url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
simp only [Set.mem_union, Set.mem_preimage, Prod.swap_prod_mk]
case h.mk Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g βˆͺ Prod.swap ⁻¹' StdInversions g
case h.mk Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
by_cases hab : a = b
case h.mk Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case pos Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : Β¬a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
. subst b simp [not_mem_stdinversions_diag, not_mem_inversions_diag]
case pos Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : Β¬a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : Β¬a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
. push_neg at hab obtain (hab | hba) := hab.lt_or_lt . simp [mem_stdinversions', mem_inversions, hab, hab.not_lt] . rw [mem_inversions_symm] simp [mem_stdinversions', mem_inversions, hba, hba.not_lt]
case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : Β¬a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
subst b
case pos Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case pos Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a : Ξ± ⊒ (a, a) ∈ Inversions g ↔ (a, a) ∈ StdInversions g ∨ (a, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
simp [not_mem_stdinversions_diag, not_mem_inversions_diag]
case pos Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a : Ξ± ⊒ (a, a) ∈ Inversions g ↔ (a, a) ∈ StdInversions g ∨ (a, a) ∈ StdInversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
push_neg at hab
case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : Β¬a = b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
obtain (hab | hba) := hab.lt_or_lt
case neg Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case neg.inl Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab✝ : a β‰  b hab : a < b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
. simp [mem_stdinversions', mem_inversions, hab, hab.not_lt]
case neg.inl Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab✝ : a β‰  b hab : a < b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
. rw [mem_inversions_symm] simp [mem_stdinversions', mem_inversions, hba, hba.not_lt]
case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
simp [mem_stdinversions', mem_inversions, hab, hab.not_lt]
case neg.inl Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab✝ : a β‰  b hab : a < b ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
rw [mem_inversions_symm]
case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (a, b) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (b, a) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Word.lean
stdinversions_inversions
[267, 1]
[278, 65]
simp [mem_stdinversions', mem_inversions, hba, hba.not_lt]
case neg.inr Ξ± : Type u_1 inst✝ : LinearOrder Ξ± g : Equiv.Perm Ξ± a b : Ξ± hab : a β‰  b hba : b < a ⊒ (b, a) ∈ Inversions g ↔ (a, b) ∈ StdInversions g ∨ (b, a) ∈ StdInversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
perm_conj
[11, 1]
[13, 37]
rw [Equiv.symm_apply_apply, hab]
α : Type u_1 f g : Equiv.Perm α a b : α hab : f a = b ⊒ g (f (g.symm (g a))) = g b
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
swap_conj
[15, 1]
[19, 6]
rw [Equiv.swap_apply_apply]
α : Type u_1 inst✝ : DecidableEq α a b c d : α ⊒ Equiv.swap a b * Equiv.swap c d * Equiv.swap a b = Equiv.swap ((Equiv.swap a b) c) ((Equiv.swap a b) d)
α : Type u_1 inst✝ : DecidableEq α a b c d : α ⊒ Equiv.swap a b * Equiv.swap c d * Equiv.swap a b = Equiv.swap a b * Equiv.swap c d * (Equiv.swap a b)⁻¹
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
swap_conj
[15, 1]
[19, 6]
rfl
α : Type u_1 inst✝ : DecidableEq α a b c d : α ⊒ Equiv.swap a b * Equiv.swap c d * Equiv.swap a b = Equiv.swap a b * Equiv.swap c d * (Equiv.swap a b)⁻¹
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
WordForSwap_toPerm_succ
[42, 1]
[47, 6]
simp [WordForSwap, Word.toPerm]
i k : β„• ⊒ Word.toPerm (WordForSwap i (k + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * Word.toPerm (WordForSwap i k) * Equiv.swap (i + (k + 1)) (i + (k + 2))
i k : β„• ⊒ Equiv.swap (i + k + 1) (i + k + 1 + 1) * (List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + k + 1) (i + k + 1 + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + (k + 1)) (i + (k + 2))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
WordForSwap_toPerm_succ
[42, 1]
[47, 6]
rfl
i k : β„• ⊒ Equiv.swap (i + k + 1) (i + k + 1 + 1) * (List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + k + 1) (i + k + 1 + 1)) = Equiv.swap (i + (k + 1)) (i + (k + 2)) * List.prod (List.map (fun i => Equiv.swap i (i + 1)) (WordForSwap i k)) * Equiv.swap (i + (k + 1)) (i + (k + 2))
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
induction' k with k ih
i k : β„• ⊒ Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1))
case zero i : β„• ⊒ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
. simp only [Nat.zero_eq, add_zero, Equiv.swap_self] rfl
case zero i : β„• ⊒ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1)) case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
. rw [WordForSwap_toPerm_succ, ih] change _ * _ * (Equiv.swap _ _)⁻¹ = _ rw [← Equiv.swap_apply_apply, Equiv.swap_apply_left, Equiv.swap_apply_of_ne_of_ne (by simp) (by simp)]
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
simp only [Nat.zero_eq, add_zero, Equiv.swap_self]
case zero i : β„• ⊒ Word.toPerm (WordForSwap i Nat.zero) = Equiv.swap i (i + (Nat.zero + 1))
case zero i : β„• ⊒ Word.toPerm (WordForSwap i 0) = Equiv.swap i (i + (0 + 1))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
rfl
case zero i : β„• ⊒ Word.toPerm (WordForSwap i 0) = Equiv.swap i (i + (0 + 1))
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
rw [WordForSwap_toPerm_succ, ih]
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Word.toPerm (WordForSwap i (Nat.succ k)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) = Equiv.swap i (i + (Nat.succ k + 1))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
change _ * _ * (Equiv.swap _ _)⁻¹ = _
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * Equiv.swap (i + (k + 1)) (i + (k + 2)) = Equiv.swap i (i + (Nat.succ k + 1))
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * (Equiv.swap (i + (k + 1)) (i + (k + 2)))⁻¹ = Equiv.swap i (i + (Nat.succ k + 1))
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
rw [← Equiv.swap_apply_apply, Equiv.swap_apply_left, Equiv.swap_apply_of_ne_of_ne (by simp) (by simp)]
case succ i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ Equiv.swap (i + (k + 1)) (i + (k + 2)) * Equiv.swap i (i + (k + 1)) * (Equiv.swap (i + (k + 1)) (i + (k + 2)))⁻¹ = Equiv.swap i (i + (Nat.succ k + 1))
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
simp
i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ i β‰  i + (k + 1)
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
wordForSwap_eq_swap
[49, 1]
[57, 58]
simp
i k : β„• ih : Word.toPerm (WordForSwap i k) = Equiv.swap i (i + (k + 1)) ⊒ i β‰  i + (k + 2)
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
unswap_support
[73, 1]
[75, 22]
simp [support] at *
Ξ± : Type u_1 inst✝ : DecidableEq Ξ± f : Equiv.Perm Ξ± a : Ξ± ⊒ a βˆ‰ support (Equiv.swap a (f a) * f)
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Goal.lean
inversions_mul
[155, 1]
[157, 8]
sorry
f g : Equiv.Perm β„• ⊒ Inversions (f * g) = Prod.map ⇑g.symm ⇑g.symm '' Inversions f ∩ Inversions g
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Lehmer.lean
truncate_apply_of_le
[18, 1]
[19, 20]
simpa
f : β„• β†’ β„• n x : β„• hx : n ≀ x ⊒ Β¬x < n
no goals
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Lehmer.lean
card_lehmer_eq_factorial
[73, 1]
[78, 47]
rw [Fintype.card_of_bijective (le_truncate_equiv_prod_fin _ _).bijective]
n : β„• ⊒ Fintype.card { g // ⇑g ≀ ⇑(truncate id n) } = n !
n : β„• ⊒ Fintype.card ((i : Fin n) β†’ Fin (id ↑i + 1)) = n !
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Lehmer.lean
card_lehmer_eq_factorial
[73, 1]
[78, 47]
simp only [id_eq, Fintype.card_pi, Fintype.card_fin]
n : β„• ⊒ Fintype.card ((i : Fin n) β†’ Fin (id ↑i + 1)) = n !
n : β„• ⊒ (Finset.prod Finset.univ fun x => ↑x + 1) = n !
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Lehmer.lean
card_lehmer_eq_factorial
[73, 1]
[78, 47]
rw [← Finset.prod_range_add_one_eq_factorial n]
n : β„• ⊒ (Finset.prod Finset.univ fun x => ↑x + 1) = n !
n : β„• ⊒ (Finset.prod Finset.univ fun x => ↑x + 1) = Finset.prod (Finset.range n) fun x => x + 1
https://github.com/mguaypaq/lean-bruhat.git
1666a1bee2b520d5ba8a662310b4bd257fcf7ac2
Bruhat/Lehmer.lean
card_lehmer_eq_factorial
[73, 1]
[78, 47]
exact Fin.prod_univ_eq_prod_range Nat.succ n
n : β„• ⊒ (Finset.prod Finset.univ fun x => ↑x + 1) = Finset.prod (Finset.range n) fun x => x + 1
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
apply le_antisymm ?right ?left
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' = 0
case right f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' ≀ 0 case left f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ 0 ≀ f'
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
case left => sorry
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ 0 ≀ f'
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
have hf : Tendsto (fun x ↦ (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') := by rw [hasDerivAt_iff_tendsto_slope] at hf apply hf.mono_left (nhds_right'_le_nhds_ne a)
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ f' ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
suffices βˆ€αΆ  x in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0 from le_of_tendsto hf this
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ f' ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
have ha : βˆ€αΆ  x in 𝓝[>] a, a < x := eventually_nhdsWithin_of_forall fun x hx ↦ hx
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
have h : βˆ€αΆ  x in 𝓝[>] a, f x ≀ f a := h.filter_mono nhdsWithin_le_nhds
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
filter_upwards [ha, h]
f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
case h f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€ (a_1 : ℝ), a < a_1 β†’ f a_1 ≀ f a β†’ (f a_1 - f a) / (a_1 - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
intro x ha h
case h f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€ (a_1 : ℝ), a < a_1 β†’ f a_1 ≀ f a β†’ (f a_1 - f a) / (a_1 - a) ≀ 0
case h f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
apply div_nonpos_of_nonpos_of_nonneg
case h f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ (f x - f a) / (x - a) ≀ 0
case h.ha f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ f x - f a ≀ 0 case h.hb f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ 0 ≀ x - a
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
rw [hasDerivAt_iff_tendsto_slope] at hf
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[β‰ ] a) (𝓝 f') ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
apply hf.mono_left (nhds_right'_le_nhds_ne a)
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[β‰ ] a) (𝓝 f') ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
linarith only [h]
case h.ha f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ f x - f a ≀ 0
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
linarith only [ha]
case h.hb f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ 0 ≀ x - a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[69, 10]
sorry
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ 0 ≀ f'
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMin.hasDerivAt_eq_zero
[72, 1]
[74, 8]
sorry
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMin f a hf : HasDerivAt f f' a ⊒ f' = 0
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalExtr.hasDerivAt_eq_zero
[80, 1]
[81, 8]
sorry
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalExtr f a hf : HasDerivAt f f' a ⊒ f' = 0
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
suffices βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c by rcases this with ⟨c, cmem, hc⟩ exists c, cmem apply hc.isLocalExtr <| Icc_mem_nhds cmem.1 cmem.2
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ⊒ βˆƒ c ∈ Ioo a b, IsLocalExtr f c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
have ne : (Icc a b).Nonempty := nonempty_Icc.2 (le_of_lt hab)
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
have ⟨C, Cmem, Cge⟩ : βˆƒ C ∈ Icc a b, IsMaxOn f (Icc a b) C := by sorry
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b Cge : IsMaxOn f (Icc a b) C ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
have ⟨c, cmem, cle⟩ : βˆƒ c ∈ Icc a b, IsMinOn f (Icc a b) c := by sorry
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b Cge : IsMaxOn f (Icc a b) C ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b Cge : IsMaxOn f (Icc a b) C c : ℝ cmem : c ∈ Icc a b cle : IsMinOn f (Icc a b) c ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
change βˆ€ x ∈ Icc a b, f x ≀ f C at Cge
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b Cge : IsMaxOn f (Icc a b) C c : ℝ cmem : c ∈ Icc a b cle : IsMinOn f (Icc a b) c ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b cle : IsMinOn f (Icc a b) c Cge : βˆ€ x ∈ Icc a b, f x ≀ f C ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
change βˆ€ x ∈ Icc a b, f c ≀ f x at cle
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b cle : IsMinOn f (Icc a b) c Cge : βˆ€ x ∈ Icc a b, f x ≀ f C ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
by_cases hc : f c = f a
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c case neg f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rcases this with ⟨c, cmem, hc⟩
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b this : βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c ⊒ βˆƒ c ∈ Ioo a b, IsLocalExtr f c
case intro.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b c : ℝ cmem : c ∈ Ioo a b hc : IsExtrOn f (Icc a b) c ⊒ βˆƒ c ∈ Ioo a b, IsLocalExtr f c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
exists c, cmem
case intro.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b c : ℝ cmem : c ∈ Ioo a b hc : IsExtrOn f (Icc a b) c ⊒ βˆƒ c ∈ Ioo a b, IsLocalExtr f c
case intro.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b c : ℝ cmem : c ∈ Ioo a b hc : IsExtrOn f (Icc a b) c ⊒ IsLocalExtr f c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
apply hc.isLocalExtr <| Icc_mem_nhds cmem.1 cmem.2
case intro.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b c : ℝ cmem : c ∈ Ioo a b hc : IsExtrOn f (Icc a b) c ⊒ IsLocalExtr f c
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
sorry
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) ⊒ βˆƒ C ∈ Icc a b, IsMaxOn f (Icc a b) C
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
sorry
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b Cge : IsMaxOn f (Icc a b) C ⊒ βˆƒ c ∈ Icc a b, IsMinOn f (Icc a b) c
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
by_cases hC : f C = f a
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c case neg f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
have : βˆ€ x ∈ Icc a b, f x = f a := fun x hx ↦ le_antisymm (hC β–Έ Cge x hx) (hc β–Έ cle x hx)
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rcases nonempty_Ioo.2 hab with ⟨c', hc'⟩
case pos f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case pos.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a c' : ℝ hc' : c' ∈ Ioo a b ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
refine ⟨c', hc', Or.inl fun x hx ↦ ?_⟩
case pos.intro f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a c' : ℝ hc' : c' ∈ Ioo a b ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case pos.intro f : ℝ β†’ ℝ f' x✝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a c' : ℝ hc' : c' ∈ Ioo a b x : ℝ hx : x ∈ Icc a b ⊒ x ∈ {x | (fun x => f c' ≀ f x) x}
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
simp [this x hx, this c' (Ioo_subset_Icc_self hc')]
case pos.intro f : ℝ β†’ ℝ f' x✝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : f C = f a this : βˆ€ x ∈ Icc a b, f x = f a c' : ℝ hc' : c' ∈ Ioo a b x : ℝ hx : x ∈ Icc a b ⊒ x ∈ {x | (fun x => f c' ≀ f x) x}
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
refine ⟨C, ⟨lt_of_le_of_ne Cmem.1 <| mt ?_ hC, lt_of_le_of_ne Cmem.2 <| mt ?_ hC⟩, Or.inr Cge⟩
case neg f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case neg.refine_1 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ a = C β†’ f C = f a case neg.refine_2 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ C = b β†’ f C = f a
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
exacts [fun h ↦ by rw [h], fun h ↦ by rw [h, hfI]]
case neg.refine_1 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ a = C β†’ f C = f a case neg.refine_2 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a ⊒ C = b β†’ f C = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rw [h]
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a h : a = C ⊒ f C = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rw [h, hfI]
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : f c = f a hC : Β¬f C = f a h : C = b ⊒ f C = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
refine ⟨c, ⟨lt_of_le_of_ne cmem.1 <| mt ?_ hc, lt_of_le_of_ne cmem.2 <| mt ?_ hc⟩, Or.inl cle⟩
case neg f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ βˆƒ c ∈ Ioo a b, IsExtrOn f (Icc a b) c
case neg.refine_1 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ a = c β†’ f c = f a case neg.refine_2 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ c = b β†’ f c = f a
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
exacts [fun h ↦ by rw [h], fun h ↦ by rw [h, hfI]]
case neg.refine_1 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ a = c β†’ f c = f a case neg.refine_2 f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a ⊒ c = b β†’ f c = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rw [h]
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a h : a = c ⊒ f c = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_local_extr_Ioo
[93, 1]
[115, 55]
rw [h, hfI]
f : ℝ β†’ ℝ f' x a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b ne : Set.Nonempty (Icc a b) C : ℝ Cmem : C ∈ Icc a b c : ℝ cmem : c ∈ Icc a b Cge : βˆ€ x ∈ Icc a b, f x ≀ f C cle : βˆ€ x ∈ Icc a b, f c ≀ f x hc : Β¬f c = f a h : c = b ⊒ f c = f a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_hasDerivAt_eq_zero
[120, 1]
[122, 8]
sorry
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hfI : f a = f b hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x ⊒ βˆƒ c ∈ Ioo a b, f' c = 0
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_ratio_hasDerivAt_eq_ratio_slope
[125, 1]
[132, 8]
let h x := (g b - g a) * f x - (f b - f a) * g x
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x hgc : ContinuousOn g (Icc a b) hgg' : βˆ€ x ∈ Ioo a b, HasDerivAt g (g' x) x ⊒ βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x hgc : ContinuousOn g (Icc a b) hgg' : βˆ€ x ∈ Ioo a b, HasDerivAt g (g' x) x h : ℝ β†’ ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x ⊒ βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_ratio_hasDerivAt_eq_ratio_slope
[125, 1]
[132, 8]
have hhc : ContinuousOn h (Icc a b) := (continuousOn_const.mul hfc).sub (continuousOn_const.mul hgc)
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x hgc : ContinuousOn g (Icc a b) hgg' : βˆ€ x ∈ Ioo a b, HasDerivAt g (g' x) x h : ℝ β†’ ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x ⊒ βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x hgc : ContinuousOn g (Icc a b) hgg' : βˆ€ x ∈ Ioo a b, HasDerivAt g (g' x) x h : ℝ β†’ ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x hhc : ContinuousOn h (Icc a b) ⊒ βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_ratio_hasDerivAt_eq_ratio_slope
[125, 1]
[132, 8]
sorry
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x hgc : ContinuousOn g (Icc a b) hgg' : βˆ€ x ∈ Ioo a b, HasDerivAt g (g' x) x h : ℝ β†’ ℝ := fun x => (g b - g a) * f x - (f b - f a) * g x hhc : ContinuousOn h (Icc a b) ⊒ βˆƒ c ∈ Ioo a b, (g b - g a) * f' c = (f b - f a) * g' c
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Analysis/Lecture2.lean
Tutorial.exists_hasDerivAt_eq_slope
[138, 1]
[141, 8]
sorry
f✝ : ℝ β†’ ℝ f'✝ x a✝ b✝ : ℝ f f' g g' : ℝ β†’ ℝ a b : ℝ hab : a < b hfc : ContinuousOn f (Icc a b) hff' : βˆ€ x ∈ Ioo a b, HasDerivAt f (f' x) x ⊒ βˆƒ c ∈ Ioo a b, f' c = (f b - f a) / (b - a)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Category/Lecture1.lean
Tutorial.comp_app
[109, 1]
[110, 6]
rfl
C : Type u inst✝ : Category C a b c d e : C X Y Z : Type f : Hom X Y g : Hom Y Z x : X ⊒ (f ≫ g) x = g (f x)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Category/Lecture1.lean
Tutorial.id_app
[113, 1]
[114, 6]
rfl
C : Type u inst✝ : Category C a b c d e : C X : Type x : X ⊒ πŸ™ X x = x
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Category/Lecture2.lean
Tutorial.Category.Initial.uniq'
[28, 1]
[30, 45]
rw [h.uniq f]
C : Type u inst✝ : Category C a : C h : Initial a b : C f g : Hom a b ⊒ f = h.fromInitial b
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Category/Lecture2.lean
Tutorial.Category.Initial.uniq'
[28, 1]
[30, 45]
rw [h.uniq g]
C : Type u inst✝ : Category C a : C h : Initial a b : C f g : Hom a b ⊒ h.fromInitial b = g
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Category/Lecture2.lean
Tutorial.Coequalizer.hom_id
[329, 1]
[329, 71]
cases i <;> rfl
J : Type u₁ inst✝¹ : Category J C : Type uβ‚‚ inst✝ : Category C F : Functor J C i : Shape ⊒ ShapeHom.id i = πŸ™ i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
apply le_antisymm ?right ?left
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' = 0
case right f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' ≀ 0 case left f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ 0 ≀ f'
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
have hf : Tendsto (fun x ↦ (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') := by rw [hasDerivAt_iff_tendsto_slope] at hf apply hf.mono_left (nhds_right'_le_nhds_ne a)
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ f' ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ f' ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
suffices βˆ€αΆ  x in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0 from le_of_tendsto hf this
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ f' ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
have ha : βˆ€αΆ  x in 𝓝[>] a, a < x := eventually_nhdsWithin_of_forall fun x hx ↦ hx
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
have h : βˆ€αΆ  x in 𝓝[>] a, f x ≀ f a := h.filter_mono nhdsWithin_le_nhds
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
filter_upwards [ha, h]
f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[>] a, (f x - f a) / (x - a) ≀ 0
case h f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€ (a_1 : ℝ), a < a_1 β†’ f a_1 ≀ f a β†’ (f a_1 - f a) / (a_1 - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
intro x ha h
case h f : ℝ β†’ ℝ f' x a b : ℝ h✝ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a ⊒ βˆ€ (a_1 : ℝ), a < a_1 β†’ f a_1 ≀ f a β†’ (f a_1 - f a) / (a_1 - a) ≀ 0
case h f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ (f x - f a) / (x - a) ≀ 0
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
apply div_nonpos_of_nonpos_of_nonneg
case h f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ (f x - f a) / (x - a) ≀ 0
case h.ha f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ f x - f a ≀ 0 case h.hb f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ 0 ≀ x - a
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
rw [hasDerivAt_iff_tendsto_slope] at hf
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[β‰ ] a) (𝓝 f') ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
apply hf.mono_left (nhds_right'_le_nhds_ne a)
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[β‰ ] a) (𝓝 f') ⊒ Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f')
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
linarith only [h]
case h.ha f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ f x - f a ≀ 0
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
linarith only [ha]
case h.hb f : ℝ β†’ ℝ f' x✝ a b : ℝ h✝¹ : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[>] a) (𝓝 f') ha✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, a < x h✝ : βˆ€αΆ  (x : ℝ) in 𝓝[>] a, f x ≀ f a x : ℝ ha : a < x h : f x ≀ f a ⊒ 0 ≀ x - a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
have hf : Tendsto (fun x ↦ (f x - f a) / (x - a)) (𝓝[<] a) (𝓝 f') := by rw [hasDerivAt_iff_tendsto_slope] at hf apply hf.mono_left (nhds_left'_le_nhds_ne a)
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf : HasDerivAt f f' a ⊒ 0 ≀ f'
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[<] a) (𝓝 f') ⊒ 0 ≀ f'
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture2.lean
Tutorial.IsLocalMax.hasDerivAt_eq_zero
[45, 1]
[80, 15]
suffices βˆ€αΆ  x in 𝓝[<] a, (f x - f a) / (x - a) β‰₯ 0 from ge_of_tendsto hf this
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[<] a) (𝓝 f') ⊒ 0 ≀ f'
f : ℝ β†’ ℝ f' x a b : ℝ h : IsLocalMax f a hf✝ : HasDerivAt f f' a hf : Tendsto (fun x => (f x - f a) / (x - a)) (𝓝[<] a) (𝓝 f') ⊒ βˆ€αΆ  (x : ℝ) in 𝓝[<] a, (f x - f a) / (x - a) β‰₯ 0