Datasets:
Datasets-Structure
(YOLOv8 format)
The Yolov8 dataset for segmentation is usually structured as follows:
yolo_dataset/
β
βββ train/
β βββ images/
β β βββ πΌοΈ img_n # Example image
β β
β βββ labels/
β βββ π img_n_labels.txt # Example labels file
β
βββ valid/
β β ... (similar)
β
βββ π data.yaml
Each img_x_labels.txt
file contains multiple annotations (one per line) with corresponding class ID and segmentation coordinates:
<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
The file data.yaml
contains keys such as:
- names (the class names)
- nc (number or classes)
- train (path/to/train/images/)
- val (path/to/val/images/)
(COCO Instance Segmentation format)
coco_dataset/
β
βββ train/
β βββ πΌοΈ img_n # Example image
β βββ π annotations.json # The annotations json file
β
βββ valid/
βββ ... (similar)
The annotations json file contains a dictionary of lists:
images (a list of dictionaries)
- id - image ID
- file_name
- height
- width
annotations (a list of dictionaries)
- id
- image_id
- category_id
- bbox
- area
- segmentation (a segmentation polygon)
- iscrowd
categories (a list of dictionaries)
- id
- name