url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | have Hx := Hz _ hx | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | refine DifferentiableAt.differentiableWithinAt ?_ | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | replace hf := ((hf x Hx).congr (fun _ hz β¦ H hz) (H Hx)).differentiableAt
(Metric.isOpen_ball.mem_nhds Hx) |>.comp_ofReal | case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | simp_rw [hd, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at hf | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | exact DifferentiableAt.ofReal_comp_iff.mp hf | case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | simp only [Function.comp_apply, β H (Hz _ hx), hd, ofReal_tsum] | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | push_cast | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real_on_ball | [159, 1] | [183, 8] | rfl | case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | have H (z : β) := taylorSeries_eq_of_entire' c z hf | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp_rw [hd] at H | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, ?_, ?_β© | f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | have := hf.comp_ofReal | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp_rw [β H, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at this | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | exact Differentiable.ofReal_comp_iff.mp this | case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | ext x | case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | simp only [Function.comp_apply, ofReal_eq_coe, β H, ofReal_tsum] | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | push_cast | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a) | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.realValued_of_iteratedDeriv_real | [185, 1] | [201, 8] | rfl | case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have H := taylorSeries_eq_of_entire' 0 z hf | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have hz' := eq_re_of_ofReal_le hz | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | rw [hz'] at hz H β’ | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | obtain β¨D, hDβ© : β D : β β β, β n, 0 β€ D n β§ iteratedDeriv n f 0 = D n | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | simp_rw [β H, hD, β ofReal_natCast, sub_zero, β ofReal_pow, β ofReal_inv, β ofReal_mul,
β ofReal_tsum] | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a) | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | refine tsum_nonneg fun n β¦ ?_ | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast at hz | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have := (hD n).1 | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | positivity | case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | refine β¨fun n β¦ (iteratedDeriv n f 0).re, fun n β¦ β¨?_, ?_β©β© | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n) | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | have := eq_re_of_ofReal_le (h n) βΈ h n | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | norm_cast at this | case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.nonneg_of_iteratedDeriv_nonneg | [207, 1] | [223, 13] | rw [eq_re_of_ofReal_le (h n)] | case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | let D : β β β := fun n β¦ (iteratedDeriv n f 0).re | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hD (n : β) : iteratedDeriv n f 0 = D n := by
refine Complex.ext rfl ?_
simp only [ofReal_im]
exact (le_def.mp (h n)).2.symm | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | obtain β¨F, hFd, hFβ© := realValued_of_iteratedDeriv_real hf hD | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [hF] | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | refine monotone_ofReal.comp_monotoneOn <| monotoneOn_of_deriv_nonneg (convex_Ici 0)
hFd.continuous.continuousOn hFd.differentiableOn fun x hx β¦ ?_ | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hD' (n : β) : 0 β€ iteratedDeriv n (deriv f) 0 := by
rw [β iteratedDeriv_succ']
exact h (n + 1) | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hf' := (contDiff_succ_iff_deriv.mp <| hf.contDiff (n := 2)).2.differentiable rfl.le | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have hx : (0 : β) β€ x := by
norm_cast
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
exact hx.le | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | have H := nonneg_of_iteratedDeriv_nonneg hf' hD' hx | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [β deriv.comp_ofReal hf.differentiableAt] at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (fun x => f βx) x
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | change 0 β€ deriv (f β ofReal') x at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (fun x => f βx) x
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (f β ofReal') x
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | erw [hF, deriv.ofReal_comp] at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (f β ofReal') x
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ β(deriv (fun y => F y) x)
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | norm_cast at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ β(deriv (fun y => F y) x)
β’ 0 β€ deriv F x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | refine Complex.ext rfl ?_ | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ iteratedDeriv n f 0 = β(D n) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = (β(D n)).im |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | simp only [ofReal_im] | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = (β(D n)).im | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact (le_def.mp (h n)).2.symm | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [β iteratedDeriv_succ'] | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv n (deriv f) 0 | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv (n + 1) f 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact h (n + 1) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv (n + 1) f 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | norm_cast | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ βx | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ x | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 < x
β’ 0 β€ x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact hx.le | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 < x
β’ 0 β€ x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | exact sub_nonneg.mp <| nonneg_of_iteratedDeriv_nonneg (hf.sub_const (f 0)) h' hz | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
h' : β (n : β), 0 β€ iteratedDeriv n (fun x => f x - f 0) 0
β’ f 0 β€ f z | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | cases n with
| zero => simp only [iteratedDeriv_zero, sub_self, le_refl]
| succ n =>
specialize h n.succ <| succ_ne_zero n
rw [iteratedDeriv_succ'] at h β’
convert h using 2
ext w
exact deriv_sub_const (f 0) | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
n : β
β’ 0 β€ iteratedDeriv n (fun x => f x - f 0) 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | simp only [iteratedDeriv_zero, sub_self, le_refl] | case zero
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ iteratedDeriv 0 (fun x => f x - f 0) 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | specialize h n.succ <| succ_ne_zero n | case succ
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
n : β
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n.succ f 0
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | rw [iteratedDeriv_succ'] at h β’ | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n.succ f 0
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ iteratedDeriv n (deriv fun x => f x - f 0) 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | convert h using 2 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ iteratedDeriv n (deriv fun x => f x - f 0) 0 | case h.e'_4.h.e'_7
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ (deriv fun x => f x - f 0) = deriv f |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | ext w | case h.e'_4.h.e'_7
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ (deriv fun x => f x - f 0) = deriv f | case h.e'_4.h.e'_7.h
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
w : β
β’ deriv (fun x => f x - f 0) w = deriv f w |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | exact deriv_sub_const (f 0) | case h.e'_4.h.e'_7.h
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
w : β
β’ deriv (fun x => f x - f 0) w = deriv f w | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | let F : β β β := fun z β¦ f (-z) | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
β’ f 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 β€ f z |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | convert at_zero_le_of_iteratedDeriv_nonneg (f := F) (hf.comp <| differentiable_neg)
(fun n hn β¦ ?_) (neg_nonneg.mpr hz) using 1 | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 β€ f z | case h.e'_3
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 = F 0
case h.e'_4
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f z = F (-z)
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
n : β
hn : n β 0
β’ 0 β€ iteratedDeriv n F 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simp only [F, neg_zero] | case h.e'_3
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 = F 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simp only [F, neg_neg] | case h.e'_4
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f z = F (-z) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simpa only [F, iteratedDeriv_comp_neg, neg_zero] using h n hn | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
n : β
hn : n β 0
β’ 0 β€ iteratedDeriv n F 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm | R : Type u_1
instβ : AddCommMonoid R
f : β β R
n : β
β’ β p β n.primesBelow, f p = β m β Finset.range n, {p | p.Prime}.indicator f m | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply] | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | split_ifs with hβ hβ hβ | case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0 | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | rfl | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | exact (hβ β¨Finset.mem_range.mp hm, hββ©).elim | case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | exact (hβ hβ.2).elim | case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | sum_primesBelow_eq_sum_range_indicator | [49, 1] | [58, 8] | rfl | case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | rw [(show β' p : Nat.Primes, f p = β' p : {p : β | p.Prime}, f p from rfl)] | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : Nat.Primes), f βp)) | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator] | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp)) | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | tendsto_sum_primesBelow_tsum | [62, 1] | [69, 94] | exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum | R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Complex.exp_tsum_primes | [71, 1] | [77, 81] | simpa only [β exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum | f : β β β
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, cexp (f p)) atTop (π (cexp (β' (p : Nat.Primes), f βp))) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | let g (z : β) : β := -log (1 - z) | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | have hg : DifferentiableAt β g 0 :=
DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <|
by simp only [sub_zero, one_mem_slitPlane] | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | have : g =O[π 0] id := by
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | exact Asymptotics.IsBigO.comp_summable this hsum | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | simp only [sub_zero, one_mem_slitPlane] | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ 1 - 0 β slitPlane | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | Summable.neg_clog_one_sub | [82, 1] | [91, 51] | simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg | Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ g =O[π 0] id | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have hs {p : β} (hp : 1 < p) : βf pβ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp | f : β β*β β
hsum : Summable fun x => βf xβ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | have help (n : β) : n.primesBelow.prod (fun p β¦ cexp (-log (1 - f p))) =
n.primesBelow.prod fun p β¦ (1 - f p)β»ΒΉ := by
refine Finset.prod_congr rfl (fun p hp β¦ ?_)
rw [exp_neg, exp_log ?_]
rw [ne_eq, sub_eq_zero, β ne_eq]
exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | simp_rw [help] at H | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | refine Finset.prod_congr rfl (fun p hp β¦ ?_) | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n : β
β’ β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | rw [exp_neg, exp_log ?_] | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | rw [ne_eq, sub_eq_zero, β ne_eq] | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0 | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Logarithm.lean | EulerProduct.exp_sum_primes_log_eq_tsum | [96, 1] | [107, 77] | exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false | f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul_aux | [21, 1] | [23, 90] | rw [mul_comm_div, div_div, β mul_div_assoc, mul_comm (m : β), natCast_mul_natCast_cpow] | a b : β
m n : β
s : β
β’ a / βm ^ s * (b / βn ^ s) = a * b / (βm * βn) ^ s | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | rcases eq_or_ne (m * n) 0 with H | H | fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
β’ term f s (m * n) = term fβ s m * term fβ s n | case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n
case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | rcases mul_eq_zero.mp H with rfl | rfl <;> simp only [term_zero, mul_zero, zero_mul] | case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | obtain β¨hm, hnβ© := mul_ne_zero_iff.mp H | case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_mul | [25, 1] | [30, 100] | simp only [ne_eq, H, not_false_eq_true, term_of_ne_zero, Nat.cast_mul, hm, hn, h, term_mul_aux] | case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | LSeries.term_at_one | [44, 1] | [45, 72] | rw [term_of_ne_zero one_ne_zero, hβ, Nat.cast_one, one_cpow, div_one] | f : β β β
hβ : f 1 = 1
s : β
β’ term f s 1 = 1 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.toFun_on_nat_map_one | [86, 1] | [87, 32] | simp only [cast_one, map_one] | N : β
Ο : DirichletCharacter β N
β’ (fun n => Ο βn) 1 = 1 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/EulerProduct.lean | DirichletCharacter.toFun_on_nat_map_mul | [89, 1] | [91, 32] | simp only [cast_mul, map_mul] | N : β
Ο : DirichletCharacter β N
m n : β
β’ (fun n => Ο βn) (m * n) = (fun n => Ο βn) m * (fun n => Ο βn) n | no goals |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.