 12
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'gptsan-japanese' UpperCamelCase_ = [ 'past_key_values', ] UpperCamelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int ,lowerCAmelCase__ : List[Any]=3_60_00 ,lowerCAmelCase__ : Union[str, Any]=12_80 ,lowerCAmelCase__ : int=10_24 ,lowerCAmelCase__ : Optional[int]=81_92 ,lowerCAmelCase__ : Optional[Any]=40_96 ,lowerCAmelCase__ : str=1_28 ,lowerCAmelCase__ : Union[str, Any]=10 ,lowerCAmelCase__ : Optional[Any]=0 ,lowerCAmelCase__ : str=16 ,lowerCAmelCase__ : List[Any]=16 ,lowerCAmelCase__ : Dict=1_28 ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : List[str]=1e-5 ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : Optional[int]="float32" ,lowerCAmelCase__ : Optional[int]=False ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : List[str]=0.002 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Optional[int]=3_59_98 ,lowerCAmelCase__ : List[Any]=3_59_95 ,lowerCAmelCase__ : Dict=3_59_99 ,**lowerCAmelCase__ : Optional[int] ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : str = d_model lowerCAmelCase_ : List[str] = d_ff lowerCAmelCase_ : Tuple = d_ext lowerCAmelCase_ : Optional[Any] = d_spout lowerCAmelCase_ : Optional[int] = num_switch_layers lowerCAmelCase_ : Optional[int] = num_ext_layers lowerCAmelCase_ : Tuple = num_switch_layers + num_ext_layers lowerCAmelCase_ : List[Any] = num_heads lowerCAmelCase_ : Tuple = num_experts lowerCAmelCase_ : Optional[int] = expert_capacity lowerCAmelCase_ : Optional[int] = dropout_rate lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : List[str] = router_bias lowerCAmelCase_ : Optional[Any] = router_jitter_noise lowerCAmelCase_ : Optional[Any] = router_dtype lowerCAmelCase_ : Any = router_ignore_padding_tokens lowerCAmelCase_ : int = output_hidden_states lowerCAmelCase_ : Tuple = output_attentions lowerCAmelCase_ : List[str] = initializer_factor lowerCAmelCase_ : Dict = output_router_logits lowerCAmelCase_ : Optional[int] = use_cache super().__init__( separator_token_id=lowerCAmelCase__ ,pad_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
_lowercase = [0, 2, 4, 6, 8] _lowercase = [1, 3, 5, 7, 9] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCAmelCase_ : Tuple = 0 for digit in range(10): lowerCAmelCase_ : Optional[int] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , snake_case__ , snake_case__) return result lowerCAmelCase_ : str = 0 for digita in range(10): lowerCAmelCase_ : int = digita if (remainder + digita) % 2 == 0: lowerCAmelCase_ : str = ODD_DIGITS else: lowerCAmelCase_ : str = EVEN_DIGITS for digita in other_parity_digits: lowerCAmelCase_ : Dict = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , snake_case__ , snake_case__ , ) return result def UpperCamelCase ( snake_case__ = 9): lowerCAmelCase_ : Tuple = 0 for length in range(1 , max_power + 1): result += reversible_numbers(snake_case__ , 0 , [0] * length , snake_case__) return result if __name__ == "__main__": print(f"{solution() = }")
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
def UpperCamelCase ( snake_case__ , snake_case__): return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } _lowercase = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } _lowercase = '''</w>''' _lowercase = '''@@ ''' def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = set() lowerCAmelCase_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Tuple = char return pairs # Speech2Text2 has no max input length _lowercase = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : Optional[Any]="<pad>" ,lowerCAmelCase__ : Optional[int]="</s>" ,lowerCAmelCase__ : Union[str, Any]="<unk>" ,lowerCAmelCase__ : Optional[Any]=False ,lowerCAmelCase__ : Dict=None ,**lowerCAmelCase__ : Any ,) -> Tuple: '''simple docstring''' super().__init__( unk_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[Any] = do_lower_case with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : str = None else: with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[:-1] lowerCAmelCase_ : Dict = [tuple(merge.split()[:2] ) for merge in merges] lowerCAmelCase_ : Tuple = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Union[str, Any] = {} @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.decoder ) def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCAmelCase_ : Any = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Optional[int] = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : List[str] = bigram lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[str] = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Union[str, Any] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Tuple = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : str = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : str = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = " ".join(lowerCAmelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: lowerCAmelCase_ : Union[str, Any] = "\n" + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = word.replace(lowerCAmelCase__ ,"" ) lowerCAmelCase_ : str = word.replace(" " ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = word return word def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: lowerCAmelCase_ : Union[str, Any] = text.lower() lowerCAmelCase_ : Optional[int] = text.split() lowerCAmelCase_ : List[Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = self.decoder.get(lowerCAmelCase__ ,self.unk_token ) return result def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : Any = " ".join(lowerCAmelCase__ ) # make sure @@ tokens are concatenated lowerCAmelCase_ : str = "".join(string.split(lowerCAmelCase__ ) ) return string def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : List[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Dict = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : int = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return (vocab_file, merges_file)
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __snake_case ( snake_case__ , snake_case__ ): """simple docstring""" UpperCamelCase_ = 'convnextv2' def __init__( self : Optional[int] ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : List[Any]=4 ,lowerCAmelCase__ : Tuple=4 ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : List[str]="gelu" ,lowerCAmelCase__ : List[str]=0.02 ,lowerCAmelCase__ : int=1e-1_2 ,lowerCAmelCase__ : Tuple=0.0 ,lowerCAmelCase__ : Dict=2_24 ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : Optional[Any]=None ,**lowerCAmelCase__ : str ,) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = num_channels lowerCAmelCase_ : str = patch_size lowerCAmelCase_ : List[Any] = num_stages lowerCAmelCase_ : List[Any] = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes lowerCAmelCase_ : Optional[int] = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = drop_path_rate lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Dict = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ : Any = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ ,out_indices=lowerCAmelCase__ ,stage_names=self.stage_names )
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__): if isinstance(snake_case__ , np.ndarray): return list(tensor.shape) lowerCAmelCase_ : str = tf.shape(snake_case__) if tensor.shape == tf.TensorShape(snake_case__): return dynamic lowerCAmelCase_ : Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case__)] def UpperCamelCase ( snake_case__ , snake_case__ = None , snake_case__ = None): return tf.nn.softmax(logits=logits + 1e-9 , axis=snake_case__ , name=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=1e-5 , snake_case__=-1): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case__ , snake_case__): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis.") # Get mean and variance on the axis to be normalized lowerCAmelCase_ , lowerCAmelCase_ : str = tf.nn.moments(snake_case__ , axes=[axis] , keepdims=snake_case__) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCAmelCase_ : Optional[Any] = [1] * inputs.shape.rank lowerCAmelCase_ : Any = shape_list(snake_case__)[axis] lowerCAmelCase_ : List[str] = tf.reshape(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = tf.reshape(snake_case__ , snake_case__) # Compute layer normalization using the batch_normalization # function. lowerCAmelCase_ : List[Any] = tf.nn.batch_normalization( snake_case__ , snake_case__ , snake_case__ , offset=snake_case__ , scale=snake_case__ , variance_epsilon=snake_case__ , ) return outputs def UpperCamelCase ( snake_case__ , snake_case__=0 , snake_case__=-1): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCAmelCase_ : Dict = tf.shape(snake_case__) lowerCAmelCase_ : Dict = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) lowerCAmelCase_ : str = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0) return tf.reshape(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not isinstance(snake_case__ , tf.Tensor): lowerCAmelCase_ : Optional[int] = tf.convert_to_tensor(snake_case__) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCAmelCase_ : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCAmelCase_ : List[str] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCAmelCase_ : List[str] = ( tf.cast(1 , encoder_attention_mask.dtype) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = "input_ids"): tf.debugging.assert_less( snake_case__ , tf.cast(snake_case__ , dtype=tensor.dtype) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case__)}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCAmelCase_ : str = [x for x in data if len(snake_case__) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''') lowerCAmelCase_ : List[Any] = np.asarray(snake_case__) lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : str = np.array_split(snake_case__ , snake_case__) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 lowerCAmelCase_ : Optional[int] = np.array_split(snake_case__ , snake_case__) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = chunk_data else: lowerCAmelCase_ : List[str] = data def UpperCamelCase ( snake_case__ , snake_case__): if name in group.attrs: lowerCAmelCase_ : Tuple = [n.decode("utf8") if hasattr(snake_case__ , "decode") else n for n in group.attrs[name]] else: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8") if hasattr(snake_case__ , "decode") else n for n in group.attrs["%s%d" % (name, chunk_id)]]) chunk_id += 1 return data def UpperCamelCase ( snake_case__): def _expand_single_ad_tensor(snake_case__): if isinstance(snake_case__ , tf.Tensor) and t.shape.rank == 1: return tf.expand_dims(snake_case__ , axis=-1) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case__)
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
def UpperCamelCase ( snake_case__ = 10_00): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1)) if __name__ == "__main__": print(solution())
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
from datetime import datetime as dt import os from github import Github _lowercase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase ( ): lowerCAmelCase_ : int = Github(os.environ["GITHUB_TOKEN"]) lowerCAmelCase_ : str = g.get_repo("huggingface/transformers") lowerCAmelCase_ : List[str] = repo.get_issues(state="open") for issue in open_issues: lowerCAmelCase_ : int = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case__: i.created_at , reverse=snake_case__) lowerCAmelCase_ : Optional[Any] = comments[0] if len(snake_case__) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = 1 while len(snake_case__) < 1e6: constant.append(str(snake_case__)) i += 1 lowerCAmelCase_ : List[Any] = "".join(snake_case__) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[9_99]) * int(constant[99_99]) * int(constant[9_99_99]) * int(constant[99_99_99]) ) if __name__ == "__main__": print(solution())
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _lowercase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _lowercase = { '''RUCAIBox/mvp''': 1024, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = MvpTokenizer def __init__( self : Any ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Union[str, Any]="replace" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]="</s>" ,lowerCAmelCase__ : List[Any]="<s>" ,lowerCAmelCase__ : Optional[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : Tuple="<mask>" ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : Optional[Any]=True ,**lowerCAmelCase__ : Optional[Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,trim_offsets=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : List[str] = getattr(lowerCAmelCase__ ,pre_tok_state.pop("type" ) ) lowerCAmelCase_ : Tuple = add_prefix_space lowerCAmelCase_ : List[Any] = pre_tok_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ : Optional[Any] = "post_processor" lowerCAmelCase_ : Union[str, Any] = getattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : int = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : List[str] = tuple(state["cls"] ) lowerCAmelCase_ : List[Any] = False if state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : Tuple = add_prefix_space lowerCAmelCase_ : Tuple = True if state.get("trim_offsets" ,lowerCAmelCase__ ) != trim_offsets: lowerCAmelCase_ : str = trim_offsets lowerCAmelCase_ : int = True if changes_to_apply: lowerCAmelCase_ : List[str] = getattr(lowerCAmelCase__ ,state.pop("type" ) ) lowerCAmelCase_ : Dict = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else value lowerCAmelCase_ : Optional[int] = value def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : int ,**lowerCAmelCase__ : Optional[Any] ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : Dict = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Union[str, Any] ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : List[str] = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict=None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : int = [self.sep_token_id] lowerCAmelCase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
from __future__ import annotations import typing from collections import Counter def UpperCamelCase ( snake_case__): lowerCAmelCase_ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(snake_case__ , max_perimeter + 1): lowerCAmelCase_ : Union[str, Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case__): lowerCAmelCase_ : List[str] = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCamelCase ( snake_case__ = 10_00): lowerCAmelCase_ : Any = pythagorean_triple(snake_case__) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MobileViTFeatureExtractor'''] _lowercase = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
_lowercase = range(2, 20 + 1) _lowercase = [10**k for k in range(ks[-1] + 1)] _lowercase = {} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(a_i[j] for j in range(snake_case__ , len(snake_case__))) lowerCAmelCase_ : List[Any] = sum(a_i[j] * base[j] for j in range(min(len(snake_case__) , snake_case__))) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = 0, 0 lowerCAmelCase_ : Dict = n - i lowerCAmelCase_ : Union[str, Any] = memo.get(snake_case__) if sub_memo is not None: lowerCAmelCase_ : Tuple = sub_memo.get(snake_case__) if jumps is not None and len(snake_case__) > 0: # find and make the largest jump without going over lowerCAmelCase_ : str = -1 for _k in range(len(snake_case__) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ : Optional[Any] = _k break if max_jump >= 0: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ : List[Any] = diff + c for j in range(min(snake_case__ , len(snake_case__))): lowerCAmelCase_ , lowerCAmelCase_ : int = divmod(snake_case__ , 10) if new_c > 0: add(snake_case__ , snake_case__ , snake_case__) else: lowerCAmelCase_ : Optional[int] = [] else: lowerCAmelCase_ : Tuple = {c: []} lowerCAmelCase_ : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = next_term(snake_case__ , k - 1 , i + dn , snake_case__) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ , lowerCAmelCase_ : str = compute(snake_case__ , snake_case__ , i + dn , snake_case__) diff += _diff dn += terms_jumped lowerCAmelCase_ : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ : List[Any] = 0 while j < len(snake_case__): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case__ , (diff, dn, k)) return (diff, dn) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if i >= n: return 0, i if k > len(snake_case__): a_i.extend([0 for _ in range(k - len(snake_case__))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ : Dict = i lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = 0, 0, 0 for j in range(len(snake_case__)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ : Union[str, Any] = ds_c + ds_b diff += addend lowerCAmelCase_ : int = 0 for j in range(snake_case__): lowerCAmelCase_ : int = a_i[j] + addend lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = divmod(snake_case__ , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case__ , snake_case__ , snake_case__) return diff, i - start_i def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for j in range(snake_case__ , len(snake_case__)): lowerCAmelCase_ : Tuple = digits[j] + addend if s >= 10: lowerCAmelCase_ , lowerCAmelCase_ : int = divmod(snake_case__ , 10) lowerCAmelCase_ : int = addend // 10 + quotient else: lowerCAmelCase_ : Optional[Any] = s lowerCAmelCase_ : Optional[int] = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = divmod(snake_case__ , 10) digits.append(snake_case__) def UpperCamelCase ( snake_case__ = 10**15): lowerCAmelCase_ : Union[str, Any] = [1] lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Tuple = 0 while True: lowerCAmelCase_ , lowerCAmelCase_ : int = next_term(snake_case__ , 20 , i + dn , snake_case__) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ : List[Any] = 0 for j in range(len(snake_case__)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"{solution() = }")
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = checkpoint lowerCAmelCase_ : List[Any] = {} lowerCAmelCase_ : List[Any] = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ : List[str] = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ : Union[str, Any] = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ : Dict = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ : Optional[int] = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ : Dict = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ : Union[str, Any] = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ : Optional[int] = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ : Tuple = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ : Union[str, Any] = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ : Dict = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ : List[Any] = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ : Union[str, Any] = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ : Any = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ : Optional[int] = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) lowerCAmelCase_ : Any = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(snake_case__) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ : List[str] = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) lowerCAmelCase_ : Any = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(snake_case__) } for i in range(snake_case__): lowerCAmelCase_ : Any = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: lowerCAmelCase_ : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''') lowerCAmelCase_ : Union[str, Any] = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''') lowerCAmelCase_ : Tuple = renew_vae_resnet_paths(snake_case__) lowerCAmelCase_ : Tuple = {"old": F'''down.{i}.block''', "new": F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) lowerCAmelCase_ : Dict = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1): lowerCAmelCase_ : List[str] = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] lowerCAmelCase_ : Optional[int] = renew_vae_resnet_paths(snake_case__) lowerCAmelCase_ : Optional[Any] = {"old": F'''mid.block_{i}''', "new": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) lowerCAmelCase_ : int = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ : List[str] = renew_vae_attention_paths(snake_case__) lowerCAmelCase_ : List[Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) conv_attn_to_linear(snake_case__) for i in range(snake_case__): lowerCAmelCase_ : Optional[int] = num_up_blocks - 1 - i lowerCAmelCase_ : int = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: lowerCAmelCase_ : Union[str, Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] lowerCAmelCase_ : Tuple = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] lowerCAmelCase_ : List[Any] = renew_vae_resnet_paths(snake_case__) lowerCAmelCase_ : Tuple = {"old": F'''up.{block_id}.block''', "new": F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) lowerCAmelCase_ : List[Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ : Optional[Any] = 2 for i in range(1 , num_mid_res_blocks + 1): lowerCAmelCase_ : int = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] lowerCAmelCase_ : List[Any] = renew_vae_resnet_paths(snake_case__) lowerCAmelCase_ : Optional[int] = {"old": F'''mid.block_{i}''', "new": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) lowerCAmelCase_ : Dict = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ : Tuple = renew_vae_attention_paths(snake_case__) lowerCAmelCase_ : Any = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__) conv_attn_to_linear(snake_case__) return new_checkpoint def UpperCamelCase ( snake_case__ , snake_case__ , ): # Only support V1 lowerCAmelCase_ : Tuple = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml") lowerCAmelCase_ : Dict = io.BytesIO(r.content) lowerCAmelCase_ : Tuple = OmegaConf.load(snake_case__) lowerCAmelCase_ : Any = 5_12 lowerCAmelCase_ : Dict = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors"): from safetensors import safe_open lowerCAmelCase_ : Dict = {} with safe_open(snake_case__ , framework="pt" , device="cpu") as f: for key in f.keys(): lowerCAmelCase_ : Union[str, Any] = f.get_tensor(snake_case__) else: lowerCAmelCase_ : Union[str, Any] = torch.load(snake_case__ , map_location=snake_case__)["state_dict"] # Convert the VAE model. lowerCAmelCase_ : List[Any] = create_vae_diffusers_config(snake_case__ , image_size=snake_case__) lowerCAmelCase_ : Tuple = custom_convert_ldm_vae_checkpoint(snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = AutoencoderKL(**snake_case__) vae.load_state_dict(snake_case__) vae.save_pretrained(snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') _lowercase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = nn.functional.normalize(snake_case__) lowerCAmelCase_ : Optional[Any] = nn.functional.normalize(snake_case__) return torch.mm(snake_case__ , normalized_text_embeds.t()) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = CLIPConfig UpperCamelCase_ = ['CLIPEncoderLayer'] def __init__( self : Tuple ,lowerCAmelCase__ : CLIPConfig ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : Any = CLIPVisionModel(config.vision_config ) lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.hidden_size ,config.projection_dim ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : int = nn.Parameter(torch.ones(17 ,config.projection_dim ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = nn.Parameter(torch.ones(3 ,config.projection_dim ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : int = nn.Parameter(torch.ones(17 ) ,requires_grad=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = nn.Parameter(torch.ones(3 ) ,requires_grad=lowerCAmelCase__ ) @torch.no_grad() def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = self.vision_model(lowerCAmelCase__ )[1] # pooled_output lowerCAmelCase_ : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : Union[str, Any] = cosine_distance(lowerCAmelCase__ ,self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase_ : Optional[Any] = cosine_distance(lowerCAmelCase__ ,self.concept_embeds ).cpu().float().numpy() lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Union[str, Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : Any = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Tuple = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase_ : int = special_cos_dist[i][concept_idx] lowerCAmelCase_ : Dict = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase_ : List[str] = round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) lowerCAmelCase_ : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase_ : int = cos_dist[i][concept_idx] lowerCAmelCase_ : Optional[int] = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase_ : Optional[Any] = round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : torch.FloatTensor ,lowerCAmelCase__ : torch.FloatTensor ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.vision_model(lowerCAmelCase__ )[1] # pooled_output lowerCAmelCase_ : Optional[int] = self.visual_projection(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = cosine_distance(lowerCAmelCase__ ,self.special_care_embeds ) lowerCAmelCase_ : Tuple = cosine_distance(lowerCAmelCase__ ,self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase_ : Optional[int] = torch.any(special_scores > 0 ,dim=1 ) lowerCAmelCase_ : str = special_care * 0.01 lowerCAmelCase_ : Optional[Any] = special_adjustment.unsqueeze(1 ).expand(-1 ,cos_dist.shape[1] ) lowerCAmelCase_ : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase_ : Tuple = torch.any(concept_scores > 0 ,dim=1 ) return images, has_nsfw_concepts
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _lowercase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _lowercase = { '''ctrl''': 256, } _lowercase = { '''Pregnancy''': 168629, '''Christianity''': 7675, '''Explain''': 106423, '''Fitness''': 63440, '''Saving''': 63163, '''Ask''': 27171, '''Ass''': 95985, '''Joke''': 163509, '''Questions''': 45622, '''Thoughts''': 49605, '''Retail''': 52342, '''Feminism''': 164338, '''Writing''': 11992, '''Atheism''': 192263, '''Netflix''': 48616, '''Computing''': 39639, '''Opinion''': 43213, '''Alone''': 44967, '''Funny''': 58917, '''Gaming''': 40358, '''Human''': 4088, '''India''': 1331, '''Joker''': 77138, '''Diet''': 36206, '''Legal''': 11859, '''Norman''': 4939, '''Tip''': 72689, '''Weight''': 52343, '''Movies''': 46273, '''Running''': 23425, '''Science''': 2090, '''Horror''': 37793, '''Confession''': 60572, '''Finance''': 12250, '''Politics''': 16360, '''Scary''': 191985, '''Support''': 12654, '''Technologies''': 32516, '''Teenage''': 66160, '''Event''': 32769, '''Learned''': 67460, '''Notion''': 182770, '''Wikipedia''': 37583, '''Books''': 6665, '''Extract''': 76050, '''Confessions''': 102701, '''Conspiracy''': 75932, '''Links''': 63674, '''Narcissus''': 150425, '''Relationship''': 54766, '''Relationships''': 134796, '''Reviews''': 41671, '''News''': 4256, '''Translation''': 26820, '''multilingual''': 128406, } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = set() lowerCAmelCase_ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : str = char lowerCAmelCase_ : Union[str, Any] = set(snake_case__) return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = CONTROL_CODES def __init__( self : Optional[int] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any="<unk>" ,**lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' super().__init__(unk_token=lowerCAmelCase__ ,**lowerCAmelCase__ ) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : Dict = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Optional[int] = [tuple(merge.split() ) for merge in merges] lowerCAmelCase_ : List[str] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : int = {} @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Any = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowerCAmelCase_ : List[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Optional[int] = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = bigram lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[Any] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : str = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : List[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : int = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Any = "@@ ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word[:-4] lowerCAmelCase_ : Optional[Any] = word return word def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Optional[Any] = re.findall(R"\S+\n?" ,lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ,self.unk_token ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = " ".join(lowerCAmelCase__ ).replace("@@ " ,"" ).strip() return out_string def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[int] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Optional[int] = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : int = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention"): lowerCAmelCase_ : List[str] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :]) lowerCAmelCase_ : Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2]) lowerCAmelCase_ : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :]) lowerCAmelCase_ : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2]) lowerCAmelCase_ : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :]) lowerCAmelCase_ : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2]) lowerCAmelCase_ : Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :]) lowerCAmelCase_ : Tuple = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2]) return k, o, q, v def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False): if split_mlp_wi: lowerCAmelCase_ : Dict = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] lowerCAmelCase_ : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] lowerCAmelCase_ : Union[str, Any] = (wi_a, wi_a) else: lowerCAmelCase_ : Any = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] lowerCAmelCase_ : List[str] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def UpperCamelCase ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False): lowerCAmelCase_ : Any = traverse_util.flatten_dict(variables["target"]) lowerCAmelCase_ : Dict = {"/".join(snake_case__): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : str = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , snake_case__) lowerCAmelCase_ : Any = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : List[Any] = old["token_embedder/embedding"] # Encoder. for i in range(snake_case__): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Dict = tax_layer_norm_lookup(snake_case__ , snake_case__ , "encoder" , "pre_attention_layer_norm") lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = tax_attention_lookup(snake_case__ , snake_case__ , "encoder" , "attention") lowerCAmelCase_ : str = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : str = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Union[str, Any] = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(snake_case__ , snake_case__ , "encoder" , "pre_mlp_layer_norm") lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_mlp_lookup(snake_case__ , snake_case__ , "encoder" , snake_case__) lowerCAmelCase_ : int = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[str] = wi[1].T else: lowerCAmelCase_ : List[Any] = wi.T lowerCAmelCase_ : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ : List[str] = tax_relpos_bias_lookup( snake_case__ , snake_case__ , "encoder").T lowerCAmelCase_ : List[str] = old["encoder/encoder_norm/scale"] if not scalable_attention: lowerCAmelCase_ : List[Any] = tax_relpos_bias_lookup( snake_case__ , 0 , "encoder").T lowerCAmelCase_ : Optional[int] = tax_relpos_bias_lookup( snake_case__ , 0 , "decoder").T if not is_encoder_only: # Decoder. for i in range(snake_case__): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Dict = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_self_attention_layer_norm") lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = tax_attention_lookup(snake_case__ , snake_case__ , "decoder" , "self_attention") lowerCAmelCase_ : List[str] = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Optional[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_cross_attention_layer_norm") lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = tax_attention_lookup(snake_case__ , snake_case__ , "decoder" , "encoder_decoder_attention") lowerCAmelCase_ : int = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : str = o.T lowerCAmelCase_ : Dict = q.T lowerCAmelCase_ : int = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : Optional[int] = tax_layer_norm_lookup(snake_case__ , snake_case__ , "decoder" , "pre_mlp_layer_norm") lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(snake_case__ , snake_case__ , "decoder" , snake_case__) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Union[str, Any] = wi[0].T lowerCAmelCase_ : int = wi[1].T else: lowerCAmelCase_ : Tuple = wi.T lowerCAmelCase_ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ : List[Any] = tax_relpos_bias_lookup(snake_case__ , snake_case__ , "decoder").T lowerCAmelCase_ : Tuple = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Union[str, Any] = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Optional[int] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Dict = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head.") lowerCAmelCase_ : Any = state_dict["shared.weight"] return state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(snake_case__) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__) lowerCAmelCase_ : Dict = make_state_dict(snake_case__ , snake_case__) model.load_state_dict(snake_case__ , strict=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase_ : Optional[int] = MTaConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : List[Any] = UMTaEncoderModel(snake_case__) else: lowerCAmelCase_ : Optional[int] = UMTaForConditionalGeneration(snake_case__) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(snake_case__) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__) print("Done") if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _lowercase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
from manim import * class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase_ : Any = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase_ : Optional[int] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : str = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Optional[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : int = VGroup(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : str = Text("CPU" ,font_size=24 ) lowerCAmelCase_ : str = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = [mem.copy() for i in range(1 )] lowerCAmelCase_ : Dict = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Tuple = Text("GPU" ,font_size=24 ) lowerCAmelCase_ : Union[str, Any] = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) gpu.align_to(lowerCAmelCase__ ,lowerCAmelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : List[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : str = Text("Model" ,font_size=24 ) lowerCAmelCase_ : List[str] = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCAmelCase__ ,run_time=1 ) ,Create(lowerCAmelCase__ ,run_time=1 ) ,Create(lowerCAmelCase__ ,run_time=1 ) ,) lowerCAmelCase_ : str = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCAmelCase_ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase_ : List[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ,run_time=2.5 ) ,Write(lowerCAmelCase__ ) ,Write(lowerCAmelCase__ ) ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Dict = [] for i, rect in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ ,opacity=0.7 ) cpu_target.move_to(lowerCAmelCase__ ) cpu_target.generate_target() lowerCAmelCase_ : List[str] = 0.46 / 4 lowerCAmelCase_ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=lowerCAmelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCAmelCase__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCAmelCase__ ,buff=0.0 ) cpu_targs.append(lowerCAmelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCAmelCase__ ) ) second_animations.append(MoveToTarget(lowerCAmelCase__ ,run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(*lowerCAmelCase__ ) self.wait()
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = (DPMSolverSDEScheduler,) UpperCamelCase_ = 1_0 def UpperCAmelCase_ ( self : List[Any] ,**lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] ,[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ ,beta_end=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Any = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : int = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : str = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCAmelCase__ ,use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma lowerCAmelCase_ : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowerCAmelCase_ : Any = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = output.prev_sample lowerCAmelCase_ : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = "\n".join(snake_case__) Path(snake_case__).open("w").writelines(snake_case__) _lowercase = '''patrickvonplaten/t5-tiny-random''' _lowercase = '''sshleifer/bart-tiny-random''' _lowercase = '''sshleifer/tiny-mbart''' _lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" lowerCAmelCase_ : Optional[Any] = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() lowerCAmelCase_ : List[Any] = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) lowerCAmelCase_ : str = "translation_en_to_de" if model == T5_TINY else "summarization" lowerCAmelCase_ : int = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowerCAmelCase__ ,"argv" ,lowerCAmelCase__ ): run_generate() assert Path(lowerCAmelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' self.run_eval_tester(lowerCAmelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' self.run_eval_tester(lowerCAmelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" lowerCAmelCase_ : Optional[int] = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() lowerCAmelCase_ : Dict = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } lowerCAmelCase_ : str = Path(self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ : Union[str, Any] = str(tmp_dir / "scores.json" ) lowerCAmelCase_ : Union[str, Any] = str(tmp_dir / "val.target" ) _dump_articles(lowerCAmelCase__ ,text["en"] ) _dump_articles(lowerCAmelCase__ ,text["de"] ) lowerCAmelCase_ : int = "translation_en_to_de" if model == T5_TINY else "summarization" lowerCAmelCase_ : str = f''' run_eval_search.py {model} {str(lowerCAmelCase__ )} {str(lowerCAmelCase__ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCAmelCase__ ,"argv" ,lowerCAmelCase__ ): with CaptureStdout() as cs: run_search() lowerCAmelCase_ : Dict = [" num_beams | length_penalty", model, "Best score args"] lowerCAmelCase_ : Any = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCAmelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase__ ).exists() os.remove(Path(lowerCAmelCase__ ) )
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowercase = TypeVar('''T''') class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : bool = True ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[T, list[T]] = {} # dictionary of lists lowerCAmelCase_ : Optional[int] = directed def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : T ,lowerCAmelCase__ : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) self.adj_list[destination_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCAmelCase_ : Any = [destination_vertex] lowerCAmelCase_ : Optional[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) lowerCAmelCase_ : int = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCAmelCase_ : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCAmelCase_ : List[Any] = [destination_vertex] lowerCAmelCase_ : Union[str, Any] = [] return self def __repr__( self : List[Any] ) -> str: '''simple docstring''' return pformat(self.adj_list )
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,"tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,"depth_multiplier" ) ) class __snake_case : """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : int=13 ,lowerCAmelCase__ : List[Any]=3 ,lowerCAmelCase__ : str=32 ,lowerCAmelCase__ : List[str]=0.25 ,lowerCAmelCase__ : int=8 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Any=10_24 ,lowerCAmelCase__ : Optional[Any]=32 ,lowerCAmelCase__ : Tuple="relu6" ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Tuple=0.02 ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Any=10 ,lowerCAmelCase__ : Optional[int]=None ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Any = image_size lowerCAmelCase_ : int = depth_multiplier lowerCAmelCase_ : Optional[Any] = min_depth lowerCAmelCase_ : List[str] = tf_padding lowerCAmelCase_ : Optional[Any] = int(last_hidden_size * depth_multiplier ) lowerCAmelCase_ : Optional[Any] = output_stride lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : str = classifier_dropout_prob lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Optional[Any] = num_labels lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : List[str] = scope def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCAmelCase_ : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : str = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCamelCase_ = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = MobileNetVaModelTester(self ) lowerCAmelCase_ : Union[str, Any] = MobileNetVaConfigTester(self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Tuple = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = outputs.hidden_states lowerCAmelCase_ : List[str] = 26 self.assertEqual(len(lowerCAmelCase__ ) ,lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : str = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Any = image_processor(images=lowerCAmelCase__ ,return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**lowerCAmelCase__ ) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) )
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt'''} _lowercase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } _lowercase = { '''openbmb/cpm-ant-10b''': 1024, } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = collections.OrderedDict() with open(snake_case__ , "r" , encoding="utf-8") as reader: lowerCAmelCase_ : Any = reader.readlines() for index, token in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = token.rstrip("\n") lowerCAmelCase_ : Union[str, Any] = index return vocab class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any="<unk>" ,lowerCAmelCase__ : Union[str, Any]=2_00 ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = vocab lowerCAmelCase_ : Any = unk_token lowerCAmelCase_ : List[str] = max_input_chars_per_word def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : str = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Union[str, Any] = [] while start < len(lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) lowerCAmelCase_ : str = None while start < end: lowerCAmelCase_ : int = "".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCAmelCase__ ) lowerCAmelCase_ : Any = end return sub_tokens class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = False def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str]="<d>" ,lowerCAmelCase__ : Union[str, Any]="</d>" ,lowerCAmelCase__ : str="<s>" ,lowerCAmelCase__ : List[Any]="</s>" ,lowerCAmelCase__ : str="<pad>" ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="</n>" ,lowerCAmelCase__ : Optional[int]="</_>" ,lowerCAmelCase__ : List[Any]="left" ,**lowerCAmelCase__ : Tuple ,) -> Optional[int]: '''simple docstring''' requires_backends(self ,["jieba"] ) super().__init__( bod_token=lowerCAmelCase__ ,eod_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,line_token=lowerCAmelCase__ ,space_token=lowerCAmelCase__ ,padding_side=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = bod_token lowerCAmelCase_ : Tuple = eod_token lowerCAmelCase_ : Tuple = load_vocab(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.encoder[space_token] lowerCAmelCase_ : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda lowerCAmelCase__ : x[1] ) ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : Union[str, Any] = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' return self.encoder[self.bod_token] @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.encoder[self.eod_token] @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder["\n"] @property def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = [] for x in jieba.cut(lowerCAmelCase__ ,cut_all=lowerCAmelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase__ ) ) return output_tokens def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Any ,**lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = [i for i in token_ids if i >= 0] lowerCAmelCase_ : List[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return token in self.encoder def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' return "".join(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ,self.unk_token ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : List[str] = (filename_prefix + "-" if filename_prefix else "") + save_directory lowerCAmelCase_ : str = 0 if " " in self.encoder: lowerCAmelCase_ : str = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ : List[str] = self.encoder["\n"] del self.encoder["\n"] lowerCAmelCase_ : str = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda lowerCAmelCase__ : x[1] ) ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : Dict = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : List[int] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) return [1] + ([0] * len(lowerCAmelCase__ ))
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCamelCase ( snake_case__=None): if subparsers is not None: lowerCAmelCase_ : Optional[int] = subparsers.add_parser("env") else: lowerCAmelCase_ : List[Any] = argparse.ArgumentParser("Accelerate env command") parser.add_argument( "--config_file" , default=snake_case__ , help="The config file to use for the default values in the launching script.") if subparsers is not None: parser.set_defaults(func=snake_case__) return parser def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = torch.__version__ lowerCAmelCase_ : Optional[Any] = torch.cuda.is_available() lowerCAmelCase_ : str = is_xpu_available() lowerCAmelCase_ : str = is_npu_available() lowerCAmelCase_ : List[Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(snake_case__): lowerCAmelCase_ : Tuple = load_config_from_file(args.config_file).to_dict() lowerCAmelCase_ : Tuple = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''', "PyTorch XPU available": str(snake_case__), "PyTorch NPU available": str(snake_case__), "System RAM": F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: lowerCAmelCase_ : Optional[int] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n") print("\n".join([F'''- {prop}: {val}''' for prop, val in info.items()])) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:") lowerCAmelCase_ : int = ( "\n".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(snake_case__ , snake_case__) else F'''\t{accelerate_config}''' ) print(snake_case__) lowerCAmelCase_ : List[Any] = accelerate_config return info def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = env_command_parser() lowerCAmelCase_ : Optional[int] = parser.parse_args() env_command(snake_case__) return 0 if __name__ == "__main__": raise SystemExit(main())
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision" , [None, "v2"]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(snake_case__)}'''
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase = '''bart''' _lowercase = True @st.cache(allow_output_mutation=snake_case__) def UpperCamelCase ( ): if LOAD_DENSE_INDEX: lowerCAmelCase_ : int = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased") lowerCAmelCase_ : List[Any] = AutoModel.from_pretrained("yjernite/retribert-base-uncased").to("cuda:0") lowerCAmelCase_ : Union[str, Any] = qar_model.eval() else: lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase_ : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5") lowerCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5").to("cuda:0") lowerCAmelCase_ : Union[str, Any] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth") sas_model.load_state_dict(save_dict["model"]) lowerCAmelCase_ : int = sas_model.eval() else: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0") return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case__) def UpperCamelCase ( ): if LOAD_DENSE_INDEX: lowerCAmelCase_ : Union[str, Any] = faiss.StandardGpuResources() lowerCAmelCase_ : int = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0")["train"] lowerCAmelCase_ : int = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , ) lowerCAmelCase_ : Optional[Any] = faiss.IndexFlatIP(1_28) lowerCAmelCase_ : List[str] = faiss.index_cpu_to_gpu(snake_case__ , 1 , snake_case__) wikiaab_gpu_index_flat.add(snake_case__) # TODO fix for larger GPU else: lowerCAmelCase_ , lowerCAmelCase_ : Any = (None, None) lowerCAmelCase_ : int = Elasticsearch([{"host": "localhost", "port": "9200"}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case__) def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = datasets.load_dataset("eli5" , name="LFQA_reddit") lowerCAmelCase_ : List[str] = elia["train_eli5"] lowerCAmelCase_ : int = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28)) lowerCAmelCase_ : Optional[int] = faiss.IndexFlatIP(1_28) eli5_train_q_index.add(snake_case__) return (elia_train, eli5_train_q_index) _lowercase , _lowercase , _lowercase = load_indexes() _lowercase , _lowercase , _lowercase , _lowercase = load_models() _lowercase , _lowercase = load_train_data() def UpperCamelCase ( snake_case__ , snake_case__=10): lowerCAmelCase_ : Optional[int] = embed_questions_for_retrieval([question] , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Any = eli5_train_q_index.search(snake_case__ , snake_case__) lowerCAmelCase_ : int = [elia_train[int(snake_case__)] for i in I[0]] return nn_examples def UpperCamelCase ( snake_case__ , snake_case__="wiki40b" , snake_case__="dense" , snake_case__=10): if source == "none": lowerCAmelCase_ , lowerCAmelCase_ : Dict = (" <P> ".join(["" for _ in range(11)]).strip(), []) else: if method == "dense": lowerCAmelCase_ , lowerCAmelCase_ : int = query_qa_dense_index( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = query_es_index( snake_case__ , snake_case__ , index_name="english_wiki40b_snippets_100w" , n_results=snake_case__ , ) lowerCAmelCase_ : Union[str, Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] lowerCAmelCase_ : Tuple = "question: {} context: {}".format(snake_case__ , snake_case__) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case__: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case__: None), }) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=64 , snake_case__=2_56 , snake_case__=False , snake_case__=2 , snake_case__=0.95 , snake_case__=0.8): with torch.no_grad(): lowerCAmelCase_ : Optional[int] = qa_sas_generate( snake_case__ , snake_case__ , snake_case__ , num_answers=1 , num_beams=snake_case__ , min_len=snake_case__ , max_len=snake_case__ , do_sample=snake_case__ , temp=snake_case__ , top_p=snake_case__ , top_k=snake_case__ , max_input_length=10_24 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar _lowercase = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' _lowercase = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] _lowercase = st.sidebar.checkbox('''Demo options''') if demo_options: _lowercase = st.sidebar.selectbox( '''''', action_list, index=3, ) _lowercase = action_list.index(action_st) _lowercase = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) _lowercase = show_type == '''Show full text of passages''' else: _lowercase = 3 _lowercase = True _lowercase = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: _lowercase = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) _lowercase = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) _lowercase = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: _lowercase = '''wiki40b''' _lowercase = '''dense''' _lowercase = '''beam''' _lowercase = 2 _lowercase = 64 _lowercase = 256 _lowercase = None _lowercase = None _lowercase = st.sidebar.checkbox('''Generation options''') if generate_options: _lowercase = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) _lowercase = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) _lowercase = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _lowercase = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _lowercase = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowercase = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowercase = None # start main text _lowercase = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] _lowercase = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase = st.text_input('''Enter your question here:''', '''''') else: _lowercase = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": _lowercase , _lowercase = make_support(question, source=wiki_source, method='''dense''', n_results=10) _lowercase , _lowercase = make_support(question, source=wiki_source, method='''sparse''', n_results=10) _lowercase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase = support_list[:10] _lowercase = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: _lowercase , _lowercase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase , _lowercase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): _lowercase = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) _lowercase = res[1].strip() if sec_titles == "": _lowercase = '''[{}]({})'''.format(res[0], wiki_url) else: _lowercase = sec_titles.split(''' & ''') _lowercase = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: _lowercase = find_nearest_training(question) _lowercase = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) _lowercase = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) _lowercase = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( snake_case__): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set()) @pytest.fixture def UpperCamelCase ( snake_case__): class __snake_case : """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = metric_id class __snake_case : """simple docstring""" UpperCamelCase_ = [MetricMock(snake_case__ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock()) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if "tmp_path" in args: lowerCAmelCase_ : List[Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(snake_case__ , match="https://huggingface.co/docs/evaluate"): func(*snake_case__)
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1