url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
rintro ⟨i, i'⟩ ⟨j, j'⟩ h
α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R ⊢ (blockDiagonal d).BlockTriangular Prod.snd
case mk.mk α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ blockDiagonal d (i, i') (j, j') = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
rw [blockDiagonal'_eq_blockDiagonal, BlockTriangular_blockDiagonal']
case mk.mk α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ blockDiagonal d (i, i') (j, j') = 0
case mk.mk.a α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ ⟨j', j⟩.fst < ⟨i', i⟩.fst
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
exact h
case mk.mk.a α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ ⟨j', j⟩.fst < ⟨i', i⟩.fst
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
let p := (fun i => b i < k)
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
have h_sum : M⁻¹.toBlock p p * M.toBlock p p + M⁻¹.toBlock p (fun i => ¬ p i) * M.toBlock (fun i => ¬ p i) p = 1 := by rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
have h_zero : M.toBlock (fun i => ¬ p i) p = 0 := by { ext i j simpa using hM (lt_of_lt_of_le j.2 (le_of_not_lt i.2)) }
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : M.toBlock (fun i => ¬p i) p = 0 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
simpa [h_zero] using h_sum
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : M.toBlock (fun i => ¬p i) p = 0 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
ext i j
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M.toBlock (fun i => ¬p i) p = 0
case a α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // ¬p a } j : { a // p a } ⊢ M.toBlock (fun i => ¬p i) p i j = 0 i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
simpa using hM (lt_of_lt_of_le j.2 (le_of_not_lt i.2))
case a α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // ¬p a } j : { a // p a } ⊢ M.toBlock (fun i => ¬p i) p i j = 0 i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
let p := (λ i => b i = k)
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_sum : M⁻¹.toBlock p p * M.toBlock p p + M⁻¹.toBlock p (λ i => ¬ p i) * M.toBlock (λ i => ¬ p i) p = 1 := by rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_zero : ∀ i j l, M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 := by { intro i j l by_cases hj : b j.1 ≤ k { have hj := lt_of_le_of_ne hj j.2 have hM' := blockTriangular_inv_of_blockTriangular hM apply mul_eq_zero_of_left simpa using hM' (lt_of_lt_of_eq hj i.2.symm) } { have hj := lt_of_not_ge hj apply mul_eq_zero_of_right simpa using hM (lt_of_eq_of_lt l.2 hj) }}
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_zero' : M⁻¹.toBlock p (λ (i : m) => ¬p i) * M.toBlock (λ (i : m) => ¬p i) p = 0 := by { ext i l apply sum_eq_zero (λ j _ => h_zero i j l) }
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 h_zero' : (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa [h_zero'] using h_sum
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 h_zero' : (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
intro i j l
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
by_cases hj : b j.1 ≤ k
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
{ have hj := lt_of_le_of_ne hj j.2 have hM' := blockTriangular_inv_of_blockTriangular hM apply mul_eq_zero_of_left simpa using hM' (lt_of_lt_of_eq hj i.2.symm) }
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
{ have hj := lt_of_not_ge hj apply mul_eq_zero_of_right simpa using hM (lt_of_eq_of_lt l.2 hj) }
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hj := lt_of_le_of_ne hj j.2
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hM' := blockTriangular_inv_of_blockTriangular hM
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply mul_eq_zero_of_left
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa using hM' (lt_of_lt_of_eq hj i.2.symm)
case pos.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hj := lt_of_not_ge hj
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply mul_eq_zero_of_right
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa using hM (lt_of_eq_of_lt l.2 hj)
case neg.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M.toBlock (fun i => ¬p i) p j l = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
ext i l
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0
case a α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 i l : { a // p a } ⊢ ((M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p) i l = 0 i l
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply sum_eq_zero (λ j _ => h_zero i j l)
case a α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 i l : { a // p a } ⊢ ((M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p) i l = 0 i l
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.schur_complement_eq₁₁
[28, 1]
[37, 7]
simp [Function.star_sum_elim, fromBlocks_mulVec, vecMul_fromBlocks, add_vecMul, dotProduct_mulVec, vecMul_sub, Matrix.mul_assoc, vecMul_mulVec, hA.eq, conjTranspose_nonsing_inv, star_mulVec]
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : A.IsHermitian ⊢ star (x ⊕ᵥ y) ᵥ* A.fromBlocks B B.conjTranspose D ⬝ᵥ (x ⊕ᵥ y) = star (x + (A⁻¹ * B).mulVec y) ᵥ* A ⬝ᵥ (x + (A⁻¹ * B).mulVec y) + star y ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ y
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : A.IsHermitian ⊢ star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) = star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* (B.conjTranspose * (A⁻¹ * B)) ⬝ᵥ y) + (star y ᵥ* D ⬝ᵥ y - star y ᵥ* (B.conjTranspose * (A⁻¹ * B)) ⬝ᵥ y)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.schur_complement_eq₁₁
[28, 1]
[37, 7]
abel
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : A.IsHermitian ⊢ star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) = star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* (B.conjTranspose * (A⁻¹ * B)) ⬝ᵥ y) + (star y ᵥ* D ⬝ᵥ y - star y ᵥ* (B.conjTranspose * (A⁻¹ * B)) ⬝ᵥ y)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.schur_complement_eq₂₂
[39, 1]
[48, 7]
simp [Function.star_sum_elim, fromBlocks_mulVec, vecMul_fromBlocks, add_vecMul, dotProduct_mulVec, vecMul_sub, Matrix.mul_assoc, vecMul_mulVec, hD.eq, conjTranspose_nonsing_inv, star_mulVec]
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : D.IsHermitian ⊢ star (x ⊕ᵥ y) ᵥ* A.fromBlocks B B.conjTranspose D ⬝ᵥ (x ⊕ᵥ y) = star ((D⁻¹ * B.conjTranspose).mulVec x + y) ᵥ* D ⬝ᵥ ((D⁻¹ * B.conjTranspose).mulVec x + y) + star x ᵥ* (A - B * D⁻¹ * B.conjTranspose) ⬝ᵥ x
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : D.IsHermitian ⊢ star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) = star x ᵥ* (B * (D⁻¹ * B.conjTranspose)) ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) + (star x ᵥ* A ⬝ᵥ x - star x ᵥ* (B * (D⁻¹ * B.conjTranspose)) ⬝ᵥ x)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.schur_complement_eq₂₂
[39, 1]
[48, 7]
abel
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : D.IsHermitian ⊢ star x ᵥ* A ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) = star x ᵥ* (B * (D⁻¹ * B.conjTranspose)) ⬝ᵥ x + star y ᵥ* B.conjTranspose ⬝ᵥ x + (star x ᵥ* B ⬝ᵥ y + star y ᵥ* D ⬝ᵥ y) + (star x ᵥ* A ⬝ᵥ x - star x ᵥ* (B * (D⁻¹ * B.conjTranspose)) ⬝ᵥ x)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
have hBAB : (Bᴴ * A⁻¹ * B).IsHermitian := by apply isHermitian_conjTranspose_mul_mul apply hA.inv
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian ⊢ (A.fromBlocks B B.conjTranspose D).IsHermitian ↔ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (A.fromBlocks B B.conjTranspose D).IsHermitian ↔ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
rw [isHermitian_fromBlocks_iff]
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (A.fromBlocks B B.conjTranspose D).IsHermitian ↔ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian ↔ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
constructor
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian ↔ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
case mp n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian → (D - B.conjTranspose * A⁻¹ * B).IsHermitian case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian → A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
apply isHermitian_conjTranspose_mul_mul
n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian ⊢ (B.conjTranspose * A⁻¹ * B).IsHermitian
case hA n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian ⊢ A⁻¹.IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
apply hA.inv
case hA n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian ⊢ A⁻¹.IsHermitian
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
intro h
case mp n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian → (D - B.conjTranspose * A⁻¹ * B).IsHermitian
case mp n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
apply IsHermitian.sub h.2.2.2 hBAB
case mp n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
intro h
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian → A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
refine' ⟨hA, rfl, conjTranspose_conjTranspose B, _⟩
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ A.IsHermitian ∧ B.conjTranspose = B.conjTranspose ∧ B.conjTranspose.conjTranspose = B ∧ D.IsHermitian
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ D.IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
rw [← sub_add_cancel D]
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ D.IsHermitian
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (D - ?mpr + ?mpr).IsHermitian case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ Matrix n n 𝕜
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₁₁
[50, 1]
[63, 33]
apply IsHermitian.add h hBAB
case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ (D - ?mpr + ?mpr).IsHermitian case mpr n : Type u_3 m : Type u_1 𝕜 : Type u_2 inst✝² : RCLike 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.IsHermitian hBAB : (B.conjTranspose * A⁻¹ * B).IsHermitian h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ⊢ Matrix n n 𝕜
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₂₂
[65, 1]
[70, 79]
rw [← isHermitian_submatrix_equiv (Equiv.sumComm n m), Equiv.sumComm_apply, fromBlocks_submatrix_sum_swap_sum_swap]
n : Type u_1 m : Type u_2 𝕜 : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.IsHermitian ⊢ (A.fromBlocks B B.conjTranspose D).IsHermitian ↔ (A - B * D⁻¹ * B.conjTranspose).IsHermitian
n : Type u_1 m : Type u_2 𝕜 : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.IsHermitian ⊢ (D.fromBlocks B.conjTranspose B A).IsHermitian ↔ (A - B * D⁻¹ * B.conjTranspose).IsHermitian
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.IsHermitian.fromBlocks₂₂
[65, 1]
[70, 79]
convert IsHermitian.fromBlocks₁₁ _ _ hD <;> rw [conjTranspose_conjTranspose]
n : Type u_1 m : Type u_2 𝕜 : Type u_3 inst✝² : RCLike 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.IsHermitian ⊢ (D.fromBlocks B.conjTranspose B A).IsHermitian ↔ (A - B * D⁻¹ * B.conjTranspose).IsHermitian
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [PosSemidef, IsHermitian.fromBlocks₁₁ _ _ hA.1]
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (A.fromBlocks B B.conjTranspose D).PosSemidef ↔ (D - B.conjTranspose * A⁻¹ * B).PosSemidef
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ ((D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x) ↔ (D - B.conjTranspose * A⁻¹ * B).PosSemidef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
constructor
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ ((D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x) ↔ (D - B.conjTranspose * A⁻¹ * B).PosSemidef
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ ((D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x) → (D - B.conjTranspose * A⁻¹ * B).PosSemidef case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef → (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
{ intro h; refine' ⟨h.1, _⟩; intro x have := h.2 (- ((A⁻¹ * B).mulVec x) ⊕ᵥ x) rw [dotProduct_mulVec, schur_complement_eq₁₁ B D _ _ hA.1, neg_add_self, dotProduct_zero, zero_add] at this rw [dotProduct_mulVec]; exact this }
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ ((D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x) → (D - B.conjTranspose * A⁻¹ * B).PosSemidef case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef → (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef → (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
{ intro h; refine' ⟨h.1, _⟩; intro x rw [dotProduct_mulVec, ← Sum.elim_comp_inl_inr x, schur_complement_eq₁₁ B D _ _ hA.1] apply le_add_of_nonneg_of_le { rw [← dotProduct_mulVec] apply hA.posSemidef.2 } { rw [← dotProduct_mulVec _ _ (x ∘ Sum.inr)] apply h.2 } }
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef → (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
intro h
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ ((D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x) → (D - B.conjTranspose * A⁻¹ * B).PosSemidef
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
refine' ⟨h.1, _⟩
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
intro x
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
have := h.2 (- ((A⁻¹ * B).mulVec x) ⊕ᵥ x)
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star (-(A⁻¹ * B).mulVec x ⊕ᵥ x) ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec (-(A⁻¹ * B).mulVec x ⊕ᵥ x) ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [dotProduct_mulVec, schur_complement_eq₁₁ B D _ _ hA.1, neg_add_self, dotProduct_zero, zero_add] at this
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star (-(A⁻¹ * B).mulVec x ⊕ᵥ x) ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec (-(A⁻¹ * B).mulVec x ⊕ᵥ x) ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [dotProduct_mulVec]
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ star x ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec x
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
exact this
case mp n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x x : n → 𝕜 this : 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ star x ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
intro h
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A ⊢ (D - B.conjTranspose * A⁻¹ * B).PosSemidef → (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
refine' ⟨h.1, _⟩
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef ⊢ (D - B.conjTranspose * A⁻¹ * B).IsHermitian ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef ⊢ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
intro x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef ⊢ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [dotProduct_mulVec, ← Sum.elim_comp_inl_inr x, schur_complement_eq₁₁ B D _ _ hA.1]
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (A.fromBlocks B B.conjTranspose D).mulVec x
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ᵥ* A ⬝ᵥ (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) + star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
apply le_add_of_nonneg_of_le
case mpr n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ᵥ* A ⬝ᵥ (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) + star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
case mpr.ha n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ᵥ* A ⬝ᵥ (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
{ rw [← dotProduct_mulVec] apply hA.posSemidef.2 }
case mpr.ha n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ᵥ* A ⬝ᵥ (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
{ rw [← dotProduct_mulVec _ _ (x ∘ Sum.inr)] apply h.2 }
case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [← dotProduct_mulVec]
case mpr.ha n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ᵥ* A ⬝ᵥ (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr))
case mpr.ha n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ⬝ᵥ A.mulVec (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr))
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
apply hA.posSemidef.2
case mpr.ha n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr)) ⬝ᵥ A.mulVec (x ∘ Sum.inl + (A⁻¹ * B).mulVec (x ∘ Sum.inr))
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
rw [← dotProduct_mulVec _ _ (x ∘ Sum.inr)]
case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ᵥ* (D - B.conjTranspose * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr
case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec (x ∘ Sum.inr)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₁₁
[72, 1]
[88, 20]
apply h.2
case mpr.hbc n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : A.PosDef inst✝ : Invertible A h : (D - B.conjTranspose * A⁻¹ * B).PosSemidef x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ⬝ᵥ (D - B.conjTranspose * A⁻¹ * B).mulVec (x ∘ Sum.inr)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₂₂
[90, 1]
[96, 35]
rw [← posSemidef_submatrix_equiv (Equiv.sumComm n m), Equiv.sumComm_apply, fromBlocks_submatrix_sum_swap_sum_swap]
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.PosDef inst✝ : Invertible D ⊢ (A.fromBlocks B B.conjTranspose D).PosSemidef ↔ (A - B * D⁻¹ * B.conjTranspose).PosSemidef
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.PosDef inst✝ : Invertible D ⊢ (D.fromBlocks B.conjTranspose B A).PosSemidef ↔ (A - B * D⁻¹ * B.conjTranspose).PosSemidef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/SchurComplement.lean
Matrix.PosSemidef.fromBlocks₂₂
[90, 1]
[96, 35]
convert @PosSemidef.fromBlocks₁₁ m n 𝕜 _ _ _ _ _ _ _ hD _ <;> rw [conjTranspose_conjTranspose]
n : Type u_2 m : Type u_1 𝕜 : Type u_3 inst✝⁴ : RCLike 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : D.PosDef inst✝ : Invertible D ⊢ (D.fromBlocks B.conjTranspose B A).PosSemidef ↔ (A - B * D⁻¹ * B.conjTranspose).PosSemidef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
constructor
m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c ↔ a ≤ c * b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c → a ≤ c * b case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a ≤ c * b → a / b ≤ c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
intro h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c → a ≤ c * b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
have hi := h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : (a / b) i ≤ c i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
simp at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : (a / b) i ≤ c i ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i / b i ≤ c i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
rw [_root_.div_le_iff (hb i)] at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i / b i ≤ c i ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i ≤ c i * b i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
exact hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i ≤ c i * b i ⊢ a i ≤ (c * b) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
intro h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a ≤ c * b → a / b ≤ c
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
have hi := h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ (c * b) i ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
simp at hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ (c * b) i ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
dsimp
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i / b i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
rw [_root_.div_le_iff (hb i)]
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i / b i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i ≤ c i * b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
exact hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i ≤ c i * b i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
constructor
m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c ↔ a * c ≤ b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c → a * c ≤ b case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a * c ≤ b → a ≤ b / c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
intro h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c → a * c ≤ b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
have hi := h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ (b / c) i ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
simp at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ (b / c) i ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ b i / c i ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
rw [_root_.le_div_iff (hc i)] at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ b i / c i ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i * c i ≤ b i ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
exact hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i * c i ≤ b i ⊢ (a * c) i ≤ b i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
intro h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a * c ≤ b → a ≤ b / c
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m ⊢ a i ≤ (b / c) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
have hi := h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m ⊢ a i ≤ (b / c) i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : (a * c) i ≤ b i ⊢ a i ≤ (b / c) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
simp at hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : (a * c) i ≤ b i ⊢ a i ≤ (b / c) i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i ≤ (b / c) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
dsimp
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i ≤ (b / c) i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i ≤ b i / c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
rw [_root_.le_div_iff (hc i)]
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i ≤ b i / c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i * c i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
exact hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a * c ≤ b i : m hi : a i * c i ≤ b i ⊢ a i * c i ≤ b i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.aₚ_nonneg
[45, 1]
[47, 22]
unfold aₚ
a b : ℝ ⊢ 0 ≤ aₚ
a b : ℝ ⊢ 0 ≤ 5e-2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.aₚ_nonneg
[45, 1]
[47, 22]
norm_num
a b : ℝ ⊢ 0 ≤ 5e-2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.bₚ_nonneg
[52, 1]
[53, 22]
unfold bₚ
a b : ℝ ⊢ 0 ≤ bₚ
a b : ℝ ⊢ 0 ≤ 0.65
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.bₚ_nonneg
[52, 1]
[53, 22]
norm_num
a b : ℝ ⊢ 0 ≤ 0.65
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.bₚ_lt_one
[55, 1]
[56, 22]
unfold bₚ
a b : ℝ ⊢ bₚ < 1
a b : ℝ ⊢ 0.65 < 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/HypersonicShapeDesign.lean
HypersonicShapeDesign.bₚ_lt_one
[55, 1]
[56, 22]
norm_num
a b : ℝ ⊢ 0.65 < 1
no goals