url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
rw [← Matrix.nonsing_inv_nonsing_inv M (isUnit_det_of_PosDef_inv hM)]
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M⁻¹⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
apply hM.nonsingular_inv
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M⁻¹⁻¹.PosDef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
intros hM
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosDef ⊢ M⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
exact hM.nonsingular_inv
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosDef ⊢ M⁻¹.PosDef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
let h_A_IsHermitian := hA.1
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : A.IsHermitian := hA.left ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
rw [Matrix.isHermitian_iff_isSymmetric] at h_A_IsHermitian
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : A.IsHermitian := hA.left ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : (toEuclideanLin A).IsSymmetric ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp [LinearMap.IsSymmetric, toEuclideanLin] at h_A_IsHermitian
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : (toEuclideanLin A).IsSymmetric ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
apply IsSymm.ext
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ A.IsSymm
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ ∀ (i j : Fin n), A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
intros i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ ∀ (i j : Fin n), A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hAij := h_A_IsHermitian (fun k => if k = i then 1 else 0) (fun k => if k = j then 1 else 0)
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hi : (Finset.sum Finset.univ fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i := by simp
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hj : (Finset.sum Finset.univ fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j := by simp
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp [WithLp.equiv, mulVec, dotProduct] at hAij
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
erw [hi, hj] at hAij
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : A j i = A i j ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
rw [hAij]
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : A j i = A i j ⊢ A j i = A i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_eq_sum_div
[12, 1]
[17, 42]
unfold Vec.sum
n : ℕ x : Fin n → ℝ t : ℝ ⊢ sum (exp (x - const n t)) = sum (exp x) / t.exp
n : ℕ x : Fin n → ℝ t : ℝ ⊢ (Finset.univ.sum fun i => exp (x - const n t) i) = (Finset.univ.sum fun i => exp x i) / t.exp
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_eq_sum_div
[12, 1]
[17, 42]
rw [Finset.sum_div]
n : ℕ x : Fin n → ℝ t : ℝ ⊢ (Finset.univ.sum fun i => exp (x - const n t) i) = (Finset.univ.sum fun i => exp x i) / t.exp
n : ℕ x : Fin n → ℝ t : ℝ ⊢ (Finset.univ.sum fun i => exp (x - const n t) i) = Finset.univ.sum fun i => exp x i / t.exp
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_eq_sum_div
[12, 1]
[17, 42]
congr
n : ℕ x : Fin n → ℝ t : ℝ ⊢ (Finset.univ.sum fun i => exp (x - const n t) i) = Finset.univ.sum fun i => exp x i / t.exp
case e_f n : ℕ x : Fin n → ℝ t : ℝ ⊢ (fun i => exp (x - const n t) i) = fun i => exp x i / t.exp
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_eq_sum_div
[12, 1]
[17, 42]
ext i
case e_f n : ℕ x : Fin n → ℝ t : ℝ ⊢ (fun i => exp (x - const n t) i) = fun i => exp x i / t.exp
case e_f.h n : ℕ x : Fin n → ℝ t : ℝ i : Fin n ⊢ exp (x - const n t) i = exp x i / t.exp
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_eq_sum_div
[12, 1]
[17, 42]
simp [Vec.exp, Vec.const, Real.exp_sub]
case e_f.h n : ℕ x : Fin n → ℝ t : ℝ i : Fin n ⊢ exp (x - const n t) i = exp x i / t.exp
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
apply Finset.sum_pos
n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ 0 < sum (exp x)
case h n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ ∀ i ∈ Finset.univ, 0 < exp x i case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ Finset.univ.Nonempty
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
{ intros i _; simp [Vec.exp, Real.exp_pos] }
case h n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ ∀ i ∈ Finset.univ, 0 < exp x i case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ Finset.univ.Nonempty
case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ Finset.univ.Nonempty
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
{ existsi ⟨0, hn⟩; simp }
case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ Finset.univ.Nonempty
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
intros i _
case h n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ ∀ i ∈ Finset.univ, 0 < exp x i
case h n : ℕ hn : 0 < n x : Fin n → ℝ i : Fin n a✝ : i ∈ Finset.univ ⊢ 0 < exp x i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
simp [Vec.exp, Real.exp_pos]
case h n : ℕ hn : 0 < n x : Fin n → ℝ i : Fin n a✝ : i ∈ Finset.univ ⊢ 0 < exp x i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
existsi ⟨0, hn⟩
case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ Finset.univ.Nonempty
case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ ⟨0, hn⟩ ∈ Finset.univ
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LogSumExp.lean
Vec.sum_exp_pos
[19, 1]
[23, 28]
simp
case hs n : ℕ hn : 0 < n x : Fin n → ℝ ⊢ ⟨0, hn⟩ ∈ Finset.univ
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.abs_le_of_sqrt_sq_add_nonneg_le
[64, 1]
[69, 50]
rw [sqrt_le_iff] at h
a b c : ℝ hb : 0 ≤ b h : (a ^ 2 + b).sqrt ≤ c ⊢ |a| ≤ c
a b c : ℝ hb : 0 ≤ b h : 0 ≤ c ∧ a ^ 2 + b ≤ c ^ 2 ⊢ |a| ≤ c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.abs_le_of_sqrt_sq_add_nonneg_le
[64, 1]
[69, 50]
replace ⟨hc, h⟩ := h
a b c : ℝ hb : 0 ≤ b h : 0 ≤ c ∧ a ^ 2 + b ≤ c ^ 2 ⊢ |a| ≤ c
a b c : ℝ hb : 0 ≤ b hc : 0 ≤ c h : a ^ 2 + b ≤ c ^ 2 ⊢ |a| ≤ c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.abs_le_of_sqrt_sq_add_nonneg_le
[64, 1]
[69, 50]
replace h := le_trans (le_add_of_nonneg_right hb) h
a b c : ℝ hb : 0 ≤ b hc : 0 ≤ c h : a ^ 2 + b ≤ c ^ 2 ⊢ |a| ≤ c
a b c : ℝ hb : 0 ≤ b hc : 0 ≤ c h : a ^ 2 ≤ c ^ 2 ⊢ |a| ≤ c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.abs_le_of_sqrt_sq_add_nonneg_le
[64, 1]
[69, 50]
rwa [rpow_two, sq_le_sq, abs_of_nonneg hc] at h
a b c : ℝ hb : 0 ≤ b hc : 0 ≤ c h : a ^ 2 ≤ c ^ 2 ⊢ |a| ≤ c
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
rw [h]
x y : ℝ hx : 0 < x hy : 0 < y h : x = y ⊢ x.log = y.log
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
have hxmem := Set.mem_Ioi.2 hx
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log ⊢ x = y
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 ⊢ x = y
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
have hymem := Set.mem_Ioi.2 hy
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 ⊢ x = y
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 ⊢ x = y
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
have heq : Set.restrict (Set.Ioi 0) log ⟨x, hxmem⟩ = Set.restrict (Set.Ioi 0) log ⟨y, hymem⟩ := by simp [h]
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 ⊢ x = y
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ ⊢ x = y
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
have h := log_injOn_pos.injective heq
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ ⊢ x = y
x y : ℝ hx : 0 < x hy : 0 < y h✝ : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ h : ⟨x, hxmem⟩ = ⟨y, hymem⟩ ⊢ x = y
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
simp [Subtype.eq] at h
x y : ℝ hx : 0 < x hy : 0 < y h✝ : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ h : ⟨x, hxmem⟩ = ⟨y, hymem⟩ ⊢ x = y
x y : ℝ hx : 0 < x hy : 0 < y h✝ : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ h : x = y ⊢ x = y
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
exact h
x y : ℝ hx : 0 < x hy : 0 < y h✝ : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 heq : (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩ h : x = y ⊢ x = y
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.log_eq_log
[73, 1]
[83, 13]
simp [h]
x y : ℝ hx : 0 < x hy : 0 < y h : x.log = y.log hxmem : x ∈ Set.Ioi 0 hymem : y ∈ Set.Ioi 0 ⊢ (Set.Ioi 0).restrict log ⟨x, hxmem⟩ = (Set.Ioi 0).restrict log ⟨y, hymem⟩
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.div_pow_eq_mul_pow_neg
[85, 1]
[87, 37]
rw [div_eq_mul_inv, ← rpow_neg hb]
a b c : ℝ hb : 0 ≤ b ⊢ a / b ^ c = a * b ^ (-c)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.one_div_eq_pow_neg_one
[89, 1]
[90, 65]
rw [rpow_neg (le_of_lt ha), rpow_one, div_eq_mul_inv, one_mul]
a : ℝ ha : 0 < a ⊢ 1 / a = a ^ (-1)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.inv_eq_pow_neg_one
[92, 1]
[93, 49]
rw [inv_eq_one_div, one_div_eq_pow_neg_one ha]
a : ℝ ha : 0 < a ⊢ a⁻¹ = a ^ (-1)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.pow_half_two
[95, 1]
[98, 11]
show rpow (rpow _ _) _ = _
x : ℝ hx : 0 ≤ x ⊢ (x ^ (1 / 2)) ^ 2 = x
x : ℝ hx : 0 ≤ x ⊢ (x.rpow (1 / 2)).rpow 2 = x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.pow_half_two
[95, 1]
[98, 11]
rw [rpow_eq_pow, rpow_eq_pow, ← rpow_mul hx]
x : ℝ hx : 0 ≤ x ⊢ (x.rpow (1 / 2)).rpow 2 = x
x : ℝ hx : 0 ≤ x ⊢ x ^ (1 / 2 * 2) = x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.pow_half_two
[95, 1]
[98, 11]
norm_num
x : ℝ hx : 0 ≤ x ⊢ x ^ (1 / 2 * 2) = x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.pow_two_le_pow_two
[100, 1]
[102, 72]
rw [rpow_two, rpow_two, sq_le_sq, abs_of_nonneg hx, abs_of_nonneg hy]
x y : ℝ hx : 0 ≤ x hy : 0 ≤ y ⊢ x ^ 2 ≤ y ^ 2 ↔ x ≤ y
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.binomial_two
[104, 1]
[106, 29]
ring
x y : ℝ ⊢ (x + y) ^ 2 = x ^ 2 + (2 * (x * y) + y ^ 2)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.rpow_eq_mul_rpow_pred
[108, 1]
[110, 76]
conv => left; rw [(by ring : y = (y - 1) + 1), rpow_add_one hx, mul_comm]
x y : ℝ hx : x ≠ 0 ⊢ x ^ y = x * x ^ (y - 1)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.rpow_eq_mul_rpow_pred
[108, 1]
[110, 76]
ring
x y : ℝ hx : x ≠ 0 ⊢ y = y - 1 + 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Real.lean
Real.exp_neg_eq_one_div
[112, 1]
[113, 31]
rw [exp_neg, inv_eq_one_div]
x : ℝ ⊢ (-x).exp = 1 / x.exp
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal'
[36, 1]
[40, 71]
rintro ⟨i, i'⟩ ⟨j, j'⟩ h
α : Type u_1 β : Type ?u.1255 m : Type ?u.1258 n : Type ?u.1261 o : Type ?u.1264 m' : α → Type u_2 n' : α → Type ?u.1274 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : (i : α) → Matrix (m' i) (m' i) R ⊢ (blockDiagonal' d).BlockTriangular Sigma.fst
case mk.mk α : Type u_1 β : Type ?u.1255 m : Type ?u.1258 n : Type ?u.1261 o : Type ?u.1264 m' : α → Type u_2 n' : α → Type ?u.1274 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : (i : α) → Matrix (m' i) (m' i) R i : α i' : m' i j : α j' : m' j h : ⟨j, j'⟩.fst < ⟨i, i'⟩.fst ⊢ blockDiagonal' d ⟨i, i'⟩ ⟨j, j'⟩ = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal'
[36, 1]
[40, 71]
apply blockDiagonal'_apply_ne d i' j' (fun h' => ne_of_lt h h'.symm)
case mk.mk α : Type u_1 β : Type ?u.1255 m : Type ?u.1258 n : Type ?u.1261 o : Type ?u.1264 m' : α → Type u_2 n' : α → Type ?u.1274 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : (i : α) → Matrix (m' i) (m' i) R i : α i' : m' i j : α j' : m' j h : ⟨j, j'⟩.fst < ⟨i, i'⟩.fst ⊢ blockDiagonal' d ⟨i, i'⟩ ⟨j, j'⟩ = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
rintro ⟨i, i'⟩ ⟨j, j'⟩ h
α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R ⊢ (blockDiagonal d).BlockTriangular Prod.snd
case mk.mk α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ blockDiagonal d (i, i') (j, j') = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
rw [blockDiagonal'_eq_blockDiagonal, BlockTriangular_blockDiagonal']
case mk.mk α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ blockDiagonal d (i, i') (j, j') = 0
case mk.mk.a α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ ⟨j', j⟩.fst < ⟨i', i⟩.fst
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.BlockTriangular_blockDiagonal
[42, 1]
[46, 10]
exact h
case mk.mk.a α : Type u_1 β : Type ?u.2091 m : Type u_2 n : Type ?u.2097 o : Type ?u.2100 m' : α → Type ?u.2105 n' : α → Type ?u.2110 R : Type v inst✝² : CommRing R M : Matrix m m R b : m → α inst✝¹ : Preorder α inst✝ : DecidableEq α d : α → Matrix m m R i : m i' : α j : m j' : α h : (j, j').2 < (i, i').2 ⊢ ⟨j', j⟩.fst < ⟨i', i⟩.fst
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
let p := (fun i => b i < k)
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
have h_sum : M⁻¹.toBlock p p * M.toBlock p p + M⁻¹.toBlock p (fun i => ¬ p i) * M.toBlock (fun i => ¬ p i) p = 1 := by rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
have h_zero : M.toBlock (fun i => ¬ p i) p = 0 := by { ext i j simpa using hM (lt_of_lt_of_le j.2 (le_of_not_lt i.2)) }
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : M.toBlock (fun i => ¬p i) p = 0 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
simpa [h_zero] using h_sum
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : M.toBlock (fun i => ¬p i) p = 0 ⊢ ((M⁻¹.toBlock (fun i => b i < k) fun i => b i < k) * M.toBlock (fun i => b i < k) fun i => b i < k) = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k ⊢ M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
ext i j
α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M.toBlock (fun i => ¬p i) p = 0
case a α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // ¬p a } j : { a // p a } ⊢ M.toBlock (fun i => ¬p i) p i j = 0 i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toBlock_inverse_mul_toBlock_eq_one_of_BlockTriangular
[52, 1]
[63, 29]
simpa using hM (lt_of_lt_of_le j.2 (le_of_not_lt i.2))
case a α : Type u_1 β : Type ?u.3857 m : Type u_2 n : Type ?u.3863 o : Type ?u.3866 m' : α → Type ?u.3871 n' : α → Type ?u.3876 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i < k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // ¬p a } j : { a // p a } ⊢ M.toBlock (fun i => ¬p i) p i j = 0 i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
let p := (λ i => b i = k)
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_sum : M⁻¹.toBlock p p * M.toBlock p p + M⁻¹.toBlock p (λ i => ¬ p i) * M.toBlock (λ i => ¬ p i) p = 1 := by rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_zero : ∀ i j l, M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 := by { intro i j l by_cases hj : b j.1 ≤ k { have hj := lt_of_le_of_ne hj j.2 have hM' := blockTriangular_inv_of_blockTriangular hM apply mul_eq_zero_of_left simpa using hM' (lt_of_lt_of_eq hj i.2.symm) } { have hj := lt_of_not_ge hj apply mul_eq_zero_of_right simpa using hM (lt_of_eq_of_lt l.2 hj) }}
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have h_zero' : M⁻¹.toBlock p (λ (i : m) => ¬p i) * M.toBlock (λ (i : m) => ¬p i) p = 0 := by { ext i l apply sum_eq_zero (λ j _ => h_zero i j l) }
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 h_zero' : (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa [h_zero'] using h_sum
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 h_zero' : (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0 ⊢ M⁻¹.toSquareBlock b k * M.toSquareBlock b k = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
rw [← toBlock_mul_eq_add, inv_mul_of_invertible M, toBlock_one_self]
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k ⊢ M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
intro i j l
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 ⊢ ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
by_cases hj : b j.1 ≤ k
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
{ have hj := lt_of_le_of_ne hj j.2 have hM' := blockTriangular_inv_of_blockTriangular hM apply mul_eq_zero_of_left simpa using hM' (lt_of_lt_of_eq hj i.2.symm) }
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
{ have hj := lt_of_not_ge hj apply mul_eq_zero_of_right simpa using hM (lt_of_eq_of_lt l.2 hj) }
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hj := lt_of_le_of_ne hj j.2
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hM' := blockTriangular_inv_of_blockTriangular hM
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply mul_eq_zero_of_left
case pos α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case pos.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa using hM' (lt_of_lt_of_eq hj i.2.symm)
case pos.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : b ↑j ≤ k hj : b ↑j < k hM' : M⁻¹.BlockTriangular b ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
have hj := lt_of_not_ge hj
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj : ¬b ↑j ≤ k ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply mul_eq_zero_of_right
case neg α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0
case neg.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M.toBlock (fun i => ¬p i) p j l = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
simpa using hM (lt_of_eq_of_lt l.2 hj)
case neg.h α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 i : { a // p a } j : { a // (fun i => ¬p i) a } l : { a // p a } hj✝ : ¬b ↑j ≤ k hj : k < b ↑j ⊢ M.toBlock (fun i => ¬p i) p j l = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
ext i l
α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 ⊢ (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 0
case a α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 i l : { a // p a } ⊢ ((M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p) i l = 0 i l
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Block.lean
Matrix.toSquareBlock_inv_mul_toSquareBlock_eq_one
[82, 1]
[104, 30]
apply sum_eq_zero (λ j _ => h_zero i j l)
case a α : Type u_1 β : Type ?u.27607 m : Type u_2 n : Type ?u.27613 o : Type ?u.27616 m' : α → Type ?u.27621 n' : α → Type ?u.27626 R : Type v inst✝⁶ : CommRing R M : Matrix m m R b : m → α inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : LinearOrder α inst✝ : Invertible M hM : M.BlockTriangular b k : α p : m → Prop := fun i => b i = k h_sum : M⁻¹.toBlock p p * M.toBlock p p + (M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p = 1 h_zero : ∀ (i : { a // p a }) (j : { a // (fun i => ¬p i) a }) (l : { a // p a }), M⁻¹.toBlock p (fun i => ¬p i) i j * M.toBlock (fun i => ¬p i) p j l = 0 i l : { a // p a } ⊢ ((M⁻¹.toBlock p fun i => ¬p i) * M.toBlock (fun i => ¬p i) p) i l = 0 i l
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
constructor
m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c ↔ a ≤ c * b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c → a ≤ c * b case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a ≤ c * b → a / b ≤ c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
intro h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a / b ≤ c → a ≤ c * b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
have hi := h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : (a / b) i ≤ c i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
simp at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : (a / b) i ≤ c i ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i / b i ≤ c i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
rw [_root_.div_le_iff (hb i)] at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i / b i ≤ c i ⊢ a i ≤ (c * b) i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i ≤ c i * b i ⊢ a i ≤ (c * b) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
exact hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a / b ≤ c i : m hi : a i ≤ c i * b i ⊢ a i ≤ (c * b) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
intro h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b ⊢ a ≤ c * b → a / b ≤ c
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
have hi := h i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ (c * b) i ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
simp at hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ (c * b) i ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ (a / b) i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
dsimp
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ (a / b) i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i / b i ≤ c i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
rw [_root_.div_le_iff (hb i)]
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i / b i ≤ c i
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i ≤ c i * b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.div_le_iff
[104, 1]
[109, 51]
exact hi
case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hb : StrongLT 0 b h : a ≤ c * b i : m hi : a i ≤ c i * b i ⊢ a i ≤ c i * b i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
constructor
m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c ↔ a * c ≤ b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c → a * c ≤ b case mpr m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a * c ≤ b → a ≤ b / c
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
intro h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c ⊢ a ≤ b / c → a * c ≤ b
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
have hi := h i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ (b / c) i ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
simp at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ (b / c) i ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ b i / c i ⊢ (a * c) i ≤ b i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Vec.lean
Vec.le_div_iff
[111, 1]
[116, 51]
rw [_root_.le_div_iff (hc i)] at hi
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i ≤ b i / c i ⊢ (a * c) i ≤ b i
case mp m : Type u n : Type v inst✝¹ : Fintype m inst✝ : Fintype n α : Type w a b c : m → ℝ hc : StrongLT 0 c h : a ≤ b / c i : m hi : a i * c i ≤ b i ⊢ (a * c) i ≤ b i