|
from visma.functions.operator import Binary |
|
from visma.functions.structure import Expression |
|
from visma.functions.constant import Constant |
|
from visma.simplify.simplify import simplify |
|
from visma.matrix.structure import Matrix |
|
from visma.gui import logger |
|
|
|
|
|
def simplifyMatrix(mat): |
|
"""Simplifies each element in the matrix |
|
|
|
Arguments: |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
mat {visma.matrix.structure.Matrix} -- simplified matrix token |
|
""" |
|
mat.dim[0] = len(mat.value) |
|
mat.dim[1] = len(mat.value[0]) |
|
for i in range(mat.dim[0]): |
|
for j in range(mat.dim[1]): |
|
mat.value[i][j], _, _, _, _ = simplify(mat.value[i][j]) |
|
return mat |
|
|
|
|
|
def addMatrix(matA, matB): |
|
"""Adds two matrices |
|
|
|
Arguments: |
|
matA {visma.matrix.structure.Matrix} -- matrix token |
|
matB {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matSum {visma.matrix.structure.Matrix} -- sum matrix token |
|
|
|
Note: |
|
Make dimCheck before calling addMatrix |
|
""" |
|
matSum = Matrix() |
|
matA.dim[0] = len(matA.value) |
|
matA.dim[1] = len(matA.value[0]) |
|
matSum.empty(matA.dim) |
|
for i in range(matA.dim[0]): |
|
for j in range(matA.dim[1]): |
|
matSum.value[i][j].extend(matA.value[i][j]) |
|
matSum.value[i][j].append(Binary('+')) |
|
matSum.value[i][j].extend(matB.value[i][j]) |
|
matSum = simplifyMatrix(matSum) |
|
return matSum |
|
|
|
|
|
def subMatrix(matA, matB): |
|
"""Subtracts two matrices |
|
|
|
Arguments: |
|
matA {visma.matrix.structure.Matrix} -- matrix token |
|
matB {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matSub {visma.matrix.structure.Matrix} -- subtracted matrix token |
|
|
|
Note: |
|
Make dimCheck before calling subMatrix |
|
""" |
|
matSub = Matrix() |
|
matA.dim[0] = len(matA.value) |
|
matA.dim[1] = len(matA.value[0]) |
|
matSub.empty(matA.dim) |
|
for i in range(matA.dim[0]): |
|
for j in range(matA.dim[1]): |
|
matSub.value[i][j].extend(matA.value[i][j]) |
|
matSub.value[i][j].append(Binary('-')) |
|
matSub.value[i][j].extend(matB.value[i][j]) |
|
matSub = simplifyMatrix(matSub) |
|
return matSub |
|
|
|
|
|
def multiplyMatrix(matA, matB): |
|
"""Multiplies two matrices |
|
|
|
Arguments: |
|
matA {visma.matrix.structure.Matrix} -- matrix token |
|
matB {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matPro {visma.matrix.structure.Matrix} -- product matrix token |
|
|
|
Note: |
|
Make mulitplyCheck before calling multiplyMatrix |
|
Not commutative |
|
""" |
|
matPro = Matrix() |
|
matA.dim[0] = len(matA.value) |
|
matA.dim[1] = len(matA.value[0]) |
|
matB.dim[0] = len(matB.value) |
|
matB.dim[1] = len(matB.value[0]) |
|
matPro.empty([matA.dim[0], matB.dim[1]]) |
|
for i in range(matA.dim[0]): |
|
for j in range(matB.dim[1]): |
|
for k in range(matA.dim[1]): |
|
if matPro.value[i][j] != []: |
|
matPro.value[i][j].append(Binary('+')) |
|
if len(matA.value[i][k]) != 1: |
|
matPro.value[i][j].append(Expression(matA.value[i][k])) |
|
else: |
|
matPro.value[i][j].extend(matA.value[i][k]) |
|
matPro.value[i][j].append(Binary('*')) |
|
if len(matB.value[k][j]) != 1: |
|
matPro.value[i][j].append(Expression(matB.value[k][j])) |
|
else: |
|
matPro.value[i][j].extend(matB.value[k][j]) |
|
matPro = simplifyMatrix(matPro) |
|
return matPro |
|
|
|
|
|
def scalarAdd(const, mat): |
|
""" |
|
Adds constant terms with Matrix |
|
|
|
Arguments: |
|
const {string}--- constant value |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matRes {visma.matrix.structure.Matrix} -- sum matrix token |
|
|
|
Note: |
|
This scalar addition follows the following equation |
|
{mat} + {lambda}{identity mat} |
|
|
|
""" |
|
matRes = Matrix() |
|
mat.dim[0] = len(mat.value) |
|
mat.dim[1] = len(mat.value[0]) |
|
matRes.empty(mat.dim) |
|
for i in range(mat.dim[0]): |
|
for j in range(mat.dim[1]): |
|
if i != j: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
else: |
|
if len(mat.value[i][j]) != 1: |
|
matRes.value[i][j].append(Expression(mat.value[i][j])) |
|
else: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
matRes.value[i][j].append(Binary('+')) |
|
matRes.value[i][j].append(Constant(int(const))) |
|
matRes = simplifyMatrix(matRes) |
|
return matRes |
|
|
|
|
|
def scalarSub(const, mat): |
|
""" |
|
Subtracts constant terms with Matrix |
|
|
|
Arguments: |
|
const {string}--- constant value |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matRes {visma.matrix.structure.Matrix} -- subtracted matrix token |
|
|
|
Note: |
|
This scalar addition follows the following equation |
|
{mat} - {lambda}{identity mat} |
|
|
|
""" |
|
matRes = Matrix() |
|
matRes.empty([mat.dim[0], mat.dim[1]]) |
|
for i in range(mat.dim[0]): |
|
for j in range(mat.dim[1]): |
|
if i != j: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
else: |
|
if len(mat.value[i][j]) != 1: |
|
matRes.value[i][j].append(Expression(mat.value[i][j])) |
|
else: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
matRes.value[i][j].append(Binary('-')) |
|
matRes.value[i][j].append(Constant(int(const))) |
|
matRes = simplifyMatrix(matRes) |
|
return matRes |
|
|
|
|
|
def scalarMult(const, mat): |
|
"""Multiplies constant terms with Matrix |
|
|
|
Arguments: |
|
const {string}--- constant value |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matRes {visma.matrix.structure.Matrix} -- product matrix token |
|
""" |
|
matRes = Matrix() |
|
matRes.empty([mat.dim[0], mat.dim[1]]) |
|
for i in range(mat.dim[0]): |
|
for j in range(mat.dim[1]): |
|
if len(mat.value[i][j]) != 1: |
|
matRes.value[i][j].append(Expression(mat.value[i][j])) |
|
else: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
|
|
matRes.value[i][j].append(Binary('*')) |
|
matRes.value[i][j].append(Constant(int(const))) |
|
matRes = simplifyMatrix(matRes) |
|
return matRes |
|
|
|
|
|
def scalarDiv(const, mat): |
|
"""Divides constant terms with Matrix |
|
|
|
Arguments: |
|
const {string}--- constant value |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
matRes {visma.matrix.structure.Matrix} -- result matrix token |
|
""" |
|
if const != 0: |
|
matRes = Matrix() |
|
matRes.empty([mat.dim[0], mat.dim[1]]) |
|
for i in range(mat.dim[0]): |
|
for j in range(mat.dim[1]): |
|
if len(mat.value[i][j]) != 1: |
|
matRes.value[i][j].append(Expression(mat.value[i][j])) |
|
else: |
|
matRes.value[i][j].extend(mat.value[i][j]) |
|
|
|
matRes.value[i][j].append(Binary('/')) |
|
matRes.value[i][j].append(Constant(int(const))) |
|
matRes = simplifyMatrix(matRes) |
|
return matRes |
|
else: |
|
logger.error("ZeroDivisionError: Cannot divide matrix by zero") |
|
|
|
|
|
def row_echelon(mat): |
|
""" |
|
Returns the row echelon form of the given matrix |
|
|
|
Arguments: |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
row_echelon {visma.matrix.structure.Matrix} -- result matrix token |
|
""" |
|
|
|
N = mat.dim[0] |
|
M = mat.dim[1] |
|
for k in range(0, N): |
|
if abs(mat.value[k][k][0].value) == 0.0: |
|
if k == N-1: |
|
return simplifyMatrix(mat) |
|
else: |
|
for i in range(0, N): |
|
t = mat.value[k][i] |
|
mat.value[k][i] = mat.value[k+1][i] |
|
mat.value[k+1][i] = t |
|
else: |
|
for i in range(k+1, N): |
|
temp = [] |
|
temp.extend(mat.value[i][k]) |
|
temp.append(Binary('/')) |
|
temp.extend(mat.value[k][k]) |
|
temp, _, _, _, _ = simplify(temp) |
|
for j in range(k+1, M): |
|
temp2 = [] |
|
temp2.extend(mat.value[k][j]) |
|
temp2.append(Binary('*')) |
|
temp2.extend(temp) |
|
temp2, _, _, _, _ = simplify(temp2) |
|
mat.value[i][j].append(Binary('-')) |
|
mat.value[i][j].extend(temp2) |
|
mat.value[i][k].append(Binary('*')) |
|
mat.value[i][k].append(Constant(0)) |
|
mat = simplifyMatrix(mat) |
|
return simplifyMatrix(mat) |
|
|
|
|
|
def gauss_elim(mat): |
|
""" |
|
Returns calculated values of unknown variables |
|
|
|
Arguments: |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
result {visma.matrix.structure.Matrix} -- result matrix token |
|
Note: result is a Nx1 matrix |
|
""" |
|
|
|
echelon = Matrix() |
|
echelon = row_echelon(mat) |
|
result = Matrix() |
|
result.empty([mat.dim[0], 1]) |
|
|
|
N = mat.dim[0] |
|
M = mat.dim[1] |
|
index = N-1 |
|
for i in range(N-1, -1, -1): |
|
sum_ = [] |
|
temp = [] |
|
if echelon.value[i][i][0].value == 0.0: |
|
return -1 |
|
for j in range(i+1, M-1): |
|
temp = [] |
|
temp.extend(echelon.value[i][j]) |
|
temp.append(Binary('*')) |
|
temp.extend(result.value[j][0]) |
|
temp, _, _, _, _ = simplify(temp) |
|
sum_.extend(temp) |
|
if j != M-2: |
|
sum_.append(Binary('+')) |
|
sum_, _, _, _, _ = simplify(sum_) |
|
|
|
result.value[index][0].extend(echelon.value[i][M-1]) |
|
if sum_: |
|
if sum_[0].value < 0: |
|
result.value[index][0].append(Binary('-')) |
|
else: |
|
result.value[index][0].append(Binary('-')) |
|
result.value[index][0].extend(sum_) |
|
result.value[index][0], _, _, _, _ = simplify(result.value[index][0]) |
|
result.value[index][0].append(Binary('/')) |
|
result.value[index][0].extend(echelon.value[i][i]) |
|
result.value[index][0], _, _, _, _ = simplify(result.value[index][0]) |
|
index -= 1 |
|
|
|
return result |
|
|