id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
961c25351698-94
Tigris (class in langchain.vectorstores) time (langchain.utilities.DuckDuckGoSearchAPIWrapper attribute) to_typescript() (langchain.tools.APIOperation method) token (langchain.llms.PredictionGuard attribute) (langchain.utilities.PowerBIDataset attribute) token_path (langchain.document_loaders.GoogleApiClient attribute) (langchain.document_loaders.GoogleDriveLoader attribute) Tokenizer (class in langchain.text_splitter) tokenizer (langchain.llms.Petals attribute) tokens (langchain.llms.AlephAlpha attribute) tokens_path (langchain.llms.RWKV attribute) tokens_per_chunk (langchain.text_splitter.Tokenizer attribute) TokenTextSplitter (class in langchain.text_splitter) ToMarkdownLoader (class in langchain.document_loaders) TomlLoader (class in langchain.document_loaders) tool() (in module langchain.agents) (in module langchain.tools) tool_run_logging_kwargs() (langchain.agents.Agent method) (langchain.agents.BaseMultiActionAgent method) (langchain.agents.BaseSingleActionAgent method) (langchain.agents.LLMSingleActionAgent method) tools (langchain.agents.agent_toolkits.JiraToolkit attribute) (langchain.agents.agent_toolkits.ZapierToolkit attribute) (langchain.agents.AgentExecutor attribute) top_k (langchain.chains.GraphCypherQAChain attribute) (langchain.chains.SQLDatabaseChain attribute) (langchain.chat_models.ChatGooglePalm attribute) (langchain.llms.AlephAlpha attribute) (langchain.llms.Anthropic attribute) (langchain.llms.ForefrontAI attribute) (langchain.llms.GooglePalm attribute) (langchain.llms.GPT4All attribute) (langchain.llms.LlamaCpp attribute)
https://python.langchain.com/en/latest/genindex.html
961c25351698-95
(langchain.llms.LlamaCpp attribute) (langchain.llms.NLPCloud attribute) (langchain.llms.Petals attribute) (langchain.llms.VertexAI attribute) (langchain.retrievers.ChatGPTPluginRetriever attribute) (langchain.retrievers.DataberryRetriever attribute) (langchain.retrievers.PineconeHybridSearchRetriever attribute) top_k_docs_for_context (langchain.chains.ChatVectorDBChain attribute) top_k_results (langchain.utilities.ArxivAPIWrapper attribute) (langchain.utilities.GooglePlacesAPIWrapper attribute) (langchain.utilities.PubMedAPIWrapper attribute) (langchain.utilities.WikipediaAPIWrapper attribute) top_n (langchain.retrievers.document_compressors.CohereRerank attribute) top_p (langchain.chat_models.ChatGooglePalm attribute) (langchain.llms.AlephAlpha attribute) (langchain.llms.Anthropic attribute) (langchain.llms.AzureOpenAI attribute) (langchain.llms.ForefrontAI attribute) (langchain.llms.GooglePalm attribute) (langchain.llms.GooseAI attribute) (langchain.llms.GPT4All attribute) (langchain.llms.LlamaCpp attribute) (langchain.llms.NLPCloud attribute) (langchain.llms.OpenAI attribute) (langchain.llms.OpenLM attribute) (langchain.llms.Petals attribute) (langchain.llms.RWKV attribute) (langchain.llms.VertexAI attribute) (langchain.llms.Writer attribute) topP (langchain.llms.AI21 attribute) traits (langchain.experimental.GenerativeAgent attribute) transform (langchain.chains.TransformChain attribute) transform_documents() (langchain.document_transformers.EmbeddingsRedundantFilter method) (langchain.text_splitter.TextSplitter method)
https://python.langchain.com/en/latest/genindex.html
961c25351698-96
(langchain.text_splitter.TextSplitter method) transform_input_fn (langchain.llms.Databricks attribute) transform_output_fn (langchain.llms.Databricks attribute) transformers (langchain.retrievers.document_compressors.DocumentCompressorPipeline attribute) TrelloLoader (class in langchain.document_loaders) truncate (langchain.embeddings.CohereEmbeddings attribute) (langchain.llms.Cohere attribute) ts_type_from_python() (langchain.tools.APIOperation static method) ttl (langchain.memory.RedisEntityStore attribute) tuned_model_name (langchain.llms.VertexAI attribute) TwitterTweetLoader (class in langchain.document_loaders) type (langchain.output_parsers.ResponseSchema attribute) (langchain.utilities.GoogleSerperAPIWrapper attribute) Typesense (class in langchain.vectorstores) U unsecure (langchain.utilities.searx_search.SearxSearchWrapper attribute) (langchain.utilities.SearxSearchWrapper attribute) UnstructuredAPIFileIOLoader (class in langchain.document_loaders) UnstructuredAPIFileLoader (class in langchain.document_loaders) UnstructuredCSVLoader (class in langchain.document_loaders) UnstructuredEmailLoader (class in langchain.document_loaders) UnstructuredEPubLoader (class in langchain.document_loaders) UnstructuredExcelLoader (class in langchain.document_loaders) UnstructuredFileIOLoader (class in langchain.document_loaders) UnstructuredFileLoader (class in langchain.document_loaders) UnstructuredHTMLLoader (class in langchain.document_loaders) UnstructuredImageLoader (class in langchain.document_loaders) UnstructuredMarkdownLoader (class in langchain.document_loaders) UnstructuredODTLoader (class in langchain.document_loaders)
https://python.langchain.com/en/latest/genindex.html
961c25351698-97
UnstructuredODTLoader (class in langchain.document_loaders) UnstructuredPDFLoader (class in langchain.document_loaders) UnstructuredPowerPointLoader (class in langchain.document_loaders) UnstructuredRTFLoader (class in langchain.document_loaders) UnstructuredURLLoader (class in langchain.document_loaders) UnstructuredWordDocumentLoader (class in langchain.document_loaders) UnstructuredXMLLoader (class in langchain.document_loaders) update_document() (langchain.vectorstores.Chroma method) update_forward_refs() (langchain.llms.AI21 class method) (langchain.llms.AlephAlpha class method) (langchain.llms.Anthropic class method) (langchain.llms.Anyscale class method) (langchain.llms.Aviary class method) (langchain.llms.AzureOpenAI class method) (langchain.llms.Banana class method) (langchain.llms.Baseten class method) (langchain.llms.Beam class method) (langchain.llms.Bedrock class method) (langchain.llms.CerebriumAI class method) (langchain.llms.Cohere class method) (langchain.llms.CTransformers class method) (langchain.llms.Databricks class method) (langchain.llms.DeepInfra class method) (langchain.llms.FakeListLLM class method) (langchain.llms.ForefrontAI class method) (langchain.llms.GooglePalm class method) (langchain.llms.GooseAI class method) (langchain.llms.GPT4All class method) (langchain.llms.HuggingFaceEndpoint class method) (langchain.llms.HuggingFaceHub class method) (langchain.llms.HuggingFacePipeline class method) (langchain.llms.HuggingFaceTextGenInference class method)
https://python.langchain.com/en/latest/genindex.html
961c25351698-98
(langchain.llms.HuggingFaceTextGenInference class method) (langchain.llms.HumanInputLLM class method) (langchain.llms.LlamaCpp class method) (langchain.llms.Modal class method) (langchain.llms.MosaicML class method) (langchain.llms.NLPCloud class method) (langchain.llms.OpenAI class method) (langchain.llms.OpenAIChat class method) (langchain.llms.OpenLM class method) (langchain.llms.Petals class method) (langchain.llms.PipelineAI class method) (langchain.llms.PredictionGuard class method) (langchain.llms.PromptLayerOpenAI class method) (langchain.llms.PromptLayerOpenAIChat class method) (langchain.llms.Replicate class method) (langchain.llms.RWKV class method) (langchain.llms.SagemakerEndpoint class method) (langchain.llms.SelfHostedHuggingFaceLLM class method) (langchain.llms.SelfHostedPipeline class method) (langchain.llms.StochasticAI class method) (langchain.llms.VertexAI class method) (langchain.llms.Writer class method) upsert_messages() (langchain.memory.CosmosDBChatMessageHistory method) url (langchain.document_loaders.GitHubIssuesLoader property) (langchain.document_loaders.MathpixPDFLoader property) (langchain.llms.Beam attribute) (langchain.retrievers.ChatGPTPluginRetriever attribute) (langchain.retrievers.RemoteLangChainRetriever attribute) (langchain.tools.IFTTTWebhook attribute) urls (langchain.document_loaders.PlaywrightURLLoader attribute) (langchain.document_loaders.SeleniumURLLoader attribute) use_mlock (langchain.embeddings.LlamaCppEmbeddings attribute)
https://python.langchain.com/en/latest/genindex.html
961c25351698-99
use_mlock (langchain.embeddings.LlamaCppEmbeddings attribute) (langchain.llms.GPT4All attribute) (langchain.llms.LlamaCpp attribute) use_mmap (langchain.llms.LlamaCpp attribute) use_multiplicative_presence_penalty (langchain.llms.AlephAlpha attribute) use_query_checker (langchain.chains.SQLDatabaseChain attribute) username (langchain.vectorstores.ClickhouseSettings attribute) (langchain.vectorstores.MyScaleSettings attribute) V validate_channel_or_videoIds_is_set() (langchain.document_loaders.GoogleApiClient class method) (langchain.document_loaders.GoogleApiYoutubeLoader class method) validate_init_args() (langchain.document_loaders.ConfluenceLoader static method) validate_template (langchain.prompts.FewShotPromptTemplate attribute) (langchain.prompts.FewShotPromptWithTemplates attribute) (langchain.prompts.PromptTemplate attribute) Vectara (class in langchain.vectorstores) vector_field (langchain.vectorstores.SingleStoreDB attribute) vectorizer (langchain.retrievers.TFIDFRetriever attribute) VectorStore (class in langchain.vectorstores) vectorstore (langchain.agents.agent_toolkits.VectorStoreInfo attribute) (langchain.chains.ChatVectorDBChain attribute) (langchain.chains.VectorDBQA attribute) (langchain.chains.VectorDBQAWithSourcesChain attribute) (langchain.prompts.example_selector.SemanticSimilarityExampleSelector attribute) (langchain.retrievers.SelfQueryRetriever attribute) (langchain.retrievers.TimeWeightedVectorStoreRetriever attribute) vectorstore_info (langchain.agents.agent_toolkits.VectorStoreToolkit attribute) vectorstores (langchain.agents.agent_toolkits.VectorStoreRouterToolkit attribute) verbose (langchain.llms.AI21 attribute) (langchain.llms.AlephAlpha attribute)
https://python.langchain.com/en/latest/genindex.html
961c25351698-100
(langchain.llms.AlephAlpha attribute) (langchain.llms.Anthropic attribute) (langchain.llms.Anyscale attribute) (langchain.llms.Aviary attribute) (langchain.llms.AzureOpenAI attribute) (langchain.llms.Banana attribute) (langchain.llms.Baseten attribute) (langchain.llms.Beam attribute) (langchain.llms.Bedrock attribute) (langchain.llms.CerebriumAI attribute) (langchain.llms.Cohere attribute) (langchain.llms.CTransformers attribute) (langchain.llms.Databricks attribute) (langchain.llms.DeepInfra attribute) (langchain.llms.FakeListLLM attribute) (langchain.llms.ForefrontAI attribute) (langchain.llms.GooglePalm attribute) (langchain.llms.GooseAI attribute) (langchain.llms.GPT4All attribute) (langchain.llms.HuggingFaceEndpoint attribute) (langchain.llms.HuggingFaceHub attribute) (langchain.llms.HuggingFacePipeline attribute) (langchain.llms.HuggingFaceTextGenInference attribute) (langchain.llms.HumanInputLLM attribute) (langchain.llms.LlamaCpp attribute) (langchain.llms.Modal attribute) (langchain.llms.MosaicML attribute) (langchain.llms.NLPCloud attribute) (langchain.llms.OpenAI attribute) (langchain.llms.OpenAIChat attribute) (langchain.llms.OpenLM attribute) (langchain.llms.Petals attribute) (langchain.llms.PipelineAI attribute) (langchain.llms.PredictionGuard attribute) (langchain.llms.Replicate attribute) (langchain.llms.RWKV attribute) (langchain.llms.SagemakerEndpoint attribute) (langchain.llms.SelfHostedHuggingFaceLLM attribute)
https://python.langchain.com/en/latest/genindex.html
961c25351698-101
(langchain.llms.SelfHostedHuggingFaceLLM attribute) (langchain.llms.SelfHostedPipeline attribute) (langchain.llms.StochasticAI attribute) (langchain.llms.VertexAI attribute) (langchain.llms.Writer attribute) (langchain.retrievers.SelfQueryRetriever attribute) (langchain.tools.BaseTool attribute) (langchain.tools.Tool attribute) VespaRetriever (class in langchain.retrievers) video_ids (langchain.document_loaders.GoogleApiYoutubeLoader attribute) visible_only (langchain.tools.ClickTool attribute) vocab_only (langchain.embeddings.LlamaCppEmbeddings attribute) (langchain.llms.GPT4All attribute) (langchain.llms.LlamaCpp attribute) W wait_for_processing() (langchain.document_loaders.MathpixPDFLoader method) WeatherDataLoader (class in langchain.document_loaders) Weaviate (class in langchain.vectorstores) WeaviateHybridSearchRetriever (class in langchain.retrievers) WeaviateHybridSearchRetriever.Config (class in langchain.retrievers) web_path (langchain.document_loaders.WebBaseLoader property) web_paths (langchain.document_loaders.WebBaseLoader attribute) WebBaseLoader (class in langchain.document_loaders) WhatsAppChatLoader (class in langchain.document_loaders) Wikipedia (class in langchain.docstore) WikipediaLoader (class in langchain.document_loaders) wolfram_alpha_appid (langchain.utilities.WolframAlphaAPIWrapper attribute) writer_api_key (langchain.llms.Writer attribute) writer_org_id (langchain.llms.Writer attribute) Y YoutubeLoader (class in langchain.document_loaders) Z zapier_description (langchain.tools.ZapierNLARunAction attribute)
https://python.langchain.com/en/latest/genindex.html
961c25351698-102
Z zapier_description (langchain.tools.ZapierNLARunAction attribute) ZepRetriever (class in langchain.retrievers) ZERO_SHOT_REACT_DESCRIPTION (langchain.agents.AgentType attribute) Zilliz (class in langchain.vectorstores) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/genindex.html
a1bc0fa44abd-0
.rst .pdf Welcome to LangChain Contents Getting Started Modules Use Cases Reference Docs Ecosystem Additional Resources Welcome to LangChain# LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model, but will also be: Data-aware: connect a language model to other sources of data Agentic: allow a language model to interact with its environment The LangChain framework is designed around these principles. This is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see here. For the JavaScript documentation, see here. Getting Started# How to get started using LangChain to create an Language Model application. Quickstart Guide Concepts and terminology. Concepts and terminology Tutorials created by community experts and presented on YouTube. Tutorials Modules# These modules are the core abstractions which we view as the building blocks of any LLM-powered application. For each module LangChain provides standard, extendable interfaces. LangChain also provides external integrations and even end-to-end implementations for off-the-shelf use. The docs for each module contain quickstart examples, how-to guides, reference docs, and conceptual guides. The modules are (from least to most complex): Models: Supported model types and integrations. Prompts: Prompt management, optimization, and serialization. Memory: Memory refers to state that is persisted between calls of a chain/agent. Indexes: Language models become much more powerful when combined with application-specific data - this module contains interfaces and integrations for loading, querying and updating external data. Chains: Chains are structured sequences of calls (to an LLM or to a different utility).
https://python.langchain.com/en/latest/index.html
a1bc0fa44abd-1
Agents: An agent is a Chain in which an LLM, given a high-level directive and a set of tools, repeatedly decides an action, executes the action and observes the outcome until the high-level directive is complete. Callbacks: Callbacks let you log and stream the intermediate steps of any chain, making it easy to observe, debug, and evaluate the internals of an application. Use Cases# Best practices and built-in implementations for common LangChain use cases: Autonomous Agents: Autonomous agents are long-running agents that take many steps in an attempt to accomplish an objective. Examples include AutoGPT and BabyAGI. Agent Simulations: Putting agents in a sandbox and observing how they interact with each other and react to events can be an effective way to evaluate their long-range reasoning and planning abilities. Personal Assistants: One of the primary LangChain use cases. Personal assistants need to take actions, remember interactions, and have knowledge about your data. Question Answering: Another common LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer. Chatbots: Language models love to chat, making this a very natural use of them. Querying Tabular Data: Recommended reading if you want to use language models to query structured data (CSVs, SQL, dataframes, etc). Code Understanding: Recommended reading if you want to use language models to analyze code. Interacting with APIs: Enabling language models to interact with APIs is extremely powerful. It gives them access to up-to-date information and allows them to take actions. Extraction: Extract structured information from text. Summarization: Compressing longer documents. A type of Data-Augmented Generation. Evaluation: Generative models are hard to evaluate with traditional metrics. One promising approach is to use language models themselves to do the evaluation. Reference Docs#
https://python.langchain.com/en/latest/index.html
a1bc0fa44abd-2
Reference Docs# Full documentation on all methods, classes, installation methods, and integration setups for LangChain. LangChain Installation Reference Documentation Ecosystem# LangChain integrates a lot of different LLMs, systems, and products. From the other side, many systems and products depend on LangChain. It creates a vibrant and thriving ecosystem. Integrations: Guides for how other products can be used with LangChain. Dependents: List of repositories that use LangChain. Deployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps. Additional Resources# Additional resources we think may be useful as you develop your application! LangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents. Gallery: A collection of great projects that use Langchain, compiled by the folks at Kyrolabs. Useful for finding inspiration and example implementations. Deploying LLMs in Production: A collection of best practices and tutorials for deploying LLMs in production. Tracing: A guide on using tracing in LangChain to visualize the execution of chains and agents. Model Laboratory: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so. Discord: Join us on our Discord to discuss all things LangChain! YouTube: A collection of the LangChain tutorials and videos. Production Support: As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel. next Quickstart Guide Contents Getting Started Modules Use Cases Reference Docs Ecosystem Additional Resources By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/index.html
a1bc0fa44abd-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/index.html
bc75ce6b3dde-0
.rst .pdf Integrations Contents Integrations by Module Dependencies All Integrations Integrations# LangChain integrates with many LLMs, systems, and products. Integrations by Module# Integrations grouped by the core LangChain module they map to: LLM Providers Chat Model Providers Text Embedding Model Providers Document Loader Integrations Text Splitter Integrations Vectorstore Providers Retriever Providers Tool Providers Toolkit Integrations Dependencies# LangChain depends on several hungered Python packages. All Integrations# A comprehensive list of LLMs, systems, and products integrated with LangChain: Tracing Walkthrough AI21 Labs Aim Airbyte Aleph Alpha Amazon Bedrock AnalyticDB Annoy Anthropic Anyscale Apify Argilla Arxiv AtlasDB AwaDB AWS S3 Directory AZLyrics Azure Blob Storage Azure Cognitive Search Azure OpenAI Banana Beam BiliBili Blackboard Cassandra CerebriumAI Chroma ClearML ClickHouse Cohere College Confidential Comet Confluence C Transformers Databerry Databricks DeepInfra Deep Lake Diffbot Discord Docugami DuckDB Elasticsearch EverNote Facebook Chat Figma ForefrontAI Git GitBook Google BigQuery Google Cloud Storage Google Drive Google Search Google Serper Google Vertex AI GooseAI GPT4All Graphsignal Gutenberg Hacker News Hazy Research Helicone Hugging Face iFixit IMSDb Jina LanceDB Llama.cpp MediaWikiDump Metal Microsoft OneDrive Microsoft PowerPoint
https://python.langchain.com/en/latest/integrations.html
bc75ce6b3dde-1
Llama.cpp MediaWikiDump Metal Microsoft OneDrive Microsoft PowerPoint Microsoft Word Milvus MLflow Modal Modern Treasury Momento MyScale NLPCloud Notion DB Obsidian OpenAI OpenSearch OpenWeatherMap Petals PGVector Pinecone PipelineAI Prediction Guard PromptLayer Psychic Qdrant Ray Serve Rebuff Reddit Redis Replicate Roam Runhouse RWKV-4 SageMaker Endpoint SearxNG Search API SerpAPI Shale Protocol scikit-learn Slack spaCy Spreedly StochasticAI Stripe Tair Telegram Tensorflow Hub 2Markdown Trello Twitter Unstructured Vectara Vespa Weights & Biases Weather Weaviate WhatsApp WhyLabs Wikipedia Wolfram Alpha Writer Yeager.ai YouTube Zep Zilliz previous Experimental Modules next Tracing Walkthrough Contents Integrations by Module Dependencies All Integrations By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/integrations.html
af52fc0a2ee1-0
.md .pdf Dependents Dependents# Dependents stats for hwchase17/langchain [update: 2023-06-05; only dependent repositories with Stars > 100] Repository Stars openai/openai-cookbook 38024 LAION-AI/Open-Assistant 33609 microsoft/TaskMatrix 33136 hpcaitech/ColossalAI 30032 imartinez/privateGPT 28094 reworkd/AgentGPT 23430 openai/chatgpt-retrieval-plugin 17942 jerryjliu/llama_index 16697 mindsdb/mindsdb 16410 mlflow/mlflow 14517 GaiZhenbiao/ChuanhuChatGPT 10793 databrickslabs/dolly 10155 openai/evals 10076 AIGC-Audio/AudioGPT 8619 logspace-ai/langflow 8211 imClumsyPanda/langchain-ChatGLM 8154 PromtEngineer/localGPT 6853 StanGirard/quivr 6830 PipedreamHQ/pipedream 6520 go-skynet/LocalAI 6018 arc53/DocsGPT 5643 e2b-dev/e2b 5075 langgenius/dify 4281 nsarrazin/serge 4228 zauberzeug/nicegui 4084 madawei2699/myGPTReader 4039 wenda-LLM/wenda 3871 GreyDGL/PentestGPT 3837 zilliztech/GPTCache 3625 csunny/DB-GPT 3545 gkamradt/langchain-tutorials 3404
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-1
3545 gkamradt/langchain-tutorials 3404 mmabrouk/chatgpt-wrapper 3303 postgresml/postgresml 3052 marqo-ai/marqo 3014 MineDojo/Voyager 2945 PrefectHQ/marvin 2761 project-baize/baize-chatbot 2673 hwchase17/chat-langchain 2589 whitead/paper-qa 2572 Azure-Samples/azure-search-openai-demo 2366 GerevAI/gerev 2330 OpenGVLab/InternGPT 2289 ParisNeo/gpt4all-ui 2159 OpenBMB/BMTools 2158 guangzhengli/ChatFiles 2005 h2oai/h2ogpt 1939 Farama-Foundation/PettingZoo 1845 OpenGVLab/Ask-Anything 1749 IntelligenzaArtificiale/Free-Auto-GPT 1740 Unstructured-IO/unstructured 1628 hwchase17/notion-qa 1607 NVIDIA/NeMo-Guardrails 1544 SamurAIGPT/privateGPT 1543 paulpierre/RasaGPT 1526 yanqiangmiffy/Chinese-LangChain 1485 Kav-K/GPTDiscord 1402 vocodedev/vocode-python 1387 Chainlit/chainlit 1336 lunasec-io/lunasec 1323 psychic-api/psychic 1248 agiresearch/OpenAGI 1208 jina-ai/thinkgpt 1193 thomas-yanxin/LangChain-ChatGLM-Webui 1182
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-2
thomas-yanxin/LangChain-ChatGLM-Webui 1182 ttengwang/Caption-Anything 1137 jina-ai/dev-gpt 1135 greshake/llm-security 1086 keephq/keep 1063 juncongmoo/chatllama 1037 richardyc/Chrome-GPT 1035 visual-openllm/visual-openllm 997 mmz-001/knowledge_gpt 995 jina-ai/langchain-serve 949 irgolic/AutoPR 936 microsoft/X-Decoder 908 poe-platform/api-bot-tutorial 902 peterw/Chat-with-Github-Repo 875 cirediatpl/FigmaChain 822 homanp/superagent 806 seanpixel/Teenage-AGI 800 chatarena/chatarena 796 hashintel/hash 795 SamurAIGPT/Camel-AutoGPT 786 rlancemartin/auto-evaluator 770 corca-ai/EVAL 769 101dotxyz/GPTeam 755 noahshinn024/reflexion 706 eyurtsev/kor 695 cheshire-cat-ai/core 681 e-johnstonn/BriefGPT 656 run-llama/llama-lab 635 griptape-ai/griptape 583 namuan/dr-doc-search 555 getmetal/motorhead 550 kreneskyp/ix 543 hwchase17/chat-your-data 510 Anil-matcha/ChatPDF 501 whyiyhw/chatgpt-wechat 497 SamurAIGPT/ChatGPT-Developer-Plugins 496 microsoft/PodcastCopilot 492 debanjum/khoj
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-3
496 microsoft/PodcastCopilot 492 debanjum/khoj 485 akshata29/chatpdf 485 langchain-ai/langchain-aiplugin 462 jina-ai/agentchain 460 alexanderatallah/window.ai 457 yeagerai/yeagerai-agent 451 mckaywrigley/repo-chat 446 michaelthwan/searchGPT 446 mpaepper/content-chatbot 441 freddyaboulton/gradio-tools 439 ruoccofabrizio/azure-open-ai-embeddings-qna 429 StevenGrove/GPT4Tools 422 jonra1993/fastapi-alembic-sqlmodel-async 407 msoedov/langcorn 405 amosjyng/langchain-visualizer 395 ajndkr/lanarky 384 mtenenholtz/chat-twitter 376 steamship-core/steamship-langchain 371 langchain-ai/auto-evaluator 365 xuwenhao/geektime-ai-course 358 continuum-llms/chatgpt-memory 357 opentensor/bittensor 347 showlab/VLog 345 daodao97/chatdoc 345 logan-markewich/llama_index_starter_pack 332 poe-platform/poe-protocol 320 explosion/spacy-llm 312 andylokandy/gpt-4-search 311 alejandro-ao/langchain-ask-pdf 310 jupyterlab/jupyter-ai 294 BlackHC/llm-strategy 283 itamargol/openai 281 momegas/megabots 279 personoids/personoids-lite 277 yvann-hub/Robby-chatbot 267 Anil-matcha/Website-to-Chatbot
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-4
267 Anil-matcha/Website-to-Chatbot 266 Cheems-Seminar/grounded-segment-any-parts 260 sullivan-sean/chat-langchainjs 248 bborn/howdoi.ai 245 daveebbelaar/langchain-experiments 240 MagnivOrg/prompt-layer-library 237 ur-whitelab/exmol 234 conceptofmind/toolformer 234 recalign/RecAlign 226 OpenBMB/AgentVerse 220 alvarosevilla95/autolang 219 JohnSnowLabs/nlptest 216 kaleido-lab/dolphin 215 truera/trulens 208 NimbleBoxAI/ChainFury 208 airobotlab/KoChatGPT 207 monarch-initiative/ontogpt 200 paolorechia/learn-langchain 195 shaman-ai/agent-actors 185 Haste171/langchain-chatbot 184 plchld/InsightFlow 182 su77ungr/CASALIOY 180 jbrukh/gpt-jargon 177 benthecoder/ClassGPT 174 billxbf/ReWOO 170 filip-michalsky/SalesGPT 168 hwchase17/langchain-streamlit-template 168 radi-cho/datasetGPT 164 hardbyte/qabot 164 gia-guar/JARVIS-ChatGPT 158 plastic-labs/tutor-gpt 154 yasyf/compress-gpt 154 fengyuli-dev/multimedia-gpt 154 ethanyanjiali/minChatGPT 153 hwchase17/chroma-langchain 153 edreisMD/plugnplai 148 chakkaradeep/pyCodeAGI 145
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-5
148 chakkaradeep/pyCodeAGI 145 ccurme/yolopandas 145 shamspias/customizable-gpt-chatbot 144 realminchoi/babyagi-ui 143 PradipNichite/Youtube-Tutorials 140 gustavz/DataChad 140 Klingefjord/chatgpt-telegram 140 Jaseci-Labs/jaseci 139 handrew/browserpilot 137 jmpaz/promptlib 137 SamPink/dev-gpt 135 menloparklab/langchain-cohere-qdrant-doc-retrieval 135 hirokidaichi/wanna 135 steamship-core/vercel-examples 134 pablomarin/GPT-Azure-Search-Engine 133 ibiscp/LLM-IMDB 133 shauryr/S2QA 133 jerlendds/osintbuddy 132 yuanjie-ai/ChatLLM 132 yasyf/summ 132 WongSaang/chatgpt-ui-server 130 peterw/StoryStorm 127 Teahouse-Studios/akari-bot 126 vaibkumr/prompt-optimizer 125 preset-io/promptimize 124 homanp/vercel-langchain 124 petehunt/langchain-github-bot 123 eunomia-bpf/GPTtrace 118 nicknochnack/LangchainDocuments 116 jiran214/GPT-vup 112 rsaryev/talk-codebase 112 zenml-io/zenml-projects 112 microsoft/azure-openai-in-a-day-workshop 112 davila7/file-gpt 112 prof-frink-lab/slangchain 111 aurelio-labs/arxiv-bot 110
https://python.langchain.com/en/latest/dependents.html
af52fc0a2ee1-6
111 aurelio-labs/arxiv-bot 110 fixie-ai/fixie-examples 108 miaoshouai/miaoshouai-assistant 105 flurb18/AgentOoba 103 solana-labs/chatgpt-plugin 102 Significant-Gravitas/Auto-GPT-Benchmarks 102 kaarthik108/snowChat 100 Generated by github-dependents-info github-dependents-info --repo hwchase17/langchain --markdownfile dependents.md --minstars 100 --sort stars previous Zilliz next Deployments By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/dependents.html
46379634f13f-0
Source code for langchain.requests """Lightweight wrapper around requests library, with async support.""" from contextlib import asynccontextmanager from typing import Any, AsyncGenerator, Dict, Optional import aiohttp import requests from pydantic import BaseModel, Extra class Requests(BaseModel): """Wrapper around requests to handle auth and async. The main purpose of this wrapper is to handle authentication (by saving headers) and enable easy async methods on the same base object. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def get(self, url: str, **kwargs: Any) -> requests.Response: """GET the URL and return the text.""" return requests.get(url, headers=self.headers, **kwargs) def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """POST to the URL and return the text.""" return requests.post(url, json=data, headers=self.headers, **kwargs) def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, **kwargs) def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PUT the URL and return the text.""" return requests.put(url, json=data, headers=self.headers, **kwargs) def delete(self, url: str, **kwargs: Any) -> requests.Response:
https://python.langchain.com/en/latest/_modules/langchain/requests.html
46379634f13f-1
def delete(self, url: str, **kwargs: Any) -> requests.Response: """DELETE the URL and return the text.""" return requests.delete(url, headers=self.headers, **kwargs) @asynccontextmanager async def _arequest( self, method: str, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """Make an async request.""" if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.request( method, url, headers=self.headers, **kwargs ) as response: yield response else: async with self.aiosession.request( method, url, headers=self.headers, **kwargs ) as response: yield response @asynccontextmanager async def aget( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """GET the URL and return the text asynchronously.""" async with self._arequest("GET", url, **kwargs) as response: yield response @asynccontextmanager async def apost( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """POST to the URL and return the text asynchronously.""" async with self._arequest("POST", url, **kwargs) as response: yield response @asynccontextmanager async def apatch( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PATCH the URL and return the text asynchronously."""
https://python.langchain.com/en/latest/_modules/langchain/requests.html
46379634f13f-2
"""PATCH the URL and return the text asynchronously.""" async with self._arequest("PATCH", url, **kwargs) as response: yield response @asynccontextmanager async def aput( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PUT the URL and return the text asynchronously.""" async with self._arequest("PUT", url, **kwargs) as response: yield response @asynccontextmanager async def adelete( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """DELETE the URL and return the text asynchronously.""" async with self._arequest("DELETE", url, **kwargs) as response: yield response [docs]class TextRequestsWrapper(BaseModel): """Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def requests(self) -> Requests: return Requests(headers=self.headers, aiosession=self.aiosession) [docs] def get(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text.""" return self.requests.get(url, **kwargs).text [docs] def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
https://python.langchain.com/en/latest/_modules/langchain/requests.html
46379634f13f-3
"""POST to the URL and return the text.""" return self.requests.post(url, data, **kwargs).text [docs] def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text.""" return self.requests.patch(url, data, **kwargs).text [docs] def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PUT the URL and return the text.""" return self.requests.put(url, data, **kwargs).text [docs] def delete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text.""" return self.requests.delete(url, **kwargs).text [docs] async def aget(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text asynchronously.""" async with self.requests.aget(url, **kwargs) as response: return await response.text() [docs] async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text asynchronously.""" async with self.requests.apost(url, **kwargs) as response: return await response.text() [docs] async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text asynchronously.""" async with self.requests.apatch(url, **kwargs) as response: return await response.text() [docs] async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
https://python.langchain.com/en/latest/_modules/langchain/requests.html
46379634f13f-4
"""PUT the URL and return the text asynchronously.""" async with self.requests.aput(url, **kwargs) as response: return await response.text() [docs] async def adelete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text asynchronously.""" async with self.requests.adelete(url, **kwargs) as response: return await response.text() # For backwards compatibility RequestsWrapper = TextRequestsWrapper By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/requests.html
e990308dc849-0
Source code for langchain.text_splitter """Functionality for splitting text.""" from __future__ import annotations import copy import logging import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Sequence, Type, TypeVar, Union, cast, ) from langchain.docstore.document import Document from langchain.schema import BaseDocumentTransformer logger = logging.getLogger(__name__) TS = TypeVar("TS", bound="TextSplitter") def _split_text_with_regex( text: str, separator: str, keep_separator: bool ) -> List[str]: # Now that we have the separator, split the text if separator: if keep_separator: # The parentheses in the pattern keep the delimiters in the result. _splits = re.split(f"({separator})", text) splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)] if len(_splits) % 2 == 0: splits += _splits[-1:] splits = [_splits[0]] + splits else: splits = text.split(separator) else: splits = list(text) return [s for s in splits if s != ""] [docs]class TextSplitter(BaseDocumentTransformer, ABC): """Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200,
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-1
chunk_overlap: int = 200, length_function: Callable[[str], int] = len, keep_separator: bool = False, add_start_index: bool = False, ) -> None: """Create a new TextSplitter. Args: chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks length_function: Function that measures the length of given chunks keep_separator: Whether or not to keep the separator in the chunks add_start_index: If `True`, includes chunk's start index in metadata """ if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function self._keep_separator = keep_separator self._add_start_index = add_start_index [docs] @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" [docs] def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): index = -1 for chunk in self.split_text(text): metadata = copy.deepcopy(_metadatas[i]) if self._add_start_index: index = text.find(chunk, index + 1) metadata["start_index"] = index
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-2
metadata["start_index"] = index new_doc = Document(page_content=chunk, metadata=metadata) documents.append(new_doc) return documents [docs] def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.create_documents(texts, metadatas=metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if:
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-3
docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs [docs] @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs) [docs] @classmethod def from_tiktoken_encoder( cls: Type[TS],
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-4
def from_tiktoken_encoder( cls: Type[TS], encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TS: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int: return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, ) ) if issubclass(cls, TokenTextSplitter): extra_kwargs = { "encoding_name": encoding_name, "model_name": model_name, "allowed_special": allowed_special, "disallowed_special": disallowed_special, } kwargs = {**kwargs, **extra_kwargs} return cls(length_function=_tiktoken_encoder, **kwargs) [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform sequence of documents by splitting them.""" return self.split_documents(list(documents))
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-5
return self.split_documents(list(documents)) [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a sequence of documents by splitting them.""" raise NotImplementedError [docs]class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = _split_text_with_regex(text, self._separator, self._keep_separator) _separator = "" if self._keep_separator else self._separator return self._merge_splits(splits, _separator) # should be in newer Python versions (3.10+) # @dataclass(frozen=True, kw_only=True, slots=True) [docs]@dataclass(frozen=True) class Tokenizer: chunk_overlap: int tokens_per_chunk: int decode: Callable[[list[int]], str] encode: Callable[[str], List[int]] [docs]def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: """Split incoming text and return chunks.""" splits: List[str] = [] input_ids = tokenizer.encode(text) start_idx = 0 cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx]
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-6
chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(tokenizer.decode(chunk_ids)) start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits [docs]class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) self._tokenizer = enc self._allowed_special = allowed_special self._disallowed_special = disallowed_special [docs] def split_text(self, text: str) -> List[str]: def _encode(_text: str) -> List[int]: return self._tokenizer.encode( _text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special,
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-7
allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self._chunk_size, decode=self._tokenizer.decode, encode=_encode, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) [docs]class SentenceTransformersTokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, chunk_overlap: int = 50, model_name: str = "sentence-transformers/all-mpnet-base-v2", tokens_per_chunk: Optional[int] = None, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(**kwargs, chunk_overlap=chunk_overlap) try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "Could not import sentence_transformer python package. " "This is needed in order to for SentenceTransformersTokenTextSplitter. " "Please install it with `pip install sentence-transformers`." ) self.model_name = model_name self._model = SentenceTransformer(self.model_name) self.tokenizer = self._model.tokenizer self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk) def _initialize_chunk_configuration( self, *, tokens_per_chunk: Optional[int] ) -> None: self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length) if tokens_per_chunk is None: self.tokens_per_chunk = self.maximum_tokens_per_chunk else: self.tokens_per_chunk = tokens_per_chunk
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-8
else: self.tokens_per_chunk = tokens_per_chunk if self.tokens_per_chunk > self.maximum_tokens_per_chunk: raise ValueError( f"The token limit of the models '{self.model_name}'" f" is: {self.maximum_tokens_per_chunk}." f" Argument tokens_per_chunk={self.tokens_per_chunk}" f" > maximum token limit." ) [docs] def split_text(self, text: str) -> List[str]: def encode_strip_start_and_stop_token_ids(text: str) -> List[int]: return self._encode(text)[1:-1] tokenizer = Tokenizer( chunk_overlap=self._chunk_overlap, tokens_per_chunk=self.tokens_per_chunk, decode=self.tokenizer.decode, encode=encode_strip_start_and_stop_token_ids, ) return split_text_on_tokens(text=text, tokenizer=tokenizer) [docs] def count_tokens(self, *, text: str) -> int: return len(self._encode(text)) _max_length_equal_32_bit_integer = 2**32 def _encode(self, text: str) -> List[int]: token_ids_with_start_and_end_token_ids = self.tokenizer.encode( text, max_length=self._max_length_equal_32_bit_integer, truncation="do_not_truncate", ) return token_ids_with_start_and_end_token_ids [docs]class Language(str, Enum): CPP = "cpp" GO = "go" JAVA = "java" JS = "js" PHP = "php" PROTO = "proto" PYTHON = "python" RST = "rst" RUBY = "ruby" RUST = "rust"
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-9
RUBY = "ruby" RUST = "rust" SCALA = "scala" SWIFT = "swift" MARKDOWN = "markdown" LATEX = "latex" HTML = "html" [docs]class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__( self, separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any, ) -> None: """Create a new TextSplitter.""" super().__init__(keep_separator=keep_separator, **kwargs) self._separators = separators or ["\n\n", "\n", " ", ""] def _split_text(self, text: str, separators: List[str]) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = separators[-1] new_separators = [] for i, _s in enumerate(separators): if _s == "": separator = _s break if re.search(_s, text): separator = _s new_separators = separators[i + 1 :] break splits = _split_text_with_regex(text, separator, self._keep_separator) # Now go merging things, recursively splitting longer texts. _good_splits = [] _separator = "" if self._keep_separator else separator for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s)
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-10
_good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) _good_splits = [] if not new_separators: final_chunks.append(s) else: other_info = self._split_text(s, new_separators) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, _separator) final_chunks.extend(merged_text) return final_chunks [docs] def split_text(self, text: str) -> List[str]: return self._split_text(text, self._separators) [docs] @classmethod def from_language( cls, language: Language, **kwargs: Any ) -> RecursiveCharacterTextSplitter: separators = cls.get_separators_for_language(language) return cls(separators=separators, **kwargs) [docs] @staticmethod def get_separators_for_language(language: Language) -> List[str]: if language == Language.CPP: return [ # Split along class definitions "\nclass ", # Split along function definitions "\nvoid ", "\nint ", "\nfloat ", "\ndouble ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.GO: return [ # Split along function definitions
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-11
elif language == Language.GO: return [ # Split along function definitions "\nfunc ", "\nvar ", "\nconst ", "\ntype ", # Split along control flow statements "\nif ", "\nfor ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JAVA: return [ # Split along class definitions "\nclass ", # Split along method definitions "\npublic ", "\nprotected ", "\nprivate ", "\nstatic ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.JS: return [ # Split along function definitions "\nfunction ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nswitch ", "\ncase ", "\ndefault ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PHP: return [ # Split along function definitions "\nfunction ", # Split along class definitions "\nclass ",
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-12
"\nfunction ", # Split along class definitions "\nclass ", # Split along control flow statements "\nif ", "\nforeach ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PROTO: return [ # Split along message definitions "\nmessage ", # Split along service definitions "\nservice ", # Split along enum definitions "\nenum ", # Split along option definitions "\noption ", # Split along import statements "\nimport ", # Split along syntax declarations "\nsyntax ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.PYTHON: return [ # First, try to split along class definitions "\nclass ", "\ndef ", "\n\tdef ", # Now split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RST: return [ # Split along section titles "\n=+\n", "\n-+\n", "\n\*+\n", # Split along directive markers "\n\n.. *\n\n", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUBY: return [
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-13
"", ] elif language == Language.RUBY: return [ # Split along method definitions "\ndef ", "\nclass ", # Split along control flow statements "\nif ", "\nunless ", "\nwhile ", "\nfor ", "\ndo ", "\nbegin ", "\nrescue ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUST: return [ # Split along function definitions "\nfn ", "\nconst ", "\nlet ", # Split along control flow statements "\nif ", "\nwhile ", "\nfor ", "\nloop ", "\nmatch ", "\nconst ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SCALA: return [ # Split along class definitions "\nclass ", "\nobject ", # Split along method definitions "\ndef ", "\nval ", "\nvar ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nmatch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SWIFT: return [ # Split along function definitions "\nfunc ", # Split along class definitions "\nclass ",
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-14
"\nfunc ", # Split along class definitions "\nclass ", "\nstruct ", "\nenum ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.MARKDOWN: return [ # First, try to split along Markdown headings (starting with level 2) "\n#{1,6} ", # Note the alternative syntax for headings (below) is not handled here # Heading level 2 # --------------- # End of code block "```\n", # Horizontal lines "\n\*\*\*+\n", "\n---+\n", "\n___+\n", # Note that this splitter doesn't handle horizontal lines defined # by *three or more* of ***, ---, or ___, but this is not handled "\n\n", "\n", " ", "", ] elif language == Language.LATEX: return [ # First, try to split along Latex sections "\n\\\chapter{", "\n\\\section{", "\n\\\subsection{", "\n\\\subsubsection{", # Now split by environments "\n\\\begin{enumerate}", "\n\\\begin{itemize}", "\n\\\begin{description}", "\n\\\begin{list}", "\n\\\begin{quote}", "\n\\\begin{quotation}",
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-15
"\n\\\begin{quote}", "\n\\\begin{quotation}", "\n\\\begin{verse}", "\n\\\begin{verbatim}", ## Now split by math environments "\n\\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] elif language == Language.HTML: return [ # First, try to split along HTML tags "<body", "<div", "<p", "<br", "<li", "<h1", "<h2", "<h3", "<h4", "<h5", "<h6", "<span", "<table", "<tr", "<td", "<th", "<ul", "<ol", "<header", "<footer", "<nav", # Head "<head", "<style", "<script", "<meta", "<title", "", ] else: raise ValueError( f"Language {language} is not supported! " f"Please choose from {list(Language)}" ) [docs]class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError(
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-16
self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) [docs]class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ) -> None: """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) # For backwards compatibility [docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any) -> None: """Initialize a PythonCodeTextSplitter."""
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e990308dc849-17
"""Initialize a PythonCodeTextSplitter.""" separators = self.get_separators_for_language(Language.PYTHON) super().__init__(separators=separators, **kwargs) [docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any) -> None: """Initialize a MarkdownTextSplitter.""" separators = self.get_separators_for_language(Language.MARKDOWN) super().__init__(separators=separators, **kwargs) [docs]class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any) -> None: """Initialize a LatexTextSplitter.""" separators = self.get_separators_for_language(Language.LATEX) super().__init__(separators=separators, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
e98f17c4398f-0
Source code for langchain.document_transformers """Transform documents""" from typing import Any, Callable, List, Sequence import numpy as np from pydantic import BaseModel, Field from langchain.embeddings.base import Embeddings from langchain.math_utils import cosine_similarity from langchain.schema import BaseDocumentTransformer, Document class _DocumentWithState(Document): """Wrapper for a document that includes arbitrary state.""" state: dict = Field(default_factory=dict) """State associated with the document.""" def to_document(self) -> Document: """Convert the DocumentWithState to a Document.""" return Document(page_content=self.page_content, metadata=self.metadata) @classmethod def from_document(cls, doc: Document) -> "_DocumentWithState": """Create a DocumentWithState from a Document.""" if isinstance(doc, cls): return doc return cls(page_content=doc.page_content, metadata=doc.metadata) [docs]def get_stateful_documents( documents: Sequence[Document], ) -> Sequence[_DocumentWithState]: return [_DocumentWithState.from_document(doc) for doc in documents] def _filter_similar_embeddings( embedded_documents: List[List[float]], similarity_fn: Callable, threshold: float ) -> List[int]: """Filter redundant documents based on the similarity of their embeddings.""" similarity = np.tril(similarity_fn(embedded_documents, embedded_documents), k=-1) redundant = np.where(similarity > threshold) redundant_stacked = np.column_stack(redundant) redundant_sorted = np.argsort(similarity[redundant])[::-1] included_idxs = set(range(len(embedded_documents))) for first_idx, second_idx in redundant_stacked[redundant_sorted]:
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
e98f17c4398f-1
for first_idx, second_idx in redundant_stacked[redundant_sorted]: if first_idx in included_idxs and second_idx in included_idxs: # Default to dropping the second document of any highly similar pair. included_idxs.remove(second_idx) return list(sorted(included_idxs)) def _get_embeddings_from_stateful_docs( embeddings: Embeddings, documents: Sequence[_DocumentWithState] ) -> List[List[float]]: if len(documents) and "embedded_doc" in documents[0].state: embedded_documents = [doc.state["embedded_doc"] for doc in documents] else: embedded_documents = embeddings.embed_documents( [d.page_content for d in documents] ) for doc, embedding in zip(documents, embedded_documents): doc.state["embedded_doc"] = embedding return embedded_documents [docs]class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): """Filter that drops redundant documents by comparing their embeddings.""" embeddings: Embeddings """Embeddings to use for embedding document contents.""" similarity_fn: Callable = cosine_similarity """Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity.""" similarity_threshold: float = 0.95 """Threshold for determining when two documents are similar enough to be considered redundant.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Filter down documents.""" stateful_documents = get_stateful_documents(documents)
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
e98f17c4398f-2
"""Filter down documents.""" stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
e52585dff09b-0
Source code for langchain.output_parsers.retry from __future__ import annotations from typing import TypeVar from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( BaseOutputParser, OutputParserException, PromptValue, ) NAIVE_COMPLETION_RETRY = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Please try again:""" NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt: {prompt} Completion: {completion} Above, the Completion did not satisfy the constraints given in the Prompt. Details: {error} Please try again:""" NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY) NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template( NAIVE_COMPLETION_RETRY_WITH_ERROR ) T = TypeVar("T") [docs]class RetryOutputParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt and the completion to another LLM, and telling it the completion did not satisfy criteria in the prompt. """ parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT, ) -> RetryOutputParser[T]: chain = LLMChain(llm=llm, prompt=prompt)
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
e52585dff09b-1
chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "retry" [docs]class RetryWithErrorOutputParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors. Does this by passing the original prompt, the completion, AND the error that was raised to another language model and telling it that the completion did not work, and raised the given error. Differs from RetryOutputParser in that this implementation provides the error that was raised back to the LLM, which in theory should give it more information on how to fix it. """ parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT, ) -> RetryWithErrorOutputParser[T]:
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
e52585dff09b-2
) -> RetryWithErrorOutputParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( prompt=prompt_value.to_string(), completion=completion, error=repr(e) ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def parse(self, completion: str) -> T: raise NotImplementedError( "This OutputParser can only be called by the `parse_with_prompt` method." ) [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "retry_with_error" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
ca6a23bf3350-0
Source code for langchain.output_parsers.pydantic import json import re from typing import Type, TypeVar from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS from langchain.schema import BaseOutputParser, OutputParserException T = TypeVar("T", bound=BaseModel) [docs]class PydanticOutputParser(BaseOutputParser[T]): pydantic_object: Type[T] [docs] def parse(self, text: str) -> T: try: # Greedy search for 1st json candidate. match = re.search( r"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL ) json_str = "" if match: json_str = match.group() json_object = json.loads(json_str, strict=False) return self.pydantic_object.parse_obj(json_object) except (json.JSONDecodeError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg) [docs] def get_format_instructions(self) -> str: schema = self.pydantic_object.schema() # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
ca6a23bf3350-1
@property def _type(self) -> str: return "pydantic" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
5370a30a3424-0
Source code for langchain.output_parsers.rail_parser from __future__ import annotations from typing import Any, Dict from langchain.schema import BaseOutputParser [docs]class GuardrailsOutputParser(BaseOutputParser): guard: Any @property def _type(self) -> str: return "guardrails" [docs] @classmethod def from_rail(cls, rail_file: str, num_reasks: int = 1) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail(rail_file, num_reasks=num_reasks)) [docs] @classmethod def from_rail_string( cls, rail_str: str, num_reasks: int = 1 ) -> GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ValueError( "guardrails-ai package not installed. " "Install it by running `pip install guardrails-ai`." ) return cls(guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks)) [docs] def get_format_instructions(self) -> str: return self.guard.raw_prompt.format_instructions [docs] def parse(self, text: str) -> Dict: return self.guard.parse(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/rail_parser.html
8b82b3f2757f-0
Source code for langchain.output_parsers.regex from __future__ import annotations import re from typing import Dict, List, Optional from langchain.schema import BaseOutputParser [docs]class RegexParser(BaseOutputParser): """Class to parse the output into a dictionary.""" regex: str output_keys: List[str] default_output_key: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_parser" [docs] def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" match = re.search(self.regex, text) if match: return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)} else: if self.default_output_key is None: raise ValueError(f"Could not parse output: {text}") else: return { key: text if key == self.default_output_key else "" for key in self.output_keys } By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex.html
ea7943981c46-0
Source code for langchain.output_parsers.datetime import random from datetime import datetime, timedelta from typing import List from langchain.schema import BaseOutputParser, OutputParserException from langchain.utils import comma_list def _generate_random_datetime_strings( pattern: str, n: int = 3, start_date: datetime = datetime(1, 1, 1), end_date: datetime = datetime.now() + timedelta(days=3650), ) -> List[str]: """ Generates n random datetime strings conforming to the given pattern within the specified date range. Pattern should be a string containing the desired format codes. start_date and end_date should be datetime objects representing the start and end of the date range. """ examples = [] delta = end_date - start_date for i in range(n): random_delta = random.uniform(0, delta.total_seconds()) dt = start_date + timedelta(seconds=random_delta) date_string = dt.strftime(pattern) examples.append(date_string) return examples [docs]class DatetimeOutputParser(BaseOutputParser[datetime]): format: str = "%Y-%m-%dT%H:%M:%S.%fZ" [docs] def get_format_instructions(self) -> str: examples = comma_list(_generate_random_datetime_strings(self.format)) return f"""Write a datetime string that matches the following pattern: "{self.format}". Examples: {examples}""" [docs] def parse(self, response: str) -> datetime: try: return datetime.strptime(response.strip(), self.format) except ValueError as e: raise OutputParserException( f"Could not parse datetime string: {response}" ) from e @property
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/datetime.html
ea7943981c46-1
) from e @property def _type(self) -> str: return "datetime" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/datetime.html
0d268a24a711-0
Source code for langchain.output_parsers.list from __future__ import annotations from abc import abstractmethod from typing import List from langchain.schema import BaseOutputParser [docs]class ListOutputParser(BaseOutputParser): """Class to parse the output of an LLM call to a list.""" @property def _type(self) -> str: return "list" [docs] @abstractmethod def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" [docs]class CommaSeparatedListOutputParser(ListOutputParser): """Parse out comma separated lists.""" [docs] def get_format_instructions(self) -> str: return ( "Your response should be a list of comma separated values, " "eg: `foo, bar, baz`" ) [docs] def parse(self, text: str) -> List[str]: """Parse the output of an LLM call.""" return text.strip().split(", ") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/list.html
5359cc1d3772-0
Source code for langchain.output_parsers.structured from __future__ import annotations from typing import Any, List from pydantic import BaseModel from langchain.output_parsers.format_instructions import STRUCTURED_FORMAT_INSTRUCTIONS from langchain.output_parsers.json import parse_and_check_json_markdown from langchain.schema import BaseOutputParser line_template = '\t"{name}": {type} // {description}' [docs]class ResponseSchema(BaseModel): name: str description: str type: str = "string" def _get_sub_string(schema: ResponseSchema) -> str: return line_template.format( name=schema.name, description=schema.description, type=schema.type ) [docs]class StructuredOutputParser(BaseOutputParser): response_schemas: List[ResponseSchema] [docs] @classmethod def from_response_schemas( cls, response_schemas: List[ResponseSchema] ) -> StructuredOutputParser: return cls(response_schemas=response_schemas) [docs] def get_format_instructions(self) -> str: schema_str = "\n".join( [_get_sub_string(schema) for schema in self.response_schemas] ) return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str) [docs] def parse(self, text: str) -> Any: expected_keys = [rs.name for rs in self.response_schemas] return parse_and_check_json_markdown(text, expected_keys) @property def _type(self) -> str: return "structured" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html
b8734bee59e7-0
Source code for langchain.output_parsers.regex_dict from __future__ import annotations import re from typing import Dict, Optional from langchain.schema import BaseOutputParser [docs]class RegexDictParser(BaseOutputParser): """Class to parse the output into a dictionary.""" regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private: output_key_to_format: Dict[str, str] no_update_value: Optional[str] = None @property def _type(self) -> str: """Return the type key.""" return "regex_dict_parser" [docs] def parse(self, text: str) -> Dict[str, str]: """Parse the output of an LLM call.""" result = {} for output_key, expected_format in self.output_key_to_format.items(): specific_regex = self.regex_pattern.format(re.escape(expected_format)) matches = re.findall(specific_regex, text) if not matches: raise ValueError( f"No match found for output key: {output_key} with expected format \ {expected_format} on text {text}" ) elif len(matches) > 1: raise ValueError( f"Multiple matches found for output key: {output_key} with \ expected format {expected_format} on text {text}" ) elif ( self.no_update_value is not None and matches[0] == self.no_update_value ): continue else: result[output_key] = matches[0] return result By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex_dict.html
35eec0c5b588-0
Source code for langchain.output_parsers.fix from __future__ import annotations from typing import TypeVar from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseOutputParser, OutputParserException T = TypeVar("T") [docs]class OutputFixingParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors.""" parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_FIX_PROMPT, ) -> OutputFixingParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse(self, completion: str) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "output_fixing" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html
af0860406392-0
Source code for langchain.embeddings.llamacpp """Wrapper around llama.cpp embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.embeddings.base import Embeddings [docs]class LlamaCppEmbeddings(BaseModel, Embeddings): """Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ client: Any #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock")
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
af0860406392-1
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers") """Number of layers to be loaded into gpu memory. Default None.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] model_param_names = [ "n_ctx", "n_parts", "seed", "f16_kv", "logits_all", "vocab_only", "use_mlock", "n_threads", "n_batch", ] model_params = {k: values[k] for k in model_param_names} # For backwards compatibility, only include if non-null. if values["n_gpu_layers"] is not None: model_params["n_gpu_layers"] = values["n_gpu_layers"] try: from llama_cpp import Llama values["client"] = Llama(model_path, embedding=True, **model_params) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. "
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
af0860406392-2
raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception as e: raise ValueError( f"Could not load Llama model from path: {model_path}. " f"Received error {e}" ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [self.client.embed(text) for text in texts] return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the Llama model. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed(text) return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
b6ecaf2575c8-0
Source code for langchain.embeddings.tensorflow_hub """Wrapper around TensorflowHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" [docs]class TensorflowHubEmbeddings(BaseModel, Embeddings): """Wrapper around tensorflow_hub embedding models. To use, you should have the ``tensorflow_text`` python package installed. Example: .. code-block:: python from langchain.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) """ embed: Any #: :meta private: model_url: str = DEFAULT_MODEL_URL """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the tensorflow_hub and tensorflow_text.""" super().__init__(**kwargs) try: import tensorflow_hub except ImportError: raise ImportError( "Could not import tensorflow-hub python package. " "Please install it with `pip install tensorflow-hub``." ) try: import tensorflow_text # noqa except ImportError: raise ImportError( "Could not import tensorflow_text python package. " "Please install it with `pip install tensorflow_text``." ) self.embed = tensorflow_hub.load(self.model_url) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
b6ecaf2575c8-1
"""Compute doc embeddings using a TensorflowHub embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.embed(texts).numpy() return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a TensorflowHub embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.embed([text]).numpy()[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
7b11115d5237-0
Source code for langchain.embeddings.elasticsearch from __future__ import annotations from typing import TYPE_CHECKING, List, Optional from langchain.utils import get_from_env if TYPE_CHECKING: from elasticsearch import Elasticsearch from elasticsearch.client import MlClient from langchain.embeddings.base import Embeddings [docs]class ElasticsearchEmbeddings(Embeddings): """ Wrapper around Elasticsearch embedding models. This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster. In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html """ # noqa: E501 def __init__( self, client: MlClient, model_id: str, *, input_field: str = "text_field", ): """ Initialize the ElasticsearchEmbeddings instance. Args: client (MlClient): An Elasticsearch ML client object. model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. """ self.client = client self.model_id = model_id self.input_field = input_field [docs] @classmethod def from_credentials( cls, model_id: str, *, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
7b11115d5237-1
es_user: Optional[str] = None, es_password: Optional[str] = None, input_field: str = "text_field", ) -> ElasticsearchEmbeddings: """Instantiate embeddings from Elasticsearch credentials. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. es_cloud_id: (str, optional): The Elasticsearch cloud ID to connect to. es_user: (str, optional): Elasticsearch username. es_password: (str, optional): Elasticsearch password. Example: .. code-block:: python from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Credentials can be passed in two ways. Either set the env vars # ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically # pulled in, or pass them in directly as kwargs. embeddings = ElasticsearchEmbeddings.from_credentials( model_id, input_field=input_field, # es_cloud_id="foo", # es_user="bar", # es_password="baz", ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """ try: from elasticsearch import Elasticsearch from elasticsearch.client import MlClient except ImportError: raise ImportError(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
7b11115d5237-2
from elasticsearch.client import MlClient except ImportError: raise ImportError( "elasticsearch package not found, please install with 'pip install " "elasticsearch'" ) es_cloud_id = es_cloud_id or get_from_env("es_cloud_id", "ES_CLOUD_ID") es_user = es_user or get_from_env("es_user", "ES_USER") es_password = es_password or get_from_env("es_password", "ES_PASSWORD") # Connect to Elasticsearch es_connection = Elasticsearch( cloud_id=es_cloud_id, basic_auth=(es_user, es_password) ) client = MlClient(es_connection) return cls(client, model_id, input_field=input_field) [docs] @classmethod def from_es_connection( cls, model_id: str, es_connection: Elasticsearch, input_field: str = "text_field", ) -> ElasticsearchEmbeddings: """ Instantiate embeddings from an existing Elasticsearch connection. This method provides a way to create an instance of the ElasticsearchEmbeddings class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbeddings instance. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to 'text_field'. Returns: ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class. Example: .. code-block:: python from elasticsearch import Elasticsearch
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
7b11115d5237-3
Example: .. code-block:: python from elasticsearch import Elasticsearch from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Create Elasticsearch connection es_connection = Elasticsearch( hosts=["localhost:9200"], http_auth=("user", "password") ) # Instantiate ElasticsearchEmbeddings using the existing connection embeddings = ElasticsearchEmbeddings.from_es_connection( model_id, es_connection, input_field=input_field, ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """ # Importing MlClient from elasticsearch.client within the method to # avoid unnecessary import if the method is not used from elasticsearch.client import MlClient # Create an MlClient from the given Elasticsearch connection client = MlClient(es_connection) # Return a new instance of the ElasticsearchEmbeddings class with # the MlClient, model_id, and input_field return cls(client, model_id, input_field=input_field) def _embedding_func(self, texts: List[str]) -> List[List[float]]: """ Generate embeddings for the given texts using the Elasticsearch model. Args: texts (List[str]): A list of text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each text in the input list. """ response = self.client.infer_trained_model(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
7b11115d5237-4
list. """ response = self.client.infer_trained_model( model_id=self.model_id, docs=[{self.input_field: text} for text in texts] ) embeddings = [doc["predicted_value"] for doc in response["inference_results"]] return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Generate embeddings for a list of documents. Args: texts (List[str]): A list of document text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each document in the input list. """ return self._embedding_func(texts) [docs] def embed_query(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ return self._embedding_func([text])[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
47e5eeb4b1e9-0
Source code for langchain.embeddings.bedrock import json import os from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings [docs]class BedrockEmbeddings(BaseModel, Embeddings): """Embeddings provider to invoke Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from langchain.bedrock_embeddings import BedrockEmbeddings region_name ="us-east-1" credentials_profile_name = "default" model_id = "amazon.titan-e1t-medium" be = BedrockEmbeddings( credentials_profile_name=credentials_profile_name, region_name=region_name, model_id=model_id ) """ client: Any #: :meta private: region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
47e5eeb4b1e9-1
If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str = "amazon.titan-e1t-medium" """Id of the model to call, e.g., amazon.titan-e1t-medium, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
47e5eeb4b1e9-2
"profile name are valid." ) from e return values def _embedding_func(self, text: str) -> List[float]: """Call out to Bedrock embedding endpoint.""" # replace newlines, which can negatively affect performance. text = text.replace(os.linesep, " ") _model_kwargs = self.model_kwargs or {} input_body = {**_model_kwargs} input_body["inputText"] = text body = json.dumps(input_body) content_type = "application/json" accepts = "application/json" embeddings = [] try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept=accepts, contentType=content_type, ) response_body = json.loads(response.get("body").read()) embeddings = response_body.get("embedding") except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return embeddings [docs] def embed_documents( self, texts: List[str], chunk_size: int = 1 ) -> List[List[float]]: """Compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed. chunk_size: Bedrock currently only allows single string inputs, so chunk size is always 1. This input is here only for compatibility with the embeddings interface. Returns: List of embeddings, one for each text. """ results = [] for text in texts: response = self._embedding_func(text) results.append(response) return results [docs] def embed_query(self, text: str) -> List[float]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
47e5eeb4b1e9-3
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
38c1e1d83a2e-0
Source code for langchain.embeddings.self_hosted_hugging_face """Wrapper around HuggingFace embedding models for self-hosted remote hardware.""" import importlib import logging from typing import Any, Callable, List, Optional from langchain.embeddings.self_hosted import SelfHostedEmbeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) logger = logging.getLogger(__name__) def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return client.encode(*args, **kwargs) def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any: """Load the embedding model.""" if not instruct: import sentence_transformers client = sentence_transformers.SentenceTransformer(model_id) else: from InstructorEmbedding import INSTRUCTOR client = INSTRUCTOR(model_id) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
38c1e1d83a2e-1
if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) client = client.to(device) return client [docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): """Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) """ client: Any #: :meta private: model_id: str = DEFAULT_MODEL_NAME """Model name to use.""" model_reqs: List[str] = ["./", "sentence_transformers", "torch"] """Requirements to install on hardware to inference the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable = load_embedding_model
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
38c1e1d83a2e-2
model_load_fn: Callable = load_embedding_model """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Key word arguments to pass to the model load function.""" inference_fn: Callable = _embed_documents """Inference function to extract the embeddings.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): """Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
38c1e1d83a2e-3
model_name=model_name, hardware=gpu) """ model_id: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"] """Requirements to install on hardware to inference the model.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get( "model_id", DEFAULT_INSTRUCT_MODEL ) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
38c1e1d83a2e-4
Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client(self.pipeline_ref, [instruction_pair])[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
64ef7e8ab507-0
Source code for langchain.embeddings.huggingface_hub """Wrapper around HuggingFace Hub embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) [docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings): """Wrapper around HuggingFaceHub embedding models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = "feature-extraction" """Task to call the model with.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
64ef7e8ab507-1
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] if not repo_id.startswith("sentence-transformers"): raise ValueError( "Currently only 'sentence-transformers' embedding models " f"are supported. Got invalid 'repo_id' {repo_id}." ) client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ # replace newlines, which can negatively affect performance. texts = [text.replace("\n", " ") for text in texts]
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
64ef7e8ab507-2
texts = [text.replace("\n", " ") for text in texts] _model_kwargs = self.model_kwargs or {} responses = self.client(inputs=texts, params=_model_kwargs) return responses [docs] def embed_query(self, text: str) -> List[float]: """Call out to HuggingFaceHub's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embeddings for the text. """ response = self.embed_documents([text])[0] return response By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
094599aa4c01-0
Source code for langchain.embeddings.aleph_alpha from typing import Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): """ Wrapper for Aleph Alpha's Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example: .. code-block:: python from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) """ client: Any #: :meta private: model: Optional[str] = "luminous-base" """Model name to use.""" hosting: Optional[str] = "https://api.aleph-alpha.com" """Optional parameter that specifies which datacenters may process the request.""" normalize: Optional[bool] = True """Should returned embeddings be normalized""" compress_to_size: Optional[int] = 128 """Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim.""" contextual_control_threshold: Optional[int] = None """Attention control parameters only apply to those tokens that have
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
094599aa4c01-1
"""Attention control parameters only apply to those tokens that have explicitly been set in the request.""" control_log_additive: Optional[bool] = True """Apply controls on prompt items by adding the log(control_factor) to attention scores.""" aleph_alpha_api_key: Optional[str] = None """API key for Aleph Alpha API.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: from aleph_alpha_client import Client except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) values["client"] = Client(token=aleph_alpha_api_key) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's asymmetric Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) document_embeddings = [] for text in texts: document_params = { "prompt": Prompt.from_text(text),
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
094599aa4c01-2
document_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } document_request = SemanticEmbeddingRequest(**document_params) document_response = self.client.semantic_embed( request=document_request, model=self.model ) document_embeddings.append(document_response.embedding) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) symmetric_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Query, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } symmetric_request = SemanticEmbeddingRequest(**symmetric_params) symmetric_response = self.client.semantic_embed( request=symmetric_request, model=self.model ) return symmetric_response.embedding
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
094599aa4c01-3
request=symmetric_request, model=self.model ) return symmetric_response.embedding [docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding): """The symmetric version of the Aleph Alpha's semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric Example: .. code-block:: python from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding() text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) """ def _embed(self, text: str) -> List[float]: try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) query_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Symmetric, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } query_request = SemanticEmbeddingRequest(**query_params) query_response = self.client.semantic_embed( request=query_request, model=self.model ) return query_response.embedding [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's Document endpoint.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
094599aa4c01-4
"""Call out to Aleph Alpha's Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ document_embeddings = [] for text in texts: document_embeddings.append(self._embed(text)) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
eedc1f895dcc-0
Source code for langchain.embeddings.fake from typing import List import numpy as np from pydantic import BaseModel from langchain.embeddings.base import Embeddings [docs]class FakeEmbeddings(Embeddings, BaseModel): size: int def _get_embedding(self) -> List[float]: return list(np.random.normal(size=self.size)) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: return [self._get_embedding() for _ in texts] [docs] def embed_query(self, text: str) -> List[float]: return self._get_embedding() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/fake.html
1533f89840fa-0
Source code for langchain.embeddings.cohere """Wrapper around Cohere embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class CohereEmbeddings(BaseModel, Embeddings): """Wrapper around Cohere embedding models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings( model="embed-english-light-v2.0", cohere_api_key="my-api-key" ) """ client: Any #: :meta private: model: str = "embed-english-v2.0" """Model name to use.""" truncate: Optional[str] = None """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")""" cohere_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
1533f89840fa-1
except ImportError: raise ValueError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.embed( model=self.model, texts=texts, truncate=self.truncate ).embeddings return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed( model=self.model, texts=[text], truncate=self.truncate ).embeddings[0] return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
00bc5482a026-0
Source code for langchain.embeddings.modelscope_hub """Wrapper around ModelScopeHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings [docs]class ModelScopeEmbeddings(BaseModel, Embeddings): """Wrapper around modelscope_hub embedding models. To use, you should have the ``modelscope`` python package installed. Example: .. code-block:: python from langchain.embeddings import ModelScopeEmbeddings model_id = "damo/nlp_corom_sentence-embedding_english-base" embed = ModelScopeEmbeddings(model_id=model_id) """ embed: Any model_id: str = "damo/nlp_corom_sentence-embedding_english-base" """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the modelscope""" super().__init__(**kwargs) try: from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id) except ImportError as e: raise ImportError( "Could not import some python packages." "Please install it with `pip install modelscope`." ) from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a modelscope embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts))
https://python.langchain.com/en/latest/_modules/langchain/embeddings/modelscope_hub.html
00bc5482a026-1
texts = list(map(lambda x: x.replace("\n", " "), texts)) inputs = {"source_sentence": texts} embeddings = self.embed(input=inputs)["text_embedding"] return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a modelscope embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") inputs = {"source_sentence": [text]} embedding = self.embed(input=inputs)["text_embedding"][0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/modelscope_hub.html
682a003d0ef2-0
Source code for langchain.embeddings.huggingface """Wrapper around HuggingFace embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field from langchain.embeddings.base import Embeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) [docs]class HuggingFaceEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass when calling the `encode` method of the model."""
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
682a003d0ef2-1
"""Key word arguments to pass when calling the `encode` method of the model.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: import sentence_transformers except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence_transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client.encode(texts, **self.encode_kwargs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode(text, **self.encode_kwargs) return embedding.tolist() [docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers``
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
682a003d0ef2-2
To use, you should have the ``sentence_transformers`` and ``InstructorEmbedding`` python packages installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass when calling the `encode` method of the model.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: from InstructorEmbedding import INSTRUCTOR self.client = INSTRUCTOR( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) except ImportError as e: raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
682a003d0ef2-3
raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [[self.embed_instruction, text] for text in texts] embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
efe14e94b84b-0
Source code for langchain.embeddings.deepinfra from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" [docs]class DeepInfraEmbeddings(BaseModel, Embeddings): """Wrapper around Deep Infra's embedding inference service. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example: .. code-block:: python from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) """ model_id: str = DEFAULT_MODEL_ID """Embeddings model to use.""" normalize: bool = False """whether to normalize the computed embeddings""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" model_kwargs: Optional[dict] = None
https://python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html
efe14e94b84b-1
model_kwargs: Optional[dict] = None """Other model keyword args""" deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"model_id": self.model_id} def _embed(self, input: List[str]) -> List[List[float]]: _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } # send request try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() embeddings = t["embeddings"]
https://python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html
efe14e94b84b-2
try: t = res.json() embeddings = t["embeddings"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Deep Infra deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.query_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a Deep Infra deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html