text
stringlengths 0
93.6k
|
---|
# NOTE: monkey-patching; needs to be imported before any other file imports it
|
from moma_llm.tasks.patched_scene import MonkeyPatchedInteractiveIndoorScene
|
from igibson.scenes import igibson_indoor_scene
|
igibson_indoor_scene.InteractiveIndoorScene._add_object = MonkeyPatchedInteractiveIndoorScene._add_object
|
igibson_indoor_scene.InteractiveIndoorScene._orig_add_object = MonkeyPatchedInteractiveIndoorScene._orig_add_object
|
import shutil
|
from collections import defaultdict
|
from pathlib import Path
|
from pprint import pprint
|
from typing import Any
|
import matplotlib
|
import matplotlib.pyplot as plt
|
import numpy as np
|
import pandas as pd
|
from igibson.utils.utils import parse_config
|
from sklearn.metrics import auc
|
import wandb
|
from moma_llm.env.baselines import (GreedyBaseline,
|
RandomBaseline)
|
from moma_llm.env.env import OurIGibsonEnv, create_igibson_env
|
from moma_llm.env.llm_env import JsonLLMEnv, LLMEnv
|
from moma_llm.llm.llm import LLM
|
from moma_llm.utils.constants import TEST_SCENES, TRAINING_SCENES
|
from moma_llm.utils.utils import get_config
|
def create_env(cfg, agent: str, config_file: str, scene_id: str, control_freq: float, cheap: bool, seed: int) -> LLMEnv:
|
if agent == "moma_llm":
|
env_fn = LLMEnv
|
elif agent == "json_llm":
|
env_fn = JsonLLMEnv
|
elif agent == "greedy":
|
env_fn = GreedyBaseline
|
elif agent == "random":
|
env_fn = RandomBaseline
|
else:
|
raise ValueError(f"Unknown agent {agent}")
|
llm_variant = "gpt-3.5-turbo" if cheap else "gpt-4-1106-preview" # "gpt-4"
|
llm = LLM(debug=True, model=llm_variant, room_classification_model="gpt-3.5-turbo-1106", open_set_rooms=cfg["open_set_room_categories"])
|
low_level_env = create_igibson_env(config_file=config_file,
|
control_freq=control_freq,
|
scene_id=scene_id,
|
seed=seed)
|
high_level_env = env_fn(env=low_level_env, llm=llm, seed=seed)
|
return high_level_env
|
def calc_area_under_curve(x, y, max_x):
|
if max(x) > max_x:
|
idx = (x <= max_x)
|
x = x[idx]
|
y = y[idx]
|
if max(x) < max_x:
|
x = np.concatenate([x, [max_x]])
|
y = np.concatenate([y, [y[-1]]])
|
x = np.concatenate([[0], x])
|
y = np.concatenate([[0], y])
|
return auc(x, y) / max_x
|
def plot_efficiency_curves(episode_infos, max_hl_steps: int):
|
ll_steps = []
|
ll_steps_gtDone = []
|
hl_steps = []
|
task_success = []
|
task_success_gtDone = []
|
for scene_id in sorted(episode_infos.keys()):
|
for e in episode_infos[scene_id]:
|
ll_steps.append(e["num_low_level_steps_with_open_cost"])
|
ll_steps_gtDone.append(e["num_low_level_steps_with_open_cost_gtDone"])
|
hl_steps.append(e["num_high_level_steps"])
|
task_success.append(e["task_success"])
|
task_success_gtDone.append(e["task_success_gtDone"])
|
task_success = np.array(task_success)
|
task_success_gtDone = np.array(task_success_gtDone)
|
ll_steps = np.array(ll_steps)
|
hl_steps = np.array(hl_steps)
|
def _plot(steps, task_success):
|
df = pd.DataFrame({"steps": steps, "task_success": task_success})
|
df = df.sort_values("steps")
|
values = [np.logical_and(df["task_success"].values, df["steps"].values <= max_steps).mean() for max_steps in df["steps"]]
|
df2 = pd.DataFrame({"steps": df["steps"].values, "success": values})
|
return wandb.Table(dataframe=df2)
|
def _get_auc(steps, task_success, max_x: int, title: str):
|
table = _plot(steps=steps, task_success=task_success)
|
auc = calc_area_under_curve(table.get_dataframe()["steps"].values, table.get_dataframe()["success"].values, max_x=max_x)
|
wandb_plot = wandb.plot_table("wandb/area-under-curve/v0",
|
table,
|
{"x": "steps", "y": "success"},
|
{"title": title,
|
"x-axis-title": "Steps",
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.