url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
constructor
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) → ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ ⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} → x ∈ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
intro hxEx
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) → ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.eq_singleton_iff_unique_mem]
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ x ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) ∧ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
refine ⟨ fun HiS ⟨ Hi_, hHi_, h ⟩ => h ▸ hHi_.2, ?_ ⟩
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ x ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) ∧ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
contrapose! hxEx
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : ∃ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 ≠ x ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hxEx with ⟨ y, hy, hyx ⟩
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hxEx : ∃ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 ≠ x ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have hxyy : x ∈ openSegment ℝ ((2:ℝ) • x - y) y := by clear hyx hy hxH hH_ rw [openSegment_eq_image, Set.mem_image] refine ⟨ 1/2, by norm_num, ?_ ⟩ rw [(by norm_num : (1:ℝ) - 1 / 2 = 1 / 2), smul_sub, sub_add_cancel, smul_smul, div_mul_cancel _ (by linarith), one_smul] done
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have hmemsegmemI : ∀ v, v ∈ segment ℝ ((2:ℝ) • x - y) y → ∀ Hi_, Hi_ ∈ Hpolytope.I H_ x → v ∈ SetLike.coe Hi_ := by rintro v hv Hi_ hHi_ rw [Set.mem_sInter] at hy specialize hy (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩ have hHi_2 := hHi_.2 rw [frontierHalfspace_Hyperplane] at hy hHi_2 apply IsClosed.frontier_subset <| Halfspace_closed Hi_ rw [frontierHalfspace_Hyperplane] apply Set.mem_of_mem_of_subset hv apply (convex_iff_segment_subset.mp <| Hyperplane_convex Hi_) _ hy have h21 : Finset.sum Finset.univ ![(2:ℝ), -1] = 1 := by rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons] linarith done have h2x_y := Hyperplane_affineClosed Hi_ ![x, y] (by rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty]; exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy)) ![2, -1] h21 rw [Finset.affineCombination_eq_linear_combination _ _ _ h21, Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, neg_one_smul, ← sub_eq_add_neg] at h2x_y exact h2x_y
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [mem_extremePoints]
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ ¬(x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
push_neg
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ ¬(x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ x ∈ Hpolytope hH_ → ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rintro hxH'
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ x ∈ Hpolytope hH_ → ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hmemballmemIc with ⟨ ε, hε, hmemballmemIc ⟩
case mp.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hxSegBallInterSeg ((2:ℝ) • x - y) y ε ⟨ hxyy, fun h => hyx h.2 ⟩ hε with ⟨ x1, x2, hmem, hsub, hne ⟩
case mp.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : ¬(x1 = x ∧ x2 = x) ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
push_neg at hne
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : ¬(x1 = x ∧ x2 = x) ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
clear hxH' hε hyx hy hxH hxyy
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ hxH' : x ∈ Hpolytope hH_ ε : ℝ hε : ε > 0 hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
unfold Hpolytope
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ ⋂₀ (SetLike.coe '' H_), ∃ x₂ ∈ ⋂₀ (SetLike.coe '' H_), x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
refine ⟨ x1, ?_, x2, ?_, ⟨ hmem, hne ⟩ ⟩ <;> clear hmem hne <;> rw [Set.mem_sInter] <;> intro Hi_s hHi_s <;> rw [Set.mem_image] at hHi_s <;> rcases hHi_s with ⟨ Hi_, hHi_, rfl ⟩
case mp.intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hmem : x ∈ openSegment ℝ x1 x2 hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hne : x1 = x → x2 ≠ x ⊢ ∃ x₁ ∈ ⋂₀ (SetLike.coe '' H_), ∃ x₂ ∈ ⋂₀ (SetLike.coe '' H_), x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x1 ∈ ↑Hi_ case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x2 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
clear hyx hy hxH hH_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x ⊢ x ∈ openSegment ℝ (2 • x - y) y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ x ∈ openSegment ℝ (2 • x - y) y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [openSegment_eq_image, Set.mem_image]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ x ∈ openSegment ℝ (2 • x - y) y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ ∃ x_1 ∈ Set.Ioo 0 1, (1 - x_1) • (2 • x - y) + x_1 • y = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
refine ⟨ 1/2, by norm_num, ?_ ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ ∃ x_1 ∈ Set.Ioo 0 1, (1 - x_1) • (2 • x - y) + x_1 • y = x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ (1 - 1 / 2) • (2 • x - y) + (1 / 2) • y = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [(by norm_num : (1:ℝ) - 1 / 2 = 1 / 2), smul_sub, sub_add_cancel, smul_smul, div_mul_cancel _ (by linarith), one_smul]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ (1 - 1 / 2) • (2 • x - y) + (1 / 2) • y = x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
norm_num
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ 1 / 2 ∈ Set.Ioo 0 1
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
norm_num
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ 1 - 1 / 2 = 1 / 2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) x y : E ⊢ 2 ≠ 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hball with ⟨ ε, hε, hball ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hball : ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
refine ⟨ ε, hε, fun v hv Hi_ hHi_ => ?_ ⟩
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) v : E hv : v ∈ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply interior_subset
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) v : E hv : v ∈ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
case intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) v : E hv : v ∈ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ v ∈ interior ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact (Set.mem_sInter.mp <| hball hv) (interior <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
case intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ε : ℝ hε : ε > 0 hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) v : E hv : v ∈ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ v ∈ interior ↑Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
unfold Hpolytope at hxH
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Metric.isOpen_iff] at hIcinteriorOpen
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) hIcinteriorOpen : IsOpen (⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))) ⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) hIcinteriorOpen : ∀ x_1 ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)), ∃ ε > 0, Metric.ball x_1 ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact hIcinteriorOpen x hxIcinterior
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) hIcinteriorOpen : ∀ x_1 ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)), ∃ ε > 0, Metric.ball x_1 ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rintro HiS ⟨ Hi_, hHi_, rfl ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y ⊢ x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x ∈ (fun x => interior ↑x) Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.mem_diff, Hpolytope.I_mem, IsClosed.frontier_eq <| Halfspace_closed Hi_, Set.mem_diff] at hHi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x ∈ (fun x => interior ↑x) Hi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ∧ ¬(Hi_ ∈ H_ ∧ x ∈ ↑Hi_ ∧ x ∉ interior ↑Hi_) ⊢ x ∈ (fun x => interior ↑x) Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
push_neg at hHi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ∧ ¬(Hi_ ∈ H_ ∧ x ∈ ↑Hi_ ∧ x ∉ interior ↑Hi_) ⊢ x ∈ (fun x => interior ↑x) Hi_
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ∧ (Hi_ ∈ H_ → x ∈ ↑Hi_ → x ∈ interior ↑Hi_) ⊢ x ∈ (fun x => interior ↑x) Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact hHi_.2 hHi_.1 <| hxH Hi_ ⟨ Hi_, hHi_.1, rfl ⟩
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ∧ (Hi_ ∈ H_ → x ∈ ↑Hi_ → x ∈ interior ↑Hi_) ⊢ x ∈ (fun x => interior ↑x) Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply Set.Finite.isOpen_sInter (Set.Finite.image _ (Set.Finite.diff hH_ _))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ IsOpen (⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∀ t ∈ (fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x), IsOpen t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact fun _ ⟨ Hi_, _, h ⟩ => h ▸ isOpen_interior
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ ⋂₀ (SetLike.coe '' H_) y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)) ⊢ ∀ t ∈ (fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x), IsOpen t
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rintro v hv Hi_ hHi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ ⊢ ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.mem_sInter] at hy
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, y ∈ t hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize hy (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hy : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, y ∈ t hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ v ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ frontier ↑Hi_ ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have hHi_2 := hHi_.2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ frontier ↑Hi_ ⊢ v ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ frontier ↑Hi_ hHi_2 : x ∈ frontier ↑Hi_ ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [frontierHalfspace_Hyperplane] at hy hHi_2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ frontier ↑Hi_ hHi_2 : x ∈ frontier ↑Hi_ ⊢ v ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply IsClosed.frontier_subset <| Halfspace_closed Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ ↑Hi_
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [frontierHalfspace_Hyperplane]
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ frontier ↑Hi_
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply Set.mem_of_mem_of_subset hv
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ v ∈ {x | ↑Hi_.f x = Hi_.α}
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ (2 • x - y) y ⊆ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply (convex_iff_segment_subset.mp <| Hyperplane_convex Hi_) _ hy
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ (2 • x - y) y ⊆ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have h21 : Finset.sum Finset.univ ![(2:ℝ), -1] = 1 := by rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons] linarith done
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have h2x_y := Hyperplane_affineClosed Hi_ ![x, y] (by rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty]; exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy)) ![2, -1] h21
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 h2x_y : (Finset.affineCombination ℝ Finset.univ ![x, y]) ![2, -1] ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Finset.affineCombination_eq_linear_combination _ _ _ h21, Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons, neg_one_smul, ← sub_eq_add_neg] at h2x_y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 h2x_y : (Finset.affineCombination ℝ Finset.univ ![x, y]) ![2, -1] ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 h2x_y : 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact h2x_y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 h2x_y : 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ Finset.sum Finset.univ ![2, -1] = 1
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 + -1 = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} ⊢ 2 + -1 = 1
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 ⊢ Set.range ![x, y] ⊆ {x | ↑Hi_.f x = Hi_.α}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 ⊢ {x} ∪ {y} ⊆ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ y : E hyx : y ≠ x hxyy : x ∈ openSegment ℝ (2 • x - y) y hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ v : E hv : v ∈ segment ℝ (2 • x - y) y Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hy : y ∈ {x | ↑Hi_.f x = Hi_.α} hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α} h21 : Finset.sum Finset.univ ![2, -1] = 1 ⊢ {x} ∪ {y} ⊆ {x | ↑Hi_.f x = Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize hsub (left_mem_segment ℝ x1 x2)
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x1 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε ⊢ x1 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases (em (Hi_ ∈ Hpolytope.I H_ x)) with (hinI | hninI)
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε ⊢ x1 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_ case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply hmemsegmemI x1 ?_ Hi_ hinI
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ segment ℝ (2 • x - y) y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply openSegment_subset_segment
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ segment ℝ (2 • x - y) y
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ openSegment ℝ (2 • x - y) y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact Set.mem_of_mem_inter_left hsub
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x1 ∈ openSegment ℝ (2 • x - y) y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : Hi_ ∈ H_ \ Hpolytope.I H_ x := by rw [Set.mem_diff] exact ⟨ hHi_, hninI ⟩
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x this : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact hmemballmemIc x1 (Set.mem_of_mem_inter_right hsub) Hi_ this
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x this : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x1 ∈ ↑Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.mem_diff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ \ Hpolytope.I H_ x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact ⟨ hHi_, hninI ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize hsub (right_mem_segment ℝ x1 x2)
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x2 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε ⊢ x2 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases (em (Hi_ ∈ Hpolytope.I H_ x)) with (hinI | hninI)
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε ⊢ x2 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_ case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply hmemsegmemI x2 ?_ Hi_ hinI
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ segment ℝ (2 • x - y) y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply openSegment_subset_segment
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ segment ℝ (2 • x - y) y
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ openSegment ℝ (2 • x - y) y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact Set.mem_of_mem_inter_left hsub
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hinI : Hi_ ∈ Hpolytope.I H_ x ⊢ x2 ∈ openSegment ℝ (2 • x - y) y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : Hi_ ∈ H_ \ Hpolytope.I H_ x := by rw [Set.mem_diff] exact ⟨ hHi_, hninI ⟩
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x this : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact hmemballmemIc x2 (Set.mem_of_mem_inter_right hsub) Hi_ this
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x this : Hi_ ∈ H_ \ Hpolytope.I H_ x ⊢ x2 ∈ ↑Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.mem_diff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ \ Hpolytope.I H_ x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact ⟨ hHi_, hninI ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_ ε : ℝ hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_ x1 x2 : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε hninI : Hi_ ∉ Hpolytope.I H_ x ⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
intro hinterx
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ ⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} → x ∈ Set.extremePoints ℝ (Hpolytope hH_)
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [mem_extremePoints]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} ⊢ x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
refine ⟨ hxH, λ x1 hx1 x2 hx2 hx => ?_ ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} ⊢ x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ x1 = x ∧ x2 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x := by rw [Set.Nonempty.subset_singleton_iff (Set.nonempty_of_mem (left_mem_segment ℝ x1 x2)), Set.eq_singleton_iff_unique_mem] exact fun hseg => ⟨ hseg.2 x1 (left_mem_segment ℝ x1 x2), hseg.2 x2 (right_mem_segment ℝ x1 x2) ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ x1 = x ∧ x2 = x
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x ⊢ x1 = x ∧ x2 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply this
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x ⊢ x1 = x ∧ x2 = x
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x ⊢ segment ℝ x1 x2 ⊆ {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
clear this
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x ⊢ segment ℝ x1 x2 ⊆ {x}
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ segment ℝ x1 x2 ⊆ {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [← hinterx, Set.subset_sInter_iff]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ segment ℝ x1 x2 ⊆ {x}
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ ∀ t' ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, segment ℝ x1 x2 ⊆ t'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rintro HiS ⟨ Hi_, hHi_, rfl ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ ∀ t' ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, segment ℝ x1 x2 ⊆ t'
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ segment ℝ x1 x2 ⊆ (fun x => frontier ↑x) Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
simp only
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ segment ℝ x1 x2 ⊆ (fun x => frontier ↑x) Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have hfxα : Hi_.f.1 x = Hi_.α := by have : x ∈ {x} := by exact Set.mem_singleton x rw [← hinterx, Set.mem_sInter] at this specialize this (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩ rw [frontierHalfspace_Hyperplane, Set.mem_setOf] at this exact this
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
clear hinterx hxH
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [mem_Hpolytope] at hx1 hx2
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 : E hx1 : ∀ Hi ∈ H_, ↑Hi.f x1 ≤ Hi.α x2 : E hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize hx1 Hi_ hHi_.1
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 : E hx1 : ∀ Hi ∈ H_, ↑Hi.f x1 ≤ Hi.α x2 : E hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 x2 : E hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize hx2 Hi_ hHi_.1
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 x2 : E hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
clear hHi_ hH_ H_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [frontierHalfspace_Hyperplane]
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have := Hyperplane_convex Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α this : Convex ℝ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [convex_iff_segment_subset] at this
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α this : Convex ℝ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α this : ∀ ⦃x : E⦄, x ∈ {x | ↑Hi_.f x = Hi_.α} → ∀ ⦃y : E⦄, y ∈ {x | ↑Hi_.f x = Hi_.α} → segment ℝ x y ⊆ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
apply this <;> clear this <;> rw [Set.mem_setOf] <;> by_contra h <;> push_neg at h <;> have hlt := lt_of_le_of_ne (by assumption) h <;> clear h
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α this : ∀ ⦃x : E⦄, x ∈ {x | ↑Hi_.f x = Hi_.α} → ∀ ⦃y : E⦄, y ∈ {x | ↑Hi_.f x = Hi_.α} → segment ℝ x y ⊆ {x | ↑Hi_.f x = Hi_.α} ⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α ⊢ False case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Set.Nonempty.subset_singleton_iff (Set.nonempty_of_mem (left_mem_segment ℝ x1 x2)), Set.eq_singleton_iff_unique_mem]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ (x ∈ segment ℝ x1 x2 ∧ ∀ x_1 ∈ segment ℝ x1 x2, x_1 = x) → x1 = x ∧ x2 = x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact fun hseg => ⟨ hseg.2 x1 (left_mem_segment ℝ x1 x2), hseg.2 x2 (right_mem_segment ℝ x1 x2) ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 ⊢ (x ∈ segment ℝ x1 x2 ∧ ∀ x_1 ∈ segment ℝ x1 x2, x_1 = x) → x1 = x ∧ x2 = x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : x ∈ {x} := by exact Set.mem_singleton x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ ↑Hi_.f x = Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : x ∈ {x} ⊢ ↑Hi_.f x = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [← hinterx, Set.mem_sInter] at this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : x ∈ {x} ⊢ ↑Hi_.f x = Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, x ∈ t ⊢ ↑Hi_.f x = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
specialize this (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, x ∈ t ⊢ ↑Hi_.f x = Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : x ∈ frontier ↑Hi_ ⊢ ↑Hi_.f x = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [frontierHalfspace_Hyperplane, Set.mem_setOf] at this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : x ∈ frontier ↑Hi_ ⊢ ↑Hi_.f x = Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : ↑Hi_.f x = Hi_.α ⊢ ↑Hi_.f x = Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact this
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x this : ↑Hi_.f x = Hi_.α ⊢ ↑Hi_.f x = Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact Set.mem_singleton x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E hxH : x ∈ Hpolytope hH_ hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} x1 : E hx1 : x1 ∈ Hpolytope hH_ x2 : E hx2 : x2 ∈ Hpolytope hH_ hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hHi_ : Hi_ ∈ Hpolytope.I H_ x ⊢ x ∈ {x}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
assumption
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α h : ↑Hi_.f x2 ≠ Hi_.α ⊢ ↑Hi_.f x2 ≤ Hi_.α
no goals