url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Finset.one_add_prod_le_prod_one_add
[19, 1]
[32, 37]
convert @Finset.sum_le_univ_sum_of_nonneg (Finset n) ℝ _ _ _ _ _
n : Type u_1 inst✝¹ : Fintype n inst✝ : Nonempty n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∑ x ∈ {univ, ∅}, (∏ _a ∈ x, 1) * ∏ a ∈ univ \ x, f a ≤ ∑ t : Finset n, (∏ _a ∈ t, 1) * ∏ a ∈ univ \ t, f a
case convert_3 n : Type u_1 inst✝¹ : Fintype n inst✝ : Nonempty n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∀ (x : Finset n), 0 ≤ (∏ _a ∈ x, 1) * ∏ a ∈ univ \ x, f a
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Finset.one_add_prod_le_prod_one_add
[19, 1]
[32, 37]
simp [hf, prod_nonneg]
case convert_3 n : Type u_1 inst✝¹ : Fintype n inst✝ : Nonempty n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∀ (x : Finset n), 0 ≤ (∏ _a ∈ x, 1) * ∏ a ∈ univ \ x, f a
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Finset.one_add_prod_le_prod_one_add
[19, 1]
[32, 37]
rw [prod_add, powerset_univ]
n : Type u_1 inst✝¹ : Fintype n inst✝ : Nonempty n f : n → ℝ hf : ∀ (i : n), 0 ≤ f i ⊢ ∑ t : Finset n, (∏ _a ∈ t, 1) * ∏ a ∈ univ \ t, f a = ∏ i : n, (1 + f i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.IsHermitian.eigenvectorMatrix_inv_mul
[46, 1]
[47, 41]
apply Basis.toMatrix_mul_toMatrix_flip
n : Type u_1 inst✝⁵ : Fintype n inst✝⁴ : DecidableEq n inst✝³ : LinearOrder n inst✝² : LocallyFiniteOrderBot n 𝕜 : Type u_2 inst✝¹ : DecidableEq 𝕜 inst✝ : RCLike 𝕜 A : Matrix n n 𝕜 hA : A.IsHermitian ⊢ hA.eigenvectorMatrixInv * hA.eigenvectorMatrix = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.IsHermitian.spectral_theorem''
[50, 1]
[54, 67]
rw [conjTranspose_eigenvectorMatrix, Matrix.mul_assoc, ← spectral_theorem, ← Matrix.mul_assoc, eigenvectorMatrix_mul_inv, Matrix.one_mul]
n : Type u_1 inst✝⁵ : Fintype n inst✝⁴ : DecidableEq n inst✝³ : LinearOrder n inst✝² : LocallyFiniteOrderBot n 𝕜 : Type u_2 inst✝¹ : DecidableEq 𝕜 inst✝ : RCLike 𝕜 A : Matrix n n 𝕜 hA : A.IsHermitian ⊢ hA.eigenvectorMatrix * diagonal (RCLike.ofReal ∘ hA.eigenvalues) * hA.eigenvectorMatrix.conjTranspose = A
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.sqrt_mul_sqrt
[63, 1]
[78, 11]
simp [IsHermitian.sqrt, Matrix.mul_assoc]
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef ⊢ ⋯.sqrt * ⋯.sqrt = ⋯.eigenvectorMatrix * ((diagonal fun i => (⋯.eigenvalues i).sqrt) * (⋯.eigenvectorMatrix.transpose * ⋯.eigenvectorMatrix) * diagonal fun i => (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.transpose
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.sqrt_mul_sqrt
[63, 1]
[78, 11]
rw [← conjTranspose_eq_transpose, hA.1.conjTranspose_eigenvectorMatrix, hA.1.eigenvectorMatrix_inv_mul, Matrix.mul_one, diagonal_mul_diagonal, ← hA.1.conjTranspose_eigenvectorMatrix]
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef ⊢ ⋯.eigenvectorMatrix * ((diagonal fun i => (⋯.eigenvalues i).sqrt) * (⋯.eigenvectorMatrix.transpose * ⋯.eigenvectorMatrix) * diagonal fun i => (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.transpose = A
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef ⊢ (⋯.eigenvectorMatrix * diagonal fun i => (⋯.eigenvalues i).sqrt * (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.conjTranspose = A
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.sqrt_mul_sqrt
[63, 1]
[78, 11]
convert hA.1.spectral_theorem''
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef ⊢ (⋯.eigenvectorMatrix * diagonal fun i => (⋯.eigenvalues i).sqrt * (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.conjTranspose = A
case h.e'_2.h.e'_5.h.e'_6.h.e'_5.h n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef x✝ : n ⊢ (⋯.eigenvalues x✝).sqrt * (⋯.eigenvalues x✝).sqrt = (RCLike.ofReal ∘ ⋯.eigenvalues) x✝
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.sqrt_mul_sqrt
[63, 1]
[78, 11]
rw [← Real.sqrt_mul (hA.eigenvalues_nonneg _), Real.sqrt_mul_self (hA.eigenvalues_nonneg _)]
case h.e'_2.h.e'_5.h.e'_6.h.e'_5.h n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef x✝ : n ⊢ (⋯.eigenvalues x✝).sqrt * (⋯.eigenvalues x✝).sqrt = (RCLike.ofReal ∘ ⋯.eigenvalues) x✝
case h.e'_2.h.e'_5.h.e'_6.h.e'_5.h n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef x✝ : n ⊢ ⋯.eigenvalues x✝ = (RCLike.ofReal ∘ ⋯.eigenvalues) x✝
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.sqrt_mul_sqrt
[63, 1]
[78, 11]
simp
case h.e'_2.h.e'_5.h.e'_6.h.e'_5.h n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosSemidef x✝ : n ⊢ ⋯.eigenvalues x✝ = (RCLike.ofReal ∘ ⋯.eigenvalues) x✝
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.IsHermitian.one_add
[85, 1]
[86, 55]
dsimp [IsHermitian]
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.IsHermitian ⊢ (1 + A).IsHermitian
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.IsHermitian ⊢ (1 + A).conjTranspose = 1 + A
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.IsHermitian.one_add
[85, 1]
[86, 55]
rw [IsHermitian.add _ hA]
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.IsHermitian ⊢ (1 + A).conjTranspose = 1 + A
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.IsHermitian ⊢ IsHermitian 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.IsHermitian.one_add
[85, 1]
[86, 55]
simp
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.IsHermitian ⊢ IsHermitian 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosDef.PosDef_sqrt
[95, 1]
[102, 68]
unfold IsHermitian.sqrt
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ⋯.sqrt.PosDef
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ((⋯.eigenvectorMatrix * diagonal fun i => (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.transpose).PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosDef.PosDef_sqrt
[95, 1]
[102, 68]
refine' PosDef.conjTranspose_mul_mul _ (hA.1.eigenvectorMatrixᵀ) (PosDef_diagonal (fun i => Real.sqrt_pos.2 (hA.eigenvalues_pos i))) _
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ((⋯.eigenvectorMatrix * diagonal fun i => (⋯.eigenvalues i).sqrt) * ⋯.eigenvectorMatrix.transpose).PosDef
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ⋯.eigenvectorMatrix.transpose.det ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosDef.PosDef_sqrt
[95, 1]
[102, 68]
rw [det_transpose]
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ⋯.eigenvectorMatrix.transpose.det ≠ 0
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ⋯.eigenvectorMatrix.det ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosDef.PosDef_sqrt
[95, 1]
[102, 68]
apply det_ne_zero_of_right_inverse hA.1.eigenvectorMatrix_mul_inv
n : Type u_1 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : LinearOrder n inst✝ : LocallyFiniteOrderBot n A : Matrix n n ℝ hA : A.PosDef ⊢ ⋯.eigenvectorMatrix.det ≠ 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
refine' ⟨PosDef.det_ne_zero, _⟩
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef ⊢ M.PosDef ↔ M.det ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef ⊢ M.det ≠ 0 → M.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
intro hdet
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef ⊢ M.det ≠ 0 → M.PosDef
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 ⊢ M.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
refine' ⟨hM.1, _⟩
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 ⊢ M.PosDef
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 ⊢ ∀ (x : n → ℝ), x ≠ 0 → 0 < star x ⬝ᵥ M.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
intros x hx
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 ⊢ ∀ (x : n → ℝ), x ≠ 0 → 0 < star x ⬝ᵥ M.mulVec x
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
apply lt_of_le_of_ne' (hM.2 x)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M.mulVec x
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ star x ⬝ᵥ M.mulVec x ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
rw [← hM.sqrt_mul_sqrt, ← mulVec_mulVec, dotProduct_mulVec, ← transpose_transpose hM.1.sqrt, vecMul_transpose, transpose_transpose, ← conjTranspose_eq_transpose, hM.PosSemidef_sqrt.1.eq]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ star x ⬝ᵥ M.mulVec x ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ ⋯.sqrt.mulVec (star x) ⬝ᵥ ⋯.sqrt.mulVec x ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
simp only [RCLike.re_to_real, star, id]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ ⋯.sqrt.mulVec (star x) ⬝ᵥ ⋯.sqrt.mulVec x ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ (⋯.sqrt.mulVec fun i => x i) ⬝ᵥ ⋯.sqrt.mulVec x ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
change @inner ℝ (EuclideanSpace ℝ _) _ (hM.1.sqrt.mulVec x) (hM.1.sqrt.mulVec x) ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ (⋯.sqrt.mulVec fun i => x i) ⬝ᵥ ⋯.sqrt.mulVec x ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
intro hinner
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 ⊢ ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ ≠ 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 ⊢ False
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
have sqrtMdet0 : hM.1.sqrt.det = 0 := by refine' exists_mulVec_eq_zero_iff.1 ⟨x, hx, _⟩ rw [inner_self_eq_zero.1 hinner]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 ⊢ False
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 sqrtMdet0 : ⋯.sqrt.det = 0 ⊢ False
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
rw [← hM.sqrt_mul_sqrt, det_mul, sqrtMdet0, mul_zero] at hdet
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 sqrtMdet0 : ⋯.sqrt.det = 0 ⊢ False
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : 0 ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 sqrtMdet0 : ⋯.sqrt.det = 0 ⊢ False
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
apply hdet rfl
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : 0 ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 sqrtMdet0 : ⋯.sqrt.det = 0 ⊢ False
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
refine' exists_mulVec_eq_zero_iff.1 ⟨x, hx, _⟩
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 ⊢ ⋯.sqrt.det = 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 ⊢ ⋯.sqrt.mulVec x = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.PosSemidef.PosDef_iff_det_ne_zero
[104, 1]
[119, 17]
rw [inner_self_eq_zero.1 hinner]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosSemidef hdet : M.det ≠ 0 x : n → ℝ hx : x ≠ 0 hinner : ⟪⋯.sqrt.mulVec x, ⋯.sqrt.mulVec x⟫_ℝ = 0 ⊢ ⋯.sqrt.mulVec x = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
let sqrtA := hA.1.sqrt
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
have isUnit_det_sqrtA := isUnit_iff_ne_zero.2 hA.PosDef_sqrt.det_ne_zero
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
have : IsUnit sqrtA := (isUnit_iff_isUnit_det _).2 isUnit_det_sqrtA
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
have IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian := by { apply IsHermitian.nonsingular_inv (hA.posSemidef.PosSemidef_sqrt.1) exact isUnit_det_sqrtA }
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
have PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef := PosSemidef.mul_mul_of_IsHermitian hB IsHermitian_sqrtA
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
let μ := PosSemidef_ABA.1.eigenvalues
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef ⊢ A.det + B.det ≤ (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
calc A.det + B.det = A.det * (1 + (sqrtA⁻¹ * B * sqrtA⁻¹).det) := by rw [det_mul, det_mul, mul_comm _ B.det, mul_assoc, ← det_mul, ← Matrix.mul_inv_rev, hA.posSemidef.sqrt_mul_sqrt, mul_add, mul_one, mul_comm, mul_assoc, ← det_mul, nonsing_inv_mul _ (isUnit_iff_ne_zero.2 hA.det_ne_zero), det_one, mul_one] _ = A.det * (1 + ∏ i, μ i) := by rw [PosSemidef_ABA.1.det_eq_prod_eigenvalues] rfl _ ≤ A.det * ∏ i, (1 + μ i) := by apply (mul_le_mul_left hA.det_pos).2 apply Finset.one_add_prod_le_prod_one_add μ PosSemidef_ABA.eigenvalues_nonneg _ = A.det * (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det := by rw [mul_eq_mul_left_iff]; left; symm rw [det_eq_prod_eigenvalues PosSemidef_ABA.1.eigenvectorBasis (fun i => 1 + (PosSemidef_ABA.1.eigenvalues i)) _] { simp } intro i convert PosSemidef_ABA.1.has_eigenvector_one_add i using 1 simp only [map_add, toLin'_one, toLin'_mul, add_left_inj] rfl _ = (A + B).det := by rw [← det_mul, ← det_conj this (A + B)] apply congr_arg rw [← hA.posSemidef.sqrt_mul_sqrt] change sqrtA * sqrtA * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (sqrtA * sqrtA + B) * sqrtA⁻¹ rw [Matrix.mul_add, Matrix.mul_one, Matrix.mul_add, Matrix.add_mul, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mul_assoc, ← Matrix.mul_assoc _ _ (B * _), Matrix.mul_nonsing_inv _ isUnit_det_sqrtA, Matrix.one_mul, Matrix.mul_one, hA.posSemidef.sqrt_mul_sqrt, Matrix.mul_assoc]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det + B.det ≤ (A + B).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
apply IsHermitian.nonsingular_inv (hA.posSemidef.PosSemidef_sqrt.1)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA ⊢ sqrtA⁻¹.IsHermitian
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA ⊢ IsUnit ⋯.sqrt.det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
exact isUnit_det_sqrtA
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA ⊢ IsUnit ⋯.sqrt.det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [det_mul, det_mul, mul_comm _ B.det, mul_assoc, ← det_mul, ← Matrix.mul_inv_rev, hA.posSemidef.sqrt_mul_sqrt, mul_add, mul_one, mul_comm, mul_assoc, ← det_mul, nonsing_inv_mul _ (isUnit_iff_ne_zero.2 hA.det_ne_zero), det_one, mul_one]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det + B.det = A.det * (1 + (sqrtA⁻¹ * B * sqrtA⁻¹).det)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [PosSemidef_ABA.1.det_eq_prod_eigenvalues]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * (1 + (sqrtA⁻¹ * B * sqrtA⁻¹).det) = A.det * (1 + ∏ i : n, μ i)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * (1 + ∏ i : n, ↑(⋯.eigenvalues i)) = A.det * (1 + ∏ i : n, μ i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rfl
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * (1 + ∏ i : n, ↑(⋯.eigenvalues i)) = A.det * (1 + ∏ i : n, μ i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
apply (mul_le_mul_left hA.det_pos).2
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * (1 + ∏ i : n, μ i) ≤ A.det * ∏ i : n, (1 + μ i)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ 1 + ∏ i : n, μ i ≤ ∏ i : n, (1 + μ i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
apply Finset.one_add_prod_le_prod_one_add μ PosSemidef_ABA.eigenvalues_nonneg
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ 1 + ∏ i : n, μ i ≤ ∏ i : n, (1 + μ i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [mul_eq_mul_left_iff]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * ∏ i : n, (1 + μ i) = A.det * (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∏ i : n, (1 + μ i) = (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det ∨ A.det = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
left
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∏ i : n, (1 + μ i) = (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det ∨ A.det = 0
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∏ i : n, (1 + μ i) = (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
symm
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∏ i : n, (1 + μ i) = (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det = ∏ i : n, (1 + μ i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [det_eq_prod_eigenvalues PosSemidef_ABA.1.eigenvectorBasis (fun i => 1 + (PosSemidef_ABA.1.eigenvalues i)) _]
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det = ∏ i : n, (1 + μ i)
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ↑(∏ i : n, (1 + ⋯.eigenvalues i)) = ∏ i : n, (1 + μ i) n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∀ (j : n), Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) j)) (⋯.eigenvectorBasis j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
{ simp }
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ↑(∏ i : n, (1 + ⋯.eigenvalues i)) = ∏ i : n, (1 + μ i) n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∀ (j : n), Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) j)) (⋯.eigenvectorBasis j)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∀ (j : n), Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) j)) (⋯.eigenvectorBasis j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
intro i
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ∀ (j : n), Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) j)) (⋯.eigenvectorBasis j)
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n ⊢ Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) i)) (⋯.eigenvectorBasis i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
convert PosSemidef_ABA.1.has_eigenvector_one_add i using 1
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n ⊢ Module.End.HasEigenvector (toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹)) (↑((fun i => 1 + ⋯.eigenvalues i) i)) (⋯.eigenvectorBasis i)
case h.e'_6.h.h.h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n e_2✝ : (n → ℝ) = EuclideanSpace ℝ n e_3✝ : EuclideanDomain.toCommRing = Real.commRing he✝¹ : Pi.addCommGroup = WithLp.instAddCommGroup 2 ((i : n) → (fun x => ℝ) i) he✝ : Pi.Function.module n ℝ ℝ = WithLp.instModule 2 ℝ ((i : n) → (fun x => ℝ) i) ⊢ toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = 1 + toLin' (sqrtA⁻¹ * B * sqrtA⁻¹)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
simp only [map_add, toLin'_one, toLin'_mul, add_left_inj]
case h.e'_6.h.h.h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n e_2✝ : (n → ℝ) = EuclideanSpace ℝ n e_3✝ : EuclideanDomain.toCommRing = Real.commRing he✝¹ : Pi.addCommGroup = WithLp.instAddCommGroup 2 ((i : n) → (fun x => ℝ) i) he✝ : Pi.Function.module n ℝ ℝ = WithLp.instModule 2 ℝ ((i : n) → (fun x => ℝ) i) ⊢ toLin' (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = 1 + toLin' (sqrtA⁻¹ * B * sqrtA⁻¹)
case h.e'_6.h.h.h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n e_2✝ : (n → ℝ) = EuclideanSpace ℝ n e_3✝ : EuclideanDomain.toCommRing = Real.commRing he✝¹ : Pi.addCommGroup = WithLp.instAddCommGroup 2 ((i : n) → (fun x => ℝ) i) he✝ : Pi.Function.module n ℝ ℝ = WithLp.instModule 2 ℝ ((i : n) → (fun x => ℝ) i) ⊢ LinearMap.id = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rfl
case h.e'_6.h.h.h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues i : n e_2✝ : (n → ℝ) = EuclideanSpace ℝ n e_3✝ : EuclideanDomain.toCommRing = Real.commRing he✝¹ : Pi.addCommGroup = WithLp.instAddCommGroup 2 ((i : n) → (fun x => ℝ) i) he✝ : Pi.Function.module n ℝ ℝ = WithLp.instModule 2 ℝ ((i : n) → (fun x => ℝ) i) ⊢ LinearMap.id = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
simp
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ↑(∏ i : n, (1 + ⋯.eigenvalues i)) = ∏ i : n, (1 + μ i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [← det_mul, ← det_conj this (A + B)]
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A.det * (1 + sqrtA⁻¹ * B * sqrtA⁻¹).det = (A + B).det
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ (A * (1 + sqrtA⁻¹ * B * sqrtA⁻¹)).det = (sqrtA * (A + B) * sqrtA⁻¹).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
apply congr_arg
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ (A * (1 + sqrtA⁻¹ * B * sqrtA⁻¹)).det = (sqrtA * (A + B) * sqrtA⁻¹).det
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (A + B) * sqrtA⁻¹
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [← hA.posSemidef.sqrt_mul_sqrt]
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ A * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (A + B) * sqrtA⁻¹
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ⋯.sqrt * ⋯.sqrt * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (⋯.sqrt * ⋯.sqrt + B) * sqrtA⁻¹
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
change sqrtA * sqrtA * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (sqrtA * sqrtA + B) * sqrtA⁻¹
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ ⋯.sqrt * ⋯.sqrt * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (⋯.sqrt * ⋯.sqrt + B) * sqrtA⁻¹
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ sqrtA * sqrtA * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (sqrtA * sqrtA + B) * sqrtA⁻¹
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add'
[121, 1]
[168, 57]
rw [Matrix.mul_add, Matrix.mul_one, Matrix.mul_add, Matrix.add_mul, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mul_assoc, ← Matrix.mul_assoc _ _ (B * _), Matrix.mul_nonsing_inv _ isUnit_det_sqrtA, Matrix.one_mul, Matrix.mul_one, hA.posSemidef.sqrt_mul_sqrt, Matrix.mul_assoc]
case h n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosDef hB : B.PosSemidef sqrtA : Matrix n n ℝ := ⋯.sqrt isUnit_det_sqrtA : IsUnit ⋯.sqrt.det this : IsUnit sqrtA IsHermitian_sqrtA : sqrtA⁻¹.IsHermitian PosSemidef_ABA : (sqrtA⁻¹ * B * sqrtA⁻¹).PosSemidef μ : n → ℝ := ⋯.eigenvalues ⊢ sqrtA * sqrtA * (1 + sqrtA⁻¹ * B * sqrtA⁻¹) = sqrtA * (sqrtA * sqrtA + B) * sqrtA⁻¹
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
by_cases hA' : A.det = 0
n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef ⊢ A.det + B.det ≤ (A + B).det
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 ⊢ A.det + B.det ≤ (A + B).det case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : ¬A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
{ by_cases hB' : B.det = 0 { simp [hA', hB'] apply (hA.add hB).det_nonneg } { rw [add_comm A B, add_comm A.det B.det] apply det_add_det_le_det_add' _ _ (hB.PosDef_iff_det_ne_zero.2 hB') hA } }
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 ⊢ A.det + B.det ≤ (A + B).det case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : ¬A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : ¬A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
{ apply det_add_det_le_det_add' _ _ (hA.PosDef_iff_det_ne_zero.2 hA') hB }
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : ¬A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
by_cases hB' : B.det = 0
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : B.det = 0 ⊢ A.det + B.det ≤ (A + B).det case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
{ simp [hA', hB'] apply (hA.add hB).det_nonneg }
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : B.det = 0 ⊢ A.det + B.det ≤ (A + B).det case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
{ rw [add_comm A B, add_comm A.det B.det] apply det_add_det_le_det_add' _ _ (hB.PosDef_iff_det_ne_zero.2 hB') hA }
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
simp [hA', hB']
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : B.det = 0 ⊢ 0 ≤ (A + B).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
apply (hA.add hB).det_nonneg
case pos n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : B.det = 0 ⊢ 0 ≤ (A + B).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
rw [add_comm A B, add_comm A.det B.det]
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ A.det + B.det ≤ (A + B).det
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ B.det + A.det ≤ (B + A).det
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
apply det_add_det_le_det_add' _ _ (hB.PosDef_iff_det_ne_zero.2 hB') hA
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : A.det = 0 hB' : ¬B.det = 0 ⊢ B.det + A.det ≤ (B + A).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Subadditivity.lean
Matrix.det_add_det_le_det_add
[170, 1]
[179, 77]
apply det_add_det_le_det_add' _ _ (hA.PosDef_iff_det_ne_zero.2 hA') hB
case neg n : Type u_1 inst✝⁴ : Fintype n inst✝³ : DecidableEq n inst✝² : LinearOrder n inst✝¹ : LocallyFiniteOrderBot n inst✝ : Nonempty n A B : Matrix n n ℝ hA : A.PosSemidef hB : B.PosSemidef hA' : ¬A.det = 0 ⊢ A.det + B.det ≤ (A + B).det
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.vecCons_zero_zero
[30, 1]
[31, 52]
ext i
m : ?m.1347 n✝ : ?m.1350 α : Type u_1 n : ℕ inst✝ : Zero α ⊢ vecCons 0 0 = 0
case h m : ?m.1347 n✝ : ?m.1350 α : Type u_1 n : ℕ inst✝ : Zero α i : Fin n.succ ⊢ vecCons 0 0 i = 0 i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.vecCons_zero_zero
[30, 1]
[31, 52]
refine' Fin.cases _ _ i <;> simp [vecCons]
case h m : ?m.1347 n✝ : ?m.1350 α : Type u_1 n : ℕ inst✝ : Zero α i : Fin n.succ ⊢ vecCons 0 0 i = 0 i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.smul_vecCons
[33, 1]
[35, 52]
ext i
m : ?m.2988 n✝ : ?m.2991 α : Type u_1 n : ℕ inst✝¹ : Zero α inst✝ : SMulZeroClass ℝ α x : ℝ y : α v : Fin n → α ⊢ x • vecCons y v = vecCons (x • y) (x • v)
case h m : ?m.2988 n✝ : ?m.2991 α : Type u_1 n : ℕ inst✝¹ : Zero α inst✝ : SMulZeroClass ℝ α x : ℝ y : α v : Fin n → α i : Fin n.succ ⊢ (x • vecCons y v) i = vecCons (x • y) (x • v) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.smul_vecCons
[33, 1]
[35, 52]
refine' Fin.cases _ _ i <;> simp [vecCons]
case h m : ?m.2988 n✝ : ?m.2991 α : Type u_1 n : ℕ inst✝¹ : Zero α inst✝ : SMulZeroClass ℝ α x : ℝ y : α v : Fin n → α i : Fin n.succ ⊢ (x • vecCons y v) i = vecCons (x • y) (x • v) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.add_vecCons
[37, 1]
[39, 52]
ext i
m : ?m.4819 n✝ : ?m.4822 α : Type u_1 n : ℕ inst✝² : Zero α inst✝¹ : SMulZeroClass ℝ α inst✝ : Add α x : α v : Fin n → α y : α w : Fin n → α ⊢ vecCons x v + vecCons y w = vecCons (x + y) (v + w)
case h m : ?m.4819 n✝ : ?m.4822 α : Type u_1 n : ℕ inst✝² : Zero α inst✝¹ : SMulZeroClass ℝ α inst✝ : Add α x : α v : Fin n → α y : α w : Fin n → α i : Fin n.succ ⊢ (vecCons x v + vecCons y w) i = vecCons (x + y) (v + w) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Data/Matrix.lean
Matrix.add_vecCons
[37, 1]
[39, 52]
refine' Fin.cases _ _ i <;> simp [vecCons]
case h m : ?m.4819 n✝ : ?m.4822 α : Type u_1 n : ℕ inst✝² : Zero α inst✝¹ : SMulZeroClass ℝ α inst✝ : Add α x : α v : Fin n → α y : α w : Fin n → α i : Fin n.succ ⊢ (vecCons x v + vecCons y w) i = vecCons (x + y) (v + w) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
unfold expCone
t x : ℝ ⊢ x.exp ≤ t ↔ x.expCone 1 t
t x : ℝ ⊢ x.exp ≤ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rw [iff_def]
t x : ℝ ⊢ x.exp ≤ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
t x : ℝ ⊢ (x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
t x : ℝ ⊢ (x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t)
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro hexp apply Or.intro_left split_ands { apply Real.zero_lt_one } { rwa [div_one, one_mul] } }
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro h cases h with | inl h => have h : 1 * exp (x / 1) ≤ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm }
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro hexp
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
case refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Or.intro_left
case refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
case refine_1.h t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
case refine_1.h t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ apply Real.zero_lt_one }
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ rwa [div_one, one_mul] }
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Real.zero_lt_one
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul]
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro h
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
cases h with | inl h => have h : 1 * exp (x / 1) ≤ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
have h : 1 * exp (x / 1) ≤ t := h.2
case refine_2.inl t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≤ t h : 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul] at h
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≤ t h : 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exfalso
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ False
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exact zero_ne_one h.1.symm
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ False
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
suffices hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm (fun i => as i * w i) by simpa only [LinearIsometryEquiv.symm_apply_apply, LinearIsometryEquiv.apply_symm_apply] using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
intros w
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) ⊢ ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) w : EuclideanSpace 𝕜 (Fin n) ⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
simp_rw [← OrthonormalBasis.sum_repr_symm, map_sum, LinearMap.map_smul, fun j => Module.End.mem_eigenspace_iff.mp (hxs j).1, smul_smul, mul_comm]
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) w : EuclideanSpace 𝕜 (Fin n) ⊢ T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
LinearMap.spectral_theorem'
[15, 1]
[29, 78]
simpa only [LinearIsometryEquiv.symm_apply_apply, LinearIsometryEquiv.apply_symm_apply] using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
𝕜 : Type u_2 inst✝⁴ : RCLike 𝕜 inst✝³ : DecidableEq 𝕜 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace 𝕜 E inst✝ : FiniteDimensional 𝕜 E n : ℕ hn : FiniteDimensional.finrank 𝕜 E = n T : E →ₗ[𝕜] E v : E i : Fin n xs : OrthonormalBasis (Fin n) 𝕜 E as : Fin n → ℝ hxs : ∀ (j : Fin n), Module.End.HasEigenvector T (↑(as j)) (xs j) hsuff : ∀ (w : EuclideanSpace 𝕜 (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => ↑(as i) * w i ⊢ xs.repr (T v) i = ↑(as i) * xs.repr v i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
repr_gramSchmidt_diagonal
[18, 1]
[24, 67]
rw [gramSchmidt_def, map_sub, Finsupp.sub_apply, Basis.repr_self, Finsupp.single_eq_same, sub_eq_self, map_sum, Finsupp.coe_finset_sum, Finset.sum_apply, Finset.sum_eq_zero]
𝕜 : Type u_2 E : Type u_1 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 i : ι b : Basis ι 𝕜 E ⊢ (b.repr (gramSchmidt 𝕜 (⇑b) i)) i = 1
𝕜 : Type u_2 E : Type u_1 inst✝⁵ : RCLike 𝕜 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E ι : Type u_3 inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 i : ι b : Basis ι 𝕜 E ⊢ ∀ x ∈ Finset.Iio i, (b.repr ↑((orthogonalProjection (Submodule.span 𝕜 {gramSchmidt 𝕜 (⇑b) x})) (b i))) i = 0