url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [openSegment_eq_image', Set.mem_image] at hx
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α ⊢ False
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : ∃ x_1 ∈ Set.Ioo 0 1, x1 + x_1 • (x2 - x1) = x Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hx with ⟨ t, ht, rfl ⟩
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : ∃ x_1 ∈ Set.Ioo 0 1, x1 + x_1 • (x2 - x1) = x Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f (x1 + t • (x2 - x1)) = Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Hi_.f.1.map_add, Hi_.f.1.map_smul] at hfxα
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f (x1 + t • (x2 - x1)) = Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : Hi_.f.1 x1 + t • Hi_.f.1 (x2 - x1) + (1-t) • Hi_.f.1 (x2 - x1) > Hi_.α := by rw [hfxα, gt_iff_lt] exact lt_add_of_le_of_pos (by linarith) <| (smul_pos_iff_of_pos_left (by linarith [ht.2])).mpr <| (smul_pos_iff_of_pos_left ht.1).mp <| pos_of_lt_add_right <| hfxα.symm ▸ hlt
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α this : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) + (1 - t) • ↑Hi_.f (x2 - x1) > Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [add_assoc, ← add_smul, add_sub, add_comm t 1, add_sub_cancel, one_smul, ← Hi_.f.1.map_add, add_comm, sub_add_cancel] at this
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α this : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) + (1 - t) • ↑Hi_.f (x2 - x1) > Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α this : ↑Hi_.f x2 > Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α this : ↑Hi_.f x2 > Hi_.α ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [hfxα, gt_iff_lt]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) + (1 - t) • ↑Hi_.f (x2 - x1) > Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ Hi_.α < Hi_.α + (1 - t) • ↑Hi_.f (x2 - x1)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact lt_add_of_le_of_pos (by linarith) <| (smul_pos_iff_of_pos_left (by linarith [ht.2])).mpr <| (smul_pos_iff_of_pos_left ht.1).mp <| pos_of_lt_add_right <| hfxα.symm ▸ hlt
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ Hi_.α < Hi_.α + (1 - t) • ↑Hi_.f (x2 - x1)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ Hi_.α ≤ Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith [ht.2]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x1 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x1 + t • ↑Hi_.f (x2 - x1) = Hi_.α ⊢ 0 < 1 - t
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [openSegment_symm, openSegment_eq_image', Set.mem_image] at hx
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : x ∈ openSegment ℝ x1 x2 Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α ⊢ False
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : ∃ x_1 ∈ Set.Ioo 0 1, x2 + x_1 • (x1 - x2) = x Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rcases hx with ⟨ t, ht, rfl ⟩
case mpr.intro.intro.a E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x x1 x2 : E hx : ∃ x_1 ∈ Set.Ioo 0 1, x2 + x_1 • (x1 - x2) = x Hi_ : Halfspace E hfxα : ↑Hi_.f x = Hi_.α hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f (x2 + t • (x1 - x2)) = Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [Hi_.f.1.map_add, Hi_.f.1.map_smul] at hfxα
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f (x2 + t • (x1 - x2)) = Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
have : Hi_.f.1 x2 + t • Hi_.f.1 (x1 - x2) + (1-t) • Hi_.f.1 (x1 - x2) > Hi_.α := by rw [hfxα, gt_iff_lt] exact lt_add_of_le_of_pos (by linarith) <| (smul_pos_iff_of_pos_left (by linarith [ht.2])).mpr <| (smul_pos_iff_of_pos_left ht.1).mp <| pos_of_lt_add_right <| hfxα.symm ▸ hlt
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α this : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) + (1 - t) • ↑Hi_.f (x1 - x2) > Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [add_assoc, ← add_smul, add_sub, add_comm t 1, add_sub_cancel, one_smul, ← Hi_.f.1.map_add, add_comm, sub_add_cancel] at this
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α this : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) + (1 - t) • ↑Hi_.f (x1 - x2) > Hi_.α ⊢ False
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α this : ↑Hi_.f x1 > Hi_.α ⊢ False
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
case mpr.intro.intro.a.intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α this : ↑Hi_.f x1 > Hi_.α ⊢ False
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
rw [hfxα, gt_iff_lt]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) + (1 - t) • ↑Hi_.f (x1 - x2) > Hi_.α
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ Hi_.α < Hi_.α + (1 - t) • ↑Hi_.f (x1 - x2)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
exact lt_add_of_le_of_pos (by linarith) <| (smul_pos_iff_of_pos_left (by linarith [ht.2])).mpr <| (smul_pos_iff_of_pos_left ht.1).mp <| pos_of_lt_add_right <| hfxα.symm ▸ hlt
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ Hi_.α < Hi_.α + (1 - t) • ↑Hi_.f (x1 - x2)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ Hi_.α ≤ Hi_.α
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
ExtremePointsofHpolytope
[143, 1]
[338, 7]
linarith [ht.2]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E x1 x2 : E Hi_ : Halfspace E hx1 : ↑Hi_.f x1 ≤ Hi_.α hx2 : ↑Hi_.f x2 ≤ Hi_.α hlt : ↑Hi_.f x2 < Hi_.α t : ℝ ht : t ∈ Set.Ioo 0 1 hfxα : ↑Hi_.f x2 + t • ↑Hi_.f (x1 - x2) = Hi_.α ⊢ 0 < 1 - t
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
suffices hHeqVdual : ∃ (H_ : Set (Halfspace E)) (hH_ : H_.Finite), Hpolytope hH_ = polarDual (Vpolytope hS) from by rcases hHeqVdual with ⟨H_, hH_, hHeqVdual⟩ refine ⟨ H_, hH_, hHeqVdual, ?_ ⟩ exact hHeqVdual ▸ (polarDual_compact_if (Closed_Vpolytope hS) (Convex_Vpolytope hS) hS0)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS) ∧ IsCompact (Hpolytope hH_)
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
use pointDual '' (Subtype.val ⁻¹' (S \ {0}))
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS)
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ (hH_ : Set.Finite (pointDual '' (Subtype.val ⁻¹' (S \ {0})))), Hpolytope hH_ = polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
use (by apply Set.Finite.image apply Set.Finite.preimage _ _ apply Set.injOn_of_injective exact Subtype.val_injective exact Set.Finite.diff hS {0} done)
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ ∃ (hH_ : Set.Finite (pointDual '' (Subtype.val ⁻¹' (S \ {0})))), Hpolytope hH_ = polarDual (Vpolytope hS)
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Hpolytope ⋯ = polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply subset_antisymm
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Hpolytope ⋯ = polarDual (Vpolytope hS)
case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Hpolytope ⋯ ⊆ polarDual (Vpolytope hS) case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ polarDual (Vpolytope hS) ⊆ Hpolytope ⋯
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rcases hHeqVdual with ⟨H_, hH_, hHeqVdual⟩
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) hHeqVdual : ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS) ∧ IsCompact (Hpolytope hH_)
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHeqVdual : Hpolytope hH_ = polarDual (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS) ∧ IsCompact (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
refine ⟨ H_, hH_, hHeqVdual, ?_ ⟩
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHeqVdual : Hpolytope hH_ = polarDual (Vpolytope hS) ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = polarDual (Vpolytope hS) ∧ IsCompact (Hpolytope hH_)
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHeqVdual : Hpolytope hH_ = polarDual (Vpolytope hS) ⊢ IsCompact (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact hHeqVdual ▸ (polarDual_compact_if (Closed_Vpolytope hS) (Convex_Vpolytope hS) hS0)
case intro.intro E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHeqVdual : Hpolytope hH_ = polarDual (Vpolytope hS) ⊢ IsCompact (Hpolytope hH_)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.Finite.image
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (pointDual '' (Subtype.val ⁻¹' (S \ {0})))
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (Subtype.val ⁻¹' (S \ {0}))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.Finite.preimage _ _
case hs E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (Subtype.val ⁻¹' (S \ {0}))
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.InjOn Subtype.val (Subtype.val ⁻¹' (S \ {0})) E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.injOn_of_injective
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.InjOn Subtype.val (Subtype.val ⁻¹' (S \ {0})) E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Function.Injective Subtype.val E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact Subtype.val_injective
case h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Function.Injective Subtype.val E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact Set.Finite.diff hS {0}
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Set.Finite (S \ {0})
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
intro x hx
case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Hpolytope ⋯ ⊆ polarDual (Vpolytope hS)
case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ ⊢ x ∈ polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
cases' (em (x = 0)) with h h
case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ ⊢ x ∈ polarDual (Vpolytope hS)
case h.a.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : x = 0 ⊢ x ∈ polarDual (Vpolytope hS) case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : ¬x = 0 ⊢ x ∈ polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [mem_Hpolytope] at hx
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : ¬x = 0 ⊢ x ∈ polarDual (Vpolytope hS)
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 ⊢ x ∈ polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [mem_polarDual]
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 ⊢ x ∈ polarDual (Vpolytope hS)
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 ⊢ ∀ x_1 ∈ Vpolytope hS, ⟪x_1, x⟫_ℝ ≤ 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
intro p hp
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 ⊢ ∀ x_1 ∈ Vpolytope hS, ⟪x_1, x⟫_ℝ ≤ 1
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS ⊢ ⟪p, x⟫_ℝ ≤ 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
let x' := (⟨ x, h ⟩ : { p : E // p ≠ 0 })
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS ⊢ ⟪p, x⟫_ℝ ≤ 1
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } ⊢ ⟪p, x⟫_ℝ ≤ 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
have hx' : ↑x' = x := rfl
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } ⊢ ⟪p, x⟫_ℝ ≤ 1
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ ⟪p, x⟫_ℝ ≤ 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [← hx', real_inner_comm, ←mem_pointDual]
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ ⟪p, x⟫_ℝ ≤ 1
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ p ∈ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
suffices h : S ⊆ SetLike.coe (pointDual x') from by apply convexHull_min h <| Halfspace_convex (pointDual x') exact hp
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ p ∈ ↑(pointDual x')
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ S ⊆ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
intro s hs
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x ⊢ S ⊆ ↑(pointDual x')
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x s : E hs : s ∈ S ⊢ s ∈ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
cases' (em (s = 0)) with h h
case h.a.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h } hx' : ↑x' = x s : E hs : s ∈ S ⊢ s ∈ ↑(pointDual x')
case h.a.inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : s = 0 ⊢ s ∈ ↑(pointDual x') case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ s ∈ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
specialize hx (pointDual ⟨ s, h ⟩) (Set.mem_image_of_mem _ ?_)
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ s ∈ ↑(pointDual x')
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ { val := s, property := h } ∈ Subtype.val ⁻¹' (S \ {0}) case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ↑(pointDual { val := s, property := h }).f x ≤ (pointDual { val := s, property := h }).α ⊢ s ∈ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [← Halfspace_mem, mem_pointDual, Subtype.coe_mk] at hx
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ↑(pointDual { val := s, property := h }).f x ≤ (pointDual { val := s, property := h }).α ⊢ s ∈ ↑(pointDual x')
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ⟪s, x⟫_ℝ ≤ 1 ⊢ s ∈ ↑(pointDual x')
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [mem_pointDual, Subtype.coe_mk, real_inner_comm]
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ⟪s, x⟫_ℝ ≤ 1 ⊢ s ∈ ↑(pointDual x')
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ⟪s, x⟫_ℝ ≤ 1 ⊢ ⟪s, x⟫_ℝ ≤ 1
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact hx
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 hx : ⟪s, x⟫_ℝ ≤ 1 ⊢ ⟪s, x⟫_ℝ ≤ 1
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [h]
case h.a.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : x = 0 ⊢ x ∈ polarDual (Vpolytope hS)
case h.a.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : x = 0 ⊢ 0 ∈ polarDual (Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact polarDual_origin (Vpolytope hS)
case h.a.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ Hpolytope ⋯ h : x = 0 ⊢ 0 ∈ polarDual (Vpolytope hS)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply convexHull_min h <| Halfspace_convex (pointDual x')
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x h : S ⊆ ↑(pointDual x') ⊢ p ∈ ↑(pointDual x')
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x h : S ⊆ ↑(pointDual x') ⊢ p ∈ (convexHull ℝ) S
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact hp
case a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x h : S ⊆ ↑(pointDual x') ⊢ p ∈ (convexHull ℝ) S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact h ▸ pointDual_origin x'
case h.a.inr.inl E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : s = 0 ⊢ s ∈ ↑(pointDual x')
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [Set.mem_preimage, Subtype.coe_mk, Set.mem_diff]
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ { val := s, property := h } ∈ Subtype.val ⁻¹' (S \ {0})
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ s ∈ S ∧ s ∉ {0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact ⟨ hs, h ⟩
case h.a.inr.inr E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : ∀ Hi ∈ pointDual '' (Subtype.val ⁻¹' (S \ {0})), ↑Hi.f x ≤ Hi.α h✝ : ¬x = 0 p : E hp : p ∈ Vpolytope hS x' : { p // p ≠ 0 } := { val := x, property := h✝ } hx' : ↑x' = x s : E hs : s ∈ S h : ¬s = 0 ⊢ s ∈ S ∧ s ∉ {0}
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.sInter_subset_sInter
case h.a E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ polarDual (Vpolytope hS) ⊆ Hpolytope ⋯
case h.a.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' (S \ {0}))) ⊆ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' Vpolytope hS))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.image_subset
case h.a.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' (S \ {0}))) ⊆ SetLike.coe '' (pointDual '' (Subtype.val ⁻¹' Vpolytope hS))
case h.a.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ pointDual '' (Subtype.val ⁻¹' (S \ {0})) ⊆ pointDual '' (Subtype.val ⁻¹' Vpolytope hS)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply Set.image_subset
case h.a.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ pointDual '' (Subtype.val ⁻¹' (S \ {0})) ⊆ pointDual '' (Subtype.val ⁻¹' Vpolytope hS)
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Subtype.val ⁻¹' (S \ {0}) ⊆ Subtype.val ⁻¹' Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [Set.preimage_subset_preimage_iff]
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ Subtype.val ⁻¹' (S \ {0}) ⊆ Subtype.val ⁻¹' Vpolytope hS
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Vpolytope hS case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
apply subset_trans (by simp) <| subset_convexHull _ _
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Vpolytope hS case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Set.range Subtype.val
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Set.range Subtype.val
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [Subtype.range_coe_subtype]
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ Set.range Subtype.val
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ {x | x ≠ 0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
intro x hx
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ {x | x ≠ 0}
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S \ {0} ⊢ x ∈ {x | x ≠ 0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [Set.mem_diff, Set.mem_singleton_iff] at hx
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S \ {0} ⊢ x ∈ {x | x ≠ 0}
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S ∧ ¬x = 0 ⊢ x ∈ {x | x ≠ 0}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
rw [Set.mem_setOf]
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S ∧ ¬x = 0 ⊢ x ∈ {x | x ≠ 0}
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S ∧ ¬x = 0 ⊢ x ≠ 0
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
exact hx.2
case h.a.h.h.h E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) x : E hx : x ∈ S ∧ ¬x = 0 ⊢ x ≠ 0
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
DualOfVpolytope_compactHpolytope
[341, 1]
[417, 7]
simp
E : Type inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace ℝ E inst✝¹ : CompleteSpace E inst✝ : FiniteDimensional ℝ E S : Set E hS : Set.Finite S hS0 : 0 ∈ interior (Vpolytope hS) ⊢ S \ {0} ⊆ S
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
intro H_ hH_ hHcpt
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E ⊢ ∀ {H_ : Set (Halfspace E)} (hH_ : Set.Finite H_), IsCompact (Hpolytope hH_) → ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) ⊢ ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have : closure (convexHull ℝ ((Hpolytope hH_).extremePoints ℝ)) = Hpolytope hH_ := closure_convexHull_extremePoints hHcpt (Convex_Hpolytope hH_)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) ⊢ ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [← this, IsClosed.closure_eq]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ S, ∃ (hS : Set.Finite S), Hpolytope hH_ = Vpolytope hS
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ S, ∃ (hS : Set.Finite S), (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hS E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
use (Hpolytope hH_).extremePoints ℝ
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ S, ∃ (hS : Set.Finite S), (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hS E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ (hS : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))), (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hS E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
use hExHFinite
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ ∃ (hS : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))), (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hS E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hExHFinite E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rfl
case h E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ (convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)) = Vpolytope hExHFinite E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
exact Closed_Vpolytope hExHFinite
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) hExHFinite : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) this : closure ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_))) = Hpolytope hH_ ⊢ IsClosed ((convexHull ℝ) (Set.extremePoints ℝ (Hpolytope hH_)))
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have := ExtremePointsofHpolytope hH_
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
let g : E ↪ Set E := ⟨ fun x : E => Set.singleton x, Set.singleton_injective ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rcases Set.Finite.exists_finset_coe hH_ with ⟨ Hfin, hHfin ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
let PHfin := Hfin.powerset
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
let PH := Finset.toSet '' PHfin.toSet
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have hPH : PH.Finite := PHfin.finite_toSet.image _
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have hfPH : (f '' PH).Finite := hPH.image f
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have hgExFin : Set.Finite <| g '' (Set.extremePoints ℝ (Hpolytope hH_)) := Set.Finite.subset hfPH hgfPH
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
have := hgExFin.preimage_embedding g
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [Function.Injective.preimage_image] at this
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_))
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) case intro.hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Function.Injective ⇑g
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
exact this
case intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) ⊢ Set.Finite (Set.extremePoints ℝ (Hpolytope hH_)) case intro.hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Function.Injective ⇑g
case intro.hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Function.Injective ⇑g
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
exact g.2
case intro.hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this✝ : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) hgfPH : ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH hgExFin : Set.Finite (⇑g '' Set.extremePoints ℝ (Hpolytope hH_)) this : Set.Finite (⇑g ⁻¹' (⇑g '' Set.extremePoints ℝ (Hpolytope hH_))) ⊢ Function.Injective ⇑g
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
intro Sx hSx
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) ⊢ ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊆ f '' PH
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) Sx : Set E hSx : Sx ∈ ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊢ Sx ∈ f '' PH
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rcases hSx with ⟨ x, hx, rfl ⟩
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) Sx : Set E hSx : Sx ∈ ⇑g '' Set.extremePoints ℝ (Hpolytope hH_) ⊢ Sx ∈ f '' PH
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ g x ∈ f '' PH
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
change {x} ∈ f '' PH
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ g x ∈ f '' PH
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ {x} ∈ f '' PH
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [PH.mem_image]
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ {x} ∈ f '' PH
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∃ x_1 ∈ PH, f x_1 = {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
refine ⟨ Hpolytope.I H_ x, ?_, ?_ ⟩
case intro.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∃ x_1 ∈ PH, f x_1 = {x}
case intro.intro.refine_1 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ Hpolytope.I H_ x ∈ PH case intro.intro.refine_2 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ f (Hpolytope.I H_ x) = {x}
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [Set.mem_image]
case intro.intro.refine_1 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ Hpolytope.I H_ x ∈ PH
case intro.intro.refine_1 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∃ x_1 ∈ ↑PHfin, ↑x_1 = Hpolytope.I H_ x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rcases (hH_.subset (Hpolytope.I_sub x)).exists_finset_coe with ⟨ Ifin, hIfin ⟩
case intro.intro.refine_1 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ ∃ x_1 ∈ ↑PHfin, ↑x_1 = Hpolytope.I H_ x
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ ∃ x_1 ∈ ↑PHfin, ↑x_1 = Hpolytope.I H_ x
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
refine ⟨ Ifin, ?_, hIfin ⟩
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ ∃ x_1 ∈ ↑PHfin, ↑x_1 = Hpolytope.I H_ x
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ Ifin ∈ ↑PHfin
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [Finset.mem_coe, Finset.mem_powerset, ← Finset.coe_subset, hHfin, hIfin]
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ Ifin ∈ ↑PHfin
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ Hpolytope.I H_ x ⊆ H_
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
exact Hpolytope.I_sub x
case intro.intro.refine_1.intro E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) Ifin : Finset (Halfspace E) hIfin : ↑Ifin = Hpolytope.I H_ x ⊢ Hpolytope.I H_ x ⊆ H_
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
rw [← ExtremePointsofHpolytope hH_ x (extremePoints_subset hx)]
case intro.intro.refine_2 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ f (Hpolytope.I H_ x) = {x}
case intro.intro.refine_2 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Vpolytope_of_Hpolytope
[419, 1]
[476, 7]
exact hx
case intro.intro.refine_2 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : CompleteSpace E H_ : Set (Halfspace E) hH_ : Set.Finite H_ hHcpt : IsCompact (Hpolytope hH_) this : ∀ x ∈ Hpolytope hH_, x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} f : Set (Halfspace E) → Set E := fun T => ⋂₀ ((fun x => frontier ↑x) '' T) g : E ↪ Set E := { toFun := fun x => Set.singleton x, inj' := ⋯ } Hfin : Finset (Halfspace E) hHfin : ↑Hfin = H_ PHfin : Finset (Finset (Halfspace E)) := Finset.powerset Hfin PH : Set (Set (Halfspace E)) := Finset.toSet '' ↑PHfin hPH : Set.Finite PH hfPH : Set.Finite (f '' PH) x : E hx : x ∈ Set.extremePoints ℝ (Hpolytope hH_) ⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
cases' hStrivial.eq_empty_or_singleton with hSempty hSsingleton
E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case inl E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSempty : S = ∅ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS case inr E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSsingleton : ∃ x, S = {x} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
rw [Vpolytope, hSempty, convexHull_empty]
case inl E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSempty : S = ∅ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case inl E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSempty : S = ∅ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
exact empty_Hpolytope
case inl E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSempty : S = ∅ ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = ∅
no goals
https://github.com/Jun2M/Main-theorem-of-polytopes.git
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
src/MainTheorem.lean
Hpolytope_of_Vpolytope_subsingleton
[478, 1]
[490, 7]
rcases hSsingleton with ⟨ x, hx ⟩
case inr E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S hSsingleton : ∃ x, S = {x} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS
case inr.intro E : Type inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : FiniteDimensional ℝ E inst✝ : Nontrivial E S : Set E hS : Set.Finite S hStrivial : Set.Subsingleton S x : E hx : S = {x} ⊢ ∃ H_, ∃ (hH_ : Set.Finite H_), Hpolytope hH_ = Vpolytope hS