|
''' |
|
Owner: AerospaceResearch.net |
|
About: This module hosts the functions used for finding roots of a quartic equation |
|
Note: Please try to maintain proper documentation |
|
Logic Description: |
|
''' |
|
|
|
import math |
|
import copy |
|
from operator import itemgetter |
|
from visma.io.checks import getVariables |
|
from visma.io.parser import tokensToString |
|
from visma.functions.structure import Expression |
|
from visma.functions.constant import Constant, Zero |
|
from visma.functions.variable import Variable |
|
from visma.functions.operator import Binary, Plus, Minus, Sqrt |
|
from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens |
|
from visma.config.values import ROUNDOFF |
|
from visma.solvers.polynomial.cubic import getRootsCubic |
|
|
|
|
|
def getRootsQuartic(coeffs): |
|
""" Applies an implementation of Determinant Method (https://en.wikipedia.org/wiki/Cubic_function) on the coefficients |
|
of the Quartic equation to get roots |
|
|
|
Arguments: |
|
coeffs {list} -- list of coefficients of the equation |
|
|
|
Returns: |
|
roots {list} -- list of roots of quartic equation |
|
(each element of roots {list} is a list of two elements, where 1st one denotes real part & second part shows imaginary part) |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
""" |
|
from visma.solvers.polynomial.roots import squareRootComplex |
|
roots = [] |
|
animations = [] |
|
comments = [] |
|
a = coeffs[4] |
|
b = coeffs[3] |
|
c = coeffs[2] |
|
d = coeffs[1] |
|
e = coeffs[0] |
|
|
|
f = c - (3*(b**2)/8) |
|
g = d + (b**3)/8 - (b*c/2) |
|
h = e - (3*(b**4)/256) + ((b**2)*c/16) - (b*d/4) |
|
animations += [[]] |
|
comments += [['Value of determinants [f, g, h] are ' + str(f) + ', ' + str(g) + ', ' + str(h)]] |
|
|
|
reducedCubicEquation = [-(g*g)/64, (f*f - 4*h)/16, (f/2), 1] |
|
rootsReducedCubic, _, _ = getRootsCubic(reducedCubicEquation) |
|
animations += [[]] |
|
comments += [['Can be solved using a cubic equation with coefficients ' + str(1) + ', ' + str((f/2)) + ', ' + str((f*f - 4*h)/16) + ' and ' + str(-(g*g)/64)]] |
|
for i in range(3): |
|
rootsReducedCubic[i][0] = round(rootsReducedCubic[i][0], ROUNDOFF) |
|
rootsReducedCubic[i][1] = round(rootsReducedCubic[i][1], ROUNDOFF) |
|
if (rootsReducedCubic[0][1] == 0 and rootsReducedCubic[1][1] == 0 and rootsReducedCubic[2][1] == 0): |
|
animations += [[]] |
|
comments += [['Depending on imaginary roots exist for cubic, roots are be determined as: ']] |
|
if (rootsReducedCubic[0][0] >= 0 and rootsReducedCubic[1][0] >= 0 and rootsReducedCubic[2][0] >= 0): |
|
rootsReducedCubicSorted = sorted(rootsReducedCubic, key=itemgetter(0)) |
|
p = math.sqrt(rootsReducedCubicSorted[1][0]) |
|
q = math.sqrt(rootsReducedCubicSorted[2][0]) |
|
r = -g/(8*p*q) |
|
s = b/(4*a) |
|
valueRealX1 = p + q + r - s |
|
valueImaginaryX1 = 0 |
|
roots.append([valueRealX1, valueImaginaryX1]) |
|
|
|
valueRealX2 = p - q - r - s |
|
valueImaginaryX2 = 0 |
|
roots.append([valueRealX2, valueImaginaryX2]) |
|
|
|
valueRealX3 = - p + q - r - s |
|
valueImaginaryX3 = 0 |
|
roots.append([valueRealX3, valueImaginaryX3]) |
|
|
|
valueRealX4 = - p - q + r - s |
|
valueImaginaryX4 = 0 |
|
roots.append([valueRealX4, valueImaginaryX4]) |
|
else: |
|
rootsReducedCubicSorted = [] |
|
for x in rootsReducedCubic: |
|
if x[0] < 0: |
|
rootsReducedCubicSorted.append(x) |
|
for x in rootsReducedCubic: |
|
if x[0] > 0: |
|
rootsReducedCubicSorted.append(x) |
|
p = [0, math.sqrt(abs(rootsReducedCubicSorted[0][0]))] |
|
q = [0, math.sqrt(abs(rootsReducedCubicSorted[1][0]))] |
|
pq = -1 * p[1] * q[1] |
|
r = -g/(8*pq) |
|
s = b/(4*a) |
|
|
|
valueRealX1 = r - s |
|
valueImaginaryX1 = p[1] + q[1] |
|
roots.append([valueRealX1, valueImaginaryX1]) |
|
|
|
valueRealX2 = - r - s |
|
valueImaginaryX2 = p[1] - q[1] |
|
roots.append([valueRealX2, valueImaginaryX2]) |
|
|
|
valueRealX3 = - r - s |
|
valueImaginaryX3 = - p[1] + q[1] |
|
roots.append([valueRealX3, valueImaginaryX3]) |
|
|
|
valueRealX4 = r - s |
|
valueImaginaryX4 = - p[1] - q[1] |
|
roots.append([valueRealX4, valueImaginaryX4]) |
|
else: |
|
|
|
rootsReducedCubicSorted = [] |
|
for x in rootsReducedCubic: |
|
if x[1] != 0: |
|
rootsReducedCubicSorted.append(x) |
|
for x in rootsReducedCubic: |
|
if x[1] == 0: |
|
rootsReducedCubicSorted.append(x) |
|
p = squareRootComplex(rootsReducedCubicSorted[0]) |
|
q = squareRootComplex(rootsReducedCubicSorted[1]) |
|
if p[1] > 0 and p[0] < 0: |
|
p, q = q, p |
|
pq = p[0]*p[0] + p[1]*p[1] |
|
r = -g/(8*pq) |
|
s = b/(4*a) |
|
|
|
valueRealX1 = 2*p[0] + r - s |
|
valueImaginaryX1 = 0 |
|
roots.append([valueRealX1, valueImaginaryX1]) |
|
|
|
valueRealX2 = - r - s |
|
valueImaginaryX2 = 2*p[1] |
|
roots.append([valueRealX2, valueImaginaryX2]) |
|
|
|
valueRealX3 = - r - s |
|
valueImaginaryX3 = -2*p[1] |
|
roots.append([valueRealX3, valueImaginaryX3]) |
|
|
|
valueRealX4 = -2*p[0] + r - s |
|
valueImaginaryX4 = 0 |
|
roots.append([valueRealX4, valueImaginaryX4]) |
|
return roots, animations, comments |
|
|
|
|
|
def quarticRoots(lTokens, rTokens): |
|
'''Used to get roots of a quartic equation |
|
This functions also translates roots {list} into final result of solution |
|
|
|
Argument: |
|
lTokens {list} -- list of LHS tokens |
|
rTokens {list} -- list of RHS tokens |
|
|
|
Returns: |
|
lTokens {list} -- list of LHS tokens |
|
rTokens {list} -- list of RHS tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
from visma.solvers.polynomial.roots import getCoefficients |
|
|
|
animations = [] |
|
comments = [] |
|
lTokens, rTokens, _, _, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens) |
|
animations.extend(animNew1) |
|
comments.extend(commentNew1) |
|
if len(rTokens) > 0: |
|
lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens) |
|
coeffs = getCoefficients(lTokens, rTokens, 4) |
|
for i, lTok in enumerate(lTokens): |
|
if not isinstance(lTok, Binary): |
|
lTokens[i] /= Constant(coeffs[4]) |
|
for i, rTok in enumerate(rTokens): |
|
if not isinstance(rTok, Binary): |
|
rTokens[i] /= Constant(coeffs[4]) |
|
coeffs = getCoefficients(lTokens, rTokens, 4) |
|
roots, animNew2, commentnew2 = getRootsQuartic(coeffs) |
|
animations.extend(animNew2) |
|
comments.extend(commentnew2) |
|
var = getVariables(lTokens) |
|
lTokens = [] |
|
rTokens = [] |
|
for _, root in enumerate(roots): |
|
tokens2 = [] |
|
expression2 = Expression(coefficient=1, power=1) |
|
variable = Variable(1, var[0], 1) |
|
tokens2.append(variable) |
|
binary = Binary() |
|
if root[1] == 0: |
|
if root[0] < 0: |
|
root[0] *= -1 |
|
binary.value = '+' |
|
else: |
|
binary.value = '-' |
|
tokens2.append(binary) |
|
constant = Constant(round(root[0], ROUNDOFF), 1) |
|
tokens2.append(constant) |
|
else: |
|
binary.value = '-' |
|
tokens2.append(binary) |
|
expressionResult = Expression(coefficient=1, power=1) |
|
tokensResult = [] |
|
real = Constant(round(root[0], ROUNDOFF), 1) |
|
tokensResult.append(real) |
|
imaginary = Constant(round(root[1], ROUNDOFF), 1) |
|
if imaginary.value < 0: |
|
tokensResult.append(Minus()) |
|
imaginary.value = abs(imaginary.value) |
|
tokensResult.append(imaginary) |
|
else: |
|
tokensResult.append(Plus()) |
|
tokensResult.append(imaginary) |
|
tokensResult.append(Binary('*')) |
|
sqrt = Sqrt(Constant(2, 1), Constant(-1, 1)) |
|
tokensResult.append(sqrt) |
|
expressionResult.tokens = tokensResult |
|
tokens2.append(expressionResult) |
|
expression2.tokens = tokens2 |
|
lTokens.extend([expression2, Binary('*')]) |
|
rTokens = [Zero()] |
|
lTokens.pop() |
|
tokenToStringBuilder = copy.deepcopy(lTokens) |
|
tokLen = len(lTokens) |
|
equalTo = Binary() |
|
equalTo.scope = [tokLen] |
|
equalTo.value = '=' |
|
tokenToStringBuilder.append(equalTo) |
|
tokenToStringBuilder.extend(rTokens) |
|
token_string = tokensToString(tokenToStringBuilder) |
|
animations.append(copy.deepcopy(tokenToStringBuilder)) |
|
comments.append([]) |
|
return lTokens, rTokens, [], token_string, animations, comments |
|
|