url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
refine ⟨ Subtype.val ⁻¹' (S - {s}), ?_, ?_ ⟩
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ ∃ S', Set.Finite S' ∧ (convexHull ℝ) S' = ⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'})
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite (Subtype.val ⁻¹' (S - {s})) case refine_2 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ (convexHull ℝ) (Subtype.val ⁻¹' (S - {s})) = ⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
apply Set.Finite.preimage (Set.injOn_of_injective Subtype.val_injective _)
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite (Subtype.val ⁻¹' (S - {s}))
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite (S - {s})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Set.sub_singleton]
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite (S - {s})
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite ((fun x => x - s) '' S)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact hS.image _
case refine_1 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Set.Finite ((fun x => x - s) '' S)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [← Submodule.coeSubtype, ← LinearMap.coe_toAffineMap, ← AffineMap.preimage_convexHull]
case refine_2 E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ (convexHull ℝ) (Subtype.val ⁻¹' (S - {s})) = ⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'})
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals (try rw [AffineMap.toFun_eq_coe])
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
all_goals rw [LinearMap.coe_toAffineMap, Submodule.coeSubtype]
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective Subtype.val case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact Subtype.val_injective
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective Subtype.val case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range Subtype.val
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Subtype.range_coe_subtype]
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range Subtype.val
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ {x | x ∈ AffineSubspace.direction SpanS}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact AffineSubspace.direction_subset_subset (subset_affineSpan ℝ S) (subset_trans (Set.singleton_subset_iff.mpr hs) (subset_affineSpan ℝ S))
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ {x | x ∈ AffineSubspace.direction SpanS}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(try rw [AffineMap.toFun_eq_coe])
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
try rw [AffineMap.toFun_eq_coe]
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [AffineMap.toFun_eq_coe]
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun
case refine_2.hf E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [LinearMap.coe_toAffineMap, Submodule.coeSubtype]
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
case refine_2.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S)) ⊢ S - {s} ⊆ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
apply AffineSubspace.direction_nontrivial_of_nontrivial
E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 ⊢ Nontrivial ↥(AffineSubspace.direction SpanS)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 ⊢ Nontrivial ↥SpanS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact affineSpan_nontrivial ℝ (Set.nontrivial_coe_sort.mpr hSnontrivial)
case a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝ : Nontrivial ↑S hSnonempty : Set.Nonempty S this : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 ⊢ Nontrivial ↥SpanS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(apply Set.Nonempty.image)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
apply Set.Nonempty.image
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (SetLike.coe '' H_'1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(try (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)))
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
try (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1))
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1))
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_'1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(try apply Set.Nonempty.image)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
try apply Set.Nonempty.image
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
apply Set.Nonempty.image
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(by_contra h)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
by_contra h
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) ⊢ Set.Nonempty H_''1
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(rw [Set.not_nonempty_iff_eq_empty] at h)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Set.not_nonempty_iff_eq_empty] at h
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : ¬Set.Nonempty H_''1 ⊢ False
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(rw [Hpolytope, h, Set.image_empty, Set.sInter_empty] at hHV)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Hpolytope, h, Set.image_empty, Set.sInter_empty] at hHV
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Hpolytope hH''1 = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
(exact IsCompact.ne_univ (Compact_Vpolytope hS'Fin) hHV.symm)
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact IsCompact.ne_univ (Compact_Vpolytope hS'Fin) hHV.symm
case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hSnontrivial : Set.Nontrivial S this✝¹ : Nontrivial ↑S hSnonempty : Set.Nonempty S this✝ : Nonempty ↑S s : E hs : s ∈ S hsaff : s ∈ affineSpan ℝ S SpanS : AffineSubspace ℝ E := affineSpan ℝ S s' : ↥SpanS := { val := s, property := hsaff } x : ↥(AffineSubspace.direction (affineSpan ℝ S)) S' : Set ↥(AffineSubspace.direction SpanS) hx : x ∈ interior ((convexHull ℝ) S') hS'Fin : Set.Finite S' hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S) hS' : Set.Nonempty (interior (Vpolytope hS'Fin)) H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS)) hH''1 : Set.Finite H_''1 hHV : Set.univ = Vpolytope hS'Fin H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1 hH_'1 : Set.Finite H_'1 H_'2 : Set (Halfspace E) hH_'2 : Set.Finite H_'2 hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS) H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2) hH_' : Set.Finite H_' hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2 this : Nontrivial ↥(AffineSubspace.direction SpanS) h : H_''1 = ∅ ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
rw [Set.not_nontrivial_iff] at hStrivial
case left.inr E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : ¬Set.Nontrivial S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case left.inr E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact Hpolytope_of_Vpolytope_subsingleton _ hStrivial
case left.inr E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
MainTheoremOfPolytopes
[586, 1]
[686, 7]
exact Vpolytope_of_Hpolytope
case right E✝ : Type inst✝¹⁰ : NormedAddCommGroup E✝ inst✝⁹ : InnerProductSpace ℝ E✝ inst✝⁸ : CompleteSpace E✝ E P : Type inst✝⁷ : NormedAddCommGroup E inst✝⁶ : InnerProductSpace ℝ E inst✝⁵ : CompleteSpace E inst✝⁴ : PseudoMetricSpace P inst✝³ : NormedAddTorsor E P inst✝² inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E ⊢ ∀ {H_ : Set (Halfspace E)} (hH_ : Set.Finite H_), IsCompact (Hpolytope hH_) → ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Vpolytope
[14, 1]
[15, 72]
exact Set.Finite.isClosed_convexHull hS
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E S : Set E hS : Set.Finite S ⊢ IsClosed (Vpolytope hS)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Convex_Hpolytope
[24, 1]
[28, 29]
apply convex_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ ⊢ Convex ℝ (Hpolytope hH_)
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ ⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Convex_Hpolytope
[24, 1]
[28, 29]
rintro _ ⟨ Hi_, _, rfl ⟩
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ ⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ Convex ℝ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Convex_Hpolytope
[24, 1]
[28, 29]
exact Halfspace_convex Hi_
case h.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ Hi_ : Halfspace E left✝ : Hi_ ∈ H_ ⊢ Convex ℝ ↑Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Hpolytope
[30, 1]
[37, 21]
apply isClosed_sInter
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H ⊢ IsClosed (Hpolytope hH_)
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H ⊢ ∀ t ∈ SetLike.coe '' H, IsClosed t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Hpolytope
[30, 1]
[37, 21]
rintro _ ⟨ Hi_, _, rfl ⟩
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H ⊢ ∀ t ∈ SetLike.coe '' H, IsClosed t
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Hpolytope
[30, 1]
[37, 21]
rw [Hi_.h]
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed ↑Hi_
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Hpolytope
[30, 1]
[37, 21]
apply IsClosed.preimage (Hi_.f.1.cont)
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α})
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed {x | x ≤ Hi_.α}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Closed_Hpolytope
[30, 1]
[37, 21]
exact isClosed_Iic
case a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H : Set (Halfspace E) hH_ : Set.Finite H Hi_ : Halfspace E left✝ : Hi_ ∈ H ⊢ IsClosed {x | x ≤ Hi_.α}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_same
[39, 1]
[42, 6]
unfold Hpolytope
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_1 hH_2 : Set.Finite H_ ⊢ Hpolytope hH_1 = Hpolytope hH_2
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_1 hH_2 : Set.Finite H_ ⊢ ⋂₀ (SetLike.coe '' H_) = ⋂₀ (SetLike.coe '' H_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_same
[39, 1]
[42, 6]
rfl
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_1 hH_2 : Set.Finite H_ ⊢ ⋂₀ (SetLike.coe '' H_) = ⋂₀ (SetLike.coe '' H_)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
constructor <;> intro h
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E ⊢ x ∈ Hpolytope hH_ ↔ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ Hpolytope hH_ ⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ Hpolytope hH_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
intro Hi HiH
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ Hpolytope hH_ ⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ Hpolytope hH_ Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
unfold Hpolytope at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ Hpolytope hH_ Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ ⋂₀ (SetLike.coe '' H_) Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
rw [Set.mem_sInter] at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : x ∈ ⋂₀ (SetLike.coe '' H_) Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ t ∈ SetLike.coe '' H_, x ∈ t Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
specialize h Hi ⟨ Hi, HiH, rfl ⟩
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ t ∈ SetLike.coe '' H_, x ∈ t Hi : Halfspace E HiH : Hi ∈ H_ ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi : Halfspace E HiH : Hi ∈ H_ h : x ∈ ↑Hi ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
rw [Halfspace_mem] at h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi : Halfspace E HiH : Hi ∈ H_ h : x ∈ ↑Hi ⊢ ↑Hi.f x ≤ Hi.α
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi : Halfspace E HiH : Hi ∈ H_ h : ↑Hi.f x ≤ Hi.α ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
exact h
case mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi : Halfspace E HiH : Hi ∈ H_ h : ↑Hi.f x ≤ Hi.α ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
unfold Hpolytope
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ Hpolytope hH_
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ ⋂₀ (SetLike.coe '' H_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
rw [Set.mem_sInter]
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ x ∈ ⋂₀ (SetLike.coe '' H_)
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
rintro _ ⟨ Hi_, hHi_, rfl ⟩
case mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α ⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
specialize h Hi_ hHi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ x ∈ ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ x ∈ ↑Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
rw [Halfspace_mem]
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ x ∈ ↑Hi_
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ ↑Hi_.f x ≤ Hi_.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
mem_Hpolytope
[44, 1]
[62, 9]
exact h
case mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : ↑Hi_.f x ≤ Hi_.α ⊢ ↑Hi_.f x ≤ Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
have h := exists_ne (0:E)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E h : ∃ y, y ≠ 0 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
rcases h with ⟨ x, hx ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E h : ∃ y, y ≠ 0 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
let xhat := (norm x)⁻¹ • x
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
let fval : NormedSpace.Dual ℝ E := InnerProductSpace.toDualMap ℝ _ xhat
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
let f : {f : (NormedSpace.Dual ℝ E) // norm f = 1} := ⟨ fval , (by change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1 have := @norm_smul_inv_norm ℝ _ E _ _ x hx rw [IsROrC.ofReal_real_eq_id, id_eq] at this rw [innerSL_apply_norm, this] done ) ⟩
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
refine ⟨ {Halfspace.mk f (-1), Halfspace.mk (-f) (-1)} , (by simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert]) , ?_ ⟩
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ Hpolytope ⋯ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
ext x
case intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ Hpolytope ⋯ = ∅
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
rw [Set.mem_empty_iff_false, iff_false, mem_Hpolytope]
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ ∅
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
intro h
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E ⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
have h1 := h (Halfspace.mk f (-1)) (by simp)
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ False
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
have h2 := h (Halfspace.mk (-f) (-1)) (by simp)
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ False
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg] at h2
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α ⊢ False
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : 1 ≤ ↑f x ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
change f.1 x ≤ -1 at h1
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α h2 : 1 ≤ ↑f x ⊢ False
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h2 : 1 ≤ ↑f x h1 : ↑f x ≤ -1 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
linarith
case intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h2 : 1 ≤ ↑f x h1 : ↑f x ≤ -1 ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖fval‖ = 1
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
have := @norm_smul_inv_norm ℝ _ E _ _ x hx
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖(↑‖x‖)⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
rw [IsROrC.ofReal_real_eq_id, id_eq] at this
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖(↑‖x‖)⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖‖x‖⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
rw [innerSL_apply_norm, this]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat this : ‖‖x‖⁻¹ • x‖ = 1 ⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x : E hx : x ≠ 0 xhat : E := ‖x‖⁻¹ • x fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } ⊢ Set.Finite {{ f := f, α := -1 }, { f := -f, α := -1 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
simp
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α ⊢ { f := f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
empty_Hpolytope
[64, 1]
[88, 7]
simp
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : Nontrivial E x✝ : E hx : x✝ ≠ 0 xhat : E := ‖x✝‖⁻¹ • x✝ fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ } x : E h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α ⊢ { f := -f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
refine ⟨ ⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range (FiniteDimensional.finBasis ℝ E))), ?_, ?_ ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = {0}
case refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) case refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Hpolytope ?refine_1 = {0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
apply Set.Finite.sUnion ?_ (fun t ht => by rcases ht with ⟨ x, _, rfl ⟩ exact orthoHyperplane.Finite _)
case refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))))
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
apply Set.Finite.image
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
apply Set.Finite.preimage (Set.injOn_of_injective Subtype.val_injective _)
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (Set.range ⇑(FiniteDimensional.finBasis ℝ E))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
exact Set.finite_range _
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Set.Finite (Set.range ⇑(FiniteDimensional.finBasis ℝ E))
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rcases ht with ⟨ x, _, rfl ⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E t : Set (Halfspace E) ht : t ∈ orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)) ⊢ Set.Finite t
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : { x // x ≠ 0 } left✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E) ⊢ Set.Finite (orthoHyperplane x)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
exact orthoHyperplane.Finite _
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : { x // x ≠ 0 } left✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E) ⊢ Set.Finite (orthoHyperplane x)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
ext x
case refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E ⊢ Hpolytope ⋯ = {0}
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rw [Set.mem_singleton_iff]
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {0}
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ Hpolytope ⋯ ↔ x = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
change x ∈ cutSpace ( (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ↑(FiniteDimensional.finBasis ℝ E))))) ↔ x = 0
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ Hpolytope ⋯ ↔ x = 0
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ cutSpace (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) ↔ x = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rw [orthoHyperplanes_mem]
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x ∈ cutSpace (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) ↔ x = 0
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) ↔ x = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
constructor
case refine_2.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) ↔ x = 0
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) → x = 0 case refine_2.h.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x = 0 → ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
intro h
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) → x = 0
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 ⊢ x = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
apply InnerProductSpace.ext_inner_left_basis (FiniteDimensional.finBasis ℝ E)
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 ⊢ x = 0
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 ⊢ ∀ (i : Fin (FiniteDimensional.finrank ℝ E)), ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
intro i
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 ⊢ ∀ (i : Fin (FiniteDimensional.finrank ℝ E)), ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 i : Fin (FiniteDimensional.finrank ℝ E) ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rw [inner_zero_right]
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 i : Fin (FiniteDimensional.finrank ℝ E) ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 i : Fin (FiniteDimensional.finrank ℝ E) ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
simp only [Set.mem_preimage, Set.mem_range, forall_exists_index, Subtype.forall] at h
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 i : Fin (FiniteDimensional.finrank ℝ E) ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E i : Fin (FiniteDimensional.finrank ℝ E) h : ∀ (a : E), a ≠ 0 → ∀ (x_1 : Fin (FiniteDimensional.finrank ℝ E)), (FiniteDimensional.finBasis ℝ E) x_1 = a → ⟪a, x⟫_ℝ = 0 ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
exact h (FiniteDimensional.finBasis ℝ E i) (Basis.ne_zero (FiniteDimensional.finBasis ℝ E) i) i rfl
case refine_2.h.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E i : Fin (FiniteDimensional.finrank ℝ E) h : ∀ (a : E), a ≠ 0 → ∀ (x_1 : Fin (FiniteDimensional.finrank ℝ E)), (FiniteDimensional.finBasis ℝ E) x_1 = a → ⟪a, x⟫_ℝ = 0 ⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rintro rfl x _
case refine_2.h.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : E ⊢ x = 0 → ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
case refine_2.h.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : { x // x ≠ 0 } a✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E) ⊢ ⟪↑x, 0⟫_ℝ = 0