|
import copy |
|
|
|
from visma.functions.structure import Function, Expression |
|
from visma.functions.constant import Constant, Zero |
|
from visma.functions.operator import Operator, Multiply, Plus |
|
from visma.simplify.simplify import simplify |
|
from visma.functions.variable import Variable |
|
from visma.functions.exponential import Logarithm, Exponential |
|
from visma.functions.trigonometry import Trigonometric |
|
from visma.io.parser import tokensToString |
|
|
|
|
|
|
|
|
|
|
|
|
|
def differentiate(tokens, wrtVar): |
|
"""Simplifies and then differentiates given tokens wrt given variable |
|
|
|
Arguments: |
|
tokens {list} -- list of function tokens |
|
wrtVar {string} -- with respect to variable |
|
|
|
Returns: |
|
tokens {list} -- list of differentiated tokens |
|
availableOperations {list} -- list of operations |
|
token_string {string} -- output equation string |
|
animation {list} -- equation tokens for step-by-step |
|
comments {list} -- comments for step-by-step |
|
""" |
|
animation = [] |
|
comments = [] |
|
tokens, availableOperations, token_string, animation, comments = simplify(tokens) |
|
tokens, animNew, commentsNew = differentiateTokens(tokens, wrtVar) |
|
animation.append(animNew) |
|
comments.append(commentsNew) |
|
tokens, availableOperations, token_string, animation2, comments2 = simplify(tokens) |
|
animation2.pop(0) |
|
comments2.pop(0) |
|
animation.extend(animation2) |
|
comments.extend(comments2) |
|
return tokens, availableOperations, token_string, animation, comments |
|
|
|
|
|
def differentiateTokens(funclist, wrtVar): |
|
"""Differentiates given tokens wrt given variable |
|
|
|
Arguments: |
|
funclist {list} -- list of function tokens |
|
wrtVar {string} -- with respect to variable |
|
|
|
Returns: |
|
diffFunc {list} -- list of differentiated tokens |
|
animNew {list} -- equation tokens for step-by-step |
|
commentsNew {list} -- comments for step-by-step |
|
""" |
|
diffFunc = [] |
|
animNew = [] |
|
commentsNew = ["Differentiating with respect to " + r"$" + wrtVar + r"$" + "\n"] |
|
for func in funclist: |
|
if isinstance(func, Operator): |
|
diffFunc.append(func) |
|
else: |
|
newExpression = Expression() |
|
newfunc = [] |
|
while(isinstance(func, Function)): |
|
commentsNew[0] += r"$" + "\\frac{d}{d" + wrtVar + "} ( " + func.__str__() + ")" + r"$" |
|
funcCopy = copy.deepcopy(func) |
|
if wrtVar in funcCopy.functionOf(): |
|
if isinstance(funcCopy, Trigonometric) or isinstance(funcCopy, Logarithm) or isinstance(funcCopy, Variable) or isinstance(funcCopy, Exponential): |
|
funcCopy = funcCopy.differentiate(wrtVar) |
|
newfunc.append(funcCopy) |
|
commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$" |
|
else: |
|
funcCopy = Zero() |
|
newfunc.append(funcCopy) |
|
commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$" |
|
newfunc.append(Multiply()) |
|
if func.operand is None: |
|
break |
|
else: |
|
func = func.operand |
|
if isinstance(func, Constant): |
|
diffFunc = Zero() |
|
break |
|
newfunc.pop() |
|
newExpression.tokens = newfunc |
|
diffFunc.extend([newExpression]) |
|
animNew.extend(diffFunc) |
|
return diffFunc, animNew, commentsNew |
|
|
|
|
|
def differentiationProductRule(tokens, wrtVar): |
|
resultTokens = [] |
|
for i in range(0, len(tokens), 2): |
|
currentDiff = Expression() |
|
currentDiffTokens, _, _, _, _ = differentiate([tokens[i]], wrtVar) |
|
currentDiff.tokens = currentDiffTokens |
|
tempTokens = copy.deepcopy(tokens) |
|
tempTokens[i] = currentDiff |
|
resultTokens.extend(tempTokens) |
|
resultTokens.append(Plus()) |
|
resultTokens.pop() |
|
token_string = tokensToString(resultTokens) |
|
|
|
|
|
return tokens, [], token_string, [], [] |
|
|