url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
unfold cutSpace at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ cutSpace H_ Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ ⋂₀ (SetLike.coe '' H_) Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
rw [Set.mem_sInter] at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : x ∈ ⋂₀ (SetLike.coe '' H_) Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ t ∈ SetLike.coe '' H_, x ∈ t Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
specialize h Hi ⟨ Hi, HiH, rfl ⟩
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ t ∈ SetLike.coe '' H_, x ∈ t Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi : Halfspace E HiH : Hi ∈ H_ h : x ∈ ↑Hi ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
rw [Halfspace_mem] at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi : Halfspace E HiH : Hi ∈ H_ h : x ∈ ↑Hi ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi : Halfspace E HiH : Hi ∈ H_ h : ↑Hi.f x ≤ Hi.α ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
exact h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi : Halfspace E HiH : Hi ∈ H_ h : ↑Hi.f x ≤ Hi.α ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
unfold cutSpace
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ cutSpace H_
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ ⋂₀ (SetLike.coe '' H_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
rw [Set.mem_sInter]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ ⋂₀ (SetLike.coe '' H_)
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
rintro _ ⟨ Hi_, hHi_, rfl ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
specialize h Hi_ hHi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x ∈ ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ x ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
rw [Halfspace_mem]
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ x ∈ ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ ↑Hi_.f x ≤ Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
mem_cutSpace
[20, 1]
[38, 9]
exact h
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ ↑Hi_.f x ≤ Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
rcases h with ⟨ x, hx ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E h : ∃ x, x ≠ 0 ⊢ ∃ H_, cutSpace H_ = ∅
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 ⊢ ∃ H_, cutSpace H_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
let xhat := (norm x)⁻¹ • x
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 ⊢ ∃ H_, cutSpace H_ = ∅
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x ⊢ ∃ H_, cutSpace H_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
let fval : NormedSpace.Dual ℝ E := InnerProductSpace.toDualMap ℝ _ xhat
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x ⊢ ∃ H_, cutSpace H_ = ∅
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ∃ H_, cutSpace H_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
let f : {f : (NormedSpace.Dual ℝ E) // norm f = 1} := ⟨ fval , (by change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1 have := @norm_smul_inv_norm ℝ _ E _ _ x hx rw [IsROrC.ofReal_real_eq_id, id_eq] at this rw [innerSL_apply_norm, this] done ) ⟩
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ∃ H_, cutSpace H_ = ∅
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ ∃ H_, cutSpace H_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
refine ⟨ {Halfspace.mk f (-1), Halfspace.mk (-f) (-1)} , ?_ ⟩
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ ∃ H_, cutSpace H_ = ∅
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ cutSpace {{ f := f, α := -1 }, { f := -f, α := -1 }} = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
ext x
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ cutSpace {{ f := f, α := -1 }, { f := -f, α := -1 }} = ∅
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ x ∈ cutSpace {{ f := f, α := -1 }, { f := -f, α := -1 }} ↔ x ∈ ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
rw [Set.mem_empty_iff_false, iff_false, mem_cutSpace]
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ x ∈ cutSpace {{ f := f, α := -1 }, { f := -f, α := -1 }} ↔ x ∈ ∅
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
intro h
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
have h1 := h (Halfspace.mk f (-1)) (by simp)
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ False
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
have h2 := h (Halfspace.mk (-f) (-1)) (by simp)
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ False
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg] at h2
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α ⊢ False
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : 1 ≤ ↑f x ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
change f.1 x ≤ -1 at h1
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : 1 ≤ ↑f x ⊢ False
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h2 : 1 ≤ ↑f x h1 : ↑f x ≤ -1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
linarith
case intro.h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h2 : 1 ≤ ↑f x h1 : ↑f x ≤ -1 ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖fval‖ = 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
have := @norm_smul_inv_norm ℝ _ E _ _ x hx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖(↑‖x‖)⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
rw [IsROrC.ofReal_real_eq_id, id_eq] at this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖(↑‖x‖)⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖‖x‖⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
rw [innerSL_apply_norm, this]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖‖x‖⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ { f := f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
empty_cutSpace
[40, 1]
[61, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ { f := -f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
refine ⟨ {Halfspace.mk f c, Halfspace.mk (-f) (-c)}, ?_ ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ ∃ H_, cutSpace H_ = {x | ↑f x = c}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ cutSpace {{ f := f, α := c }, { f := -f, α := -c }} = {x | ↑f x = c}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
ext x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ cutSpace {{ f := f, α := c }, { f := -f, α := -c }} = {x | ↑f x = c}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ x ∈ cutSpace {{ f := f, α := c }, { f := -f, α := -c }} ↔ x ∈ {x | ↑f x = c}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
rw [mem_cutSpace, Set.mem_setOf]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ x ∈ cutSpace {{ f := f, α := c }, { f := -f, α := -c }} ↔ x ∈ {x | ↑f x = c}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) ↔ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
constructor
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) ↔ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) → ↑f x = c case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ ↑f x = c → ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
intro h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) → ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
have h1 := h (Halfspace.mk f c) (by simp)
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
have h2 := h (Halfspace.mk (-f) (-c)) (by simp)
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg] at h2
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : c ≤ ↑f x ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
change f.1 x ≤ c at h1
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : c ≤ ↑f x ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h2 : c ≤ ↑f x h1 : ↑f x ≤ c ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
exact le_antisymm h1 h2
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h2 : c ≤ ↑f x h1 : ↑f x ≤ c ⊢ ↑f x = c
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ { f := f, α := c } ∈ {{ f := f, α := c }, { f := -f, α := -c }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ { f := -f, α := -c } ∈ {{ f := f, α := c }, { f := -f, α := -c }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
intro h Hi hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ ↑f x = c → ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }} ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.mem_insert_iff] at hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }} ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi = { f := f, α := c } ∨ Hi = { f := -f, α := -c } ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
rcases hHi with rfl | rfl
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi = { f := f, α := c } ∨ Hi = { f := -f, α := -c } ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
exact le_of_eq h
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg]
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ c ≤ ↑f x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
hyperplane_cutSpace
[63, 1]
[85, 7]
exact le_of_eq h.symm
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ c ≤ ↑f x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
ext x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) ⊢ cutSpace (H_1 ∪ H_2) = cutSpace H_1 ∩ cutSpace H_2
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ x ∈ cutSpace (H_1 ∪ H_2) ↔ x ∈ cutSpace H_1 ∩ cutSpace H_2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
rw [mem_cutSpace, Set.mem_inter_iff, mem_cutSpace, mem_cutSpace]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ x ∈ cutSpace (H_1 ∪ H_2) ↔ x ∈ cutSpace H_1 ∩ cutSpace H_2
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) ↔ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
constructor
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) ↔ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) → (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ ((∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α) → ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
intro h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) → (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α ⊢ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
constructor <;> intro Hi_ hH_ <;> exact h Hi_ (by simp only [Set.mem_union, hH_, true_or, or_true])
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α ⊢ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
simp only [Set.mem_union, hH_, true_or, or_true]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hH_ : Hi_ ∈ H_2 ⊢ Hi_ ∈ H_1 ∪ H_2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
intro h Hi hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E ⊢ ((∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α) → ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∪ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
rw [Set.mem_union] at hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∪ H_2 ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∨ Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
rcases hHi with hHi | hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∨ Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ⊢ ↑Hi.f x ≤ Hi.α case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
exact h.1 Hi hHi
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
inter_cutSpace
[87, 1]
[103, 7]
exact h.2 Hi hHi
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane.Finite
[109, 1]
[111, 107]
unfold orthoHyperplane
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } ⊢ Set.Finite (orthoHyperplane x)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } ⊢ Set.Finite {{ f := pointDualLin x, α := 0 }, { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane.Finite
[109, 1]
[111, 107]
simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, and_true, Set.finite_singleton, Set.Finite.insert]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } ⊢ Set.Finite {{ f := pointDualLin x, α := 0 }, { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
intro y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } ⊢ ∀ (y : E), y ∈ cutSpace (orthoHyperplane x) ↔ ⟪↑x, y⟫_ℝ = 0
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (orthoHyperplane x) ↔ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
rw [mem_cutSpace]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (orthoHyperplane x) ↔ ⟪↑x, y⟫_ℝ = 0
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ (∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α) ↔ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
constructor
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ (∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α) ↔ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ (∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α) → ⟪↑x, y⟫_ℝ = 0 case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ ⟪↑x, y⟫_ℝ = 0 → ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
intro h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ (∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α) → ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
have h1 := h (Halfspace.mk (pointDualLin x) 0)
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : { f := pointDualLin x, α := 0 } ∈ orthoHyperplane x → ↑{ f := pointDualLin x, α := 0 }.f y ≤ { f := pointDualLin x, α := 0 }.α ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
simp only [pointDualLin, ne_eq, map_inv₀, IsROrC.conj_to_real, orthoHyperplane, Set.mem_singleton_iff, Halfspace.mk.injEq, and_true, Set.mem_insert_iff, true_or, forall_true_left, InnerProductSpace.toDual_apply, inner_smul_left] at h1
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : { f := pointDualLin x, α := 0 } ∈ orthoHyperplane x → ↑{ f := pointDualLin x, α := 0 }.f y ≤ { f := pointDualLin x, α := 0 }.α ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
have h2 := h (Halfspace.mk (pointDualLin ⟨ -x.1, by rw [neg_ne_zero]; exact x.2 ⟩) 0)
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 } ∈ orthoHyperplane x → ↑{ f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }.f y ≤ { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }.α ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
simp only [pointDualLin, ne_eq, norm_neg, smul_neg, map_inv₀, IsROrC.conj_to_real, orthoHyperplane, Set.mem_singleton_iff, Halfspace.mk.injEq, Subtype.mk.injEq, and_true, Set.mem_insert_iff, or_true, forall_true_left, InnerProductSpace.toDual_apply, inner_neg_left, inner_smul_left] at h2
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 } ∈ orthoHyperplane x → ↑{ f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }.f y ≤ { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }.α ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : -(‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ) ≤ 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
rw [neg_le, neg_zero] at h2
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : -(‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ) ≤ 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
have := le_antisymm h1 h2
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ this : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
rw [mul_eq_zero] at this
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ this : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ this : ‖↑x‖⁻¹ = 0 ∨ ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
cases' this with h3 h4
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ this : ‖↑x‖⁻¹ = 0 ∨ ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ‖↑x‖⁻¹ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0 case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h4 : ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
rw [neg_ne_zero]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 ⊢ -↑x ≠ 0
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 ⊢ ↑x ≠ 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
exact x.2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 ⊢ ↑x ≠ 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
rw [inv_eq_zero, norm_eq_zero] at h3
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ‖↑x‖⁻¹ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ↑x = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
exfalso
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ↑x = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ↑x = 0 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
exact x.2 h3
case mp.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h3 : ↑x = 0 ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
exact h4
case mp.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α h1 : ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ ≤ 0 h2 : 0 ≤ ‖↑x‖⁻¹ * ⟪↑x, y⟫_ℝ h4 : ⟪↑x, y⟫_ℝ = 0 ⊢ ⟪↑x, y⟫_ℝ = 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
intro h H hH
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E ⊢ ⟪↑x, y⟫_ℝ = 0 → ∀ Hi ∈ orthoHyperplane x, ↑Hi.f y ≤ Hi.α
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H ∈ orthoHyperplane x ⊢ ↑H.f y ≤ H.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
unfold orthoHyperplane at hH
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H ∈ orthoHyperplane x ⊢ ↑H.f y ≤ H.α
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H ∈ {{ f := pointDualLin x, α := 0 }, { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }} ⊢ ↑H.f y ≤ H.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
simp only [ne_eq, Set.mem_singleton_iff, Halfspace.mk.injEq, and_true, Set.mem_insert_iff] at hH
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H ∈ {{ f := pointDualLin x, α := 0 }, { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 }} ⊢ ↑H.f y ≤ H.α
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H = { f := pointDualLin x, α := 0 } ∨ H = { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 } ⊢ ↑H.f y ≤ H.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplane_mem
[113, 1]
[145, 7]
cases' hH with H H <;> simp only [H, pointDualLin, norm_neg, smul_neg, map_inv₀, IsROrC.conj_to_real, InnerProductSpace.toDual_apply, inner_neg_left, inner_smul_left, neg_le, neg_zero, h, mul_zero, le_refl]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : { x // x ≠ 0 } y : E h : ⟪↑x, y⟫_ℝ = 0 H : Halfspace E hH : H = { f := pointDualLin x, α := 0 } ∨ H = { f := pointDualLin { val := -↑x, property := ⋯ }, α := 0 } ⊢ ↑H.f y ≤ H.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
cutSpace_sUnion_orthoHyperplane
[147, 1]
[150, 81]
intro y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } ⊢ ∀ (y : E), y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
cutSpace_sUnion_orthoHyperplane
[147, 1]
[150, 81]
unfold cutSpace
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ ⋂₀ (SetLike.coe '' ⋃₀ (orthoHyperplane '' X)) ↔ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ ⋂₀ (SetLike.coe '' ↑i)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
cutSpace_sUnion_orthoHyperplane
[147, 1]
[150, 81]
rw [Set.sUnion_eq_iUnion, Set.image_iUnion, Set.sInter_iUnion, Set.mem_iInter]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ ⋂₀ (SetLike.coe '' ⋃₀ (orthoHyperplane '' X)) ↔ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ ⋂₀ (SetLike.coe '' ↑i)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
intro y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } ⊢ ∀ (y : E), y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
rw [cutSpace_sUnion_orthoHyperplane]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ y ∈ cutSpace (⋃₀ (orthoHyperplane '' X)) ↔ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i) ↔ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
constructor
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i) ↔ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i) → ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0) → ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
intro h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i) → ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i ⊢ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
intro x hx
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i ⊢ ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i x : { x // x ≠ 0 } hx : x ∈ X ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
simp at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i x : { x // x ≠ 0 } hx : x ∈ X ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E x : { x // x ≠ 0 } hx : x ∈ X h : ∀ (a : Set (Halfspace E)) (x : E) (x_1 : ¬x = 0), { val := x, property := x_1 } ∈ X → orthoHyperplane { val := x, property := x_1 } = a → y ∈ cutSpace a ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
specialize h (orthoHyperplane x) x.1 x.2 hx rfl
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E x : { x // x ≠ 0 } hx : x ∈ X h : ∀ (a : Set (Halfspace E)) (x : E) (x_1 : ¬x = 0), { val := x, property := x_1 } ∈ X → orthoHyperplane { val := x, property := x_1 } = a → y ∈ cutSpace a ⊢ ⟪↑x, y⟫_ℝ = 0
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E x : { x // x ≠ 0 } hx : x ∈ X h : y ∈ cutSpace (orthoHyperplane x) ⊢ ⟪↑x, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
exact (orthoHyperplane_mem x y).mp h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E x : { x // x ≠ 0 } hx : x ∈ X h : y ∈ cutSpace (orthoHyperplane x) ⊢ ⟪↑x, y⟫_ℝ = 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
intro h
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E ⊢ (∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0) → ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 ⊢ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
simp
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 ⊢ ∀ (i : ↑(orthoHyperplane '' X)), y ∈ cutSpace ↑i
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 ⊢ ∀ (a : Set (Halfspace E)) (x : E) (x_1 : ¬x = 0), { val := x, property := x_1 } ∈ X → orthoHyperplane { val := x, property := x_1 } = a → y ∈ cutSpace a
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
rintro a x1 x2 hx rfl
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 ⊢ ∀ (a : Set (Halfspace E)) (x : E) (x_1 : ¬x = 0), { val := x, property := x_1 } ∈ X → orthoHyperplane { val := x, property := x_1 } = a → y ∈ cutSpace a
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 x1 : E x2 : ¬x1 = 0 hx : { val := x1, property := x2 } ∈ X ⊢ y ∈ cutSpace (orthoHyperplane { val := x1, property := x2 })
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
rw [orthoHyperplane_mem]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 x1 : E x2 : ¬x1 = 0 hx : { val := x1, property := x2 } ∈ X ⊢ y ∈ cutSpace (orthoHyperplane { val := x1, property := x2 })
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 x1 : E x2 : ¬x1 = 0 hx : { val := x1, property := x2 } ∈ X ⊢ ⟪↑{ val := x1, property := x2 }, y⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
orthoHyperplanes_mem
[152, 1]
[168, 7]
exact h _ hx
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set { x // x ≠ 0 } y : E h : ∀ x ∈ X, ⟪↑x, y⟫_ℝ = 0 x1 : E x2 : ¬x1 = 0 hx : { val := x1, property := x2 } ∈ X ⊢ ⟪↑{ val := x1, property := x2 }, y⟫_ℝ = 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Cutspace.lean
Submodule_cut_finite
[175, 1]
[182, 7]
apply Set.Finite.sUnion ?_ (fun t ht => by rcases ht with ⟨ x, _, rfl ⟩ exact orthoHyperplane.Finite _)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E p : Subspace ℝ E ⊢ Set.Finite (Submodule_cut p)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E p : Subspace ℝ E ⊢ Set.Finite (orthoHyperplane '' (Subtype.val ⁻¹' Set.range (Subtype.val ∘ ⇑(FiniteDimensional.finBasis ℝ ↥pᗮ))))