text
stringlengths 0
93.6k
|
---|
r = {"video": self.cache["titles"][hl], "segments": self.cache["segments"][id] }
|
return r
|
# <FILESEP>
|
# Copyright 2021 Google LLC
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# Lint as: python3
|
"""Training script for Nerf."""
|
import functools
|
import gc
|
import time
|
from absl import app
|
from absl import flags
|
import flax
|
from flax.metrics import tensorboard
|
from flax.training import checkpoints
|
import jax
|
from jax import random
|
import jax.numpy as jnp
|
import numpy as np
|
from internal import datasets
|
from internal import math
|
from internal import models
|
from internal import utils
|
from internal import vis
|
FLAGS = flags.FLAGS
|
utils.define_common_flags()
|
flags.DEFINE_integer('render_every', 5000,
|
'The number of steps between test set image renderings.')
|
jax.config.parse_flags_with_absl()
|
def train_step(model, config, rng, state, batch, lr):
|
"""One optimization step.
|
Args:
|
model: The linen model.
|
config: The configuration.
|
rng: jnp.ndarray, random number generator.
|
state: utils.TrainState, state of the model/optimizer.
|
batch: dict, a mini-batch of data for training.
|
lr: float, real-time learning rate.
|
Returns:
|
new_state: utils.TrainState, new training state.
|
stats: list. [(loss, psnr), (loss_coarse, psnr_coarse)].
|
rng: jnp.ndarray, updated random number generator.
|
"""
|
rng, key = random.split(rng)
|
def loss_fn(variables):
|
def tree_sum_fn(fn):
|
return jax.tree_util.tree_reduce(
|
lambda x, y: x + fn(y), variables, initializer=0)
|
weight_l2 = config.weight_decay_mult * (
|
tree_sum_fn(lambda z: jnp.sum(z**2)) /
|
tree_sum_fn(lambda z: jnp.prod(jnp.array(z.shape))))
|
ret = model.apply(
|
variables,
|
key,
|
batch['rays'],
|
randomized=config.randomized,
|
white_bkgd=config.white_bkgd)
|
mask = batch['rays'].lossmult
|
if config.disable_multiscale_loss:
|
mask = jnp.ones_like(mask)
|
losses = []
|
for (rgb, _, _) in ret:
|
losses.append(
|
(mask * (rgb - batch['pixels'][..., :3])**2).sum() / mask.sum())
|
losses = jnp.array(losses)
|
loss = (
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.