introvoyz041's picture
Migrated from GitHub
389d072 verified
'''
Owner: AerospaceResearch.net
About: This module hosts the functions used for finding roots of a quartic equation
Note: Please try to maintain proper documentation
Logic Description:
'''
import math
import copy
from operator import itemgetter
from visma.io.checks import getVariables
from visma.io.parser import tokensToString
from visma.functions.structure import Expression
from visma.functions.constant import Constant, Zero
from visma.functions.variable import Variable
from visma.functions.operator import Binary, Plus, Minus, Sqrt
from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens
from visma.config.values import ROUNDOFF
from visma.solvers.polynomial.cubic import getRootsCubic
def getRootsQuartic(coeffs):
""" Applies an implementation of Determinant Method (https://en.wikipedia.org/wiki/Cubic_function) on the coefficients
of the Quartic equation to get roots
Arguments:
coeffs {list} -- list of coefficients of the equation
Returns:
roots {list} -- list of roots of quartic equation
(each element of roots {list} is a list of two elements, where 1st one denotes real part & second part shows imaginary part)
animation {list} -- list of equation solving process
comments {list} -- list of comments in equation solving process
"""
from visma.solvers.polynomial.roots import squareRootComplex
roots = []
animations = []
comments = []
a = coeffs[4]
b = coeffs[3]
c = coeffs[2]
d = coeffs[1]
e = coeffs[0]
f = c - (3*(b**2)/8)
g = d + (b**3)/8 - (b*c/2)
h = e - (3*(b**4)/256) + ((b**2)*c/16) - (b*d/4)
animations += [[]]
comments += [['Value of determinants [f, g, h] are ' + str(f) + ', ' + str(g) + ', ' + str(h)]]
reducedCubicEquation = [-(g*g)/64, (f*f - 4*h)/16, (f/2), 1]
rootsReducedCubic, _, _ = getRootsCubic(reducedCubicEquation)
animations += [[]]
comments += [['Can be solved using a cubic equation with coefficients ' + str(1) + ', ' + str((f/2)) + ', ' + str((f*f - 4*h)/16) + ' and ' + str(-(g*g)/64)]]
for i in range(3):
rootsReducedCubic[i][0] = round(rootsReducedCubic[i][0], ROUNDOFF)
rootsReducedCubic[i][1] = round(rootsReducedCubic[i][1], ROUNDOFF)
if (rootsReducedCubic[0][1] == 0 and rootsReducedCubic[1][1] == 0 and rootsReducedCubic[2][1] == 0):
animations += [[]]
comments += [['Depending on imaginary roots exist for cubic, roots are be determined as: ']]
if (rootsReducedCubic[0][0] >= 0 and rootsReducedCubic[1][0] >= 0 and rootsReducedCubic[2][0] >= 0):
rootsReducedCubicSorted = sorted(rootsReducedCubic, key=itemgetter(0))
p = math.sqrt(rootsReducedCubicSorted[1][0])
q = math.sqrt(rootsReducedCubicSorted[2][0])
r = -g/(8*p*q)
s = b/(4*a)
valueRealX1 = p + q + r - s
valueImaginaryX1 = 0
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = p - q - r - s
valueImaginaryX2 = 0
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - p + q - r - s
valueImaginaryX3 = 0
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = - p - q + r - s
valueImaginaryX4 = 0
roots.append([valueRealX4, valueImaginaryX4])
else:
rootsReducedCubicSorted = []
for x in rootsReducedCubic:
if x[0] < 0:
rootsReducedCubicSorted.append(x)
for x in rootsReducedCubic:
if x[0] > 0:
rootsReducedCubicSorted.append(x)
p = [0, math.sqrt(abs(rootsReducedCubicSorted[0][0]))]
q = [0, math.sqrt(abs(rootsReducedCubicSorted[1][0]))]
pq = -1 * p[1] * q[1]
r = -g/(8*pq)
s = b/(4*a)
valueRealX1 = r - s
valueImaginaryX1 = p[1] + q[1]
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = - r - s
valueImaginaryX2 = p[1] - q[1]
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - r - s
valueImaginaryX3 = - p[1] + q[1]
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = r - s
valueImaginaryX4 = - p[1] - q[1]
roots.append([valueRealX4, valueImaginaryX4])
else:
# Imaginary part exists in reduced Cubic equation
rootsReducedCubicSorted = []
for x in rootsReducedCubic:
if x[1] != 0:
rootsReducedCubicSorted.append(x)
for x in rootsReducedCubic:
if x[1] == 0:
rootsReducedCubicSorted.append(x)
p = squareRootComplex(rootsReducedCubicSorted[0])
q = squareRootComplex(rootsReducedCubicSorted[1])
if p[1] > 0 and p[0] < 0:
p, q = q, p
pq = p[0]*p[0] + p[1]*p[1]
r = -g/(8*pq)
s = b/(4*a)
valueRealX1 = 2*p[0] + r - s
valueImaginaryX1 = 0
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = - r - s
valueImaginaryX2 = 2*p[1]
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - r - s
valueImaginaryX3 = -2*p[1]
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = -2*p[0] + r - s
valueImaginaryX4 = 0
roots.append([valueRealX4, valueImaginaryX4])
return roots, animations, comments
def quarticRoots(lTokens, rTokens):
'''Used to get roots of a quartic equation
This functions also translates roots {list} into final result of solution
Argument:
lTokens {list} -- list of LHS tokens
rTokens {list} -- list of RHS tokens
Returns:
lTokens {list} -- list of LHS tokens
rTokens {list} -- list of RHS tokens
{empty list}
token_string {string} -- final result stored in a string
animation {list} -- list of equation solving process
comments {list} -- list of comments in equation solving process
'''
from visma.solvers.polynomial.roots import getCoefficients
animations = []
comments = []
lTokens, rTokens, _, _, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens)
animations.extend(animNew1)
comments.extend(commentNew1)
if len(rTokens) > 0:
lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens)
coeffs = getCoefficients(lTokens, rTokens, 4)
for i, lTok in enumerate(lTokens):
if not isinstance(lTok, Binary):
lTokens[i] /= Constant(coeffs[4])
for i, rTok in enumerate(rTokens):
if not isinstance(rTok, Binary):
rTokens[i] /= Constant(coeffs[4])
coeffs = getCoefficients(lTokens, rTokens, 4)
roots, animNew2, commentnew2 = getRootsQuartic(coeffs)
animations.extend(animNew2)
comments.extend(commentnew2)
var = getVariables(lTokens)
lTokens = []
rTokens = []
for _, root in enumerate(roots):
tokens2 = []
expression2 = Expression(coefficient=1, power=1)
variable = Variable(1, var[0], 1)
tokens2.append(variable)
binary = Binary()
if root[1] == 0:
if root[0] < 0:
root[0] *= -1
binary.value = '+'
else:
binary.value = '-'
tokens2.append(binary)
constant = Constant(round(root[0], ROUNDOFF), 1)
tokens2.append(constant)
else:
binary.value = '-'
tokens2.append(binary)
expressionResult = Expression(coefficient=1, power=1)
tokensResult = []
real = Constant(round(root[0], ROUNDOFF), 1)
tokensResult.append(real)
imaginary = Constant(round(root[1], ROUNDOFF), 1)
if imaginary.value < 0:
tokensResult.append(Minus())
imaginary.value = abs(imaginary.value)
tokensResult.append(imaginary)
else:
tokensResult.append(Plus())
tokensResult.append(imaginary)
tokensResult.append(Binary('*'))
sqrt = Sqrt(Constant(2, 1), Constant(-1, 1))
tokensResult.append(sqrt)
expressionResult.tokens = tokensResult
tokens2.append(expressionResult)
expression2.tokens = tokens2
lTokens.extend([expression2, Binary('*')])
rTokens = [Zero()]
lTokens.pop()
tokenToStringBuilder = copy.deepcopy(lTokens)
tokLen = len(lTokens)
equalTo = Binary()
equalTo.scope = [tokLen]
equalTo.value = '='
tokenToStringBuilder.append(equalTo)
tokenToStringBuilder.extend(rTokens)
token_string = tokensToString(tokenToStringBuilder)
animations.append(copy.deepcopy(tokenToStringBuilder))
comments.append([])
return lTokens, rTokens, [], token_string, animations, comments