code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[Any] = 3 snake_case : Any = 2_5_0 snake_case : List[Any] = ids_tensor((batch_size, length) , UpperCAmelCase_ ) snake_case : List[str] = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case , snake_case : str = self._get_tensors(5 ) snake_case : List[str] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : Optional[int] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : int = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = MaxLengthCriteria(max_length=1_0 ) snake_case , snake_case : int = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : List[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case , snake_case : Any = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case , snake_case : Union[str, Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def UpperCAmelCase ( self ) -> Any: snake_case , snake_case : Dict = self._get_tensors(5 ) snake_case : List[Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase ( self ) -> List[Any]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) snake_case : Tuple = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCamelCase : Optional[int] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCamelCase : str = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Optional[Any] = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) snake_case : Optional[Any] = bs[:] snake_case : int = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 snake_case : Optional[Any] = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase ,_lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Optional[Any] = set() snake_case : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : int = char return pairs class __lowercase (UpperCamelCase_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Optional[int]: snake_case : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token snake_case : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token snake_case : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token snake_case : Optional[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : Tuple = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding="""utf-8""" ) as vocab_handle: snake_case : Optional[int] = json.load(UpperCamelCase__ ) snake_case : str = {v: k for k, v in self.encoder.items()} snake_case : Union[str, Any] = errors # how to handle errors in decoding snake_case : Union[str, Any] = bytes_to_unicode() snake_case : int = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding="""utf-8""" ) as merges_handle: snake_case : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] snake_case : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : str = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Dict = {} snake_case : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : str = re.compile(r"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self ) -> Dict: return len(self.encoder ) def UpperCAmelCase ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , A ) -> int: if token in self.cache: return self.cache[token] snake_case : str = tuple(UpperCamelCase__ ) snake_case : Union[str, Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case : Dict = min(UpperCamelCase__ , key=lambda A : self.bpe_ranks.get(UpperCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case : Tuple = bigram snake_case : Optional[int] = [] snake_case : str = 0 while i < len(UpperCamelCase__ ): try: snake_case : Optional[int] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : List[str] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Optional[int] = tuple(UpperCamelCase__ ) snake_case : Tuple = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case : Union[str, Any] = get_pairs(UpperCamelCase__ ) snake_case : Any = ''' '''.join(UpperCamelCase__ ) snake_case : Dict = word return word def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : List[Any] = [] for token in re.findall(self.pat , UpperCamelCase__ ): snake_case : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase ( self , A ) -> Tuple: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , A ) -> Tuple: return self.decoder.get(UpperCamelCase__ ) def UpperCAmelCase ( self , A ) -> int: snake_case : Optional[Any] = ''''''.join(UpperCamelCase__ ) snake_case : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase ( self , A , A = None ) -> Any: if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + """\n""" ) snake_case : Optional[int] = 0 with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) snake_case : List[str] = token_index writer.write(""" """.join(UpperCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , A , A = None , A = False ) -> Optional[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def UpperCAmelCase ( self , A , A = None ) -> Union[str, Any]: snake_case : Optional[int] = [self.sep_token_id] snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A=False , **A ) -> Optional[Any]: snake_case : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): snake_case : str = ''' ''' + text return (text, kwargs) def UpperCAmelCase ( self , A , A = None ) -> Dict: return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A ) -> int: snake_case : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) snake_case : str = ''' '''.join(UpperCamelCase__ ) snake_case : Dict = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: snake_case : Union[str, Any] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : """simple docstring""" @staticmethod def UpperCAmelCase ( *A , **A ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Tuple = np.array(__UpperCamelCase ) snake_case : int = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" _snake_case = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _snake_case = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase ( self , A , A , A ) -> Tuple: snake_case : Any = MaskGenerationPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self , A , A ) -> Optional[Any]: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @slow @require_torch def UpperCAmelCase ( self ) -> Dict: snake_case : Any = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) snake_case : List[Any] = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_5_6 ) # Shortening by hashing snake_case : Optional[int] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_SCREAMING_SNAKE_CASE ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.04_44}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_21}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.01_67}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.01_32}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.00_53}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.99_67}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_93}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.99_09}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.98_79}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.98_34}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.97_16}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.96_12}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.95_99}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.95_52}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.95_32}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.95_16}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.94_99}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.94_83}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.94_64}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_43}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_43}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.94_08}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.93_35}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.93_26}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.92_62}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.89_99}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.89_86}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.89_84}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.88_73}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.88_71} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = """facebook/sam-vit-huge""" snake_case : Dict = pipeline("""mask-generation""" , model=_SCREAMING_SNAKE_CASE ) snake_case : Any = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing snake_case : Optional[Any] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_SCREAMING_SNAKE_CASE ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.04_44}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.02_10}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.01_67}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.01_32}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.00_53}, ] , )
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __lowercase (ctypes.Structure ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: if os.name == "nt": snake_case : str = CursorInfo() snake_case : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase ,ctypes.byref(lowercase ) ) snake_case : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase ,ctypes.byref(lowercase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def SCREAMING_SNAKE_CASE__ ( ) -> int: if os.name == "nt": snake_case : List[Any] = CursorInfo() snake_case : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase ,ctypes.byref(lowercase ) ) snake_case : List[Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase ,ctypes.byref(lowercase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: try: hide_cursor() yield finally: show_cursor()
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = len(set_a.intersection(SCREAMING_SNAKE_CASE_ ) ) if alternative_union: snake_case : List[str] = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) else: snake_case : Union[str, Any] = len(set_a.union(SCREAMING_SNAKE_CASE_ ) ) return intersection / union if isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ): snake_case : List[str] = [element for element in set_a if element in set_b] if alternative_union: snake_case : str = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / union else: snake_case : List[str] = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return None if __name__ == "__main__": lowerCamelCase : Optional[Any] = {'a', 'b', 'c', 'd', 'e'} lowerCamelCase : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : List[str] = min(_lowerCAmelCase ) # min() finds the minimum value snake_case : List[Any] = max(_lowerCAmelCase ) # max() finds the maximum value snake_case : Union[str, Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case : List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case : Union[str, Any] = 0 for count in range(_lowerCAmelCase ): while holes[count] > 0: holes[count] -= 1 snake_case : Dict = count + min_val i += 1 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Optional[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCAmelCase ) print("""Sorted order is:""" ,""" """.join(_lowerCAmelCase ) ) if __name__ == "__main__": main()
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : List[Any] = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowercase (UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" _snake_case = "pixel_values" _snake_case = False _snake_case = TimmBackboneConfig def __init__( self , A , **A ) -> Dict: requires_backends(self , """timm""" ) super().__init__(lowerCamelCase__ ) snake_case : Any = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase__ , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) snake_case : Optional[Any] = getattr(lowerCamelCase__ , """use_pretrained_backbone""" , lowerCamelCase__ ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. snake_case : int = config.out_indices if getattr(lowerCamelCase__ , """out_indices""" , lowerCamelCase__ ) is not None else (-1,) snake_case : List[Any] = timm.create_model( config.backbone , pretrained=lowerCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCamelCase__ , **lowerCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case : List[str] = self._backbone.return_layers snake_case : Optional[int] = {layer["module"]: str(lowerCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase__ ) @classmethod def UpperCAmelCase ( cls , A , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig snake_case : Any = kwargs.pop("""config""" , TimmBackboneConfig() ) snake_case : Dict = kwargs.pop("""use_timm_backbone""" , lowerCamelCase__ ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) snake_case : str = kwargs.pop("""num_channels""" , config.num_channels ) snake_case : Dict = kwargs.pop("""features_only""" , config.features_only ) snake_case : str = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) snake_case : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) snake_case : Dict = TimmBackboneConfig( backbone=lowerCamelCase__ , num_channels=lowerCamelCase__ , features_only=lowerCamelCase__ , use_pretrained_backbone=lowerCamelCase__ , out_indices=lowerCamelCase__ , ) return super()._from_config(lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , A ) -> Optional[int]: pass def UpperCAmelCase ( self , A , A=None , A=None , A=None , **A ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: snake_case : Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : Dict = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case : Optional[int] = self._all_layers snake_case : List[str] = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) snake_case : List[Any] = self._return_layers snake_case : Tuple = tuple(hidden_states[i] for i in self.out_indices ) else: snake_case : Any = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) snake_case : Tuple = None snake_case : Dict = tuple(lowerCamelCase__ ) snake_case : Optional[Any] = tuple(lowerCamelCase__ ) if hidden_states is not None else None if not return_dict: snake_case : Dict = (feature_maps,) if output_hidden_states: snake_case : List[str] = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase__ , hidden_states=lowerCamelCase__ , attentions=lowerCamelCase__ )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : List[Any] = Mock() snake_case : Optional[int] = conn, Mock() snake_case : str = iter([1, None] ) snake_case : str = lambda lowercase : next(lowercase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" ,testing=lowercase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self ) -> None: snake_case : Dict = [2, 1, 2, -1] snake_case : str = [1, 2, 3, 4] def UpperCAmelCase ( self ) -> list[float]: snake_case : List[Any] = len(self.first_signal ) snake_case : Union[str, Any] = len(self.second_signal ) snake_case : Union[str, Any] = max(__a , __a ) # create a zero matrix of max_length x max_length snake_case : List[str] = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): snake_case : Any = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal snake_case : Tuple = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: for param in module.parameters(): snake_case : Dict = False def SCREAMING_SNAKE_CASE__ ( ) -> Any: snake_case : Tuple = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case : List[str] = """mps""" if device == "mps": print( """WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues""" """ with generations.""" ) return device def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : List[str] = plt.imshow(_UpperCamelCase ) fig.axes.get_xaxis().set_visible(_UpperCamelCase ) fig.axes.get_yaxis().set_visible(_UpperCamelCase ) plt.show() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : List[Any] = datetime.now() snake_case : Union[str, Any] = current_time.strftime("""%H:%M:%S""" ) return timestamp
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCamelCase : Optional[int] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[int] = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" ,type=lowercase ,default="""wikitext""" ,help="""Name of the training. Explore datasets at: hf.co/datasets.""" ,) parser.add_argument( """--dataset_config""" ,type=lowercase ,default="""wikitext-103-raw-v1""" ,help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" ,type=lowercase ,default="""sayakpaul/unigram-tokenizer-wikitext""" ,help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" ,) parser.add_argument( """--shard_size""" ,type=lowercase ,default=1000 ,help="""Number of entries to go in a single shard.""" ,) parser.add_argument("""--split""" ,type=lowercase ,default="""train""" ,choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" ,default=lowercase ,type=lowercase ,help="""Limit the number of shards (used for debugging).""" ,) parser.add_argument( """--max_length""" ,type=lowercase ,default=512 ,help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" ,) parser.add_argument( """--output_dir""" ,default="""tf-tpu""" ,type=lowercase ,help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" ,) snake_case : List[str] = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: def fn(lowercase ): return tokenizer(examples["""text"""] ) return fn def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Tuple = [] for i in range(len(tokenized_data["""input_ids"""] ) ): snake_case : Union[str, Any] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } snake_case : Optional[int] = tf.train.Features(feature=lowercase ) snake_case : str = tf.train.Example(features=lowercase ) snake_case : Union[str, Any] = example.SerializeToString() records.append(lowercase ) return records def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Any = datasets.load_dataset(args.dataset_name ,args.dataset_config ,split=args.split ) if args.limit is not None: snake_case : Dict = min(len(lowercase ) ,args.limit ) snake_case : Any = dataset.select(range(lowercase ) ) print(f"""Limiting the dataset to {args.limit} entries.""" ) snake_case : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case : Tuple = os.path.join(args.output_dir ,args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: snake_case : int = os.path.join(args.output_dir ,args.split ) # Tokenize the whole dataset at once. snake_case : Any = tokenize_function(lowercase ) snake_case : List[Any] = dataset.map(lowercase ,batched=lowercase ,num_proc=4 ,remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase ): # Concatenate all texts. snake_case : List[Any] = {k: sum(examples[k] ,[] ) for k in examples.keys()} snake_case : List[str] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case : Tuple = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case : Optional[int] = { k: [t[i : i + args.max_length] for i in range(0 ,lowercase ,args.max_length )] for k, t in concatenated_examples.items() } return result snake_case : Optional[Any] = dataset_tokenized.map(lowercase ,batched=lowercase ,batch_size=1000 ,num_proc=4 ) snake_case : List[Any] = 0 snake_case : List[Any] = 0 for shard in range(0 ,len(lowercase ) ,args.shard_size ): snake_case : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] snake_case : Tuple = len(dataset_snapshot["""input_ids"""] ) snake_case : Any = os.path.join(lowercase ,f"""dataset-{shard_count}-{records_containing}.tfrecord""" ) snake_case : Optional[Any] = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): snake_case : List[str] = serialized_examples[i] out_file.write(lowercase ) print("""Wrote file {} containing {} records""".format(lowercase ,lowercase ) ) shard_count += 1 total_records += records_containing with open(f"""split-{args.split}-records-count.txt""" ,"""w""" ) as f: print(f"""Total {args.split} records: {total_records}""" ,file=lowercase ) if __name__ == "__main__": lowerCamelCase : str = parse_args() main(args)
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
from math import isqrt def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: return all(number % divisor != 0 for divisor in range(2 ,isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def SCREAMING_SNAKE_CASE__ ( lowercase = 10**6 ) -> int: snake_case : Tuple = 0 snake_case : List[Any] = 1 snake_case : str = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Any = 'The Nymphenburg Palace is a beautiful palace in Munich!' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : Dict = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1E-5, """token_type_vocab_size""": 2, } snake_case : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case : Optional[Any] = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] ,num_layers=predefined_args["""num_layers"""] ,units=predefined_args["""units"""] ,hidden_size=predefined_args["""hidden_size"""] ,max_length=predefined_args["""max_length"""] ,num_heads=predefined_args["""num_heads"""] ,scaled=predefined_args["""scaled"""] ,dropout=predefined_args["""dropout"""] ,output_attention=lowercase__ ,output_all_encodings=lowercase__ ,use_residual=predefined_args["""use_residual"""] ,activation=predefined_args.get("""activation""" ,"""gelu""" ) ,layer_norm_eps=predefined_args.get("""layer_norm_eps""" ,lowercase__ ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case : List[Any] = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab snake_case : Optional[int] = os.path.join(get_home_dir() ,"""models""" ) snake_case : int = _load_vocab(lowercase__ ,lowercase__ ,lowercase__ ,cls=lowercase__ ) snake_case : Optional[int] = nlp.model.BERTModel( lowercase__ ,len(lowercase__ ) ,units=predefined_args["""units"""] ,embed_size=predefined_args["""embed_size"""] ,embed_dropout=predefined_args["""embed_dropout"""] ,word_embed=predefined_args["""word_embed"""] ,use_pooler=lowercase__ ,use_token_type_embed=lowercase__ ,token_type_vocab_size=predefined_args["""token_type_vocab_size"""] ,use_classifier=lowercase__ ,use_decoder=lowercase__ ,) original_bort.load_parameters(lowercase__ ,cast_dtype=lowercase__ ,ignore_extra=lowercase__ ) snake_case : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case : List[str] = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowercase__ ), } snake_case : List[Any] = BertConfig.from_dict(lowercase__ ) snake_case : Tuple = BertForMaskedLM(lowercase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase ,lowercase ): snake_case : Any = hf_param.shape snake_case : Optional[Any] = to_torch(params[gluon_param] ) snake_case : Tuple = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param snake_case : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,"""word_embed.0.weight""" ) snake_case : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,"""encoder.position_weight""" ) snake_case : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,"""encoder.layer_norm.beta""" ) snake_case : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,"""encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case : Any = hf_bort_model.bert.encoder.layer[i] # self attention snake_case : int = layer.attention.self snake_case : Tuple = check_and_map_params( self_attn.key.bias.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) snake_case : List[str] = check_and_map_params( self_attn.key.weight.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) snake_case : Any = check_and_map_params( self_attn.query.bias.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) snake_case : Optional[Any] = check_and_map_params( self_attn.query.weight.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) snake_case : int = check_and_map_params( self_attn.value.bias.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) snake_case : Tuple = check_and_map_params( self_attn.value.weight.data ,f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output snake_case : int = layer.attention.output snake_case : Tuple = check_and_map_params( self_output.dense.bias ,f"""encoder.transformer_cells.{i}.proj.bias""" ) snake_case : List[str] = check_and_map_params( self_output.dense.weight ,f"""encoder.transformer_cells.{i}.proj.weight""" ) snake_case : str = check_and_map_params( self_output.LayerNorm.bias ,f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) snake_case : int = check_and_map_params( self_output.LayerNorm.weight ,f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate snake_case : Optional[int] = layer.intermediate snake_case : Optional[Any] = check_and_map_params( intermediate.dense.bias ,f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) snake_case : Dict = check_and_map_params( intermediate.dense.weight ,f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output snake_case : int = layer.output snake_case : Optional[int] = check_and_map_params( bert_output.dense.bias ,f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) snake_case : Any = check_and_map_params( bert_output.dense.weight ,f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) snake_case : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias ,f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) snake_case : str = check_and_map_params( bert_output.LayerNorm.weight ,f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case : int = RobertaTokenizer.from_pretrained("""roberta-base""" ) snake_case : Optional[Any] = tokenizer.encode_plus(lowercase__ )["""input_ids"""] # Get gluon output snake_case : str = mx.nd.array([input_ids] ) snake_case : Dict = original_bort(inputs=lowercase__ ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase__ ) snake_case : Any = BertModel.from_pretrained(lowercase__ ) hf_bort_model.eval() snake_case : str = tokenizer.encode_plus(lowercase__ ,return_tensors="""pt""" ) snake_case : str = hf_bort_model(**lowercase__ )[0] snake_case : Tuple = output_gluon[0].asnumpy() snake_case : List[Any] = output_hf[0].detach().numpy() snake_case : Any = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case : Any = np.allclose(lowercase__ ,lowercase__ ,atol=1E-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" ,lowercase__ ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Any = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase : Tuple = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCamelCase : Any = { 'allenai/led-base-16384': 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: snake_case : Dict = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) snake_case : int = bs[:] snake_case : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase_ ) cs.append(2**8 + n ) n += 1 snake_case : int = [chr(lowerCAmelCase_ ) for n in cs] return dict(zip(lowerCAmelCase_ ,lowerCAmelCase_ ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Dict = set() snake_case : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Tuple = char return pairs class __lowercase (a__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> List[str]: snake_case : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token snake_case : Dict = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token snake_case : Union[str, Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token snake_case : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token snake_case : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token snake_case : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(lowercase__ ) snake_case : Any = {v: k for k, v in self.encoder.items()} snake_case : Dict = errors # how to handle errors in decoding snake_case : Optional[int] = bytes_to_unicode() snake_case : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding="""utf-8""" ) as merges_handle: snake_case : Tuple = merges_handle.read().split("""\n""" )[1:-1] snake_case : Tuple = [tuple(merge.split() ) for merge in bpe_merges] snake_case : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case : List[Any] = {} snake_case : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Optional[int] = re.compile(r"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCAmelCase ( self ) -> Optional[int]: return len(self.encoder ) def UpperCAmelCase ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , A ) -> List[Any]: if token in self.cache: return self.cache[token] snake_case : Optional[int] = tuple(lowercase__ ) snake_case : List[str] = get_pairs(lowercase__ ) if not pairs: return token while True: snake_case : Dict = min(lowercase__ , key=lambda A : self.bpe_ranks.get(lowercase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case : Any = bigram snake_case : Union[str, Any] = [] snake_case : Tuple = 0 while i < len(lowercase__ ): try: snake_case : Union[str, Any] = word.index(lowercase__ , lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Union[str, Any] = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : str = tuple(lowercase__ ) snake_case : Any = new_word if len(lowercase__ ) == 1: break else: snake_case : str = get_pairs(lowercase__ ) snake_case : Union[str, Any] = ''' '''.join(lowercase__ ) snake_case : Optional[int] = word return word def UpperCAmelCase ( self , A ) -> Tuple: snake_case : List[str] = [] for token in re.findall(self.pat , lowercase__ ): snake_case : Optional[int] = ''''''.join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__ ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase ( self , A ) -> List[str]: return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , A ) -> Tuple: return self.decoder.get(lowercase__ ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Any = ''''''.join(lowercase__ ) snake_case : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(lowercase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Tuple = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + """\n""" ) snake_case : Dict = 0 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) snake_case : Optional[Any] = token_index writer.write(""" """.join(lowercase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : str = [self.cls_token_id] snake_case : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Optional[Any] = [self.sep_token_id] snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A=False , **A ) -> List[Any]: snake_case : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase__ ) > 0 and not text[0].isspace()): snake_case : Dict = ''' ''' + text return (text, kwargs) def UpperCAmelCase ( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: snake_case : int = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: snake_case : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case : Dict = len(encoded_inputs["""global_attention_mask"""] ) != len(lowercase__ ) if needs_to_be_padded: snake_case : Any = len(lowercase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case : Any = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": snake_case : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : str = word.split() def justify(lowercase ,lowercase ,lowercase ) -> str: snake_case : Dict = max_width - width snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE__ ): num_spaces_between_words_list[i] += 1 snake_case : Union[str, Any] = [] for i in range(SCREAMING_SNAKE_CASE__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = [] snake_case : list[str] = [] snake_case : Tuple = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE__ ) width += len(SCREAMING_SNAKE_CASE__ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) # reset new line and new width snake_case : List[Any] = [word], len(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = max_width - width - len(SCREAMING_SNAKE_CASE__ ) answer.append(""" """.join(SCREAMING_SNAKE_CASE__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase = 1000 ) -> Dict: return sum(e for e in range(3 ,lowercase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
from collections import defaultdict class __lowercase : """simple docstring""" def __init__( self , A , A ) -> Optional[Any]: snake_case : Optional[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 snake_case : Tuple = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__a ) ) ] snake_case : List[Any] = defaultdict(__a ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 snake_case : List[Any] = (1 << len(__a )) - 1 def UpperCAmelCase ( self , A , A ) -> Optional[int]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement snake_case : Optional[Any] = self.count_ways_until(__a , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. snake_case : Union[str, Any] = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase ( self , A ) -> List[str]: # Store the list of persons for each task for i in range(len(__a ) ): for j in task_performed[i]: self.task[j].append(__a ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCamelCase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase : Optional[int] = False lowerCamelCase : Optional[Any] = True lowerCamelCase : List[str] = False if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase : str = parser.parse_args() lowerCamelCase : Dict = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } lowerCamelCase : List[str] = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } lowerCamelCase : Optional[int] = """""" if has_file(args.repo_path, 'config.json') else """unet""" with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCamelCase : List[str] = reader.read() lowerCamelCase : Union[str, Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCamelCase : Tuple = UNetaDModel(**config) else: lowerCamelCase : Union[str, Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel lowerCamelCase : Any = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase : Dict = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase : List[str] = config[key] del config[key] lowerCamelCase : Optional[int] = [k.replace('UNetRes', '') for k in config["""down_block_types"""]] lowerCamelCase : Any = [k.replace('UNetRes', '') for k in config["""up_block_types"""]] if do_only_weights: lowerCamelCase : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCamelCase : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCamelCase : List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCamelCase : int = param_value lowerCamelCase : Dict = True if not has_changed: lowerCamelCase : List[Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: snake_case : Tuple = tempfile.mkdtemp() snake_case : List[str] = BlipImageProcessor() snake_case : List[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) snake_case : List[str] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) snake_case : Any = InstructBlipProcessor(_a , _a , _a ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **A ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def UpperCAmelCase ( self , **A ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def UpperCAmelCase ( self , **A ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).qformer_tokenizer def UpperCAmelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) snake_case : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case : str = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) snake_case : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) self.assertIsInstance(processor.qformer_tokenizer , _a ) def UpperCAmelCase ( self ) -> Any: snake_case : Tuple = self.get_image_processor() snake_case : List[str] = self.get_tokenizer() snake_case : Tuple = self.get_qformer_tokenizer() snake_case : Optional[int] = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) snake_case : Union[str, Any] = self.prepare_image_inputs() snake_case : str = image_processor(_a , return_tensors="""np""" ) snake_case : Optional[int] = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : Any = self.get_qformer_tokenizer() snake_case : str = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) snake_case : Union[str, Any] = """lower newer""" snake_case : Dict = processor(text=_a ) snake_case : Optional[int] = tokenizer(_a , return_token_type_ids=_a ) snake_case : int = qformer_tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = self.get_image_processor() snake_case : str = self.get_tokenizer() snake_case : List[Any] = self.get_qformer_tokenizer() snake_case : str = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) snake_case : Any = """lower newer""" snake_case : Union[str, Any] = self.prepare_image_inputs() snake_case : List[Any] = processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def UpperCAmelCase ( self ) -> str: snake_case : str = self.get_image_processor() snake_case : List[Any] = self.get_tokenizer() snake_case : List[Any] = self.get_qformer_tokenizer() snake_case : Dict = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) snake_case : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : List[Any] = processor.batch_decode(_a ) snake_case : List[str] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Tuple = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : int = self.get_qformer_tokenizer() snake_case : Dict = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) snake_case : Union[str, Any] = """lower newer""" snake_case : Any = self.prepare_image_inputs() snake_case : List[Any] = processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Optional[int] = torch.nn.Linear(2 ,4 ) snake_case : int = torch.optim.AdamW(model.parameters() ,lr=1.0 ) snake_case : Any = torch.optim.lr_scheduler.OneCycleLR(__UpperCamelCase ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) snake_case : Optional[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) snake_case : Union[str, Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__UpperCamelCase ) class __lowercase (SCREAMING_SNAKE_CASE_ ): """simple docstring""" @require_cuda def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase__ ): snake_case : Dict = Accelerator(cpu=UpperCamelCase__ ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = Accelerator() snake_case : str = GradientState() assert state.num_steps == 1 snake_case : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True snake_case : int = False assert state.sync_gradients is False GradientState._reset_state() def UpperCAmelCase ( self ) -> int: snake_case : Optional[int] = Accelerator() snake_case : Dict = create_components() ( snake_case ) : Any = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCAmelCase ( self ) -> int: snake_case : Dict = Accelerator() snake_case : str = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCAmelCase ( self ) -> Optional[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*A , **A ): pass with patch("""torch.cuda.set_device""" , UpperCamelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): snake_case : Optional[int] = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = Accelerator() snake_case : Any = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = get_signature(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = Accelerator() snake_case : Optional[int] = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = get_signature(UpperCamelCase__ ) # saving hook def save_config(A , A , A ): snake_case : Tuple = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(UpperCamelCase__ , """data.json""" ) , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # loading hook def load_config(A , A ): with open(os.path.join(UpperCamelCase__ , """data.json""" ) , """r""" ) as f: snake_case : Optional[int] = json.load(UpperCamelCase__ ) snake_case : List[Any] = config['''class_name'''] snake_case : Dict = accelerator.register_save_state_pre_hook(UpperCamelCase__ ) snake_case : Optional[int] = accelerator.register_load_state_pre_hook(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = Accelerator() snake_case : Tuple = create_components() snake_case : List[Any] = None # This should work snake_case : Tuple = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(dummy_obj is None ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = Accelerator() snake_case : int = create_components() snake_case : Any = [1, 2, 3] # This should work snake_case : List[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase__ , """_is_accelerate_prepared""" , UpperCamelCase__ ) , UpperCamelCase__ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM snake_case : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase__ , device_map={"""""": 0} , ) snake_case : Optional[int] = Accelerator() # This should work snake_case : Optional[Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb def UpperCAmelCase ( self ) -> int: from transformers import AutoModelForCausalLM snake_case : List[str] = Accelerator() with init_empty_weights(): snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() snake_case : Any = infer_auto_device_map(UpperCamelCase__ ) snake_case : Any = '''cpu''' snake_case : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=UpperCamelCase__ , load_in_abit=UpperCamelCase__ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase__ ) # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): snake_case : Union[str, Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb @require_multi_gpu def UpperCAmelCase ( self ) -> Any: from transformers import AutoModelForCausalLM snake_case : Any = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): snake_case : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() snake_case : Dict = infer_auto_device_map(UpperCamelCase__ ) snake_case : Dict = 1 snake_case : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): snake_case : Dict = accelerator.prepare(UpperCamelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCAmelCase ( self ) -> Optional[Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): snake_case : str = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) snake_case : Tuple = infer_auto_device_map(UpperCamelCase__ ) snake_case : Optional[int] = 1 snake_case : str = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) snake_case : List[Any] = Accelerator() # This should work snake_case : List[Any] = accelerator.prepare(UpperCamelCase__ ) @require_cuda def UpperCAmelCase ( self ) -> str: snake_case : int = torch.nn.Linear(1_0 , 1_0 ) snake_case : int = torch.optim.SGD(model.parameters() , lr=0.01 ) snake_case : str = Accelerator(cpu=UpperCamelCase__ ) snake_case : Optional[Any] = accelerator.prepare(UpperCamelCase__ )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCamelCase : Tuple = logging.get_logger(__name__) # General docstring lowerCamelCase : Tuple = 'MobileNetV1Config' # Base docstring lowerCamelCase : Optional[int] = 'google/mobilenet_v1_1.0_224' lowerCamelCase : Optional[int] = [1, 1_0_2_4, 7, 7] # Image classification docstring lowerCamelCase : int = 'google/mobilenet_v1_1.0_224' lowerCamelCase : Union[str, Any] = 'tabby, tabby cat' lowerCamelCase : str = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ) -> List[Any]: snake_case : Optional[Any] = {} if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): snake_case : Dict = model.mobilenet_va else: snake_case : Union[str, Any] = model snake_case : List[str] = """MobilenetV1/Conv2d_0/""" snake_case : int = backbone.conv_stem.convolution.weight snake_case : Optional[Any] = backbone.conv_stem.normalization.bias snake_case : Union[str, Any] = backbone.conv_stem.normalization.weight snake_case : Optional[Any] = backbone.conv_stem.normalization.running_mean snake_case : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): snake_case : Any = i + 1 snake_case : List[str] = i * 2 snake_case : Dict = backbone.layer[pt_index] snake_case : Any = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" snake_case : str = pointer.convolution.weight snake_case : Any = pointer.normalization.bias snake_case : Optional[int] = pointer.normalization.weight snake_case : int = pointer.normalization.running_mean snake_case : Union[str, Any] = pointer.normalization.running_var snake_case : Optional[Any] = backbone.layer[pt_index + 1] snake_case : List[Any] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" snake_case : int = pointer.convolution.weight snake_case : Tuple = pointer.normalization.bias snake_case : Optional[int] = pointer.normalization.weight snake_case : int = pointer.normalization.running_mean snake_case : int = pointer.normalization.running_var if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): snake_case : Tuple = """MobilenetV1/Logits/Conv2d_1c_1x1/""" snake_case : Dict = model.classifier.weight snake_case : List[Any] = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model snake_case : Union[str, Any] = tf.train.list_variables(lowerCamelCase_ ) snake_case : Optional[Any] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) snake_case : Dict = tf.train.load_variable(lowerCamelCase_ ,lowerCamelCase_ ) snake_case : Optional[int] = array # Build TF to PyTorch weights loading map snake_case : Any = _build_tf_to_pytorch_map(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue snake_case : Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) snake_case : int = np.transpose(lowerCamelCase_ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer snake_case : Optional[Any] = array.squeeze().transpose() else: snake_case : List[str] = np.transpose(lowerCamelCase_ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) snake_case : List[str] = torch.from_numpy(lowerCamelCase_ ) tf_weights.pop(lowerCamelCase_ ,lowerCamelCase_ ) tf_weights.pop(name + """/RMSProp""" ,lowerCamelCase_ ) tf_weights.pop(name + """/RMSProp_1""" ,lowerCamelCase_ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,lowerCamelCase_ ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: snake_case , snake_case : Dict = features.shape[-2:] snake_case , snake_case : int = conv_layer.stride snake_case , snake_case : int = conv_layer.kernel_size if in_height % stride_height == 0: snake_case : Optional[Any] = max(kernel_height - stride_height ,0 ) else: snake_case : Optional[int] = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: snake_case : Dict = max(kernel_width - stride_width ,0 ) else: snake_case : Any = max(kernel_width - (in_width % stride_width) ,0 ) snake_case : Optional[int] = pad_along_width // 2 snake_case : Optional[int] = pad_along_width - pad_left snake_case : Optional[int] = pad_along_height // 2 snake_case : Dict = pad_along_height - pad_top snake_case : Dict = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ ,lowerCamelCase_ ,"""constant""" ,0.0 ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A , A , A , A = 1 , A = 1 , A = False , A = True , A = True , ) -> None: super().__init__() snake_case : Any = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) snake_case : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) snake_case : int = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode="""zeros""" , ) if use_normalization: snake_case : Dict = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: snake_case : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): snake_case : List[str] = ACTaFN[config.hidden_act] else: snake_case : int = config.hidden_act else: snake_case : Optional[Any] = None def UpperCAmelCase ( self , A ) -> torch.Tensor: if self.config.tf_padding: snake_case : List[str] = apply_tf_padding(_lowerCamelCase , self.convolution ) snake_case : int = self.convolution(_lowerCamelCase ) if self.normalization is not None: snake_case : List[str] = self.normalization(_lowerCamelCase ) if self.activation is not None: snake_case : Optional[int] = self.activation(_lowerCamelCase ) return features class __lowercase (lowerCAmelCase__ ): """simple docstring""" _snake_case = MobileNetVaConfig _snake_case = load_tf_weights_in_mobilenet_va _snake_case = "mobilenet_v1" _snake_case = "pixel_values" _snake_case = False def UpperCAmelCase ( self , A ) -> None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCamelCase : Optional[int] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase : Tuple = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , lowerCAmelCase__ , ) class __lowercase (lowerCAmelCase__ ): """simple docstring""" def __init__( self , A , A = True ) -> str: super().__init__(_lowerCamelCase ) snake_case : List[str] = config snake_case : Any = 3_2 snake_case : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) snake_case : List[str] = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) snake_case : List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] snake_case : str = nn.ModuleList() for i in range(1_3 ): snake_case : Union[str, Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 snake_case : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) snake_case : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase ( self , A ) -> Tuple: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase ( self , A = None , A = None , A = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: snake_case : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) snake_case : Any = self.conv_stem(_lowerCamelCase ) snake_case : List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): snake_case : Dict = layer_module(_lowerCamelCase ) if output_hidden_states: snake_case : Dict = all_hidden_states + (hidden_states,) snake_case : Optional[int] = hidden_states if self.pooler is not None: snake_case : Dict = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: snake_case : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( """\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , lowerCAmelCase__ , ) class __lowercase (lowerCAmelCase__ ): """simple docstring""" def __init__( self , A ) -> None: super().__init__(_lowerCamelCase ) snake_case : List[str] = config.num_labels snake_case : Tuple = MobileNetVaModel(_lowerCamelCase ) snake_case : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head snake_case : int = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) snake_case : List[str] = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase ( self , A = None , A = None , A = None , A = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: snake_case : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case : str = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) snake_case : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] snake_case : Any = self.classifier(self.dropout(_lowerCamelCase ) ) snake_case : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case : Dict = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case : Any = """single_label_classification""" else: snake_case : List[Any] = """multi_label_classification""" if self.config.problem_type == "regression": snake_case : Dict = MSELoss() if self.num_labels == 1: snake_case : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case : List[str] = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": snake_case : Optional[int] = CrossEntropyLoss() snake_case : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case : Tuple = BCEWithLogitsLoss() snake_case : Union[str, Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: snake_case : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase (_A ): """simple docstring""" def __init__( self , A ) -> List[Any]: super().__init__() snake_case : Union[str, Any] = nn.ModuleList(A ) def UpperCAmelCase ( self , A , A , A , A , A , A = None , A = None , A = None , A = None , A = False , A = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): snake_case : List[str] = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: snake_case : Optional[int] = down_samples, mid_sample else: snake_case : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase ( self , A , A = True , A = None , A = False , A = None , ) -> Union[str, Any]: snake_case : List[str] = 0 snake_case : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 snake_case : List[Any] = model_path_to_save + f"""_{idx}""" @classmethod def UpperCAmelCase ( cls , A , **A ) -> Dict: snake_case : List[Any] = 0 snake_case : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case : Any = pretrained_model_path while os.path.isdir(A ): snake_case : List[str] = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 snake_case : Optional[Any] = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(A )} controlnets loaded from {pretrained_model_path}.""" ) if len(A ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(A )
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[str] = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCamelCase : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Tuple = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowerCamelCase : List[str] = { 'unc-nlp/lxmert-base-uncased': 5_1_2, } lowerCamelCase : str = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = LxmertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Optional[int]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __A ) != do_lower_case or normalizer_state.get("""strip_accents""" , __A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __A ) != tokenize_chinese_chars ): snake_case : str = getattr(__A , normalizer_state.pop("""type""" ) ) snake_case : Optional[int] = do_lower_case snake_case : str = strip_accents snake_case : Tuple = tokenize_chinese_chars snake_case : Union[str, Any] = normalizer_class(**__A ) snake_case : Tuple = do_lower_case def UpperCAmelCase ( self , A , A=None ) -> List[Any]: snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : str = [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : str = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase : Optional[int] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase : Optional[int] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : List[Any] = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase ,"""Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: print("""Extracting""" ,f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: snake_case : Dict = _readaa(_UpperCAmelCase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) snake_case : Any = _readaa(_UpperCAmelCase ) snake_case : Any = _readaa(_UpperCAmelCase ) snake_case : Optional[Any] = _readaa(_UpperCAmelCase ) snake_case : int = bytestream.read(rows * cols * num_images ) snake_case : Optional[Any] = numpy.frombuffer(_UpperCAmelCase ,dtype=numpy.uinta ) snake_case : int = data.reshape(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,1 ) return data @deprecated(_UpperCAmelCase ,"""Please use tf.one_hot on tensors.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : Optional[int] = labels_dense.shape[0] snake_case : int = numpy.arange(_UpperCAmelCase ) * num_classes snake_case : List[Any] = numpy.zeros((num_labels, num_classes) ) snake_case : Any = 1 return labels_one_hot @deprecated(_UpperCAmelCase ,"""Please use tf.data to implement this functionality.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ,lowercase=10 ) -> int: print("""Extracting""" ,f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: snake_case : Optional[Any] = _readaa(_UpperCAmelCase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) snake_case : int = _readaa(_UpperCAmelCase ) snake_case : str = bytestream.read(_UpperCAmelCase ) snake_case : List[str] = numpy.frombuffer(_UpperCAmelCase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase ,_UpperCAmelCase ) return labels class __lowercase : """simple docstring""" @deprecated( __SCREAMING_SNAKE_CASE , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self , A , A , A=False , A=False , A=dtypes.floataa , A=True , A=None , ) -> List[Any]: snake_case , snake_case : Any = random_seed.get_seed(__SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) snake_case : int = dtypes.as_dtype(__SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: snake_case : int = 1_0_0_0_0 snake_case : Tuple = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" snake_case : str = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case : str = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case : List[Any] = images.astype(numpy.floataa ) snake_case : Optional[Any] = numpy.multiply(__SCREAMING_SNAKE_CASE , 1.0 / 2_5_5.0 ) snake_case : str = images snake_case : List[Any] = labels snake_case : Dict = 0 snake_case : Optional[int] = 0 @property def UpperCAmelCase ( self ) -> Dict: return self._images @property def UpperCAmelCase ( self ) -> Optional[int]: return self._labels @property def UpperCAmelCase ( self ) -> Tuple: return self._num_examples @property def UpperCAmelCase ( self ) -> Tuple: return self._epochs_completed def UpperCAmelCase ( self , A , A=False , A=True ) -> Optional[int]: if fake_data: snake_case : int = [1] * 7_8_4 snake_case : int = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__SCREAMING_SNAKE_CASE )], [fake_label for _ in range(__SCREAMING_SNAKE_CASE )], ) snake_case : List[str] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = self.images[perma] snake_case : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case : Optional[Any] = self._num_examples - start snake_case : Tuple = self._images[start : self._num_examples] snake_case : List[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(__SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = self.images[perm] snake_case : Union[str, Any] = self.labels[perm] # Start next epoch snake_case : Dict = 0 snake_case : Dict = batch_size - rest_num_examples snake_case : Union[str, Any] = self._index_in_epoch snake_case : List[str] = self._images[start:end] snake_case : Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size snake_case : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase ,"""Please write your own downloading logic.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) snake_case : Dict = os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase ,_UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: snake_case : Any = f.size() print("""Successfully downloaded""" ,_UpperCAmelCase ,_UpperCAmelCase ,"""bytes.""" ) return filepath @deprecated( _UpperCAmelCase ,"""Please use alternatives such as:""" """ tensorflow_datasets.load(\'mnist\')""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ,lowercase=False ,lowercase=dtypes.floataa ,lowercase=True ,lowercase=5000 ,lowercase=None ,lowercase=DEFAULT_SOURCE_URL ,) -> Union[str, Any]: if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=_UpperCAmelCase ,one_hot=_UpperCAmelCase ,dtype=_UpperCAmelCase ,seed=_UpperCAmelCase ) snake_case : str = fake() snake_case : Optional[Any] = fake() snake_case : Optional[Any] = fake() return _Datasets(train=_UpperCAmelCase ,validation=_UpperCAmelCase ,test=_UpperCAmelCase ) if not source_url: # empty string check snake_case : Dict = DEFAULT_SOURCE_URL snake_case : Dict = """train-images-idx3-ubyte.gz""" snake_case : Union[str, Any] = """train-labels-idx1-ubyte.gz""" snake_case : Union[str, Any] = """t10k-images-idx3-ubyte.gz""" snake_case : Dict = """t10k-labels-idx1-ubyte.gz""" snake_case : List[str] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + train_images_file ) with gfile.Open(_UpperCAmelCase ,"""rb""" ) as f: snake_case : str = _extract_images(_UpperCAmelCase ) snake_case : Optional[Any] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase ,"""rb""" ) as f: snake_case : Optional[int] = _extract_labels(_UpperCAmelCase ,one_hot=_UpperCAmelCase ) snake_case : Union[str, Any] = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + test_images_file ) with gfile.Open(_UpperCAmelCase ,"""rb""" ) as f: snake_case : str = _extract_images(_UpperCAmelCase ) snake_case : str = _maybe_download( _UpperCAmelCase ,_UpperCAmelCase ,source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase ,"""rb""" ) as f: snake_case : Optional[int] = _extract_labels(_UpperCAmelCase ,one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): snake_case : List[str] = ( """Validation size should be between 0 and """ f"""{len(_UpperCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(_UpperCAmelCase ) snake_case : str = train_images[:validation_size] snake_case : List[str] = train_labels[:validation_size] snake_case : str = train_images[validation_size:] snake_case : Union[str, Any] = train_labels[validation_size:] snake_case : Optional[Any] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} snake_case : Union[str, Any] = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) snake_case : Tuple = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) snake_case : str = _DataSet(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase ,validation=_UpperCAmelCase ,test=_UpperCAmelCase )
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[str] = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=1_8 , A=3_0 , A=4_0_0 , A=None , A=True , A=True , A=None , ) -> str: snake_case : Optional[Any] = size if size is not None else {"""height""": 2_0, """width""": 2_0} snake_case : Any = parent snake_case : Optional[Any] = batch_size snake_case : List[Any] = num_channels snake_case : Optional[Any] = image_size snake_case : Any = min_resolution snake_case : List[Any] = max_resolution snake_case : Optional[Any] = size snake_case : Union[str, Any] = do_normalize snake_case : List[Any] = do_convert_rgb snake_case : int = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case : int = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def UpperCAmelCase ( self ) -> Optional[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case : Tuple = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> Any: snake_case : Optional[Any] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.image_processor_tester.prepare_dummy_image() snake_case : int = self.image_processing_class(**self.image_processor_dict ) snake_case : str = 2_0_4_8 snake_case : Optional[Any] = image_processor(__A , return_tensors="""pt""" , max_patches=__A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCAmelCase ( self ) -> List[str]: # Initialize image_processor snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : Any = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> Tuple: # Initialize image_processor snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case : List[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case : Dict = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__A ): snake_case : List[str] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches snake_case : Dict = """Hello""" snake_case : Optional[Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : Tuple = image_processor( __A , return_tensors="""pt""" , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> Any: # Initialize image_processor snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) snake_case : Optional[int] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : List[str] = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase ( self ) -> str: # Initialize image_processor snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case : Optional[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : int = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case : Union[str, Any] = 3 @property def UpperCAmelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_convert_rgb""" ) ) def UpperCAmelCase ( self ) -> str: # Initialize image_processor snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case : int = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case : Tuple = image_processor( __A , return_tensors="""pt""" , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def SCREAMING_SNAKE_CASE__ ( lowercase=None ) -> str: if subparsers is not None: snake_case : Union[str, Any] = subparsers.add_parser("""env""" ) else: snake_case : int = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" ,default=_lowerCamelCase ,help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : List[Any] = torch.__version__ snake_case : Any = torch.cuda.is_available() snake_case : Dict = is_xpu_available() snake_case : Tuple = is_npu_available() snake_case : List[str] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowerCamelCase ): snake_case : Optional[Any] = load_config_from_file(args.config_file ).to_dict() snake_case : List[Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""", """PyTorch XPU available""": str(_lowerCamelCase ), """PyTorch NPU available""": str(_lowerCamelCase ), """System RAM""": f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: snake_case : List[str] = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) snake_case : List[str] = ( """\n""".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else f"""\t{accelerate_config}""" ) print(_lowerCamelCase ) snake_case : str = accelerate_config return info def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case : Optional[Any] = env_command_parser() snake_case : Optional[Any] = parser.parse_args() env_command(_lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : Dict = {} snake_case : Optional[int] = job["""started_at"""] snake_case : Tuple = job["""completed_at"""] snake_case : Any = date_parser.parse(lowercase_ ) snake_case : Tuple = date_parser.parse(lowercase_ ) snake_case : Dict = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case : int = start snake_case : Tuple = end snake_case : int = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> Tuple: snake_case : List[Any] = None if token is not None: snake_case : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} snake_case : Any = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case : List[str] = requests.get(lowercase_ ,headers=lowercase_ ).json() snake_case : str = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) snake_case : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase_ ): snake_case : Optional[int] = requests.get(url + f"""&page={i + 2}""" ,headers=lowercase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowerCamelCase : List[str] = parser.parse_args() lowerCamelCase : str = get_job_time(args.workflow_run_id) lowerCamelCase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Dict = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } lowerCamelCase : List[Any] = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } lowerCamelCase : Any = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = ['input_ids', 'attention_mask'] _snake_case = DistilBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Tuple: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _a ) != do_lower_case or normalizer_state.get("""strip_accents""" , _a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars ): snake_case : List[str] = getattr(_a , normalizer_state.pop("""type""" ) ) snake_case : int = do_lower_case snake_case : Union[str, Any] = strip_accents snake_case : Union[str, Any] = tokenize_chinese_chars snake_case : int = normalizer_class(**_a ) snake_case : List[Any] = do_lower_case def UpperCAmelCase ( self , A , A=None ) -> Any: snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , A , A = None ) -> Optional[Any]: snake_case : List[str] = [self.sep_token_id] snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , A , A = None ) -> Any: snake_case : Dict = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"""{test_file} instead.""" ) snake_case : Optional[int] = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) snake_case : Any = components[:-1] + [test_fn.replace(""".py""" ,"""""" )] snake_case : Dict = """.""".join(_lowerCamelCase ) return test_module_path def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Tuple = get_module_path(_lowerCamelCase ) snake_case : Tuple = importlib.import_module(_lowerCamelCase ) return test_module def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : List[str] = [] snake_case : List[Any] = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCamelCase ,_lowerCamelCase ) ) # sort with class names return sorted(_lowerCamelCase ,key=lambda lowercase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : str = [] snake_case : Optional[int] = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): snake_case : Any = getattr(_lowerCamelCase ,_lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case : Tuple = getattr(_lowerCamelCase ,"""all_model_classes""" ,[] ) if len(_lowerCamelCase ) > 0: test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase ,key=lambda lowercase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : List[str] = get_test_classes(_lowerCamelCase ) snake_case : Dict = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCamelCase ,key=lambda lowercase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = test_class() if hasattr(_lowerCamelCase ,"""setUp""" ): test.setUp() snake_case : Any = None if hasattr(_lowerCamelCase ,"""model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case : Optional[Any] = test.model_tester.__class__ return model_tester def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: snake_case : Tuple = get_test_classes(_lowerCamelCase ) snake_case : Any = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase ,key=lambda lowercase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: snake_case : Tuple = get_test_classes_for_model(_lowerCamelCase ,_lowerCamelCase ) snake_case : str = [] for test_class in test_classes: snake_case : Dict = get_model_tester_from_test_class(_lowerCamelCase ) if tester_class is not None: tester_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase ,key=lambda lowercase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : Any = get_test_classes(_lowerCamelCase ) snake_case : str = {test_class: get_model_tester_from_test_class(_lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = get_model_classes(_lowerCamelCase ) snake_case : Optional[int] = { model_class: get_test_classes_for_model(_lowerCamelCase ,_lowerCamelCase ) for model_class in model_classes } return model_test_mapping def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Optional[int] = get_model_classes(_lowerCamelCase ) snake_case : Optional[int] = { model_class: get_tester_classes_for_model(_lowerCamelCase ,_lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if isinstance(_lowerCamelCase ,_lowerCamelCase ): return o elif isinstance(_lowerCamelCase ,_lowerCamelCase ): return o.__name__ elif isinstance(_lowerCamelCase ,(list, tuple) ): return [to_json(_lowerCamelCase ) for x in o] elif isinstance(_lowerCamelCase ,_lowerCamelCase ): return {to_json(_lowerCamelCase ): to_json(_lowerCamelCase ) for k, v in o.items()} else: return o
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase=28123 ) -> List[str]: snake_case : str = [1] * (limit + 1) for i in range(2 ,int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 ,limit // i + 1 ): sum_divs[k * i] += k + i snake_case : Optional[Any] = set() snake_case : int = 0 for n in range(1 ,limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase : Union[str, Any] = parser.parse_args() if args.model_type == "roberta": lowerCamelCase : int = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCamelCase : List[Any] = 'roberta' elif args.model_type == "gpt2": lowerCamelCase : str = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCamelCase : Dict = 'transformer' lowerCamelCase : List[Any] = model.state_dict() lowerCamelCase : List[Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCamelCase : Optional[int] = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCamelCase : List[Any] = f"""{prefix}.embeddings.{w}.weight""" lowerCamelCase : List[Any] = state_dict[param_name] for w in ["weight", "bias"]: lowerCamelCase : List[Any] = f"""{prefix}.embeddings.LayerNorm.{w}""" lowerCamelCase : Tuple = state_dict[param_name] # Transformer Blocks # lowerCamelCase : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCamelCase : Any = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] lowerCamelCase : Union[str, Any] = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCamelCase : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCamelCase : Union[str, Any] = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase : Union[str, Any] = state_dict[f"""lm_head.dense.{w}"""] lowerCamelCase : Union[str, Any] = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCamelCase : Optional[int] = state_dict[f"""{prefix}.ln_f.{w}"""] lowerCamelCase : Optional[int] = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase : List[Any] = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' lowerCamelCase : List[Any] = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' lowerCamelCase : Any = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Tuple = simple_accuracy(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE_ ,y_pred=SCREAMING_SNAKE_CASE_ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : Dict = np.array(SCREAMING_SNAKE_CASE_ ) snake_case : Any = np.array(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = en_sentvecs.shape[0] # mean centering snake_case : Any = en_sentvecs - np.mean(SCREAMING_SNAKE_CASE_ ,axis=0 ) snake_case : Union[str, Any] = in_sentvecs - np.mean(SCREAMING_SNAKE_CASE_ ,axis=0 ) snake_case : Tuple = cdist(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,"""cosine""" ) snake_case : Any = np.array(range(SCREAMING_SNAKE_CASE_ ) ) snake_case : Optional[int] = sim.argsort(axis=1 )[:, :10] snake_case : int = np.any(preds == actual[:, None] ,axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , ) def UpperCAmelCase ( self , A , A ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(A , A )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(A , A ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(A , A )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import numpy as np from transformers import Pipeline def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: snake_case : List[str] = np.max(__lowercase ,axis=-1 ,keepdims=__lowercase ) snake_case : Optional[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=__lowercase ) class __lowercase (__A ): """simple docstring""" def UpperCAmelCase ( self , **A ) -> List[str]: snake_case : str = {} if "second_text" in kwargs: snake_case : str = kwargs['second_text'] return preprocess_kwargs, {}, {} def UpperCAmelCase ( self , A , A=None ) -> str: return self.tokenizer(A , text_pair=A , return_tensors=self.framework ) def UpperCAmelCase ( self , A ) -> Optional[Any]: return self.model(**A ) def UpperCAmelCase ( self , A ) -> Tuple: snake_case : List[Any] = model_outputs.logits[0].numpy() snake_case : Union[str, Any] = softmax(A ) snake_case : Any = np.argmax(A ) snake_case : List[str] = self.model.config.idalabel[best_class] snake_case : Tuple = probabilities[best_class].item() snake_case : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCamelCase : Any = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowerCamelCase : List[str] = parser.parse_args() lowerCamelCase : Any = 'cpu' lowerCamelCase : Optional[Any] = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowerCamelCase : Dict = 'path-to-your-trained-model' lowerCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCamelCase : List[str] = pipe.to(device) # to channels last lowerCamelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) lowerCamelCase : Optional[Any] = pipe.vae.to(memory_format=torch.channels_last) lowerCamelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCamelCase : int = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCamelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) lowerCamelCase : Tuple = torch.rand(1) * 9_9_9 lowerCamelCase : List[Any] = torch.randn(2, 7_7, 7_6_8) lowerCamelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: lowerCamelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCamelCase : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCamelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCamelCase : Optional[int] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCamelCase : List[Any] = 6_6_6 lowerCamelCase : Tuple = torch.Generator(device).manual_seed(seed) lowerCamelCase : List[Any] = {'generator': generator} if args.steps is not None: lowerCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCamelCase : List[str] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCAmelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCamelCase : Any = '''Enter the base and the power separated by a comma: ''' lowerCamelCase : Dict = map(int, input(prompt).split(',')) lowerCamelCase : Optional[int] = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCamelCase : Union[str, Any] = res(xa, ya) lowerCamelCase : int = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model'} lowerCamelCase : Any = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } lowerCamelCase : List[Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) lowerCamelCase : Any = 0 lowerCamelCase : Optional[int] = 1 lowerCamelCase : int = 2 lowerCamelCase : List[str] = 3 lowerCamelCase : int = 4 class __lowercase (__lowerCamelCase ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = '''left''' def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) snake_case : str = 3 snake_case : Dict = do_lower_case snake_case : str = remove_space snake_case : Tuple = keep_accents snake_case : Dict = vocab_file snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) def UpperCAmelCase ( self ) -> str: snake_case : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: snake_case : Any = self.__dict__.copy() snake_case : Optional[int] = None return state def __setstate__( self , A ) -> Optional[Any]: snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : int = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> Optional[Any]: if self.remove_space: snake_case : Optional[int] = " ".join(inputs.strip().split() ) else: snake_case : str = inputs snake_case : Any = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: snake_case : Dict = unicodedata.normalize("""NFKD""" , a_ ) snake_case : int = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: snake_case : Any = outputs.lower() return outputs def UpperCAmelCase ( self , A ) -> Any: snake_case : List[Any] = self.preprocess_text(a_ ) snake_case : Optional[int] = self.sp_model.encode(a_ , out_type=a_ ) snake_case : List[str] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): snake_case : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case : int = cur_pieces[1:] else: snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def UpperCAmelCase ( self , A ) -> Optional[Any]: return self.sp_model.PieceToId(a_ ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.IdToPiece(a_ ) def UpperCAmelCase ( self , A ) -> Optional[int]: snake_case : Dict = "".join(a_ ).replace(a_ , """ """ ).strip() return out_string def UpperCAmelCase ( self , A , A = False , A = None , A = True , **A , ) -> Union[str, Any]: snake_case : int = kwargs.pop("""use_source_tokenizer""" , a_ ) snake_case : List[str] = self.convert_ids_to_tokens(a_ , skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case : Optional[int] = [] snake_case : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) snake_case : Union[str, Any] = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens snake_case : Union[str, Any] = "".join(a_ ) snake_case : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case : List[Any] = self.clean_up_tokenization(a_ ) return clean_text else: return text def UpperCAmelCase ( self , A , A = None ) -> List[Any]: snake_case : Optional[Any] = [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def UpperCAmelCase ( self , A , A = None ) -> Any: snake_case : Optional[Any] = [self.sep_token_id] snake_case : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self , A , A = None ) -> Tuple: if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , """wb""" ) as fi: snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Tuple = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Tuple = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } lowerCamelCase : Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } lowerCamelCase : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } lowerCamelCase : List[str] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowerCamelCase : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowerCamelCase : Optional[Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _snake_case = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = DPRContextEncoderTokenizer class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _snake_case = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = DPRQuestionEncoderTokenizer lowerCamelCase : Optional[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCamelCase : Any = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCamelCase : Dict = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCamelCase__ ) class __lowercase : """simple docstring""" def __call__( self , A , A = None , A = None , A = False , A = False , A = None , A = None , A = None , **A , ) -> Optional[int]: if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: snake_case : Optional[int] = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) snake_case : Union[str, Any] = titles if not isinstance(A , A ) else [titles] snake_case : Optional[int] = texts if not isinstance(A , A ) else [texts] snake_case : Optional[int] = len(A ) snake_case : Dict = questions if not isinstance(A , A ) else [questions] * n_passages assert len(A ) == len( A ), f"""There should be as many titles than texts but got {len(A )} titles and {len(A )} texts.""" snake_case : Union[str, Any] = super().__call__(A , A , padding=A , truncation=A )["""input_ids"""] snake_case : List[Any] = super().__call__(A , add_special_tokens=A , padding=A , truncation=A )["""input_ids"""] snake_case : str = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A ) ] } if return_attention_mask is not False: snake_case : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case : Union[str, Any] = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A ) def UpperCAmelCase ( self , A , A , A = 1_6 , A = 6_4 , A = 4 , ) -> Optional[int]: snake_case : Any = reader_input["""input_ids"""] snake_case , snake_case , snake_case : Any = reader_output[:3] snake_case : Any = len(A ) snake_case : Optional[Any] = sorted(range(A ) , reverse=A , key=relevance_logits.__getitem__ ) snake_case : str = [] for doc_id in sorted_docs: snake_case : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case : Any = sequence_ids.index(self.pad_token_id ) else: snake_case : Tuple = len(A ) snake_case : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , A , A , A , A , ) -> Optional[int]: snake_case : Optional[Any] = [] for start_index, start_score in enumerate(A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case : List[str] = sorted(A , key=lambda A : x[1] , reverse=A ) snake_case : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" snake_case : int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = READER_PRETRAINED_VOCAB_FILES_MAP _snake_case = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = READER_PRETRAINED_INIT_CONFIGURATION _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = DPRReaderTokenizer
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowercase (lowerCAmelCase__ ): """simple docstring""" _snake_case = "yolos" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=[5_1_2, 8_6_4] , A=1_6 , A=3 , A=True , A=1_0_0 , A=True , A=False , A=1 , A=5 , A=2 , A=5 , A=2 , A=0.1 , **A , ) -> Tuple: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case : Tuple = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Dict = hidden_act snake_case : List[Any] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : List[str] = layer_norm_eps snake_case : Tuple = image_size snake_case : Tuple = patch_size snake_case : Dict = num_channels snake_case : List[Any] = qkv_bias snake_case : str = num_detection_tokens snake_case : str = use_mid_position_embeddings snake_case : Dict = auxiliary_loss # Hungarian matcher snake_case : Optional[Any] = class_cost snake_case : Tuple = bbox_cost snake_case : Union[str, Any] = giou_cost # Loss coefficients snake_case : str = bbox_loss_coefficient snake_case : int = giou_loss_coefficient snake_case : Tuple = eos_coefficient class __lowercase (lowerCAmelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-4 @property def UpperCAmelCase ( self ) -> int: return 1_2
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not nums: raise ValueError("""List is empty""" ) return sum(A_ ) / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[str] = '''https://openaipublic.azureedge.net/jukebox/models/''' lowerCamelCase : str = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case : List[Any] = key.replace(""".model.1.bias""" ,""".conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case : Union[str, Any] = key.replace(""".model.1.weight""" ,""".conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case : Union[str, Any] = key.replace(""".model.3.bias""" ,""".conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case : List[Any] = key.replace(""".model.3.weight""" ,""".conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case : Optional[Any] = key.replace("""conditioner_blocks.0""" ,"""conditioner_blocks""" ) if "prime_prior" in key: snake_case : Optional[Any] = key.replace("""prime_prior""" ,"""encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case : Optional[Any] = key.replace(""".emb.""" ,""".""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" ,""".codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" ,"""metadata_embedding.""" ) if "x_emb.emb." in key: snake_case : Optional[int] = key.replace("""0.x_emb.emb""" ,"""embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" ,"""encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" ,""".layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" ,"""_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" ,"""encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" ,"""encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" ,"""fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" ,"""embed_tokens""" ) return key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Any: snake_case : Optional[Any] = {} import re snake_case : List[str] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case : Union[str, Any] = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case : List[Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case : Optional[Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case : Optional[int] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case : List[str] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case : str = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case : Union[str, Any] = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case : Optional[int] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase ): snake_case : Dict = re_encoder_block_conv_in.match(lowercase ) snake_case : Dict = regex_match.groups() snake_case : Tuple = int(groups[2] ) * 2 + int(groups[3] ) snake_case : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case : Optional[Any] = re_encoder_block_conv_in.sub(lowercase ,lowercase ) elif re_encoder_block_resnet.fullmatch(lowercase ): snake_case : int = re_encoder_block_resnet.match(lowercase ) snake_case : Union[str, Any] = regex_match.groups() snake_case : Dict = int(groups[2] ) * 2 + int(groups[3] ) snake_case : str = {'1': 1, '3': 2}[groups[-2]] snake_case : Tuple = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case : int = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case : Tuple = prefix + resnet_block snake_case : str = re_encoder_block_resnet.sub(lowercase ,lowercase ) elif re_encoder_block_proj_out.fullmatch(lowercase ): snake_case : List[Any] = re_encoder_block_proj_out.match(lowercase ) snake_case : Tuple = regex_match.groups() snake_case : List[Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case : List[str] = re_encoder_block_proj_out.sub(lowercase ,lowercase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase ): snake_case : Tuple = re_decoder_block_conv_out.match(lowercase ) snake_case : Dict = regex_match.groups() snake_case : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case : Tuple = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case : int = re_decoder_block_conv_out.sub(lowercase ,lowercase ) elif re_decoder_block_resnet.fullmatch(lowercase ): snake_case : Any = re_decoder_block_resnet.match(lowercase ) snake_case : Union[str, Any] = regex_match.groups() snake_case : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case : int = {'1': 1, '3': 2}[groups[-2]] snake_case : Any = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case : int = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case : Union[str, Any] = prefix + resnet_block snake_case : str = re_decoder_block_resnet.sub(lowercase ,lowercase ) elif re_decoder_block_proj_in.fullmatch(lowercase ): snake_case : List[Any] = re_decoder_block_proj_in.match(lowercase ) snake_case : Dict = regex_match.groups() snake_case : Optional[int] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case : Any = re_decoder_block_proj_in.sub(lowercase ,lowercase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase ): snake_case : Optional[Any] = re_prior_cond_conv_out.match(lowercase ) snake_case : Tuple = regex_match.groups() snake_case : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case : Tuple = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case : str = re_prior_cond_conv_out.sub(lowercase ,lowercase ) elif re_prior_cond_resnet.fullmatch(lowercase ): snake_case : Optional[int] = re_prior_cond_resnet.match(lowercase ) snake_case : Optional[Any] = regex_match.groups() snake_case : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case : Dict = {'1': 1, '3': 2}[groups[-2]] snake_case : Dict = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case : Tuple = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case : List[Any] = prefix + resnet_block snake_case : str = re_prior_cond_resnet.sub(lowercase ,lowercase ) elif re_prior_cond_proj_in.fullmatch(lowercase ): snake_case : Optional[int] = re_prior_cond_proj_in.match(lowercase ) snake_case : Union[str, Any] = regex_match.groups() snake_case : int = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case : int = re_prior_cond_proj_in.sub(lowercase ,lowercase ) # keep original key else: snake_case : Dict = original_key snake_case : Any = replace_key(lowercase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case : List[Any] = original_key snake_case : List[str] = original_key snake_case : Union[str, Any] = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase=None ,lowercase=None ) -> Any: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case : Any = requests.get(f"""{PREFIX}{file}""" ,allow_redirects=lowercase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" ,exist_ok=lowercase ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ,"""wb""" ).write(r.content ) snake_case : Tuple = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case : Any = JukeboxConfig.from_pretrained(lowercase ) snake_case : Optional[Any] = JukeboxModel(lowercase ) snake_case : str = [] snake_case : str = {} for i, dict_name in enumerate(lowercase ): snake_case : List[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['model'] snake_case : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case : Optional[int] = old_dic[k] elif k.endswith(""".w""" ): snake_case : List[str] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case : List[str] = old_dic[k] else: snake_case : Dict = old_dic[k] snake_case : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" snake_case : Optional[Any] = fix_jukebox_keys(lowercase ,model.state_dict() ,lowercase ,lowercase ) weight_dict.append(lowercase ) snake_case : Dict = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase ) for i in range(len(lowercase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase ).mkdir(exist_ok=lowercase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" ,"""w""" ) as txtfile: json.dump(lowercase ,lowercase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) return weight_dict if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) lowerCamelCase : Dict = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' from __future__ import annotations lowerCamelCase : int = [True] * 1_0_0_0_0_0_1 lowerCamelCase : Any = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): lowerCamelCase : List[str] = False i += 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: return seive[n] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: return any(digit in """02468""" for digit in str(__snake_case ) ) def SCREAMING_SNAKE_CASE__ ( lowercase = 1000000 ) -> list[int]: snake_case : Union[str, Any] = [2] # result already includes the number 2. for num in range(3 ,limit + 1 ,2 ): if is_prime(__snake_case ) and not contains_an_even_digit(__snake_case ): snake_case : Tuple = str(__snake_case ) snake_case : str = [int(str_num[j:] + str_num[:j] ) for j in range(len(__snake_case ) )] if all(is_prime(__snake_case ) for i in list_nums ): result.append(__snake_case ) return result def SCREAMING_SNAKE_CASE__ ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
from math import factorial def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(A__ ) // (factorial(A__ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f"""fifty-two card deck is: {combinations(5_2, 5)}\n""", ) print( 'If a class of 40 students must be arranged into groups of', f"""4 for group projects, there are {combinations(4_0, 4)} ways""", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f"""are {combinations(1_0, 3)} ways that first, second and""", 'third place can be awarded.', )
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
import torch def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: if torch.cuda.is_available(): snake_case : List[Any] = torch.cuda.device_count() else: snake_case : Any = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase : str = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 2_5_5 , A = True , A = None , A = True , **A , ) -> None: super().__init__(**lowercase_ ) snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_2_4} snake_case : Optional[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case : int = crop_size if crop_size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : Optional[Any] = get_size_dict(lowercase_ , param_name="""crop_size""" ) snake_case : Any = do_resize snake_case : Tuple = size snake_case : Any = resample snake_case : Union[str, Any] = do_rescale snake_case : Dict = rescale_factor snake_case : Optional[Any] = do_center_crop snake_case : Optional[Any] = crop_size snake_case : Union[str, Any] = do_flip_channel_order def UpperCAmelCase ( self , A , A , A = PIL.Image.BILINEAR , A = None , **A , ) -> np.ndarray: snake_case : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(lowercase_ , size=size["""shortest_edge"""] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Optional[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["""height"""], size["""width"""]) , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> int: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase ( self , A , A = None ) -> np.ndarray: return flip_channel_order(lowercase_ , data_format=lowercase_ ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : Tuple = do_resize if do_resize is not None else self.do_resize snake_case : Union[str, Any] = resample if resample is not None else self.resample snake_case : int = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case : List[Any] = size if size is not None else self.size snake_case : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size snake_case : Any = get_size_dict(lowercase_ , param_name="""crop_size""" ) snake_case : Optional[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case : List[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case : List[Any] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: snake_case : str = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: snake_case : Optional[int] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case : Optional[Any] = [self.flip_channel_order(image=lowercase_ ) for image in images] snake_case : int = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] snake_case : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def UpperCAmelCase ( self , A , A = None ) -> Optional[Any]: snake_case : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase_ ): snake_case : Any = target_sizes.numpy() snake_case : List[Any] = [] for idx in range(len(lowercase_ ) ): snake_case : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase_ ) snake_case : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: snake_case : Any = logits.argmax(dim=1 ) snake_case : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase : Any = logging.get_logger(__name__) @dataclass class __lowercase : """simple docstring""" _snake_case = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) _snake_case = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) _snake_case = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case = field( default=__lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = self.task_name.lower() class __lowercase (__lowerCAmelCase ): """simple docstring""" _snake_case = '''train''' _snake_case = '''dev''' _snake_case = '''test''' class __lowercase (__lowerCAmelCase ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 def __init__( self , A , A , A = None , A = Split.train , A = None , ) -> List[Any]: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCAmelCase_ , ) snake_case : Tuple = args snake_case : Optional[Any] = glue_processors[args.task_name]() snake_case : str = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: snake_case : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file snake_case : str = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) snake_case : Union[str, Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case , snake_case : Optional[Any] = label_list[2], label_list[1] snake_case : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case : Dict = cached_features_file + """.lock""" with FileLock(lowerCAmelCase_ ): if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache: snake_case : str = time.time() snake_case : List[Any] = torch.load(lowerCAmelCase_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: snake_case : int = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case : Dict = self.processor.get_test_examples(args.data_dir ) else: snake_case : Optional[int] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case : Tuple = examples[:limit_length] snake_case : int = glue_convert_examples_to_features( lowerCAmelCase_ , lowerCAmelCase_ , max_length=args.max_seq_length , label_list=lowerCAmelCase_ , output_mode=self.output_mode , ) snake_case : Union[str, Any] = time.time() torch.save(self.features , lowerCAmelCase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , A ) -> InputFeatures: return self.features[i] def UpperCAmelCase ( self ) -> int: return self.label_list
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Union[str, Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case = ["""torch""", """torchsde"""] def __init__( self , *A , **A ) -> int: requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""torch""", """torchsde"""] )
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowercase (__lowerCamelCase ): """simple docstring""" _snake_case = """detr""" _snake_case = ["""past_key_values"""] _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_0_0 , A=6 , A=2_0_4_8 , A=8 , A=6 , A=2_0_4_8 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_5_6 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): snake_case : Optional[int] = backbone_config.get("""model_type""" ) snake_case : Optional[int] = CONFIG_MAPPING[backbone_model_type] snake_case : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None snake_case , snake_case , snake_case : int = None, None, None snake_case : Union[str, Any] = use_timm_backbone snake_case : Tuple = backbone_config snake_case : Optional[int] = num_channels snake_case : Any = num_queries snake_case : Any = d_model snake_case : List[str] = encoder_ffn_dim snake_case : int = encoder_layers snake_case : Tuple = encoder_attention_heads snake_case : Optional[Any] = decoder_ffn_dim snake_case : Dict = decoder_layers snake_case : Dict = decoder_attention_heads snake_case : List[str] = dropout snake_case : Tuple = attention_dropout snake_case : List[Any] = activation_dropout snake_case : int = activation_function snake_case : Optional[int] = init_std snake_case : Tuple = init_xavier_std snake_case : Tuple = encoder_layerdrop snake_case : int = decoder_layerdrop snake_case : List[str] = encoder_layers snake_case : Union[str, Any] = auxiliary_loss snake_case : Optional[Any] = position_embedding_type snake_case : List[Any] = backbone snake_case : Union[str, Any] = use_pretrained_backbone snake_case : Tuple = dilation # Hungarian matcher snake_case : List[str] = class_cost snake_case : List[Any] = bbox_cost snake_case : List[Any] = giou_cost # Loss coefficients snake_case : Any = mask_loss_coefficient snake_case : str = dice_loss_coefficient snake_case : Any = bbox_loss_coefficient snake_case : Union[str, Any] = giou_loss_coefficient snake_case : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> Dict: return self.d_model @classmethod def UpperCAmelCase ( cls , A , **A ) -> int: return cls(backbone_config=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case : List[Any] = self.backbone_config.to_dict() snake_case : Tuple = self.__class__.model_type return output class __lowercase (__lowerCamelCase ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> int: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase ( self ) -> Dict: return 1e-5 @property def UpperCAmelCase ( self ) -> Optional[Any]: return 1_2
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=True , A=False , A=False , A=False , A=2 , A=9_9 , A=0 , A=3_2 , A=5 , A=4 , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=2 , A=4 , A="last" , A=True , A=None , A=0 , ) -> Optional[int]: snake_case : List[str] = parent snake_case : Tuple = batch_size snake_case : Union[str, Any] = seq_length snake_case : Dict = is_training snake_case : Dict = use_input_lengths snake_case : List[str] = use_token_type_ids snake_case : Dict = use_labels snake_case : int = gelu_activation snake_case : List[str] = sinusoidal_embeddings snake_case : Tuple = causal snake_case : Tuple = asm snake_case : List[Any] = n_langs snake_case : List[Any] = vocab_size snake_case : List[Any] = n_special snake_case : Dict = hidden_size snake_case : str = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Dict = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : List[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Optional[Any] = num_labels snake_case : str = num_choices snake_case : Tuple = summary_type snake_case : Tuple = use_proj snake_case : List[Any] = scope snake_case : int = bos_token_id def UpperCAmelCase ( self ) -> List[Any]: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Union[str, Any] = None if self.use_input_lengths: snake_case : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : Optional[int] = None if self.use_token_type_ids: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : Optional[int] = None snake_case : str = None snake_case : Optional[Any] = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self ) -> Optional[int]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: snake_case : Tuple = XLMModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : List[str] = model(snake_case_ , lengths=snake_case_ , langs=snake_case_ ) snake_case : Optional[Any] = model(snake_case_ , langs=snake_case_ ) snake_case : str = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: snake_case : Optional[Any] = XLMWithLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : int = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : List[Any] = XLMForQuestionAnsweringSimple(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Optional[int] = model(snake_case_ ) snake_case : Tuple = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) snake_case : Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : Union[str, Any] = XLMForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : int = model(snake_case_ ) snake_case : List[Any] = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) snake_case : Optional[Any] = model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) (snake_case ) : Dict = result_with_labels.to_tuple() snake_case : Optional[Any] = model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ ) (snake_case ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> int: snake_case : Union[str, Any] = XLMForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Optional[int] = model(snake_case_ ) snake_case : Union[str, Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: snake_case : List[str] = self.num_labels snake_case : Union[str, Any] = XLMForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: snake_case : List[str] = self.num_choices snake_case : Union[str, Any] = XLMForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = self.prepare_config_and_inputs() ( snake_case ) : Any = config_and_inputs snake_case : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class __lowercase (_snake_case , _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" _snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self , A , A , A , A , A ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self , A , A , A=False ) -> int: snake_case : Optional[Any] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def UpperCAmelCase ( self ) -> Tuple: snake_case : int = XLMModelTester(self ) snake_case : Any = ConfigTester(self , config_class=snake_case_ , emb_dim=3_7 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[Any]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case_ ) def UpperCAmelCase ( self ) -> int: snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case_ ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case_ ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case_ ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case_ ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case_ ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> List[Any]: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_attentions in attentions] , [True] * len(snake_case_ ) ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case_ ): # adds PAD dummy token snake_case : Optional[Any] = min_length + idx + 1 snake_case : Optional[Any] = min_length + idx + 1 snake_case : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case_ ) ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> List[Any]: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertListEqual( [isinstance(snake_case_ , snake_case_ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case_ ) , ) self.assertEqual(len(snake_case_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case_ ): # adds PAD dummy token snake_case : Dict = min_length + idx + 1 snake_case : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case_ ) , ) pass @slow def UpperCAmelCase ( self ) -> List[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = XLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(snake_case_ ) snake_case : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case_ ) # the president snake_case : List[Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case : Any = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case_ )
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __lowercase (lowercase__ ): """simple docstring""" _snake_case = """big_bird""" def __init__( self , A=5_0_3_5_8 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu_new" , A=0.1 , A=0.1 , A=4_0_9_6 , A=2 , A=0.02 , A=1e-1_2 , A=True , A=0 , A=1 , A=2 , A=6_6 , A="block_sparse" , A=True , A=False , A=6_4 , A=3 , A=None , **A , ) -> Optional[int]: super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , sep_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case : str = vocab_size snake_case : Tuple = max_position_embeddings snake_case : Dict = hidden_size snake_case : Dict = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[str] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : List[str] = initializer_range snake_case : Optional[int] = type_vocab_size snake_case : int = layer_norm_eps snake_case : Dict = use_cache snake_case : Dict = rescale_embeddings snake_case : List[Any] = attention_type snake_case : Optional[int] = use_bias snake_case : str = block_size snake_case : Dict = num_random_blocks snake_case : List[Any] = classifier_dropout class __lowercase (lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> List[Any]: if self.task == "multiple-choice": snake_case : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['PoolFormerFeatureExtractor'] lowerCamelCase = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class __lowercase (lowerCamelCase__ ): """simple docstring""" _snake_case = """blip_text_model""" def __init__( self , A=3_0_5_2_4 , A=7_6_8 , A=7_6_8 , A=3_0_7_2 , A=7_6_8 , A=1_2 , A=8 , A=5_1_2 , A="gelu" , A=1e-1_2 , A=0.0 , A=0.0 , A=0.02 , A=3_0_5_2_2 , A=2 , A=0 , A=1_0_2 , A=True , A=True , **A , ) -> Dict: super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , sep_token_id=__lowerCamelCase , **__lowerCamelCase , ) snake_case : Any = vocab_size snake_case : List[Any] = hidden_size snake_case : Dict = encoder_hidden_size snake_case : List[str] = intermediate_size snake_case : List[Any] = projection_dim snake_case : Any = hidden_dropout_prob snake_case : Optional[int] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Optional[int] = max_position_embeddings snake_case : List[Any] = layer_norm_eps snake_case : Union[str, Any] = hidden_act snake_case : Optional[int] = initializer_range snake_case : Tuple = attention_probs_dropout_prob snake_case : List[str] = is_decoder snake_case : List[Any] = use_cache @classmethod def UpperCAmelCase ( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) snake_case : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": snake_case : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase (lowerCamelCase__ ): """simple docstring""" _snake_case = """blip_vision_model""" def __init__( self , A=7_6_8 , A=3_0_7_2 , A=5_1_2 , A=1_2 , A=1_2 , A=3_8_4 , A=1_6 , A="gelu" , A=1e-5 , A=0.0 , A=1e-1_0 , **A , ) -> List[Any]: super().__init__(**__lowerCamelCase ) snake_case : List[Any] = hidden_size snake_case : Optional[int] = intermediate_size snake_case : Tuple = projection_dim snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads snake_case : List[Any] = patch_size snake_case : Optional[int] = image_size snake_case : Optional[Any] = initializer_range snake_case : Optional[Any] = attention_dropout snake_case : str = layer_norm_eps snake_case : Tuple = hidden_act @classmethod def UpperCAmelCase ( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) snake_case : str = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": snake_case : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase (lowerCamelCase__ ): """simple docstring""" _snake_case = """blip""" _snake_case = True def __init__( self , A=None , A=None , A=5_1_2 , A=2.65_92 , A=2_5_6 , **A , ) -> Dict: super().__init__(**__lowerCamelCase ) if text_config is None: snake_case : Tuple = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: snake_case : Dict = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) snake_case : int = BlipTextConfig(**__lowerCamelCase ) snake_case : Optional[Any] = BlipVisionConfig(**__lowerCamelCase ) snake_case : List[str] = self.vision_config.hidden_size snake_case : List[Any] = projection_dim snake_case : Optional[Any] = logit_scale_init_value snake_case : Union[str, Any] = 1.0 snake_case : Optional[Any] = 0.02 snake_case : int = image_text_hidden_size @classmethod def UpperCAmelCase ( cls , A , A , **A ) -> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case : Tuple = self.text_config.to_dict() snake_case : Union[str, Any] = self.vision_config.to_dict() snake_case : str = self.__class__.model_type return output
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Dict = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=1_4 , A=7 , A=True , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Union[str, Any]: snake_case : str = parent snake_case : Optional[Any] = batch_size snake_case : Optional[int] = seq_length snake_case : Any = is_training snake_case : List[str] = use_token_type_ids snake_case : Any = use_input_mask snake_case : Any = use_labels snake_case : Tuple = use_mc_token_ids snake_case : Union[str, Any] = vocab_size snake_case : int = hidden_size snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : List[str] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : int = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : Optional[int] = num_labels snake_case : List[Any] = num_choices snake_case : List[Any] = scope snake_case : int = self.vocab_size - 1 def UpperCAmelCase ( self ) -> Any: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_input_mask: snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : str = None if self.use_token_type_ids: snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Any = None if self.use_mc_token_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) snake_case : int = None snake_case : Optional[Any] = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = self.get_config() snake_case : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self ) -> Any: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def UpperCAmelCase ( self , A , A , A , A , A , *A ) -> Union[str, Any]: snake_case : List[str] = CTRLModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) model(lowercase_ , token_type_ids=lowercase_ ) snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def UpperCAmelCase ( self , A , A , A , A , A , *A ) -> Tuple: snake_case : Tuple = CTRLLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case : int = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[Any] = self.prepare_config_and_inputs() ( snake_case ) : Optional[Any] = config_and_inputs snake_case : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def UpperCAmelCase ( self , A , A , A , A , *A ) -> Union[str, Any]: snake_case : int = self.num_labels snake_case : Optional[int] = CTRLForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __lowercase (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _snake_case = (CTRLLMHeadModel,) if is_torch_available() else () _snake_case = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = False _snake_case = False def UpperCAmelCase ( self , A , A , A , A , A ) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def UpperCAmelCase ( self ) -> int: snake_case : List[str] = CTRLModelTester(self ) snake_case : str = ConfigTester(self , config_class=lowercase_ , n_embd=3_7 ) def UpperCAmelCase ( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Dict = CTRLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def UpperCAmelCase ( self ) -> Tuple: snake_case : str = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(lowercase_ ) snake_case : Union[str, Any] = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=lowercase_ ) # Legal the president is snake_case : Tuple = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a snake_case : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
lowerCamelCase : str = 9.8_0665 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = g ) -> str: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase : Tuple = random.Random() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=1.0 ,lowercase=None ,lowercase=None ) -> Tuple: if rng is None: snake_case : Optional[int] = global_rng snake_case : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_0_0 , A=2_0_0_0 , A=1 , A=0.0 , A=1_6_0_0_0 , A=True , A=True , ) -> Dict: snake_case : Any = parent snake_case : Optional[int] = batch_size snake_case : int = min_seq_length snake_case : Tuple = max_seq_length snake_case : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : List[str] = feature_size snake_case : Optional[Any] = padding_value snake_case : List[str] = sampling_rate snake_case : Optional[int] = return_attention_mask snake_case : Dict = do_normalize def UpperCAmelCase ( self ) -> Dict: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self , A=False , A=False ) -> List[Any]: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: snake_case : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : Union[str, Any] = [np.asarray(A ) for x in speech_inputs] return speech_inputs class __lowercase (__lowercase , unittest.TestCase ): """simple docstring""" _snake_case = WavaVecaFeatureExtractor def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase ( self , A ) -> str: self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase ( self ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : Tuple = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input snake_case : int = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values snake_case : Dict = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched snake_case : Union[str, Any] = feat_extract(A , return_tensors="""np""" ).input_values snake_case : Optional[Any] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case : Tuple = np.asarray(A ) snake_case : List[Any] = feat_extract(A , return_tensors="""np""" ).input_values snake_case : Union[str, Any] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def UpperCAmelCase ( self ) -> int: snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : Dict = ["longest", "max_length", "do_not_pad"] snake_case : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(A , A ): snake_case : str = feat_extract(A , padding=A , max_length=A , return_tensors="""np""" ) snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Any = range(8_0_0 , 1_4_0_0 , 2_0_0 ) snake_case : int = [floats_list((1, x) )[0] for x in lengths] snake_case : Any = ["longest", "max_length", "do_not_pad"] snake_case : Union[str, Any] = [None, 1_6_0_0, None] for max_length, padding in zip(A , A ): snake_case : Union[str, Any] = feat_extract(A , max_length=A , padding=A ) snake_case : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : Dict = feat_extract( A , truncation=A , max_length=1_0_0_0 , padding="""max_length""" , return_tensors="""np""" ) snake_case : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase ( self ) -> str: snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : List[str] = feat_extract( A , truncation=A , max_length=1_0_0_0 , padding="""longest""" , return_tensors="""np""" ) snake_case : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : Any = feat_extract( A , truncation=A , max_length=2_0_0_0 , padding="""longest""" , return_tensors="""np""" ) snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def UpperCAmelCase ( self ) -> Union[str, Any]: import torch snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case : Dict = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase ( self ) -> Any: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case : List[Any] = WavaVecaConfig.from_pretrained(A ) snake_case : Tuple = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , **A ) -> List[Any]: super().__init__(**__UpperCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , A , **A ) -> List[str]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase ( self , **A ) -> Union[str, Any]: snake_case : int = {} if "candidate_labels" in kwargs: snake_case : int = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: snake_case : Tuple = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase ( self , A , A=None , A="This is a sound of {}." ) -> int: if isinstance(__UpperCamelCase , __UpperCamelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case : Dict = requests.get(__UpperCamelCase ).content else: with open(__UpperCamelCase , """rb""" ) as f: snake_case : Any = f.read() if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case : int = ffmpeg_read(__UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(__UpperCamelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) snake_case : Dict = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) snake_case : List[str] = candidate_labels snake_case : Any = [hypothesis_template.format(__UpperCamelCase ) for x in candidate_labels] snake_case : Optional[int] = self.tokenizer(__UpperCamelCase , return_tensors=self.framework , padding=__UpperCamelCase ) snake_case : List[Any] = [text_inputs] return inputs def UpperCAmelCase ( self , A ) -> Any: snake_case : Optional[Any] = model_inputs.pop("""candidate_labels""" ) snake_case : List[str] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __UpperCamelCase ): snake_case : Optional[Any] = text_inputs[0] else: # Batching case. snake_case : Any = text_inputs[0][0] snake_case : Optional[Any] = self.model(**__UpperCamelCase , **__UpperCamelCase ) snake_case : Dict = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Dict = model_outputs.pop("""candidate_labels""" ) snake_case : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": snake_case : str = logits.softmax(dim=0 ) snake_case : Union[str, Any] = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) snake_case : Any = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda A : -x[0] ) ] return result
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCamelCase : Union[str, Any] = '.' if __name__ == "__main__": lowerCamelCase : int = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') lowerCamelCase : Optional[Any] = [] lowerCamelCase : str = [] with open(doctest_file_path) as fp: for line in fp: lowerCamelCase : Optional[Any] = line.strip() lowerCamelCase : int = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCamelCase : Optional[int] = '\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" ,[None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" ,["""default""", 0, 100 * 2**20, 900 * 2**20] ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config ,"""IN_MEMORY_MAX_SIZE""" ,lowerCAmelCase__ ) snake_case : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: snake_case : List[str] = dataset_size < in_memory_max_size else: snake_case : Union[str, Any] = False snake_case : List[str] = is_small_dataset(lowerCAmelCase__ ) assert result == expected
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
from manim import * class __lowercase (a__ ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = Rectangle(height=0.5 , width=0.5 ) snake_case : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case : List[Any] = [mem.copy() for i in range(6 )] snake_case : str = [mem.copy() for i in range(6 )] snake_case : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) snake_case : Optional[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) snake_case : Optional[int] = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) snake_case : Any = Text("""CPU""" , font_size=2_4 ) snake_case : Union[str, Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) snake_case : int = [mem.copy() for i in range(1 )] snake_case : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) snake_case : Optional[int] = Text("""GPU""" , font_size=2_4 ) snake_case : Tuple = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ , lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) snake_case : Optional[int] = [mem.copy() for i in range(6 )] snake_case : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) snake_case : int = Text("""Model""" , font_size=2_4 ) snake_case : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , ) snake_case : Optional[Any] = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=2_4 , ) snake_case : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case : Tuple = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=2.5 ) , Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) snake_case : List[Any] = [] snake_case : List[Any] = [] snake_case : List[Any] = [] for i, rect in enumerate(lowerCamelCase_ ): snake_case : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() snake_case : Dict = 0.46 / 4 snake_case : Dict = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase_ , buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , A , A ) -> List[Any]: return f"""gaussian_noise_s={seed}_shape={"_".join([str(UpperCamelCase__ ) for s in shape] )}.npy""" def UpperCAmelCase ( self ) -> Tuple: super().tearDown() gc.collect() def UpperCAmelCase ( self , A=0 , A=(4, 4, 6_4, 6_4) , A=False ) -> Tuple: snake_case : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa snake_case : List[str] = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase__ , UpperCamelCase__ ) ) , dtype=UpperCamelCase__ ) return image def UpperCAmelCase ( self , A=False , A="CompVis/stable-diffusion-v1-4" ) -> str: snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa snake_case : Dict = """bf16""" if fpaa else None snake_case , snake_case : str = FlaxUNetaDConditionModel.from_pretrained( UpperCamelCase__ , subfolder="""unet""" , dtype=UpperCamelCase__ , revision=UpperCamelCase__ ) return model, params def UpperCAmelCase ( self , A=0 , A=(4, 7_7, 7_6_8) , A=False ) -> str: snake_case : List[Any] = jnp.bfloataa if fpaa else jnp.floataa snake_case : List[str] = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase__ , UpperCamelCase__ ) ) , dtype=UpperCamelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def UpperCAmelCase ( self , A , A , A ) -> str: snake_case , snake_case : Any = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=UpperCamelCase__ ) snake_case : Tuple = self.get_latents(UpperCamelCase__ , fpaa=UpperCamelCase__ ) snake_case : Optional[int] = self.get_encoder_hidden_states(UpperCamelCase__ , fpaa=UpperCamelCase__ ) snake_case : Any = model.apply( {"""params""": params} , UpperCamelCase__ , jnp.array(UpperCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase__ , ).sample assert sample.shape == latents.shape snake_case : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case : Any = jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def UpperCAmelCase ( self , A , A , A ) -> str: snake_case , snake_case : Dict = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=UpperCamelCase__ ) snake_case : Union[str, Any] = self.get_latents(UpperCamelCase__ , shape=(4, 4, 9_6, 9_6) , fpaa=UpperCamelCase__ ) snake_case : Optional[Any] = self.get_encoder_hidden_states(UpperCamelCase__ , shape=(4, 7_7, 1_0_2_4) , fpaa=UpperCamelCase__ ) snake_case : Optional[int] = model.apply( {"""params""": params} , UpperCamelCase__ , jnp.array(UpperCamelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase__ , ).sample assert sample.shape == latents.shape snake_case : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case : List[str] = jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' import collections import os import re from pathlib import Path lowerCamelCase : int = "src/transformers" # Matches is_xxx_available() lowerCamelCase : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCamelCase : int = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase : Optional[Any] = re.compile(r'\s+\"\S*\":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCamelCase : List[str] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase : Optional[int] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase : Optional[int] = re.compile(r'^\s+\"([^\"]+)\",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase : List[str] = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCamelCase : str = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCamelCase : Union[str, Any] = re.compile(r'^\s*try:') # Catches a line with else: lowerCamelCase : Tuple = re.compile(r'^\s*else:') def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: if _re_test_backend.search(__lowerCAmelCase ) is None: return None snake_case : Dict = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: with open(__lowerCAmelCase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: snake_case : int = f.readlines() snake_case : Union[str, Any] = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): snake_case : Any = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] snake_case : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" ,__lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case : Any = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: snake_case : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case : List[str] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: snake_case : Optional[Any] = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(""", """ ) snake_case : Any = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: snake_case : Optional[Any] = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(""", """ ) snake_case : Dict = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case : Tuple = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case : Dict = lines[line_index] snake_case : List[str] = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case : Union[str, Any] = lines[line_index] snake_case : Union[str, Any] = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: def find_duplicates(lowercase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case : Optional[int] = [] for key in import_dict_objects.keys(): snake_case : List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) snake_case : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case : Optional[int] = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[Any] = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: snake_case : Any = os.path.join(__lowerCAmelCase ,"""__init__.py""" ) snake_case : Optional[int] = parse_init(__lowerCAmelCase ) if objects is not None: snake_case : Any = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case : int = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : List[str] = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case : Any = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) snake_case : List[str] = short_path.replace(os.path.sep ,""".""" ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case : Optional[int] = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) snake_case : Tuple = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules lowerCamelCase : Optional[int] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: from transformers.utils import direct_transformers_import snake_case : Dict = direct_transformers_import(__lowerCAmelCase ) snake_case : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase ,"""__init__.py""" ) ,"""r""" ) as f: snake_case : Tuple = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" ,__lowerCAmelCase ) ) ) snake_case : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: snake_case : List[Any] = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase (_UpperCamelCase , unittest.TestCase ): """simple docstring""" _snake_case = DanceDiffusionPipeline _snake_case = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _snake_case = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) snake_case : List[Any] = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCAmelCase , use_timestep_embedding=_UpperCAmelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) snake_case : int = IPNDMScheduler() snake_case : Any = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCAmelCase ( self , A , A=0 ) -> Dict: if str(_UpperCAmelCase ).startswith("""mps""" ): snake_case : Dict = torch.manual_seed(_UpperCAmelCase ) else: snake_case : Any = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case : Any = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : Optional[Any] = self.get_dummy_components() snake_case : Union[str, Any] = DanceDiffusionPipeline(**_UpperCAmelCase ) snake_case : int = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case : int = self.get_dummy_inputs(_UpperCAmelCase ) snake_case : Dict = pipe(**_UpperCAmelCase ) snake_case : List[Any] = output.audios snake_case : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) snake_case : Optional[Any] = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self ) -> Any: return super().test_save_load_local() @skip_mps def UpperCAmelCase ( self ) -> Any: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCAmelCase ( self ) -> Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase ( self ) -> Any: return super().test_attention_slicing_forward_pass() def UpperCAmelCase ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> int: snake_case : Tuple = torch_device snake_case : Optional[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case : Tuple = torch.manual_seed(0 ) snake_case : Optional[int] = pipe(generator=_UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) snake_case : Any = output.audios snake_case : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : Dict = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ) -> Tuple: snake_case : List[str] = torch_device snake_case : int = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : Optional[Any] = pipe(generator=_UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) snake_case : Any = output.audios snake_case : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case : str = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=() ,lowercase=None ,lowercase="no" ,lowercase="29500" ) -> Tuple: snake_case : Optional[Any] = False snake_case : Union[str, Any] = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): snake_case : List[str] = True elif "IPython" in sys.modules: snake_case : int = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: snake_case : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" ,UpperCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: snake_case : Dict = 8 snake_case : int = PrepareForLaunch(UpperCAmelCase__ ,distributed_type="""TPU""" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(UpperCAmelCase__ ,args=UpperCAmelCase__ ,nprocs=UpperCAmelCase__ ,start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*UpperCAmelCase__ ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ ,master_addr="""127.0.01""" ,master_port=UpperCAmelCase__ ,mixed_precision=UpperCAmelCase__ ): snake_case : str = PrepareForLaunch(UpperCAmelCase__ ,distributed_type="""MULTI_GPU""" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(UpperCAmelCase__ ,args=UpperCAmelCase__ ,nprocs=UpperCAmelCase__ ,start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case : Optional[int] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=() ,lowercase=2 ) -> Union[str, Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ ,master_addr="""127.0.01""" ,master_port="""29500""" ,accelerate_mixed_precision="""no""" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="""yes""" ,): snake_case : List[str] = PrepareForLaunch(UpperCAmelCase__ ,debug=UpperCAmelCase__ ) start_processes(UpperCAmelCase__ ,args=UpperCAmelCase__ ,nprocs=UpperCAmelCase__ ,start_method="""fork""" )
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: if isinstance(UpperCAmelCase__ ,torch.Tensor ): return image elif isinstance(UpperCAmelCase__ ,PIL.Image.Image ): snake_case : Optional[int] = [image] if isinstance(image[0] ,PIL.Image.Image ): snake_case : Union[str, Any] = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] snake_case : Tuple = np.concatenate(UpperCAmelCase__ ,axis=0 ) snake_case : Tuple = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 255.0 snake_case : Optional[Any] = image.transpose(0 ,3 ,1 ,2 ) snake_case : Tuple = 2.0 * image - 1.0 snake_case : Optional[Any] = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] ,torch.Tensor ): snake_case : Tuple = torch.cat(UpperCAmelCase__ ,dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=0.9995 ) -> List[str]: if not isinstance(UpperCAmelCase__ ,np.ndarray ): snake_case : Optional[Any] = True snake_case : Dict = va.device snake_case : str = va.cpu().numpy() snake_case : Union[str, Any] = va.cpu().numpy() snake_case : Optional[int] = np.sum(va * va / (np.linalg.norm(UpperCAmelCase__ ) * np.linalg.norm(UpperCAmelCase__ )) ) if np.abs(UpperCAmelCase__ ) > DOT_THRESHOLD: snake_case : List[Any] = (1 - t) * va + t * va else: snake_case : str = np.arccos(UpperCAmelCase__ ) snake_case : Optional[int] = np.sin(UpperCAmelCase__ ) snake_case : Optional[Any] = theta_a * t snake_case : List[Any] = np.sin(UpperCAmelCase__ ) snake_case : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a snake_case : Optional[int] = sin_theta_t / sin_theta_a snake_case : List[Any] = sa * va + sa * va if inputs_are_torch: snake_case : Union[str, Any] = torch.from_numpy(UpperCAmelCase__ ).to(UpperCAmelCase__ ) return va def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Union[str, Any] = F.normalize(UpperCAmelCase__ ,dim=-1 ) snake_case : Any = F.normalize(UpperCAmelCase__ ,dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: for param in model.parameters(): snake_case : Dict = value class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> Dict: super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , clip_model=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , coca_model=__UpperCamelCase , coca_tokenizer=__UpperCamelCase , coca_transform=__UpperCamelCase , ) snake_case : Dict = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCamelCase ) else feature_extractor.size["""shortest_edge"""] ) snake_case : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCamelCase ) set_requires_grad(self.clip_model , __UpperCamelCase ) def UpperCAmelCase ( self , A = "auto" ) -> str: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(__UpperCamelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: set_requires_grad(self.vae , __UpperCamelCase ) def UpperCAmelCase ( self ) -> Dict: set_requires_grad(self.vae , __UpperCamelCase ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.unet , __UpperCamelCase ) def UpperCAmelCase ( self ) -> str: set_requires_grad(self.unet , __UpperCamelCase ) def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: # get the original timestep using init_timestep snake_case : Union[str, Any] = min(int(num_inference_steps * strength ) , __UpperCamelCase ) snake_case : Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) snake_case : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , A , A , A , A , A , A=None ) -> Dict: if not isinstance(__UpperCamelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(__UpperCamelCase )}""" ) snake_case : Optional[Any] = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] snake_case : Tuple = torch.cat(__UpperCamelCase , dim=0 ) else: snake_case : List[str] = self.vae.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case : Any = 0.1_82_15 * init_latents snake_case : Tuple = init_latents.repeat_interleave(__UpperCamelCase , dim=0 ) snake_case : Any = randn_tensor(init_latents.shape , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents snake_case : Optional[int] = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case : int = init_latents return latents def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Tuple = self.coca_transform(__UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): snake_case : str = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) snake_case : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: snake_case : Dict = self.feature_extractor.preprocess(__UpperCamelCase ) snake_case : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() snake_case : Tuple = self.clip_model.get_image_features(__UpperCamelCase ) snake_case : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) snake_case : Any = image_embeddings_clip.repeat_interleave(__UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase ( self , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : List[Any] = latents.detach().requires_grad_() snake_case : List[str] = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual snake_case : List[str] = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): snake_case : Optional[int] = self.scheduler.alphas_cumprod[timestep] snake_case : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 snake_case : Optional[Any] = torch.sqrt(__UpperCamelCase ) snake_case : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCamelCase ): snake_case : str = self.scheduler.sigmas[index] snake_case : str = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case : str = 1 / 0.1_82_15 * sample snake_case : List[str] = self.vae.decode(__UpperCamelCase ).sample snake_case : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Optional[Any] = transforms.Resize(self.feature_extractor_size )(__UpperCamelCase ) snake_case : int = self.normalize(__UpperCamelCase ).to(latents.dtype ) snake_case : Any = self.clip_model.get_image_features(__UpperCamelCase ) snake_case : Any = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) snake_case : str = spherical_dist_loss(__UpperCamelCase , __UpperCamelCase ).mean() * clip_guidance_scale snake_case : Any = -torch.autograd.grad(__UpperCamelCase , __UpperCamelCase )[0] if isinstance(self.scheduler , __UpperCamelCase ): snake_case : Dict = latents.detach() + grads * (sigma**2) snake_case : Optional[Any] = noise_pred_original else: snake_case : str = noise_pred_original - torch.sqrt(__UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , A , A , A = None , A = None , A = 5_1_2 , A = 5_1_2 , A = 0.6 , A = 5_0 , A = 7.5 , A = 1 , A = 0.0 , A = 1_0_0 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> int: if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(__UpperCamelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__UpperCamelCase , torch.Generator ) and batch_size > 1: snake_case : List[Any] = [generator] + [None] * (batch_size - 1) snake_case : List[Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] snake_case : List[Any] = [x[0] for x in coca_is_none if x[1]] snake_case : Union[str, Any] = """, """.join(__UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCamelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) snake_case : Tuple = self.get_image_description(__UpperCamelCase ) if style_prompt is None: if len(__UpperCamelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) snake_case : Any = self.get_image_description(__UpperCamelCase ) # get prompt text embeddings for content and style snake_case : Union[str, Any] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) snake_case : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] snake_case : Dict = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) snake_case : str = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] snake_case : str = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # duplicate text embeddings for each generation per prompt snake_case : Dict = text_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # set timesteps snake_case : List[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) snake_case : List[Any] = {} if accepts_offset: snake_case : Optional[Any] = 1 self.scheduler.set_timesteps(__UpperCamelCase , **__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) snake_case , snake_case : Dict = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) snake_case : Optional[int] = timesteps[:1].repeat(__UpperCamelCase ) # Preprocess image snake_case : int = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case : Union[str, Any] = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) snake_case : Tuple = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case : Optional[Any] = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) snake_case : str = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if clip_guidance_scale > 0: snake_case : Any = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) snake_case : Optional[int] = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) snake_case : List[str] = slerp( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case : Any = content_text_input.input_ids.shape[-1] snake_case : Optional[Any] = self.tokenizer([""""""] , padding="""max_length""" , max_length=__UpperCamelCase , return_tensors="""pt""" ) snake_case : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt snake_case : int = uncond_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case : Union[str, Any] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) snake_case : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps snake_case : Any = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: snake_case : str = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) snake_case : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : int = {} if accepts_eta: snake_case : Any = eta # check if the scheduler accepts generator snake_case : List[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: snake_case : List[str] = generator with self.progress_bar(total=__UpperCamelCase ): for i, t in enumerate(__UpperCamelCase ): # expand the latents if we are doing classifier free guidance snake_case : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Union[str, Any] = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual snake_case : str = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: snake_case , snake_case : str = noise_pred.chunk(2 ) snake_case : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: snake_case : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) snake_case , snake_case : Optional[int] = self.cond_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 snake_case : Optional[Any] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case : Any = 1 / 0.1_82_15 * latents snake_case : List[Any] = self.vae.decode(__UpperCamelCase ).sample snake_case : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Optional[int] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = TypeVar('DatasetType', Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = "first_exhausted" ,) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(_UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCamelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.""" ) if i == 0: snake_case , snake_case : str = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase ,_UpperCamelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,info=_UpperCamelCase ,split=_UpperCamelCase ,stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,info=_UpperCamelCase ,split=_UpperCamelCase ,stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = None ,lowercase = None ,lowercase = 0 ,) -> DatasetType: if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(_UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCamelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.""" ) if i == 0: snake_case , snake_case : List[str] = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase ,_UpperCamelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase ,info=_UpperCamelCase ,split=_UpperCamelCase ,axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase ,info=_UpperCamelCase ,split=_UpperCamelCase ,axis=_UpperCamelCase )
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : List[Any] = old_name if "patch_embed" in old_name: snake_case , snake_case , snake_case : int = old_name.split(""".""" ) if layer == "0": snake_case : Dict = old_name.replace("""0""" ,"""convolution1""" ) elif layer == "1": snake_case : Optional[Any] = old_name.replace("""1""" ,"""batchnorm_before""" ) elif layer == "3": snake_case : Dict = old_name.replace("""3""" ,"""convolution2""" ) else: snake_case : int = old_name.replace("""4""" ,"""batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" ,lowercase ): snake_case : str = R"""\b\d{2}\b""" if bool(re.search(lowercase ,lowercase ) ): snake_case : Optional[Any] = re.search(R"""\d\.\d\d.""" ,lowercase ).group() else: snake_case : str = re.search(R"""\d\.\d.""" ,lowercase ).group() if int(match[0] ) < 6: snake_case : List[str] = old_name.replace(lowercase ,"""""" ) snake_case : Any = trimmed_name.replace("""network""" ,match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) snake_case : int = """intermediate_stages.""" + trimmed_name else: snake_case : Any = old_name.replace(lowercase ,"""""" ) if int(match[2] ) < num_meta4D_last_stage: snake_case : int = trimmed_name.replace("""network""" ,"""meta4D_layers.blocks.""" + match[2] ) else: snake_case : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) snake_case : Optional[int] = trimmed_name.replace("""network""" ,"""meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: snake_case : str = trimmed_name.replace("""norm1""" ,"""layernorm1""" ) elif "norm2" in old_name: snake_case : Optional[Any] = trimmed_name.replace("""norm2""" ,"""layernorm2""" ) elif "fc1" in old_name: snake_case : Optional[Any] = trimmed_name.replace("""fc1""" ,"""linear_in""" ) elif "fc2" in old_name: snake_case : Any = trimmed_name.replace("""fc2""" ,"""linear_out""" ) snake_case : Optional[int] = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" ,lowercase ): snake_case : List[str] = old_name.replace("""network""" ,"""intermediate_stages""" ) if "fc" in new_name: snake_case : Dict = new_name.replace("""fc""" ,"""convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case : Optional[Any] = new_name.replace("""norm1""" ,"""batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case : Tuple = new_name.replace("""norm2""" ,"""batchnorm_after""" ) if "proj" in new_name: snake_case : Dict = new_name.replace("""proj""" ,"""projection""" ) if "dist_head" in new_name: snake_case : Dict = new_name.replace("""dist_head""" ,"""distillation_classifier""" ) elif "head" in new_name: snake_case : Tuple = new_name.replace("""head""" ,"""classifier""" ) elif "patch_embed" in new_name: snake_case : Tuple = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case : Any = new_name.replace("""norm""" ,"""layernorm""" ) snake_case : Optional[Any] = """efficientformer.""" + new_name else: snake_case : Optional[Any] = """efficientformer.encoder.""" + new_name return new_name def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: for key in checkpoint.copy().keys(): snake_case : Optional[Any] = checkpoint.pop(lowercase ) snake_case : Tuple = val return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : str = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : List[str] = torch.load(lowercase ,map_location="""cpu""" )["""model"""] snake_case : Optional[int] = EfficientFormerConfig.from_json_file(lowercase ) snake_case : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(lowercase ) snake_case : Any = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) snake_case : List[Any] = config.depths[-1] - config.num_metaad_blocks + 1 snake_case : Any = convert_torch_checkpoint(lowercase ,lowercase ) model.load_state_dict(lowercase ) model.eval() snake_case : Dict = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image snake_case : str = prepare_img() snake_case : Optional[int] = 256 snake_case : str = 224 snake_case : Optional[int] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} ,crop_size={"""height""": crop_size, """width""": crop_size} ,resample=pillow_resamplings["""bicubic"""] ,) snake_case : Optional[int] = processor(images=lowercase ,return_tensors="""pt""" ).pixel_values # original processing pipeline snake_case : List[Any] = Compose( [ Resize(lowercase ,interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase ), ToTensor(), Normalize(lowercase ,lowercase ), ] ) snake_case : Union[str, Any] = image_transforms(lowercase ).unsqueeze(0 ) assert torch.allclose(lowercase ,lowercase ) snake_case : int = model(lowercase ) snake_case : Optional[int] = outputs.logits snake_case : Dict = (1, 1000) if "l1" in model_name: snake_case : Union[str, Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,lowercase ,atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,lowercase ,atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case : Any = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" ,commit_message="""Add model""" ,use_temp_dir=lowercase ,) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" ,commit_message="""Add image processor""" ,use_temp_dir=lowercase ,) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowercase : """simple docstring""" def __init__( self , A , A=2 , A=True , A=False , A=1_0 , A=3 , A=3_2 * 4 , A=3_2 * 6 , A=4 , A=3_2 , ) -> str: snake_case : List[Any] = parent snake_case : Union[str, Any] = batch_size snake_case : Dict = is_training snake_case : Optional[int] = use_auxiliary_loss snake_case : Optional[Any] = num_queries snake_case : Dict = num_channels snake_case : Tuple = min_size snake_case : Tuple = max_size snake_case : List[Any] = num_labels snake_case : List[Any] = mask_feature_size def UpperCAmelCase ( self ) -> List[str]: snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) snake_case : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) snake_case : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() snake_case : int = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() snake_case : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase ( self ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase ( self ) -> int: snake_case : Union[str, Any] = self.prepare_config_and_inputs() snake_case : Optional[int] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase ( self , A , A ) -> int: snake_case : List[str] = output.encoder_hidden_states snake_case : str = output.pixel_decoder_hidden_states snake_case : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase ( self , A , A , A , A=False ) -> Tuple: with torch.no_grad(): snake_case : List[Any] = MaskFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() snake_case : List[str] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) snake_case : str = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self , A , A , A , A , A ) -> Dict: snake_case : List[Any] = MaskFormerForInstanceSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(A ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) snake_case : Any = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) snake_case : Any = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowercase (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" _snake_case = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _snake_case = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = MaskFormerModelTester(self ) snake_case : str = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> str: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase ( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def UpperCAmelCase ( self ) -> Any: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Dict = model_class(lowerCamelCase__ ) snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Any = [*signature.parameters.keys()] snake_case : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def UpperCAmelCase ( self ) -> Dict: for model_name in ["facebook/maskformer-swin-small-coco"]: snake_case : Tuple = MaskFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = (self.model_tester.min_size,) * 2 snake_case : List[str] = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 1_0 , device=lowerCamelCase__ ).long(), } snake_case : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase__ ) snake_case : int = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase ( self ) -> List[str]: snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) snake_case : Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss snake_case : List[str] = self.all_model_classes[1] snake_case : Any = self.model_tester.prepare_config_and_inputs() snake_case : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() snake_case : Optional[int] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = self.all_model_classes[1] snake_case : Any = self.model_tester.prepare_config_and_inputs() snake_case : Any = True snake_case : int = True snake_case : List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() snake_case : Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) snake_case : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't snake_case : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase : Optional[int] = 1e-4 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(lowerCamelCase__ ) snake_case : List[str] = self.default_image_processor snake_case : List[str] = prepare_img() snake_case : Any = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) snake_case : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): snake_case : Optional[Any] = model(**lowerCamelCase__ ) snake_case : Dict = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) snake_case : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) snake_case : Optional[Any] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase ( self ) -> Any: snake_case : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase__ ) .eval() ) snake_case : Union[str, Any] = self.default_image_processor snake_case : Optional[int] = prepare_img() snake_case : Dict = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) snake_case : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): snake_case : Tuple = model(**lowerCamelCase__ ) # masks_queries_logits snake_case : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case : Union[str, Any] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] snake_case : Any = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits snake_case : List[str] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case : Optional[int] = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(lowerCamelCase__ ) .eval() ) snake_case : Tuple = self.default_image_processor snake_case : Any = prepare_img() snake_case : Optional[int] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) snake_case : Optional[int] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): snake_case : List[Any] = model(**lowerCamelCase__ ) # masks_queries_logits snake_case : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case : Optional[int] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] snake_case : Any = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits snake_case : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case : List[str] = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Any = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(lowerCamelCase__ ) .eval() ) snake_case : Dict = self.default_image_processor snake_case : Optional[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) snake_case : int = inputs['''pixel_values'''].to(lowerCamelCase__ ) snake_case : Tuple = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] snake_case : Optional[int] = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): snake_case : Optional[int] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase : Any = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: with open(snake_case_ ,"""rb""" ) as f: snake_case : List[Any] = Image.open(snake_case_ ) return im.convert("""RGB""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default=UpperCamelCase_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case = field(default=UpperCamelCase_ , metadata={"""help""": """A folder containing the training data."""} ) _snake_case = field(default=UpperCamelCase_ , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase_ )} , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case = field(default=UpperCamelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case = field( default=UpperCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : List[str] = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case : List[Any] = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" ,snake_case_ ,snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,use_auth_token=True if model_args.use_auth_token else None ,) else: snake_case : Any = {} if data_args.train_dir is not None: snake_case : str = os.path.join(data_args.train_dir ,"""**""" ) if data_args.validation_dir is not None: snake_case : Tuple = os.path.join(data_args.validation_dir ,"""**""" ) snake_case : int = load_dataset( """imagefolder""" ,data_files=snake_case_ ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,) # If we don't have a validation split, split off a percentage of train as validation. snake_case : Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,snake_case_ ) and data_args.train_val_split > 0.0: snake_case : Optional[int] = dataset['''train'''].train_test_split(data_args.train_val_split ) snake_case : List[Any] = split['''train'''] snake_case : List[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case : int = dataset['''train'''].features['''labels'''].names snake_case : List[str] = {}, {} for i, label in enumerate(snake_case_ ): snake_case : Optional[Any] = str(snake_case_ ) snake_case : Optional[int] = label # Load the accuracy metric from the datasets package snake_case : List[Any] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) snake_case : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case_ ) ,labelaid=snake_case_ ,idalabel=snake_case_ ,finetuning_task="""image-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) snake_case : int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) snake_case : Optional[int] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case : Optional[Any] = image_processor.size['''shortest_edge'''] else: snake_case : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case : int = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) snake_case : Tuple = Compose( [ RandomResizedCrop(snake_case_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case : Union[str, Any] = Compose( [ Resize(snake_case_ ), CenterCrop(snake_case_ ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): snake_case : Any = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowercase ): snake_case : int = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case : Optional[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case : List[str] = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(snake_case_ ) # Initalize our trainer snake_case : Optional[Any] = Trainer( model=snake_case_ ,args=snake_case_ ,train_dataset=dataset["""train"""] if training_args.do_train else None ,eval_dataset=dataset["""validation"""] if training_args.do_eval else None ,compute_metrics=snake_case_ ,tokenizer=snake_case_ ,data_collator=snake_case_ ,) # Training if training_args.do_train: snake_case : List[str] = None if training_args.resume_from_checkpoint is not None: snake_case : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : List[Any] = last_checkpoint snake_case : str = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Optional[int] = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case_ ) trainer.save_metrics("""eval""" ,snake_case_ ) # Write model card and (optionally) push to hub snake_case : List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> list[int]: snake_case : Tuple = [0] * no_of_processes snake_case : List[str] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowerCamelCase__ ): snake_case : str = burst_time[i] snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = 0 snake_case : Optional[Any] = 999999999 snake_case : Union[str, Any] = 0 snake_case : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowerCamelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case : Optional[int] = remaining_time[j] snake_case : Dict = j snake_case : Tuple = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case : Any = remaining_time[short] if minm == 0: snake_case : List[Any] = 999999999 if remaining_time[short] == 0: complete += 1 snake_case : List[str] = False # Find finish time of current process snake_case : int = increment_time + 1 # Calculate waiting time snake_case : int = finish_time - arrival_time[short] snake_case : Union[str, Any] = finar - burst_time[short] if waiting_time[short] < 0: snake_case : Union[str, Any] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> list[int]: snake_case : Optional[Any] = [0] * no_of_processes for i in range(lowerCamelCase__ ): snake_case : List[str] = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> None: snake_case : str = 0 snake_case : Tuple = 0 for i in range(lowerCamelCase__ ): snake_case : Union[str, Any] = total_waiting_time + waiting_time[i] snake_case : Optional[Any] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') lowerCamelCase : List[Any] = int(input()) lowerCamelCase : List[str] = [0] * no_of_processes lowerCamelCase : List[Any] = [0] * no_of_processes lowerCamelCase : Any = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) lowerCamelCase , lowerCamelCase : Optional[Any] = map(int, input().split()) lowerCamelCase : Optional[int] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase : List[Any] = burst_time lowerCamelCase : int = no_of_processes lowerCamelCase : str = waiting_time lowerCamelCase : int = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase : List[str] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = [] snake_case : List[str] = [] for i in range(self.num_layers ): snake_case : int = self.in_channels if i == 0 else self.out_channels snake_case : str = FlaxResnetBlockaD( in_channels=A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : Tuple = resnets snake_case : Tuple = attentions if self.add_downsample: snake_case : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A=True ) -> List[Any]: snake_case : int = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case : Union[str, Any] = resnet(A , A , deterministic=A ) snake_case : Tuple = attn(A , A , deterministic=A ) output_states += (hidden_states,) if self.add_downsample: snake_case : int = self.downsamplers_a(A ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = True _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = [] for i in range(self.num_layers ): snake_case : List[Any] = self.in_channels if i == 0 else self.out_channels snake_case : Union[str, Any] = FlaxResnetBlockaD( in_channels=A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : List[Any] = resnets if self.add_downsample: snake_case : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A=True ) -> Any: snake_case : List[Any] = () for resnet in self.resnets: snake_case : Any = resnet(A , A , deterministic=A ) output_states += (hidden_states,) if self.add_downsample: snake_case : Dict = self.downsamplers_a(A ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Any: snake_case : int = [] snake_case : List[Any] = [] for i in range(self.num_layers ): snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : Tuple = self.prev_output_channel if i == 0 else self.out_channels snake_case : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : int = resnets snake_case : int = attentions if self.add_upsample: snake_case : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A , A=True ) -> int: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case : Dict = res_hidden_states_tuple[-1] snake_case : Optional[Any] = res_hidden_states_tuple[:-1] snake_case : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : Dict = resnet(A , A , deterministic=A ) snake_case : Union[str, Any] = attn(A , A , deterministic=A ) if self.add_upsample: snake_case : Dict = self.upsamplers_a(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = True _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[Any] = [] for i in range(self.num_layers ): snake_case : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : Tuple = self.prev_output_channel if i == 0 else self.out_channels snake_case : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : int = resnets if self.add_upsample: snake_case : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A=True ) -> str: for resnet in self.resnets: # pop res hidden states snake_case : List[Any] = res_hidden_states_tuple[-1] snake_case : Optional[int] = res_hidden_states_tuple[:-1] snake_case : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : Union[str, Any] = resnet(A , A , deterministic=A ) if self.add_upsample: snake_case : Any = self.upsamplers_a(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Union[str, Any]: # there is always at least one resnet snake_case : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case : Dict = [] for _ in range(self.num_layers ): snake_case : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : str = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : Optional[Any] = resnets snake_case : str = attentions def __call__( self , A , A , A , A=True ) -> Dict: snake_case : Union[str, Any] = self.resnets[0](A , A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case : Any = attn(A , A , deterministic=A ) snake_case : Dict = resnet(A , A , deterministic=A ) return hidden_states
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> List[Any]: super().__init__(*A , **A ) requires_backends(self , """decord""" ) self.check_model_type(A ) def UpperCAmelCase ( self , A=None , A=None , A=None ) -> str: snake_case : List[str] = {} if frame_sampling_rate is not None: snake_case : str = frame_sampling_rate if num_frames is not None: snake_case : str = num_frames snake_case : Optional[Any] = {} if top_k is not None: snake_case : int = top_k return preprocess_params, {}, postprocess_params def __call__( self , A , **A ) -> str: return super().__call__(A , **A ) def UpperCAmelCase ( self , A , A=None , A=1 ) -> Tuple: if num_frames is None: snake_case : Optional[int] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case : int = BytesIO(requests.get(A ).content ) snake_case : Optional[int] = VideoReader(A ) videoreader.seek(0 ) snake_case : Union[str, Any] = 0 snake_case : str = num_frames * frame_sampling_rate - 1 snake_case : Dict = np.linspace(A , A , num=A , dtype=np.intaa ) snake_case : Tuple = videoreader.get_batch(A ).asnumpy() snake_case : Union[str, Any] = list(A ) snake_case : Tuple = self.image_processor(A , return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case : int = self.model(**A ) return model_outputs def UpperCAmelCase ( self , A , A=5 ) -> Optional[int]: if top_k > self.model.config.num_labels: snake_case : Any = self.model.config.num_labels if self.framework == "pt": snake_case : Tuple = model_outputs.logits.softmax(-1 )[0] snake_case : Optional[Any] = probs.topk(A ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : Any = scores.tolist() snake_case : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A , A )]
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A , A , ) -> Any: super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=A , speech_processor=A , vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , ) def UpperCAmelCase ( self , A = "auto" ) -> Dict: if slice_size == "auto": snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> int: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A=1_6_0_0_0 , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Tuple: snake_case : List[Any] = self.speech_processor.feature_extractor( A , return_tensors="""pt""" , sampling_rate=A ).input_features.to(self.device ) snake_case : str = self.speech_model.generate(A , max_length=4_8_0_0_0_0 ) snake_case : int = self.speech_processor.tokenizer.batch_decode(A , skip_special_tokens=A , normalize=A )[ 0 ] if isinstance(A , A ): snake_case : Tuple = 1 elif isinstance(A , A ): snake_case : Union[str, Any] = len(A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(A )}.""" ) # get prompt text embeddings snake_case : Dict = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case : int = text_input_ids[:, : self.tokenizer.model_max_length] snake_case : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case : Dict = text_embeddings.shape snake_case : List[str] = text_embeddings.repeat(1 , A , 1 ) snake_case : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case : List[str] if negative_prompt is None: snake_case : Dict = [""""""] * batch_size elif type(A ) is not type(A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=""" f""" {type(A )}.""" ) elif isinstance(A , A ): snake_case : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: snake_case : Dict = negative_prompt snake_case : Union[str, Any] = text_input_ids.shape[-1] snake_case : Any = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) snake_case : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : int = uncond_embeddings.shape[1] snake_case : Tuple = uncond_embeddings.repeat(1 , A , 1 ) snake_case : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case : str = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: snake_case : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) snake_case : Tuple = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : int = {} if accepts_eta: snake_case : Any = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : List[Any] = self.scheduler.scale_model_input(A , A ) # predict the noise residual snake_case : List[Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: snake_case : str = noise_pred.chunk(2 ) snake_case : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case : Optional[Any] = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) snake_case : List[str] = 1 / 0.1_82_15 * latents snake_case : int = self.vae.decode(A ).sample snake_case : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : Union[str, Any] = self.numpy_to_pil(A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCamelCase : List[Any] = 'scheduler_config.json' class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 1 _snake_case = 2 _snake_case = 3 _snake_case = 4 _snake_case = 5 _snake_case = 6 _snake_case = 7 _snake_case = 8 _snake_case = 9 _snake_case = 10 _snake_case = 11 _snake_case = 12 _snake_case = 13 _snake_case = 14 @dataclass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 42 class __lowercase : """simple docstring""" _snake_case = SCHEDULER_CONFIG_NAME _snake_case = [] _snake_case = True @classmethod def UpperCAmelCase ( cls , A = None , A = None , A=False , **A , ) -> List[Any]: snake_case : Optional[int] = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , return_commit_hash=A , **A , ) return cls.from_config(A , return_unused_kwargs=A , **A ) def UpperCAmelCase ( self , A , A = False , **A ) -> Union[str, Any]: self.save_config(save_directory=A , push_to_hub=A , **A ) @property def UpperCAmelCase ( self ) -> Optional[Any]: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls ) -> Tuple: snake_case : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case : Optional[Any] = importlib.import_module(__name__.split(""".""" )[0] ) snake_case : int = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=2 , A=8 , A=True , A=True , A=True , A=True , A=9_9 , A=1_6 , A=5 , A=2 , A=3_6 , A="gelu" , A=0.0 , A=0.0 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> List[Any]: snake_case : Optional[Any] = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[int] = is_training snake_case : Dict = use_input_mask snake_case : Union[str, Any] = use_token_type_ids snake_case : Tuple = use_labels snake_case : Any = vocab_size snake_case : int = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Any = intermediate_size snake_case : Union[str, Any] = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : int = type_vocab_size snake_case : Dict = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Optional[Any] = num_choices snake_case : List[str] = scope def UpperCAmelCase ( self ) -> str: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[str] = None if self.use_token_type_ids: snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = None snake_case : int = None snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.get_config() snake_case : Tuple = 3_0_0 return config def UpperCAmelCase ( self ) -> Any: ( snake_case ) : Union[str, Any] = self.prepare_config_and_inputs() snake_case : Any = True snake_case : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Tuple = MraModel(config=A ) model.to(A ) model.eval() snake_case : Tuple = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : List[Any] = True snake_case : Any = MraModel(A ) model.to(A ) model.eval() snake_case : str = model( A , attention_mask=A , token_type_ids=A , encoder_hidden_states=A , encoder_attention_mask=A , ) snake_case : str = model( A , attention_mask=A , token_type_ids=A , encoder_hidden_states=A , ) snake_case : List[str] = model(A , attention_mask=A , token_type_ids=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : Union[str, Any] = MraForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : Dict = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : Tuple = MraForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Any = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Tuple = self.num_labels snake_case : Any = MraForSequenceClassification(A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : List[str] = self.num_labels snake_case : str = MraForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : Optional[int] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Dict: snake_case : List[Any] = self.num_choices snake_case : str = MraForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = self.prepare_config_and_inputs() ( snake_case ) : Dict = config_and_inputs snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = () def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = MraModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Dict = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> str: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = MraModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase ( self ) -> Optional[Any]: return @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : Any = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : Dict = model(A )[0] snake_case : List[str] = 5_0_2_6_5 snake_case : Union[str, Any] = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , A ) snake_case : str = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> int: snake_case : List[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) snake_case : List[Any] = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : List[str] = model(A )[0] snake_case : List[str] = 5_0_2_6_5 snake_case : int = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
import argparse import os import re lowerCamelCase : List[Any] = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase : List[str] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings lowerCamelCase : List[Any] = re.compile(r'\s*\(\s*"(\S[^"]+)"') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = False ) -> str: with open(lowercase ,"""r""" ,encoding="""utf-8""" ) as f: snake_case : Dict = f.read() snake_case : Dict = content.split("""\n""" ) snake_case : int = [] snake_case : Tuple = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: snake_case : Optional[Any] = len(re.search(R"""^(\s*)\S""" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 snake_case : Optional[int] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": snake_case : Optional[int] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers snake_case : Optional[int] = sorted(lowercase ,key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def SCREAMING_SNAKE_CASE__ ( lowercase = False ) -> str: snake_case : Dict = [os.path.join(lowercase ,lowercase ) for f in os.listdir(lowercase ) if f.endswith(""".py""" )] snake_case : List[str] = [sort_auto_mapping(lowercase ,overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): snake_case : int = [f for f, d in zip(lowercase ,lowercase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix""" """ this.""" ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCamelCase : str = parser.parse_args() sort_all_auto_mappings(not args.check_only)
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCamelCase : Any = _symbol_database.Default() lowerCamelCase : Optional[int] = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCamelCase : Optional[int] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCamelCase : Optional[Any] = None lowerCamelCase : int = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCamelCase : Any = 4_5 lowerCamelCase : Optional[Any] = 1_5_8_1 lowerCamelCase : Tuple = 1_5_1_7 lowerCamelCase : Dict = 1_5_7_0 lowerCamelCase : List[Any] = 1_5_8_4 lowerCamelCase : str = 1_7_9_3 lowerCamelCase : Union[str, Any] = 1_7_9_5 lowerCamelCase : Optional[int] = 1_9_1_6 lowerCamelCase : str = 1_8_6_4 lowerCamelCase : Any = 1_9_0_5 lowerCamelCase : Union[str, Any] = 1_9_1_9 lowerCamelCase : List[Any] = 2_4_2_9 lowerCamelCase : str = 2_2_0_8 lowerCamelCase : Union[str, Any] = 2_4_1_8 lowerCamelCase : List[Any] = 2_3_2_3 lowerCamelCase : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: snake_case : List[str] = analyze_text(lowercase ) snake_case : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. snake_case : int = sum(single_char_strings.values() ) # one length string snake_case : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case : Dict = single_char_strings[ch] snake_case : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string snake_case : Dict = sum(two_char_strings.values() ) snake_case : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case : List[Any] = cha + cha if sequence in two_char_strings: snake_case : Tuple = two_char_strings[sequence] snake_case : str = int(lowercase ) / all_sum my_sec_sum += prob * math.loga(lowercase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[dict, dict]: snake_case : int = Counter() # type: ignore snake_case : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowercase (unittest.TestCase , UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : str = load_tool("""text-classification""" ) self.tool.setup() snake_case : Any = load_tool("""text-classification""" , remote=A ) def UpperCAmelCase ( self ) -> int: snake_case : str = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Any = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase : Optional[Any] = '\nimport os\n' lowerCamelCase : str = '\ndef foo():\n import os\n return False\n' lowerCamelCase : Optional[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' lowerCamelCase : List[str] = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase : Optional[int] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' lowerCamelCase : int = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' lowerCamelCase : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' lowerCamelCase : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' lowerCamelCase : List[str] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase : Dict = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' lowerCamelCase : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Optional[int] = os.path.join(lowercase ,"""test_file.py""" ) with open(lowercase ,"""w""" ) as _tmp_file: _tmp_file.write(lowercase ) snake_case : str = get_imports(lowercase ) assert parsed_imports == ["os"]
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: assert x is not None assert y is not None snake_case : Optional[Any] = len(lowercase ) snake_case : List[Any] = len(lowercase ) # declaring the array for storing the dp values snake_case : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): snake_case : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 snake_case : List[str] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) snake_case : Tuple = """""" snake_case : List[str] = m, n while i > 0 and j > 0: snake_case : Tuple = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: snake_case : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase : Tuple = 'AGGTAB' lowerCamelCase : int = 'GXTXAYB' lowerCamelCase : str = 4 lowerCamelCase : List[Any] = 'GTAB' lowerCamelCase : List[str] = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowercase (UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" _snake_case = 1 @register_to_config def __init__( self , A=2_0_0_0 , A=0.1 , A=2_0 , A=1e-3 ) -> Optional[Any]: snake_case : List[str] = None snake_case : List[str] = None snake_case : int = None def UpperCAmelCase ( self , A , A = None ) -> Tuple: snake_case : Dict = torch.linspace(1 , self.config.sampling_eps , A , device=A ) def UpperCAmelCase ( self , A , A , A , A=None ) -> Any: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case : List[str] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case : Any = std.flatten() while len(std.shape ) < len(score.shape ): snake_case : Union[str, Any] = std.unsqueeze(-1 ) snake_case : int = -score / std # compute snake_case : List[str] = -1.0 / len(self.timesteps ) snake_case : Tuple = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case : Optional[Any] = beta_t.unsqueeze(-1 ) snake_case : List[str] = -0.5 * beta_t * x snake_case : str = torch.sqrt(A ) snake_case : Optional[int] = drift - diffusion**2 * score snake_case : Dict = x + drift * dt # add noise snake_case : int = randn_tensor(x.shape , layout=x.layout , generator=A , device=x.device , dtype=x.dtype ) snake_case : List[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> int: return self.config.num_train_timesteps
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase : Any = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['DPTFeatureExtractor'] lowerCamelCase : Optional[int] = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = 1 snake_case : Union[str, Any] = 3 snake_case : Any = (3_2, 3_2) snake_case : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) snake_case : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=A , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) snake_case : Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) return CLIPTextModel(A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Any = self.dummy_cond_unet_upscale snake_case : Optional[int] = DDPMScheduler() snake_case : Optional[int] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : Optional[Any] = self.dummy_vae snake_case : str = self.dummy_text_encoder snake_case : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case : Dict = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Union[str, Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Dict = """A painting of a squirrel eating a burger""" snake_case : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) snake_case : Any = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Union[str, Any] = output.images snake_case : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) snake_case : List[str] = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] snake_case : str = image[0, -3:, -3:, -1] snake_case : Any = image_from_tuple[0, -3:, -3:, -1] snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case : Union[str, Any] = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.dummy_cond_unet_upscale snake_case : Any = DDPMScheduler() snake_case : Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : List[str] = self.dummy_vae snake_case : List[Any] = self.dummy_text_encoder snake_case : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case : Union[str, Any] = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : List[str] = """A painting of a squirrel eating a burger""" snake_case : str = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Union[str, Any] = output.images assert image.shape[0] == 2 snake_case : Optional[int] = torch.Generator(device=A ).manual_seed(0 ) snake_case : Tuple = sd_pipe( [prompt] , image=A , generator=A , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase ( self ) -> str: snake_case : str = self.dummy_cond_unet_upscale snake_case : Tuple = DDPMScheduler() snake_case : str = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : str = self.dummy_vae snake_case : List[Any] = self.dummy_text_encoder snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 snake_case : Any = unet.half() snake_case : List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case : Union[str, Any] = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[int] = """A painting of a squirrel eating a burger""" snake_case : Dict = torch.manual_seed(0 ) snake_case : Tuple = sd_pipe( [prompt] , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ).images snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) snake_case : Optional[int] = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained(A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Any = """a cat sitting on a park bench""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : str = pipe( prompt=A , image=A , generator=A , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCAmelCase ( self ) -> Dict: snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) snake_case : Union[str, Any] = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : int = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : int = """a cat sitting on a park bench""" snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : List[str] = pipe( prompt=A , image=A , generator=A , output_type="""np""" , ) snake_case : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCAmelCase ( self ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : int = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Any = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : List[Any] = """a cat sitting on a park bench""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=A , image=A , generator=A , num_inference_steps=5 , output_type="""np""" , ) snake_case : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : int = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """luke""" def __init__( self , A=5_0_2_6_7 , A=5_0_0_0_0_0 , A=7_6_8 , A=2_5_6 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=True , A=None , A=1 , A=0 , A=2 , **A , ) -> Optional[int]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[int] = vocab_size snake_case : Optional[Any] = entity_vocab_size snake_case : Dict = hidden_size snake_case : List[str] = entity_emb_size snake_case : Union[str, Any] = num_hidden_layers snake_case : str = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : Tuple = intermediate_size snake_case : List[Any] = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : List[Any] = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : List[str] = use_entity_aware_attention snake_case : Union[str, Any] = classifier_dropout
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCamelCase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase=False ,) -> Optional[int]: output_path.parent.mkdir(parents=lowercase ,exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase ,lowercase ,f=output_path.as_posix() ,input_names=lowercase ,output_names=lowercase ,dynamic_axes=lowercase ,do_constant_folding=lowercase ,use_external_data_format=lowercase ,enable_onnx_checker=lowercase ,opset_version=lowercase ,) else: export( lowercase ,lowercase ,f=output_path.as_posix() ,input_names=lowercase ,output_names=lowercase ,dynamic_axes=lowercase ,do_constant_folding=lowercase ,opset_version=lowercase ,) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = False ) -> str: snake_case : Optional[int] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case : int = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: snake_case : Dict = """cpu""" snake_case : Union[str, Any] = StableDiffusionPipeline.from_pretrained(lowercase ,torch_dtype=lowercase ).to(lowercase ) snake_case : Optional[Any] = Path(lowercase ) # TEXT ENCODER snake_case : List[Any] = pipeline.text_encoder.config.max_position_embeddings snake_case : Any = pipeline.text_encoder.config.hidden_size snake_case : Optional[Any] = pipeline.tokenizer( """A sample prompt""" ,padding="""max_length""" ,max_length=pipeline.tokenizer.model_max_length ,truncation=lowercase ,return_tensors="""pt""" ,) onnx_export( pipeline.text_encoder ,model_args=(text_input.input_ids.to(device=lowercase ,dtype=torch.intaa )) ,output_path=output_path / """text_encoder""" / """model.onnx""" ,ordered_input_names=["""input_ids"""] ,output_names=["""last_hidden_state""", """pooler_output"""] ,dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } ,opset=lowercase ,) del pipeline.text_encoder # UNET snake_case : Optional[Any] = pipeline.unet.config.in_channels snake_case : Dict = pipeline.unet.config.sample_size snake_case : Optional[Any] = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet ,model_args=( torch.randn(2 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), torch.randn(2 ).to(device=lowercase ,dtype=lowercase ), torch.randn(2 ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=lowercase ,ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] ,output_names=["""out_sample"""] ,dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } ,opset=lowercase ,use_external_data_format=lowercase ,) snake_case : Optional[Any] = str(unet_path.absolute().as_posix() ) snake_case : List[Any] = os.path.dirname(lowercase ) snake_case : Optional[Any] = onnx.load(lowercase ) # clean up existing tensor files shutil.rmtree(lowercase ) os.mkdir(lowercase ) # collate external tensor files into one onnx.save_model( lowercase ,lowercase ,save_as_external_data=lowercase ,all_tensors_to_one_file=lowercase ,location="""weights.pb""" ,convert_attribute=lowercase ,) del pipeline.unet # VAE ENCODER snake_case : Optional[int] = pipeline.vae snake_case : List[Any] = vae_encoder.config.in_channels snake_case : Optional[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder snake_case : Dict = lambda lowercase ,lowercase : vae_encoder.encode(lowercase ,lowercase )[0].sample() onnx_export( lowercase ,model_args=( torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=output_path / """vae_encoder""" / """model.onnx""" ,ordered_input_names=["""sample""", """return_dict"""] ,output_names=["""latent_sample"""] ,dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=lowercase ,) # VAE DECODER snake_case : Tuple = pipeline.vae snake_case : int = vae_decoder.config.latent_channels snake_case : Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part snake_case : Optional[Any] = vae_encoder.decode onnx_export( lowercase ,model_args=( torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), False, ) ,output_path=output_path / """vae_decoder""" / """model.onnx""" ,ordered_input_names=["""latent_sample""", """return_dict"""] ,output_names=["""sample"""] ,dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=lowercase ,) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: snake_case : Any = pipeline.safety_checker snake_case : Optional[int] = safety_checker.config.vision_config.num_channels snake_case : Dict = safety_checker.config.vision_config.image_size snake_case : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker ,model_args=( torch.randn( 1 ,lowercase ,lowercase ,lowercase ,).to(device=lowercase ,dtype=lowercase ), torch.randn(1 ,lowercase ,lowercase ,lowercase ).to(device=lowercase ,dtype=lowercase ), ) ,output_path=output_path / """safety_checker""" / """model.onnx""" ,ordered_input_names=["""clip_input""", """images"""] ,output_names=["""out_images""", """has_nsfw_concepts"""] ,dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } ,opset=lowercase ,) del pipeline.safety_checker snake_case : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) snake_case : Optional[Any] = pipeline.feature_extractor else: snake_case : Optional[int] = None snake_case : int = None snake_case : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) ,vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) ,text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) ,tokenizer=pipeline.tokenizer ,unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) ,scheduler=pipeline.scheduler ,safety_checker=lowercase ,feature_extractor=lowercase ,requires_safety_checker=safety_checker is not None ,) onnx_pipeline.save_pretrained(lowercase ) print("""ONNX pipeline saved to""" ,lowercase ) del pipeline del onnx_pipeline snake_case : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(lowercase ,provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCamelCase : List[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Union[str, Any] = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[str, float]: snake_case : List[Any] = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] ) return (item, float(lowercase )) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[str, str]: snake_case : Union[str, Any] = random.randint(0 ,len(lowercase ) - 1 ) snake_case : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] snake_case : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: snake_case : Union[str, Any] = list(lowercase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: snake_case : Any = random.choice(lowercase ) return "".join(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,) -> list[str]: snake_case : Tuple = [] # Generate more children proportionally to the fitness score. snake_case : Optional[int] = int(parent_a[1] * 100 ) + 1 snake_case : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase ): snake_case : str = population_score[random.randint(0 ,lowercase )][0] snake_case : int = crossover(parent_a[0] ,lowercase ) # Append new string to the population list. pop.append(mutate(lowercase ,lowercase ) ) pop.append(mutate(lowercase ,lowercase ) ) return pop def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case : List[Any] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase ) # Generate random starting population. snake_case : Any = [] for _ in range(lowercase ): population.append("""""".join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case : Tuple = [evaluate(lowercase ,lowercase ) for item in population] # Check if there is a matching evolution. snake_case : int = sorted(lowercase ,key=lambda lowercase : x[1] ,reverse=lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase ) # Normalize population score to be between 0 and 1. snake_case : int = [ (item, score / len(lowercase )) for item, score in population_score ] # This is selection for i in range(lowercase ): population.extend(select(population_score[int(lowercase )] ,lowercase ,lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Optional[int] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) lowerCamelCase : List[Any] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) lowerCamelCase : Any = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Any: snake_case : Dict = Path(lowercase ) snake_case : Any = Path(lowercase ) dest_dir.mkdir(exist_ok=lowercase ) for path in src_dir.iterdir(): snake_case : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case : Dict = dest_dir.joinpath(path.name ) print(lowercase ) dest_path.open("""w""" ).write("""\n""".join(lowercase ) ) if __name__ == "__main__": fire.Fire(minify)
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gptsan-japanese""" _snake_case = [ """past_key_values""", ] _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=3_6_0_0_0 , A=1_2_8_0 , A=1_0_2_4 , A=8_1_9_2 , A=4_0_9_6 , A=1_2_8 , A=1_0 , A=0 , A=1_6 , A=1_6 , A=1_2_8 , A=0.0 , A=1e-5 , A=False , A=0.0 , A="float32" , A=False , A=False , A=False , A=0.0_02 , A=False , A=True , A=3_5_9_9_8 , A=3_5_9_9_5 , A=3_5_9_9_9 , **A , ) -> Any: snake_case : Tuple = vocab_size snake_case : List[Any] = max_position_embeddings snake_case : Tuple = d_model snake_case : Optional[Any] = d_ff snake_case : List[Any] = d_ext snake_case : str = d_spout snake_case : List[Any] = num_switch_layers snake_case : Tuple = num_ext_layers snake_case : Optional[int] = num_switch_layers + num_ext_layers snake_case : Any = num_heads snake_case : Tuple = num_experts snake_case : int = expert_capacity snake_case : Optional[int] = dropout_rate snake_case : int = layer_norm_epsilon snake_case : List[Any] = router_bias snake_case : Tuple = router_jitter_noise snake_case : Optional[Any] = router_dtype snake_case : Optional[Any] = router_ignore_padding_tokens snake_case : str = output_hidden_states snake_case : Tuple = output_attentions snake_case : Optional[Any] = initializer_factor snake_case : List[Any] = output_router_logits snake_case : Any = use_cache super().__init__( separator_token_id=A , pad_token_id=A , eos_token_id=A , **A , )
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0