text
stringlengths 0
93.6k
|
---|
config.coarse_loss_mult * jnp.sum(losses[:-1]) + losses[-1] + weight_l2)
|
stats = utils.Stats(
|
loss=loss,
|
losses=losses,
|
weight_l2=weight_l2,
|
psnr=0.0,
|
psnrs=0.0,
|
grad_norm=0.0,
|
grad_abs_max=0.0,
|
grad_norm_clipped=0.0,
|
)
|
return loss, stats
|
(_, stats), grad = (
|
jax.value_and_grad(loss_fn, has_aux=True)(state.optimizer.target))
|
grad = jax.lax.pmean(grad, axis_name='batch')
|
stats = jax.lax.pmean(stats, axis_name='batch')
|
def tree_norm(tree):
|
return jnp.sqrt(
|
jax.tree_util.tree_reduce(
|
lambda x, y: x + jnp.sum(y**2), tree, initializer=0))
|
if config.grad_max_val > 0:
|
clip_fn = lambda z: jnp.clip(z, -config.grad_max_val, config.grad_max_val)
|
grad = jax.tree_util.tree_map(clip_fn, grad)
|
grad_abs_max = jax.tree_util.tree_reduce(
|
lambda x, y: jnp.maximum(x, jnp.max(jnp.abs(y))), grad, initializer=0)
|
grad_norm = tree_norm(grad)
|
if config.grad_max_norm > 0:
|
mult = jnp.minimum(1, config.grad_max_norm / (1e-7 + grad_norm))
|
grad = jax.tree_util.tree_map(lambda z: mult * z, grad)
|
grad_norm_clipped = tree_norm(grad)
|
new_optimizer = state.optimizer.apply_gradient(grad, learning_rate=lr)
|
new_state = state.replace(optimizer=new_optimizer)
|
psnrs = math.mse_to_psnr(stats.losses)
|
stats = utils.Stats(
|
loss=stats.loss,
|
losses=stats.losses,
|
weight_l2=stats.weight_l2,
|
psnr=psnrs[-1],
|
psnrs=psnrs,
|
grad_norm=grad_norm,
|
grad_abs_max=grad_abs_max,
|
grad_norm_clipped=grad_norm_clipped,
|
)
|
return new_state, stats, rng
|
def main(unused_argv):
|
rng = random.PRNGKey(20200823)
|
# Shift the numpy random seed by host_id() to shuffle data loaded by different
|
# hosts.
|
np.random.seed(20201473 + jax.host_id())
|
config = utils.load_config()
|
if config.batch_size % jax.device_count() != 0:
|
raise ValueError('Batch size must be divisible by the number of devices.')
|
dataset = datasets.get_dataset('train', FLAGS.data_dir, config)
|
test_dataset = datasets.get_dataset('test', FLAGS.data_dir, config)
|
rng, key = random.split(rng)
|
model, variables = models.construct_mipnerf(key, dataset.peek())
|
num_params = jax.tree_util.tree_reduce(
|
lambda x, y: x + jnp.prod(jnp.array(y.shape)), variables, initializer=0)
|
print(f'Number of parameters being optimized: {num_params}')
|
optimizer = flax.optim.Adam(config.lr_init).create(variables)
|
state = utils.TrainState(optimizer=optimizer)
|
del optimizer, variables
|
learning_rate_fn = functools.partial(
|
math.learning_rate_decay,
|
lr_init=config.lr_init,
|
lr_final=config.lr_final,
|
max_steps=config.max_steps,
|
lr_delay_steps=config.lr_delay_steps,
|
lr_delay_mult=config.lr_delay_mult)
|
train_pstep = jax.pmap(
|
functools.partial(train_step, model, config),
|
axis_name='batch',
|
in_axes=(0, 0, 0, None),
|
donate_argnums=(2,))
|
# Because this is only used for test set rendering, we disable randomization.
|
def render_eval_fn(variables, _, rays):
|
return jax.lax.all_gather(
|
model.apply(
|
variables,
|
random.PRNGKey(0), # Unused.
|
rays,
|
randomized=False,
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.