url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ erw [toLin'_apply] simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex] erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single] simp_rw [mul_one] rfl }
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i) case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ simp only [diagonal_mul, Function.comp] erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply] congr; simp }
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm]
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
intros j
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) j : Fin (Fintype.card n) ⊢ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) j : Fin (Fintype.card n) ⊢ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [toLin'_apply]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm.symm ((Fintype.equivOfCardEq ⋯).symm i))
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm.symm ((Fintype.equivOfCardEq ⋯).symm i))
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp_rw [mul_one]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rfl
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [diagonal_mul, Function.comp]
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply]
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => ⋯ ▸ 1) h) (inst✝ a j)) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
congr
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => ⋯ ▸ 1) h) (inst✝ a j)) i
case h.e'_3.e_a.e_a.e_a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ i = (Fintype.equivOfCardEq ⋯) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp
case h.e'_3.e_a.e_a.e_a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ i = (Fintype.equivOfCardEq ⋯) ((Fintype.equivOfCardEq ⋯).symm i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
apply mul_left_cancel₀ (det_ne_zero_of_left_inverse (Basis.toMatrix_mul_toMatrix_flip (Pi.basisFun 𝕜 n) xs.toBasis))
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ A.det = ↑(∏ i : n, as i)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
rw [← det_mul, spectral_theorem xs as hxs, det_mul, mul_comm, det_diagonal]
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
simp
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.IsHermitian.hasEigenvector_eigenvectorBasis
[30, 1]
[33, 62]
simp only [IsHermitian.eigenvectorBasis, OrthonormalBasis.coe_reindex]
𝕜 : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 hA : A.IsHermitian i : n ⊢ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) (hA.eigenvectorBasis i)
𝕜 : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 hA : A.IsHermitian i : n ⊢ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) ((⇑(⋯.eigenvectorBasis ⋯) ∘ ⇑(Fintype.equivOfCardEq ⋯).symm) i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.IsHermitian.hasEigenvector_eigenvectorBasis
[30, 1]
[33, 62]
apply LinearMap.IsSymmetric.hasEigenvector_eigenvectorBasis
𝕜 : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 hA : A.IsHermitian i : n ⊢ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) ((⇑(⋯.eigenvectorBasis ⋯) ∘ ⇑(Fintype.equivOfCardEq ⋯).symm) i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rw [basis_toMatrix_basisFun_mul]
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n) * A = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (of fun i j => (xs.toBasis.repr (A.transpose j)) i) = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
ext i j
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (of fun i j => (xs.toBasis.repr (A.transpose j)) i) = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
let xs' := xs.reindex (Fintype.equivOfCardEq (Fintype.card_fin _)).symm
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
let as' : Fin (Fintype.card n) → ℝ := fun i => as <| (Fintype.equivOfCardEq (Fintype.card_fin _)) i
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
have hxs' : ∀ j, Module.End.HasEigenvector (Matrix.toLin' A) (as' j) (xs' j) := by simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm] intros j exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
convert @LinearMap.spectral_theorem' 𝕜 _ (PiLp 2 (fun (_ : n) => 𝕜)) _ _ (Fintype.card n) (Matrix.toLin' A) (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq (Fintype.card_fin _)).symm i) xs' as' hxs'
case a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i) case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ erw [toLin'_apply] simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex] erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single] simp_rw [mul_one] rfl }
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i) case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ simp only [diagonal_mul, Function.comp] erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply] congr; simp }
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm]
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
intros j
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) ⊢ ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) j : Fin (Fintype.card n) ⊢ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) j : Fin (Fintype.card n) ⊢ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq ⋯)) j)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [toLin'_apply]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm.symm ((Fintype.equivOfCardEq ⋯).symm i))
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq ⋯).symm.symm ((Fintype.equivOfCardEq ⋯).symm i))
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp_rw [mul_one]
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rfl
case h.e'_2 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [diagonal_mul, Function.comp]
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply]
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun 𝕜 n)) i j = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq ⋯).symm i)
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => ⋯ ▸ 1) h) (inst✝ a j)) i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
congr
case h.e'_3 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq ⋯).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => ⋯ ▸ 1) h) (inst✝ a j)) i
case h.e'_3.e_a.e_a.e_a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ i = (Fintype.equivOfCardEq ⋯) ((Fintype.equivOfCardEq ⋯).symm i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp
case h.e'_3.e_a.e_a.e_a 𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) 𝕜 (EuclideanSpace 𝕜 n) := xs.reindex (Fintype.equivOfCardEq ⋯).symm as' : Fin (Fintype.card n) → ℝ := fun i => as ((Fintype.equivOfCardEq ⋯) i) hxs' : ∀ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊢ i = (Fintype.equivOfCardEq ⋯) ((Fintype.equivOfCardEq ⋯).symm i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
apply mul_left_cancel₀ (det_ne_zero_of_left_inverse (Basis.toMatrix_mul_toMatrix_flip (Pi.basisFun 𝕜 n) xs.toBasis))
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ A.det = ↑(∏ i : n, as i)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
rw [← det_mul, spectral_theorem xs as hxs, det_mul, mul_comm, det_diagonal]
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
simp
𝕜 : Type u_1 inst✝³ : RCLike 𝕜 inst✝² : DecidableEq 𝕜 n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n 𝕜 xs : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) as : n → ℝ hxs : ∀ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊢ (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun 𝕜 n)).det * ↑(∏ i : n, as i)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
unfold expCone
t x : ℝ ⊢ x.exp ≤ t ↔ x.expCone 1 t
t x : ℝ ⊢ x.exp ≤ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rw [iff_def]
t x : ℝ ⊢ x.exp ≤ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
t x : ℝ ⊢ (x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
t x : ℝ ⊢ (x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t)
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro hexp apply Or.intro_left split_ands { apply Real.zero_lt_one } { rwa [div_one, one_mul] } }
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro h cases h with | inl h => have h : 1 * exp (x / 1) ≤ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm }
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro hexp
case refine_1 t x : ℝ ⊢ x.exp ≤ t → 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
case refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Or.intro_left
case refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0
case refine_1.h t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
case refine_1.h t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ apply Real.zero_lt_one }
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ rwa [div_one, one_mul] }
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Real.zero_lt_one
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≤ t ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul]
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≤ t ⊢ 1 * (x / 1).exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro h
case refine_2 t x : ℝ ⊢ 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 → x.exp ≤ t
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
cases h with | inl h => have h : 1 * exp (x / 1) ≤ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ∨ 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
have h : 1 * exp (x / 1) ≤ t := h.2
case refine_2.inl t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≤ t h : 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul] at h
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≤ t h : 1 * (x / 1).exp ≤ t ⊢ x.exp ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exfalso
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ x.exp ≤ t
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ False
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exact zero_ne_one h.1.symm
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≤ t ∧ x ≤ 0 ⊢ False
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
letI : Unique {a // id a = k} := ⟨⟨⟨k, rfl⟩⟩, fun j => Subtype.ext j.property⟩
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
have h := congr_fun (congr_fun (toSquareBlock_inv_mul_toSquareBlock_eq_one hM k) ⟨k, rfl⟩) ⟨k, rfl⟩
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : (M⁻¹.toSquareBlock id k * M.toSquareBlock id k) ⟨k, ⋯⟩ ⟨k, ⋯⟩ = 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
dsimp only [HMul.hMul, dotProduct] at h
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : (M⁻¹.toSquareBlock id k * M.toSquareBlock id k) ⟨k, ⋯⟩ ⟨k, ⋯⟩ = 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : ∑ i : { a // id a = k }, Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ i) (M.toSquareBlock id k i ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rw [@Fintype.sum_unique _ _ _ _] at h
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : ∑ i : { a // id a = k }, Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ i) (M.toSquareBlock id k i ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ default) (M.toSquareBlock id k default ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
simp at h
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ default) (M.toSquareBlock id k default ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rw [← h]
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
simp [toSquareBlock, toSquareBlockProp]
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩)
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rfl
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock id k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
letI : Unique {a // OrderDual.toDual a = k} := ⟨⟨⟨k, rfl⟩⟩, fun j => Subtype.ext j.property⟩
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
have h := congr_fun (congr_fun (toSquareBlock_inv_mul_toSquareBlock_eq_one hM k) ⟨k, rfl⟩) ⟨k, rfl⟩
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k * M.toSquareBlock (⇑OrderDual.toDual) k) ⟨k, ⋯⟩ ⟨k, ⋯⟩ = 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
dsimp [HMul.hMul, dotProduct] at h
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k * M.toSquareBlock (⇑OrderDual.toDual) k) ⟨k, ⋯⟩ ⟨k, ⋯⟩ = 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : ∑ i : { a // OrderDual.toDual a = k }, Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ i) (M.toSquareBlock (⇑OrderDual.toDual) k i ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rw [@Fintype.sum_unique _ _ _ this] at h
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : ∑ i : { a // OrderDual.toDual a = k }, Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ i) (M.toSquareBlock (⇑OrderDual.toDual) k i ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ default) (M.toSquareBlock (⇑OrderDual.toDual) k default ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
simp at h
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ default) (M.toSquareBlock (⇑OrderDual.toDual) k default ⟨k, ⋯⟩) = OfNat.ofNat 1 ⟨k, ⋯⟩ ⟨k, ⋯⟩ ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rw [← h]
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = 1
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
simp [toSquareBlock, toSquareBlockProp]
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩)
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rfl
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, ⋯⟩, uniq := ⋯ } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, ⋯⟩ ⟨k, ⋯⟩) = 1 ⊢ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_pos := h_d_pos i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 i < d i ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
simp at h_di_pos
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 i < d i ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_nonzero : d i ≠ 0 := by linarith
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i / (d i / s i) = s i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i ≠ 0 ⊢ d i / (d i / s i) = s i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
rw [← div_mul, div_self h_di_nonzero, one_mul]
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i ≠ 0 ⊢ d i / (d i / s i) = s i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
linarith
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ h_d_pos : StrongLT 0 d s : Fin n → ℝ i : Fin n h_di_pos : 0 < d i ⊢ d i ≠ 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
simp [Vec.cumsum]
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = Vec.cumsum t i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
split_ifs
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n ⊢ ∑ j ∈ [[0, i]], t j = if h : 0 < n then ∑ j ∈ [[⟨0, h⟩, i]], t j else 0
case pos n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : 0 < n ⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j case neg n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : ¬0 < n ⊢ ∑ j ∈ [[0, i]], t j = 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
rfl
case pos n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : 0 < n ⊢ ∑ j ∈ [[0, i]], t j = ∑ j ∈ [[⟨0, h✝⟩, i]], t j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
linarith [hn.out]
case neg n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ hn : Fact (0 < n) t : Fin n → ℝ i : Fin n h✝ : ¬0 < n ⊢ ∑ j ∈ [[0, i]], t j = 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nₚ_pos
[148, 1]
[148, 48]
unfold nₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < nₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nₚ_pos
[148, 1]
[148, 48]
norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ StrongLT 0 dₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < dₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
fin_cases i <;> (dsimp [dₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < dₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
dsimp [dₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ⟨9, ⋯⟩ < dₚ ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dₚ_pos
[154, 1]
[155, 50]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, ⋯⟩
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_pos
[173, 1]
[174, 36]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ StrongLT 0 sminₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < sminₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_pos
[173, 1]
[174, 36]
fin_cases i <;> norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i < sminₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
intro i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ sminₚ ≤ smaxₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ sminₚ i ≤ smaxₚ i
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
fin_cases i <;> (dsimp [sminₚ, smaxₚ]; norm_num)
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ sminₚ i ≤ smaxₚ i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
dsimp [sminₚ, smaxₚ]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ sminₚ ⟨9, ⋯⟩ ≤ smaxₚ ⟨9, ⋯⟩
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminₚ_le_smaxₚ
[179, 1]
[180, 60]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, ⋯⟩ ≤ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, ⋯⟩
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚ_nonneg
[188, 1]
[189, 51]
unfold aₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ aₚ
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚ_nonneg
[188, 1]
[189, 51]
norm_num
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aₚdₚ2_nonneg
[191, 1]
[193, 55]
intros i
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ ⊢ 0 ≤ aₚ • dₚ ^ 2
n : ℕ d τmin τmax smin smax : Fin n → ℝ F : ℝ → ℝ i : Fin nₚ ⊢ 0 i ≤ (aₚ • dₚ ^ 2) i