url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
. simp
case cons.false α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if false = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds) case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if true = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds)
case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if true = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds)
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
. simp; apply Nat.le_succ_of_le; assumption
case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if true = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds)
no goals
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
simp
case cons.false α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if false = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds)
no goals
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
simp
case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (if true = true then backtrack ds else d :: ds) ≤ Nat.succ (List.length ds)
case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (backtrack ds) ≤ Nat.succ (List.length ds)
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
apply Nat.le_succ_of_le
case cons.true α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (backtrack ds) ≤ Nat.succ (List.length ds)
case cons.true.h α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (backtrack ds) ≤ List.length ds
https://github.com/benjaminfjones/reckonlean.git
8768f7342ba226cfc2d7b92e47432f1da66eff25
ReckonLean/Dpll.lean
length_backtrack
[195, 1]
[204, 50]
assumption
case cons.true.h α : Type inst✝³ : BEq α inst✝² : Ord α inst✝¹ : Repr α inst✝ : Hashable α d : Decision α ds : List (Decision α) ih : List.length (backtrack ds) ≤ List.length ds ⊢ List.length (backtrack ds) ≤ List.length ds
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_neg
[21, 1]
[25, 7]
change (⟨-f.1, _ ⟩: {f : (NormedSpace.Dual ℝ E) // norm f = 1}).1 = -f.1
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ ↑(-f) = -↑f
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ ↑{ val := -↑f, property := ⋯ } = -↑f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_neg
[21, 1]
[25, 7]
simp
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ ↑{ val := -↑f, property := ⋯ } = -↑f
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
intro f
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E ⊢ ∀ (f : { f // ‖f‖ = 1 }), Function.Surjective ⇑↑f
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ Function.Surjective ⇑↑f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
apply LinearMap.surjective_of_ne_zero
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ Function.Surjective ⇑↑f
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ ↑↑f ≠ 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
intro h
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } ⊢ ↑↑f ≠ 0
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑↑f = 0 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
rw [← ContinuousLinearMap.coe_zero, ContinuousLinearMap.coe_inj] at h
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑↑f = 0 ⊢ False
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑f = 0 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
have := h ▸ f.2
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑f = 0 ⊢ False
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑f = 0 this : ‖0‖ = 1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
unitSphereDual_surj
[27, 1]
[35, 7]
simp only [norm_zero, zero_ne_one] at this
case h E : Type inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E f : { f // ‖f‖ = 1 } h : ↑f = 0 this : ‖0‖ = 1 ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_mem
[146, 1]
[149, 6]
intro x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ∀ (x : E), x ∈ ↑H_ ↔ ↑H_.f x ≤ H_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E ⊢ x ∈ ↑H_ ↔ ↑H_.f x ≤ H_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_mem
[146, 1]
[149, 6]
rw [H_.h]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E ⊢ x ∈ ↑H_ ↔ ↑H_.f x ≤ H_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E ⊢ x ∈ ⇑↑H_.f ⁻¹' {x | x ≤ H_.α} ↔ ↑H_.f x ≤ H_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_mem
[146, 1]
[149, 6]
rfl
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E ⊢ x ∈ ⇑↑H_.f ⁻¹' {x | x ≤ H_.α} ↔ ↑H_.f x ≤ H_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_convex
[151, 1]
[153, 63]
rw [H_.h]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Convex ℝ ↑H_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Convex ℝ (⇑↑H_.f ⁻¹' {x | x ≤ H_.α})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_convex
[151, 1]
[153, 63]
exact convex_halfspace_le (LinearMap.isLinear H_.f.1.1) H_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Convex ℝ (⇑↑H_.f ⁻¹' {x | x ≤ H_.α})
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_closed
[155, 1]
[157, 53]
rw [H_.h]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ IsClosed ↑H_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ IsClosed (⇑↑H_.f ⁻¹' {x | x ≤ H_.α})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_closed
[155, 1]
[157, 53]
exact IsClosed.preimage (H_.f.1.cont) isClosed_Iic
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ IsClosed (⇑↑H_.f ⁻¹' {x | x ≤ H_.α})
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
apply affineSpan_eq_top_of_nonempty_interior
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ affineSpan ℝ ↑H_ = ⊤
case hs E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Set.Nonempty (interior ((convexHull ℝ) ↑H_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
apply Set.Nonempty.mono (?_ : H_.f.1 ⁻¹' (Metric.ball (H_.α -1) (1/2)) ⊆ (interior ((convexHull ℝ) H_.S)))
case hs E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Set.Nonempty (interior ((convexHull ℝ) ↑H_))
case hs E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Set.Nonempty (⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2)) E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ interior ((convexHull ℝ) (Halfspace.S H_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
rw [IsOpen.subset_interior_iff (IsOpen.preimage (?_) Metric.isOpen_ball)]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ interior ((convexHull ℝ) (Halfspace.S H_))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ (convexHull ℝ) (Halfspace.S H_) E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
apply subset_trans ?_ (subset_convexHull ℝ (SetLike.coe H_))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ (convexHull ℝ) (Halfspace.S H_) E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
intro x hx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊆ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : x ∈ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊢ x ∈ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
rw [Set.mem_preimage, Real.ball_eq_Ioo, Set.mem_Ioo] at hx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : x ∈ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2) ⊢ x ∈ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : H_.α - 1 - 1 / 2 < ↑H_.f x ∧ ↑H_.f x < H_.α - 1 + 1 / 2 ⊢ x ∈ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
rw [Halfspace_mem H_]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : H_.α - 1 - 1 / 2 < ↑H_.f x ∧ ↑H_.f x < H_.α - 1 + 1 / 2 ⊢ x ∈ ↑H_ E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : H_.α - 1 - 1 / 2 < ↑H_.f x ∧ ↑H_.f x < H_.α - 1 + 1 / 2 ⊢ ↑H_.f x ≤ H_.α E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : H_.α - 1 - 1 / 2 < ↑H_.f x ∧ ↑H_.f x < H_.α - 1 + 1 / 2 ⊢ ↑H_.f x ≤ H_.α E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
exact H_.f.1.cont
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Continuous ⇑↑H_.f
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
cases' unitSphereDual_surj H_.f (H_.α -1) with x hx
case hs E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E ⊢ Set.Nonempty (⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2))
case hs.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ Set.Nonempty (⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
use x
case hs.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ Set.Nonempty (⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2))
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ x ∈ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
rw [Set.mem_preimage, Metric.mem_ball, dist_sub_eq_dist_add_right, hx, sub_add_cancel, dist_self]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ x ∈ ⇑↑H_.f ⁻¹' Metric.ball (H_.α - 1) (1 / 2)
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ 0 < 1 / 2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_span
[159, 1]
[177, 7]
linarith
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Halfspace E x : E hx : ↑H_.f x = H_.α - 1 ⊢ 0 < 1 / 2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.S
[182, 1]
[187, 7]
ext y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E ⊢ ↑(Halfspace_translation x H_) = (fun x_1 => x_1 + x) '' ↑H_
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E y : E ⊢ y ∈ ↑(Halfspace_translation x H_) ↔ y ∈ (fun x_1 => x_1 + x) '' ↑H_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.S
[182, 1]
[187, 7]
rw [Halfspace_translation, Halfspace_mem, Set.image_add_right, Set.mem_preimage, ← sub_eq_add_neg, Halfspace_mem, ContinuousLinearMap.map_sub, sub_le_iff_le_add]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E y : E ⊢ y ∈ ↑(Halfspace_translation x H_) ↔ y ∈ (fun x_1 => x_1 + x) '' ↑H_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
mem_Halfspace_translation
[189, 1]
[193, 7]
intro y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E ⊢ ∀ (y : E), y ∈ ↑(Halfspace_translation x H_) ↔ y - x ∈ ↑H_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E y : E ⊢ y ∈ ↑(Halfspace_translation x H_) ↔ y - x ∈ ↑H_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
mem_Halfspace_translation
[189, 1]
[193, 7]
rw [Halfspace_translation.S, Set.image_add_right, Set.mem_preimage, sub_eq_add_neg]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H_ : Halfspace E y : E ⊢ y ∈ ↑(Halfspace_translation x H_) ↔ y - x ∈ ↑H_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
intro H1 H2 h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ Function.Injective fun x_1 => Halfspace_translation x x_1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 ⊢ H1 = H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
rw [SetLike.ext_iff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 ⊢ H1 = H2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 ⊢ ∀ (x : E), x ∈ H1 ↔ x ∈ H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
intro y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 ⊢ ∀ (x : E), x ∈ H1 ↔ x ∈ H2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 y : E ⊢ y ∈ H1 ↔ y ∈ H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
rw [SetLike.ext_iff] at h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : (fun x_1 => Halfspace_translation x x_1) H1 = (fun x_1 => Halfspace_translation x x_1) H2 y : E ⊢ y ∈ H1 ↔ y ∈ H2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : ∀ (x_1 : E), x_1 ∈ (fun x_2 => Halfspace_translation x x_2) H1 ↔ x_1 ∈ (fun x_2 => Halfspace_translation x x_2) H2 y : E ⊢ y ∈ H1 ↔ y ∈ H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
specialize h (y + x)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E h : ∀ (x_1 : E), x_1 ∈ (fun x_2 => Halfspace_translation x x_2) H1 ↔ x_1 ∈ (fun x_2 => Halfspace_translation x x_2) H2 y : E ⊢ y ∈ H1 ↔ y ∈ H2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E y : E h : y + x ∈ (fun x_1 => Halfspace_translation x x_1) H1 ↔ y + x ∈ (fun x_1 => Halfspace_translation x x_1) H2 ⊢ y ∈ H1 ↔ y ∈ H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
rw [← SetLike.mem_coe, ← SetLike.mem_coe, mem_Halfspace_translation, mem_Halfspace_translation, add_sub_cancel] at h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E y : E h : y + x ∈ (fun x_1 => Halfspace_translation x x_1) H1 ↔ y + x ∈ (fun x_1 => Halfspace_translation x x_1) H2 ⊢ y ∈ H1 ↔ y ∈ H2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E y : E h : y ∈ ↑H1 ↔ y ∈ ↑H2 ⊢ y ∈ H1 ↔ y ∈ H2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace_translation.injective
[195, 1]
[203, 10]
exact h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E H1 H2 : Halfspace E y : E h : y ∈ ↑H1 ↔ y ∈ ↑H2 ⊢ y ∈ H1 ↔ y ∈ H2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
have := ContinuousLinearMap.frontier_preimage Hi_.f.1 (unitSphereDual_surj Hi_.f) (Set.Iic Hi_.α)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' Set.Iic Hi_.α) = ⇑↑Hi_.f ⁻¹' frontier (Set.Iic Hi_.α) ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
simp only [ne_eq, LinearMap.coe_toContinuousLinearMap', Set.nonempty_Ioi, frontier_Iic'] at this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' Set.Iic Hi_.α) = ⇑↑Hi_.f ⁻¹' frontier (Set.Iic Hi_.α) ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' Set.Iic Hi_.α) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
change frontier ( Hi_.f.1 ⁻¹' {x | x ≤ Hi_.α}) = Hi_.f.1 ⁻¹' {Hi_.α} at this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' Set.Iic Hi_.α) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
rw [Hi_.h, this]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ frontier ↑Hi_ = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ ⇑↑Hi_.f ⁻¹' {Hi_.α} = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
clear this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E this : frontier (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) = ⇑↑Hi_.f ⁻¹' {Hi_.α} ⊢ ⇑↑Hi_.f ⁻¹' {Hi_.α} = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ ⇑↑Hi_.f ⁻¹' {Hi_.α} = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
unfold Set.preimage
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ ⇑↑Hi_.f ⁻¹' {Hi_.α} = {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ {x | ↑Hi_.f x ∈ {Hi_.α}} = {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
frontierHalfspace_Hyperplane
[205, 1]
[213, 7]
simp only [ne_eq, Set.mem_singleton_iff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ {x | ↑Hi_.f x ∈ {Hi_.α}} = {x | ↑Hi_.f x = Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_convex
[215, 1]
[218, 7]
exact @convex_hyperplane ℝ E ℝ _ _ _ _ _ _ Hi_.f.1 (LinearMap.isLinear Hi_.f.1) Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E Hi_ : Halfspace E ⊢ Convex ℝ {x | ↑Hi_.f x = Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
intro s hs a ha
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E ⊢ ∀ (s : Fin n → E), Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} → ∀ (a : Fin n → ℝ), Finset.sum Finset.univ a = 1 → (Finset.affineCombination ℝ Finset.univ s) a ∈ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 ⊢ (Finset.affineCombination ℝ Finset.univ s) a ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
rw [Finset.affineCombination_eq_linear_combination _ _ _ ha, Set.mem_setOf, map_sum]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 ⊢ (Finset.affineCombination ℝ Finset.univ s) a ∈ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 ⊢ (Finset.sum Finset.univ fun x => ↑Hi_.f (a x • s x)) = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
have hg : (fun i => Hi_.f.1 (a i • s i)) = fun i => a i * Hi_.α := by ext i rw [Set.range_subset_iff] at hs specialize hs i rw [Set.mem_setOf] at hs rw [ContinuousLinearMap.map_smulₛₗ, smul_eq_mul, RingHom.id_apply, hs] done
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 ⊢ (Finset.sum Finset.univ fun x => ↑Hi_.f (a x • s x)) = Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 hg : (fun i => ↑Hi_.f (a i • s i)) = fun i => a i * Hi_.α ⊢ (Finset.sum Finset.univ fun x => ↑Hi_.f (a x • s x)) = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
rw [hg, ←Finset.sum_mul, ha, one_mul]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 hg : (fun i => ↑Hi_.f (a i • s i)) = fun i => a i * Hi_.α ⊢ (Finset.sum Finset.univ fun x => ↑Hi_.f (a x • s x)) = Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
ext i
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 ⊢ (fun i => ↑Hi_.f (a i • s i)) = fun i => a i * Hi_.α
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
rw [Set.range_subset_iff] at hs
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : Set.range s ⊆ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : ∀ (y : Fin n), s y ∈ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
specialize hs i
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E hs : ∀ (y : Fin n), s y ∈ {x | ↑Hi_.f x = Hi_.α} a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n hs : s i ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
rw [Set.mem_setOf] at hs
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n hs : s i ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n hs : ↑Hi_.f (s i) = Hi_.α ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Hyperplane_affineClosed
[220, 1]
[234, 7]
rw [ContinuousLinearMap.map_smulₛₗ, smul_eq_mul, RingHom.id_apply, hs]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E n : ℕ Hi_ : Halfspace E s : Fin n → E a : Fin n → ℝ ha : Finset.sum Finset.univ a = 1 i : Fin n hs : ↑Hi_.f (s i) = Hi_.α ⊢ ↑Hi_.f (a i • s i) = a i * Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_raw
[236, 1]
[240, 45]
rcases H_' with ⟨ ⟨ f, hf ⟩, C ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ∃ H_, ((∀ (x : ↥p), ↑H_.f ↑x = ↑H_'.f x) ∧ ‖↑H_.f‖ = ‖↑H_'.f‖) ∧ H_.α = H_'.α
case mk.mk E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p C : ℝ f : NormedSpace.Dual ℝ ↥p hf : ‖f‖ = 1 ⊢ ∃ H_, ((∀ (x : ↥p), ↑H_.f ↑x = ↑{ f := { val := f, property := hf }, α := C }.f x) ∧ ‖↑H_.f‖ = ‖↑{ f := { val := f, property := hf }, α := C }.f‖) ∧ H_.α = { f := { val := f, property := hf }, α := C }.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_raw
[236, 1]
[240, 45]
choose g hg using Real.exists_extension_norm_eq p f
case mk.mk E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p C : ℝ f : NormedSpace.Dual ℝ ↥p hf : ‖f‖ = 1 ⊢ ∃ H_, ((∀ (x : ↥p), ↑H_.f ↑x = ↑{ f := { val := f, property := hf }, α := C }.f x) ∧ ‖↑H_.f‖ = ‖↑{ f := { val := f, property := hf }, α := C }.f‖) ∧ H_.α = { f := { val := f, property := hf }, α := C }.α
case mk.mk E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p C : ℝ f : NormedSpace.Dual ℝ ↥p hf : ‖f‖ = 1 g : E →L[ℝ] ℝ hg : (∀ (x : ↥p), g ↑x = f x) ∧ ‖g‖ = ‖f‖ ⊢ ∃ H_, ((∀ (x : ↥p), ↑H_.f ↑x = ↑{ f := { val := f, property := hf }, α := C }.f x) ∧ ‖↑H_.f‖ = ‖↑{ f := { val := f, property := hf }, α := C }.f‖) ∧ H_.α = { f := { val := f, property := hf }, α := C }.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_raw
[236, 1]
[240, 45]
exact ⟨ ⟨ ⟨ g, hg.2 ▸ hf ⟩, C ⟩, hg, rfl ⟩
case mk.mk E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p C : ℝ f : NormedSpace.Dual ℝ ↥p hf : ‖f‖ = 1 g : E →L[ℝ] ℝ hg : (∀ (x : ↥p), g ↑x = f x) ∧ ‖g‖ = ‖f‖ ⊢ ∃ H_, ((∀ (x : ↥p), ↑H_.f ↑x = ↑{ f := { val := f, property := hf }, α := C }.f x) ∧ ‖↑H_.f‖ = ‖↑{ f := { val := f, property := hf }, α := C }.f‖) ∧ H_.α = { f := { val := f, property := hf }, α := C }.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_f
[247, 1]
[250, 62]
unfold val
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ∀ (x : ↥p), ↑((fun H_ x => H_) (Classical.choose ⋯) ⋯).f ↑x = ↑H_'.f x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_f
[247, 1]
[250, 62]
exact (Classical.choose_spec (Halfspace.val_raw p H_')).1.1
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ∀ (x : ↥p), ↑((fun H_ x => H_) (Classical.choose ⋯) ⋯).f ↑x = ↑H_'.f x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_C
[252, 1]
[255, 60]
unfold val
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ (val p H_').α = H_'.α
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ((fun H_ x => H_) (Classical.choose ⋯) ⋯).α = H_'.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_C
[252, 1]
[255, 60]
exact (Classical.choose_spec (Halfspace.val_raw p H_')).2
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ((fun H_ x => H_) (Classical.choose ⋯) ⋯).α = H_'.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
have := Halfspace.val_f p H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ ↑(val p H_') ∩ ↑p = Subtype.val '' ↑H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x ⊢ ↑(val p H_') ∩ ↑p = Subtype.val '' ↑H_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
apply subset_antisymm <;> intro x <;> rw [Set.mem_inter_iff, Set.mem_image]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x ⊢ ↑(val p H_') ∩ ↑p = Subtype.val '' ↑H_'
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ x ∈ ↑(val p H_') ∧ x ∈ ↑p → ∃ x_1 ∈ ↑H_', ↑x_1 = x case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ (∃ x_1 ∈ ↑H_', ↑x_1 = x) → x ∈ ↑(val p H_') ∧ x ∈ ↑p
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
rintro ⟨ hxH_', hxp ⟩
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ x ∈ ↑(val p H_') ∧ x ∈ ↑p → ∃ x_1 ∈ ↑H_', ↑x_1 = x
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ∃ x_1 ∈ ↑H_', ↑x_1 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
refine ⟨ ⟨ x, hxp ⟩, ?_, rfl ⟩
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ∃ x_1 ∈ ↑H_', ↑x_1 = x
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ { val := x, property := hxp } ∈ ↑H_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
rw [Halfspace_mem, ← (this ⟨ x, hxp ⟩), ← Halfspace.val_C p H_']
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ { val := x, property := hxp } ∈ ↑H_'
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ↑(val p H_').f ↑{ val := x, property := hxp } ≤ (val p H_').α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
exact hxH_'
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ↑(val p H_').f ↑{ val := x, property := hxp } ≤ (val p H_').α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
rintro ⟨ ⟨ x', hx'p ⟩, hx'H_', rfl ⟩
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ (∃ x_1 ∈ ↑H_', ↑x_1 = x) → x ∈ ↑(val p H_') ∧ x ∈ ↑p
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_') ∧ ↑{ val := x', property := hx'p } ∈ ↑p
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
refine ⟨ ?_, hx'p ⟩
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_') ∧ ↑{ val := x', property := hx'p } ∈ ↑p
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
rw [Halfspace_mem, ← (this ⟨ x', hx'p ⟩), ← Halfspace.val_C p H_'] at hx'H_'
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : ↑(val p H_').f ↑{ val := x', property := hx'p } ≤ (val p H_').α ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq
[257, 1]
[271, 7]
exact hx'H_'
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : ↑(val p H_').f ↑{ val := x', property := hx'p } ≤ (val p H_').α ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
intro H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p ⊢ ∀ (H_' : Halfspace ↥p), (fun H_ => ↑(val p H_) ∩ ↑p) H_' = (fun H_ => Subtype.val '' H_) ↑H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ (fun H_ => ↑(val p H_) ∩ ↑p) H_' = (fun H_ => Subtype.val '' H_) ↑H_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
have := Halfspace.val_f p H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p ⊢ (fun H_ => ↑(val p H_) ∩ ↑p) H_' = (fun H_ => Subtype.val '' H_) ↑H_'
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x ⊢ (fun H_ => ↑(val p H_) ∩ ↑p) H_' = (fun H_ => Subtype.val '' H_) ↑H_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
apply subset_antisymm <;> intro x <;> rw [Set.mem_inter_iff, Set.mem_image]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x ⊢ (fun H_ => ↑(val p H_) ∩ ↑p) H_' = (fun H_ => Subtype.val '' H_) ↑H_'
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ x ∈ ↑(val p H_') ∧ x ∈ ↑p → ∃ x_1 ∈ ↑H_', ↑x_1 = x case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ (∃ x_1 ∈ ↑H_', ↑x_1 = x) → x ∈ ↑(val p H_') ∧ x ∈ ↑p
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
rintro ⟨ hxH_', hxp ⟩
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ x ∈ ↑(val p H_') ∧ x ∈ ↑p → ∃ x_1 ∈ ↑H_', ↑x_1 = x
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ∃ x_1 ∈ ↑H_', ↑x_1 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
refine ⟨ ⟨ x, hxp ⟩, ?_, rfl ⟩
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ∃ x_1 ∈ ↑H_', ↑x_1 = x
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ { val := x, property := hxp } ∈ ↑H_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
rw [Halfspace_mem, ← (this ⟨ x, hxp ⟩), ← Halfspace.val_C p H_']
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ { val := x, property := hxp } ∈ ↑H_'
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ↑(val p H_').f ↑{ val := x, property := hxp } ≤ (val p H_').α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
exact hxH_'
case a.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E hxH_' : x ∈ ↑(val p H_') hxp : x ∈ ↑p ⊢ ↑(val p H_').f ↑{ val := x, property := hxp } ≤ (val p H_').α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
rintro ⟨ ⟨ x', hx'p ⟩, hx'H_', rfl ⟩
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x : E ⊢ (∃ x_1 ∈ ↑H_', ↑x_1 = x) → x ∈ ↑(val p H_') ∧ x ∈ ↑p
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_') ∧ ↑{ val := x', property := hx'p } ∈ ↑p
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
refine ⟨ ?_, hx'p ⟩
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_') ∧ ↑{ val := x', property := hx'p } ∈ ↑p
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
rw [Halfspace_mem, ← (this ⟨ x', hx'p ⟩), ← Halfspace.val_C p H_'] at hx'H_'
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : { val := x', property := hx'p } ∈ ↑H_' ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : ↑(val p H_').f ↑{ val := x', property := hx'p } ≤ (val p H_').α ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Halfspace.lean
Halfspace.val_eq'
[273, 1]
[288, 7]
exact hx'H_'
case a.intro.mk.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E p : Subspace ℝ E inst✝ : CompleteSpace ↥p H_' : Halfspace ↥p this : ∀ (x : ↥p), ↑(val p H_').f ↑x = ↑H_'.f x x' : E hx'p : x' ∈ p hx'H_' : ↑(val p H_').f ↑{ val := x', property := hx'p } ≤ (val p H_').α ⊢ ↑{ val := x', property := hx'p } ∈ ↑(val p H_')
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Convex_cutSpace
[7, 1]
[10, 29]
apply convex_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ Convex ℝ (cutSpace H_)
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Convex_cutSpace
[7, 1]
[10, 29]
rintro _ ⟨ Hi_, _, rfl ⟩
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ Convex ℝ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Convex_cutSpace
[7, 1]
[10, 29]
exact Halfspace_convex Hi_
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ Convex ℝ ↑Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Closed_cutSpace
[12, 1]
[18, 21]
apply isClosed_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ IsClosed (cutSpace H_)
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ ∀ t ∈ SetLike.coe '' H_, IsClosed t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Closed_cutSpace
[12, 1]
[18, 21]
rintro _ ⟨ Hi_, _, rfl ⟩
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) ⊢ ∀ t ∈ SetLike.coe '' H_, IsClosed t
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Closed_cutSpace
[12, 1]
[18, 21]
rw [Hi_.h]
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed ↑Hi_
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Closed_cutSpace
[12, 1]
[18, 21]
apply IsClosed.preimage (Hi_.f.1.cont)
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α})
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed {x | x ≤ Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Closed_cutSpace
[12, 1]
[18, 21]
exact isClosed_Iic
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ IsClosed {x | x ≤ Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
constructor <;> intro h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E ⊢ x ∈ cutSpace H_ ↔ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ cutSpace H_ ⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ cutSpace H_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
intro Hi HiH
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ cutSpace H_ ⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ cutSpace H_ Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α