introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import numpy as np
import pytest
import torch
from skimage.draw import ellipse
from skimage.measure import label
from torch_geometric.loader import DataLoader
import pathml
from pathml.core import SlideData
from pathml.graph import Graph, HACTPairData, build_assignment_matrix
from pathml.graph.utils import get_full_instance_map
from pathml.preprocessing import Pipeline
from pathml.preprocessing.transforms import Transform
@pytest.mark.parametrize("batch_size", [1, 8, 32])
@pytest.mark.parametrize("include_target", [True, False])
def test_pathml_graph(batch_size, include_target):
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)
node_centroids = torch.randn(3, 2)
node_features = torch.randn(3, 2)
if include_target:
target = torch.tensor([1])
graph_obj = Graph(
edge_index=edge_index,
node_centroids=node_centroids,
node_features=node_features,
target=target if include_target else None,
)
loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size)
batch = next(iter(loader))
assert batch.node_centroids.shape == (batch_size * 3, 2)
assert batch.node_features.shape == (batch_size * 3, 2)
assert batch.edge_index.shape == (2, batch_size * 4)
assert batch.batch.shape == (batch_size * 3,)
@pytest.mark.parametrize("batch_size", [1, 8, 32])
def test_pathml_hactnet_graph(batch_size):
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)
node_features = torch.randn(3, 2)
x_cell = node_features
edge_index_cell = edge_index
x_tissue = node_features
edge_index_tissue = edge_index
assignment = edge_index
target = torch.tensor([2])
graph_obj = HACTPairData(
x_cell=x_cell,
edge_index_cell=edge_index_cell,
x_tissue=x_tissue,
edge_index_tissue=edge_index_tissue,
assignment=assignment,
target=target,
)
loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size)
batch = next(iter(loader))
assert batch.x_cell.shape == (batch_size * 3, 2)
assert batch.x_tissue.shape == (batch_size * 3, 2)
assert batch.edge_index_cell.shape == (2, batch_size * 4)
assert batch.edge_index_tissue.shape == (2, batch_size * 4)
def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width):
img = np.zeros(image_size)
# Draw n ellipses
for i in range(num):
# Random center for each ellipse
center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width)
center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height)
# Coordinates for the ellipse
rr, cc = ellipse(
center_y, center_x, ellipse_height, ellipse_width, shape=image_size
)
# Draw the ellipse
img[rr, cc] = 1
label_img = label(img.astype(int))
return label_img
@pytest.mark.parametrize("matrix", [True, False])
def test_build_assignment_matrix(matrix):
image_size = (1024, 2048)
tissue_instance_map = make_fake_instance_maps(
num=20, image_size=image_size, ellipse_height=20, ellipse_width=8
)
cell_centroids = np.random.rand(200, 2)
assignment = build_assignment_matrix(
cell_centroids, tissue_instance_map, matrix=matrix
)
if matrix:
assert assignment.shape[0] == 200
else:
assert assignment.shape[1] == 200
class DummyTransform(Transform):
def __init__(
self,
mask_name,
):
self.mask_name = mask_name
def F(self, image):
return image[:, :, 0]
def apply(self, tile):
assert isinstance(
tile, pathml.core.tile.Tile
), f"tile is type {type(tile)} but must be pathml.core.tile.Tile"
nucleus_mask = self.F(tile.image)
tile.masks[self.mask_name] = nucleus_mask
@pytest.mark.parametrize("mask_name", ["test"])
def test_instance_map(mask_name):
image_path = "tests/testdata/small_HE.svs"
wsi = SlideData(image_path, name=image_path, backend="openslide", stain="HE")
pipeline = Pipeline([DummyTransform(mask_name)])
wsi.run(
pipeline,
overwrite_existing_tiles=True,
distributed=False,
tile_pad=True,
tile_size=1024,
)
image_norm, label_instance_map, instance_centroids = get_full_instance_map(
wsi, patch_size=1024, mask_name="test"
)
assert image_norm.shape == (wsi.shape[0], wsi.shape[1], 3)
assert label_instance_map.shape == (wsi.shape[0], wsi.shape[1])
assert instance_centroids.shape[1] == 2