url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
apply le_of_lt
case h.left E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x✝⟫_ℝ ≤ 1
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ ⟪α⁻¹ • (LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) f, x✝⟫_ℝ < 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rw [lt_div_iff hαneg, neg_one_mul, neg_neg]
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ -1 < f x✝ / -α
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ α < f x✝
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
exact hX (by assumption) (by assumption)
case h.left.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ α < f x✝
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
assumption
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ E
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
assumption
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α x✝ : E a✝ : x✝ ∈ X ⊢ x✝ ∈ X
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rw [div_lt_iff hαneg, neg_one_mul, neg_neg]
case h.right E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ f x / -α < -1
case h.right E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ f x < α
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
exact h
case h.right E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X x : E hx : x ∉ X f : E →L[ℝ] ℝ α : ℝ h : f x < α hX : ∀ b ∈ X, α < f b hαneg : 0 < -α ⊢ f x < α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
doublePolarDual_self
[135, 1]
[159, 7]
rw [polarDual_comm]
case a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X hX0 : 0 ∈ X ⊢ X ⊆ polarDual (polarDual X)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_empty
[162, 1]
[164, 7]
rw [polarDual, Set.preimage_empty, Set.image_empty, Set.image_empty, Set.sInter_empty]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ polarDual ∅ = Set.univ
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_zero
[166, 1]
[173, 7]
rw [polarDual]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ polarDual {0} = Set.univ
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' {0}))) = Set.univ
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_zero
[166, 1]
[173, 7]
have : (@Subtype.val E fun p => p ≠ 0) ⁻¹' {0} = ∅ := by rw [Set.preimage_singleton_eq_empty] simp only [ne_eq, Subtype.range_coe_subtype, Set.mem_setOf_eq, not_true, not_false_eq_true] done
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' {0}))) = Set.univ
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E this : Subtype.val ⁻¹' {0} = ∅ ⊢ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' {0}))) = Set.univ
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_zero
[166, 1]
[173, 7]
rw [this, Set.image_empty, Set.image_empty, Set.sInter_empty]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E this : Subtype.val ⁻¹' {0} = ∅ ⊢ ⋂₀ (SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' {0}))) = Set.univ
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_zero
[166, 1]
[173, 7]
rw [Set.preimage_singleton_eq_empty]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ Subtype.val ⁻¹' {0} = ∅
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ 0 ∉ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_zero
[166, 1]
[173, 7]
simp only [ne_eq, Subtype.range_coe_subtype, Set.mem_setOf_eq, not_true, not_false_eq_true]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ 0 ∉ Set.range Subtype.val
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
cases' (em (X \ {0}).Nonempty) with hXnonempty hXempty
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X case inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : ¬Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
constructor <;> rw [Metric.isCompact_iff_isClosed_bounded, isBounded_iff_forall_norm_le]
case inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) → IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → 0 ∈ interior (polarDual X)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
intro h
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) → IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have : IsOpen (interior (polarDual X)) := isOpen_interior
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : IsOpen (interior (polarDual X)) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [Metric.isOpen_iff] at this
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : IsOpen (interior (polarDual X)) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : ∀ x ∈ interior (polarDual X), ∃ ε > 0, Metric.ball x ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rcases this 0 h with ⟨ ε, hε, hball ⟩
case inl.mp E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : ∀ x ∈ interior (polarDual X), ∃ ε > 0, Metric.ball x ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : ∀ x ∈ interior (polarDual X), ∃ ε > 0, Metric.ball x ε ⊆ interior (polarDual X) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
clear this h
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : 0 ∈ interior (polarDual X) this : ∀ x ∈ interior (polarDual X), ∃ ε > 0, Metric.ball x ε ⊆ interior (polarDual X) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
refine ⟨ hXcl, 2/ε, fun x hx => ?_ ⟩
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) ⊢ IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
cases' em (x = 0) with hx0 hx0
case inl.mp.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : x = 0 ⊢ ‖x‖ ≤ 2 / ε case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
let u : E := (ε/2/(norm x)) • x
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have hnormu : ‖u‖ = ε/2 := by rw [norm_smul, Real.norm_eq_abs, abs_of_pos (div_pos (half_pos hε) (norm_pos_iff.mpr hx0)), div_mul_cancel _ (norm_ne_zero_iff.mpr hx0)] done
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have hu : u ∈ Metric.ball (0:E) ε := by rw [Metric.mem_ball, dist_zero_right, hnormu] exact half_lt_self hε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have h := interior_subset <| hball hu
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : u ∈ polarDual X ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [mem_polarDual] at h
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : u ∈ polarDual X ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ∀ x ∈ X, ⟪x, u⟫_ℝ ≤ 1 ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
specialize h x hx
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ∀ x ∈ X, ⟪x, u⟫_ℝ ≤ 1 ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ⟪x, u⟫_ℝ ≤ 1 ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [real_inner_smul_right, real_inner_self_eq_norm_mul_norm, ←mul_assoc, div_mul_cancel _ (norm_ne_zero_iff.mpr hx0), mul_comm, ← div_le_div_right (div_pos hε zero_lt_two), mul_div_cancel _ (Ne.symm <| ne_of_lt (div_pos hε zero_lt_two)), one_div_div] at h
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ⟪x, u⟫_ℝ ≤ 1 ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ‖x‖ ≤ 2 / ε ⊢ ‖x‖ ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact h
case inl.mp.intro.intro.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 hu : u ∈ Metric.ball 0 ε h : ‖x‖ ≤ 2 / ε ⊢ ‖x‖ ≤ 2 / ε
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [hx0, norm_zero]
case inl.mp.intro.intro.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : x = 0 ⊢ ‖x‖ ≤ 2 / ε
case inl.mp.intro.intro.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : x = 0 ⊢ 0 ≤ 2 / ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact div_nonneg zero_le_two (le_of_lt hε)
case inl.mp.intro.intro.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : x = 0 ⊢ 0 ≤ 2 / ε
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [norm_smul, Real.norm_eq_abs, abs_of_pos (div_pos (half_pos hε) (norm_pos_iff.mpr hx0)), div_mul_cancel _ (norm_ne_zero_iff.mpr hx0)]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x ⊢ ‖u‖ = ε / 2
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [Metric.mem_ball, dist_zero_right, hnormu]
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 ⊢ u ∈ Metric.ball 0 ε
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 ⊢ ε / 2 < ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact half_lt_self hε
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ε : ℝ hε : ε > 0 hball : Metric.ball 0 ε ⊆ interior (polarDual X) x : E hx : x ∈ X hx0 : ¬x = 0 u : E := (ε / 2 / ‖x‖) • x hnormu : ‖u‖ = ε / 2 ⊢ ε / 2 < ε
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [interior_eq_compl_closure_compl, Set.mem_compl_iff, Metric.mem_closure_iff, dist_zero_left]
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → 0 ∈ interior (polarDual X)
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → ¬∀ ε > 0, ∃ b ∈ (polarDual X)ᶜ, ‖b‖ < ε
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
push_neg
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → ¬∀ ε > 0, ∃ b ∈ (polarDual X)ᶜ, ‖b‖ < ε
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
intro h
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) ⊢ (IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C) → ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C ⊢ ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rcases h with ⟨ _, M, hM ⟩
case inl.mpr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) h : IsClosed X ∧ ∃ C, ∀ x ∈ X, ‖x‖ ≤ C ⊢ ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
case inl.mpr.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
use 1/M
case inl.mpr.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ ∃ ε > 0, ∀ b ∈ (polarDual X)ᶜ, ε ≤ ‖b‖
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 1 / M > 0 ∧ ∀ b ∈ (polarDual X)ᶜ, 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
refine ⟨ ?_, ?_ ⟩
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 1 / M > 0 ∧ ∀ b ∈ (polarDual X)ᶜ, 1 / M ≤ ‖b‖
case h.refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 1 / M > 0 case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ ∀ b ∈ (polarDual X)ᶜ, 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [gt_iff_lt, one_div]
case h.refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 1 / M > 0
case h.refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 0 < M⁻¹
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact inv_pos.mpr <| lt_of_lt_of_le (norm_pos_iff.mpr hXnonempty.some_mem.2) (hM hXnonempty.some hXnonempty.some_mem.1)
case h.refine_1 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ 0 < M⁻¹
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
intro b hb
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M ⊢ ∀ b ∈ (polarDual X)ᶜ, 1 / M ≤ ‖b‖
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : b ∈ (polarDual X)ᶜ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [Set.mem_compl_iff, mem_polarDual] at hb
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : b ∈ (polarDual X)ᶜ ⊢ 1 / M ≤ ‖b‖
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : ¬∀ x ∈ X, ⟪x, b⟫_ℝ ≤ 1 ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
push_neg at hb
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : ¬∀ x ∈ X, ⟪x, b⟫_ℝ ≤ 1 ⊢ 1 / M ≤ ‖b‖
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : ∃ x ∈ X, 1 < ⟪x, b⟫_ℝ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rcases hb with ⟨ y, hy, hb ⟩
case h.refine_2 E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b : E hb : ∃ x ∈ X, 1 < ⟪x, b⟫_ℝ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
specialize hM y hy
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ hM : ∀ x ∈ X, ‖x‖ ≤ M b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have hnorminner: |inner y b| ≤ ‖y‖ * ‖b‖ := by exact abs_real_inner_le_norm y b
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : |⟪y, b⟫_ℝ| ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [abs_of_pos (lt_trans zero_lt_one hb)] at hnorminner
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : |⟪y, b⟫_ℝ| ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have : (1:ℝ) ≤ ‖y‖ * ‖b‖ := le_trans (le_of_lt hb) hnorminner
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
have hynezero: y ≠ 0 := by rintro rfl rw [norm_zero, zero_mul] at this exact not_lt_of_le this zero_lt_one
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : y ≠ 0 ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [← norm_pos_iff] at hynezero
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : y ≠ 0 ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ 1 / M ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
apply le_trans (div_le_div (le_of_lt <| lt_trans zero_lt_one hb) (le_of_lt hb) hynezero hM)
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ 1 / M ≤ ‖b‖
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ / ‖y‖ ≤ ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
apply div_le_of_nonneg_of_le_mul (le_of_lt hynezero)
case h.refine_2.intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ / ‖y‖ ≤ ‖b‖
case h.refine_2.intro.intro.hc E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ 0 ≤ ‖b‖ case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖b‖ * ‖y‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
apply (mul_nonneg_iff_of_pos_left hynezero).mp (le_trans (zero_le_one) this)
case h.refine_2.intro.intro.hc E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ 0 ≤ ‖b‖ case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖b‖ * ‖y‖
case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖b‖ * ‖y‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [mul_comm]
case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖b‖ * ‖y‖
case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact hnorminner
case h.refine_2.intro.intro.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ hynezero : 0 < ‖y‖ ⊢ ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact abs_real_inner_le_norm y b
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M ⊢ |⟪y, b⟫_ℝ| ≤ ‖y‖ * ‖b‖
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rintro rfl
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b y : E hy : y ∈ X hb : 1 < ⟪y, b⟫_ℝ hM : ‖y‖ ≤ M hnorminner : ⟪y, b⟫_ℝ ≤ ‖y‖ * ‖b‖ this : 1 ≤ ‖y‖ * ‖b‖ ⊢ y ≠ 0
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b : E hy : 0 ∈ X hb : 1 < ⟪0, b⟫_ℝ hM : ‖0‖ ≤ M hnorminner : ⟪0, b⟫_ℝ ≤ ‖0‖ * ‖b‖ this : 1 ≤ ‖0‖ * ‖b‖ ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [norm_zero, zero_mul] at this
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b : E hy : 0 ∈ X hb : 1 < ⟪0, b⟫_ℝ hM : ‖0‖ ≤ M hnorminner : ⟪0, b⟫_ℝ ≤ ‖0‖ * ‖b‖ this : 1 ≤ ‖0‖ * ‖b‖ ⊢ False
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b : E hy : 0 ∈ X hb : 1 < ⟪0, b⟫_ℝ hM : ‖0‖ ≤ M hnorminner : ⟪0, b⟫_ℝ ≤ ‖0‖ * ‖b‖ this : 1 ≤ 0 ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact not_lt_of_le this zero_lt_one
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXnonempty : Set.Nonempty (X \ {0}) left✝ : IsClosed X M : ℝ b : E hy : 0 ∈ X hb : 1 < ⟪0, b⟫_ℝ hM : ‖0‖ ≤ M hnorminner : ⟪0, b⟫_ℝ ≤ ‖0‖ * ‖b‖ this : 1 ≤ 0 ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [Set.not_nonempty_iff_eq_empty, Set.diff_eq_empty, Set.subset_singleton_iff_eq] at hXempty
case inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : ¬Set.Nonempty (X \ {0}) ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ∨ X = {0} ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
cases' hXempty with hXempty hX0
case inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ∨ X = {0} ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X case inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hX0 : X = {0} ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [hXempty, polarDual_empty, interior_univ]
case inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ⊢ 0 ∈ Set.univ ↔ IsCompact ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact ⟨ fun _ => isCompact_empty, fun _ => trivial ⟩
case inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXempty : X = ∅ ⊢ 0 ∈ Set.univ ↔ IsCompact ∅
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
rw [hX0, polarDual_zero, interior_univ]
case inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hX0 : X = {0} ⊢ 0 ∈ interior (polarDual X) ↔ IsCompact X
case inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hX0 : X = {0} ⊢ 0 ∈ Set.univ ↔ IsCompact {0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
compact_polarDual_iff
[175, 1]
[248, 9]
exact ⟨ fun _ => isCompact_singleton, fun _ => trivial ⟩
case inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hX0 : X = {0} ⊢ 0 ∈ Set.univ ↔ IsCompact {0}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_compact_if
[250, 1]
[255, 7]
intro h
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X ⊢ 0 ∈ interior X → IsCompact (polarDual X)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X h : 0 ∈ interior X ⊢ IsCompact (polarDual X)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_compact_if
[250, 1]
[255, 7]
rw [← doublePolarDual_self hXcl hXcv (interior_subset h), compact_polarDual_iff (polarDual_closed _)] at h
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X h : 0 ∈ interior X ⊢ IsCompact (polarDual X)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X h : IsCompact (polarDual X) ⊢ IsCompact (polarDual X)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/Polar.lean
polarDual_compact_if
[250, 1]
[255, 7]
exact h
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E X : Set E hXcl : IsClosed X hXcv : Convex ℝ X h : IsCompact (polarDual X) ⊢ IsCompact (polarDual X)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_pos
[180, 1]
[182, 25]
unfold hminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < hminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_pos
[180, 1]
[182, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_le_hmaxₚ
[184, 1]
[185, 31]
unfold hminₚ hmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ hminₚ ≤ hmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_le_hmaxₚ
[184, 1]
[185, 31]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_pos
[193, 1]
[195, 25]
unfold wminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < wminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_pos
[193, 1]
[195, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_le_wmaxₚ
[197, 1]
[198, 31]
unfold wminₚ wmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ wminₚ ≤ wmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_le_wmaxₚ
[197, 1]
[198, 31]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.Rmaxₚ_pos
[203, 1]
[205, 25]
unfold Rmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < Rmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.Rmaxₚ_pos
[203, 1]
[205, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.σₚ_pos
[210, 1]
[212, 22]
unfold σₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < σₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 0.5
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.σₚ_pos
[210, 1]
[212, 22]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 0.5
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₁ₚ_pos
[217, 1]
[219, 23]
unfold F₁ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < F₁ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₁ₚ_pos
[217, 1]
[219, 23]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₂ₚ_pos
[224, 1]
[226, 23]
unfold F₂ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < F₂ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 20
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₂ₚ_pos
[224, 1]
[226, 23]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 20
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
gaussianPdf_pos
[24, 1]
[27, 53]
refine' mul_pos (div_pos zero_lt_one (sqrt_pos.2 (mul_pos _ h.det_pos))) (exp_pos _)
n : ℕ R : Matrix (Fin n) (Fin n) ℝ y : Fin n → ℝ h : R.PosDef ⊢ 0 < gaussianPdf R y
n : ℕ R : Matrix (Fin n) (Fin n) ℝ y : Fin n → ℝ h : R.PosDef ⊢ 0 < (2 * π) ^ n
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
gaussianPdf_pos
[24, 1]
[27, 53]
exact (pow_pos (mul_pos (by positivity) pi_pos) n)
n : ℕ R : Matrix (Fin n) (Fin n) ℝ y : Fin n → ℝ h : R.PosDef ⊢ 0 < (2 * π) ^ n
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
gaussianPdf_pos
[24, 1]
[27, 53]
positivity
n : ℕ R : Matrix (Fin n) (Fin n) ℝ y : Fin n → ℝ h : R.PosDef ⊢ 0 < 2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
have : ∀ i, i ∈ Finset.univ → gaussianPdf R (y i) ≠ 0 := fun i _ => ne_of_gt (gaussianPdf_pos _ _ hR)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef ⊢ (∏ i : Fin N, gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 ⊢ (∏ i : Fin N, gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
have sqrt_2_pi_n_R_det_ne_zero: sqrt ((2 * π) ^ n * R.det) ≠ 0 := by refine' ne_of_gt (sqrt_pos.2 (mul_pos _ hR.det_pos)) exact (pow_pos (mul_pos (by positivity) pi_pos) _)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 ⊢ (∏ i : Fin N, gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ (∏ i : Fin N, gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
rw [log_prod Finset.univ (fun i => gaussianPdf R (y i)) this]
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ (∏ i : Fin N, gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ ∑ i : Fin N, (gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
unfold gaussianPdf
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ ∑ i : Fin N, (gaussianPdf R (y i)).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ ∑ i : Fin N, (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
apply congr_arg (Finset.sum Finset.univ)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ ∑ i : Fin N, (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log = ∑ i : Fin N, (-(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2)
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ (fun i => (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log) = fun i => -(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
ext i
N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 ⊢ (fun i => (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log) = fun i => -(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2
case h N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log = -(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
rw [log_mul, log_div, sqrt_mul, log_mul, log_exp, log_one, zero_sub]
case h N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (1 / ((2 * π) ^ n * R.det).sqrt * (-R⁻¹.quadForm (y i) / 2).exp).log = -(((2 * π) ^ n).sqrt.log + R.det.sqrt.log) + -R⁻¹.quadForm (y i) / 2
case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ R.det.sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 0 ≤ (2 * π) ^ n case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 / ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (-R⁻¹.quadForm (y i) / 2).exp ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
simp [rpow_eq_pow]
case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ R.det.sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 0 ≤ (2 * π) ^ n case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 / ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (-R⁻¹.quadForm (y i) / 2).exp ≠ 0
case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ¬((2 * π) ^ n).sqrt = 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ R.det.sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 0 ≤ (2 * π) ^ n case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 / ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (-R⁻¹.quadForm (y i) / 2).exp ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/CovarianceEstimation.lean
log_prod_gaussianPdf
[33, 1]
[53, 22]
exact ne_of_gt (sqrt_pos.2 (pow_pos (mul_pos (by positivity) pi_pos) _))
case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ¬((2 * π) ^ n).sqrt = 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ R.det.sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 0 ≤ (2 * π) ^ n case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 / ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (-R⁻¹.quadForm (y i) / 2).exp ≠ 0
case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ R.det.sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 0 ≤ (2 * π) ^ n case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hx N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ 1 / ((2 * π) ^ n * R.det).sqrt ≠ 0 case h.hy N n : ℕ y : Fin N → Fin n → ℝ R : Matrix (Fin n) (Fin n) ℝ hR : R.PosDef this : ∀ i ∈ Finset.univ, gaussianPdf R (y i) ≠ 0 sqrt_2_pi_n_R_det_ne_zero : ((2 * π) ^ n * R.det).sqrt ≠ 0 i : Fin N ⊢ (-R⁻¹.quadForm (y i) / 2).exp ≠ 0