|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pathml.preprocessing.tiling import extract_tiles, extract_tiles_with_mask |
|
|
|
|
|
@pytest.mark.parametrize("tile_size", [5, 20]) |
|
@pytest.mark.parametrize("stride", [None, 1, 5]) |
|
@pytest.mark.parametrize("n_channels", [1, 3, 11]) |
|
def test_extract_tiles(n_channels, stride, tile_size): |
|
|
|
arr_size = 100 |
|
arr = np.arange(arr_size * arr_size * n_channels).reshape( |
|
(arr_size, arr_size, n_channels) |
|
) |
|
tiled = extract_tiles(arr, tile_size=tile_size, stride=stride) |
|
if stride is None: |
|
stride = tile_size |
|
n_tiles_expected = 1 + (arr_size - tile_size) / stride |
|
assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels) |
|
assert np.array_equal(tiled[0, ...], arr[0:tile_size, 0:tile_size, :]) |
|
|
|
|
|
@pytest.mark.parametrize("stride", [None, 5]) |
|
@pytest.mark.parametrize("n_channels_arr", [3]) |
|
@pytest.mark.parametrize("n_channels_mask", [5]) |
|
@pytest.mark.parametrize("tile_size", [5, 10, 25]) |
|
def test_extract_tiles_with_mask(n_channels_arr, n_channels_mask, stride, tile_size): |
|
arr_size = 100 |
|
arr = np.arange(arr_size * arr_size * n_channels_arr).reshape( |
|
(arr_size, arr_size, n_channels_arr) |
|
) |
|
|
|
mask = np.zeros(shape=(arr_size, arr_size, n_channels_mask), dtype=np.uint8) |
|
mask[0:25, 0:25, ...] = 1 |
|
|
|
tiled = extract_tiles_with_mask( |
|
arr, mask=mask, tile_size=tile_size, stride=stride, threshold=0.99 |
|
) |
|
|
|
if stride is None: |
|
stride = tile_size |
|
|
|
|
|
|
|
|
|
n_tiles_expected = 1 + (25 - tile_size) // stride |
|
|
|
assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels_arr) |
|
|