url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
origin_Hpolytope
[90, 1]
[115, 7]
rw [inner_zero_right]
case refine_2.h.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E x : { x // x ≠ 0 } a✝ : x ∈ Subtype.val ⁻¹' Set.range ⇑(FiniteDimensional.finBasis ℝ E) ⊢ ⟪↑x, 0⟫_ℝ = 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
intro f c
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ ∀ (f : { f // ‖f‖ = 1 }) (c : ℝ), ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = {x | ↑f x = c}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = {x | ↑f x = c}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
refine ⟨ {Halfspace.mk f c, Halfspace.mk (-f) (-c)}, (by simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert]) , ?_ ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = {x | ↑f x = c}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ Hpolytope ⋯ = {x | ↑f x = c}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
ext x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ Hpolytope ⋯ = {x | ↑f x = c}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {x | ↑f x = c}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
rw [mem_Hpolytope, Set.mem_setOf]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ {x | ↑f x = c}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) ↔ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
constructor
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) ↔ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) → ↑f x = c case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ ↑f x = c → ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.finite_singleton, Set.Finite.insert]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ ⊢ Set.Finite {{ f := f, α := c }, { f := -f, α := -c }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
intro h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ (∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α) → ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
have h1 := h (Halfspace.mk f c) (by simp)
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
have h2 := h (Halfspace.mk (-f) (-c)) (by simp)
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg] at h2
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : c ≤ ↑f x ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
change f.1 x ≤ c at h1
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α h2 : c ≤ ↑f x ⊢ ↑f x = c
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h2 : c ≤ ↑f x h1 : ↑f x ≤ c ⊢ ↑f x = c
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
exact le_antisymm h1 h2
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h2 : c ≤ ↑f x h1 : ↑f x ≤ c ⊢ ↑f x = c
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α ⊢ { f := f, α := c } ∈ {{ f := f, α := c }, { f := -f, α := -c }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
simp
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α h1 : ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α ⊢ { f := -f, α := -c } ∈ {{ f := f, α := c }, { f := -f, α := -c }}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
intro h Hi hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E ⊢ ↑f x = c → ∀ Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }}, ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }} ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
simp only [Set.mem_singleton_iff, Halfspace.mk.injEq, Set.mem_insert_iff] at hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi ∈ {{ f := f, α := c }, { f := -f, α := -c }} ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi = { f := f, α := c } ∨ Hi = { f := -f, α := -c } ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
rcases hHi with rfl | rfl
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c Hi : Halfspace E hHi : Hi = { f := f, α := c } ∨ Hi = { f := -f, α := -c } ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
exact le_of_eq h
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := f, α := c }.f x ≤ { f := f, α := c }.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
rw [unitSphereDual_neg, ContinuousLinearMap.neg_apply, neg_le, neg_neg]
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ ↑{ f := -f, α := -c }.f x ≤ { f := -f, α := -c }.α
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ c ≤ ↑f x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
hyperplane_Hpolytope
[117, 1]
[142, 7]
exact le_of_eq h.symm
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E f : { f // ‖f‖ = 1 } c : ℝ x : E h : ↑f x = c ⊢ c ≤ ↑f x
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
ext x
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 ⊢ Hpolytope ⋯ = Hpolytope hH_1 ∩ Hpolytope hH_2
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ Hpolytope hH_1 ∩ Hpolytope hH_2
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
rw [mem_Hpolytope, Set.mem_inter_iff, mem_Hpolytope, mem_Hpolytope]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ x ∈ Hpolytope ⋯ ↔ x ∈ Hpolytope hH_1 ∩ Hpolytope hH_2
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) ↔ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
constructor
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) ↔ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) → (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ ((∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α) → ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
intro h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ (∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α) → (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α ⊢ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
constructor <;> intro Hi_ hH_ <;> exact h Hi_ (by simp only [Set.mem_union, hH_, true_or, or_true])
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α ⊢ (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
simp only [Set.mem_union, hH_, true_or, or_true]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α Hi_ : Halfspace E hH_ : Hi_ ∈ H_2 ⊢ Hi_ ∈ H_1 ∪ H_2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
intro h Hi hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E ⊢ ((∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α) → ∀ Hi ∈ H_1 ∪ H_2, ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∪ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
rw [Set.mem_union] at hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∪ H_2 ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∨ Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
rcases hHi with hHi | hHi
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ∨ Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ⊢ ↑Hi.f x ≤ Hi.α case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
exact h.1 Hi hHi
case h.mpr.inl E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_1 ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
inter_Hpolytope
[144, 1]
[160, 7]
exact h.2 Hi hHi
case h.mpr.inr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_1 H_2 : Set (Halfspace E) hH_1 : Set.Finite H_1 hH_2 : Set.Finite H_2 x : E h : (∀ Hi ∈ H_1, ↑Hi.f x ≤ Hi.α) ∧ ∀ Hi ∈ H_2, ↑Hi.f x ≤ Hi.α Hi : Halfspace E hHi : Hi ∈ H_2 ⊢ ↑Hi.f x ≤ Hi.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Vpolytope_translation
[162, 1]
[166, 7]
rw [Vpolytope, convexHull_add, convexHull_singleton]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E S : Set E hS : Set.Finite S x : E ⊢ Vpolytope ⋯ = Vpolytope hS + {x}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E S : Set E hS : Set.Finite S x : E ⊢ (convexHull ℝ) S + {x} = Vpolytope hS + {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Vpolytope_translation
[162, 1]
[166, 7]
rfl
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E S : Set E hS : Set.Finite S x : E ⊢ (convexHull ℝ) S + {x} = Vpolytope hS + {x}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [Hpolytope, Hpolytope, Set.sInter_image, Set.sInter_image]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E ⊢ Hpolytope ⋯ = Hpolytope hH_ + {x}
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E ⊢ ⋂ x_1 ∈ Halfspace_translation x '' H_, ↑x_1 = (⋂ x ∈ H_, ↑x) + {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
ext y
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x : E ⊢ ⋂ x_1 ∈ Halfspace_translation x '' H_, ↑x_1 = (⋂ x ∈ H_, ↑x) + {x}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ y ∈ ⋂ x_1 ∈ Halfspace_translation x '' H_, ↑x_1 ↔ y ∈ (⋂ x ∈ H_, ↑x) + {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [Set.mem_iInter, Set.add_singleton]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ y ∈ ⋂ x_1 ∈ Halfspace_translation x '' H_, ↑x_1 ↔ y ∈ (⋂ x ∈ H_, ↑x) + {x}
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ (i : Halfspace E), y ∈ ⋂ (_ : i ∈ Halfspace_translation x '' H_), ↑i) ↔ y ∈ (fun x_1 => x_1 + x) '' ⋂ x ∈ H_, ↑x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
simp only [Set.mem_iInter, SetLike.mem_coe, Set.image_add_right, Set.mem_preimage]
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ (i : Halfspace E), y ∈ ⋂ (_ : i ∈ Halfspace_translation x '' H_), ↑i) ↔ y ∈ (fun x_1 => x_1 + x) '' ⋂ x ∈ H_, ↑x
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ Halfspace_translation x '' H_, y ∈ i) ↔ ∀ i ∈ H_, y + -x ∈ i
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
constructor
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ Halfspace_translation x '' H_, y ∈ i) ↔ ∀ i ∈ H_, y + -x ∈ i
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ Halfspace_translation x '' H_, y ∈ i) → ∀ i ∈ H_, y + -x ∈ i case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ H_, y + -x ∈ i) → ∀ i ∈ Halfspace_translation x '' H_, y ∈ i
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
intro h Hi_ hHi_
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ Halfspace_translation x '' H_, y ∈ i) → ∀ i ∈ H_, y + -x ∈ i
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ Halfspace_translation x '' H_, y ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ y + -x ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
specialize h (Halfspace_translation x Hi_) (Set.mem_image_of_mem _ hHi_)
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ Halfspace_translation x '' H_, y ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ ⊢ y + -x ∈ Hi_
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : y ∈ Halfspace_translation x Hi_ ⊢ y + -x ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [← SetLike.mem_coe, mem_Halfspace_translation, sub_eq_add_neg] at h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : y ∈ Halfspace_translation x Hi_ ⊢ y + -x ∈ Hi_
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : y + -x ∈ ↑Hi_ ⊢ y + -x ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
exact h
case h.mp E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ H_ h : y + -x ∈ ↑Hi_ ⊢ y + -x ∈ Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
intro h Hi_ hHi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E ⊢ (∀ i ∈ H_, y + -x ∈ i) → ∀ i ∈ Halfspace_translation x '' H_, y ∈ i
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
specialize h (Halfspace_translation (-x) Hi_) (?_)
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ ⊢ y ∈ Hi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ ⊢ Halfspace_translation (-x) Hi_ ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [Set.mem_image] at hHi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ ⊢ Halfspace_translation (-x) Hi_ ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : ∃ x_1 ∈ H_, Halfspace_translation x x_1 = Hi_ ⊢ Halfspace_translation (-x) Hi_ ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rcases hHi_ with ⟨ Hi_', hHi_', rfl ⟩
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_ : Halfspace E hHi_ : ∃ x_1 ∈ H_, Halfspace_translation x x_1 = Hi_ ⊢ Halfspace_translation (-x) Hi_ ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ ⊢ Halfspace_translation (-x) (Halfspace_translation x Hi_') ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
have : Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_':= by rw [SetLike.ext_iff] intro z rw [← SetLike.mem_coe, ← SetLike.mem_coe, mem_Halfspace_translation, mem_Halfspace_translation, sub_neg_eq_add, add_sub_cancel] done
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ ⊢ Halfspace_translation (-x) (Halfspace_translation x Hi_') ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ this : Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_' ⊢ Halfspace_translation (-x) (Halfspace_translation x Hi_') ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [this]
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ this : Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_' ⊢ Halfspace_translation (-x) (Halfspace_translation x Hi_') ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ this : Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_' ⊢ Hi_' ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
assumption
case h.mpr.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ this : Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_' ⊢ Hi_' ∈ H_ case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [← SetLike.mem_coe, mem_Halfspace_translation, add_sub_cancel, SetLike.mem_coe] at h
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y + -x ∈ Halfspace_translation (-x) Hi_ ⊢ y ∈ Hi_
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y ∈ Hi_ ⊢ y ∈ Hi_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
exact h
case h.mpr E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E Hi_ : Halfspace E hHi_ : Hi_ ∈ Halfspace_translation x '' H_ h : y ∈ Hi_ ⊢ y ∈ Hi_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [SetLike.ext_iff]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ ⊢ Halfspace_translation (-x) (Halfspace_translation x Hi_') = Hi_'
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ ⊢ ∀ (x_1 : E), x_1 ∈ Halfspace_translation (-x) (Halfspace_translation x Hi_') ↔ x_1 ∈ Hi_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
intro z
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ ⊢ ∀ (x_1 : E), x_1 ∈ Halfspace_translation (-x) (Halfspace_translation x Hi_') ↔ x_1 ∈ Hi_'
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ z : E ⊢ z ∈ Halfspace_translation (-x) (Halfspace_translation x Hi_') ↔ z ∈ Hi_'
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polytope.lean
Hpolytope_translation
[168, 1]
[195, 7]
rw [← SetLike.mem_coe, ← SetLike.mem_coe, mem_Halfspace_translation, mem_Halfspace_translation, sub_neg_eq_add, add_sub_cancel]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ x y : E h : ∀ i ∈ H_, y + -x ∈ i Hi_' : Halfspace E hHi_' : Hi_' ∈ H_ z : E ⊢ z ∈ Halfspace_translation (-x) (Halfspace_translation x Hi_') ↔ z ∈ Hi_'
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Finite.translation
[25, 1]
[28, 30]
rw [Set.add_singleton]
α : Type inst✝ : AddGroup α S : Set α hS : Set.Finite S x : α ⊢ Set.Finite (S + {x})
α : Type inst✝ : AddGroup α S : Set α hS : Set.Finite S x : α ⊢ Set.Finite ((fun x_1 => x_1 + x) '' S)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Finite.translation
[25, 1]
[28, 30]
exact Set.Finite.image _ hS
α : Type inst✝ : AddGroup α S : Set α hS : Set.Finite S x : α ⊢ Set.Finite ((fun x_1 => x_1 + x) '' S)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
rw [Set.add_singleton, Set.mem_image]
α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ s ∈ S + {x} ↔ s - x ∈ S
α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ (∃ x_1 ∈ S, x_1 + x = s) ↔ s - x ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
constructor
α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ (∃ x_1 ∈ S, x_1 + x = s) ↔ s - x ∈ S
case mp α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ (∃ x_1 ∈ S, x_1 + x = s) → s - x ∈ S case mpr α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ s - x ∈ S → ∃ x_1 ∈ S, x_1 + x = s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
rintro ⟨y, hy, rfl⟩
case mp α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ (∃ x_1 ∈ S, x_1 + x = s) → s - x ∈ S
case mp.intro.intro α : Type inst✝ : AddGroup α S : Set α x y : α hy : y ∈ S ⊢ y + x - x ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
rw [add_sub_cancel]
case mp.intro.intro α : Type inst✝ : AddGroup α S : Set α x y : α hy : y ∈ S ⊢ y + x - x ∈ S
case mp.intro.intro α : Type inst✝ : AddGroup α S : Set α x y : α hy : y ∈ S ⊢ y ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
exact hy
case mp.intro.intro α : Type inst✝ : AddGroup α S : Set α x y : α hy : y ∈ S ⊢ y ∈ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
intro h
case mpr α : Type inst✝ : AddGroup α S : Set α x s : α ⊢ s - x ∈ S → ∃ x_1 ∈ S, x_1 + x = s
case mpr α : Type inst✝ : AddGroup α S : Set α x s : α h : s - x ∈ S ⊢ ∃ x_1 ∈ S, x_1 + x = s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
exact ⟨s - x, h, by rw [sub_add_cancel]⟩
case mpr α : Type inst✝ : AddGroup α S : Set α x s : α h : s - x ∈ S ⊢ ∃ x_1 ∈ S, x_1 + x = s
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.mem_translation
[30, 1]
[41, 7]
rw [sub_add_cancel]
α : Type inst✝ : AddGroup α S : Set α x s : α h : s - x ∈ S ⊢ s - x + x = s
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
ext y
α : Type inst✝ : AddGroup α S : Set α x : α ⊢ S - {x} = S + {-x}
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ y ∈ S - {x} ↔ y ∈ S + {-x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
simp only [sub_singleton, mem_image, add_singleton, image_add_right, neg_neg, mem_preimage]
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ y ∈ S - {x} ↔ y ∈ S + {-x}
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ (∃ x_1 ∈ S, x_1 - x = y) ↔ y + x ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
refine ⟨ ?_, fun h => ⟨y + x, h, by rw [add_sub_cancel]⟩ ⟩
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ (∃ x_1 ∈ S, x_1 - x = y) ↔ y + x ∈ S
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ (∃ x_1 ∈ S, x_1 - x = y) → y + x ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
rintro ⟨z, hz, rfl⟩
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ (∃ x_1 ∈ S, x_1 - x = y) → y + x ∈ S
case h.intro.intro α : Type inst✝ : AddGroup α S : Set α x z : α hz : z ∈ S ⊢ z - x + x ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
rw [sub_add_cancel]
case h.intro.intro α : Type inst✝ : AddGroup α S : Set α x z : α hz : z ∈ S ⊢ z - x + x ∈ S
case h.intro.intro α : Type inst✝ : AddGroup α S : Set α x z : α hz : z ∈ S ⊢ z ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
exact hz
case h.intro.intro α : Type inst✝ : AddGroup α S : Set α x z : α hz : z ∈ S ⊢ z ∈ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.sub_eq_neg_add
[46, 1]
[53, 11]
rw [add_sub_cancel]
α : Type inst✝ : AddGroup α S : Set α x y : α h : y + x ∈ S ⊢ y + x - x = y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.neg_add_cancel_right'
[55, 1]
[59, 7]
ext y
α : Type inst✝ : AddGroup α S : Set α x : α ⊢ S - {x} + {x} = S
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ y ∈ S - {x} + {x} ↔ y ∈ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.neg_add_cancel_right'
[55, 1]
[59, 7]
simp only [sub_singleton, add_singleton, mem_image, exists_exists_and_eq_and, sub_add_cancel, exists_eq_right]
case h α : Type inst✝ : AddGroup α S : Set α x y : α ⊢ y ∈ S - {x} + {x} ↔ y ∈ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
interior_eq_compl_closure_compl
[61, 1]
[64, 7]
rw [← compl_compl s, compl_compl sᶜ, interior_compl]
α : Type u_1 inst✝ : TopologicalSpace α s : Set α ⊢ interior s = (closure sᶜ)ᶜ
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
ext x
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α ⊢ ⋂₀ ((fun x => x ∩ t) '' s) = ⋂₀ s ∩ t
case h α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ x ∈ ⋂₀ ((fun x => x ∩ t) '' s) ↔ x ∈ ⋂₀ s ∩ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
simp only [mem_sInter, mem_inter_iff, mem_singleton_iff, and_imp]
case h α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ x ∈ ⋂₀ ((fun x => x ∩ t) '' s) ↔ x ∈ ⋂₀ s ∩ t
case h α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1) ↔ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
constructor
case h α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1) ↔ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1) → (∀ t ∈ s, x ∈ t) ∧ x ∈ t case h.mpr α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t → ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
intro h
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1) → (∀ t ∈ s, x ∈ t) ∧ x ∈ t
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
have : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s := by rw [mem_image] exact ⟨Nonempty.some hs, hs.some_mem, rfl⟩
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
refine ⟨ ?_, (h (hs.some ∩ t) this).2⟩
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s ⊢ ∀ t ∈ s, x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
intro y hy
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s ⊢ ∀ t ∈ s, x ∈ t
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s ⊢ x ∈ y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
have : y ∩ t ∈ (fun x => x ∩ t) '' s := by rw [mem_image] exact ⟨y, hy, rfl⟩
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s ⊢ x ∈ y
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this✝ : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s this : y ∩ t ∈ (fun x => x ∩ t) '' s ⊢ x ∈ y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
exact (h (y ∩ t) this).1
case h.mp α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this✝ : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s this : y ∩ t ∈ (fun x => x ∩ t) '' s ⊢ x ∈ y
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
rw [mem_image]
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 ⊢ Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 ⊢ ∃ x ∈ s, x ∩ t = Nonempty.some hs ∩ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
exact ⟨Nonempty.some hs, hs.some_mem, rfl⟩
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 ⊢ ∃ x ∈ s, x ∩ t = Nonempty.some hs ∩ t
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
rw [mem_image]
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s ⊢ y ∩ t ∈ (fun x => x ∩ t) '' s
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s ⊢ ∃ x ∈ s, x ∩ t = y ∩ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
exact ⟨y, hy, rfl⟩
α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1 this : Nonempty.some hs ∩ t ∈ (fun x => x ∩ t) '' s y : Set α hy : y ∈ s ⊢ ∃ x ∈ s, x ∩ t = y ∩ t
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
rintro h y ⟨ z, hz, rfl ⟩
case h.mpr α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α ⊢ (∀ t ∈ s, x ∈ t) ∧ x ∈ t → ∀ t_1 ∈ (fun x => x ∩ t) '' s, x ∈ t_1
case h.mpr.intro.intro α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : (∀ t ∈ s, x ∈ t) ∧ x ∈ t z : Set α hz : z ∈ s ⊢ x ∈ (fun x => x ∩ t) z
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.sInter_inter_comm
[66, 1]
[85, 7]
exact mem_inter (h.1 z hz) h.2
case h.mpr.intro.intro α : Type u_1 s : Set (Set α) hs : Set.Nonempty s t : Set α x : α h : (∀ t ∈ s, x ∈ t) ∧ x ∈ t z : Set α hz : z ∈ s ⊢ x ∈ (fun x => x ∩ t) z
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
refine subset_antisymm (image_sInter_subset S f) ?_
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f ⊢ f '' ⋂₀ S = ⋂ s ∈ S, f '' s
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f ⊢ ⋂ s ∈ S, f '' s ⊆ f '' ⋂₀ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
intro y hy
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f ⊢ ⋂ s ∈ S, f '' s ⊆ f '' ⋂₀ S
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f y : β hy : y ∈ ⋂ s ∈ S, f '' s ⊢ y ∈ f '' ⋂₀ S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
simp_all
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f y : β hy : y ∈ ⋂ s ∈ S, f '' s ⊢ y ∈ f '' ⋂₀ S
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f y : β hy : ∀ i ∈ S, ∃ x ∈ i, f x = y ⊢ ∃ x, (∀ t ∈ S, x ∈ t) ∧ f x = y
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
rcases hy hS.some hS.some_mem with ⟨x, _hxInhSsome_, rfl⟩
α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f y : β hy : ∀ i ∈ S, ∃ x ∈ i, f x = y ⊢ ∃ x, (∀ t ∈ S, x ∈ t) ∧ f x = y
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x ⊢ ∃ x_1, (∀ t ∈ S, x_1 ∈ t) ∧ f x_1 = f x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
refine ⟨x, ?_, rfl⟩
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x ⊢ ∃ x_1, (∀ t ∈ S, x_1 ∈ t) ∧ f x_1 = f x
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x ⊢ ∀ t ∈ S, x ∈ t
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
intro s hsInS
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x ⊢ ∀ t ∈ S, x ∈ t
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S ⊢ x ∈ s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
rcases hy s hsInS with ⟨z, hzIns, hfzEqfx⟩
case intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S ⊢ x ∈ s
case intro.intro.intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S z : α hzIns : z ∈ s hfzEqfx : f z = f x ⊢ x ∈ s
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
convert hzIns
case intro.intro.intro.intro α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S z : α hzIns : z ∈ s hfzEqfx : f z = f x ⊢ x ∈ s
case h.e'_4 α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S z : α hzIns : z ∈ s hfzEqfx : f z = f x ⊢ x = z
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
Set.Nonempty.image_sInter
[87, 1]
[99, 7]
exact hf hfzEqfx.symm
case h.e'_4 α : Type u_1 β : Type u_2 S : Set (Set α) hS : Set.Nonempty S f : α → β hf : Function.Injective f x : α _hxInhSsome_ : x ∈ Nonempty.some hS hy : ∀ i ∈ S, ∃ x_1 ∈ i, f x_1 = f x s : Set α hsInS : s ∈ S z : α hzIns : z ∈ s hfzEqfx : f z = f x ⊢ x = z
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Pre.lean
AffineEquiv.coe_VSubconst
[120, 1]
[120, 172]
rfl
𝕜 E P : Type inst✝³ : Field 𝕜 inst✝² : AddCommGroup E inst✝¹ : Module 𝕜 E inst✝ : AddTorsor E P x : P ⊢ ⇑(VSubconst 𝕜 x) = fun x_1 => x_1 -ᵥ x
no goals