|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
from io import BytesIO |
|
|
|
import numpy as np |
|
import openslide |
|
from javabridge.jutil import JavaException |
|
from loguru import logger |
|
from PIL import Image |
|
from pydicom.dataset import Dataset |
|
from pydicom.encaps import get_frame_offsets |
|
from pydicom.filebase import DicomFile |
|
from pydicom.filereader import data_element_offset_to_value, dcmread |
|
from pydicom.tag import SequenceDelimiterTag, TupleTag |
|
from pydicom.uid import UID |
|
from scipy.ndimage import zoom |
|
|
|
import pathml.core |
|
import pathml.core.tile |
|
from pathml.utils import pil_to_rgb |
|
|
|
try: |
|
import bioformats |
|
import javabridge |
|
from bioformats.metadatatools import createOMEXMLMetadata |
|
except ImportError: |
|
logger.exception("Unable to import bioformats, javabridge") |
|
raise Exception( |
|
"Installation of PathML not complete. Please install openjdk8, bioformats, and javabridge:\nconda install openjdk==8.0.152\npip install javabridge==1.0.19 python-bioformats==4.0.0\nFor detailed installation instructions, please see https://github.com/Dana-Farber-AIOS/pathml/" |
|
) |
|
|
|
|
|
class SlideBackend: |
|
"""base class for backends that interface with slides on disk""" |
|
|
|
def extract_region(self, location, size, level, **kwargs): |
|
raise NotImplementedError |
|
|
|
def get_thumbnail(self, size, **kwargs): |
|
raise NotImplementedError |
|
|
|
def get_image_shape(self, **kwargs): |
|
raise NotImplementedError |
|
|
|
def generate_tiles(self, shape, stride, pad, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
class OpenSlideBackend(SlideBackend): |
|
""" |
|
Use OpenSlide to interface with image files. |
|
|
|
Depends on `openslide-python <https://openslide.org/api/python/>`_ which wraps the `openslide <https://openslide.org/>`_ C library. |
|
|
|
Args: |
|
filename (str): path to image file on disk |
|
""" |
|
|
|
def __init__(self, filename): |
|
logger.info(f"OpenSlideBackend loading file at: {filename}") |
|
self.filename = filename |
|
self.slide = openslide.open_slide(filename=filename) |
|
self.level_count = self.slide.level_count |
|
|
|
def __repr__(self): |
|
return f"OpenSlideBackend('{self.filename}')" |
|
|
|
def extract_region(self, location, size, level=None): |
|
""" |
|
Extract a region of the image |
|
|
|
Args: |
|
location (Tuple[int, int]): Location of top-left corner of tile (i, j) |
|
size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a |
|
single integer, in which case square tiles of that size are generated. |
|
level (int): level from which to extract chunks. Level 0 is highest resolution. |
|
|
|
Returns: |
|
np.ndarray: image at the specified region |
|
""" |
|
|
|
if isinstance(size, int): |
|
size = (size, size) |
|
else: |
|
assert ( |
|
isinstance(size, tuple) |
|
and all([isinstance(a, int) for a in size]) |
|
and len(size) == 2 |
|
), f"Input size {size} not valid. Must be an integer or a tuple of two integers." |
|
if level is None: |
|
level = 0 |
|
else: |
|
assert isinstance(level, int), f"level {level} must be an integer" |
|
assert ( |
|
level < self.slide.level_count |
|
), f"input level {level} invalid for a slide with {self.slide.level_count} levels" |
|
|
|
|
|
i, j = location |
|
|
|
|
|
|
|
|
|
coord_scale_factor = int(self.slide.level_downsamples[level]) |
|
i *= coord_scale_factor |
|
j *= coord_scale_factor |
|
|
|
h, w = size |
|
region = self.slide.read_region(location=(j, i), level=level, size=(w, h)) |
|
region_rgb = pil_to_rgb(region) |
|
return region_rgb |
|
|
|
def get_image_shape(self, level=0): |
|
""" |
|
Get the shape of the image at specified level. |
|
|
|
Args: |
|
level (int): Which level to get shape from. Level 0 is highest resolution. Defaults to 0. |
|
|
|
Returns: |
|
Tuple[int, int]: Shape of image at target level, in (i, j) coordinates. |
|
""" |
|
assert isinstance(level, int), f"level {level} invalid. Must be an int." |
|
assert ( |
|
level < self.slide.level_count |
|
), f"input level {level} invalid for slide with {self.slide.level_count} levels total" |
|
j, i = self.slide.level_dimensions[level] |
|
return i, j |
|
|
|
def get_thumbnail(self, size): |
|
""" |
|
Get a thumbnail of the slide. |
|
|
|
Args: |
|
size (Tuple[int, int]): the maximum size of the thumbnail |
|
|
|
Returns: |
|
np.ndarray: RGB thumbnail image |
|
""" |
|
thumbnail = self.slide.get_thumbnail(size) |
|
thumbnail = pil_to_rgb(thumbnail) |
|
return thumbnail |
|
|
|
def generate_tiles(self, shape=3000, stride=None, pad=False, level=0): |
|
""" |
|
Generator over tiles. |
|
|
|
Padding works as follows: |
|
If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations |
|
will increment according to specified stride, stopping with the last tile that is fully contained in the image. |
|
If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations |
|
will increment according to specified stride, stopping with the last tile which starts in the image. Regions |
|
outside the image will be padded with 0. |
|
For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will |
|
create 4 tiles total, compared to 6 tiles if ``pad=True``. |
|
|
|
Args: |
|
shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, |
|
in which case square tiles of that size are generated. |
|
stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks. |
|
Defaults to ``None``. |
|
pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded |
|
and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. |
|
Defaults to ``False``. |
|
level (int, optional): For slides with multiple levels, which level to extract tiles from. |
|
Defaults to 0 (highest resolution). |
|
|
|
Yields: |
|
pathml.core.tile.Tile: Extracted Tile object |
|
""" |
|
assert isinstance(shape, int) or ( |
|
isinstance(shape, tuple) and len(shape) == 2 |
|
), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles" |
|
if isinstance(shape, int): |
|
shape = (shape, shape) |
|
assert ( |
|
stride is None |
|
or isinstance(stride, int) |
|
or (isinstance(stride, tuple) and len(stride) == 2) |
|
), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int" |
|
if level is None: |
|
level = 0 |
|
assert isinstance(level, int), f"level {level} invalid. Must be an int." |
|
assert ( |
|
level < self.slide.level_count |
|
), f"input level {level} invalid for slide with {self.slide.level_count} levels total" |
|
|
|
if stride is None: |
|
stride = shape |
|
elif isinstance(stride, int): |
|
stride = (stride, stride) |
|
|
|
i, j = self.get_image_shape(level=level) |
|
|
|
stride_i, stride_j = stride |
|
|
|
|
|
|
|
if pad and i % stride_i != 0: |
|
n_tiles_i = i // stride_i + 1 |
|
else: |
|
n_tiles_i = (i - shape[0]) // stride_i + 1 |
|
if pad and j % stride_j != 0: |
|
n_tiles_j = j // stride_j + 1 |
|
else: |
|
n_tiles_j = (j - shape[1]) // stride_j + 1 |
|
|
|
for ix_i in range(n_tiles_i): |
|
for ix_j in range(n_tiles_j): |
|
coords = (int(ix_i * stride_i), int(ix_j * stride_j)) |
|
|
|
tile_im = self.extract_region(location=coords, size=shape, level=level) |
|
yield pathml.core.tile.Tile(image=tile_im, coords=coords) |
|
|
|
|
|
def _init_logger(): |
|
""" |
|
This is so that Javabridge doesn't spill out a lot of DEBUG messages |
|
during runtime. |
|
From CellProfiler/python-bioformats. |
|
|
|
Credits to: https://github.com/pskeshu/microscoper/blob/master/microscoper/io.py#L141-L162 |
|
""" |
|
rootLoggerName = javabridge.get_static_field( |
|
"org/slf4j/Logger", "ROOT_LOGGER_NAME", "Ljava/lang/String;" |
|
) |
|
rootLogger = javabridge.static_call( |
|
"org/slf4j/LoggerFactory", |
|
"getLogger", |
|
"(Ljava/lang/String;)Lorg/slf4j/Logger;", |
|
rootLoggerName, |
|
) |
|
logLevel = javabridge.get_static_field( |
|
"ch/qos/logback/classic/Level", "WARN", "Lch/qos/logback/classic/Level;" |
|
) |
|
javabridge.call( |
|
rootLogger, "setLevel", "(Lch/qos/logback/classic/Level;)V", logLevel |
|
) |
|
logger.info("silenced javabridge logging") |
|
|
|
|
|
class BioFormatsBackend(SlideBackend): |
|
""" |
|
Use BioFormats to interface with image files. |
|
|
|
Now support multi-level images. |
|
Depends on `python-bioformats <https://github.com/CellProfiler/python-bioformats>`_ which wraps ome bioformats |
|
java library, parses pixel and metadata of proprietary formats, and |
|
converts all formats to OME-TIFF. Please cite: https://pubmed.ncbi.nlm.nih.gov/20513764/ |
|
|
|
Args: |
|
filename (str): path to image file on disk |
|
dtype (numpy.dtype): data type of image. If ``None``, will use BioFormats to infer the data type from the |
|
image's OME metadata. Defaults to ``None``. |
|
|
|
Note: |
|
While the Bio-Formats convention uses XYZCT channel order, we use YXZCT for compatibility with the rest of |
|
PathML which is based on (i, j) coordinate system. |
|
""" |
|
|
|
def __init__(self, filename, dtype=None): |
|
self.filename = filename |
|
logger.info(f"BioFormatsBackend loading file at: {filename}") |
|
|
|
javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="50G") |
|
|
|
try: |
|
_init_logger() |
|
except JavaException: |
|
pass |
|
|
|
ImageReader = bioformats.formatreader.make_image_reader_class() |
|
reader = ImageReader() |
|
omeMeta = createOMEXMLMetadata() |
|
reader.setMetadataStore(omeMeta) |
|
reader.setId(str(self.filename)) |
|
seriesCount = reader.getSeriesCount() |
|
logger.info(f"Found n={seriesCount} series in image") |
|
|
|
sizeSeries = [] |
|
for s in range(seriesCount): |
|
reader.setSeries(s) |
|
sizex, sizey, sizez, sizec, sizet = ( |
|
reader.getSizeX(), |
|
reader.getSizeY(), |
|
reader.getSizeZ(), |
|
reader.getSizeC(), |
|
reader.getSizeT(), |
|
) |
|
|
|
sizeSeries.append((sizey, sizex, sizez, sizec, sizet)) |
|
s = [s[0] * s[1] for s in sizeSeries] |
|
|
|
self.level_count = seriesCount |
|
self.shape = sizeSeries[s.index(max(s))] |
|
self.shape_list = sizeSeries |
|
self.metadata = bioformats.get_omexml_metadata(self.filename) |
|
|
|
logger.info(f"Bioformats OMEXML metadata: {self.metadata}") |
|
|
|
if dtype: |
|
assert isinstance( |
|
dtype, np.dtype |
|
), f"dtype is of type {type(dtype)}. Must be a np.dtype" |
|
self.pixel_dtype = dtype |
|
logger.info(f"Using specified dtype: {dtype}") |
|
else: |
|
|
|
|
|
|
|
|
|
pixel_dtype_map = { |
|
bioformats.omexml.PT_INT8: np.dtype("int8"), |
|
bioformats.omexml.PT_INT16: np.dtype("int16"), |
|
bioformats.omexml.PT_INT32: np.dtype("int32"), |
|
bioformats.omexml.PT_UINT8: np.dtype("uint8"), |
|
bioformats.omexml.PT_UINT16: np.dtype("uint16"), |
|
bioformats.omexml.PT_UINT32: np.dtype("uint32"), |
|
bioformats.omexml.PT_FLOAT: np.dtype("float32"), |
|
bioformats.omexml.PT_BIT: np.dtype("bool"), |
|
bioformats.omexml.PT_DOUBLE: np.dtype("float64"), |
|
} |
|
ome_pixeltype = ( |
|
bioformats.OMEXML(self.metadata).image().Pixels.get_PixelType() |
|
) |
|
logger.info(f"Using pixel dtype found in OME metadata: {ome_pixeltype}") |
|
try: |
|
self.pixel_dtype = pixel_dtype_map[ome_pixeltype] |
|
logger.info(f"Found corresponding dtype: {self.pixel_dtype}") |
|
|
|
except Exception: |
|
logger.exception("datatype from metadata not found in pixel_dtype_map") |
|
raise Exception( |
|
f"pixel type '{ome_pixeltype}' detected from OME metadata not recognized." |
|
) |
|
|
|
def __repr__(self): |
|
return f"BioFormatsBackend('{self.filename}')" |
|
|
|
def get_image_shape(self, level=None): |
|
""" |
|
Get the shape of the image on specific level. |
|
|
|
Args: |
|
level (int): Which level to get shape from. If ``level is None``, returns the shape of the biggest level. |
|
Defaults to ``None``. |
|
|
|
Returns: |
|
Tuple[int, int]: Shape of image (i, j) at target level |
|
""" |
|
if level is None: |
|
return self.shape[:2] |
|
else: |
|
assert isinstance(level, int), f"level {level} invalid. Must be an int." |
|
assert ( |
|
level < self.level_count |
|
), f"input level {level} invalid for slide with {self.level_count} levels total" |
|
return self.shape_list[level][:2] |
|
|
|
def extract_region( |
|
self, location, size, level=0, series_as_channels=False, normalize=True |
|
): |
|
""" |
|
Extract a region of the image. All bioformats images have 5 dimensions representing |
|
(i, j, z, channel, time). Even if an image does not have multiple z-series or time-series, |
|
those dimensions will still be kept. For example, a standard RGB image will be of shape (i, j, 1, 3, 1). |
|
If a tuple with len < 5 is passed, missing dimensions will be |
|
retrieved in full. |
|
|
|
Args: |
|
location (Tuple[int, int]): (i, j) location of corner of extracted region closest to the origin. |
|
size (Tuple[int, int, ...]): (i, j) size of each region. If an integer is passed, will convert to a |
|
tuple of (i, j) and extract a square region. If a tuple with len < 5 is passed, missing |
|
dimensions will be retrieved in full. |
|
level (int): level from which to extract chunks. Level 0 is highest resolution. Defaults to 0. |
|
series_as_channels (bool): Whether to treat image series as channels. If ``True``, multi-level images |
|
are not supported. Defaults to ``False``. |
|
normalize (bool, optional): Whether to normalize the image to int8 before returning. Defaults to True. |
|
If False, image will be returned as-is immediately after reading, typically in float64. |
|
|
|
Returns: |
|
np.ndarray: image at the specified region. 5-D array of (i, j, z, c, t) |
|
""" |
|
if level is None: |
|
level = 0 |
|
else: |
|
assert isinstance(level, int), f"level {level} invalid. Must be an int." |
|
assert ( |
|
level < self.level_count |
|
), f"input level {level} invalid for slide with {self.level_count} levels total" |
|
|
|
|
|
if type(size) is int: |
|
size = (size, size) |
|
if not ( |
|
isinstance(location, tuple) |
|
and len(location) < 3 |
|
and all([isinstance(x, int) for x in location]) |
|
): |
|
raise ValueError( |
|
f"input location {location} invalid. Must be a tuple of integer coordinates of len<2" |
|
) |
|
if not ( |
|
isinstance(size, tuple) |
|
and len(size) < 3 |
|
and all([isinstance(x, int) for x in size]) |
|
): |
|
raise ValueError( |
|
f"input size {size} invalid. Must be a tuple of integer coordinates of len<2" |
|
) |
|
if series_as_channels: |
|
logger.info("using series_as_channels=True") |
|
if level != 0: |
|
logger.exception( |
|
f"When series_as_channels=True, must use level=0. Input 'level={level}' invalid." |
|
) |
|
raise ValueError( |
|
f"Multi-level images not supported with series_as_channels=True. Input 'level={level}' invalid. Use 'level=0'." |
|
) |
|
|
|
javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="100G") |
|
with bioformats.ImageReader(str(self.filename), perform_init=True) as reader: |
|
|
|
logger.info(f"extracting region with input size = {size}") |
|
size = list(size) |
|
arrayshape = list(size) |
|
for i in range(len(self.shape_list[level])): |
|
if i > len(size) - 1: |
|
arrayshape.append(self.shape_list[level][i]) |
|
arrayshape = tuple(arrayshape) |
|
logger.info(f"input size converted to {arrayshape}") |
|
array = np.empty(arrayshape) |
|
|
|
|
|
sample = reader.read( |
|
z=0, |
|
t=0, |
|
series=level, |
|
rescale=False, |
|
XYWH=(location[1], location[0], 2, 2), |
|
) |
|
|
|
|
|
|
|
if series_as_channels: |
|
logger.info("reading series as channels") |
|
for z in range(self.shape_list[level][2]): |
|
for c in range(self.shape_list[level][3]): |
|
for t in range(self.shape_list[level][4]): |
|
slicearray = reader.read( |
|
z=z, |
|
t=t, |
|
series=c, |
|
rescale=False, |
|
XYWH=(location[1], location[0], size[1], size[0]), |
|
) |
|
slicearray = np.asarray(slicearray) |
|
|
|
array[:, :, z, c, t] = slicearray |
|
|
|
|
|
else: |
|
logger.info("reading image") |
|
for z in range(self.shape_list[level][2]): |
|
for t in range(self.shape_list[level][4]): |
|
slicearray = reader.read( |
|
z=z, |
|
t=t, |
|
series=level, |
|
rescale=False, |
|
XYWH=(location[1], location[0], size[1], size[0]), |
|
) |
|
slicearray = np.asarray(slicearray) |
|
if len(sample.shape) == 3: |
|
array[:, :, z, :, t] = slicearray |
|
else: |
|
array[:, :, z, level, t] = slicearray |
|
|
|
if not normalize: |
|
logger.info("returning extracted region without normalizing dtype") |
|
return array |
|
else: |
|
logger.info("normalizing extracted region to uint8") |
|
|
|
|
|
array_scaled = array / (2 ** (8 * self.pixel_dtype.itemsize)) |
|
logger.info( |
|
f"Scaling image to [0, 1] by dividing by {(2 ** (8 * self.pixel_dtype.itemsize))}" |
|
) |
|
|
|
array_scaled = array_scaled * 2**8 |
|
return array_scaled.astype(np.uint8) |
|
|
|
def get_thumbnail(self, size=None): |
|
""" |
|
Get a thumbnail of the image. Since there is no default thumbnail for multiparametric, volumetric |
|
images, this function supports downsampling of all image dimensions. |
|
|
|
Args: |
|
size (Tuple[int, int]): thumbnail size |
|
Returns: |
|
np.ndarray: RGB thumbnail image |
|
Example: |
|
Get 1000x1000 thumbnail of 7 channel fluorescent image. |
|
shape = data.slide.get_image_shape() |
|
thumb = data.slide.get_thumbnail(size=(1000,1000, shape[2], shape[3], shape[4])) |
|
""" |
|
assert isinstance(size, (tuple, type(None))), "Size must be a tuple of ints." |
|
if size is not None: |
|
if len(size) != len(self.shape): |
|
size = size + self.shape[len(size) :] |
|
if self.shape[0] * self.shape[1] * self.shape[2] * self.shape[3] > 2147483647: |
|
raise Exception( |
|
f"Java arrays allocate maximum 32 bits (~2GB). Image size is {self.imsize}" |
|
) |
|
array = self.extract_region(location=(0, 0), size=self.shape[:2]) |
|
if size is not None: |
|
ratio = tuple([x / y for x, y in zip(size, self.shape)]) |
|
assert ( |
|
ratio[3] == 1 |
|
), "cannot interpolate between fluor channels, resampling doesn't apply, fix size[3]" |
|
image_array = zoom(array, ratio) |
|
return image_array |
|
|
|
def generate_tiles(self, shape=3000, stride=None, pad=False, level=0, **kwargs): |
|
""" |
|
Generator over tiles. |
|
|
|
Padding works as follows: |
|
If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations |
|
will increment according to specified stride, stopping with the last tile that is fully contained in the image. |
|
If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations |
|
will increment according to specified stride, stopping with the last tile which starts in the image. Regions |
|
outside the image will be padded with 0. |
|
For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will |
|
create 4 tiles total, compared to 6 tiles if ``pad=True``. |
|
|
|
Args: |
|
shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, |
|
in which case square tiles of that size are generated. |
|
stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks. |
|
Defaults to ``None``. |
|
pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded |
|
and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. |
|
Defaults to ``False``. |
|
**kwargs: Other arguments passed through to ``extract_region()`` method. |
|
|
|
Yields: |
|
pathml.core.tile.Tile: Extracted Tile object |
|
""" |
|
assert isinstance(level, int), f"level {level} invalid. Must be an int." |
|
assert ( |
|
level < self.level_count |
|
), f"input level {level} invalid for slide with {self.level_count} levels total" |
|
assert isinstance(shape, int) or ( |
|
isinstance(shape, tuple) and len(shape) == 2 |
|
), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles" |
|
if isinstance(shape, int): |
|
shape = (shape, shape) |
|
assert ( |
|
stride is None |
|
or isinstance(stride, int) |
|
or (isinstance(stride, tuple) and len(stride) == 2) |
|
), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int" |
|
|
|
if stride is None: |
|
logger.info(f"stride not specified, using stride=shape ({shape})") |
|
stride = shape |
|
elif isinstance(stride, int): |
|
stride = (stride, stride) |
|
|
|
i, j = self.get_image_shape(level=level) |
|
|
|
stride_i, stride_j = stride |
|
|
|
|
|
|
|
if pad and i % stride_i != 0: |
|
n_tiles_i = i // stride_i + 1 |
|
else: |
|
n_tiles_i = (i - shape[0]) // stride_i + 1 |
|
if pad and j % stride_j != 0: |
|
n_tiles_j = j // stride_j + 1 |
|
else: |
|
n_tiles_j = (j - shape[1]) // stride_j + 1 |
|
|
|
logger.info(f"expected number of tiles: {n_tiles_i} x {n_tiles_j}") |
|
|
|
for ix_i in range(n_tiles_i): |
|
for ix_j in range(n_tiles_j): |
|
coords = (int(ix_i * stride_i), int(ix_j * stride_j)) |
|
if coords[0] + shape[0] < i and coords[1] + shape[1] < j: |
|
|
|
tile_im = self.extract_region( |
|
location=coords, size=shape, level=level, **kwargs |
|
) |
|
yield pathml.core.tile.Tile(image=tile_im, coords=coords) |
|
else: |
|
unpaddedshape = ( |
|
i - coords[0] if coords[0] + shape[0] > i else shape[0], |
|
j - coords[1] if coords[1] + shape[1] > j else shape[1], |
|
) |
|
tile_im = self.extract_region( |
|
location=coords, size=unpaddedshape, level=level, **kwargs |
|
) |
|
zeroarrayshape = list(tile_im.shape) |
|
zeroarrayshape[0], zeroarrayshape[1] = ( |
|
list(shape)[0], |
|
list(shape)[1], |
|
) |
|
padded_im = np.zeros(zeroarrayshape) |
|
padded_im[: tile_im.shape[0], : tile_im.shape[1], ...] = tile_im |
|
yield pathml.core.tile.Tile(image=padded_im, coords=coords) |
|
|
|
|
|
class DICOMBackend(SlideBackend): |
|
""" |
|
Interface with DICOM files on disk. |
|
Provides efficient access to individual Frame items contained in the |
|
Pixel Data element without loading the entire element into memory. |
|
Assumes that frames are non-overlapping. DICOM does not support multi-level images. |
|
|
|
Args: |
|
filename (str): Path to the DICOM Part10 file on disk |
|
""" |
|
|
|
def __init__(self, filename): |
|
self.filename = str(filename) |
|
logger.info(f"DICOMBackend loading file at: {filename}") |
|
|
|
tags = [ |
|
"NumberOfFrames", |
|
"Rows", |
|
"Columns", |
|
"TotalPixelMatrixRows", |
|
"TotalPixelMatrixColumns", |
|
] |
|
metadata = dcmread(filename, specific_tags=tags) |
|
|
|
|
|
self.frame_shape = (metadata.Rows, metadata.Columns) |
|
self.shape = (metadata.TotalPixelMatrixRows, metadata.TotalPixelMatrixColumns) |
|
self.n_frames = int(metadata.NumberOfFrames) |
|
|
|
|
|
self.n_rows = -(-self.shape[0] // self.frame_shape[0]) |
|
self.n_cols = -(-self.shape[1] // self.frame_shape[1]) |
|
self.transfer_syntax_uid = UID(metadata.file_meta.TransferSyntaxUID) |
|
logger.info( |
|
f"DICOM metadata: frame_shape={self.frame_shape}, nrows = {self.n_rows}, ncols = {self.n_cols}" |
|
) |
|
|
|
|
|
self.fp = DicomFile(self.filename, mode="rb") |
|
self.fp.is_little_endian = self.transfer_syntax_uid.is_little_endian |
|
self.fp.is_implicit_VR = self.transfer_syntax_uid.is_implicit_VR |
|
|
|
self.metadata = dcmread(self.fp, stop_before_pixels=True) |
|
self.pixel_data_offset = self.fp.tell() |
|
self.fp.seek(self.pixel_data_offset, 0) |
|
|
|
_ = TupleTag(self.fp.read_tag()) |
|
|
|
self.bot = self.get_bot(self.fp) |
|
self.first_frame = self.fp.tell() |
|
|
|
def __repr__(self): |
|
out = f"DICOMBackend('{self.filename}')\n" |
|
out += f"image shape: {self.shape}; frame shape: {self.frame_shape}; frame grid: {(self.n_rows, self.n_cols)}" |
|
return out |
|
|
|
@staticmethod |
|
def get_bot(fp): |
|
""" |
|
Reads the value of the Basic Offset Table. This table is used to access individual frames |
|
without loading the entire file into memory |
|
|
|
Args: |
|
fp (pydicom.filebase.DicomFile): pydicom DicomFile object |
|
|
|
Returns: |
|
list: Offset of each Frame of the Pixel Data element following the Basic Offset Table |
|
""" |
|
|
|
pixel_data_offset = data_element_offset_to_value(fp.is_implicit_VR, "OB") |
|
fp.seek(pixel_data_offset - 4, 1) |
|
_, basic_offset_table = get_frame_offsets(fp) |
|
first_frame_offset = fp.tell() |
|
fp.seek(first_frame_offset, 0) |
|
return basic_offset_table |
|
|
|
def get_image_shape(self): |
|
""" |
|
Get the shape of the image. |
|
|
|
Returns: |
|
Tuple[int, int]: Shape of image (H, W) |
|
""" |
|
return self.shape |
|
|
|
def get_thumbnail(self, size, **kwargs): |
|
raise NotImplementedError("DICOMBackend does not support thumbnail") |
|
|
|
def _index_to_coords(self, index): |
|
""" |
|
convert from frame index to frame coordinates using image shape, frame_shape. |
|
Frames start at 0, go across the rows sequentially, use padding at edges. |
|
Coordinates are for top-left corner of each Frame. |
|
|
|
e.g. if the image is 100x100, and each frame is 10x10, then the top row will contain frames 0 through 9, |
|
second row will contain frames 10 through 19, etc. |
|
|
|
Args: |
|
index (int): index of frame |
|
|
|
Returns: |
|
tuple: corresponding coordinates |
|
""" |
|
frame_i, frame_j = self.frame_shape |
|
|
|
row_ix = index // self.n_cols |
|
col_ix = index % self.n_cols |
|
return row_ix * frame_i, col_ix * frame_j |
|
|
|
def _coords_to_index(self, coords): |
|
""" |
|
convert from frame coordinates to frame index using image shape, frame_shape. |
|
Frames start at 0, go across the rows sequentially, use zero padding at edges. |
|
Coordinates are for top-left corner of each Frame. |
|
|
|
e.g. if the image is 100x100, and each frame is 10x10, then coordinate (10, 10) corresponds to frame index 11 |
|
(second row, second column). |
|
|
|
Args: |
|
tuple (tuple): coordinates |
|
|
|
Returns: |
|
int: frame index |
|
""" |
|
i, j = coords |
|
frame_i, frame_j = self.frame_shape |
|
|
|
if i % frame_i or j % frame_j: |
|
logger.exception(f"i={i}, j={j}, frame shape = {self.frame_shape}") |
|
raise ValueError( |
|
f"coords {coords} are not evenly divided by frame size {(frame_i, frame_j)}. Must provide coords at upper left corner of Frame." |
|
) |
|
|
|
row_ix = i / frame_i |
|
col_ix = j / frame_j |
|
|
|
index = (row_ix * self.n_cols) + col_ix |
|
return int(index) |
|
|
|
def extract_region(self, location, size=None, level=None): |
|
""" |
|
Extract a single frame from the DICOM image. |
|
|
|
Args: |
|
location (Union[int, Tuple[int, int]]): coordinate location of top-left corner of frame, or integer index |
|
of frame. |
|
size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a |
|
single integer, in which case square tiles of that size are generated. |
|
Must be the same as the frame size. |
|
|
|
Returns: |
|
np.ndarray: image at the specified region |
|
""" |
|
assert level == 0 or level is None, "dicom does not support levels" |
|
|
|
|
|
if isinstance(location, tuple): |
|
frame_ix = self._coords_to_index(location) |
|
elif isinstance(location, int): |
|
frame_ix = location |
|
else: |
|
raise ValueError( |
|
f"Invalid location: {location}. Must be an int frame index or tuple of (i, j) coordinates" |
|
) |
|
if frame_ix > self.n_frames: |
|
raise ValueError( |
|
f"location {location} invalid. Exceeds total number of frames ({self.n_frames})" |
|
) |
|
|
|
if size: |
|
if type(size) is int: |
|
size = (size, size) |
|
if size != self.frame_shape: |
|
raise ValueError( |
|
f"Input size {size} must equal frame shape in DICOM image {self.frame_shape}" |
|
) |
|
|
|
return self._read_frame(frame_ix) |
|
|
|
def _read_frame(self, frame_ix): |
|
""" |
|
Reads and decodes the pixel data of one frame. |
|
Based on implementation from highDICOM: https://github.com/MGHComputationalPathology/highdicom |
|
|
|
Args: |
|
frame_ix (int): zero-based index of the frame |
|
|
|
Returns: |
|
np.ndarray: pixel data of that frame |
|
""" |
|
frame_offset = self.bot[int(frame_ix)] |
|
self.fp.seek(self.first_frame + frame_offset, 0) |
|
try: |
|
stop_at = self.bot[frame_ix + 1] - frame_offset |
|
except IndexError: |
|
stop_at = None |
|
n = 0 |
|
|
|
chunks = [] |
|
while True: |
|
tag = TupleTag(self.fp.read_tag()) |
|
if n == stop_at or int(tag) == SequenceDelimiterTag: |
|
break |
|
length = self.fp.read_UL() |
|
chunks.append(self.fp.read(length)) |
|
n += 8 + length |
|
|
|
frame_bytes = b"".join(chunks) |
|
|
|
decoded_frame_array = self._decode_frame( |
|
value=frame_bytes, |
|
rows=self.metadata.Rows, |
|
columns=self.metadata.Columns, |
|
samples_per_pixel=self.metadata.SamplesPerPixel, |
|
transfer_syntax_uid=self.metadata.file_meta.TransferSyntaxUID, |
|
) |
|
|
|
return decoded_frame_array |
|
|
|
@staticmethod |
|
def _decode_frame( |
|
value, |
|
transfer_syntax_uid, |
|
rows, |
|
columns, |
|
samples_per_pixel, |
|
photometric_interpretation="RGB", |
|
): |
|
""" |
|
Decodes the data of an individual frame. |
|
The pydicom library does currently not support reading individual frames. |
|
This solution inspired from HighDICOM creates a small dataset for the individual frame which |
|
can then be decoded using pydicom API. |
|
|
|
Args: |
|
value (bytes): Pixel data of a frame |
|
transfer_syntax_uid (str): Transfer Syntax UID |
|
rows (int): Number of pixel rows in the frame |
|
columns (int): Number of pixel columns in the frame |
|
samples_per_pixel (int): Number of samples per pixel |
|
photometric_interpretation (str): Photometric interpretation --currently only supporting RGB |
|
|
|
Returns: |
|
np.ndarray: decoded pixel data |
|
""" |
|
filemetadata = Dataset() |
|
filemetadata.TransferSyntaxUID = transfer_syntax_uid |
|
dataset = Dataset() |
|
dataset.file_meta = filemetadata |
|
dataset.Rows = rows |
|
dataset.Columns = columns |
|
dataset.SamplesPerPixel = samples_per_pixel |
|
dataset.PhotometricInterpretation = photometric_interpretation |
|
image = Image.open(BytesIO(value)) |
|
return np.asarray(image) |
|
|
|
def generate_tiles(self, shape, stride, pad, level=0, **kwargs): |
|
""" |
|
Generator over tiles. |
|
For DICOMBackend, each tile corresponds to a frame. |
|
|
|
Args: |
|
shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, |
|
in which case square tiles of that size are generated. Must match frame size. |
|
stride (int): Ignored for DICOMBackend. Frames are yielded individually. |
|
pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded |
|
and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. |
|
Defaults to ``False``. |
|
|
|
Yields: |
|
pathml.core.tile.Tile: Extracted Tile object |
|
""" |
|
assert level == 0 or level is None, "dicom does not support levels" |
|
for i in range(self.n_frames): |
|
if not pad: |
|
|
|
if i % self.n_cols == (self.n_cols - 1): |
|
continue |
|
|
|
if i >= (self.n_frames - self.n_cols): |
|
continue |
|
|
|
frame_im = self.extract_region(location=i) |
|
coords = self._index_to_coords(i) |
|
frame_tile = pathml.core.tile.Tile(image=frame_im, coords=coords) |
|
yield frame_tile |
|
|