|
''' |
|
Owner: AerospaceResearch.net |
|
About: This module hosts the functions used for finding roots of a cubic equation |
|
Note: Please try to maintain proper documentation |
|
Logic Description: |
|
''' |
|
|
|
import math |
|
import copy |
|
from visma.io.checks import getVariables |
|
from visma.io.parser import tokensToString |
|
from visma.functions.structure import Expression |
|
from visma.functions.constant import Constant, Zero |
|
from visma.functions.variable import Variable |
|
from visma.functions.operator import Binary, Plus, Minus, Sqrt |
|
from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens |
|
from visma.config.values import ROUNDOFF |
|
|
|
|
|
def getRootsCubic(coeffs): |
|
""" Applies an implementation of Cardano's Method (https://en.wikipedia.org/wiki/Cubic_function) on the coefficients |
|
of the cubic equation roots |
|
|
|
Arguments: |
|
coeffs {list} -- list of coefficients of the equation |
|
|
|
Returns: |
|
roots {list} -- list of roots of cubic equation |
|
(each element of roots {list} is a list of two elements, where 1st one denotes real part & second part shows imaginary part) |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
""" |
|
from visma.solvers.polynomial.roots import cubeRoot |
|
roots = [] |
|
animations = [] |
|
comments = [] |
|
a = coeffs[3] |
|
b = coeffs[2] |
|
c = coeffs[1] |
|
d = coeffs[0] |
|
|
|
f = ((3*c/a) - (b**2/a**2))/3 |
|
g = ((2*(b**3)/(a**3)) - (9*b*c/(a**2)) + (27*d/a))/27 |
|
h = ((g**2)/4) + ((f**3)/27) |
|
animations += [[]] |
|
comments += [['Value of determinants [f, g, h] are ' + str(f) + ', ' + str(g) + ', ' + str(h)]] |
|
if h <= 0: |
|
if h == 0 and g == 0 and f == 0: |
|
|
|
animations += [[]] |
|
comments += [['Hence, three equal real roots exist.']] |
|
res = cubeRoot(d/a) |
|
valueX1 = [-res, 0] |
|
valueX2 = [-res, 0] |
|
valueX3 = [-res, 0] |
|
roots.append(valueX1) |
|
else: |
|
|
|
animations += [[]] |
|
comments += [['Hence, three equal non-equal real roots exist.']] |
|
i = (((g**2)/4) - h) ** (1./2.) |
|
j = cubeRoot(i) |
|
k = math.acos(-g/(2*i)) |
|
L = j * (-1) |
|
M = math.cos(k/3) |
|
N = math.sqrt(3) * (math.sin(k/3)) |
|
P = -(b/(3*a)) |
|
valueX1 = [2*j*(math.cos(k/3)) - (b/(3*a)), 0] |
|
valueX2 = [L*(M + N) + P, 0] |
|
valueX3 = [L*(M - N) + P, 0] |
|
roots.extend([valueX1, valueX2, valueX3]) |
|
else: |
|
|
|
animations += [[]] |
|
comments += [['Hence, one real root exists']] |
|
R = -(g/2) + h ** (1./2.) |
|
S = cubeRoot(R) |
|
T = -(g/2) - (h ** (1./2.)) |
|
U = cubeRoot(T) |
|
valueX1 = [(S + U) - (b/(3*a)), 0] |
|
|
|
valueRealX2 = -(S + U)/2 - (b/(3*a)) |
|
valueImagX2 = (S - U)*(3 ** (1./2.))/2 |
|
valueX2 = [valueRealX2, valueImagX2] |
|
|
|
valueRealX3 = -(S + U)/2 - (b/(3*a)) |
|
valueImagX3 = -(S - U)*(3 ** (1./2.))/2 |
|
valueX3 = [valueRealX3, valueImagX3] |
|
roots.extend([valueX1, valueX2, valueX3]) |
|
|
|
return roots, animations, comments |
|
|
|
|
|
def cubicRoots(lTokens, rTokens): |
|
'''Used to get roots of a cubic equation |
|
This functions also translates roots {list} into final result of solution |
|
|
|
Argument: |
|
lTokens {list} -- list of LHS tokens |
|
rTokens {list} -- list of RHS tokens |
|
|
|
Returns: |
|
lTokens {list} -- list of LHS tokens |
|
rTokens {list} -- list of RHS tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
from visma.solvers.polynomial.roots import getCoefficients |
|
|
|
animations = [] |
|
comments = [] |
|
lTokens, rTokens, _, token_string, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens) |
|
animations.extend(animNew1) |
|
comments.extend(commentNew1) |
|
if len(rTokens) > 0: |
|
lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens) |
|
coeffs = getCoefficients(lTokens, rTokens, 3) |
|
var = getVariables(lTokens) |
|
roots, animNew2, commentNew2 = getRootsCubic(coeffs) |
|
animations.extend(animNew2) |
|
comments.extend(commentNew2) |
|
tokens1 = [] |
|
expression1 = Expression(coefficient=1, power=3) |
|
variable = Variable(1, var[0], 1) |
|
tokens1.append(variable) |
|
if roots[0][1] == 0: |
|
binary = Binary() |
|
if roots[0][0] < 0: |
|
roots[0][0] *= -1 |
|
binary.value = '+' |
|
else: |
|
binary.value = '-' |
|
tokens1.append(binary) |
|
constant = Constant(round(roots[0][0], ROUNDOFF), 1) |
|
tokens1.append(constant) |
|
|
|
expression1.tokens = tokens1 |
|
lTokens = [expression1, Binary('*')] |
|
|
|
if len(roots) > 1: |
|
expression1.power = 1 |
|
for _, root in enumerate(roots[1:]): |
|
tokens2 = [] |
|
expression2 = Expression(coefficient=1, power=1) |
|
variable = Variable(1, var[0], 1) |
|
tokens2.append(variable) |
|
binary = Binary() |
|
if root[1] == 0: |
|
if root[0] < 0: |
|
root[0] *= -1 |
|
binary.value = '+' |
|
else: |
|
binary.value = '-' |
|
tokens2.append(binary) |
|
constant = Constant(round(root[0], ROUNDOFF), 1) |
|
tokens2.append(constant) |
|
else: |
|
binary.value = '-' |
|
tokens2.append(binary) |
|
expressionResult = Expression(coefficient=1, power=1) |
|
tokensResult = [] |
|
real = Constant(round(root[0], ROUNDOFF), 1) |
|
tokensResult.append(real) |
|
imaginary = Constant(round(root[1], ROUNDOFF), 1) |
|
if imaginary.value < 0: |
|
tokensResult.append(Minus()) |
|
imaginary.value = abs(imaginary.value) |
|
tokensResult.append(imaginary) |
|
else: |
|
tokensResult.extend([Plus(), imaginary]) |
|
sqrt = Sqrt(Constant(2, 1), Constant(-1, 1)) |
|
tokensResult.append(Binary('*')) |
|
tokensResult.append(sqrt) |
|
expressionResult.tokens = tokensResult |
|
tokens2.append(expressionResult) |
|
expression2.tokens = tokens2 |
|
lTokens.extend([expression2, Binary('*')]) |
|
lTokens.pop() |
|
rTokens = [Zero()] |
|
tokenToStringBuilder = copy.deepcopy(lTokens) |
|
tokLen = len(lTokens) |
|
equalTo = Binary() |
|
equalTo.scope = [tokLen] |
|
equalTo.value = '=' |
|
tokenToStringBuilder.append(equalTo) |
|
tokenToStringBuilder.extend(rTokens) |
|
token_string = tokensToString(tokenToStringBuilder) |
|
animations.append(copy.deepcopy(tokenToStringBuilder)) |
|
comments.append([]) |
|
return lTokens, rTokens, [], token_string, animations, comments |
|
|