text
stringlengths 0
93.6k
|
---|
"""
|
super(Encoder, self).__init__()
|
self.embedding_size = embedding_size
|
self.embed = nn.Embedding(len(symbols), embedding_size)
|
self.prenet = Prenet(embedding_size, hp.hidden_size * 2, hp.hidden_size)
|
self.cbhg = CBHG(hp.hidden_size)
|
def forward(self, input_):
|
input_ = torch.transpose(self.embed(input_),1,2)
|
prenet = self.prenet.forward(input_)
|
memory = self.cbhg.forward(prenet)
|
return memory
|
class MelDecoder(nn.Module):
|
"""
|
Decoder
|
"""
|
def __init__(self):
|
super(MelDecoder, self).__init__()
|
self.prenet = Prenet(hp.num_mels, hp.hidden_size * 2, hp.hidden_size)
|
self.attn_decoder = AttentionDecoder(hp.hidden_size * 2)
|
def forward(self, decoder_input, memory):
|
# Initialize hidden state of GRUcells
|
attn_hidden, gru1_hidden, gru2_hidden = self.attn_decoder.inithidden(decoder_input.size()[0])
|
outputs = list()
|
# Training phase
|
if self.training:
|
# Prenet
|
dec_input = self.prenet.forward(decoder_input)
|
timesteps = dec_input.size()[2] // hp.outputs_per_step
|
# [GO] Frame
|
prev_output = dec_input[:, :, 0]
|
for i in range(timesteps):
|
prev_output, attn_hidden, gru1_hidden, gru2_hidden = self.attn_decoder.forward(prev_output, memory,
|
attn_hidden=attn_hidden,
|
gru1_hidden=gru1_hidden,
|
gru2_hidden=gru2_hidden)
|
outputs.append(prev_output)
|
if random.random() < hp.teacher_forcing_ratio:
|
# Get spectrum at rth position
|
prev_output = dec_input[:, :, i * hp.outputs_per_step]
|
else:
|
# Get last output
|
prev_output = prev_output[:, :, -1]
|
# Concatenate all mel spectrogram
|
outputs = torch.cat(outputs, 2)
|
else:
|
# [GO] Frame
|
prev_output = decoder_input
|
for i in range(hp.max_iters):
|
prev_output = self.prenet.forward(prev_output)
|
prev_output = prev_output[:,:,0]
|
prev_output, attn_hidden, gru1_hidden, gru2_hidden = self.attn_decoder.forward(prev_output, memory,
|
attn_hidden=attn_hidden,
|
gru1_hidden=gru1_hidden,
|
gru2_hidden=gru2_hidden)
|
outputs.append(prev_output)
|
prev_output = prev_output[:, :, -1].unsqueeze(2)
|
outputs = torch.cat(outputs, 2)
|
return outputs
|
class PostProcessingNet(nn.Module):
|
"""
|
Post-processing Network
|
"""
|
def __init__(self):
|
super(PostProcessingNet, self).__init__()
|
self.postcbhg = CBHG(hp.hidden_size,
|
K=8,
|
projection_size=hp.num_mels,
|
is_post=True)
|
self.linear = SeqLinear(hp.hidden_size * 2,
|
hp.num_freq)
|
def forward(self, input_):
|
out = self.postcbhg.forward(input_)
|
out = self.linear.forward(torch.transpose(out,1,2))
|
return out
|
class Tacotron(nn.Module):
|
"""
|
End-to-end Tacotron Network
|
"""
|
def __init__(self):
|
super(Tacotron, self).__init__()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.