url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
rcases @origin_Hpolytope E _ _ _ _ with ⟨ H_, hH_Fin, hH_ ⟩
case inr.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case inr.intro.intro.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} H_ : Set (Halfspace E) hH_Fin : Set.Finite H_ hH_ : Hpolytope hH_Fin = {0} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
refine ⟨ Halfspace_translation x '' H_, hH_Fin.image (Halfspace_translation x), ?_ ⟩
case inr.intro.intro.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} H_ : Set (Halfspace E) hH_Fin : Set.Finite H_ hH_ : Hpolytope hH_Fin = {0} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case inr.intro.intro.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} H_ : Set (Halfspace E) hH_Fin : Set.Finite H_ hH_ : Hpolytope hH_Fin = {0} ⊢ Hpolytope ⋯ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
rw [Vpolytope, hx, convexHull_singleton, Hpolytope_translation hH_Fin, hH_, Set.singleton_add_singleton, zero_add]
case inr.intro.intro.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} H_ : Set (Halfspace E) hH_Fin : Set.Finite H_ hH_ : Hpolytope hH_Fin = {0} ⊢ Hpolytope ⋯ = Vpolytope hS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
rcases DualOfVpolytope_compactHpolytope hS hV0 with ⟨ H_, hH_, hH_eq, hH_cpt ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
rcases Vpolytope_of_Hpolytope hH_ hH_cpt with ⟨ S', hS', hS'eq ⟩
case intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
have : 0 ∈ interior (Vpolytope hS') := by rw [←hS'eq, hH_eq, compact_polarDual_iff (Closed_Vpolytope hS)] exact Compact_Vpolytope hS
case intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
rcases DualOfVpolytope_compactHpolytope hS' this with ⟨ H_', hH_', hH_'eq, _ ⟩
case intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = polarDual (Vpolytope hS') right✝ : IsCompact (Hpolytope hH_') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
refine ⟨ H_', hH_', ?_ ⟩
case intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = polarDual (Vpolytope hS') right✝ : IsCompact (Hpolytope hH_') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = polarDual (Vpolytope hS') right✝ : IsCompact (Hpolytope hH_') ⊢ Hpolytope hH_' = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
rw [hH_'eq, ←hS'eq, hH_eq, doublePolarDual_self (Closed_Vpolytope hS) (Convex_Vpolytope hS) (interior_subset hV0)]
case intro.intro.intro.intro.intro.intro.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = polarDual (Vpolytope hS') right✝ : IsCompact (Hpolytope hH_') ⊢ Hpolytope hH_' = Vpolytope hS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
rw [←hS'eq, hH_eq, compact_polarDual_iff (Closed_Vpolytope hS)]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' ⊢ 0 ∈ interior (Vpolytope hS')
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' ⊢ IsCompact (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_0interior
[492, 1]
[503, 7]
exact Compact_Vpolytope hS
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hV0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hH_eq : Hpolytope hH_ = polarDual (Vpolytope hS) hH_cpt : IsCompact (Hpolytope hH_) S' : Set E hS' : Set.Finite S' hS'eq : Hpolytope hH_ = Vpolytope hS' ⊢ IsCompact (Vpolytope hS)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo
[505, 1]
[511, 37]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x y : E ⊢ (fun x_1 => x_1 + -x) ((fun x_1 => x_1 + x) y) = y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo
[505, 1]
[511, 37]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x y : E ⊢ (fun x_1 => x_1 + x) ((fun x_1 => x_1 + -x) y) = y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo
[505, 1]
[511, 37]
continuity
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ Continuous { toFun := fun x_1 => x_1 + x, invFun := fun x_1 => x_1 + -x, left_inv := ⋯, right_inv := ⋯ }.toFun
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo
[505, 1]
[511, 37]
continuity
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ Continuous { toFun := fun x_1 => x_1 + x, invFun := fun x_1 => x_1 + -x, left_inv := ⋯, right_inv := ⋯ }.invFun
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo.toFun.def
[513, 1]
[517, 7]
unfold translationHomeo
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ ⇑(translationHomeo x) = fun x_1 => x_1 + x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ ⇑{ toEquiv := { toFun := fun x_1 => x_1 + x, invFun := fun x_1 => x_1 + -x, left_inv := ⋯, right_inv := ⋯ }, continuous_toFun := ⋯, continuous_invFun := ⋯ } = fun x_1 => x_1 + x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
translationHomeo.toFun.def
[513, 1]
[517, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x : E ⊢ ⇑{ toEquiv := { toFun := fun x_1 => x_1 + x, invFun := fun x_1 => x_1 + -x, left_inv := ⋯, right_inv := ⋯ }, continuous_toFun := ⋯, continuous_invFun := ⋯ } = fun x_1 => x_1 + x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
let S' := S + {-hVinteriorNonempty.some}
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
have hS' : S'.Finite := by exact (hS.translation (-hVinteriorNonempty.some))
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
have : 0 ∈ interior (Vpolytope hS') := by rw [Vpolytope_translation hS, Set.add_singleton, ] have := @Homeomorph.image_interior _ _ _ _ (translationHomeo (-hVinteriorNonempty.some)) (Vpolytope hS) rw [translationHomeo.toFun.def] at this rw [← this]; clear this rw [← Set.add_singleton, Set.mem_translation, zero_sub, neg_neg] exact hVinteriorNonempty.some_mem done
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rcases Hpolytope_of_Vpolytope_0interior hS' this with ⟨ H_', hH_', hH_'eq ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
let H_ := (Halfspace_translation hVinteriorNonempty.some) '' H_'
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
have hH_ : H_.Finite := hH_'.image _
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
refine ⟨ H_, hH_, ?_ ⟩
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ ⊢ Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
ext x
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ ⊢ Hpolytope hH_ = Vpolytope hS
case intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ x : E ⊢ x ∈ Hpolytope hH_ ↔ x ∈ Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rw [Hpolytope_translation, hH_'eq, Vpolytope_translation hS, ← Set.sub_eq_neg_add, Set.neg_add_cancel_right' hVinteriorNonempty.some]
case intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : 0 ∈ interior (Vpolytope hS') H_' : Set (Halfspace E) hH_' : Set.Finite H_' hH_'eq : Hpolytope hH_' = Vpolytope hS' H_ : Set (Halfspace E) := Halfspace_translation (Set.Nonempty.some hVinteriorNonempty) '' H_' hH_ : Set.Finite H_ x : E ⊢ x ∈ Hpolytope hH_ ↔ x ∈ Vpolytope hS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
exact (hS.translation (-hVinteriorNonempty.some))
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} ⊢ Set.Finite S'
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rw [Vpolytope_translation hS, Set.add_singleton, ]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ 0 ∈ interior (Vpolytope hS')
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
have := @Homeomorph.image_interior _ _ _ _ (translationHomeo (-hVinteriorNonempty.some)) (Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : ⇑(translationHomeo (-Set.Nonempty.some hVinteriorNonempty)) '' interior (Vpolytope hS) = interior (⇑(translationHomeo (-Set.Nonempty.some hVinteriorNonempty)) '' Vpolytope hS) ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rw [translationHomeo.toFun.def] at this
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : ⇑(translationHomeo (-Set.Nonempty.some hVinteriorNonempty)) '' interior (Vpolytope hS) = interior (⇑(translationHomeo (-Set.Nonempty.some hVinteriorNonempty)) '' Vpolytope hS) ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS) = interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS) ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rw [← this]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS) = interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS) ⊢ 0 ∈ interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS) = interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS) ⊢ 0 ∈ (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
clear this
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' this : (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS) = interior ((fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' Vpolytope hS) ⊢ 0 ∈ (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ 0 ∈ (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
rw [← Set.add_singleton, Set.mem_translation, zero_sub, neg_neg]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ 0 ∈ (fun x => x + -Set.Nonempty.some hVinteriorNonempty) '' interior (Vpolytope hS)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ Set.Nonempty.some hVinteriorNonempty ∈ interior (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_interior
[519, 1]
[542, 7]
exact hVinteriorNonempty.some_mem
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinteriorNonempty : Set.Nonempty (interior (Vpolytope hS)) S' : Set E := S + {-Set.Nonempty.some hVinteriorNonempty} hS' : Set.Finite S' ⊢ Set.Nonempty.some hVinteriorNonempty ∈ interior (Vpolytope hS)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
rcases Hpolytope_of_Vpolytope_interior _ hVinterior with ⟨ H_', hH_', hHV ⟩
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
have hH_inter := inter_Hpolytope H_' H_ hH_' hH_
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
have : IsCompact (Vpolytope hS ∩ Hpolytope hH_) := (Compact_Vpolytope hS).inter_right (Closed_cutSpace H_)
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Vpolytope hS ∩ Hpolytope hH_) ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
rw [← hHV, ← hH_inter] at this
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Vpolytope hS ∩ Hpolytope hH_) ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Hpolytope ⋯) ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
rcases Vpolytope_of_Hpolytope (hH_'.union hH_) this with ⟨ S', hS', hSV ⟩
case intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Hpolytope ⋯) ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
case intro.intro.intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Hpolytope ⋯) S' : Set E hS' : Set.Finite S' hSV : Hpolytope ⋯ = Vpolytope hS' ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
exact ⟨ S', hS', by rw [← hSV, ← hHV, ← hH_inter] ⟩
case intro.intro.intro.intro E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Hpolytope ⋯) S' : Set E hS' : Set.Finite S' hSV : Hpolytope ⋯ = Vpolytope hS' ⊢ ∃ S', ∃ (hS' : Set.Finite S'), Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Vpolytope_inter_cutSpace_fin
[547, 1]
[556, 7]
rw [← hSV, ← hHV, ← hH_inter]
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hVinterior : Set.Nonempty (interior (Vpolytope hS)) H_ : Set (Halfspace E) hH_ : Set.Finite H_ H_' : Set (Halfspace E) hH_' : Set.Finite H_' hHV : Hpolytope hH_' = Vpolytope hS hH_inter : Hpolytope ⋯ = Hpolytope hH_' ∩ Hpolytope hH_ this : IsCompact (Hpolytope ⋯) S' : Set E hS' : Set.Finite S' hSV : Hpolytope ⋯ = Vpolytope hS' ⊢ Vpolytope hS' = Vpolytope hS ∩ Hpolytope hH_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
ext y
E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p ⊢ ⇑(AffineIsometryEquiv.VSubconst ℝ x) '' (Subtype.val ⁻¹' S) = Subtype.val ⁻¹' (S -ᵥ {↑x})
case h E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ y ∈ ⇑(AffineIsometryEquiv.VSubconst ℝ x) '' (Subtype.val ⁻¹' S) ↔ y ∈ Subtype.val ⁻¹' (S -ᵥ {↑x})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
simp only [AffineIsometryEquiv.coe_VSubconst, Set.vsub_singleton, Set.mem_image, Set.mem_preimage, Set.mem_image, Subtype.exists, exists_and_left]
case h E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ y ∈ ⇑(AffineIsometryEquiv.VSubconst ℝ x) '' (Subtype.val ⁻¹' S) ↔ y ∈ Subtype.val ⁻¹' (S -ᵥ {↑x})
case h E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y) ↔ ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
constructor
case h E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y) ↔ ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y
case h.mp E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y) → ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y case h.mpr E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y) → ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
rintro ⟨ v, hvmemS, ⟨ hvmemp, rfl ⟩ ⟩
case h.mp E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y) → ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y
case h.mp.intro.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p v : P hvmemS : v ∈ S hvmemp : v ∈ p ⊢ ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑({ val := v, property := ⋯ } -ᵥ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
refine ⟨ v, hvmemS, ?_ ⟩
case h.mp.intro.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p v : P hvmemS : v ∈ S hvmemp : v ∈ p ⊢ ∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑({ val := v, property := ⋯ } -ᵥ x)
case h.mp.intro.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p v : P hvmemS : v ∈ S hvmemp : v ∈ p ⊢ v -ᵥ ↑x = ↑({ val := v, property := ⋯ } -ᵥ x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
simp only [hvmemS, AffineSubspace.coe_vsub]
case h.mp.intro.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p v : P hvmemS : v ∈ S hvmemp : v ∈ p ⊢ v -ᵥ ↑x = ↑({ val := v, property := ⋯ } -ᵥ x)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
rintro ⟨ v, hvmemS, h ⟩
case h.mpr E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) ⊢ (∃ x_1 ∈ S, x_1 -ᵥ ↑x = ↑y) → ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
have := y.2
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y this : ↑y ∈ AffineSubspace.direction p ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
rw [← h, AffineSubspace.vsub_right_mem_direction_iff_mem x.2] at this
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y this : ↑y ∈ AffineSubspace.direction p ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y this : v ∈ p ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
InDown_eq_DownIn
[558, 1]
[574, 7]
exact ⟨ v, hvmemS, this, Subtype.val_injective ((AffineSubspace.coe_vsub _ _ x) ▸ h) ⟩
case h.mpr.intro.intro E✝ : Type inst✝⁹ : NormedAddCommGroup E✝ inst✝⁸ : InnerProductSpace ℝ E✝ inst✝⁷ : CompleteSpace E✝ E P : Type inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace ℝ E inst✝⁴ : CompleteSpace E inst✝³ : PseudoMetricSpace P inst✝² : NormedAddTorsor E P inst✝¹ : FiniteDimensional ℝ E p : AffineSubspace ℝ P inst✝ : Nonempty ↥p S : Set P x : ↥p y : ↥(AffineSubspace.direction p) v : P hvmemS : v ∈ S h : v -ᵥ ↑x = ↑y this : v ∈ p ⊢ ∃ a ∈ S, ∃ (x_1 : a ∈ p), { val := a, property := ⋯ } -ᵥ x = y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Nonempty_iff_Nonempty_interior_in_direction
[577, 1]
[583, 11]
apply subset_affineSpan
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS : Nonempty ↑S ⊢ s ∈ affineSpan ℝ S
case a E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS : Nonempty ↑S ⊢ s ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Nonempty_iff_Nonempty_interior_in_direction
[577, 1]
[583, 11]
exact hs
case a E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS : Nonempty ↑S ⊢ s ∈ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Nonempty_iff_Nonempty_interior_in_direction
[577, 1]
[583, 11]
rw [Set.nonempty_coe_sort, ← @convexHull_nonempty_iff ℝ, ← intrinsicInterior_nonempty (convex_convexHull ℝ S), intrinsicInterior, Set.image_nonempty, affineSpan_convexHull] at hS
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS : Nonempty ↑S ⊢ Set.Nonempty (interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)))
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS✝ : Nonempty ↑S hS : Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Nonempty (interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Nonempty_iff_Nonempty_interior_in_direction
[577, 1]
[583, 11]
rw [← AffineIsometryEquiv.coe_toHomeomorph, ← Homeomorph.image_interior, Set.image_nonempty]
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS✝ : Nonempty ↑S hS : Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Nonempty (interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)))
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS✝ : Nonempty ↑S hS : Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Nonempty_iff_Nonempty_interior_in_direction
[577, 1]
[583, 11]
exact hS
E✝ : Type inst✝⁸ : NormedAddCommGroup E✝ inst✝⁷ : InnerProductSpace ℝ E✝ inst✝⁶ : CompleteSpace E✝ E P : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : InnerProductSpace ℝ E inst✝³ : CompleteSpace E inst✝² : PseudoMetricSpace P inst✝¹ : NormedAddTorsor E P inst✝ : FiniteDimensional ℝ E S : Set E s : E hs : s ∈ S hS✝ : Nonempty ↑S hS : Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Nonempty (interior (Subtype.val ⁻¹' (convexHull ℝ) S))
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
constructor
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E ⊢ (∀ (S : Set E) (hS : Set.Finite S), ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS) ∧ ∀ {H_ : Set (Halfspace E)} (hH_ : Set.Finite H_), IsCompact (Hpolytope hH_) → ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
case left E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E ⊢ ∀ (S : Set E) (hS : Set.Finite S), ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS case right E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E ⊢ ∀ {H_ : Set (Halfspace E)} (hH_ : Set.Finite H_), IsCompact (Hpolytope hH_) → ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
intro S hS
case left E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E ⊢ ∀ (S : Set E) (hS : Set.Finite S), ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
cases' em (S.Nontrivial) with hSnontrivial hStrivial
case left E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS case left.inr E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : ¬Set.Nontrivial S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have := Set.nontrivial_coe_sort.mpr hSnontrivial
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this : Nontrivial ↑S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hSnonempty := hSnontrivial.nonempty
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this : Nontrivial ↑S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this : Nontrivial ↑S hSnonempty : Set.Nonempty S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have := Set.nonempty_coe_sort.mpr hSnonempty
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this : Nontrivial ↑S hSnonempty : Set.Nonempty S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rcases hSnontrivial.nonempty with ⟨ s, hs ⟩
case left.inl E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hsaff : s ∈ affineSpan ℝ S := by apply subset_affineSpan; exact hs
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
let SpanS := affineSpan ℝ S
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
let s' : SpanS := ⟨ s, hsaff ⟩
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rcases (Nonempty_iff_Nonempty_interior_in_direction hs this) with ⟨ x, hx ⟩
case left.inl.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rcases this with ⟨ S', hS'Fin, hS'eq ⟩
case left.inl.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) this : ∃ S', Set.Finite S' ∧ (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) S' : Set ↥(AffineSubspace.direction SpanS) hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [← hS'eq] at hx
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) S' : Set ↥(AffineSubspace.direction SpanS) hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hS' : (interior (Vpolytope hS'Fin)).Nonempty := Set.nonempty_of_mem hx
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rcases @Hpolytope_of_Vpolytope_interior SpanS.direction _ _ _ _ _ hS'Fin hS' with ⟨ H_''1, hH''1, hHV ⟩
case left.inl.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
let H_'1 : Set (Halfspace E) := (Halfspace.val SpanS.direction) '' H_''1
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hH_'1 : H_'1.Finite := Set.Finite.image _ hH''1
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rcases Submodule_cutspace SpanS.direction with ⟨ H_'2, hH_'2, hH_'2Span' ⟩
case left.inl.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span' : ↑(AffineSubspace.direction SpanS) = cutSpace H_'2 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hH_'2Span: Hpolytope hH_'2 = SpanS.direction := hH_'2Span'.symm
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span' : ↑(AffineSubspace.direction SpanS) = cutSpace H_'2 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span' : ↑(AffineSubspace.direction SpanS) = cutSpace H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
clear hH_'2Span'
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span' : ↑(AffineSubspace.direction SpanS) = cutSpace H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
let H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hH_' : H_'.Finite := Set.Finite.image _ (Set.Finite.union hH_'1 hH_'2)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have hH_'12 := inter_Hpolytope H_'1 H_'2 hH_'1 hH_'2
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
have : Nontrivial SpanS.direction := by apply AffineSubspace.direction_nontrivial_of_nontrivial exact affineSpan_nontrivial ℝ (Set.nontrivial_coe_sort.mpr hSnontrivial)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
refine ⟨ H_', hH_', ?_ ⟩
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Hpolytope hH_' = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Hpolytope_translation, hH_'12, hH_'2Span, Hpolytope, ← Set.Nonempty.sInter_inter_comm, Set.image_image, Set.image_image, @Set.image_congr' _ _ _ _ (H_''1) (Halfspace.val_eq' SpanS.direction), ← Set.image_image, Set.sInter_image, ← Set.Nonempty.image_sInter ?_ (Subtype.val_injective)]
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Hpolytope hH_' = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' ⋂₀ ((fun x => ↑x) '' H_''1) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
change Subtype.val '' Hpolytope hH''1 + {s} = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' ⋂₀ ((fun x => ↑x) '' H_''1) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' Hpolytope hH''1 + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [hHV, Vpolytope, hS'eq]
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' Hpolytope hH''1 + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
change Subtype.val '' ((AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.VSubconst ℝ s')) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.VSubconst ℝ s')) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [AffineIsometryEquiv.coe_toHomeomorph]
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.toHomeomorph (AffineIsometryEquiv.VSubconst ℝ s')) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [InDown_eq_DownIn, Set.vsub_eq_sub]
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (Subtype.val ⁻¹' ((convexHull ℝ) S - {↑s'})) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
change ((↑) : SpanS.direction → E) '' (((↑) : SpanS.direction → E) ⁻¹' ((convexHull ℝ) S - {s})) + {s} = Vpolytope hS
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (Subtype.val ⁻¹' ((convexHull ℝ) S - {↑s'})) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (Subtype.val ⁻¹' ((convexHull ℝ) S - {s})) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Subtype.image_preimage_coe, Set.inter_eq_self_of_subset_right ?_, Set.neg_add_cancel_right', Vpolytope]
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Subtype.val '' (Subtype.val ⁻¹' ((convexHull ℝ) S - {s})) + {s} = Vpolytope hS E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ (convexHull ℝ) S - {s} ⊆ ↑(AffineSubspace.direction SpanS) E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact AffineSubspace.direction_subset_subset (convexHull_subset_affineSpan S) (subset_trans (Set.singleton_subset_iff.mpr hs) (subset_affineSpan ℝ S))
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ (convexHull ℝ) S - {s} ⊆ ↑(AffineSubspace.direction SpanS) E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (apply Set.Nonempty.image)
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty ((fun x => ↑x) '' H_''1) case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (try (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)))
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (try apply Set.Nonempty.image)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (by_contra h)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1 case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (rw [Set.not_nonempty_iff_eq_empty] at h)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (rw [Hpolytope, h, Set.image_empty, Set.sInter_empty] at hHV)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (exact IsCompact.ne_univ (Compact_Vpolytope hS'Fin) hHV.symm)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
apply subset_affineSpan
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S ⊢ s ∈ affineSpan ℝ S
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S ⊢ s ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact hs
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S ⊢ s ∈ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [InDown_eq_DownIn, ← @convexHull_singleton ℝ, Set.vsub_eq_sub, ← convexHull_sub, ← Submodule.coeSubtype]
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ ∃ S', Set.Finite S' ∧ (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ ∃ S', Set.Finite S' ∧ (convexHull ℝ) S' = ⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'})