url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | refine ⟨ Subtype.val ⁻¹' (S - {s}), ?_, ?_ ⟩ | E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ ∃ S',
Set.Finite S' ∧
(convexHull ℝ) S' = ⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'}) | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite (Subtype.val ⁻¹' (S - {s}))
case refine_2
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ (convexHull ℝ) (Subtype.val ⁻¹' (S - {s})) =
⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'}) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | apply Set.Finite.preimage (Set.injOn_of_injective Subtype.val_injective _) | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite (Subtype.val ⁻¹' (S - {s})) | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite (S - {s}) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [Set.sub_singleton] | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite (S - {s}) | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite ((fun x => x - s) '' S) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact hS.image _ | case refine_1
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Set.Finite ((fun x => x - s) '' S) | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [← Submodule.coeSubtype, ← LinearMap.coe_toAffineMap, ← AffineMap.preimage_convexHull] | case refine_2
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ (convexHull ℝ) (Subtype.val ⁻¹' (S - {s})) =
⇑(Submodule.subtype (AffineSubspace.direction SpanS)) ⁻¹' (convexHull ℝ) (S - {↑s'}) | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | all_goals (try rw [AffineMap.toFun_eq_coe]) | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | all_goals rw [LinearMap.coe_toAffineMap, Submodule.coeSubtype] | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS)))
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective Subtype.val
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range Subtype.val |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact Subtype.val_injective | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective Subtype.val
case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range Subtype.val | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range Subtype.val |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [Subtype.range_coe_subtype] | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range Subtype.val | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ {x | x ∈ AffineSubspace.direction SpanS} |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact AffineSubspace.direction_subset_subset (subset_affineSpan ℝ S)
(subset_trans (Set.singleton_subset_iff.mpr hs) (subset_affineSpan ℝ S)) | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ {x | x ∈ AffineSubspace.direction SpanS} | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (try rw [AffineMap.toFun_eq_coe]) | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | try rw [AffineMap.toFun_eq_coe] | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [AffineMap.toFun_eq_coe] | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective (LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))).toFun | case refine_2.hf
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ Function.Injective ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [LinearMap.coe_toAffineMap, Submodule.coeSubtype] | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range ⇑(LinearMap.toAffineMap (Submodule.subtype (AffineSubspace.direction SpanS))) | case refine_2.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
hx : x ∈ interior (⇑(AffineIsometryEquiv.VSubconst ℝ { val := s, property := ⋯ }) '' (Subtype.val ⁻¹' (convexHull ℝ) S))
⊢ S - {s} ⊆ Set.range Subtype.val |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | apply AffineSubspace.direction_nontrivial_of_nontrivial | E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
⊢ Nontrivial ↥(AffineSubspace.direction SpanS) | case a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
⊢ Nontrivial ↥SpanS |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact affineSpan_nontrivial ℝ (Set.nontrivial_coe_sort.mpr hSnontrivial) | case a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
⊢ Nontrivial ↥SpanS | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (apply Set.Nonempty.image) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (SetLike.coe '' H_'1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | apply Set.Nonempty.image | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (SetLike.coe '' H_'1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (try (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1))) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | try (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1)) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | change Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_'1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (try apply Set.Nonempty.image) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_''1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | try apply Set.Nonempty.image | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_''1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | apply Set.Nonempty.image | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty (Halfspace.val (AffineSubspace.direction SpanS) '' H_''1) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_''1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (by_contra h) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_''1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : ¬Set.Nonempty H_''1
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | by_contra h | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
⊢ Set.Nonempty H_''1 | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : ¬Set.Nonempty H_''1
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (rw [Set.not_nonempty_iff_eq_empty] at h) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : ¬Set.Nonempty H_''1
⊢ False | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [Set.not_nonempty_iff_eq_empty] at h | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : ¬Set.Nonempty H_''1
⊢ False | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (rw [Hpolytope, h, Set.image_empty, Set.sInter_empty] at hHV) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Set.univ = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [Hpolytope, h, Set.image_empty, Set.sInter_empty] at hHV | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Hpolytope hH''1 = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Set.univ = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | (exact IsCompact.ne_univ (Compact_Vpolytope hS'Fin) hHV.symm) | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Set.univ = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact IsCompact.ne_univ (Compact_Vpolytope hS'Fin) hHV.symm | case left.inl.intro.intro.intro.intro.intro.intro.intro.intro.hs.a.a
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hSnontrivial : Set.Nontrivial S
this✝¹ : Nontrivial ↑S
hSnonempty : Set.Nonempty S
this✝ : Nonempty ↑S
s : E
hs : s ∈ S
hsaff : s ∈ affineSpan ℝ S
SpanS : AffineSubspace ℝ E := affineSpan ℝ S
s' : ↥SpanS := { val := s, property := hsaff }
x : ↥(AffineSubspace.direction (affineSpan ℝ S))
S' : Set ↥(AffineSubspace.direction SpanS)
hx : x ∈ interior ((convexHull ℝ) S')
hS'Fin : Set.Finite S'
hS'eq : (convexHull ℝ) S' = ⇑(AffineIsometryEquiv.VSubconst ℝ s') '' (Subtype.val ⁻¹' (convexHull ℝ) S)
hS' : Set.Nonempty (interior (Vpolytope hS'Fin))
H_''1 : Set (Halfspace ↥(AffineSubspace.direction SpanS))
hH''1 : Set.Finite H_''1
hHV : Set.univ = Vpolytope hS'Fin
H_'1 : Set (Halfspace E) := Halfspace.val (AffineSubspace.direction SpanS) '' H_''1
hH_'1 : Set.Finite H_'1
H_'2 : Set (Halfspace E)
hH_'2 : Set.Finite H_'2
hH_'2Span : Hpolytope hH_'2 = ↑(AffineSubspace.direction SpanS)
H_' : Set (Halfspace E) := Halfspace_translation s '' (H_'1 ∪ H_'2)
hH_' : Set.Finite H_'
hH_'12 : Hpolytope ⋯ = Hpolytope hH_'1 ∩ Hpolytope hH_'2
this : Nontrivial ↥(AffineSubspace.direction SpanS)
h : H_''1 = ∅
⊢ False | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | rw [Set.not_nontrivial_iff] at hStrivial | case left.inr
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hStrivial : ¬Set.Nontrivial S
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS | case left.inr
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hStrivial : Set.Subsingleton S
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact Hpolytope_of_Vpolytope_subsingleton _ hStrivial | case left.inr
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
S : Set E
hS : Set.Finite S
hStrivial : Set.Subsingleton S
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/MainTheorem.lean | MainTheoremOfPolytopes | [586, 1] | [686, 7] | exact Vpolytope_of_Hpolytope | case right
E✝ : Type
inst✝¹⁰ : NormedAddCommGroup E✝
inst✝⁹ : InnerProductSpace ℝ E✝
inst✝⁸ : CompleteSpace E✝
E P : Type
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : InnerProductSpace ℝ E
inst✝⁵ : CompleteSpace E
inst✝⁴ : PseudoMetricSpace P
inst✝³ : NormedAddTorsor E P
inst✝² inst✝¹ : FiniteDimensional ℝ E
inst✝ : Nontrivial E
⊢ ∀ {H_ : Set (Halfspace E)} (hH_ : Set.Finite H_),
IsCompact (Hpolytope hH_) → ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Vpolytope | [14, 1] | [15, 72] | exact Set.Finite.isClosed_convexHull hS | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
S : Set E
hS : Set.Finite S
⊢ IsClosed (Vpolytope hS) | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Convex_Hpolytope | [24, 1] | [28, 29] | apply convex_sInter | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
⊢ Convex ℝ (Hpolytope hH_) | case h
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Convex_Hpolytope | [24, 1] | [28, 29] | rintro _ ⟨ Hi_, _, rfl ⟩ | case h
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
⊢ ∀ s ∈ SetLike.coe '' H_, Convex ℝ s | case h.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
Hi_ : Halfspace E
left✝ : Hi_ ∈ H_
⊢ Convex ℝ ↑Hi_ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Convex_Hpolytope | [24, 1] | [28, 29] | exact Halfspace_convex Hi_ | case h.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
Hi_ : Halfspace E
left✝ : Hi_ ∈ H_
⊢ Convex ℝ ↑Hi_ | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Hpolytope | [30, 1] | [37, 21] | apply isClosed_sInter | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
⊢ IsClosed (Hpolytope hH_) | case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
⊢ ∀ t ∈ SetLike.coe '' H, IsClosed t |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Hpolytope | [30, 1] | [37, 21] | rintro _ ⟨ Hi_, _, rfl ⟩ | case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
⊢ ∀ t ∈ SetLike.coe '' H, IsClosed t | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed ↑Hi_ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Hpolytope | [30, 1] | [37, 21] | rw [Hi_.h] | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed ↑Hi_ | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Hpolytope | [30, 1] | [37, 21] | apply IsClosed.preimage (Hi_.f.1.cont) | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed (⇑↑Hi_.f ⁻¹' {x | x ≤ Hi_.α}) | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed {x | x ≤ Hi_.α} |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Closed_Hpolytope | [30, 1] | [37, 21] | exact isClosed_Iic | case a.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H : Set (Halfspace E)
hH_ : Set.Finite H
Hi_ : Halfspace E
left✝ : Hi_ ∈ H
⊢ IsClosed {x | x ≤ Hi_.α} | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Hpolytope_same | [39, 1] | [42, 6] | unfold Hpolytope | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_1 hH_2 : Set.Finite H_
⊢ Hpolytope hH_1 = Hpolytope hH_2 | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_1 hH_2 : Set.Finite H_
⊢ ⋂₀ (SetLike.coe '' H_) = ⋂₀ (SetLike.coe '' H_) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | Hpolytope_same | [39, 1] | [42, 6] | rfl | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_1 hH_2 : Set.Finite H_
⊢ ⋂₀ (SetLike.coe '' H_) = ⋂₀ (SetLike.coe '' H_) | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | constructor <;> intro h | E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
⊢ x ∈ Hpolytope hH_ ↔ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ Hpolytope hH_
⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ x ∈ Hpolytope hH_ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | intro Hi HiH | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ Hpolytope hH_
⊢ ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ Hpolytope hH_
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | unfold Hpolytope at h | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ Hpolytope hH_
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ ⋂₀ (SetLike.coe '' H_)
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | rw [Set.mem_sInter] at h | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : x ∈ ⋂₀ (SetLike.coe '' H_)
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ t ∈ SetLike.coe '' H_, x ∈ t
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | specialize h Hi ⟨ Hi, HiH, rfl ⟩ | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ t ∈ SetLike.coe '' H_, x ∈ t
Hi : Halfspace E
HiH : Hi ∈ H_
⊢ ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi : Halfspace E
HiH : Hi ∈ H_
h : x ∈ ↑Hi
⊢ ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | rw [Halfspace_mem] at h | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi : Halfspace E
HiH : Hi ∈ H_
h : x ∈ ↑Hi
⊢ ↑Hi.f x ≤ Hi.α | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi : Halfspace E
HiH : Hi ∈ H_
h : ↑Hi.f x ≤ Hi.α
⊢ ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | exact h | case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi : Halfspace E
HiH : Hi ∈ H_
h : ↑Hi.f x ≤ Hi.α
⊢ ↑Hi.f x ≤ Hi.α | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | unfold Hpolytope | case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ x ∈ Hpolytope hH_ | case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ x ∈ ⋂₀ (SetLike.coe '' H_) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | rw [Set.mem_sInter] | case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ x ∈ ⋂₀ (SetLike.coe '' H_) | case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | rintro _ ⟨ Hi_, hHi_, rfl ⟩ | case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
⊢ ∀ t ∈ SetLike.coe '' H_, x ∈ t | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x ∈ ↑Hi_ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | specialize h Hi_ hHi_ | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
h : ∀ Hi ∈ H_, ↑Hi.f x ≤ Hi.α
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x ∈ ↑Hi_ | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
h : ↑Hi_.f x ≤ Hi_.α
⊢ x ∈ ↑Hi_ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | rw [Halfspace_mem] | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
h : ↑Hi_.f x ≤ Hi_.α
⊢ x ∈ ↑Hi_ | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
h : ↑Hi_.f x ≤ Hi_.α
⊢ ↑Hi_.f x ≤ Hi_.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | mem_Hpolytope | [44, 1] | [62, 9] | exact h | case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
h : ↑Hi_.f x ≤ Hi_.α
⊢ ↑Hi_.f x ≤ Hi_.α | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | have h := exists_ne (0:E) | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
h : ∃ y, y ≠ 0
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | rcases h with ⟨ x, hx ⟩ | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
h : ∃ y, y ≠ 0
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | let xhat := (norm x)⁻¹ • x | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | let fval : NormedSpace.Dual ℝ E := InnerProductSpace.toDualMap ℝ _ xhat | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | let f : {f : (NormedSpace.Dual ℝ E) // norm f = 1} := ⟨ fval , (by
change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1
have := @norm_smul_inv_norm ℝ _ E _ _ x hx
rw [IsROrC.ofReal_real_eq_id, id_eq] at this
rw [innerSL_apply_norm, this]
done
) ⟩ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | refine ⟨ {Halfspace.mk f (-1), Halfspace.mk (-f) (-1)} ,
(by simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert]) , ?_ ⟩ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅ | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
⊢ Hpolytope ⋯ = ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | ext x | case intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
⊢ Hpolytope ⋯ = ∅ | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x ∈ ∅ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | rw [Set.mem_empty_iff_false, iff_false, mem_Hpolytope] | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x ∈ ∅ | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | intro h | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
⊢ ¬∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | have h1 := h (Halfspace.mk f (-1)) (by simp) | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
⊢ False | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | have h2 := h (Halfspace.mk (-f) (-1)) (by simp) | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
⊢ False | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg] at h2 | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
h2 : ↑{ f := -f, α := -1 }.f x ≤ { f := -f, α := -1 }.α
⊢ False | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
h2 : 1 ≤ ↑f x
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | change f.1 x ≤ -1 at h1 | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
h2 : 1 ≤ ↑f x
⊢ False | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h2 : 1 ≤ ↑f x
h1 : ↑f x ≤ -1
⊢ False |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | linarith | case intro.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h2 : 1 ≤ ↑f x
h1 : ↑f x ≤ -1
⊢ False | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | change norm (innerSL ℝ ((norm x)⁻¹ • x)) = 1 | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
⊢ ‖fval‖ = 1 | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | have := @norm_smul_inv_norm ℝ _ E _ _ x hx | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
this : ‖(↑‖x‖)⁻¹ • x‖ = 1
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | rw [IsROrC.ofReal_real_eq_id, id_eq] at this | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
this : ‖(↑‖x‖)⁻¹ • x‖ = 1
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
this : ‖‖x‖⁻¹ • x‖ = 1
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | rw [innerSL_apply_norm, this] | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
this : ‖‖x‖⁻¹ • x‖ = 1
⊢ ‖(innerSL ℝ) (‖x‖⁻¹ • x)‖ = 1 | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert] | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x : E
hx : x ≠ 0
xhat : E := ‖x‖⁻¹ • x
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
⊢ Set.Finite {{ f := f, α := -1 }, { f := -f, α := -1 }} | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | simp | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
⊢ { f := f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }} | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | empty_Hpolytope | [64, 1] | [88, 7] | simp | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : Nontrivial E
x✝ : E
hx : x✝ ≠ 0
xhat : E := ‖x✝‖⁻¹ • x✝
fval : NormedSpace.Dual ℝ E := (InnerProductSpace.toDualMap ℝ E) xhat
f : { f // ‖f‖ = 1 } := { val := fval, property := ⋯ }
x : E
h : ∀ Hi ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }}, ↑Hi.f x ≤ Hi.α
h1 : ↑{ f := f, α := -1 }.f x ≤ { f := f, α := -1 }.α
⊢ { f := -f, α := -1 } ∈ {{ f := f, α := -1 }, { f := -f, α := -1 }} | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | refine ⟨ ⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range (FiniteDimensional.finBasis ℝ E))), ?_, ?_ ⟩ | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = {0} | case refine_1
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))))
case refine_2
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Hpolytope ?refine_1 = {0} |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | apply Set.Finite.sUnion ?_ (fun t ht => by
rcases ht with ⟨ x, _, rfl ⟩
exact orthoHyperplane.Finite _) | case refine_1
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | apply Set.Finite.image | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))) | case hs
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | apply Set.Finite.preimage (Set.injOn_of_injective Subtype.val_injective _) | case hs
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)) | case hs
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (Set.range ⇑(FiniteDimensional.finBasis ℝ E)) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | exact Set.finite_range _ | case hs
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Set.Finite (Set.range ⇑(FiniteDimensional.finBasis ℝ E)) | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | rcases ht with ⟨ x, _, rfl ⟩ | E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
t : Set (Halfspace E)
ht : t ∈ orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E))
⊢ Set.Finite t | case intro.intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : { x // x ≠ 0 }
left✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)
⊢ Set.Finite (orthoHyperplane x) |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | exact orthoHyperplane.Finite _ | case intro.intro
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : { x // x ≠ 0 }
left✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)
⊢ Set.Finite (orthoHyperplane x) | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | ext x | case refine_2
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
⊢ Hpolytope ⋯ = {0} | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {0} |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | rw [Set.mem_singleton_iff] | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {0} | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | change x ∈ cutSpace ( (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ↑(FiniteDimensional.finBasis ℝ E))))) ↔ x = 0 | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ Hpolytope ⋯ ↔ x = 0 | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ cutSpace (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) ↔ x = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | rw [orthoHyperplanes_mem] | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x ∈ cutSpace (⋃₀ (orthoHyperplane '' (Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)))) ↔ x = 0 | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) ↔ x = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | constructor | case refine_2.h
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) ↔ x = 0 | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) → x = 0
case refine_2.h.mpr
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x = 0 → ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | intro h | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ (∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0) → x = 0 | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
⊢ x = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | apply InnerProductSpace.ext_inner_left_basis (FiniteDimensional.finBasis ℝ E) | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
⊢ x = 0 | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
⊢ ∀ (i : Fin (FiniteDimensional.finrank ℝ E)),
⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | intro i | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
⊢ ∀ (i : Fin (FiniteDimensional.finrank ℝ E)),
⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
i : Fin (FiniteDimensional.finrank ℝ E)
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | rw [inner_zero_right] | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
i : Fin (FiniteDimensional.finrank ℝ E)
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = ⟪(FiniteDimensional.finBasis ℝ E) i, 0⟫_ℝ | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
i : Fin (FiniteDimensional.finrank ℝ E)
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | simp only [Set.mem_preimage, Set.mem_range, forall_exists_index, Subtype.forall] at h | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
h : ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0
i : Fin (FiniteDimensional.finrank ℝ E)
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0 | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
i : Fin (FiniteDimensional.finrank ℝ E)
h :
∀ (a : E),
a ≠ 0 → ∀ (x_1 : Fin (FiniteDimensional.finrank ℝ E)), (FiniteDimensional.finBasis ℝ E) x_1 = a → ⟪a, x⟫_ℝ = 0
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0 |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | exact h (FiniteDimensional.finBasis ℝ E i) (Basis.ne_zero (FiniteDimensional.finBasis ℝ E) i) i rfl | case refine_2.h.mp
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
i : Fin (FiniteDimensional.finrank ℝ E)
h :
∀ (a : E),
a ≠ 0 → ∀ (x_1 : Fin (FiniteDimensional.finrank ℝ E)), (FiniteDimensional.finBasis ℝ E) x_1 = a → ⟪a, x⟫_ℝ = 0
⊢ ⟪(FiniteDimensional.finBasis ℝ E) i, x⟫_ℝ = 0 | no goals |
https://github.com/Jun2M/Main-theorem-of-polytopes.git | fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8 | src/Polytope.lean | origin_Hpolytope | [90, 1] | [115, 7] | rintro rfl x _ | case refine_2.h.mpr
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : E
⊢ x = 0 → ∀ x_1 ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E), ⟪↑x_1, x⟫_ℝ = 0 | case refine_2.h.mpr
E : Type
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace ℝ E
inst✝¹ : CompleteSpace E
inst✝ : FiniteDimensional ℝ E
x : { x // x ≠ 0 }
a✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E)
⊢ ⟪↑x, 0⟫_ℝ = 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.