visualmath / data /visma /matrix /operations.py
introvoyz041's picture
Migrated from GitHub
389d072 verified
from visma.functions.operator import Binary
from visma.functions.structure import Expression
from visma.functions.constant import Constant
from visma.simplify.simplify import simplify
from visma.matrix.structure import Matrix
from visma.gui import logger
def simplifyMatrix(mat):
"""Simplifies each element in the matrix
Arguments:
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
mat {visma.matrix.structure.Matrix} -- simplified matrix token
"""
mat.dim[0] = len(mat.value)
mat.dim[1] = len(mat.value[0])
for i in range(mat.dim[0]):
for j in range(mat.dim[1]):
mat.value[i][j], _, _, _, _ = simplify(mat.value[i][j])
return mat
def addMatrix(matA, matB):
"""Adds two matrices
Arguments:
matA {visma.matrix.structure.Matrix} -- matrix token
matB {visma.matrix.structure.Matrix} -- matrix token
Returns:
matSum {visma.matrix.structure.Matrix} -- sum matrix token
Note:
Make dimCheck before calling addMatrix
"""
matSum = Matrix()
matA.dim[0] = len(matA.value)
matA.dim[1] = len(matA.value[0])
matSum.empty(matA.dim)
for i in range(matA.dim[0]):
for j in range(matA.dim[1]):
matSum.value[i][j].extend(matA.value[i][j])
matSum.value[i][j].append(Binary('+'))
matSum.value[i][j].extend(matB.value[i][j])
matSum = simplifyMatrix(matSum)
return matSum
def subMatrix(matA, matB):
"""Subtracts two matrices
Arguments:
matA {visma.matrix.structure.Matrix} -- matrix token
matB {visma.matrix.structure.Matrix} -- matrix token
Returns:
matSub {visma.matrix.structure.Matrix} -- subtracted matrix token
Note:
Make dimCheck before calling subMatrix
"""
matSub = Matrix()
matA.dim[0] = len(matA.value)
matA.dim[1] = len(matA.value[0])
matSub.empty(matA.dim)
for i in range(matA.dim[0]):
for j in range(matA.dim[1]):
matSub.value[i][j].extend(matA.value[i][j])
matSub.value[i][j].append(Binary('-'))
matSub.value[i][j].extend(matB.value[i][j])
matSub = simplifyMatrix(matSub)
return matSub
def multiplyMatrix(matA, matB):
"""Multiplies two matrices
Arguments:
matA {visma.matrix.structure.Matrix} -- matrix token
matB {visma.matrix.structure.Matrix} -- matrix token
Returns:
matPro {visma.matrix.structure.Matrix} -- product matrix token
Note:
Make mulitplyCheck before calling multiplyMatrix
Not commutative
"""
matPro = Matrix()
matA.dim[0] = len(matA.value)
matA.dim[1] = len(matA.value[0])
matB.dim[0] = len(matB.value)
matB.dim[1] = len(matB.value[0])
matPro.empty([matA.dim[0], matB.dim[1]])
for i in range(matA.dim[0]):
for j in range(matB.dim[1]):
for k in range(matA.dim[1]):
if matPro.value[i][j] != []:
matPro.value[i][j].append(Binary('+'))
if len(matA.value[i][k]) != 1:
matPro.value[i][j].append(Expression(matA.value[i][k]))
else:
matPro.value[i][j].extend(matA.value[i][k])
matPro.value[i][j].append(Binary('*'))
if len(matB.value[k][j]) != 1:
matPro.value[i][j].append(Expression(matB.value[k][j]))
else:
matPro.value[i][j].extend(matB.value[k][j])
matPro = simplifyMatrix(matPro)
return matPro
def scalarAdd(const, mat):
"""
Adds constant terms with Matrix
Arguments:
const {string}--- constant value
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
matRes {visma.matrix.structure.Matrix} -- sum matrix token
Note:
This scalar addition follows the following equation
{mat} + {lambda}{identity mat}
"""
matRes = Matrix()
mat.dim[0] = len(mat.value)
mat.dim[1] = len(mat.value[0])
matRes.empty(mat.dim)
for i in range(mat.dim[0]):
for j in range(mat.dim[1]):
if i != j:
matRes.value[i][j].extend(mat.value[i][j])
else:
if len(mat.value[i][j]) != 1:
matRes.value[i][j].append(Expression(mat.value[i][j]))
else:
matRes.value[i][j].extend(mat.value[i][j])
matRes.value[i][j].append(Binary('+'))
matRes.value[i][j].append(Constant(int(const)))
matRes = simplifyMatrix(matRes)
return matRes
def scalarSub(const, mat):
"""
Subtracts constant terms with Matrix
Arguments:
const {string}--- constant value
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
matRes {visma.matrix.structure.Matrix} -- subtracted matrix token
Note:
This scalar addition follows the following equation
{mat} - {lambda}{identity mat}
"""
matRes = Matrix()
matRes.empty([mat.dim[0], mat.dim[1]])
for i in range(mat.dim[0]):
for j in range(mat.dim[1]):
if i != j:
matRes.value[i][j].extend(mat.value[i][j])
else:
if len(mat.value[i][j]) != 1:
matRes.value[i][j].append(Expression(mat.value[i][j]))
else:
matRes.value[i][j].extend(mat.value[i][j])
matRes.value[i][j].append(Binary('-'))
matRes.value[i][j].append(Constant(int(const)))
matRes = simplifyMatrix(matRes)
return matRes
def scalarMult(const, mat):
"""Multiplies constant terms with Matrix
Arguments:
const {string}--- constant value
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
matRes {visma.matrix.structure.Matrix} -- product matrix token
"""
matRes = Matrix()
matRes.empty([mat.dim[0], mat.dim[1]])
for i in range(mat.dim[0]):
for j in range(mat.dim[1]):
if len(mat.value[i][j]) != 1:
matRes.value[i][j].append(Expression(mat.value[i][j]))
else:
matRes.value[i][j].extend(mat.value[i][j])
matRes.value[i][j].append(Binary('*'))
matRes.value[i][j].append(Constant(int(const)))
matRes = simplifyMatrix(matRes)
return matRes
def scalarDiv(const, mat):
"""Divides constant terms with Matrix
Arguments:
const {string}--- constant value
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
matRes {visma.matrix.structure.Matrix} -- result matrix token
"""
if const != 0:
matRes = Matrix()
matRes.empty([mat.dim[0], mat.dim[1]])
for i in range(mat.dim[0]):
for j in range(mat.dim[1]):
if len(mat.value[i][j]) != 1:
matRes.value[i][j].append(Expression(mat.value[i][j]))
else:
matRes.value[i][j].extend(mat.value[i][j])
matRes.value[i][j].append(Binary('/'))
matRes.value[i][j].append(Constant(int(const)))
matRes = simplifyMatrix(matRes)
return matRes
else:
logger.error("ZeroDivisionError: Cannot divide matrix by zero")
def row_echelon(mat):
"""
Returns the row echelon form of the given matrix
Arguments:
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
row_echelon {visma.matrix.structure.Matrix} -- result matrix token
"""
N = mat.dim[0]
M = mat.dim[1]
for k in range(0, N):
if abs(mat.value[k][k][0].value) == 0.0:
if k == N-1:
return simplifyMatrix(mat)
else:
for i in range(0, N):
t = mat.value[k][i]
mat.value[k][i] = mat.value[k+1][i]
mat.value[k+1][i] = t
else:
for i in range(k+1, N):
temp = []
temp.extend(mat.value[i][k])
temp.append(Binary('/'))
temp.extend(mat.value[k][k])
temp, _, _, _, _ = simplify(temp)
for j in range(k+1, M):
temp2 = []
temp2.extend(mat.value[k][j])
temp2.append(Binary('*'))
temp2.extend(temp)
temp2, _, _, _, _ = simplify(temp2)
mat.value[i][j].append(Binary('-'))
mat.value[i][j].extend(temp2)
mat.value[i][k].append(Binary('*'))
mat.value[i][k].append(Constant(0))
mat = simplifyMatrix(mat)
return simplifyMatrix(mat)
def gauss_elim(mat):
"""
Returns calculated values of unknown variables
Arguments:
mat {visma.matrix.structure.Matrix} -- matrix token
Returns:
result {visma.matrix.structure.Matrix} -- result matrix token
Note: result is a Nx1 matrix
"""
echelon = Matrix()
echelon = row_echelon(mat)
result = Matrix()
result.empty([mat.dim[0], 1])
N = mat.dim[0]
M = mat.dim[1]
index = N-1
for i in range(N-1, -1, -1):
sum_ = []
temp = []
if echelon.value[i][i][0].value == 0.0: # no unique solution for this case
return -1
for j in range(i+1, M-1):
temp = []
temp.extend(echelon.value[i][j])
temp.append(Binary('*'))
temp.extend(result.value[j][0])
temp, _, _, _, _ = simplify(temp)
sum_.extend(temp)
if j != M-2:
sum_.append(Binary('+'))
sum_, _, _, _, _ = simplify(sum_)
result.value[index][0].extend(echelon.value[i][M-1])
if sum_:
if sum_[0].value < 0:
result.value[index][0].append(Binary('-')) # negative sign makes the negative sign in value positive
else:
result.value[index][0].append(Binary('-'))
result.value[index][0].extend(sum_)
result.value[index][0], _, _, _, _ = simplify(result.value[index][0])
result.value[index][0].append(Binary('/'))
result.value[index][0].extend(echelon.value[i][i])
result.value[index][0], _, _, _, _ = simplify(result.value[index][0])
index -= 1
return result