code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase : List[str] = logging.getLogger(__name__) lowerCamelCase : Dict = tf.data.AUTOTUNE def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[int] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" ,type=lowercase ,default="""roberta-base""" ,help="""The model config to use. Note that we don't copy the model's weights, only the config!""" ,) parser.add_argument( """--tokenizer""" ,type=lowercase ,default="""unigram-tokenizer-wikitext""" ,help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" ,) parser.add_argument( """--per_replica_batch_size""" ,type=lowercase ,default=8 ,help="""Batch size per TPU core.""" ,) parser.add_argument( """--no_tpu""" ,action="""store_true""" ,help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" ,) parser.add_argument( """--tpu_name""" ,type=lowercase ,help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" ,default="""local""" ,) parser.add_argument( """--tpu_zone""" ,type=lowercase ,help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" ,) parser.add_argument( """--gcp_project""" ,type=lowercase ,help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" ,action="""store_true""" ,help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" ,) parser.add_argument( """--train_dataset""" ,type=lowercase ,help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--shuffle_buffer_size""" ,type=lowercase ,default=2**18 ,help="""Size of the shuffle buffer (in samples)""" ,) parser.add_argument( """--eval_dataset""" ,type=lowercase ,help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--num_epochs""" ,type=lowercase ,default=1 ,help="""Number of epochs to train for.""" ,) parser.add_argument( """--learning_rate""" ,type=lowercase ,default=1E-4 ,help="""Learning rate to use for training.""" ,) parser.add_argument( """--weight_decay_rate""" ,type=lowercase ,default=1E-3 ,help="""Weight decay rate to use for training.""" ,) parser.add_argument( """--max_length""" ,type=lowercase ,default=512 ,help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" ,) parser.add_argument( """--mlm_probability""" ,type=lowercase ,default=0.15 ,help="""Fraction of tokens to mask during training.""" ,) parser.add_argument("""--output_dir""" ,type=lowercase ,required=lowercase ,help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" ,type=lowercase ,help="""Model ID to upload to on the Hugging Face Hub.""" ) snake_case : List[Any] = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: try: if args.tpu_name: snake_case : Any = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name ,zone=args.tpu_zone ,project=args.gcp_project ) else: snake_case : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowercase ) tf.tpu.experimental.initialize_tpu_system(lowercase ) return tpu def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : int = 0 for file in file_list: snake_case : List[str] = file.split("""/""" )[-1] snake_case : Any = re.search(R"""-\d+-(\d+)\.tfrecord""" ,lowercase ).group(1 ) snake_case : int = int(lowercase ) num_samples += sample_count return num_samples def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase=None ) -> int: snake_case : Optional[Any] = count_samples(lowercase ) snake_case : Union[str, Any] = tf.data.Dataset.from_tensor_slices(lowercase ) if shuffle: snake_case : Union[str, Any] = dataset.shuffle(len(lowercase ) ) snake_case : Tuple = tf.data.TFRecordDataset(lowercase ,num_parallel_reads=lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case : str = dataset.apply(tf.data.experimental.assert_cardinality(lowercase ) ) snake_case : List[str] = dataset.map(lowercase ,num_parallel_calls=lowercase ) if shuffle: assert shuffle_buffer_size is not None snake_case : Tuple = dataset.shuffle(args.shuffle_buffer_size ) snake_case : Any = dataset.batch(lowercase ,drop_remainder=lowercase ) snake_case : List[str] = dataset.map(lowercase ,num_parallel_calls=lowercase ) snake_case : Union[str, Any] = dataset.prefetch(lowercase ) return dataset def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: if not args.no_tpu: snake_case : List[str] = initialize_tpu(lowercase ) snake_case : Tuple = tf.distribute.TPUStrategy(lowercase ) else: snake_case : Optional[Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case : List[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case : Tuple = tokenizer.vocab_size snake_case : List[str] = tf.io.gfile.glob(os.path.join(args.train_dataset ,"""*.tfrecord""" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) snake_case : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset ,"""*.tfrecord""" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) snake_case : Dict = count_samples(lowercase ) snake_case : str = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case : Optional[int] = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case : Any = TFAutoModelForMaskedLM.from_config(lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case , snake_case : List[Any] = create_optimizer( num_train_steps=lowercase ,num_warmup_steps=total_train_steps // 20 ,init_lr=args.learning_rate ,weight_decay_rate=args.weight_decay_rate ,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase ,metrics=["""accuracy"""] ) def decode_fn(lowercase ): snake_case : Dict = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase ,lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=lowercase ,mlm_probability=args.mlm_probability ,mlm=lowercase ,return_tensors="""tf""" ) def mask_with_collator(lowercase ): # TF really needs an isin() function snake_case : Dict = ( ~tf.cast(batch["""attention_mask"""] ,tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case , snake_case : Dict = data_collator.tf_mask_tokens( batch["""input_ids"""] ,vocab_size=len(lowercase ) ,mask_token_id=tokenizer.mask_token_id ,special_tokens_mask=lowercase ,) return batch snake_case : Union[str, Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case : Union[str, Any] = prepare_dataset( lowercase ,decode_fn=lowercase ,mask_fn=lowercase ,batch_size=lowercase ,shuffle=lowercase ,shuffle_buffer_size=args.shuffle_buffer_size ,) snake_case : List[str] = prepare_dataset( lowercase ,decode_fn=lowercase ,mask_fn=lowercase ,batch_size=lowercase ,shuffle=lowercase ,) snake_case : Union[str, Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir ,hub_model_id=args.hub_model_id ,tokenizer=lowercase ) ) model.fit( lowercase ,validation_data=lowercase ,epochs=args.num_epochs ,callbacks=lowercase ,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase : int = parse_args() main(args)
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientnet""" def __init__( self , A = 3 , A = 6_0_0 , A = 2.0 , A = 3.1 , A = 8 , A = [3, 3, 5, 3, 5, 5, 3] , A = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , A = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , A = [] , A = [1, 2, 2, 2, 1, 2, 1] , A = [1, 2, 2, 3, 3, 4, 1] , A = [1, 6, 6, 6, 6, 6, 6] , A = 0.25 , A = "swish" , A = 2_5_6_0 , A = "mean" , A = 0.02 , A = 0.0_01 , A = 0.99 , A = 0.5 , A = 0.2 , **A , ) -> Optional[int]: super().__init__(**A ) snake_case : List[str] = num_channels snake_case : Any = image_size snake_case : Optional[Any] = width_coefficient snake_case : List[Any] = depth_coefficient snake_case : Union[str, Any] = depth_divisor snake_case : Optional[int] = kernel_sizes snake_case : Optional[int] = in_channels snake_case : Optional[int] = out_channels snake_case : str = depthwise_padding snake_case : List[str] = strides snake_case : str = num_block_repeats snake_case : Union[str, Any] = expand_ratios snake_case : Tuple = squeeze_expansion_ratio snake_case : List[str] = hidden_act snake_case : List[Any] = hidden_dim snake_case : List[Any] = pooling_type snake_case : Union[str, Any] = initializer_range snake_case : Any = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Dict = dropout_rate snake_case : List[Any] = drop_connect_rate snake_case : Optional[int] = sum(A ) * 4 class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-5
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """M-CLIP""" def __init__( self , A=1_0_2_4 , A=7_6_8 , **A ) -> str: snake_case : int = transformerDimSize snake_case : List[Any] = imageDimSize super().__init__(**A ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = MCLIPConfig def __init__( self , A , *A , **A ) -> str: super().__init__(A , *A , **A ) snake_case : List[Any] = XLMRobertaModel(A ) snake_case : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase ( self , A , A ) -> List[str]: snake_case : Union[str, Any] = self.transformer(input_ids=A , attention_mask=A )[0] snake_case : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A ), embs
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Dict = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: snake_case : Dict = TOKENIZER_CLASSES else: snake_case : int = {tokenizer_name: getattr(lowercase ,tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: snake_case : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] snake_case : List[str] = True if checkpoint_name is None: snake_case : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: snake_case : List[Any] = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer snake_case : List[str] = tokenizer_class.from_pretrained(lowercase ,force_download=lowercase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: snake_case , snake_case : Optional[int] = checkpoint.split("""/""" ) snake_case : Any = os.path.join(lowercase ,lowercase ) elif add_prefix: snake_case : int = checkpoint snake_case : str = dump_path else: snake_case : Optional[Any] = None snake_case : Union[str, Any] = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: snake_case : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] snake_case : int = file_path.split(lowercase )[-1][0] if next_char == "/": snake_case : Optional[Any] = os.path.join(lowercase ,lowercase ) snake_case : Optional[Any] = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) snake_case : Dict = tokenizer.save_pretrained( lowercase ,legacy_format=lowercase ,filename_prefix=lowercase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(lowercase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase : str = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class __lowercase : """simple docstring""" def __init__( self , A = 1_4 ) -> None: if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case : Dict = primes[group]["""prime"""] snake_case : str = primes[group]["""generator"""] snake_case : Optional[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def UpperCAmelCase ( self ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase ( self ) -> str: snake_case : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def UpperCAmelCase ( self , A ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase ( self , A ) -> str: snake_case : Tuple = int(A , base=1_6 ) if not self.is_valid_public_key(A ): raise ValueError("""Invalid public key""" ) snake_case : Optional[int] = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase ( A , A ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def UpperCAmelCase ( A , A , A = 1_4 ) -> str: snake_case : Tuple = int(A , base=1_6 ) snake_case : Optional[int] = int(A , base=1_6 ) snake_case : Tuple = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError("""Invalid public key""" ) snake_case : int = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase : List[Any] = datasets.load_iris() lowerCamelCase : str = np.array(data['data']) lowerCamelCase : Any = np.array(data['target']) lowerCamelCase : Any = data['target_names'] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = train_test_split(X, y) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return np.linalg.norm(np.array(lowercase ) - np.array(lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase=5 ) -> str: snake_case : Optional[int] = zip(lowercase ,lowercase ) # List of distances of all points from the point to be classified snake_case : str = [] for data_point in data: snake_case : Union[str, Any] = euclidean_distance(data_point[0] ,lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. snake_case : str = [i[1] for i in sorted(lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified snake_case : Any = Counter(lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = BertTokenizer _snake_case = BertTokenizerFast _snake_case = True _snake_case = True _snake_case = filter_non_english def UpperCAmelCase ( self ) -> Any: super().setUp() snake_case : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , A ) -> Optional[int]: snake_case : Optional[Any] = """UNwant\u00E9d,running""" snake_case : Tuple = """unwanted, running""" return input_text, output_text def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file ) snake_case : Dict = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def UpperCAmelCase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return snake_case : int = self.get_tokenizer() snake_case : Tuple = self.get_rust_tokenizer() snake_case : List[str] = """UNwant\u00E9d,running""" snake_case : Dict = tokenizer.tokenize(A ) snake_case : Union[str, Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Tuple = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : List[Any] = self.get_rust_tokenizer() snake_case : Optional[Any] = tokenizer.encode(A ) snake_case : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) # With lower casing snake_case : Tuple = self.get_tokenizer(do_lower_case=A ) snake_case : str = self.get_rust_tokenizer(do_lower_case=A ) snake_case : Union[str, Any] = """UNwant\u00E9d,running""" snake_case : Optional[Any] = tokenizer.tokenize(A ) snake_case : int = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Any = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : Union[str, Any] = self.get_rust_tokenizer() snake_case : List[Any] = tokenizer.encode(A ) snake_case : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCAmelCase ( self ) -> str: snake_case : int = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase ( self ) -> str: snake_case : str = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase ( self ) -> Dict: snake_case : Dict = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = BasicTokenizer(do_lower_case=A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = BasicTokenizer() snake_case : List[str] = """a\n'll !!to?'d of, can't.""" snake_case : Optional[int] = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(A ) , A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] snake_case : Optional[Any] = {} for i, token in enumerate(A ): snake_case : Optional[int] = i snake_case : Union[str, Any] = WordpieceTokenizer(vocab=A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCAmelCase ( self ) -> Dict: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = self.get_tokenizer() snake_case : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) snake_case : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(A ) snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def UpperCAmelCase ( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : Dict = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case : Optional[int] = tokenizer_r.encode_plus( A , return_attention_mask=A , return_token_type_ids=A , return_offsets_mapping=A , add_special_tokens=A , ) snake_case : Optional[Any] = tokenizer_r.do_lower_case if hasattr(A , """do_lower_case""" ) else False snake_case : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Any = ["""的""", """人""", """有"""] snake_case : Optional[int] = """""".join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Optional[int] = True snake_case : List[Any] = self.tokenizer_class.from_pretrained(A , **A ) snake_case : int = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : Any = tokenizer_p.encode(A , add_special_tokens=A ) snake_case : Dict = tokenizer_r.encode(A , add_special_tokens=A ) snake_case : Tuple = tokenizer_r.convert_ids_to_tokens(A ) snake_case : str = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A , A ) self.assertListEqual(A , A ) snake_case : Dict = False snake_case : int = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : Dict = self.tokenizer_class.from_pretrained(A , **A ) snake_case : int = tokenizer_r.encode(A , add_special_tokens=A ) snake_case : int = tokenizer_p.encode(A , add_special_tokens=A ) snake_case : List[str] = tokenizer_r.convert_ids_to_tokens(A ) snake_case : Tuple = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". snake_case : Tuple = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A , A ) self.assertListEqual(A , A )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[Any]: snake_case : Optional[int] = 0 if start < end: snake_case : Any = randint(lowercase ,lowercase ) snake_case : List[Any] = a[end] snake_case : str = a[pivot] snake_case : int = temp snake_case , snake_case : Any = _in_place_partition(lowercase ,lowercase ,lowercase ) count += _in_place_quick_sort(lowercase ,lowercase ,p - 1 ) count += _in_place_quick_sort(lowercase ,p + 1 ,lowercase ) return count def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Dict: snake_case : List[Any] = 0 snake_case : Optional[int] = randint(lowercase ,lowercase ) snake_case : List[str] = a[end] snake_case : Tuple = a[pivot] snake_case : Dict = temp snake_case : Any = start - 1 for index in range(lowercase ,lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case : List[Any] = new_pivot_index + 1 snake_case : int = a[new_pivot_index] snake_case : Dict = a[index] snake_case : str = temp snake_case : Tuple = a[new_pivot_index + 1] snake_case : Tuple = a[end] snake_case : Any = temp return new_pivot_index + 1, count lowerCamelCase : Optional[int] = TemporaryFile() lowerCamelCase : List[str] = 1_0_0 # 1000 elements are to be sorted lowerCamelCase , lowerCamelCase : int = 0, 1 # mean and standard deviation lowerCamelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowerCamelCase : List[Any] = np.load(outfile) lowerCamelCase : Tuple = len(M) - 1 lowerCamelCase : int = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase : List[str] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if "://" in dataset_path: snake_case : int = dataset_path.split("""://""" )[1] return dataset_path def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : Optional[Any] = not is_remote_filesystem(lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase ) ,fs._strip_protocol(lowercase ) ) else: fs.mv(lowercase ,lowercase ,recursive=lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> None: if hasattr(fsspec.asyn ,"""reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case : Union[str, Any] = None snake_case : Union[str, Any] = None snake_case : str = threading.Lock()
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} _snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) snake_case : Any = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) snake_case : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case : int = CLIPTextModel(A ) snake_case : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase ( self , A , A=0 ) -> Optional[int]: snake_case : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): snake_case : Any = torch.manual_seed(A ) else: snake_case : List[Any] = torch.Generator(device=A ).manual_seed(A ) snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Union[str, Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = self.get_dummy_inputs(A ) snake_case : str = sd_pipe(**A ).images snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : Dict = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] = self.get_dummy_components() snake_case : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = self.get_dummy_inputs(A ) snake_case : Dict = """french fries""" snake_case : Optional[Any] = sd_pipe(**A , negative_prompt=A ) snake_case : Dict = output.images snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : List[Any] = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Dict = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Dict = self.get_dummy_inputs(A ) snake_case : Dict = [inputs["""prompt"""]] * 2 snake_case : int = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_55.0 snake_case : str = torch.from_numpy(A ).unsqueeze(0 ).to(A ) snake_case : Union[str, Any] = image / 2 + 0.5 snake_case : int = image.permute(0 , 3 , 1 , 2 ) snake_case : Optional[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case : Dict = sd_pipe(**A ).images snake_case : str = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case : List[str] = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Any = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" ) snake_case : Dict = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[int] = self.get_dummy_inputs(A ) snake_case : List[str] = sd_pipe(**A ).images snake_case : Dict = image[0, -3:, -3:, -1] snake_case : int = [round(A , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case : Tuple = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Tuple = VaeImageProcessor(do_resize=A , do_normalize=A ) snake_case : Union[str, Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(A , input_image_type="""pt""" ) )[0] snake_case : Dict = components["""vae"""] snake_case : Optional[Any] = self.get_dummy_inputs_by_type(A , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case : Any = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case : Tuple = pipe(**A )[0] snake_case : str = np.abs(out - out_latents_inputs ).max() self.assertLess(A , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , A=0 ) -> Optional[Any]: snake_case : List[str] = torch.manual_seed(A ) snake_case : int = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) snake_case : Union[str, Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Dict = self.get_inputs() snake_case : Optional[Any] = pipe(**A ).images snake_case : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : Union[str, Any] = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) snake_case : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : List[str] = self.get_inputs() snake_case : List[Any] = pipe(**A ).images snake_case : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : str = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> str: snake_case : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) snake_case : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Union[str, Any] = self.get_inputs() snake_case : str = pipe(**A ).images snake_case : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : List[Any] = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> str: snake_case : Any = 0 def callback_fn(A , A , A ) -> None: snake_case : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case : int = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case : List[str] = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case : Optional[Any] = False snake_case : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A , torch_dtype=torch.floataa ) snake_case : Any = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : str = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase ( self ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A , torch_dtype=torch.floataa ) snake_case : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Optional[int] = self.get_inputs() snake_case : Dict = pipe(**A ) snake_case : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case : List[str] = inputs["""image"""].resize((5_0_4, 5_0_4) ) snake_case : Optional[Any] = """timbrooks/instruct-pix2pix""" snake_case : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : int = pipe(**A ) snake_case : Dict = output.images[0] snake_case : Any = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case : Tuple = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , A ) -> None: snake_case : Optional[Any] = order # a_{0} ... a_{k} snake_case : Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} snake_case : List[str] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] snake_case : List[Any] = [0.0] * self.order # y[n-1] ... y[n-k] snake_case : int = [0.0] * self.order def UpperCAmelCase ( self , A , A ) -> None: if len(A ) < self.order: snake_case : int = [1.0, *a_coeffs] if len(A ) != self.order + 1: snake_case : Union[str, Any] = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(A )}""" ) raise ValueError(A ) if len(A ) != self.order + 1: snake_case : int = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(A )}""" ) raise ValueError(A ) snake_case : Optional[Any] = a_coeffs snake_case : List[str] = b_coeffs def UpperCAmelCase ( self , A ) -> float: snake_case : Optional[int] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) snake_case : Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] snake_case : Tuple = self.input_history[:-1] snake_case : int = self.output_history[:-1] snake_case : Dict = sample snake_case : Optional[Any] = result return result
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : str = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """swin2sr""" _snake_case = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=6_4 , A=1 , A=3 , A=1_8_0 , A=[6, 6, 6, 6, 6, 6] , A=[6, 6, 6, 6, 6, 6] , A=8 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1e-5 , A=2 , A=1.0 , A="1conv" , A="pixelshuffle" , **A , ) -> Optional[Any]: super().__init__(**A ) snake_case : int = image_size snake_case : Tuple = patch_size snake_case : Union[str, Any] = num_channels snake_case : str = embed_dim snake_case : List[str] = depths snake_case : Dict = len(A ) snake_case : Any = num_heads snake_case : List[str] = window_size snake_case : Tuple = mlp_ratio snake_case : int = qkv_bias snake_case : int = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : int = drop_path_rate snake_case : List[Any] = hidden_act snake_case : List[Any] = use_absolute_embeddings snake_case : List[Any] = layer_norm_eps snake_case : Tuple = initializer_range snake_case : Any = upscale snake_case : Union[str, Any] = img_range snake_case : Optional[Any] = resi_connection snake_case : Tuple = upsampler
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
import math from datetime import datetime, timedelta def SCREAMING_SNAKE_CASE__ ( lowercase ) -> datetime: snake_case : Dict = year % 19 snake_case : Optional[int] = year % 4 snake_case : List[str] = year % 7 snake_case : int = math.floor(year / 100 ) snake_case : Union[str, Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case : Optional[int] = leap_day_inhibits / 4 snake_case : str = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case : Optional[Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case : str = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowercase ,4 ,19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowercase ,4 ,18 ) else: return datetime(lowercase ,3 ,22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCamelCase : List[str] = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase : Any = logging.getLogger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """masked_bert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=0 , A="topK" , A="constant" , A=0.0 , **A , ) -> Union[str, Any]: super().__init__(pad_token_id=A , **A ) snake_case : Union[str, Any] = vocab_size snake_case : int = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = hidden_act snake_case : Union[str, Any] = intermediate_size snake_case : str = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : Optional[Any] = type_vocab_size snake_case : Tuple = initializer_range snake_case : List[Any] = layer_norm_eps snake_case : Optional[Any] = pruning_method snake_case : Any = mask_init snake_case : List[Any] = mask_scale
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not postfix_notation: return 0 snake_case : Optional[Any] = {"""+""", """-""", """*""", """/"""} snake_case : list[Any] = [] for token in postfix_notation: if token in operations: snake_case , snake_case : int = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: with open(lowercase ,"""rb""" ) as f: snake_case : Optional[int] = Image.open(lowercase ) return im.convert("""RGB""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the training data."""} ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase ( self ) -> Any: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : str = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case : str = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" ,lowercase ,lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : List[str] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case : Union[str, Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,use_auth_token=True if model_args.use_auth_token else None ,) else: snake_case : List[str] = {} if data_args.train_dir is not None: snake_case : int = os.path.join(data_args.train_dir ,"""**""" ) if data_args.validation_dir is not None: snake_case : Optional[int] = os.path.join(data_args.validation_dir ,"""**""" ) snake_case : Optional[Any] = load_dataset( """imagefolder""" ,data_files=lowercase ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,) # If we don't have a validation split, split off a percentage of train as validation. snake_case : List[Any] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,lowercase ) and data_args.train_val_split > 0.0: snake_case : Optional[int] = dataset["""train"""].train_test_split(data_args.train_val_split ) snake_case : List[Any] = split["""train"""] snake_case : int = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case : List[str] = dataset["""train"""].features["""labels"""].names snake_case , snake_case : Optional[int] = {}, {} for i, label in enumerate(lowercase ): snake_case : Dict = str(lowercase ) snake_case : Union[str, Any] = label # Load the accuracy metric from the datasets package snake_case : Dict = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) snake_case : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(lowercase ) ,labelaid=lowercase ,idalabel=lowercase ,finetuning_task="""image-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) snake_case : Tuple = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=lowercase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) snake_case : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case : List[Any] = image_processor.size["""shortest_edge"""] else: snake_case : Dict = (image_processor.size["""height"""], image_processor.size["""width"""]) snake_case : List[str] = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) snake_case : Dict = Compose( [ RandomResizedCrop(lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case : Optional[Any] = Compose( [ Resize(lowercase ), CenterCrop(lowercase ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): snake_case : Union[str, Any] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowercase ): snake_case : List[Any] = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case : Optional[Any] = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case : List[str] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase ) # Initalize our trainer snake_case : Union[str, Any] = Trainer( model=lowercase ,args=lowercase ,train_dataset=dataset["""train"""] if training_args.do_train else None ,eval_dataset=dataset["""validation"""] if training_args.do_eval else None ,compute_metrics=lowercase ,tokenizer=lowercase ,data_collator=lowercase ,) # Training if training_args.do_train: snake_case : List[Any] = None if training_args.resume_from_checkpoint is not None: snake_case : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : int = last_checkpoint snake_case : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Any = trainer.evaluate() trainer.log_metrics("""eval""" ,lowercase ) trainer.save_metrics("""eval""" ,lowercase ) # Write model card and (optionally) push to hub snake_case : int = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : Union[str, Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[str] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case : Optional[int] = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase="eval" ) -> int: snake_case : Union[str, Any] = os.path.join(lowercase ,f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase ,"""r""" ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self.get_auto_remove_tmp_dir() snake_case : int = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A , """argv""" , A ): run_flax_glue.main() snake_case : Union[str, Any] = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = self.get_auto_remove_tmp_dir() snake_case : List[str] = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A , """argv""" , A ): run_clm_flax.main() snake_case : Optional[int] = get_results(A ) self.assertLess(result["""eval_perplexity"""] , 1_0_0 ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A , """argv""" , A ): run_summarization_flax.main() snake_case : Optional[Any] = get_results(A , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 1_0 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = self.get_auto_remove_tmp_dir() snake_case : str = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A , """argv""" , A ): run_mlm_flax.main() snake_case : Optional[int] = get_results(A ) self.assertLess(result["""eval_perplexity"""] , 4_2 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = self.get_auto_remove_tmp_dir() snake_case : Optional[Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A , """argv""" , A ): run_ta_mlm_flax.main() snake_case : Tuple = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def UpperCAmelCase ( self ) -> Any: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case : Tuple = 7 if get_gpu_count() > 1 else 2 snake_case : str = self.get_auto_remove_tmp_dir() snake_case : int = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A , """argv""" , A ): run_flax_ner.main() snake_case : Any = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A , """argv""" , A ): run_qa.main() snake_case : Dict = get_results(A ) self.assertGreaterEqual(result["""eval_f1"""] , 3_0 ) self.assertGreaterEqual(result["""eval_exact"""] , 3_0 )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import re from filelock import FileLock try: import nltk lowerCamelCase : List[str] = True except (ImportError, ModuleNotFoundError): lowerCamelCase : Optional[int] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: re.sub("""<n>""" ,"""""" ,lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) snake_case : int = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case : Dict = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids snake_case : List[str] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids snake_case : Optional[int] = model(A , labels=A ).loss snake_case : List[str] = -tf.math.reduce_mean(A ).numpy() snake_case : Tuple = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
from __future__ import annotations import collections import pprint from pathlib import Path def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: return "".join(sorted(lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[str]: return word_by_signature[signature(lowercase )] lowerCamelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCamelCase : int = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from __future__ import annotations import time lowerCamelCase : int = list[tuple[int, int]] lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : """simple docstring""" def __init__( self , A , A , A , A , A ) -> str: snake_case : int = pos_x snake_case : Union[str, Any] = pos_y snake_case : Optional[Any] = (pos_y, pos_x) snake_case : Optional[int] = goal_x snake_case : List[Any] = goal_y snake_case : str = parent class __lowercase : """simple docstring""" def __init__( self , A , A ) -> int: snake_case : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , A ) snake_case : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) snake_case : Dict = [self.start] snake_case : Optional[Any] = False def UpperCAmelCase ( self ) -> Path | None: while self.node_queue: snake_case : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case : Optional[int] = True return self.retrace_path(A ) snake_case : List[str] = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase ( self , A ) -> list[Node]: snake_case : Tuple = [] for action in delta: snake_case : List[str] = parent.pos_x + action[1] snake_case : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase ( self , A ) -> Path: snake_case : Optional[int] = node snake_case : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Dict = current_node.parent path.reverse() return path class __lowercase : """simple docstring""" def __init__( self , A , A ) -> Union[str, Any]: snake_case : Union[str, Any] = BreadthFirstSearch(A , A ) snake_case : List[str] = BreadthFirstSearch(A , A ) snake_case : Optional[int] = False def UpperCAmelCase ( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case : List[Any] = self.fwd_bfs.node_queue.pop(0 ) snake_case : List[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case : List[str] = True return self.retrace_bidirectional_path( A , A ) snake_case : str = current_bwd_node snake_case : List[Any] = current_fwd_node snake_case : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase ( self , A , A ) -> Path: snake_case : List[str] = self.fwd_bfs.retrace_path(A ) snake_case : Optional[Any] = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() snake_case : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase : List[Any] = (0, 0) lowerCamelCase : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase : Union[str, Any] = time.time() lowerCamelCase : Any = BreadthFirstSearch(init, goal) lowerCamelCase : List[Any] = bfs.search() lowerCamelCase : List[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) lowerCamelCase : Tuple = time.time() lowerCamelCase : List[Any] = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase : Dict = bd_bfs.search() lowerCamelCase : List[str] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Tuple[int, int]: def constraint_to_multiple_of(lowercase ,lowercase ,lowercase=0 ,lowercase=None ): snake_case : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: snake_case : Any = math.floor(val / multiple ) * multiple if x < min_val: snake_case : Optional[int] = math.ceil(val / multiple ) * multiple return x snake_case : Optional[Any] = (output_size, output_size) if isinstance(lowercase ,lowercase ) else output_size snake_case , snake_case : Dict = get_image_size(lowercase ) snake_case , snake_case : Union[str, Any] = output_size # determine new height and width snake_case : int = output_height / input_height snake_case : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width snake_case : int = scale_width else: # fit height snake_case : Optional[int] = scale_height snake_case : Optional[int] = constraint_to_multiple_of(scale_height * input_height ,multiple=lowercase ) snake_case : Any = constraint_to_multiple_of(scale_width * input_width ,multiple=lowercase ) return (new_height, new_width) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = False , A = 1 , A = True , A = 1 / 2_5_5 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : Optional[Any] = size if size is not None else {"""height""": 3_8_4, """width""": 3_8_4} snake_case : Optional[Any] = get_size_dict(A ) snake_case : str = do_resize snake_case : Any = size snake_case : str = keep_aspect_ratio snake_case : Any = ensure_multiple_of snake_case : Union[str, Any] = resample snake_case : List[str] = do_rescale snake_case : List[Any] = rescale_factor snake_case : Dict = do_normalize snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = False , A = 1 , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) snake_case : Optional[Any] = get_resize_output_image_size( A , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=A , multiple=A , ) return resize(A , size=A , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> List[Any]: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case : str = size if size is not None else self.size snake_case : List[str] = get_size_dict(A ) snake_case : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio snake_case : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of snake_case : Union[str, Any] = resample if resample is not None else self.resample snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[int] = image_std if image_std is not None else self.image_std snake_case : Union[str, Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Dict = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Tuple = [self.resize(image=A , size=A , resample=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : List[str] = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : str = [to_channel_dimension_format(A , A ) for image in images] snake_case : int = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A ) def UpperCAmelCase ( self , A , A = None ) -> Dict: snake_case : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A ) != len(A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(A ): snake_case : Optional[int] = target_sizes.numpy() snake_case : Any = [] for idx in range(len(A ) ): snake_case : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=A ) snake_case : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A ) else: snake_case : str = logits.argmax(dim=1 ) snake_case : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
def SCREAMING_SNAKE_CASE__ ( ) -> int: return 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase = 200 ) -> int: return two_pound(lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: # word like '180' or '身高' or '神' for char in word: snake_case : str = ord(lowercase ) if not _is_chinese_char(lowercase ): return 0 return 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : Any = set() for token in tokens: snake_case : int = len(lowercase ) > 1 and is_chinese(lowercase ) if chinese_word: word_set.add(lowercase ) snake_case : str = list(lowercase ) return word_list def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: if not chinese_word_set: return bert_tokens snake_case : Dict = max([len(lowercase ) for w in chinese_word_set] ) snake_case : Union[str, Any] = bert_tokens snake_case , snake_case : Optional[int] = 0, len(lowercase ) while start < end: snake_case : Optional[int] = True if is_chinese(bert_word[start] ): snake_case : str = min(end - start ,lowercase ) for i in range(lowercase ,1 ,-1 ): snake_case : Dict = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): snake_case : List[Any] = """##""" + bert_word[j] snake_case : List[str] = start + i snake_case : Optional[Any] = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : List[Any] = [] for i in range(0 ,len(lowercase ) ,100 ): snake_case : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] snake_case : Optional[Any] = [get_chinese_word(lowercase ) for r in res] ltp_res.extend(lowercase ) assert len(lowercase ) == len(lowercase ) snake_case : int = [] for i in range(0 ,len(lowercase ) ,100 ): snake_case : Dict = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=lowercase ,truncation=lowercase ,max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(lowercase ) == len(lowercase ) snake_case : Any = [] for input_ids, chinese_word in zip(lowercase ,lowercase ): snake_case : Union[str, Any] = [] for id in input_ids: snake_case : Dict = bert_tokenizer._convert_id_to_token(lowercase ) input_tokens.append(lowercase ) snake_case : int = add_sub_symbol(lowercase ,lowercase ) snake_case : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase ): if token[:2] == "##": snake_case : Dict = token[2:] # save chinese tokens' pos if len(lowercase ) == 1 and _is_chinese_char(ord(lowercase ) ): ref_id.append(lowercase ) ref_ids.append(lowercase ) assert len(lowercase ) == len(lowercase ) return ref_ids def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name ,"""r""" ,encoding="""utf-8""" ) as f: snake_case : Tuple = f.readlines() snake_case : Dict = [line.strip() for line in data if len(lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case : List[Any] = LTP(args.ltp ) # faster in GPU device snake_case : Any = BertTokenizer.from_pretrained(args.bert ) snake_case : int = prepare_ref(lowercase ,lowercase ,lowercase ) with open(args.save_path ,"""w""" ,encoding="""utf-8""" ) as f: snake_case : str = [json.dumps(lowercase ) + """\n""" for ref in ref_ids] f.writelines(lowercase ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCamelCase : List[Any] = parser.parse_args() main(args)
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = '▁' lowerCamelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase : Dict = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCamelCase : Optional[Any] = { 'facebook/xglm-564M': 2_0_4_8, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : int = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) snake_case : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Tuple = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} snake_case : Optional[Any] = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(A ) snake_case : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: snake_case : Tuple = self.__dict__.copy() snake_case : Optional[int] = None snake_case : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , A ) -> List[Any]: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self ) -> Any: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self ) -> Any: snake_case : Dict = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Union[str, Any] = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , A ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Dict = """""".join(A ).replace(A , """ """ ).strip() return out_string def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : int = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase : str = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return torch.atana(lowercase ,lowercase ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Tuple = torch.sin(t * math.pi / 2 ) ** 2 snake_case : Tuple = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase ,lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A ) -> Any: super().__init__() snake_case : Optional[int] = DiffusionAttnUnetaD(A , n_attn_layers=4 ) snake_case : Tuple = deepcopy(self.diffusion ) snake_case : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=A ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : str = MODELS_MAP[model_name]["""url"""] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowerCamelCase : Optional[Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowerCamelCase : Optional[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowerCamelCase : int = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowerCamelCase : Dict = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if name.startswith("""skip""" ): return name.replace("""skip""" ,RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] ,RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase ,lowercase ): return name.replace(lowercase ,lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase ,lowercase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=13 ) -> Any: snake_case : List[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" ,"""time_proj""" ) snake_case : Optional[Any] = 0 if string.startswith("""net.3.""" ): depth += 1 snake_case : Union[str, Any] = string[6:] elif string.startswith("""net.""" ): snake_case : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 snake_case : List[Any] = string[7:] if string.startswith("""main.""" ): snake_case : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): snake_case : List[str] = string[:2] snake_case : str = string[2:] else: snake_case : Optional[Any] = string[0] snake_case : str = string[1:] if depth == max_depth: snake_case : str = MID_NUM_TO_LAYER[layer_num] snake_case : Optional[Any] = """mid_block""" elif depth > 0 and int(lowercase ) < 7: snake_case : Optional[int] = DOWN_NUM_TO_LAYER[layer_num] snake_case : List[Any] = f"""down_blocks.{depth}""" elif depth > 0 and int(lowercase ) > 7: snake_case : Optional[int] = UP_NUM_TO_LAYER[layer_num] snake_case : Dict = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: snake_case : Tuple = DEPTH_0_TO_LAYER[layer_num] snake_case : Union[str, Any] = f"""up_blocks.{max_depth - 1}""" if int(lowercase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) snake_case : Any = string_left[1:] if "resnets" in new_layer: snake_case : Any = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: snake_case : int = convert_attn_naming(lowercase ) snake_case : Optional[Any] = new_string_left if not isinstance(lowercase ,lowercase ): snake_case : Optional[Any] = prefix + """.""" + new_layer + """.""" + string_left else: snake_case : Union[str, Any] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue snake_case : List[str] = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase ,lowercase ): snake_case : Any = transform_conv_attns(lowercase ,lowercase ,lowercase ) else: snake_case : Optional[Any] = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) == 1: if len(v.shape ) == 3: # weight snake_case : int = v[:, :, 0] else: # bias snake_case : Any = v else: # qkv matrices snake_case : str = v.shape[0] snake_case : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case : Tuple = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) snake_case : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" snake_case : Union[str, Any] = download(lowercase ) snake_case : Tuple = MODELS_MAP[model_name]["""sample_rate"""] snake_case : Tuple = MODELS_MAP[model_name]["""sample_size"""] snake_case : Tuple = Object() snake_case : int = sample_size snake_case : List[str] = sample_rate snake_case : int = 0 snake_case : List[Any] = UNetaDModel(sample_size=lowercase ,sample_rate=lowercase ) snake_case : Optional[Any] = diffusers_model.state_dict() snake_case : Optional[Any] = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path ,map_location=lowercase )["""state_dict"""] ) snake_case : Union[str, Any] = orig_model.diffusion_ema.eval() snake_case : Optional[Any] = orig_model.state_dict() snake_case : Union[str, Any] = rename_orig_weights(lowercase ) snake_case : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("""kernel""" ) for k in list(lowercase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": snake_case : Optional[int] = value.squeeze() snake_case : int = value diffusers_model.load_state_dict(lowercase ) snake_case : List[Any] = 100 snake_case : List[str] = 33 snake_case : Optional[Any] = IPNDMScheduler(num_train_timesteps=lowercase ) snake_case : Tuple = torch.manual_seed(lowercase ) snake_case : Optional[int] = torch.randn([1, 2, config.sample_size] ,generator=lowercase ).to(lowercase ) snake_case : Union[str, Any] = torch.linspace(1 ,0 ,steps + 1 ,device=lowercase )[:-1] snake_case : Optional[Any] = get_crash_schedule(lowercase ) snake_case : Tuple = DanceDiffusionPipeline(unet=lowercase ,scheduler=lowercase ) snake_case : Dict = torch.manual_seed(33 ) snake_case : str = pipe(num_inference_steps=lowercase ,generator=lowercase ).audios snake_case : Tuple = sampling.iplms_sample(lowercase ,lowercase ,lowercase ,{} ) snake_case : Any = generated.clamp(-1 ,1 ) snake_case : List[Any] = (generated - audio).abs().sum() snake_case : Tuple = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" ,lowercase ) print("""Diff max""" ,lowercase ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase : List[str] = parser.parse_args() main(args)
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , UpperCamelCase__ , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = RobertaConfig _snake_case = """roberta""" def __init__( self , A ) -> List[str]: super().__init__(A ) snake_case : Dict = RobertaEmbeddings(A ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , UpperCamelCase__ , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = RobertaConfig _snake_case = """roberta""" def __init__( self , A ) -> Optional[Any]: super().__init__(A ) snake_case : Optional[Any] = config.num_labels snake_case : Any = config.num_hidden_layers snake_case : Tuple = DeeRobertaModel(A ) snake_case : Any = nn.Dropout(config.hidden_dropout_prob ) snake_case : str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(A ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=-1 , A=False , ) -> Optional[int]: snake_case : Optional[Any] = self.num_layers try: snake_case : Optional[Any] = self.roberta( A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , ) snake_case : List[str] = outputs[1] snake_case : str = self.dropout(A ) snake_case : Union[str, Any] = self.classifier(A ) snake_case : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case : Optional[Any] = e.message snake_case : int = e.exit_layer snake_case : Union[str, Any] = outputs[0] if not self.training: snake_case : List[str] = entropy(A ) snake_case : Any = [] snake_case : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case : str = MSELoss() snake_case : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case : Optional[int] = CrossEntropyLoss() snake_case : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case : List[Any] = [] for highway_exit in outputs[-1]: snake_case : List[str] = highway_exit[0] if not self.training: highway_logits_all.append(A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case : Dict = MSELoss() snake_case : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case : Any = CrossEntropyLoss() snake_case : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A ) if train_highway: snake_case : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case : Union[str, Any] = (loss,) + outputs if not self.training: snake_case : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case : List[str] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=0 ) -> Optional[Any]: return sorted(lowercase ,key=lambda lowercase : x[column] ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=float("""inf""" ) ) -> Any: for i in range(points_counts - 1 ): for j in range(i + 1 ,lowercase ): snake_case : Any = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: snake_case : int = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=float("""inf""" ) ) -> Dict: for i in range(min(6 ,points_counts - 1 ) ,lowercase ): for j in range(max(0 ,i - 6 ) ,lowercase ): snake_case : int = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: snake_case : int = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(lowercase ,lowercase ) # recursion snake_case : str = points_counts // 2 snake_case : List[Any] = closest_pair_of_points_sqr( lowercase ,points_sorted_on_y[:mid] ,lowercase ) snake_case : str = closest_pair_of_points_sqr( lowercase ,points_sorted_on_y[mid:] ,points_counts - mid ) snake_case : Any = min(lowercase ,lowercase ) snake_case : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowercase ) snake_case : Optional[int] = dis_between_closest_in_strip( lowercase ,len(lowercase ) ,lowercase ) return min(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : Optional[int] = column_based_sort(lowercase ,column=0 ) snake_case : Union[str, Any] = column_based_sort(lowercase ,column=1 ) return ( closest_pair_of_points_sqr( lowercase ,lowercase ,lowercase ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase : Tuple = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : Dict = Path(lowercase ) snake_case : Any = Path(lowercase ) dest_dir.mkdir(exist_ok=lowercase ) for path in src_dir.iterdir(): snake_case : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case : Dict = dest_dir.joinpath(path.name ) print(lowercase ) dest_path.open("""w""" ).write("""\n""".join(lowercase ) ) if __name__ == "__main__": fire.Fire(minify)
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : int = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """luke""" def __init__( self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=True , A=None , A=1 , A=0 , A=2 , **A , ) -> Optional[int]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[int] = vocab_size snake_case : Optional[Any] = entity_vocab_size snake_case : Dict = hidden_size snake_case : List[str] = entity_emb_size snake_case : Union[str, Any] = num_hidden_layers snake_case : str = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : Tuple = intermediate_size snake_case : List[Any] = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : List[Any] = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : List[str] = use_entity_aware_attention snake_case : Union[str, Any] = classifier_dropout
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( lowercase = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) snake_case : int = nums[0] for i in range(1 ,len(lowercase ) ): snake_case : int = nums[i] snake_case : str = max(lowercase ,ans + num ,lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : str = int(input('Enter number of elements : ').strip()) lowerCamelCase : Any = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self , A ) -> np.ndarray: if self.framework == "tf": snake_case : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ) else: raise ValueError("""Unsupported framework""" ) return masked_index def UpperCAmelCase ( self , A ) -> np.ndarray: snake_case : List[Any] = self.get_masked_index(A ) snake_case : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def UpperCAmelCase ( self , A ) -> Dict: if isinstance(A , A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCAmelCase ( self , A , A=None , **A ) -> Dict[str, GenericTensor]: if return_tensors is None: snake_case : Optional[int] = self.framework snake_case : Dict = self.tokenizer(A , return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCAmelCase ( self , A ) -> int: snake_case : Dict = self.model(**A ) snake_case : Tuple = model_inputs["""input_ids"""] return model_outputs def UpperCAmelCase ( self , A , A=5 , A=None ) -> List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case : Any = target_ids.shape[0] snake_case : Dict = model_outputs["""input_ids"""][0] snake_case : Optional[int] = model_outputs["""logits"""] if self.framework == "tf": snake_case : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case : Dict = outputs.numpy() snake_case : Optional[Any] = outputs[0, masked_index, :] snake_case : Optional[Any] = stable_softmax(A , axis=-1 ) if target_ids is not None: snake_case : str = tf.gather_nd(tf.squeeze(A , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case : Any = tf.expand_dims(A , 0 ) snake_case : Tuple = tf.math.top_k(A , k=A ) snake_case , snake_case : int = topk.values.numpy(), topk.indices.numpy() else: snake_case : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case : int = outputs[0, masked_index, :] snake_case : Dict = logits.softmax(dim=-1 ) if target_ids is not None: snake_case : Optional[Any] = probs[..., target_ids] snake_case , snake_case : Optional[Any] = probs.topk(A ) snake_case : List[Any] = [] snake_case : Optional[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case : List[str] = input_ids.numpy().copy() if target_ids is not None: snake_case : Any = target_ids[p].tolist() snake_case : List[Any] = p # Filter padding out: snake_case : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case : Tuple = self.tokenizer.decode(A , skip_special_tokens=A ) snake_case : List[str] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCAmelCase ( self , A , A=None ) -> List[str]: if isinstance(A , A ): snake_case : Optional[Any] = [targets] try: snake_case : Union[str, Any] = self.tokenizer.get_vocab() except Exception: snake_case : Any = {} snake_case : str = [] for target in targets: snake_case : Union[str, Any] = vocab.get(A , A ) if id_ is None: snake_case : int = self.tokenizer( A , add_special_tokens=A , return_attention_mask=A , return_token_type_ids=A , max_length=1 , truncation=A , )["""input_ids"""] if len(A ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) snake_case : Union[str, Any] = list(set(A ) ) if len(A ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case : str = np.array(A ) return target_ids def UpperCAmelCase ( self , A=None , A=None ) -> str: snake_case : Tuple = {} if targets is not None: snake_case : List[Any] = self.get_target_ids(A , A ) snake_case : Optional[Any] = target_ids if top_k is not None: snake_case : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , A , *A , **A ) -> Tuple: snake_case : int = super().__call__(A , **A ) if isinstance(A , A ) and len(A ) == 1: return outputs[0] return outputs
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = len(lowercase ) // 2 # choose the middle 3 elements snake_case : List[Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> np.ndarray: return np.where(vector > 0 ,lowercase ,(alpha * (np.exp(lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def UpperCAmelCase ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case : Union[str, Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : Tuple = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , A ) -> List[str]: return "lower newer", "lower newer" def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) snake_case : int = """lower""" snake_case : List[str] = ["""low""", """er</w>"""] snake_case : List[str] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = tokens + ["""<unk>"""] snake_case : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self , A=1_5 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : str = self.rust_tokenizer_class.from_pretrained(A , **A ) # Simple input snake_case : Dict = """This is a simple input""" snake_case : str = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case : Any = ("""This is a simple input""", """This is a pair""") snake_case : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) def UpperCAmelCase ( self ) -> Optional[int]: pass @require_ftfy @require_spacy @require_tokenizers class __lowercase (UpperCamelCase__ ): """simple docstring""" pass
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Union[str, Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE__ ( lowercase = 100 ) -> int: snake_case : Union[str, Any] = 1 snake_case : List[Any] = 2 for i in range(2 ,max_n + 1 ): snake_case : Optional[int] = pre_numerator snake_case : Dict = 2 * i // 3 if i % 3 == 0 else 1 snake_case : Dict = cur_numerator snake_case : List[str] = e_cont * pre_numerator + temp return sum_digits(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> Union[str, Any]: try: snake_case : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : Any = default else: # KEY is set, convert it to True or False. try: snake_case : List[Any] = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase : List[str] = parse_flag_from_env('RUN_SLOW', default=False) lowerCamelCase : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) lowerCamelCase : str = parse_flag_from_env('RUN_LOCAL', default=True) lowerCamelCase : int = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCamelCase : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCamelCase : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCamelCase : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCamelCase : List[str] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCamelCase : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCamelCase : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCamelCase : List[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import faiss # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires faiss""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: try: import regex # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires regex""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: try: import elasticsearch # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires elasticsearch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: try: import sqlalchemy # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires sqlalchemy""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: if not config.TORCH_AVAILABLE: snake_case : Optional[Any] = unittest.skip("""test requires PyTorch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if not config.TF_AVAILABLE: snake_case : Union[str, Any] = unittest.skip("""test requires TensorFlow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if not config.JAX_AVAILABLE: snake_case : List[str] = unittest.skip("""test requires JAX""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not config.PIL_AVAILABLE: snake_case : List[Any] = unittest.skip("""test requires Pillow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: def _require_spacy_model(lowercase ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_slow_tests or _run_slow_tests == 0: snake_case : Optional[int] = unittest.skip("""test is slow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_local_tests or _run_local_tests == 0: snake_case : Tuple = unittest.skip("""test is local""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: if not _run_packaged_tests or _run_packaged_tests == 0: snake_case : Tuple = unittest.skip("""test is packaged""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not _run_remote_tests or _run_remote_tests == 0: snake_case : Dict = unittest.skip("""test requires remote""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> int: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith("""test""" ): for decorator in decorators: snake_case : Any = decorator(lowercase ) setattr(cls ,lowercase ,lowercase ) return cls return decorate class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 0 _snake_case = 1 _snake_case = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( lowercase=OfflineSimulationMode.CONNECTION_FAILS ,lowercase=1E-16 ) -> List[Any]: snake_case : Any = requests.Session().request def timeout_request(lowercase ,lowercase ,lowercase ,**lowercase ): # Change the url to an invalid url so that the connection hangs snake_case : List[Any] = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case : Any = timeout try: return online_request(lowercase ,lowercase ,**lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case : Dict = url snake_case : Optional[int] = e.args[0] snake_case : List[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"""OfflineMock[{url}]""" ),) snake_case : Dict = (max_retry_error,) raise def raise_connection_error(lowercase ,lowercase ,**lowercase ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,lowercase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Optional[Any]: snake_case : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase ,**lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Dict: import gc gc.collect() snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import gc gc.collect() snake_case : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: return deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: import decorator from requests.exceptions import HTTPError def _wrapper(lowercase ,*lowercase ,**lowercase ): try: return func(*lowercase ,**lowercase ) except HTTPError as err: if str(lowercase ).startswith("""500""" ) or str(lowercase ).startswith("""502""" ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper ,lowercase ) class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Optional[int]: snake_case : List[Any] = returncode snake_case : Tuple = stdout snake_case : Dict = stderr async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: while True: snake_case : List[str] = await stream.readline() if line: callback(lowercase ) else: break async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,lowercase=False ,lowercase=False ) -> _RunOutput: if echo: print("""\nRunning: """ ,""" """.join(lowercase ) ) snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : str = [] snake_case : List[str] = [] def tee(lowercase ,lowercase ,lowercase ,lowercase="" ): snake_case : List[str] = line.decode("""utf-8""" ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase ,lowercase ,file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda lowercase : tee(lowercase ,lowercase ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda lowercase : tee(lowercase ,lowercase ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=lowercase ,) return _RunOutput(await p.wait() ,lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=180 ,lowercase=False ,lowercase=True ) -> _RunOutput: snake_case : Dict = asyncio.get_event_loop() snake_case : Optional[int] = loop.run_until_complete( _stream_subprocess(lowercase ,env=lowercase ,stdin=lowercase ,timeout=lowercase ,quiet=lowercase ,echo=lowercase ) ) snake_case : Any = """ """.join(lowercase ) if result.returncode > 0: snake_case : List[str] = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: snake_case : Optional[Any] = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) snake_case : Tuple = re.sub(R"""^gw""" ,"""""" ,lowercase ,0 ,re.M ) return int(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Dict = 29500 snake_case : int = pytest_xdist_worker_id() return port + uniq_delta
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
from copy import deepcopy class __lowercase : """simple docstring""" def __init__( self , A = None , A = None ) -> None: if arr is None and size is not None: snake_case : Tuple = size snake_case : List[Any] = [0] * size elif arr is not None: self.init(A ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCAmelCase ( self , A ) -> None: snake_case : Optional[Any] = len(A ) snake_case : str = deepcopy(A ) for i in range(1 , self.size ): snake_case : Optional[int] = self.next_(A ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase ( self ) -> list[int]: snake_case : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case : Tuple = self.next_(A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase ( A ) -> int: return index + (index & (-index)) @staticmethod def UpperCAmelCase ( A ) -> int: return index - (index & (-index)) def UpperCAmelCase ( self , A , A ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case : int = self.next_(A ) def UpperCAmelCase ( self , A , A ) -> None: self.add(A , value - self.get(A ) ) def UpperCAmelCase ( self , A ) -> int: if right == 0: return 0 snake_case : str = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case : List[str] = self.prev(A ) return result def UpperCAmelCase ( self , A , A ) -> int: return self.prefix(A ) - self.prefix(A ) def UpperCAmelCase ( self , A ) -> int: return self.query(A , index + 1 ) def UpperCAmelCase ( self , A ) -> int: value -= self.tree[0] if value < 0: return -1 snake_case : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case : Union[str, Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['BeitFeatureExtractor'] lowerCamelCase : Tuple = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : List[Any] = 1_6 lowerCamelCase : str = 3_2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 16 ) -> List[Any]: snake_case : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case : str = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case : List[Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case : Dict = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case : Dict = 16 elif accelerator.mixed_precision != "no": snake_case : Optional[int] = 8 else: snake_case : List[Any] = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. snake_case : Tuple = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) snake_case : str = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,lowercase ) == "1": snake_case : str = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case : List[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="""all""" ,project_dir=args.project_dir ) else: snake_case : int = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : List[str] = config["""lr"""] snake_case : Any = int(config["""num_epochs"""] ) snake_case : Optional[int] = int(config["""seed"""] ) snake_case : List[Any] = int(config["""batch_size"""] ) set_seed(lowercase ) snake_case , snake_case : Union[str, Any] = get_dataloaders(lowercase ,lowercase ) snake_case : Dict = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE snake_case : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case : str = AdamW(params=model.parameters() ,lr=lowercase ) # Instantiate scheduler snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=100 ,num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case : Union[str, Any] = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case : str = os.path.split(lowercase )[-1].split(""".""" )[0] accelerator.init_trackers(lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case : Optional[Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case : Optional[Any] = model(**lowercase ) snake_case : str = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case : Any = model(**lowercase ) snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case , snake_case : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) snake_case : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" ,lowercase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(lowercase ), """epoch""": epoch, } ,step=lowercase ,) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" ,action="""store_true""" ,help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" ,) parser.add_argument( """--project_dir""" ,type=lowercase ,default="""logs""" ,help="""Location on where to store experiment tracking logs` and relevent project information""" ,) snake_case : List[str] = parser.parse_args() snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: snake_case , snake_case : List[str] = analyze_text(lowercase ) snake_case : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. snake_case : int = sum(single_char_strings.values() ) # one length string snake_case : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case : Dict = single_char_strings[ch] snake_case : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string snake_case : Dict = sum(two_char_strings.values() ) snake_case : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case : List[Any] = cha + cha if sequence in two_char_strings: snake_case : Tuple = two_char_strings[sequence] snake_case : str = int(lowercase ) / all_sum my_sec_sum += prob * math.loga(lowercase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[dict, dict]: snake_case : int = Counter() # type: ignore snake_case : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import heapq def SCREAMING_SNAKE_CASE__ ( lowercase ) -> set[int]: snake_case : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase ,[-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices snake_case : List[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices snake_case : Union[str, Any] = heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: snake_case : Any = elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Dict = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase : Optional[Any] = 'CompVis/stable-diffusion-v1-1' lowerCamelCase : Optional[Any] = 'CompVis/stable-diffusion-v1-2' lowerCamelCase : Any = 'CompVis/stable-diffusion-v1-3' lowerCamelCase : List[str] = 'CompVis/stable-diffusion-v1-4' class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A = True , ) -> Any: super()._init_() snake_case : Tuple = StableDiffusionPipeline.from_pretrained(A ) snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained(A ) snake_case : List[Any] = StableDiffusionPipeline.from_pretrained(A ) snake_case : Dict = StableDiffusionPipeline( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , requires_safety_checker=A , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , A ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase ( self , A = "auto" ) -> Any: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> Any: self.enable_attention_slicing(A ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> int: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Dict: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> List[str]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Dict: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> int: snake_case : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case : List[Any] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case : List[Any] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case : Dict = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case : List[str] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> List[str]: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Optional[int]: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Dict: requires_backends(lowercase ,["""torch"""] ) def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Any: requires_backends(lowercase ,["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""torch"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""torch"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""torch"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""torch"""] )
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
import string import numpy def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return b if a == 0 else greatest_common_divisor(b % a ,lowercase ) class __lowercase : """simple docstring""" _snake_case = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _snake_case = numpy.vectorize(lambda UpperCamelCase__ : x % 36 ) _snake_case = numpy.vectorize(UpperCamelCase__ ) def __init__( self , A ) -> None: snake_case : Any = self.modulus(A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key snake_case : str = encrypt_key.shape[0] def UpperCAmelCase ( self , A ) -> int: return self.key_string.index(A ) def UpperCAmelCase ( self , A ) -> str: return self.key_string[round(A )] def UpperCAmelCase ( self ) -> None: snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : int = det % len(self.key_string ) snake_case : Optional[Any] = len(self.key_string ) if greatest_common_divisor(A , len(self.key_string ) ) != 1: snake_case : Dict = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Optional[Any] = [char for char in text.upper() if char in self.key_string] snake_case : Optional[int] = chars[-1] while len(A ) % self.break_key != 0: chars.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : List[str] = self.process_text(text.upper() ) snake_case : str = """""" for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): snake_case : Union[str, Any] = text[i : i + self.break_key] snake_case : int = [self.replace_letters(A ) for char in batch] snake_case : Optional[int] = numpy.array([vec] ).T snake_case : str = self.modulus(self.encrypt_key.dot(A ) ).T.tolist()[ 0 ] snake_case : Optional[int] = """""".join( self.replace_digits(A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self ) -> numpy.ndarray: snake_case : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : int = det % len(self.key_string ) snake_case : str = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: snake_case : Dict = i break snake_case : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(A ) ) def UpperCAmelCase ( self , A ) -> str: snake_case : Optional[Any] = self.make_decrypt_key() snake_case : int = self.process_text(text.upper() ) snake_case : Optional[Any] = """""" for i in range(0 , len(A ) - self.break_key + 1 , self.break_key ): snake_case : str = text[i : i + self.break_key] snake_case : Any = [self.replace_letters(A ) for char in batch] snake_case : Optional[Any] = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(decrypt_key.dot(A ) ).T.tolist()[0] snake_case : List[Any] = """""".join( self.replace_digits(A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE__ ( ) -> None: snake_case : Optional[Any] = int(input("""Enter the order of the encryption key: """ ) ) snake_case : Optional[Any] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowercase ): snake_case : str = [int(lowercase ) for x in input().split()] hill_matrix.append(lowercase ) snake_case : Tuple = HillCipher(numpy.array(lowercase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) snake_case : Tuple = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": snake_case : List[Any] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowercase ) ) elif option == "2": snake_case : Optional[int] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowercase ,int(b / 2 ) ) * actual_power(lowercase ,int(b / 2 ) ) else: return a * actual_power(lowercase ,int(b / 2 ) ) * actual_power(lowercase ,int(b / 2 ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> float: if b < 0: return 1 / actual_power(lowercase ,lowercase ) return actual_power(lowercase ,lowercase ) if __name__ == "__main__": print(power(-2, -3))
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" snake_case : Optional[Any] = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase ,lowercase ,num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase ,lowercase ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" ,[2, -1] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Any = [1, 2] snake_case : List[Any] = {"""a""": 1, """b""": 2} snake_case : Tuple = {"""a""": [1, 2], """b""": [3, 4]} snake_case : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} snake_case : Union[str, Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} snake_case : int = [2, 3] snake_case : Union[str, Any] = {"""a""": 2, """b""": 3} snake_case : Union[str, Any] = {"""a""": [2, 3], """b""": [4, 5]} snake_case : Optional[Any] = {"""a""": {"""1""": 2}, """b""": 3} snake_case : List[Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : str = SwinvaConfig() snake_case : List[str] = swinva_name.split("""_""" ) snake_case : Optional[Any] = name_split[1] if "to" in name_split[3]: snake_case : Optional[Any] = int(name_split[3][-3:] ) else: snake_case : List[Any] = int(name_split[3] ) if "to" in name_split[2]: snake_case : Any = int(name_split[2][-2:] ) else: snake_case : int = int(name_split[2][6:] ) if model_size == "tiny": snake_case : int = 96 snake_case : Optional[int] = (2, 2, 6, 2) snake_case : str = (3, 6, 12, 24) elif model_size == "small": snake_case : Optional[int] = 96 snake_case : Optional[Any] = (2, 2, 18, 2) snake_case : Union[str, Any] = (3, 6, 12, 24) elif model_size == "base": snake_case : str = 128 snake_case : Optional[int] = (2, 2, 18, 2) snake_case : Dict = (4, 8, 16, 32) else: snake_case : Dict = 192 snake_case : List[str] = (2, 2, 18, 2) snake_case : Optional[int] = (6, 12, 24, 48) if "to" in swinva_name: snake_case : int = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): snake_case : List[str] = 21841 snake_case : List[Any] = """huggingface/label-files""" snake_case : Any = """imagenet-22k-id2label.json""" snake_case : Any = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : Union[str, Any] = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Tuple = idalabel snake_case : Optional[Any] = {v: k for k, v in idalabel.items()} else: snake_case : List[Any] = 1000 snake_case : Optional[int] = """huggingface/label-files""" snake_case : Dict = """imagenet-1k-id2label.json""" snake_case : List[str] = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Optional[Any] = idalabel snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case : Tuple = img_size snake_case : Any = num_classes snake_case : List[Any] = embed_dim snake_case : int = depths snake_case : List[Any] = num_heads snake_case : Any = window_size return config def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if "patch_embed.proj" in name: snake_case : Any = name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case : Dict = name.replace("""patch_embed.norm""" ,"""embeddings.norm""" ) if "layers" in name: snake_case : Dict = """encoder.""" + name if "attn.proj" in name: snake_case : Dict = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: snake_case : List[Any] = name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: snake_case : Optional[Any] = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: snake_case : List[str] = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: snake_case : int = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: snake_case : Dict = name.replace("""mlp.fc2""" ,"""output.dense""" ) if "q_bias" in name: snake_case : str = name.replace("""q_bias""" ,"""query.bias""" ) if "k_bias" in name: snake_case : Union[str, Any] = name.replace("""k_bias""" ,"""key.bias""" ) if "v_bias" in name: snake_case : Tuple = name.replace("""v_bias""" ,"""value.bias""" ) if "cpb_mlp" in name: snake_case : Tuple = name.replace("""cpb_mlp""" ,"""continuous_position_bias_mlp""" ) if name == "norm.weight": snake_case : int = """layernorm.weight""" if name == "norm.bias": snake_case : Tuple = """layernorm.bias""" if "head" in name: snake_case : Any = name.replace("""head""" ,"""classifier""" ) else: snake_case : List[Any] = """swinv2.""" + name return name def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: for key in orig_state_dict.copy().keys(): snake_case : List[str] = orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: snake_case : Dict = key.split(""".""" ) snake_case : List[Any] = int(key_split[1] ) snake_case : List[str] = int(key_split[3] ) snake_case : Optional[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case : List[Any] = val[:dim, :] snake_case : Union[str, Any] = val[dim : dim * 2, :] snake_case : Any = val[-dim:, :] else: snake_case : List[str] = val[:dim] snake_case : Union[str, Any] = val[ dim : dim * 2 ] snake_case : List[str] = val[-dim:] else: snake_case : Optional[Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : Tuple = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() snake_case : Tuple = get_swinva_config(lowercase ) snake_case : Optional[int] = SwinvaForImageClassification(lowercase ) model.eval() snake_case : Optional[Any] = convert_state_dict(timm_model.state_dict() ,lowercase ) model.load_state_dict(lowercase ) snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : str = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" ,"""-""" ) ) ) snake_case : int = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) snake_case : str = image_processor(images=lowercase ,return_tensors="""pt""" ) snake_case : Dict = timm_model(inputs["""pixel_values"""] ) snake_case : int = model(**lowercase ).logits assert torch.allclose(lowercase ,lowercase ,atol=1E-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) model.push_to_hub( repo_path_or_name=Path(lowercase ,lowercase ) ,organization="""nandwalritik""" ,commit_message="""Add model""" ,) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase : List[str] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A="</s>" , A="<unk>" , A="<pad>" , A=1_2_5 , A=None , **A , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case : str = [f"""<extra_id_{i}>""" for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case : int = len(set(filter(lambda A : bool("""extra_id""" in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) snake_case : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token snake_case : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , **A , ) snake_case : Union[str, Any] = extra_ids snake_case : Tuple = 2**8 # utf is 8 bits # define special tokens dict snake_case : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case : str = len(self.special_tokens_encoder ) snake_case : Any = len(A ) for i, token in enumerate(A ): snake_case : Optional[int] = self.vocab_size + i - n snake_case : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def UpperCAmelCase ( self ) -> Union[str, Any]: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A ) -> List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Dict = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: snake_case : Optional[int] = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Tuple = [chr(A ) for i in text.encode("""utf-8""" )] return tokens def UpperCAmelCase ( self , A ) -> Dict: if token in self.special_tokens_encoder: snake_case : str = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case : Union[str, Any] = self.added_tokens_encoder[token] elif len(A ) != 1: snake_case : List[str] = self.unk_token_id else: snake_case : Union[str, Any] = ord(A ) + self._num_special_tokens return token_id def UpperCAmelCase ( self , A ) -> Optional[Any]: if index in self.special_tokens_decoder: snake_case : str = self.special_tokens_decoder[index] else: snake_case : List[Any] = chr(index - self._num_special_tokens ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[Any] = B"""""" for token in tokens: if token in self.special_tokens_decoder: snake_case : int = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: snake_case : List[str] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: snake_case : List[Any] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: snake_case : List[Any] = token.encode("""utf-8""" ) else: snake_case : Tuple = bytes([ord(A )] ) bstring += tok_string snake_case : Optional[Any] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: return ()
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """convbert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A=7_6_8 , A=2 , A=9 , A=1 , A=None , **A , ) -> List[str]: super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , **A , ) snake_case : Tuple = vocab_size snake_case : Tuple = hidden_size snake_case : Tuple = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : int = initializer_range snake_case : List[str] = layer_norm_eps snake_case : Dict = embedding_size snake_case : Any = head_ratio snake_case : Optional[int] = conv_kernel_size snake_case : Tuple = num_groups snake_case : Optional[Any] = classifier_dropout class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
lowerCamelCase : List[Any] = 2_5_6 # Modulus to hash a string lowerCamelCase : Tuple = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool: snake_case : Optional[int] = len(lowercase ) snake_case : Optional[Any] = len(lowercase ) if p_len > t_len: return False snake_case : List[str] = 0 snake_case : Optional[int] = 0 snake_case : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): snake_case : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case : Optional[int] = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> None: snake_case : int = """abc1abc12""" snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case : Dict = """alskfjaldsk23adsfabcabc""" assert rabin_karp(lowercase ,lowercase ) and not rabin_karp(lowercase ,lowercase ) # Test 2) snake_case : int = """ABABX""" snake_case : Tuple = """ABABZABABYABABX""" assert rabin_karp(lowercase ,lowercase ) # Test 3) snake_case : Optional[int] = """AAAB""" snake_case : Union[str, Any] = """ABAAAAAB""" assert rabin_karp(lowercase ,lowercase ) # Test 4) snake_case : Union[str, Any] = """abcdabcy""" snake_case : Optional[int] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(lowercase ,lowercase ) # Test 5) snake_case : Tuple = """Lü""" snake_case : Tuple = """Lüsai""" assert rabin_karp(lowercase ,lowercase ) snake_case : Optional[Any] = """Lue""" assert not rabin_karp(lowercase ,lowercase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) snake_case : List[str] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format snake_case : List[str] = PipelineDataFormat.from_str( format=lowercase ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(lowercase ,lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A ) -> int: snake_case : List[str] = nlp snake_case : Union[str, Any] = reader @staticmethod def UpperCAmelCase ( A ) -> Union[str, Any]: snake_case : str = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=A , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=A , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=A , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=A , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=A , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=A , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=A , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=A , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=A ) def UpperCAmelCase ( self ) -> Tuple: snake_case , snake_case : int = self._nlp, [] for entry in self._reader: snake_case : Union[str, Any] = nlp(**A ) if self._reader.is_multi_columns else nlp(A ) if isinstance(A , A ): outputs.append(A ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case : List[str] = self._reader.save_binary(A ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A )
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Optional[int]: snake_case : Tuple = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Union[str, Any] = is_training snake_case : Optional[Any] = use_input_mask snake_case : int = use_token_type_ids snake_case : List[str] = use_labels snake_case : Optional[int] = vocab_size snake_case : List[str] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : str = hidden_act snake_case : List[str] = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Optional[Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : str = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : Optional[int] = num_labels snake_case : Union[str, Any] = num_choices snake_case : List[Any] = scope def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : Dict = None snake_case : str = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : Tuple = BioGptModel(config=A ) model.to(A ) model.eval() snake_case : Optional[int] = model(A , attention_mask=A ) snake_case : Optional[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: snake_case : Optional[int] = BioGptForCausalLM(config=A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , *A ) -> int: snake_case : Tuple = BioGptModel(config=A ) model.to(A ) model.eval() # create attention mask snake_case : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) snake_case : Tuple = self.seq_length // 2 snake_case : Dict = 0 # first forward pass snake_case , snake_case : List[Any] = model(A , attention_mask=A ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case : str = ids_tensor((1,) , A ).item() + 1 snake_case : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case : Optional[int] = random_other_next_tokens # append to next input_ids and attn_mask snake_case : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : Any = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A )] , dim=1 , ) # get two different outputs snake_case : int = model(A , attention_mask=A )["""last_hidden_state"""] snake_case : Optional[int] = model(A , past_key_values=A , attention_mask=A )["""last_hidden_state"""] # select random slice snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() snake_case : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def UpperCAmelCase ( self , A , A , A , A , A , *A ) -> Optional[Any]: snake_case : str = BioGptModel(config=A ).to(A ).eval() snake_case : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) # first forward pass snake_case : Union[str, Any] = model(A , attention_mask=A , use_cache=A ) snake_case , snake_case : List[str] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case : Any = model(A , attention_mask=A )["""last_hidden_state"""] snake_case : Tuple = model(A , attention_mask=A , past_key_values=A )[ """last_hidden_state""" ] # select random slice snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def UpperCAmelCase ( self , A , A , A , A , A , *A , A=False ) -> str: snake_case : Tuple = BioGptForCausalLM(A ) model.to(A ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case : Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase ( self , A , *A ) -> Any: snake_case : Any = BioGptModel(A ) snake_case : Optional[int] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase ( self , A , A , A , A , A , *A ) -> str: snake_case : List[str] = self.num_labels snake_case : int = BioGptForTokenClassification(A ) model.to(A ) model.eval() snake_case : Any = model(A , attention_mask=A , token_type_ids=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : int = config_and_inputs snake_case : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _snake_case = (BioGptForCausalLM,) if is_torch_available() else () _snake_case = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[int] = BioGptModelTester(self ) snake_case : Dict = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> int: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : str = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> str: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A , gradient_checkpointing=A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Any: snake_case : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(A ) snake_case : List[str] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) snake_case : Dict = """left""" # Define PAD Token = EOS Token = 50256 snake_case : Union[str, Any] = tokenizer.eos_token snake_case : Any = model.config.eos_token_id # use different length sentences to test batching snake_case : List[str] = [ """Hello, my dog is a little""", """Today, I""", ] snake_case : Tuple = tokenizer(A , return_tensors="""pt""" , padding=A ) snake_case : Any = inputs["""input_ids"""].to(A ) snake_case : int = model.generate( input_ids=A , attention_mask=inputs["""attention_mask"""].to(A ) , ) snake_case : Any = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(A ) snake_case : List[str] = model.generate(input_ids=A ) snake_case : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() snake_case : Any = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(A ) snake_case : Union[str, Any] = model.generate(input_ids=A , max_length=model.config.max_length - num_paddings ) snake_case : Dict = tokenizer.batch_decode(A , skip_special_tokens=A ) snake_case : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A ) snake_case : str = tokenizer.decode(output_padded[0] , skip_special_tokens=A ) snake_case : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(A , A ) self.assertListEqual(A , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase ( self ) -> List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Union[str, Any] = BioGptModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[str] = 3 snake_case : Any = input_dict["""input_ids"""] snake_case : str = input_ids.ne(1 ).to(A ) snake_case : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case : Optional[Any] = BioGptForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ) -> List[str]: snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Tuple = 3 snake_case : Any = """multi_label_classification""" snake_case : Optional[int] = input_dict["""input_ids"""] snake_case : Any = input_ids.ne(1 ).to(A ) snake_case : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case : Any = BioGptForSequenceClassification(A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) snake_case : List[str] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case : str = model(A )[0] snake_case : List[str] = 4_2_3_8_4 snake_case : List[str] = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , A ) snake_case : Dict = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) snake_case : List[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(A ) torch.manual_seed(0 ) snake_case : Dict = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(A ) snake_case : str = model.generate( **A , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=A , ) snake_case : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=A ) snake_case : List[Any] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(A , A )
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not isinstance(lowercase ,lowercase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) snake_case : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCamelCase : int = True except ImportError: lowerCamelCase : str = False lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> Union[str, Any]: snake_case : Optional[int] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=A , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=A , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=A ) def __init__( self , A , A , A=None , *A ) -> List[Any]: snake_case : int = testing snake_case : int = testing_file snake_case : List[Any] = path def UpperCAmelCase ( self ) -> Optional[int]: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case : List[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:2_2]] if len(A ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) snake_case : int = ( Path(A ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case : Union[str, Any] = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(A ) ) else: with open(self._testing_file , """r""" ) as configuration_file: snake_case : Dict = json.load(A ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=A , extra_context=A , ) snake_case : Union[str, Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:2_2]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: snake_case : str = json.load(A ) snake_case : Dict = configuration["""lowercase_modelname"""] snake_case : Dict = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f"""{directory}/configuration.json""" ) snake_case : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax snake_case : Optional[Any] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax snake_case : Any = """Flax""" in generate_tensorflow_pytorch_and_flax snake_case : Optional[int] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(A , exist_ok=A ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=A ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , """w""" ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(A ): with open(A , """r""" ) as f: snake_case : List[str] = f.readlines() with open(A , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A , A , A ): # Create temp file snake_case , snake_case : List[str] = mkstemp() snake_case : List[Any] = False with fdopen(A , """w""" ) as new_file: with open(A ) as old_file: for line in old_file: new_file.write(A ) if line_to_copy_below in line: snake_case : Any = True for line_to_copy in lines_to_copy: new_file.write(A ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(A , A ) # Remove original file remove(A ) # Move new file move(A , A ) def skip_units(A ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A ): with open(A ) as datafile: snake_case : str = [] snake_case : Dict = False snake_case : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case : Dict = line.split("""\"""" )[1] snake_case : List[Any] = skip_units(A ) elif "# Below: " in line and "##" not in line: snake_case : Tuple = line.split("""\"""" )[1] snake_case : Union[str, Any] = skip_units(A ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A , A , A ) snake_case : List[str] = [] elif "# Replace with" in line and "##" not in line: snake_case : Dict = [] elif "##" not in line: lines_to_copy.append(A ) remove(A ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(A )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=3_2 , A=2 , A=3 , A=1_6 , A=[1, 2, 1] , A=[2, 2, 4] , A=2 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=True , A=0.02 , A=1e-5 , A=True , A=None , A=True , A=1_0 , A=8 , ) -> List[str]: snake_case : Union[str, Any] = parent snake_case : List[Any] = batch_size snake_case : List[Any] = image_size snake_case : Optional[Any] = patch_size snake_case : Tuple = num_channels snake_case : Dict = embed_dim snake_case : Tuple = depths snake_case : Tuple = num_heads snake_case : Optional[Any] = window_size snake_case : Any = mlp_ratio snake_case : int = qkv_bias snake_case : Tuple = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Optional[Any] = drop_path_rate snake_case : str = hidden_act snake_case : List[Any] = use_absolute_embeddings snake_case : List[Any] = patch_norm snake_case : Any = layer_norm_eps snake_case : int = initializer_range snake_case : Union[str, Any] = is_training snake_case : Optional[Any] = scope snake_case : str = use_labels snake_case : str = type_sequence_label_size snake_case : str = encoder_stride def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[Any] = None if self.use_labels: snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , A , A , A ) -> int: snake_case : List[str] = SwinvaModel(config=A ) model.to(A ) model.eval() snake_case : List[str] = model(A ) snake_case : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self , A , A , A ) -> List[str]: snake_case : str = SwinvaForMaskedImageModeling(config=A ) model.to(A ) model.eval() snake_case : Dict = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : Union[str, Any] = 1 snake_case : Optional[int] = SwinvaForMaskedImageModeling(A ) model.to(A ) model.eval() snake_case : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : List[str] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , A , A , A ) -> int: snake_case : Optional[int] = self.type_sequence_label_size snake_case : Any = SwinvaForImageClassification(A ) model.to(A ) model.eval() snake_case : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _snake_case = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Tuple = SwinvaModelTester(self ) snake_case : str = ConfigTester(self , config_class=A , embed_dim=3_7 ) def UpperCAmelCase ( self ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase ( self ) -> Any: snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(A ) snake_case : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase ( self ) -> str: snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[Any] = True for model_class in self.all_model_classes: snake_case : List[Any] = True snake_case : List[Any] = False snake_case : Union[str, Any] = True snake_case : List[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : List[str] = model(**self._prepare_for_class(A , A ) ) snake_case : str = outputs.attentions snake_case : Dict = len(self.model_tester.depths ) self.assertEqual(len(A ) , A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : List[str] = True snake_case : List[Any] = config.window_size**2 snake_case : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(A , A ) ) snake_case : Any = outputs.attentions self.assertEqual(len(A ) , A ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case : Tuple = len(A ) # Check attention is always last and order is fine snake_case : str = True snake_case : Optional[Any] = True snake_case : Optional[int] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(A , A ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): snake_case : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(A ) ) snake_case : List[Any] = outputs.attentions self.assertEqual(len(A ) , A ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase ( self , A , A , A , A ) -> Union[str, Any]: snake_case : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): snake_case : List[str] = model(**self._prepare_for_class(A , A ) ) snake_case : List[Any] = outputs.hidden_states snake_case : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A ) , A ) # Swinv2 has a different seq_length snake_case : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case : Dict = outputs.reshaped_hidden_states self.assertEqual(len(A ) , A ) snake_case , snake_case , snake_case , snake_case : List[str] = reshaped_hidden_states[0].shape snake_case : Any = ( reshaped_hidden_states[0].view(A , A , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self ) -> List[Any]: snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case : int = True self.check_hidden_states_output(A , A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Tuple = True self.check_hidden_states_output(A , A , A , A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = 3 snake_case : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case : List[str] = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Any = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCAmelCase ( self ) -> str: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = SwinvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = _config_zero_init(A ) for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(config=A ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> str: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( A ) snake_case : str = self.default_image_processor snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case : List[str] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**A ) # verify the logits snake_case : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A ) snake_case : Optional[int] = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( lowercase = "" ) -> dict[str, float]: snake_case : Any = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case : Any = BeautifulSoup(requests.get(lowercase ).text ,"""html.parser""" ) snake_case : Optional[Any] = soup.find_all("""td""" ,attrs="""titleColumn""" ) snake_case : List[str] = soup.find_all("""td""" ,class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase ,lowercase ) } def SCREAMING_SNAKE_CASE__ ( lowercase = "IMDb_Top_250_Movies.csv" ) -> None: snake_case : Dict = get_imdb_top_aaa_movies() with open(lowercase ,"""w""" ,newline="""""" ) as out_file: snake_case : Union[str, Any] = csv.writer(lowercase ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase : Union[str, Any] = re.compile(r'\b(a|an|the)\b', re.UNICODE) lowerCamelCase : Tuple = None def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case : Union[str, Any] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" ,metavar="""data.json""" ,help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" ,metavar="""pred.json""" ,help="""Model predictions.""" ) parser.add_argument( """--out-file""" ,"""-o""" ,metavar="""eval.json""" ,help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" ,"""-n""" ,metavar="""na_prob.json""" ,help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" ,"""-t""" ,type=lowercase ,default=1.0 ,help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" ,) parser.add_argument( """--out-image-dir""" ,"""-p""" ,metavar="""out_images""" ,default=lowercase ,help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" ,"""-v""" ,action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case : int = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: def remove_articles(lowercase ): return ARTICLES_REGEX.sub(""" """ ,lowercase ) def white_space_fix(lowercase ): return " ".join(text.split() ) def remove_punc(lowercase ): snake_case : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: if not s: return [] return normalize_answer(lowercase ).split() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: return int(normalize_answer(lowercase ) == normalize_answer(lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : Union[str, Any] = get_tokens(lowercase ) snake_case : str = get_tokens(lowercase ) snake_case : Union[str, Any] = collections.Counter(lowercase ) & collections.Counter(lowercase ) snake_case : Union[str, Any] = sum(common.values() ) if len(lowercase ) == 0 or len(lowercase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case : int = 1.0 * num_same / len(lowercase ) snake_case : List[str] = 1.0 * num_same / len(lowercase ) snake_case : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: snake_case : Tuple = {} snake_case : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case : Optional[Any] = qa["""id"""] snake_case : Dict = [t for t in qa["""answers"""]["""text"""] if normalize_answer(lowercase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case : Optional[Any] = [""""""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue snake_case : Dict = preds[qid] # Take max over all gold answers snake_case : Optional[Any] = max(compute_exact(lowercase ,lowercase ) for a in gold_answers ) snake_case : Union[str, Any] = max(compute_fa(lowercase ,lowercase ) for a in gold_answers ) return exact_scores, fa_scores def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : str = {} for qid, s in scores.items(): snake_case : Dict = na_probs[qid] > na_prob_thresh if pred_na: snake_case : Any = float(not qid_to_has_ans[qid] ) else: snake_case : Tuple = s return new_scores def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ) -> str: if not qid_list: snake_case : Union[str, Any] = len(lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: snake_case : List[Any] = len(lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: for k in new_eval: snake_case : Any = new_eval[k] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[Any]: plt.step(lowercase ,lowercase ,color="""b""" ,alpha=0.2 ,where="""post""" ) plt.fill_between(lowercase ,lowercase ,step="""post""" ,alpha=0.2 ,color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase ) plt.savefig(lowercase ) plt.clf() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase=None ,lowercase=None ) -> Optional[Any]: snake_case : Optional[Any] = sorted(lowercase ,key=lambda lowercase : na_probs[k] ) snake_case : Optional[Any] = 0.0 snake_case : int = 1.0 snake_case : int = 0.0 snake_case : List[str] = [1.0] snake_case : Optional[Any] = [0.0] snake_case : str = 0.0 for i, qid in enumerate(lowercase ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case : List[str] = true_pos / float(i + 1 ) snake_case : Tuple = true_pos / float(lowercase ) if i == len(lowercase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase ) recalls.append(lowercase ) if out_image: plot_pr_curve(lowercase ,lowercase ,lowercase ,lowercase ) return {"ap": 100.0 * avg_prec} def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: if out_image_dir and not os.path.exists(lowercase ): os.makedirs(lowercase ) snake_case : List[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case : str = make_precision_recall_eval( lowercase ,lowercase ,lowercase ,lowercase ,out_image=os.path.join(lowercase ,"""pr_exact.png""" ) ,title="""Precision-Recall curve for Exact Match score""" ,) snake_case : int = make_precision_recall_eval( lowercase ,lowercase ,lowercase ,lowercase ,out_image=os.path.join(lowercase ,"""pr_f1.png""" ) ,title="""Precision-Recall curve for F1 score""" ,) snake_case : List[str] = {k: float(lowercase ) for k, v in qid_to_has_ans.items()} snake_case : Dict = make_precision_recall_eval( lowercase ,lowercase ,lowercase ,lowercase ,out_image=os.path.join(lowercase ,"""pr_oracle.png""" ) ,title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" ,) merge_eval(lowercase ,lowercase ,"""pr_exact""" ) merge_eval(lowercase ,lowercase ,"""pr_f1""" ) merge_eval(lowercase ,lowercase ,"""pr_oracle""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Any: if not qid_list: return snake_case : List[str] = [na_probs[k] for k in qid_list] snake_case : Tuple = np.ones_like(lowercase ) / float(len(lowercase ) ) plt.hist(lowercase ,weights=lowercase ,bins=20 ,range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowercase ,f"""na_prob_hist_{name}.png""" ) ) plt.clf() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: snake_case : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case : Any = num_no_ans snake_case : List[Any] = cur_score snake_case : Tuple = 0.0 snake_case : Optional[int] = sorted(lowercase ,key=lambda lowercase : na_probs[k] ) for i, qid in enumerate(lowercase ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case : List[str] = scores[qid] else: if preds[qid]: snake_case : Tuple = -1 else: snake_case : Optional[int] = 0 cur_score += diff if cur_score > best_score: snake_case : List[Any] = cur_score snake_case : List[Any] = na_probs[qid] return 100.0 * best_score / len(lowercase ), best_thresh def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Any: snake_case , snake_case : List[str] = find_best_thresh(lowercase ,lowercase ,lowercase ,lowercase ) snake_case , snake_case : List[Any] = find_best_thresh(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : str = best_exact snake_case : Any = exact_thresh snake_case : Optional[int] = best_fa snake_case : List[Any] = fa_thresh def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: with open(OPTS.data_file ) as f: snake_case : Any = json.load(lowercase ) snake_case : Dict = dataset_json["""data"""] with open(OPTS.pred_file ) as f: snake_case : Optional[int] = json.load(lowercase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case : Optional[Any] = json.load(lowercase ) else: snake_case : Union[str, Any] = {k: 0.0 for k in preds} snake_case : List[Any] = make_qid_to_has_ans(lowercase ) # maps qid to True/False snake_case : int = [k for k, v in qid_to_has_ans.items() if v] snake_case : Dict = [k for k, v in qid_to_has_ans.items() if not v] snake_case , snake_case : str = get_raw_scores(lowercase ,lowercase ) snake_case : str = apply_no_ans_threshold(lowercase ,lowercase ,lowercase ,OPTS.na_prob_thresh ) snake_case : List[str] = apply_no_ans_threshold(lowercase ,lowercase ,lowercase ,OPTS.na_prob_thresh ) snake_case : List[str] = make_eval_dict(lowercase ,lowercase ) if has_ans_qids: snake_case : Optional[int] = make_eval_dict(lowercase ,lowercase ,qid_list=lowercase ) merge_eval(lowercase ,lowercase ,"""HasAns""" ) if no_ans_qids: snake_case : List[Any] = make_eval_dict(lowercase ,lowercase ,qid_list=lowercase ) merge_eval(lowercase ,lowercase ,"""NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,OPTS.out_image_dir ) histogram_na_prob(lowercase ,lowercase ,OPTS.out_image_dir ,"""hasAns""" ) histogram_na_prob(lowercase ,lowercase ,OPTS.out_image_dir ,"""noAns""" ) if OPTS.out_file: with open(OPTS.out_file ,"""w""" ) as f: json.dump(lowercase ,lowercase ) else: print(json.dumps(lowercase ,indent=2 ) ) if __name__ == "__main__": lowerCamelCase : Tuple = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A=None , A=None , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) snake_case : Tuple = self.model.config else: snake_case : Union[str, Any] = config snake_case : Tuple = data_args snake_case : Any = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" """ padding..""" ) if self.args.label_smoothing == 0: snake_case : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case : Dict = label_smoothed_nll_loss def UpperCAmelCase ( self , A ) -> List[str]: if self.optimizer is None: snake_case : Union[str, Any] = ["""bias""", """LayerNorm.weight"""] snake_case : Dict = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case : List[str] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case : List[Any] = Adafactor snake_case : Optional[int] = {"""scale_parameter""": False, """relative_step""": False} else: snake_case : List[str] = AdamW snake_case : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case : str = self.args.learning_rate if self.sharded_ddp: snake_case : List[Any] = OSS( params=A , optim=A , **A , ) else: snake_case : List[Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: snake_case : Any = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCAmelCase ( self , A ) -> Any: snake_case : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case : int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def UpperCAmelCase ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCAmelCase ( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case : Any = model(**A , use_cache=A )[0] snake_case : Any = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case , snake_case : int = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss snake_case : Any = model(**A , use_cache=A )[0] snake_case : Optional[int] = torch.nn.functional.log_softmax(A , dim=-1 ) snake_case , snake_case : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def UpperCAmelCase ( self , A , A ) -> int: snake_case : int = inputs.pop("""labels""" ) snake_case , snake_case : Union[str, Any] = self._compute_loss(A , A , A ) return loss def UpperCAmelCase ( self , A , A , A , A = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: snake_case : List[Any] = self._prepare_inputs(A ) snake_case : Tuple = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case : List[Any] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case : Any = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) snake_case : Optional[Any] = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case , snake_case : List[Any] = self._compute_loss(A , A , A ) snake_case : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case : Dict = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case : Union[str, Any] = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCAmelCase ( self , A , A ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined snake_case : Tuple = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f""" padded to `max_length`={max_length}""" ) snake_case : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case : Tuple = tensor return padded_tensor
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCamelCase : List[Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> None: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , A , ) super().__init__(*A , **A )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCamelCase : List[str] = '.' if __name__ == "__main__": lowerCamelCase : List[Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') lowerCamelCase : List[str] = [] lowerCamelCase : str = [] with open(doctest_file_path) as fp: for line in fp: lowerCamelCase : List[str] = line.strip() lowerCamelCase : Dict = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCamelCase : List[str] = '\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: snake_case : Any = parent snake_case : int = batch_size snake_case : List[str] = seq_length snake_case : str = is_training snake_case : int = use_input_mask snake_case : str = use_token_type_ids snake_case : int = use_labels snake_case : Optional[Any] = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Dict = hidden_act snake_case : Union[str, Any] = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Any = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : Tuple = num_labels snake_case : Optional[int] = num_choices snake_case : Dict = scope def UpperCAmelCase ( self ) -> Tuple: snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[Any] = None snake_case : Optional[int] = None snake_case : str = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Dict: snake_case : List[Any] = LlamaModel(config=A ) model.to(A ) model.eval() snake_case : Optional[int] = model(A , attention_mask=A ) snake_case : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : Union[str, Any] = True snake_case : Dict = LlamaModel(A ) model.to(A ) model.eval() snake_case : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) snake_case : Optional[int] = model( A , attention_mask=A , encoder_hidden_states=A , ) snake_case : Tuple = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Tuple: snake_case : int = LlamaForCausalLM(config=A ) model.to(A ) model.eval() snake_case : Optional[Any] = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: snake_case : str = True snake_case : Optional[int] = True snake_case : str = LlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass snake_case : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) snake_case : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case : Optional[int] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] snake_case : str = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice snake_case : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Optional[Any] = config_and_inputs snake_case : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _snake_case = (LlamaForCausalLM,) if is_torch_available() else () _snake_case = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = LlamaModelTester(self ) snake_case : List[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Tuple = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Any: snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Tuple = 3 snake_case : Optional[int] = input_dict["""input_ids"""] snake_case : List[str] = input_ids.ne(1 ).to(A ) snake_case : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case : str = LlamaForSequenceClassification(A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ) -> Dict: snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[Any] = 3 snake_case : Optional[int] = """single_label_classification""" snake_case : Optional[Any] = input_dict["""input_ids"""] snake_case : Optional[Any] = input_ids.ne(1 ).to(A ) snake_case : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case : Optional[Any] = LlamaForSequenceClassification(A ) model.to(A ) model.eval() snake_case : int = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ) -> List[str]: snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[str] = 3 snake_case : List[Any] = """multi_label_classification""" snake_case : Union[str, Any] = input_dict["""input_ids"""] snake_case : Union[str, Any] = input_ids.ne(1 ).to(A ) snake_case : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case : Union[str, Any] = LlamaForSequenceClassification(A ) model.to(A ) model.eval() snake_case : List[str] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase ( self ) -> Optional[int]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase ( self , A ) -> List[str]: snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[Any] = ids_tensor([1, 1_0] , config.vocab_size ) snake_case : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case : Dict = LlamaModel(A ) original_model.to(A ) original_model.eval() snake_case : Optional[Any] = original_model(A ).last_hidden_state snake_case : Optional[int] = original_model(A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} snake_case : Union[str, Any] = LlamaModel(A ) scaled_model.to(A ) scaled_model.eval() snake_case : Optional[Any] = scaled_model(A ).last_hidden_state snake_case : Optional[Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) snake_case : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case : Optional[int] = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case : Union[str, Any] = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) snake_case : str = model(torch.tensor(A ) ) # Expected mean on dim = -1 snake_case : List[Any] = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case : Union[str, Any] = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) snake_case : Tuple = model(torch.tensor(A ) ) # Expected mean on dim = -1 snake_case : Optional[int] = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case : Any = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def UpperCAmelCase ( self ) -> str: snake_case : Union[str, Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) snake_case : Tuple = model(torch.tensor(A ) ) snake_case : int = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case : Optional[Any] = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[str] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" snake_case : Optional[Any] = """Simply put, the theory of relativity states that """ snake_case : str = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) snake_case : Optional[Any] = tokenizer.encode(A , return_tensors="""pt""" ) snake_case : Dict = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=A ) # greedy generation outputs snake_case : Dict = model.generate(A , max_new_tokens=6_4 , top_p=A , temperature=1 , do_sample=A ) snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=A ) self.assertEqual(A , A )
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Dict = [] snake_case : Union[str, Any] = set({"""(""", """[""", """{"""} ) snake_case : Optional[Any] = set({""")""", """]""", """}"""} ) snake_case : List[Any] = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowercase ) == 0 or (len(lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowercase ) == 0 def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: snake_case : Any = input("""Enter sequence of brackets: """ ) if is_balanced(lowercase ): print(lowercase ,"""is balanced""" ) else: print(lowercase ,"""is not balanced""" ) if __name__ == "__main__": main()
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase : Union[str, Any] = 8 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=BITS ) -> str: snake_case : str = x.device snake_case : List[str] = (x * 255).int().clamp(0 ,255 ) snake_case : List[str] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=lowercase ) snake_case : int = rearrange(lowercase ,"""d -> d 1 1""" ) snake_case : Optional[int] = rearrange(lowercase ,"""b c h w -> b c 1 h w""" ) snake_case : Optional[Any] = ((x & mask) != 0).float() snake_case : Dict = rearrange(lowercase ,"""b c d h w -> b (c d) h w""" ) snake_case : Any = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=BITS ) -> List[str]: snake_case : Union[str, Any] = x.device snake_case : Optional[int] = (x > 0).int() snake_case : Union[str, Any] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=lowercase ,dtype=torch.intaa ) snake_case : List[Any] = rearrange(lowercase ,"""d -> d 1 1""" ) snake_case : Union[str, Any] = rearrange(lowercase ,"""b (c d) h w -> b c d h w""" ,d=8 ) snake_case : Any = reduce(x * mask ,"""b c d h w -> b c h w""" ,"""sum""" ) return (dec / 255).clamp(0.0 ,1.0 ) def SCREAMING_SNAKE_CASE__ ( self ,lowercase ,lowercase ,lowercase ,lowercase = 0.0 ,lowercase = True ,lowercase=None ,lowercase = True ,) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case : List[Any] = self.alphas_cumprod[timestep] snake_case : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case : Dict = self.bit_scale if self.config.clip_sample: snake_case : Optional[Any] = torch.clamp(lowercase ,-scale ,lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case : Dict = self._get_variance(lowercase ,lowercase ) snake_case : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : int = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case : Tuple = model_output.device if torch.is_tensor(lowercase ) else """cpu""" snake_case : Optional[Any] = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=lowercase ).to(lowercase ) snake_case : Optional[Any] = self._get_variance(lowercase ,lowercase ) ** 0.5 * eta * noise snake_case : Union[str, Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase ,pred_original_sample=lowercase ) def SCREAMING_SNAKE_CASE__ ( self ,lowercase ,lowercase ,lowercase ,lowercase="epsilon" ,lowercase=None ,lowercase = True ,) -> Union[DDPMSchedulerOutput, Tuple]: snake_case : Dict = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case , snake_case : str = torch.split(lowercase ,sample.shape[1] ,dim=1 ) else: snake_case : Dict = None # 1. compute alphas, betas snake_case : int = self.alphas_cumprod[t] snake_case : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case : Optional[int] = 1 - alpha_prod_t snake_case : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case : List[Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" snake_case : Union[str, Any] = self.bit_scale if self.config.clip_sample: snake_case : Tuple = torch.clamp(lowercase ,-scale ,lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : Optional[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case : Optional[Any] = 0 if t > 0: snake_case : Dict = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=lowercase ).to(model_output.device ) snake_case : Optional[Any] = (self._get_variance(lowercase ,predicted_variance=lowercase ) ** 0.5) * noise snake_case : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase ,pred_original_sample=lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A = 1.0 , ) -> List[Any]: super().__init__() snake_case : List[Any] = bit_scale snake_case : Any = ( ddim_bit_scheduler_step if isinstance(A , A ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 2_5_6 , A = 2_5_6 , A = 5_0 , A = None , A = 1 , A = "pil" , A = True , **A , ) -> Union[Tuple, ImagePipelineOutput]: snake_case : Tuple = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A , ) snake_case : Dict = decimal_to_bits(A ) * self.bit_scale snake_case : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case : List[str] = self.unet(A , A ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case : Union[str, Any] = self.scheduler.step(A , A , A ).prev_sample snake_case : Optional[int] = bits_to_decimal(A ) if output_type == "pil": snake_case : int = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: snake_case : Any = os.path.abspath(lowercase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) snake_case : Any = torch.load(lowercase ,map_location="""cpu""" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) snake_case : Union[str, Any] = convert_pytorch_state_dict_to_flax(lowercase ,lowercase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case : List[Any] = convert_pytorch_sharded_state_dict_to_flax(lowercase ,lowercase ) return flax_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(lowercase ) -> bool: return len(set(lowercase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case : List[Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case : str = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case : Optional[int] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case : Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowercase ): snake_case : Optional[Any] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowercase ): snake_case : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case : int = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case : str = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case : Optional[Any] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case : List[str] = pt_tuple_key[-2] + """_v""" if name is not None: snake_case : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: # convert pytorch tensor to numpy snake_case : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case : List[str] = flax_model.params["""params"""] else: snake_case : List[str] = flax_model.params snake_case : List[Any] = flatten_dict(lowercase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case : Optional[int] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(lowercase ) snake_case : Optional[Any] = {} snake_case : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case : Any = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : Union[str, Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Tuple = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case : str = rename_key_and_reshape_tensor( lowercase ,lowercase ,lowercase ,lowercase ) # add model prefix if necessary snake_case : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case : str = jnp.asarray(lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase ,lowercase ) continue # also add unexpected weight so that warning is thrown snake_case : int = jnp.asarray(lowercase ) else: # also add unexpected weight so that warning is thrown snake_case : str = jnp.asarray(lowercase ) return unflatten_dict(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: import torch # Load the index snake_case : Any = {} for shard_file in shard_filenames: # load using msgpack utils snake_case : Tuple = torch.load(lowercase ) snake_case : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case : List[Any] = flax_model.params["""params"""] snake_case : Optional[int] = flatten_dict(lowercase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: snake_case : Optional[int] = flax_model.params snake_case : Optional[int] = flatten_dict(lowercase ) snake_case : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Dict = pt_tuple_key[1:] # Correctly rename weight parameters snake_case , snake_case : Union[str, Any] = rename_key_and_reshape_tensor( lowercase ,lowercase ,lowercase ,lowercase ) # add model prefix if necessary snake_case : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case : Tuple = jnp.asarray(lowercase ) continue if "var" in flax_key[-1]: snake_case : List[Any] = jnp.asarray(lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase ,lowercase ) continue # also add unexpected weight so that warning is thrown snake_case : List[str] = jnp.asarray(lowercase ) else: # also add unexpected weight so that warning is thrown snake_case : Optional[Any] = jnp.asarray(lowercase ) return unflatten_dict(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : str = os.path.abspath(lowercase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class snake_case : str = getattr(lowercase ,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(lowercase ,"""rb""" ) as state_f: try: snake_case : str = from_bytes(lowercase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights snake_case : Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa ,lowercase ) ).values() if any(lowercase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) snake_case : Dict = jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,lowercase ) snake_case : List[Any] = flatten_dict(lowercase ) snake_case : Optional[Any] = pt_model.state_dict() snake_case : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) snake_case : Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case : int = [] snake_case : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix snake_case : Union[str, Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Optional[int] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case : Optional[int] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowercase ) not in pt_model_dict: # conv layer snake_case : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) snake_case : Union[str, Any] = jnp.transpose(lowercase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase ) not in pt_model_dict: # linear layer snake_case : List[Any] = flax_key_tuple[:-1] + ("""weight""",) snake_case : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case : List[Any] = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case : Any = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: snake_case : List[Any] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: snake_case : List[str] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case : str = """.""".join(lowercase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case : Tuple = key.split(""".""" ) snake_case : Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case : List[Any] = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case : Tuple = key_components[-2] + """_v""" if name is not None: snake_case : List[str] = key_components[:-3] + [name] snake_case : Optional[int] = """.""".join(lowercase ) snake_case : Optional[Any] = key if flax_key in special_pt_names: snake_case : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict snake_case : str = np.asarray(lowercase ) if not isinstance(lowercase ,np.ndarray ) else flax_tensor snake_case : List[Any] = torch.from_numpy(lowercase ) # remove from missing keys missing_keys.remove(lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase ) pt_model.load_state_dict(lowercase ) # re-transform missing_keys to list snake_case : Optional[int] = list(lowercase ) if len(lowercase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(lowercase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCamelCase : str = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCamelCase : Dict = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class __lowercase : """simple docstring""" _snake_case = 42 _snake_case = 42 class __lowercase : """simple docstring""" def __init__( self , A ) -> None: snake_case : Node | None = None for i in sorted(A , reverse=A ): snake_case : Any = Node(A , self.head ) def __iter__( self ) -> Iterator[int]: snake_case : Optional[int] = self.head while node: yield node.data snake_case : List[str] = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(A ) for node in self] ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> SortedLinkedList: return SortedLinkedList(list(lowercase ) + list(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
lowerCamelCase : Optional[Any] = 9.8_0665 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase : List[str] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase : List[Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Any = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """dpt""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=3_8_4 , A=1_6 , A=3 , A=False , A=True , A=[2, 5, 8, 1_1] , A="project" , A=[4, 2, 1, 0.5] , A=[9_6, 1_9_2, 3_8_4, 7_6_8] , A=2_5_6 , A=-1 , A=False , A=True , A=0.4 , A=2_5_5 , A=0.1 , A=[1, 1_0_2_4, 2_4, 2_4] , A=[0, 1] , A=None , **A , ) -> Tuple: super().__init__(**A ) snake_case : List[Any] = hidden_size snake_case : List[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case : Optional[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } snake_case : Optional[Any] = BitConfig(**A ) elif isinstance(A , A ): logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case : Tuple = BitConfig(**A ) elif isinstance(A , A ): snake_case : Dict = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) snake_case : Union[str, Any] = backbone_featmap_shape snake_case : str = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: snake_case : Union[str, Any] = None snake_case : Tuple = None snake_case : List[Any] = [] snake_case : Tuple = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Dict = intermediate_size snake_case : Optional[Any] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : int = layer_norm_eps snake_case : Tuple = image_size snake_case : int = patch_size snake_case : Union[str, Any] = num_channels snake_case : Tuple = qkv_bias snake_case : List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) snake_case : Any = readout_type snake_case : int = reassemble_factors snake_case : Union[str, Any] = neck_hidden_sizes snake_case : Optional[int] = fusion_hidden_size snake_case : Optional[int] = head_in_index snake_case : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case : int = use_auxiliary_head snake_case : Tuple = auxiliary_loss_weight snake_case : str = semantic_loss_ignore_index snake_case : Tuple = semantic_classifier_dropout def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case : Optional[Any] = self.backbone_config.to_dict() snake_case : Tuple = self.__class__.model_type return output
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCamelCase : Optional[Any] = '\nHuman: <<task>>\n\nAssistant: ' lowerCamelCase : int = 'huggingface-tools/default-prompts' lowerCamelCase : Any = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: snake_case : int = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" ,lowercase ) is not None: return prompt_or_repo_id snake_case : Optional[int] = cached_file( lowercase ,PROMPT_FILES[mode] ,repo_type="""dataset""" ,user_agent={"""agent""": agent_name} ) with open(lowercase ,"""r""" ,encoding="""utf-8""" ) as f: return f.read()
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=True , A=False , A=False , A=False , A=2 , A=9_9 , A=0 , A=3_2 , A=5 , A=4 , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=2 , A=4 , A="last" , A=True , A=None , A=0 , ) -> Union[str, Any]: snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : str = is_training snake_case : str = use_input_lengths snake_case : List[Any] = use_token_type_ids snake_case : Optional[int] = use_labels snake_case : Optional[int] = gelu_activation snake_case : Dict = sinusoidal_embeddings snake_case : Any = causal snake_case : str = asm snake_case : Dict = n_langs snake_case : Optional[Any] = vocab_size snake_case : Any = n_special snake_case : List[str] = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : List[Any] = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Optional[Any] = type_sequence_label_size snake_case : Any = initializer_range snake_case : List[str] = num_labels snake_case : str = num_choices snake_case : Union[str, Any] = summary_type snake_case : Optional[int] = use_proj snake_case : List[Any] = scope snake_case : List[str] = bos_token_id def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Any = None if self.use_input_lengths: snake_case : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : Any = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : Optional[int] = None snake_case : List[Any] = None snake_case : Dict = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[str] = ids_tensor([self.batch_size] , 2 ).float() snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self ) -> int: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: snake_case : List[Any] = XLMModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , lengths=A , langs=A ) snake_case : Optional[Any] = model(A , langs=A ) snake_case : str = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : str = XLMWithLMHeadModel(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: snake_case : List[str] = XLMForQuestionAnsweringSimple(A ) model.to(A ) model.eval() snake_case : Tuple = model(A ) snake_case : List[str] = model(A , start_positions=A , end_positions=A ) snake_case : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : Any = XLMForQuestionAnswering(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A ) snake_case : Dict = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , p_mask=A , ) snake_case : List[Any] = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , ) ((snake_case) , ) : List[str] = result_with_labels.to_tuple() snake_case : int = model(A , start_positions=A , end_positions=A ) ((snake_case) , ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : Any = XLMForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Optional[Any] = model(A ) snake_case : Optional[int] = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> int: snake_case : Tuple = self.num_labels snake_case : Any = XLMForTokenClassification(A ) model.to(A ) model.eval() snake_case : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> str: snake_case : Optional[Any] = self.num_choices snake_case : Optional[Any] = XLMForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Tuple = config_and_inputs snake_case : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self , A , A , A , A , A ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self , A , A , A=False ) -> int: snake_case : Any = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase ( self ) -> List[str]: snake_case : int = XLMModelTester(self ) snake_case : int = ConfigTester(self , config_class=A , emb_dim=3_7 ) def UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> int: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A ) def UpperCAmelCase ( self ) -> int: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> List[Any]: self.assertIsInstance(A , A ) self.assertListEqual( [isinstance(A , A ) for iter_attentions in attentions] , [True] * len(A ) ) self.assertEqual(len(A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A ): # adds PAD dummy token snake_case : Tuple = min_length + idx + 1 snake_case : Dict = min_length + idx + 1 snake_case : List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A ) ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> str: self.assertIsInstance(A , A ) self.assertListEqual( [isinstance(A , A ) for iter_hidden_states in hidden_states] , [True] * len(A ) , ) self.assertEqual(len(A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A ): # adds PAD dummy token snake_case : Optional[Any] = min_length + idx + 1 snake_case : Tuple = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A ) , ) pass @slow def UpperCAmelCase ( self ) -> str: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = XLMModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(A ) snake_case : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=A ) # the president snake_case : int = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case : List[Any] = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case , snake_case : Any = emb.weight.shape snake_case : str = nn.Linear(lowercase ,lowercase ,bias=lowercase ) snake_case : Any = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : List[Any] = torch.load(lowercase ,map_location="""cpu""" ) snake_case : Optional[Any] = Namespace(**checkpoint["""cfg"""]["""model"""] ) snake_case : Union[str, Any] = checkpoint["""model"""] remove_ignore_keys_(lowercase ) snake_case : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] snake_case : Tuple = {key.replace("""decoder""" ,"""model""" ): val for key, val in state_dict.items()} snake_case : Dict = XGLMConfig( vocab_size=lowercase ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""gelu""" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) snake_case : str = XGLMForCausalLM(lowercase ) snake_case : List[Any] = model.load_state_dict(lowercase ,strict=lowercase ) print(lowercase ) snake_case : Tuple = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCamelCase : Optional[Any] = parser.parse_args() lowerCamelCase : int = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase=False ,) -> Optional[int]: output_path.parent.mkdir(parents=lowercase ,exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase ,lowercase ,f=output_path.as_posix() ,input_names=lowercase ,output_names=lowercase ,dynamic_axes=lowercase ,do_constant_folding=lowercase ,use_external_data_format=lowercase ,enable_onnx_checker=lowercase ,opset_version=lowercase ,) else: export( lowercase ,lowercase ,f=output_path.as_posix() ,input_names=lowercase ,output_names=lowercase ,dynamic_axes=lowercase ,do_constant_folding=lowercase ,opset_version=lowercase ,) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = False ) -> str: snake_case : Optional[int] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case : int = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: snake_case : Dict = """cpu""" snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained(lowercase ,torch_dtype=lowercase ).to(lowercase ) snake_case : Optional[Any] = Path(lowercase ) # TEXT ENCODER snake_case : List[Any] = pipeline.text_encoder.config.max_position_embeddings snake_case : Any = pipeline.text_encoder.config.hidden_size snake_case : Optional[Any] = pipeline.tokenizer( """A sample prompt""" ,padding="""max_length""" ,max_length=pipeline.tokenizer.model_max_length ,truncation=lowercase ,return_tensors="""pt""" ,) onnx_export( pipeline.text_encoder ,model_args=(text_input.input_ids.to(device=lowercase ,dtype=torch.intaa )) ,output_path=output_path / """text_encoder""" / """model.onnx""" ,ordered_input_names=["""input_ids"""] ,output_names=["""last_hidden_state""", """pooler_output"""] ,dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } ,opset=lowercase ,) del pipeline.text_encoder # UNET snake_case : Optional[Any] = pipeline.unet.config.in_channels snake_case : Dict = pipeline.unet.config.sample_size snake_case : Optional[Any] = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet ,model_args=( torch.randn(2 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), torch.randn(2 ).to(device=lowercase ,dtype=lowercase ), torch.randn(2 ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=lowercase ,ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] ,output_names=["""out_sample"""] ,dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } ,opset=lowercase ,use_external_data_format=lowercase ,) snake_case : Optional[Any] = str(unet_path.absolute().as_posix() ) snake_case : List[Any] = os.path.dirname(lowercase ) snake_case : Optional[Any] = onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase ,lowercase ,save_as_external_data=lowercase ,all_tensors_to_one_file=lowercase ,location="""weights.pb""" ,convert_attribute=lowercase ,) del pipeline.unet # VAE ENCODER snake_case : Optional[int] = pipeline.vae snake_case : List[Any] = vae_encoder.config.in_channels snake_case : Optional[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder snake_case : Dict = lambda lowercase ,lowercase : vae_encoder.encode(lowercase ,lowercase )[0].sample() onnx_export( lowercase ,model_args=( torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=output_path / """vae_encoder""" / """model.onnx""" ,ordered_input_names=["""sample""", """return_dict"""] ,output_names=["""latent_sample"""] ,dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=lowercase ,) # VAE DECODER snake_case : Tuple = pipeline.vae snake_case : int = vae_decoder.config.latent_channels snake_case : Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part snake_case : Optional[Any] = vae_encoder.decode onnx_export( lowercase ,model_args=( torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=output_path / """vae_decoder""" / """model.onnx""" ,ordered_input_names=["""latent_sample""", """return_dict"""] ,output_names=["""sample"""] ,dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=lowercase ,) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: snake_case : Any = pipeline.safety_checker snake_case : Optional[int] = safety_checker.config.vision_config.num_channels snake_case : Dict = safety_checker.config.vision_config.image_size snake_case : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker ,model_args=( torch.randn( 1 ,lowercase ,lowercase ,lowercase ,).to(device=lowercase ,dtype=lowercase ), torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), ) ,output_path=output_path / """safety_checker""" / """model.onnx""" ,ordered_input_names=["""clip_input""", """images"""] ,output_names=["""out_images""", """has_nsfw_concepts"""] ,dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } ,opset=lowercase ,) del pipeline.safety_checker snake_case : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) snake_case : Optional[Any] = pipeline.feature_extractor else: snake_case : Optional[int] = None snake_case : int = None snake_case : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) ,vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) ,text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) ,tokenizer=pipeline.tokenizer ,unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) ,scheduler=pipeline.scheduler ,safety_checker=lowercase ,feature_extractor=lowercase ,requires_safety_checker=safety_checker is not None ,) onnx_pipeline.save_pretrained(lowercase ) print("""ONNX pipeline saved to""" ,lowercase ) del pipeline del onnx_pipeline snake_case : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(lowercase ,provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCamelCase : List[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: if index == r: for j in range(lowercase ): print(data[j] ,end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location snake_case : Optional[int] = arr[i] combination_util(lowercase ,lowercase ,lowercase ,index + 1 ,lowercase ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[int]: # A temporary array to store all combination one by one snake_case : Optional[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase ,lowercase ,lowercase ,0 ,lowercase ,0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase : Any = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> List[Any]: super().__init__(*A , **A ) requires_backends(self , """decord""" ) self.check_model_type(A ) def UpperCAmelCase ( self , A=None , A=None , A=None ) -> str: snake_case : List[str] = {} if frame_sampling_rate is not None: snake_case : str = frame_sampling_rate if num_frames is not None: snake_case : str = num_frames snake_case : Optional[Any] = {} if top_k is not None: snake_case : int = top_k return preprocess_params, {}, postprocess_params def __call__( self , A , **A ) -> str: return super().__call__(A , **A ) def UpperCAmelCase ( self , A , A=None , A=1 ) -> Tuple: if num_frames is None: snake_case : Optional[int] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case : int = BytesIO(requests.get(A ).content ) snake_case : Optional[int] = VideoReader(A ) videoreader.seek(0 ) snake_case : Union[str, Any] = 0 snake_case : str = num_frames * frame_sampling_rate - 1 snake_case : Dict = np.linspace(A , A , num=A , dtype=np.intaa ) snake_case : Tuple = videoreader.get_batch(A ).asnumpy() snake_case : Union[str, Any] = list(A ) snake_case : Tuple = self.image_processor(A , return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case : int = self.model(**A ) return model_outputs def UpperCAmelCase ( self , A , A=5 ) -> Optional[int]: if top_k > self.model.config.num_labels: snake_case : Any = self.model.config.num_labels if self.framework == "pt": snake_case : Tuple = model_outputs.logits.softmax(-1 )[0] snake_case , snake_case : Optional[Any] = probs.topk(A ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : Any = scores.tolist() snake_case : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A , A )]
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """LayoutLMv2ImageProcessor""" _snake_case = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Optional[Any]: if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A , A = None , A = None , A = None , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor snake_case : Tuple = self.image_processor(images=A , return_tensors=A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A , A ): snake_case : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["""words"""] snake_case : List[Any] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel values snake_case : Dict = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: snake_case : Optional[int] = self.get_overflowing_images(A , encoded_inputs["""overflow_to_sample_mapping"""] ) snake_case : Optional[Any] = images return encoded_inputs def UpperCAmelCase ( self , A , A ) -> List[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case : List[Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A ) != len(A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(A )} and {len(A )}""" ) return images_with_overflow def UpperCAmelCase ( self , *A , **A ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> Optional[Any]: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase : set[int] = {ord(char) for char in VALID_CHARS} lowerCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str | None: snake_case : str = "" snake_case : int snake_case : int snake_case : int for keychar, cipherchar in zip(cycle(lowercase ) ,lowercase ): snake_case : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase ) return decoded def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[str]: snake_case : list[str] = [] for key in product(lowercase ,repeat=3 ): snake_case : Dict = try_key(lowercase ,lowercase ) if encoded is not None: possibles.append(lowercase ) return possibles def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__ ( lowercase = "p059_cipher.txt" ) -> int: snake_case : list[int] snake_case : list[str] snake_case : str snake_case : str snake_case : str = Path(lowercase ).parent.joinpath(lowercase ).read_text(encoding="""utf-8""" ) snake_case : List[Any] = [int(lowercase ) for number in data.strip().split(""",""" )] snake_case : Optional[int] = filter_valid_chars(lowercase ) for common_word in COMMON_WORDS: snake_case : str = filter_common_word(lowercase ,lowercase ) if len(lowercase ) == 1: break snake_case : str = possibles[0] return sum(ord(lowercase ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Any = WavaVecaForSequenceClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : Any = downstream_dict["""projector.weight"""] snake_case : Optional[int] = downstream_dict["""projector.bias"""] snake_case : Any = downstream_dict["""model.post_net.linear.weight"""] snake_case : Tuple = downstream_dict["""model.post_net.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: snake_case : Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase ,config=lowercase ) snake_case : List[str] = downstream_dict["""model.linear.weight"""] snake_case : Any = downstream_dict["""model.linear.bias"""] return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[Any]: snake_case : Any = WavaVecaForXVector.from_pretrained(lowercase ,config=lowercase ) snake_case : Any = downstream_dict["""connector.weight"""] snake_case : List[Any] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case : Optional[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case : Optional[int] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case : Dict = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case : str = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case : Optional[Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: snake_case : List[str] = torch.load(lowercase ,map_location="""cpu""" ) snake_case : Union[str, Any] = checkpoint["""Downstream"""] snake_case : List[str] = WavaVecaConfig.from_pretrained(lowercase ) snake_case : Tuple = WavaVecaFeatureExtractor.from_pretrained( lowercase ,return_attention_mask=lowercase ,do_normalize=lowercase ) snake_case : Tuple = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case : Optional[Any] = convert_classification(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case : List[str] = convert_diarization(lowercase ,lowercase ,lowercase ) elif arch.endswith("""ForXVector""" ): snake_case : Optional[int] = convert_xvector(lowercase ,lowercase ,lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case : str = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase : List[str] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowerCamelCase : str = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase : List[Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowerCamelCase : List[str] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowerCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
import argparse import os import re lowerCamelCase : List[Any] = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase : List[str] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings lowerCamelCase : List[Any] = re.compile(r'\s*\(\s*"(\S[^"]+)"') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = False ) -> str: with open(lowercase ,"""r""" ,encoding="""utf-8""" ) as f: snake_case : Dict = f.read() snake_case : Dict = content.split("""\n""" ) snake_case : int = [] snake_case : Tuple = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: snake_case : Optional[Any] = len(re.search(R"""^(\s*)\S""" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 snake_case : Optional[int] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": snake_case : Optional[int] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers snake_case : Optional[int] = sorted(lowercase ,key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def SCREAMING_SNAKE_CASE__ ( lowercase = False ) -> str: snake_case : Dict = [os.path.join(lowercase ,lowercase ) for f in os.listdir(lowercase ) if f.endswith(""".py""" )] snake_case : List[str] = [sort_auto_mapping(lowercase ,overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): snake_case : int = [f for f, d in zip(lowercase ,lowercase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix""" """ this.""" ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCamelCase : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) == 0: return [] snake_case , snake_case : Optional[Any] = min(lowercase ), max(lowercase ) snake_case : List[Any] = int(max_value - min_value ) + 1 snake_case : list[list] = [[] for _ in range(lowercase )] for i in my_list: buckets[int(i - min_value )].append(lowercase ) return [v for bucket in buckets for v in sorted(lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase : Optional[Any] = get_tests_dir('fixtures') class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: # A mock response for an HTTP head request to emulate server down snake_case : Optional[int] = mock.Mock() snake_case : List[str] = 5_0_0 snake_case : Optional[int] = {} snake_case : Any = HTTPError snake_case : int = {} # Download this model to make sure it's in the cache. snake_case : Any = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: snake_case : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self ) -> Dict: # This test is for deprecated behavior and can be removed in v5 snake_case : Optional[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def UpperCAmelCase ( self ) -> Optional[Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> str: snake_case : str = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[int] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case : Optional[int] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) snake_case : int = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case : Union[str, Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) snake_case : List[str] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() snake_case : Optional[int] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case : Optional[Any] = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCamelCase : Optional[int] = 'facebook/wmt19-en-de' lowerCamelCase : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCamelCase : Any = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCamelCase : List[Any] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test lowerCamelCase : List[Any] = tokenizer(['Making tiny model'], return_tensors='pt') lowerCamelCase : int = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save lowerCamelCase : Union[str, Any] = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: return getitem, k def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return setitem, k, v def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: return delitem, k def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,*lowercase ) -> Union[str, Any]: try: return fun(lowercase ,*lowercase ), None except Exception as e: return None, e lowerCamelCase : Union[str, Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCamelCase : List[str] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCamelCase : Dict = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCamelCase : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCamelCase : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( """operations""" ,( pytest.param(_add_items ,id="""add items""" ), pytest.param(_overwrite_items ,id="""overwrite items""" ), pytest.param(_delete_items ,id="""delete items""" ), pytest.param(_access_absent_items ,id="""access absent items""" ), pytest.param(_add_with_resize_up ,id="""add with resize up""" ), pytest.param(_add_with_resize_down ,id="""add with resize down""" ), ) ,) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : Any = HashMap(initial_block_size=4 ) snake_case : Dict = {} for _, (fun, *args) in enumerate(lowercase ): snake_case , snake_case : Optional[int] = _run_operation(lowercase ,lowercase ,*lowercase ) snake_case , snake_case : Optional[int] = _run_operation(lowercase ,lowercase ,*lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: def is_public(lowercase ) -> bool: return not name.startswith("""_""" ) snake_case : Any = {name for name in dir({} ) if is_public(lowercase )} snake_case : Tuple = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : List[str] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Tuple = len(lowercase ) snake_case : Dict = matrix_length // 2 snake_case : List[Any] = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : Optional[int] = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[int] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : Any = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case , snake_case , snake_case , snake_case : Any = split_matrix(lowercase ) snake_case , snake_case , snake_case , snake_case : Dict = split_matrix(lowercase ) snake_case : Optional[int] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Any = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Any = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : Tuple = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : Union[str, Any] = matrix_addition(lowercase ,lowercase ) snake_case : Tuple = matrix_addition(lowercase ,lowercase ) snake_case : Tuple = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : int = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Any = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : Dict = matrix_dimensions(lowercase ) snake_case : Any = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Union[str, Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : List[str] = matrixa snake_case : List[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : List[str] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Optional[int] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : str = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1