url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture2.lean | Tutorial.homToPerm_injective | [264, 1] | [275, 12] | calc
a = a * 1 := by simp
_ = (homToPerm G a) 1 := by
sorry
_ = 1 := by
sorry | G : Type
instβ : Group G
a : G
h : (homToPerm G) a = 1
β’ a = 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture2.lean | Tutorial.homToPerm_injective | [264, 1] | [275, 12] | simp | G : Type
instβ : Group G
a : G
h : (homToPerm G) a = 1
β’ a = a * 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture2.lean | Tutorial.homToPerm_injective | [264, 1] | [275, 12] | sorry | G : Type
instβ : Group G
a : G
h : (homToPerm G) a = 1
β’ a * 1 = ((homToPerm G) a) 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture2.lean | Tutorial.homToPerm_injective | [264, 1] | [275, 12] | sorry | G : Type
instβ : Group G
a : G
h : (homToPerm G) a = 1
β’ ((homToPerm G) a) 1 = 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_isLittleO | [49, 1] | [51, 6] | rfl | f : β β β
f' a : β
β’ HasDerivAt f f' a β (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_isLittleO_nhds_zero | [54, 1] | [57, 17] | rw [hasDerivAt_iff_isLittleO, β map_add_left_nhds_zero a, Asymptotics.isLittleO_map] | f : β β β
f' a : β
β’ HasDerivAt f f' a β (fun h => f (a + h) - f a - h * f') =o[π 0] fun h => h | f : β β β
f' a : β
β’ ((fun x => f x - f a - (x - a) * f') β fun x => a + x) =o[π 0] ((fun x => x - a) β fun x => a + x) β
(fun h => f (a + h) - f a - h * f') =o[π 0] fun h => h |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | calc HasDerivAt f f' a
_ β Tendsto (fun x β¦ (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) := ?iff1
_ β Tendsto (fun x β¦ (f x - f a - (x - a) * f') / (x - a)) (π[β ] a) (π 0) := ?iff2 | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π[β ] a) (π 0) | case iff1
f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0)
case iff2
f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) β
Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π[β ] a) (π 0) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | case iff1 => rw [hasDerivAt_iff_isLittleO, Asymptotics.isLittleO_iff_tendsto (by intro _ h; simp [sub_eq_zero.1 h])] | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | case iff2 => exact .symm <| tendsto_inf_principal_nhds_iff_of_forall_eq <| by simp | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) β
Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | rw [hasDerivAt_iff_isLittleO, Asymptotics.isLittleO_iff_tendsto (by intro _ h; simp [sub_eq_zero.1 h])] | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | intro _ h | f : β β β
f' a : β
β’ β (x : β), x - a = 0 β f x - f a - (x - a) * f' = 0 | f : β β β
f' a xβ : β
h : xβ - a = 0
β’ f xβ - f a - (xβ - a) * f' = 0 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | simp [sub_eq_zero.1 h] | f : β β β
f' a xβ : β
h : xβ - a = 0
β’ f xβ - f a - (xβ - a) * f' = 0 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | exact .symm <| tendsto_inf_principal_nhds_iff_of_forall_eq <| by simp | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π a) (π 0) β
Tendsto (fun x => (f x - f a - (x - a) * f') / (x - a)) (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto | [60, 1] | [66, 85] | simp | f : β β β
f' a : β
β’ β a_1 β {a}αΆ, (f a_1 - f a - (a_1 - a) * f') / (a_1 - a) = 0 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | calc HasDerivAt f f' a
_ β Tendsto (fun x β¦ (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) := ?iff1
_ β Tendsto (fun x β¦ (f x - f a) / (x - a) - f') (π[β ] a) (π 0) := ?iff2
_ β Tendsto (fun x β¦ (f x - f a) / (x - a)) (π[β ] a) (π f') := ?iff3 | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a) / (x - a)) (π[β ] a) (π f') | case iff1
f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0)
case iff2
f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0)
case iff3
f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a)) (π[β ] a) (π f') |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | case iff1 => simp only [hasDerivAt_iff_tendsto, sub_div, mul_div_right_comm] | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | case iff2 => exact tendsto_congr' <| (Set.EqOn.eventuallyEq fun _ h β¦ (by field_simp [sub_ne_zero.2 h])).filter_mono inf_le_right | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | case iff3 => rw [β nhds_translation_sub f', tendsto_comap_iff]; rfl | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a)) (π[β ] a) (π f') | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | simp only [hasDerivAt_iff_tendsto, sub_div, mul_div_right_comm] | f : β β β
f' a : β
β’ HasDerivAt f f' a β Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | exact tendsto_congr' <| (Set.EqOn.eventuallyEq fun _ h β¦ (by field_simp [sub_ne_zero.2 h])).filter_mono inf_le_right | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - (x - a) / (x - a) * f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | field_simp [sub_ne_zero.2 h] | f : β β β
f' a xβ : β
h : xβ β {a}αΆ
β’ (f xβ - f a) / (xβ - a) - (xβ - a) / (xβ - a) * f' = (f xβ - f a) / (xβ - a) - f' | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | rw [β nhds_translation_sub f', tendsto_comap_iff] | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) β
Tendsto (fun x => (f x - f a) / (x - a)) (π[β ] a) (π f') | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) β
Tendsto ((fun x => x - f') β fun x => (f x - f a) / (x - a)) (π[β ] a) (π 0) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_iff_tendsto_slope | [69, 1] | [77, 70] | rfl | f : β β β
f' a : β
β’ Tendsto (fun x => (f x - f a) / (x - a) - f') (π[β ] a) (π 0) β
Tendsto ((fun x => x - f') β fun x => (f x - f a) / (x - a)) (π[β ] a) (π 0) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_const | [135, 1] | [138, 8] | rw [hasDerivAt_iff_isLittleO] | f : β β β
f' a c : β
β’ HasDerivAt (fun x => c) 0 a | f : β β β
f' a c : β
β’ (fun x => c - c - (x - a) * 0) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_const | [135, 1] | [138, 8] | sorry | f : β β β
f' a c : β
β’ (fun x => c - c - (x - a) * 0) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_id | [140, 1] | [142, 8] | rw [hasDerivAt_iff_isLittleO] | f : β β β
f' aβ a : β
β’ HasDerivAt id 1 a | f : β β β
f' aβ a : β
β’ (fun x => id x - id a - (x - a) * 1) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_id | [140, 1] | [142, 8] | sorry | f : β β β
f' aβ a : β
β’ (fun x => id x - id a - (x - a) * 1) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | rw [hasDerivAt_iff_isLittleO] at * | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ HasDerivAt (fun x => f x + g x) (f' + g') a | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x + g x - (f a + g a) - (x - a) * (f' + g')) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | calc (fun x β¦ f x + g x - (f a + g a) - (x - a) * (f' + g'))
_ = fun x β¦ (f x - f a - (x - a) * f') + (g x - g a - (x - a) * g') := ?eq1
_ =o[π a] fun x β¦ x - a := ?eq2 | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x + g x - (f a + g a) - (x - a) * (f' + g')) =o[π a] fun x => x - a | case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x + g x - (f a + g a) - (x - a) * (f' + g')) = fun x =>
f x - f a - (x - a) * f' + (g x - g a - (x - a) * g')
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f' + (g x - g a - (x - a) * g')) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | case eq1 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x + g x - (f a + g a) - (x - a) * (f' + g')) = fun x =>
f x - f a - (x - a) * f' + (g x - g a - (x - a) * g') | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | case eq2 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f' + (g x - g a - (x - a) * g')) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x + g x - (f a + g a) - (x - a) * (f' + g')) = fun x =>
f x - f a - (x - a) * f' + (g x - g a - (x - a) * g') | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.add | [144, 1] | [155, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
hg : (fun x => g x - g a - (x - a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f' + (g x - g a - (x - a) * g')) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.const_mul | [157, 1] | [161, 8] | rw [hasDerivAt_iff_isLittleO] at * | f : β β β
f' a c : β
hf : HasDerivAt f f' a
β’ HasDerivAt (fun x => c * f x) (c * f') a | f : β β β
f' a c : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => c * f x - c * f a - (x - a) * (c * f')) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.const_mul | [157, 1] | [161, 8] | sorry | f : β β β
f' a c : β
hf : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => c * f x - c * f a - (x - a) * (c * f')) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.neg | [164, 1] | [167, 20] | simpa using this | f : β β β
f' a : β
hf : HasDerivAt f f' a
this : HasDerivAt (fun x => -1 * f x) (-1 * f') a
β’ HasDerivAt (fun x => -f x) (-f') a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.sub | [170, 1] | [173, 18] | simpa [sub_eq_add_neg] using this | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
this : HasDerivAt (fun x => f x + -g x) (f' + -g') a
β’ HasDerivAt (fun x => f x - g x) (f' - g') a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | rw [hasDerivAt_iff_isLittleO] at h | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ (fun x => f x - f a) =O[π a] fun x => x - a | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => f x - f a) =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | rw [h.isBigO.congr_of_sub] | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => f x - f a) =O[π a] fun x => x - a | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => (x - a) * f') =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | calc (fun x β¦ (x - a) * f')
_ = fun x β¦ f' * (x - a) := ?eq1
_ =O[π a] fun x β¦ x - a := ?eq2 | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => (x - a) * f') =O[π a] fun x => x - a | case eq1
f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => (x - a) * f') = fun x => f' * (x - a)
case eq2
f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => f' * (x - a)) =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | case eq1 =>
sorry | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => (x - a) * f') = fun x => f' * (x - a) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | case eq2 =>
sorry | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => f' * (x - a)) =O[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | sorry | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => (x - a) * f') = fun x => f' * (x - a) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.isBigO_sub | [180, 1] | [192, 10] | sorry | f : β β β
f' a : β
h : (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
β’ (fun x => f' * (x - a)) =O[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | have : Tendsto (fun x β¦ f x - f a + f a) (π a) (π (0 + f a)) := by
apply Tendsto.add _ tendsto_const_nhds
apply h.isBigO_sub.trans_tendsto
rw [β sub_self a]
apply tendsto_id.sub tendsto_const_nhds | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto f (π a) (π (f a)) | f : β β β
f' a : β
h : HasDerivAt f f' a
this : Tendsto (fun x => f x - f a + f a) (π a) (π (0 + f a))
β’ Tendsto f (π a) (π (f a)) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | rw [zero_add] at this | f : β β β
f' a : β
h : HasDerivAt f f' a
this : Tendsto (fun x => f x - f a + f a) (π a) (π (0 + f a))
β’ Tendsto f (π a) (π (f a)) | f : β β β
f' a : β
h : HasDerivAt f f' a
this : Tendsto (fun x => f x - f a + f a) (π a) (π (f a))
β’ Tendsto f (π a) (π (f a)) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | exact this.congr (by simp) | f : β β β
f' a : β
h : HasDerivAt f f' a
this : Tendsto (fun x => f x - f a + f a) (π a) (π (f a))
β’ Tendsto f (π a) (π (f a)) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | apply Tendsto.add _ tendsto_const_nhds | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => f x - f a + f a) (π a) (π (0 + f a)) | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => f x - f a) (π a) (π 0) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | apply h.isBigO_sub.trans_tendsto | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => f x - f a) (π a) (π 0) | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => x - a) (π a) (π 0) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | rw [β sub_self a] | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => x - a) (π a) (π 0) | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => x - a) (π a) (π (a - a)) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | apply tendsto_id.sub tendsto_const_nhds | f : β β β
f' a : β
h : HasDerivAt f f' a
β’ Tendsto (fun x => x - a) (π a) (π (a - a)) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.continuousAt | [195, 1] | [203, 29] | simp | f : β β β
f' a : β
h : HasDerivAt f f' a
this : Tendsto (fun x => f x - f a + f a) (π a) (π (f a))
β’ β (x : β), f x - f a + f a = f x | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | have hβ :=
calc (fun x β¦ g (f x) - g (f a) - (f x - f a) * g')
=o[π a] fun x β¦ f x - f a := ?eq1
_ =O[π a] fun x β¦ x - a := ?eq2 | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ HasDerivAt (g β f) (g' * f') a | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ HasDerivAt (g β f) (g' * f') a
case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | have hβ :=
calc (fun x β¦ (f x - f a) * g' - (x - a) * (g' * f'))
_ = fun x β¦ g' * (f x - f a - (x - a) * f') := ?eq3
_ =O[π a] fun x β¦ f x - f a - (x - a) * f' := ?eq4
_ =o[π a] fun x β¦ x - a := ?eq5 | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ HasDerivAt (g β f) (g' * f') a
case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
hβ : (fun x => (f x - f a) * g' - (x - a) * (g' * f')) =o[π a] fun x => x - a
β’ HasDerivAt (g β f) (g' * f') a
case eq3
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * g' - (x - a) * (g' * f')) = fun x => g' * (f x - f a - (x - a) * f')
case eq4
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => g' * (f x - f a - (x - a) * f')) =O[π a] fun x => f x - f a - (x - a) * f'
case eq5
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | apply hβ.triangle hβ | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
hβ : (fun x => (f x - f a) * g' - (x - a) * (g' * f')) =o[π a] fun x => x - a
β’ HasDerivAt (g β f) (g' * f') a
case eq3
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * g' - (x - a) * (g' * f')) = fun x => g' * (f x - f a - (x - a) * f')
case eq4
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => g' * (f x - f a - (x - a) * f')) =O[π a] fun x => f x - f a - (x - a) * f'
case eq5
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a | case eq3
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * g' - (x - a) * (g' * f')) = fun x => g' * (f x - f a - (x - a) * f')
case eq4
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => g' * (f x - f a - (x - a) * f')) =O[π a] fun x => f x - f a - (x - a) * f'
case eq5
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a
case eq1
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a
case eq2
f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | case eq1 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | case eq2 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | case eq3 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * g' - (x - a) * (g' * f')) = fun x => g' * (f x - f a - (x - a) * f') | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | case eq4 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => g' * (f x - f a - (x - a) * f')) =O[π a] fun x => f x - f a - (x - a) * f' | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | case eq5 =>
sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => f x - f a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
β’ (fun x => f x - f a) =O[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * g' - (x - a) * (g' * f')) = fun x => g' * (f x - f a - (x - a) * f') | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => g' * (f x - f a - (x - a) * f')) =O[π a] fun x => f x - f a - (x - a) * f' | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.comp | [212, 1] | [234, 10] | sorry | f : β β β
f' a : β
g : β β β
g' : β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' (f a)
hβ : (fun x => g (f x) - g (f a) - (f x - f a) * g') =o[π a] fun x => x - a
β’ (fun x => f x - f a - (x - a) * f') =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | rw [hasDerivAt_iff_isLittleO] | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ HasDerivAt (fun x => f x * g x) (f' * g a + f a * g') a | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => f x * g x - f a * g a - (x - a) * (f' * g a + f a * g')) =o[π a] fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | calc (fun x β¦ f x * g x - f a * g a - (x - a) * (f' * g a + f a * g'))
_ = fun x β¦ g a * (f x - f a - (x - a) * f') +
(f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a)) := ?eq1
_ =o[π a] fun x β¦ x - a := ?eq2 | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => f x * g x - f a * g a - (x - a) * (f' * g a + f a * g')) =o[π a] fun x => x - a | case eq1
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => f x * g x - f a * g a - (x - a) * (f' * g a + f a * g')) = fun x =>
g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))
case eq2
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | case eq1 =>
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => f x * g x - f a * g a - (x - a) * (f' * g a + f a * g')) = fun x =>
g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a)) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | case eq2 =>
have hf' : (fun x β¦ g a * (f x - f a - (x - a) * f')) =o[π a] fun x β¦ x - a := by
sorry
have hg' : (fun x β¦ f a * (g x - g a - (x - a) * g')) =o[π a] fun x β¦ x - a := by
sorry
have hfg :=
calc (fun x β¦ (f x - f a) * (g x - g a))
_ =o[π a] fun x β¦ (x - a) * 1 := ?eq3
_ = fun x β¦ x - a := ?eq4
sorry
case eq3 =>
have hg'' : (fun x β¦ g x - g a) =o[π a] fun _ β¦ (1 : β) := by
rw [Asymptotics.isLittleO_one_iff, tendsto_sub_nhds_zero_iff]
sorry
sorry
case eq4 =>
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => f x * g x - f a * g a - (x - a) * (f' * g a + f a * g')) = fun x =>
g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a)) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | have hf' : (fun x β¦ g a * (f x - f a - (x - a) * f')) =o[π a] fun x β¦ x - a := by
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | have hg' : (fun x β¦ f a * (g x - g a - (x - a) * g')) =o[π a] fun x β¦ x - a := by
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | have hfg :=
calc (fun x β¦ (f x - f a) * (g x - g a))
_ =o[π a] fun x β¦ (x - a) * 1 := ?eq3
_ = fun x β¦ x - a := ?eq4 | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
hfg : (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a
case eq3
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1
case eq4
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (x - a) * 1) = fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
hfg : (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => x - a
β’ (fun x => g a * (f x - f a - (x - a) * f') + (f a * (g x - g a - (x - a) * g') + (f x - f a) * (g x - g a))) =o[π a]
fun x => x - a
case eq3
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1
case eq4
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (x - a) * 1) = fun x => x - a | case eq3
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1
case eq4
fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (x - a) * 1) = fun x => x - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | case eq3 =>
have hg'' : (fun x β¦ g x - g a) =o[π a] fun _ β¦ (1 : β) := by
rw [Asymptotics.isLittleO_one_iff, tendsto_sub_nhds_zero_iff]
sorry
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | case eq4 =>
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (x - a) * 1) = fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
β’ (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
β’ (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | have hg'' : (fun x β¦ g x - g a) =o[π a] fun _ β¦ (1 : β) := by
rw [Asymptotics.isLittleO_one_iff, tendsto_sub_nhds_zero_iff]
sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1 | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
hg'' : (fun x => g x - g a) =o[π a] fun x => 1
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
hg'' : (fun x => g x - g a) =o[π a] fun x => 1
β’ (fun x => (f x - f a) * (g x - g a)) =o[π a] fun x => (x - a) * 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | rw [Asymptotics.isLittleO_one_iff, tendsto_sub_nhds_zero_iff] | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => g x - g a) =o[π a] fun x => 1 | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ Tendsto (fun x => g x) (π a) (π (g a)) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ Tendsto (fun x => g x) (π a) (π (g a)) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.HasDerivAt.mul | [240, 1] | [266, 12] | sorry | fβ : β β β
f' a : β
g : β β β
g' : β
f : β β β
hf : HasDerivAt f f' a
hg : HasDerivAt g g' a
hf' : (fun x => g a * (f x - f a - (x - a) * f')) =o[π a] fun x => x - a
hg' : (fun x => f a * (g x - g a - (x - a) * g')) =o[π a] fun x => x - a
β’ (fun x => (x - a) * 1) = fun x => x - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Analysis/Lecture1.lean | Tutorial.hasDerivAt_pow | [272, 1] | [275, 8] | sorry | f : β β β
f' aβ : β
g : β β β
g' : β
n : β
a : β
β’ HasDerivAt (fun x => x ^ (n + 1)) ((βn + 1) * a ^ n) a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_mul_cancel_left | [119, 1] | [126, 12] | calc
aβ»ΒΉ * (a * b) = (aβ»ΒΉ * a) * b := by
sorry
_ = 1 * b := by
sorry
_ = b := by
sorry | A : Type ?u.1517
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ aβ»ΒΉ * (a * b) = b | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_mul_cancel_left | [119, 1] | [126, 12] | sorry | A : Type ?u.1517
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ aβ»ΒΉ * (a * b) = aβ»ΒΉ * a * b | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_mul_cancel_left | [119, 1] | [126, 12] | sorry | A : Type ?u.1517
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ aβ»ΒΉ * a * b = 1 * b | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_mul_cancel_left | [119, 1] | [126, 12] | sorry | A : Type ?u.1517
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ 1 * b = b | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_left_cancel | [133, 1] | [136, 8] | sorry | A : Type ?u.2016
G : Type
instβΒΉ : Ring A
instβ : Group G
a x y : G
β’ a * x = a * y β x = y | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_one | [140, 1] | [148, 8] | sorry | A : Type ?u.2142
G : Type
instβΒΉ : Ring A
instβ : Group G
a : G
β’ a * 1 = a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_inv_self | [152, 1] | [153, 8] | sorry | A : Type ?u.2284
G : Type
instβΒΉ : Ring A
instβ : Group G
a : G
β’ a * aβ»ΒΉ = 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_inv_cancel_left | [157, 1] | [159, 8] | rw [β mul_assoc] | A : Type ?u.2445
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ a * (aβ»ΒΉ * b) = b | A : Type ?u.2445
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ a * aβ»ΒΉ * b = b |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_inv_cancel_left | [157, 1] | [159, 8] | sorry | A : Type ?u.2445
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ a * aβ»ΒΉ * b = b | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_inv_cancel_right | [162, 1] | [163, 8] | sorry | A : Type ?u.2639
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ a * b * bβ»ΒΉ = a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_mul_cancel_right | [166, 1] | [167, 8] | sorry | A : Type ?u.2795
G : Type
instβΒΉ : Ring A
instβ : Group G
a b : G
β’ a * bβ»ΒΉ * b = a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.mul_right_cancel | [170, 1] | [171, 8] | sorry | A : Type ?u.2951
G : Type
instβΒΉ : Ring A
instβ : Group G
a x y : G
β’ x * a = y * a β x = y | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_eq_of_mul_eq_one_left | [174, 1] | [175, 8] | sorry | A : Type ?u.3077
G : Type
instβΒΉ : Ring A
instβ : Group G
a x : G
β’ x * a = 1 β aβ»ΒΉ = x | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_one | [182, 1] | [184, 8] | apply inv_eq_of_mul_eq_one_left | A : Type ?u.3411
G : Type
instβΒΉ : Ring A
instβ : Group G
β’ 1β»ΒΉ = 1 | case a
A : Type ?u.3411
G : Type
instβΒΉ : Ring A
instβ : Group G
β’ 1 * 1 = 1 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_one | [182, 1] | [184, 8] | sorry | case a
A : Type ?u.3411
G : Type
instβΒΉ : Ring A
instβ : Group G
β’ 1 * 1 = 1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture1.lean | Tutorial.inv_inv | [187, 1] | [188, 8] | sorry | A : Type ?u.3529
G : Type
instβΒΉ : Ring A
instβ : Group G
a : G
β’ aβ»ΒΉβ»ΒΉ = a | no goals |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.