visualmath / data /visma /calculus /differentiation.py
introvoyz041's picture
Migrated from GitHub
389d072 verified
import copy
from visma.functions.structure import Function, Expression
from visma.functions.constant import Constant, Zero
from visma.functions.operator import Operator, Multiply, Plus
from visma.simplify.simplify import simplify
from visma.functions.variable import Variable
from visma.functions.exponential import Logarithm, Exponential
from visma.functions.trigonometry import Trigonometric
from visma.io.parser import tokensToString
###################
# Differentiation #
###################
def differentiate(tokens, wrtVar):
"""Simplifies and then differentiates given tokens wrt given variable
Arguments:
tokens {list} -- list of function tokens
wrtVar {string} -- with respect to variable
Returns:
tokens {list} -- list of differentiated tokens
availableOperations {list} -- list of operations
token_string {string} -- output equation string
animation {list} -- equation tokens for step-by-step
comments {list} -- comments for step-by-step
"""
animation = []
comments = []
tokens, availableOperations, token_string, animation, comments = simplify(tokens)
tokens, animNew, commentsNew = differentiateTokens(tokens, wrtVar)
animation.append(animNew)
comments.append(commentsNew)
tokens, availableOperations, token_string, animation2, comments2 = simplify(tokens)
animation2.pop(0)
comments2.pop(0)
animation.extend(animation2)
comments.extend(comments2)
return tokens, availableOperations, token_string, animation, comments
def differentiateTokens(funclist, wrtVar):
"""Differentiates given tokens wrt given variable
Arguments:
funclist {list} -- list of function tokens
wrtVar {string} -- with respect to variable
Returns:
diffFunc {list} -- list of differentiated tokens
animNew {list} -- equation tokens for step-by-step
commentsNew {list} -- comments for step-by-step
"""
diffFunc = []
animNew = []
commentsNew = ["Differentiating with respect to " + r"$" + wrtVar + r"$" + "\n"]
for func in funclist:
if isinstance(func, Operator):
diffFunc.append(func)
else:
newExpression = Expression()
newfunc = []
while(isinstance(func, Function)):
commentsNew[0] += r"$" + "\\frac{d}{d" + wrtVar + "} ( " + func.__str__() + ")" + r"$"
funcCopy = copy.deepcopy(func)
if wrtVar in funcCopy.functionOf():
if isinstance(funcCopy, Trigonometric) or isinstance(funcCopy, Logarithm) or isinstance(funcCopy, Variable) or isinstance(funcCopy, Exponential):
funcCopy = funcCopy.differentiate(wrtVar)
newfunc.append(funcCopy)
commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
else:
funcCopy = Zero()
newfunc.append(funcCopy)
commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
newfunc.append(Multiply())
if func.operand is None:
break
else:
func = func.operand
if isinstance(func, Constant):
diffFunc = Zero()
break
newfunc.pop()
newExpression.tokens = newfunc
diffFunc.extend([newExpression])
animNew.extend(diffFunc)
return diffFunc, animNew, commentsNew
def differentiationProductRule(tokens, wrtVar):
resultTokens = []
for i in range(0, len(tokens), 2):
currentDiff = Expression()
currentDiffTokens, _, _, _, _ = differentiate([tokens[i]], wrtVar)
currentDiff.tokens = currentDiffTokens
tempTokens = copy.deepcopy(tokens)
tempTokens[i] = currentDiff
resultTokens.extend(tempTokens)
resultTokens.append(Plus())
resultTokens.pop()
token_string = tokensToString(resultTokens)
# TODO: Make simplify module to simplify expressions involving Trigonometric Expressions (to some extent)
# resultTokens, _, token_string, _, _ = simplify(resultTokens)
return tokens, [], token_string, [], []