id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
cfa0069873a2-2
self, url_override: Optional[str] = None ) -> List[Document]: loader = WebBaseLoader(self.web_path if url_override is None else url_override) soup = loader.scrape() output = [] title = soup.find("h1", "post-title").text output.append("# " + title) output.append(soup.select_one(".post-content .post-text").text.strip()) answersHeader = soup.find("div", "post-answers-header") if answersHeader: output.append("\n## " + answersHeader.text.strip()) for answer in soup.select(".js-answers-list .post.post-answer"): if answer.has_attr("itemprop") and "acceptedAnswer" in answer["itemprop"]: output.append("\n### Accepted Answer") elif "post-helpful" in answer["class"]: output.append("\n### Most Helpful Answer") else: output.append("\n### Other Answer") output += [ a.text.strip() for a in answer.select(".post-content .post-text") ] output.append("\n") text = "\n".join(output).strip() metadata = {"source": self.web_path, "title": title} return [Document(page_content=text, metadata=metadata)] [docs] def load_device( self, url_override: Optional[str] = None, include_guides: bool = True ) -> List[Document]: documents = [] if url_override is None: url = IFIXIT_BASE_URL + "/wikis/CATEGORY/" + self.id else: url = url_override res = requests.get(url) data = res.json() text = "\n".join( [
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/ifixit.html
cfa0069873a2-3
data = res.json() text = "\n".join( [ data[key] for key in ["title", "description", "contents_raw"] if key in data ] ).strip() metadata = {"source": self.web_path, "title": data["title"]} documents.append(Document(page_content=text, metadata=metadata)) if include_guides: """Load and return documents for each guide linked to from the device""" guide_urls = [guide["url"] for guide in data["guides"]] for guide_url in guide_urls: documents.append(IFixitLoader(guide_url).load()[0]) return documents [docs] def load_guide(self, url_override: Optional[str] = None) -> List[Document]: if url_override is None: url = IFIXIT_BASE_URL + "/guides/" + self.id else: url = url_override res = requests.get(url) if res.status_code != 200: raise ValueError( "Could not load guide: " + self.web_path + "\n" + res.json() ) data = res.json() doc_parts = ["# " + data["title"], data["introduction_raw"]] doc_parts.append("\n\n###Tools Required:") if len(data["tools"]) == 0: doc_parts.append("\n - None") else: for tool in data["tools"]: doc_parts.append("\n - " + tool["text"]) doc_parts.append("\n\n###Parts Required:") if len(data["parts"]) == 0: doc_parts.append("\n - None") else: for part in data["parts"]:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/ifixit.html
cfa0069873a2-4
else: for part in data["parts"]: doc_parts.append("\n - " + part["text"]) for row in data["steps"]: doc_parts.append( "\n\n## " + ( row["title"] if row["title"] != "" else "Step {}".format(row["orderby"]) ) ) for line in row["lines"]: doc_parts.append(line["text_raw"]) doc_parts.append(data["conclusion_raw"]) text = "\n".join(doc_parts) metadata = {"source": self.web_path, "title": data["title"]} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/ifixit.html
beb54a9dda33-0
Source code for langchain.document_loaders.unstructured """Loader that uses unstructured to load files.""" import collections from abc import ABC, abstractmethod from typing import IO, Any, List, Sequence, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader def satisfies_min_unstructured_version(min_version: str) -> bool: """Checks to see if the installed unstructured version exceeds the minimum version for the feature in question.""" from unstructured.__version__ import __version__ as __unstructured_version__ min_version_tuple = tuple([int(x) for x in min_version.split(".")]) # NOTE(MthwRobinson) - enables the loader to work when you're using pre-release # versions of unstructured like 0.4.17-dev1 _unstructured_version = __unstructured_version__.split("-")[0] unstructured_version_tuple = tuple( [int(x) for x in _unstructured_version.split(".")] ) return unstructured_version_tuple >= min_version_tuple def validate_unstructured_version(min_unstructured_version: str) -> None: """Raises an error if the unstructured version does not exceed the specified minimum.""" if not satisfies_min_unstructured_version(min_unstructured_version): raise ValueError( f"unstructured>={min_unstructured_version} is required in this loader." ) class UnstructuredBaseLoader(BaseLoader, ABC): """Loader that uses unstructured to load files.""" def __init__(self, mode: str = "single", **unstructured_kwargs: Any): """Initialize with file path.""" try: import unstructured # noqa:F401 except ImportError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/unstructured.html
beb54a9dda33-1
import unstructured # noqa:F401 except ImportError: raise ValueError( "unstructured package not found, please install it with " "`pip install unstructured`" ) _valid_modes = {"single", "elements"} if mode not in _valid_modes: raise ValueError( f"Got {mode} for `mode`, but should be one of `{_valid_modes}`" ) self.mode = mode if not satisfies_min_unstructured_version("0.5.4"): if "strategy" in unstructured_kwargs: unstructured_kwargs.pop("strategy") self.unstructured_kwargs = unstructured_kwargs @abstractmethod def _get_elements(self) -> List: """Get elements.""" @abstractmethod def _get_metadata(self) -> dict: """Get metadata.""" def load(self) -> List[Document]: """Load file.""" elements = self._get_elements() if self.mode == "elements": docs: List[Document] = list() for element in elements: metadata = self._get_metadata() # NOTE(MthwRobinson) - the attribute check is for backward compatibility # with unstructured<0.4.9. The metadata attributed was added in 0.4.9. if hasattr(element, "metadata"): metadata.update(element.metadata.to_dict()) if hasattr(element, "category"): metadata["category"] = element.category docs.append(Document(page_content=str(element), metadata=metadata)) elif self.mode == "single": metadata = self._get_metadata() text = "\n\n".join([str(el) for el in elements]) docs = [Document(page_content=text, metadata=metadata)]
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/unstructured.html
beb54a9dda33-2
docs = [Document(page_content=text, metadata=metadata)] else: raise ValueError(f"mode of {self.mode} not supported.") return docs [docs]class UnstructuredFileLoader(UnstructuredBaseLoader): """Loader that uses unstructured to load files.""" def __init__( self, file_path: Union[str, List[str]], mode: str = "single", **unstructured_kwargs: Any, ): """Initialize with file path.""" self.file_path = file_path super().__init__(mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.auto import partition return partition(filename=self.file_path, **self.unstructured_kwargs) def _get_metadata(self) -> dict: return {"source": self.file_path} def get_elements_from_api( file_path: Union[str, List[str], None] = None, file: Union[IO, Sequence[IO], None] = None, api_url: str = "https://api.unstructured.io/general/v0/general", api_key: str = "", **unstructured_kwargs: Any, ) -> List: """Retrieves a list of elements from the Unstructured API.""" if isinstance(file, collections.abc.Sequence) or isinstance(file_path, list): from unstructured.partition.api import partition_multiple_via_api _doc_elements = partition_multiple_via_api( filenames=file_path, files=file, api_key=api_key, api_url=api_url, **unstructured_kwargs, ) elements = [] for _elements in _doc_elements: elements.extend(_elements) return elements else:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/unstructured.html
beb54a9dda33-3
elements.extend(_elements) return elements else: from unstructured.partition.api import partition_via_api return partition_via_api( filename=file_path, file=file, api_key=api_key, api_url=api_url, **unstructured_kwargs, ) [docs]class UnstructuredAPIFileLoader(UnstructuredFileLoader): """Loader that uses the unstructured web API to load files.""" def __init__( self, file_path: Union[str, List[str]] = "", mode: str = "single", url: str = "https://api.unstructured.io/general/v0/general", api_key: str = "", **unstructured_kwargs: Any, ): """Initialize with file path.""" if isinstance(file_path, str): validate_unstructured_version(min_unstructured_version="0.6.2") else: validate_unstructured_version(min_unstructured_version="0.6.3") self.url = url self.api_key = api_key super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_metadata(self) -> dict: return {"source": self.file_path} def _get_elements(self) -> List: return get_elements_from_api( file_path=self.file_path, api_key=self.api_key, api_url=self.url, **self.unstructured_kwargs, ) [docs]class UnstructuredFileIOLoader(UnstructuredBaseLoader): """Loader that uses unstructured to load file IO objects.""" def __init__( self, file: Union[IO, Sequence[IO]], mode: str = "single",
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/unstructured.html
beb54a9dda33-4
mode: str = "single", **unstructured_kwargs: Any, ): """Initialize with file path.""" self.file = file super().__init__(mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.auto import partition return partition(file=self.file, **self.unstructured_kwargs) def _get_metadata(self) -> dict: return {} [docs]class UnstructuredAPIFileIOLoader(UnstructuredFileIOLoader): """Loader that uses the unstructured web API to load file IO objects.""" def __init__( self, file: Union[IO, Sequence[IO]], mode: str = "single", url: str = "https://api.unstructured.io/general/v0/general", api_key: str = "", **unstructured_kwargs: Any, ): """Initialize with file path.""" if isinstance(file, collections.abc.Sequence): validate_unstructured_version(min_unstructured_version="0.6.3") if file: validate_unstructured_version(min_unstructured_version="0.6.2") self.url = url self.api_key = api_key super().__init__(file=file, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: return get_elements_from_api( file=self.file, api_key=self.api_key, api_url=self.url, **self.unstructured_kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/unstructured.html
d8814b16415b-0
Source code for langchain.document_loaders.imsdb """Loader that loads IMSDb.""" from typing import List from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader [docs]class IMSDbLoader(WebBaseLoader): """Loader that loads IMSDb webpages.""" [docs] def load(self) -> List[Document]: """Load webpage.""" soup = self.scrape() text = soup.select_one("td[class='scrtext']").text metadata = {"source": self.web_path} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/imsdb.html
3a0b01827c54-0
Source code for langchain.document_loaders.gcs_directory """Loading logic for loading documents from an GCS directory.""" from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.gcs_file import GCSFileLoader [docs]class GCSDirectoryLoader(BaseLoader): """Loading logic for loading documents from GCS.""" def __init__(self, project_name: str, bucket: str, prefix: str = ""): """Initialize with bucket and key name.""" self.project_name = project_name self.bucket = bucket self.prefix = prefix [docs] def load(self) -> List[Document]: """Load documents.""" try: from google.cloud import storage except ImportError: raise ValueError( "Could not import google-cloud-storage python package. " "Please install it with `pip install google-cloud-storage`." ) client = storage.Client(project=self.project_name) docs = [] for blob in client.list_blobs(self.bucket, prefix=self.prefix): # we shall just skip directories since GCSFileLoader creates # intermediate directories on the fly if blob.name.endswith("/"): continue loader = GCSFileLoader(self.project_name, self.bucket, blob.name) docs.extend(loader.load()) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/gcs_directory.html
5bb4bff50760-0
Source code for langchain.document_loaders.conllu """Load CoNLL-U files.""" import csv from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class CoNLLULoader(BaseLoader): """Load CoNLL-U files.""" def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path [docs] def load(self) -> List[Document]: """Load from file path.""" with open(self.file_path, encoding="utf8") as f: tsv = list(csv.reader(f, delimiter="\t")) # If len(line) > 1, the line is not a comment lines = [line for line in tsv if len(line) > 1] text = "" for i, line in enumerate(lines): # Do not add a space after a punctuation mark or at the end of the sentence if line[9] == "SpaceAfter=No" or i == len(lines) - 1: text += line[1] else: text += line[1] + " " metadata = {"source": self.file_path} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/conllu.html
a0856dfb4c47-0
Source code for langchain.document_loaders.googledrive """Loader that loads data from Google Drive.""" # Prerequisites: # 1. Create a Google Cloud project # 2. Enable the Google Drive API: # https://console.cloud.google.com/flows/enableapi?apiid=drive.googleapis.com # 3. Authorize credentials for desktop app: # https://developers.google.com/drive/api/quickstart/python#authorize_credentials_for_a_desktop_application # noqa: E501 # 4. For service accounts visit # https://cloud.google.com/iam/docs/service-accounts-create from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from pydantic import BaseModel, root_validator, validator from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader SCOPES = ["https://www.googleapis.com/auth/drive.readonly"] [docs]class GoogleDriveLoader(BaseLoader, BaseModel): """Loader that loads Google Docs from Google Drive.""" service_account_key: Path = Path.home() / ".credentials" / "keys.json" credentials_path: Path = Path.home() / ".credentials" / "credentials.json" token_path: Path = Path.home() / ".credentials" / "token.json" folder_id: Optional[str] = None document_ids: Optional[List[str]] = None file_ids: Optional[List[str]] = None recursive: bool = False file_types: Optional[Sequence[str]] = None load_trashed_files: bool = False @root_validator def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both.""" if values.get("folder_id") and (
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-1
if values.get("folder_id") and ( values.get("document_ids") or values.get("file_ids") ): raise ValueError( "Cannot specify both folder_id and document_ids nor " "folder_id and file_ids" ) if ( not values.get("folder_id") and not values.get("document_ids") and not values.get("file_ids") ): raise ValueError("Must specify either folder_id, document_ids, or file_ids") file_types = values.get("file_types") if file_types: if values.get("document_ids") or values.get("file_ids"): raise ValueError( "file_types can only be given when folder_id is given," " (not when document_ids or file_ids are given)." ) type_mapping = { "document": "application/vnd.google-apps.document", "sheet": "application/vnd.google-apps.spreadsheet", "pdf": "application/pdf", } allowed_types = list(type_mapping.keys()) + list(type_mapping.values()) short_names = ", ".join([f"'{x}'" for x in type_mapping.keys()]) full_names = ", ".join([f"'{x}'" for x in type_mapping.values()]) for file_type in file_types: if file_type not in allowed_types: raise ValueError( f"Given file type {file_type} is not supported. " f"Supported values are: {short_names}; and " f"their full-form names: {full_names}" ) # replace short-form file types by full-form file types def full_form(x: str) -> str: return type_mapping[x] if x in type_mapping else x
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-2
return type_mapping[x] if x in type_mapping else x values["file_types"] = [full_form(file_type) for file_type in file_types] return values @validator("credentials_path") def validate_credentials_path(cls, v: Any, **kwargs: Any) -> Any: """Validate that credentials_path exists.""" if not v.exists(): raise ValueError(f"credentials_path {v} does not exist") return v def _load_credentials(self) -> Any: """Load credentials.""" # Adapted from https://developers.google.com/drive/api/v3/quickstart/python try: from google.auth.transport.requests import Request from google.oauth2 import service_account from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow except ImportError: raise ImportError( "You must run " "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib` " "to use the Google Drive loader." ) creds = None if self.service_account_key.exists(): return service_account.Credentials.from_service_account_file( str(self.service_account_key), scopes=SCOPES ) if self.token_path.exists(): creds = Credentials.from_authorized_user_file(str(self.token_path), SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( str(self.credentials_path), SCOPES ) creds = flow.run_local_server(port=0) with open(self.token_path, "w") as token:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-3
with open(self.token_path, "w") as token: token.write(creds.to_json()) return creds def _load_sheet_from_id(self, id: str) -> List[Document]: """Load a sheet and all tabs from an ID.""" from googleapiclient.discovery import build creds = self._load_credentials() sheets_service = build("sheets", "v4", credentials=creds) spreadsheet = sheets_service.spreadsheets().get(spreadsheetId=id).execute() sheets = spreadsheet.get("sheets", []) documents = [] for sheet in sheets: sheet_name = sheet["properties"]["title"] result = ( sheets_service.spreadsheets() .values() .get(spreadsheetId=id, range=sheet_name) .execute() ) values = result.get("values", []) header = values[0] for i, row in enumerate(values[1:], start=1): metadata = { "source": ( f"https://docs.google.com/spreadsheets/d/{id}/" f"edit?gid={sheet['properties']['sheetId']}" ), "title": f"{spreadsheet['properties']['title']} - {sheet_name}", "row": i, } content = [] for j, v in enumerate(row): title = header[j].strip() if len(header) > j else "" content.append(f"{title}: {v.strip()}") page_content = "\n".join(content) documents.append(Document(page_content=page_content, metadata=metadata)) return documents def _load_document_from_id(self, id: str) -> Document: """Load a document from an ID."""
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-4
"""Load a document from an ID.""" from io import BytesIO from googleapiclient.discovery import build from googleapiclient.errors import HttpError from googleapiclient.http import MediaIoBaseDownload creds = self._load_credentials() service = build("drive", "v3", credentials=creds) file = service.files().get(fileId=id, supportsAllDrives=True).execute() request = service.files().export_media(fileId=id, mimeType="text/plain") fh = BytesIO() downloader = MediaIoBaseDownload(fh, request) done = False try: while done is False: status, done = downloader.next_chunk() except HttpError as e: if e.resp.status == 404: print("File not found: {}".format(id)) else: print("An error occurred: {}".format(e)) text = fh.getvalue().decode("utf-8") metadata = { "source": f"https://docs.google.com/document/d/{id}/edit", "title": f"{file.get('name')}", } return Document(page_content=text, metadata=metadata) def _load_documents_from_folder( self, folder_id: str, *, file_types: Optional[Sequence[str]] = None ) -> List[Document]: """Load documents from a folder.""" from googleapiclient.discovery import build creds = self._load_credentials() service = build("drive", "v3", credentials=creds) files = self._fetch_files_recursive(service, folder_id) # If file types filter is provided, we'll filter by the file type. if file_types:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-5
if file_types: _files = [f for f in files if f["mimeType"] in file_types] # type: ignore else: _files = files returns = [] for file in files: if file["trashed"] and not self.load_trashed_files: continue elif file["mimeType"] == "application/vnd.google-apps.document": returns.append(self._load_document_from_id(file["id"])) # type: ignore elif file["mimeType"] == "application/vnd.google-apps.spreadsheet": returns.extend(self._load_sheet_from_id(file["id"])) # type: ignore elif file["mimeType"] == "application/pdf": returns.extend(self._load_file_from_id(file["id"])) # type: ignore else: pass return returns def _fetch_files_recursive( self, service: Any, folder_id: str ) -> List[Dict[str, Union[str, List[str]]]]: """Fetch all files and subfolders recursively.""" results = ( service.files() .list( q=f"'{folder_id}' in parents", pageSize=1000, includeItemsFromAllDrives=True, supportsAllDrives=True, fields="nextPageToken, files(id, name, mimeType, parents, trashed)", ) .execute() ) files = results.get("files", []) returns = [] for file in files: if file["mimeType"] == "application/vnd.google-apps.folder": if self.recursive: returns.extend(self._fetch_files_recursive(service, file["id"])) else: returns.append(file) return returns
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-6
else: returns.append(file) return returns def _load_documents_from_ids(self) -> List[Document]: """Load documents from a list of IDs.""" if not self.document_ids: raise ValueError("document_ids must be set") return [self._load_document_from_id(doc_id) for doc_id in self.document_ids] def _load_file_from_id(self, id: str) -> List[Document]: """Load a file from an ID.""" from io import BytesIO from googleapiclient.discovery import build from googleapiclient.http import MediaIoBaseDownload creds = self._load_credentials() service = build("drive", "v3", credentials=creds) file = service.files().get(fileId=id, supportsAllDrives=True).execute() request = service.files().get_media(fileId=id) fh = BytesIO() downloader = MediaIoBaseDownload(fh, request) done = False while done is False: status, done = downloader.next_chunk() content = fh.getvalue() from PyPDF2 import PdfReader pdf_reader = PdfReader(BytesIO(content)) return [ Document( page_content=page.extract_text(), metadata={ "source": f"https://drive.google.com/file/d/{id}/view", "title": f"{file.get('name')}", "page": i, }, ) for i, page in enumerate(pdf_reader.pages) ] def _load_file_from_ids(self) -> List[Document]: """Load files from a list of IDs.""" if not self.file_ids: raise ValueError("file_ids must be set") docs = []
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
a0856dfb4c47-7
raise ValueError("file_ids must be set") docs = [] for file_id in self.file_ids: docs.extend(self._load_file_from_id(file_id)) return docs [docs] def load(self) -> List[Document]: """Load documents.""" if self.folder_id: return self._load_documents_from_folder( self.folder_id, file_types=self.file_types ) elif self.document_ids: return self._load_documents_from_ids() else: return self._load_file_from_ids() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/googledrive.html
fcd39ef8d7da-0
Source code for langchain.document_loaders.airtable from typing import Iterator, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class AirtableLoader(BaseLoader): """Loader that loads local airbyte json files.""" def __init__(self, api_token: str, table_id: str, base_id: str): """Initialize with API token and the IDs for table and base""" self.api_token = api_token self.table_id = table_id self.base_id = base_id [docs] def lazy_load(self) -> Iterator[Document]: """Load Table.""" from pyairtable import Table table = Table(self.api_token, self.base_id, self.table_id) records = table.all() for record in records: # Need to convert record from dict to str yield Document( page_content=str(record), metadata={ "source": self.base_id + "_" + self.table_id, "base_id": self.base_id, "table_id": self.table_id, }, ) [docs] def load(self) -> List[Document]: """Load Table.""" return list(self.lazy_load()) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/airtable.html
cfbc5444e971-0
Source code for langchain.document_loaders.email """Loader that loads email files.""" import os from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, satisfies_min_unstructured_version, ) [docs]class UnstructuredEmailLoader(UnstructuredFileLoader): """Loader that uses unstructured to load email files.""" def _get_elements(self) -> List: from unstructured.file_utils.filetype import FileType, detect_filetype filetype = detect_filetype(self.file_path) if filetype == FileType.EML: from unstructured.partition.email import partition_email return partition_email(filename=self.file_path, **self.unstructured_kwargs) elif satisfies_min_unstructured_version("0.5.8") and filetype == FileType.MSG: from unstructured.partition.msg import partition_msg return partition_msg(filename=self.file_path, **self.unstructured_kwargs) else: raise ValueError( f"Filetype {filetype} is not supported in UnstructuredEmailLoader." ) [docs]class OutlookMessageLoader(BaseLoader): """ Loader that loads Outlook Message files using extract_msg. https://github.com/TeamMsgExtractor/msg-extractor """ def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path if not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file" % self.file_path) try: import extract_msg # noqa:F401 except ImportError: raise ImportError( "extract_msg is not installed. Please install it with " "`pip install extract_msg`"
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/email.html
cfbc5444e971-1
"`pip install extract_msg`" ) [docs] def load(self) -> List[Document]: """Load data into document objects.""" import extract_msg msg = extract_msg.Message(self.file_path) return [ Document( page_content=msg.body, metadata={ "subject": msg.subject, "sender": msg.sender, "date": msg.date, }, ) ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/email.html
6bb22e22e79d-0
Source code for langchain.document_loaders.azure_blob_storage_file """Loading logic for loading documents from an Azure Blob Storage file.""" import os import tempfile from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader [docs]class AzureBlobStorageFileLoader(BaseLoader): """Loading logic for loading documents from Azure Blob Storage.""" def __init__(self, conn_str: str, container: str, blob_name: str): """Initialize with connection string, container and blob name.""" self.conn_str = conn_str self.container = container self.blob = blob_name [docs] def load(self) -> List[Document]: """Load documents.""" try: from azure.storage.blob import BlobClient except ImportError as exc: raise ValueError( "Could not import azure storage blob python package. " "Please install it with `pip install azure-storage-blob`." ) from exc client = BlobClient.from_connection_string( conn_str=self.conn_str, container_name=self.container, blob_name=self.blob ) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.container}/{self.blob}" os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(f"{file_path}", "wb") as file: blob_data = client.download_blob() blob_data.readinto(file) loader = UnstructuredFileLoader(file_path) return loader.load() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/azure_blob_storage_file.html
e97d715c5e64-0
Source code for langchain.document_loaders.college_confidential """Loader that loads College Confidential.""" from typing import List from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader [docs]class CollegeConfidentialLoader(WebBaseLoader): """Loader that loads College Confidential webpages.""" [docs] def load(self) -> List[Document]: """Load webpage.""" soup = self.scrape() text = soup.select_one("main[class='skin-handler']").text metadata = {"source": self.web_path} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/college_confidential.html
422e8a4a127a-0
Source code for langchain.document_loaders.notebook """Loader that loads .ipynb notebook files.""" import json from pathlib import Path from typing import Any, List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader def concatenate_cells( cell: dict, include_outputs: bool, max_output_length: int, traceback: bool ) -> str: """Combine cells information in a readable format ready to be used.""" cell_type = cell["cell_type"] source = cell["source"] output = cell["outputs"] if include_outputs and cell_type == "code" and output: if "ename" in output[0].keys(): error_name = output[0]["ename"] error_value = output[0]["evalue"] if traceback: traceback = output[0]["traceback"] return ( f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}'," f" with description '{error_value}'\n" f"and traceback '{traceback}'\n\n" ) else: return ( f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}'," f"with description '{error_value}'\n\n" ) elif output[0]["output_type"] == "stream": output = output[0]["text"] min_output = min(max_output_length, len(output)) return ( f"'{cell_type}' cell: '{source}'\n with " f"output: '{output[:min_output]}'\n\n" ) else: return f"'{cell_type}' cell: '{source}'\n\n"
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/notebook.html
422e8a4a127a-1
return f"'{cell_type}' cell: '{source}'\n\n" return "" def remove_newlines(x: Any) -> Any: """Remove recursively newlines, no matter the data structure they are stored in.""" import pandas as pd if isinstance(x, str): return x.replace("\n", "") elif isinstance(x, list): return [remove_newlines(elem) for elem in x] elif isinstance(x, pd.DataFrame): return x.applymap(remove_newlines) else: return x [docs]class NotebookLoader(BaseLoader): """Loader that loads .ipynb notebook files.""" def __init__( self, path: str, include_outputs: bool = False, max_output_length: int = 10, remove_newline: bool = False, traceback: bool = False, ): """Initialize with path.""" self.file_path = path self.include_outputs = include_outputs self.max_output_length = max_output_length self.remove_newline = remove_newline self.traceback = traceback [docs] def load( self, ) -> List[Document]: """Load documents.""" try: import pandas as pd except ImportError: raise ImportError( "pandas is needed for Notebook Loader, " "please install with `pip install pandas`" ) p = Path(self.file_path) with open(p, encoding="utf8") as f: d = json.load(f) data = pd.json_normalize(d["cells"]) filtered_data = data[["cell_type", "source", "outputs"]] if self.remove_newline:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/notebook.html
422e8a4a127a-2
if self.remove_newline: filtered_data = filtered_data.applymap(remove_newlines) text = filtered_data.apply( lambda x: concatenate_cells( x, self.include_outputs, self.max_output_length, self.traceback ), axis=1, ).str.cat(sep=" ") metadata = {"source": str(p)} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/notebook.html
b2a790cad902-0
Source code for langchain.document_loaders.gcs_file """Loading logic for loading documents from a GCS file.""" import os import tempfile from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader [docs]class GCSFileLoader(BaseLoader): """Loading logic for loading documents from GCS.""" def __init__(self, project_name: str, bucket: str, blob: str): """Initialize with bucket and key name.""" self.bucket = bucket self.blob = blob self.project_name = project_name [docs] def load(self) -> List[Document]: """Load documents.""" try: from google.cloud import storage except ImportError: raise ValueError( "Could not import google-cloud-storage python package. " "Please install it with `pip install google-cloud-storage`." ) # Initialise a client storage_client = storage.Client(self.project_name) # Create a bucket object for our bucket bucket = storage_client.get_bucket(self.bucket) # Create a blob object from the filepath blob = bucket.blob(self.blob) with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}/{self.blob}" os.makedirs(os.path.dirname(file_path), exist_ok=True) # Download the file to a destination blob.download_to_filename(file_path) loader = UnstructuredFileLoader(file_path) return loader.load() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/gcs_file.html
7ac23cbec1c8-0
Source code for langchain.document_loaders.pyspark_dataframe """Load from a Spark Dataframe object""" import itertools import logging import sys from typing import TYPE_CHECKING, Any, Iterator, List, Optional, Tuple from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__file__) if TYPE_CHECKING: from pyspark.sql import SparkSession [docs]class PySparkDataFrameLoader(BaseLoader): """Load PySpark DataFrames""" def __init__( self, spark_session: Optional["SparkSession"] = None, df: Optional[Any] = None, page_content_column: str = "text", fraction_of_memory: float = 0.1, ): """Initialize with a Spark DataFrame object.""" try: from pyspark.sql import DataFrame, SparkSession except ImportError: raise ImportError( "pyspark is not installed. " "Please install it with `pip install pyspark`" ) self.spark = ( spark_session if spark_session else SparkSession.builder.getOrCreate() ) if not isinstance(df, DataFrame): raise ValueError( f"Expected data_frame to be a PySpark DataFrame, got {type(df)}" ) self.df = df self.page_content_column = page_content_column self.fraction_of_memory = fraction_of_memory self.num_rows, self.max_num_rows = self.get_num_rows() self.rdd_df = self.df.rdd.map(list) self.column_names = self.df.columns [docs] def get_num_rows(self) -> Tuple[int, int]: """Gets the amount of "feasible" rows for the DataFrame""" try:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/pyspark_dataframe.html
7ac23cbec1c8-1
"""Gets the amount of "feasible" rows for the DataFrame""" try: import psutil except ImportError as e: raise ImportError( "psutil not installed. Please install it with `pip install psutil`." ) from e row = self.df.limit(1).collect()[0] estimated_row_size = sys.getsizeof(row) mem_info = psutil.virtual_memory() available_memory = mem_info.available max_num_rows = int( (available_memory / estimated_row_size) * self.fraction_of_memory ) return min(max_num_rows, self.df.count()), max_num_rows [docs] def lazy_load(self) -> Iterator[Document]: """A lazy loader for document content.""" for row in self.rdd_df.toLocalIterator(): metadata = {self.column_names[i]: row[i] for i in range(len(row))} text = metadata[self.page_content_column] metadata.pop(self.page_content_column) yield Document(page_content=text, metadata=metadata) [docs] def load(self) -> List[Document]: """Load from the dataframe.""" if self.df.count() > self.max_num_rows: logger.warning( f"The number of DataFrame rows is {self.df.count()}, " f"but we will only include the amount " f"of rows that can reasonably fit in memory: {self.num_rows}." ) lazy_load_iterator = self.lazy_load() return list(itertools.islice(lazy_load_iterator, self.num_rows)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/pyspark_dataframe.html
7f46c4fac07c-0
Source code for langchain.document_loaders.mediawikidump """Load Data from a MediaWiki dump xml.""" from typing import List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class MWDumpLoader(BaseLoader): """ Load MediaWiki dump from XML file Example: .. code-block:: python from langchain.document_loaders import MWDumpLoader loader = MWDumpLoader( file_path="myWiki.xml", encoding="utf8" ) docs = loader.load() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0 ) texts = text_splitter.split_documents(docs) :param file_path: XML local file path :type file_path: str :param encoding: Charset encoding, defaults to "utf8" :type encoding: str, optional """ def __init__(self, file_path: str, encoding: Optional[str] = "utf8"): """Initialize with file path.""" self.file_path = file_path self.encoding = encoding [docs] def load(self) -> List[Document]: """Load from file path.""" import mwparserfromhell import mwxml dump = mwxml.Dump.from_file(open(self.file_path, encoding=self.encoding)) docs = [] for page in dump.pages: for revision in page: code = mwparserfromhell.parse(revision.text) text = code.strip_code( normalize=True, collapse=True, keep_template_params=False ) metadata = {"source": page.title}
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/mediawikidump.html
7f46c4fac07c-1
) metadata = {"source": page.title} docs.append(Document(page_content=text, metadata=metadata)) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/mediawikidump.html
322d4766d188-0
Source code for langchain.document_loaders.joplin import json import urllib from datetime import datetime from typing import Iterator, List, Optional from langchain.document_loaders.base import BaseLoader from langchain.schema import Document from langchain.utils import get_from_env LINK_NOTE_TEMPLATE = "joplin://x-callback-url/openNote?id={id}" [docs]class JoplinLoader(BaseLoader): """ Loader that fetches notes from Joplin. In order to use this loader, you need to have Joplin running with the Web Clipper enabled (look for "Web Clipper" in the app settings). To get the access token, you need to go to the Web Clipper options and under "Advanced Options" you will find the access token. You can find more information about the Web Clipper service here: https://joplinapp.org/clipper/ """ def __init__( self, access_token: Optional[str] = None, port: int = 41184, host: str = "localhost", ) -> None: access_token = access_token or get_from_env( "access_token", "JOPLIN_ACCESS_TOKEN" ) base_url = f"http://{host}:{port}" self._get_note_url = ( f"{base_url}/notes?token={access_token}" f"&fields=id,parent_id,title,body,created_time,updated_time&page={{page}}" ) self._get_folder_url = ( f"{base_url}/folders/{{id}}?token={access_token}&fields=title" ) self._get_tag_url = (
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/joplin.html
322d4766d188-1
) self._get_tag_url = ( f"{base_url}/notes/{{id}}/tags?token={access_token}&fields=title" ) def _get_notes(self) -> Iterator[Document]: has_more = True page = 1 while has_more: req_note = urllib.request.Request(self._get_note_url.format(page=page)) with urllib.request.urlopen(req_note) as response: json_data = json.loads(response.read().decode()) for note in json_data["items"]: metadata = { "source": LINK_NOTE_TEMPLATE.format(id=note["id"]), "folder": self._get_folder(note["parent_id"]), "tags": self._get_tags(note["id"]), "title": note["title"], "created_time": self._convert_date(note["created_time"]), "updated_time": self._convert_date(note["updated_time"]), } yield Document(page_content=note["body"], metadata=metadata) has_more = json_data["has_more"] page += 1 def _get_folder(self, folder_id: str) -> str: req_folder = urllib.request.Request(self._get_folder_url.format(id=folder_id)) with urllib.request.urlopen(req_folder) as response: json_data = json.loads(response.read().decode()) return json_data["title"] def _get_tags(self, note_id: str) -> List[str]: req_tag = urllib.request.Request(self._get_tag_url.format(id=note_id)) with urllib.request.urlopen(req_tag) as response: json_data = json.loads(response.read().decode()) return [tag["title"] for tag in json_data["items"]] def _convert_date(self, date: int) -> str:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/joplin.html
322d4766d188-2
def _convert_date(self, date: int) -> str: return datetime.fromtimestamp(date / 1000).strftime("%Y-%m-%d %H:%M:%S") [docs] def lazy_load(self) -> Iterator[Document]: yield from self._get_notes() [docs] def load(self) -> List[Document]: return list(self.lazy_load()) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/joplin.html
ca2d904d5a97-0
Source code for langchain.document_loaders.notion """Loader that loads Notion directory dump.""" from pathlib import Path from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class NotionDirectoryLoader(BaseLoader): """Loader that loads Notion directory dump.""" def __init__(self, path: str): """Initialize with path.""" self.file_path = path [docs] def load(self) -> List[Document]: """Load documents.""" ps = list(Path(self.file_path).glob("**/*.md")) docs = [] for p in ps: with open(p) as f: text = f.read() metadata = {"source": str(p)} docs.append(Document(page_content=text, metadata=metadata)) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/notion.html
34ebe26b80f4-0
Source code for langchain.document_loaders.confluence """Load Data from a Confluence Space""" import logging from io import BytesIO from typing import Any, Callable, List, Optional, Union from tenacity import ( before_sleep_log, retry, stop_after_attempt, wait_exponential, ) from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) [docs]class ConfluenceLoader(BaseLoader): """ Load Confluence pages. Port of https://llamahub.ai/l/confluence This currently supports username/api_key, Oauth2 login or personal access token authentication. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example: .. code-block:: python from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE",limit=50)
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-1
) documents = loader.load(space_key="SPACE",limit=50) :param url: _description_ :type url: str :param api_key: _description_, defaults to None :type api_key: str, optional :param username: _description_, defaults to None :type username: str, optional :param oauth2: _description_, defaults to {} :type oauth2: dict, optional :param token: _description_, defaults to None :type token: str, optional :param cloud: _description_, defaults to True :type cloud: bool, optional :param number_of_retries: How many times to retry, defaults to 3 :type number_of_retries: Optional[int], optional :param min_retry_seconds: defaults to 2 :type min_retry_seconds: Optional[int], optional :param max_retry_seconds: defaults to 10 :type max_retry_seconds: Optional[int], optional :param confluence_kwargs: additional kwargs to initialize confluence with :type confluence_kwargs: dict, optional :raises ValueError: Errors while validating input :raises ImportError: Required dependencies not installed. """ def __init__( self, url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None, ):
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-2
confluence_kwargs: Optional[dict] = None, ): confluence_kwargs = confluence_kwargs or {} errors = ConfluenceLoader.validate_init_args( url, api_key, username, oauth2, token ) if errors: raise ValueError(f"Error(s) while validating input: {errors}") self.base_url = url self.number_of_retries = number_of_retries self.min_retry_seconds = min_retry_seconds self.max_retry_seconds = max_retry_seconds try: from atlassian import Confluence # noqa: F401 except ImportError: raise ImportError( "`atlassian` package not found, please run " "`pip install atlassian-python-api`" ) if oauth2: self.confluence = Confluence( url=url, oauth2=oauth2, cloud=cloud, **confluence_kwargs ) elif token: self.confluence = Confluence( url=url, token=token, cloud=cloud, **confluence_kwargs ) else: self.confluence = Confluence( url=url, username=username, password=api_key, cloud=cloud, **confluence_kwargs, ) [docs] @staticmethod def validate_init_args( url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, ) -> Union[List, None]: """Validates proper combinations of init arguments""" errors = [] if url is None: errors.append("Must provide `base_url`")
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-3
if url is None: errors.append("Must provide `base_url`") if (api_key and not username) or (username and not api_key): errors.append( "If one of `api_key` or `username` is provided, " "the other must be as well." ) if (api_key or username) and oauth2: errors.append( "Cannot provide a value for `api_key` and/or " "`username` and provide a value for `oauth2`" ) if oauth2 and oauth2.keys() != [ "access_token", "access_token_secret", "consumer_key", "key_cert", ]: errors.append( "You have either ommited require keys or added extra " "keys to the oauth2 dictionary. key values should be " "`['access_token', 'access_token_secret', 'consumer_key', 'key_cert']`" ) if token and (api_key or username or oauth2): errors.append( "Cannot provide a value for `token` and a value for `api_key`, " "`username` or `oauth2`" ) if errors: return errors return None [docs] def load( self, space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, limit: Optional[int] = 50,
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-4
include_comments: bool = False, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None, ) -> List[Document]: """ :param space_key: Space key retrieved from a confluence URL, defaults to None :type space_key: Optional[str], optional :param page_ids: List of specific page IDs to load, defaults to None :type page_ids: Optional[List[str]], optional :param label: Get all pages with this label, defaults to None :type label: Optional[str], optional :param cql: CQL Expression, defaults to None :type cql: Optional[str], optional :param include_restricted_content: defaults to False :type include_restricted_content: bool, optional :param include_archived_content: Whether to include archived content, defaults to False :type include_archived_content: bool, optional :param include_attachments: defaults to False :type include_attachments: bool, optional :param include_comments: defaults to False :type include_comments: bool, optional :param limit: Maximum number of pages to retrieve per request, defaults to 50 :type limit: int, optional :param max_pages: Maximum number of pages to retrieve in total, defaults 1000 :type max_pages: int, optional :param ocr_languages: The languages to use for the Tesseract agent. To use a language, you'll first need to install the appropriate Tesseract language pack. :type ocr_languages: str, optional :raises ValueError: _description_ :raises ImportError: _description_ :return: _description_
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-5
:raises ImportError: _description_ :return: _description_ :rtype: List[Document] """ if not space_key and not page_ids and not label and not cql: raise ValueError( "Must specify at least one among `space_key`, `page_ids`, " "`label`, `cql` parameters." ) docs = [] if space_key: pages = self.paginate_request( self.confluence.get_all_pages_from_space, space=space_key, limit=limit, max_pages=max_pages, status="any" if include_archived_content else "current", expand="body.storage.value", ) docs += self.process_pages( pages, include_restricted_content, include_attachments, include_comments, ocr_languages, ) if label: pages = self.paginate_request( self.confluence.get_all_pages_by_label, label=label, limit=limit, max_pages=max_pages, ) ids_by_label = [page["id"] for page in pages] if page_ids: page_ids = list(set(page_ids + ids_by_label)) else: page_ids = list(set(ids_by_label)) if cql: pages = self.paginate_request( self.confluence.cql, cql=cql, limit=limit, max_pages=max_pages, include_archived_spaces=include_archived_content, expand="body.storage.value", ) docs += self.process_pages( pages, include_restricted_content, include_attachments, include_comments, ocr_languages, )
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-6
include_attachments, include_comments, ocr_languages, ) if page_ids: for page_id in page_ids: get_page = retry( reraise=True, stop=stop_after_attempt( self.number_of_retries # type: ignore[arg-type] ), wait=wait_exponential( multiplier=1, # type: ignore[arg-type] min=self.min_retry_seconds, # type: ignore[arg-type] max=self.max_retry_seconds, # type: ignore[arg-type] ), before_sleep=before_sleep_log(logger, logging.WARNING), )(self.confluence.get_page_by_id) page = get_page(page_id=page_id, expand="body.storage.value") if not include_restricted_content and not self.is_public_page(page): continue doc = self.process_page( page, include_attachments, include_comments, ocr_languages ) docs.append(doc) return docs [docs] def paginate_request(self, retrieval_method: Callable, **kwargs: Any) -> List: """Paginate the various methods to retrieve groups of pages. Unfortunately, due to page size, sometimes the Confluence API doesn't match the limit value. If `limit` is >100 confluence seems to cap the response to 100. Also, due to the Atlassian Python package, we don't get the "next" values from the "_links" key because they only return the value from the results key. So here, the pagination starts from 0 and goes until the max_pages, getting the `limit` number of pages with each request. We have to manually check if there
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-7
of pages with each request. We have to manually check if there are more docs based on the length of the returned list of pages, rather than just checking for the presence of a `next` key in the response like this page would have you do: https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/ :param retrieval_method: Function used to retrieve docs :type retrieval_method: callable :return: List of documents :rtype: List """ max_pages = kwargs.pop("max_pages") docs: List[dict] = [] while len(docs) < max_pages: get_pages = retry( reraise=True, stop=stop_after_attempt( self.number_of_retries # type: ignore[arg-type] ), wait=wait_exponential( multiplier=1, min=self.min_retry_seconds, # type: ignore[arg-type] max=self.max_retry_seconds, # type: ignore[arg-type] ), before_sleep=before_sleep_log(logger, logging.WARNING), )(retrieval_method) batch = get_pages(**kwargs, start=len(docs)) if not batch: break docs.extend(batch) return docs[:max_pages] [docs] def is_public_page(self, page: dict) -> bool: """Check if a page is publicly accessible.""" restrictions = self.confluence.get_all_restrictions_for_content(page["id"]) return ( page["status"] == "current" and not restrictions["read"]["restrictions"]["user"]["results"] and not restrictions["read"]["restrictions"]["group"]["results"] ) [docs] def process_pages( self,
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-8
) [docs] def process_pages( self, pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, ocr_languages: Optional[str] = None, ) -> List[Document]: """Process a list of pages into a list of documents.""" docs = [] for page in pages: if not include_restricted_content and not self.is_public_page(page): continue doc = self.process_page( page, include_attachments, include_comments, ocr_languages ) docs.append(doc) return docs [docs] def process_page( self, page: dict, include_attachments: bool, include_comments: bool, ocr_languages: Optional[str] = None, ) -> Document: try: from bs4 import BeautifulSoup # type: ignore except ImportError: raise ImportError( "`beautifulsoup4` package not found, please run " "`pip install beautifulsoup4`" ) if include_attachments: attachment_texts = self.process_attachment(page["id"], ocr_languages) else: attachment_texts = [] text = BeautifulSoup(page["body"]["storage"]["value"], "lxml").get_text( " ", strip=True ) + "".join(attachment_texts) if include_comments: comments = self.confluence.get_page_comments( page["id"], expand="body.view.value", depth="all" )["results"] comment_texts = [ BeautifulSoup(comment["body"]["view"]["value"], "lxml").get_text( " ", strip=True ) for comment in comments ]
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-9
" ", strip=True ) for comment in comments ] text = text + "".join(comment_texts) return Document( page_content=text, metadata={ "title": page["title"], "id": page["id"], "source": self.base_url.strip("/") + page["_links"]["webui"], }, ) [docs] def process_attachment( self, page_id: str, ocr_languages: Optional[str] = None, ) -> List[str]: try: from PIL import Image # noqa: F401 except ImportError: raise ImportError( "`Pillow` package not found, " "please run `pip install Pillow`" ) # depending on setup you may also need to set the correct path for # poppler and tesseract attachments = self.confluence.get_attachments_from_content(page_id)["results"] texts = [] for attachment in attachments: media_type = attachment["metadata"]["mediaType"] absolute_url = self.base_url + attachment["_links"]["download"] title = attachment["title"] if media_type == "application/pdf": text = title + self.process_pdf(absolute_url, ocr_languages) elif ( media_type == "image/png" or media_type == "image/jpg" or media_type == "image/jpeg" ): text = title + self.process_image(absolute_url, ocr_languages) elif ( media_type == "application/vnd.openxmlformats-officedocument" ".wordprocessingml.document" ): text = title + self.process_doc(absolute_url) elif media_type == "application/vnd.ms-excel":
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-10
elif media_type == "application/vnd.ms-excel": text = title + self.process_xls(absolute_url) elif media_type == "image/svg+xml": text = title + self.process_svg(absolute_url, ocr_languages) else: continue texts.append(text) return texts [docs] def process_pdf( self, link: str, ocr_languages: Optional[str] = None, ) -> str: try: import pytesseract # noqa: F401 from pdf2image import convert_from_bytes # noqa: F401 except ImportError: raise ImportError( "`pytesseract` or `pdf2image` package not found, " "please run `pip install pytesseract pdf2image`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: images = convert_from_bytes(response.content) except ValueError: return text for i, image in enumerate(images): image_text = pytesseract.image_to_string(image, lang=ocr_languages) text += f"Page {i + 1}:\n{image_text}\n\n" return text [docs] def process_image( self, link: str, ocr_languages: Optional[str] = None, ) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 except ImportError: raise ImportError(
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-11
except ImportError: raise ImportError( "`pytesseract` or `Pillow` package not found, " "please run `pip install pytesseract Pillow`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: image = Image.open(BytesIO(response.content)) except OSError: return text return pytesseract.image_to_string(image, lang=ocr_languages) [docs] def process_doc(self, link: str) -> str: try: import docx2txt # noqa: F401 except ImportError: raise ImportError( "`docx2txt` package not found, please run `pip install docx2txt`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text file_data = BytesIO(response.content) return docx2txt.process(file_data) [docs] def process_xls(self, link: str) -> str: try: import xlrd # noqa: F401 except ImportError: raise ImportError("`xlrd` package not found, please run `pip install xlrd`") response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-12
or response.content is None ): return text workbook = xlrd.open_workbook(file_contents=response.content) for sheet in workbook.sheets(): text += f"{sheet.name}:\n" for row in range(sheet.nrows): for col in range(sheet.ncols): text += f"{sheet.cell_value(row, col)}\t" text += "\n" text += "\n" return text [docs] def process_svg( self, link: str, ocr_languages: Optional[str] = None, ) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 from reportlab.graphics import renderPM # noqa: F401 from svglib.svglib import svg2rlg # noqa: F401 except ImportError: raise ImportError( "`pytesseract`, `Pillow`, `reportlab` or `svglib` package not found, " "please run `pip install pytesseract Pillow reportlab svglib`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text drawing = svg2rlg(BytesIO(response.content)) img_data = BytesIO() renderPM.drawToFile(drawing, img_data, fmt="PNG") img_data.seek(0) image = Image.open(img_data) return pytesseract.image_to_string(image, lang=ocr_languages) By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
34ebe26b80f4-13
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
c3175a3c5f33-0
Source code for langchain.document_loaders.chatgpt """Load conversations from ChatGPT data export""" import datetime import json from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader def concatenate_rows(message: dict, title: str) -> str: if not message: return "" sender = message["author"]["role"] if message["author"] else "unknown" text = message["content"]["parts"][0] date = datetime.datetime.fromtimestamp(message["create_time"]).strftime( "%Y-%m-%d %H:%M:%S" ) return f"{title} - {sender} on {date}: {text}\n\n" [docs]class ChatGPTLoader(BaseLoader): """Loader that loads conversations from exported ChatGPT data.""" def __init__(self, log_file: str, num_logs: int = -1): self.log_file = log_file self.num_logs = num_logs [docs] def load(self) -> List[Document]: with open(self.log_file, encoding="utf8") as f: data = json.load(f)[: self.num_logs] if self.num_logs else json.load(f) documents = [] for d in data: title = d["title"] messages = d["mapping"] text = "".join( [ concatenate_rows(messages[key]["message"], title) for idx, key in enumerate(messages) if not ( idx == 0 and messages[key]["message"]["author"]["role"] == "system" ) ] ) metadata = {"source": str(self.log_file)} documents.append(Document(page_content=text, metadata=metadata))
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/chatgpt.html
c3175a3c5f33-1
documents.append(Document(page_content=text, metadata=metadata)) return documents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/chatgpt.html
baae0d890213-0
Source code for langchain.document_loaders.url_selenium """Loader that uses Selenium to load a page, then uses unstructured to load the html. """ import logging from typing import TYPE_CHECKING, List, Literal, Optional, Union if TYPE_CHECKING: from selenium.webdriver import Chrome, Firefox from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) [docs]class SeleniumURLLoader(BaseLoader): """Loader that uses Selenium and to load a page and unstructured to load the html. This is useful for loading pages that require javascript to render. Attributes: urls (List[str]): List of URLs to load. continue_on_failure (bool): If True, continue loading other URLs on failure. browser (str): The browser to use, either 'chrome' or 'firefox'. binary_location (Optional[str]): The location of the browser binary. executable_path (Optional[str]): The path to the browser executable. headless (bool): If True, the browser will run in headless mode. arguments [List[str]]: List of arguments to pass to the browser. """ def __init__( self, urls: List[str], continue_on_failure: bool = True, browser: Literal["chrome", "firefox"] = "chrome", binary_location: Optional[str] = None, executable_path: Optional[str] = None, headless: bool = True, arguments: List[str] = [], ): """Load a list of URLs using Selenium and unstructured.""" try: import selenium # noqa:F401 except ImportError: raise ImportError( "selenium package not found, please install it with "
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url_selenium.html
baae0d890213-1
raise ImportError( "selenium package not found, please install it with " "`pip install selenium`" ) try: import unstructured # noqa:F401 except ImportError: raise ImportError( "unstructured package not found, please install it with " "`pip install unstructured`" ) self.urls = urls self.continue_on_failure = continue_on_failure self.browser = browser self.binary_location = binary_location self.executable_path = executable_path self.headless = headless self.arguments = arguments def _get_driver(self) -> Union["Chrome", "Firefox"]: """Create and return a WebDriver instance based on the specified browser. Raises: ValueError: If an invalid browser is specified. Returns: Union[Chrome, Firefox]: A WebDriver instance for the specified browser. """ if self.browser.lower() == "chrome": from selenium.webdriver import Chrome from selenium.webdriver.chrome.options import Options as ChromeOptions chrome_options = ChromeOptions() for arg in self.arguments: chrome_options.add_argument(arg) if self.headless: chrome_options.add_argument("--headless") chrome_options.add_argument("--no-sandbox") if self.binary_location is not None: chrome_options.binary_location = self.binary_location if self.executable_path is None: return Chrome(options=chrome_options) return Chrome(executable_path=self.executable_path, options=chrome_options) elif self.browser.lower() == "firefox": from selenium.webdriver import Firefox from selenium.webdriver.firefox.options import Options as FirefoxOptions firefox_options = FirefoxOptions() for arg in self.arguments: firefox_options.add_argument(arg)
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url_selenium.html
baae0d890213-2
for arg in self.arguments: firefox_options.add_argument(arg) if self.headless: firefox_options.add_argument("--headless") if self.binary_location is not None: firefox_options.binary_location = self.binary_location if self.executable_path is None: return Firefox(options=firefox_options) return Firefox( executable_path=self.executable_path, options=firefox_options ) else: raise ValueError("Invalid browser specified. Use 'chrome' or 'firefox'.") [docs] def load(self) -> List[Document]: """Load the specified URLs using Selenium and create Document instances. Returns: List[Document]: A list of Document instances with loaded content. """ from unstructured.partition.html import partition_html docs: List[Document] = list() driver = self._get_driver() for url in self.urls: try: driver.get(url) page_content = driver.page_source elements = partition_html(text=page_content) text = "\n\n".join([str(el) for el in elements]) metadata = {"source": url} docs.append(Document(page_content=text, metadata=metadata)) except Exception as e: if self.continue_on_failure: logger.error(f"Error fetching or processing {url}, exception: {e}") else: raise e driver.quit() return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/url_selenium.html
fb61da65be09-0
Source code for langchain.document_loaders.evernote """Load documents from Evernote. https://gist.github.com/foxmask/7b29c43a161e001ff04afdb2f181e31c """ import hashlib import logging from base64 import b64decode from time import strptime from typing import Any, Dict, Iterator, List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class EverNoteLoader(BaseLoader): """EverNote Loader. Loads an EverNote notebook export file e.g. my_notebook.enex into Documents. Instructions on producing this file can be found at https://help.evernote.com/hc/en-us/articles/209005557-Export-notes-and-notebooks-as-ENEX-or-HTML Currently only the plain text in the note is extracted and stored as the contents of the Document, any non content metadata (e.g. 'author', 'created', 'updated' etc. but not 'content-raw' or 'resource') tags on the note will be extracted and stored as metadata on the Document. Args: file_path (str): The path to the notebook export with a .enex extension load_single_document (bool): Whether or not to concatenate the content of all notes into a single long Document. If this is set to True (default) then the only metadata on the document will be the 'source' which contains the file name of the export. """ # noqa: E501 def __init__(self, file_path: str, load_single_document: bool = True): """Initialize with file path.""" self.file_path = file_path self.load_single_document = load_single_document
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/evernote.html
fb61da65be09-1
self.file_path = file_path self.load_single_document = load_single_document [docs] def load(self) -> List[Document]: """Load documents from EverNote export file.""" documents = [ Document( page_content=note["content"], metadata={ **{ key: value for key, value in note.items() if key not in ["content", "content-raw", "resource"] }, **{"source": self.file_path}, }, ) for note in self._parse_note_xml(self.file_path) if note.get("content") is not None ] if not self.load_single_document: return documents return [ Document( page_content="".join([document.page_content for document in documents]), metadata={"source": self.file_path}, ) ] @staticmethod def _parse_content(content: str) -> str: try: import html2text return html2text.html2text(content).strip() except ImportError as e: logging.error( "Could not import `html2text`. Although it is not a required package " "to use Langchain, using the EverNote loader requires `html2text`. " "Please install `html2text` via `pip install html2text` and try again." ) raise e @staticmethod def _parse_resource(resource: list) -> dict: rsc_dict: Dict[str, Any] = {} for elem in resource: if elem.tag == "data": # Sometimes elem.text is None rsc_dict[elem.tag] = b64decode(elem.text) if elem.text else b""
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/evernote.html
fb61da65be09-2
rsc_dict["hash"] = hashlib.md5(rsc_dict[elem.tag]).hexdigest() else: rsc_dict[elem.tag] = elem.text return rsc_dict @staticmethod def _parse_note(note: List, prefix: Optional[str] = None) -> dict: note_dict: Dict[str, Any] = {} resources = [] def add_prefix(element_tag: str) -> str: if prefix is None: return element_tag return f"{prefix}.{element_tag}" for elem in note: if elem.tag == "content": note_dict[elem.tag] = EverNoteLoader._parse_content(elem.text) # A copy of original content note_dict["content-raw"] = elem.text elif elem.tag == "resource": resources.append(EverNoteLoader._parse_resource(elem)) elif elem.tag == "created" or elem.tag == "updated": note_dict[elem.tag] = strptime(elem.text, "%Y%m%dT%H%M%SZ") elif elem.tag == "note-attributes": additional_attributes = EverNoteLoader._parse_note( elem, elem.tag ) # Recursively enter the note-attributes tag note_dict.update(additional_attributes) else: note_dict[elem.tag] = elem.text if len(resources) > 0: note_dict["resource"] = resources return {add_prefix(key): value for key, value in note_dict.items()} @staticmethod def _parse_note_xml(xml_file: str) -> Iterator[Dict[str, Any]]: """Parse Evernote xml.""" # Without huge_tree set to True, parser may complain about huge text node
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/evernote.html
fb61da65be09-3
# Without huge_tree set to True, parser may complain about huge text node # Try to recover, because there may be "&nbsp;", which will cause # "XMLSyntaxError: Entity 'nbsp' not defined" try: from lxml import etree except ImportError as e: logging.error( "Could not import `lxml`. Although it is not a required package to use " "Langchain, using the EverNote loader requires `lxml`. Please install " "`lxml` via `pip install lxml` and try again." ) raise e context = etree.iterparse( xml_file, encoding="utf-8", strip_cdata=False, huge_tree=True, recover=True ) for action, elem in context: if elem.tag == "note": yield EverNoteLoader._parse_note(elem) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/evernote.html
d294aef3ff24-0
Source code for langchain.document_loaders.twitter """Twitter document loader.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence, Union from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader if TYPE_CHECKING: import tweepy from tweepy import OAuth2BearerHandler, OAuthHandler def _dependable_tweepy_import() -> tweepy: try: import tweepy except ImportError: raise ImportError( "tweepy package not found, please install it with `pip install tweepy`" ) return tweepy [docs]class TwitterTweetLoader(BaseLoader): """Twitter tweets loader. Read tweets of user twitter handle. First you need to go to `https://developer.twitter.com/en/docs/twitter-api /getting-started/getting-access-to-the-twitter-api` to get your token. And create a v2 version of the app. """ def __init__( self, auth_handler: Union[OAuthHandler, OAuth2BearerHandler], twitter_users: Sequence[str], number_tweets: Optional[int] = 100, ): self.auth = auth_handler self.twitter_users = twitter_users self.number_tweets = number_tweets [docs] def load(self) -> List[Document]: """Load tweets.""" tweepy = _dependable_tweepy_import() api = tweepy.API(self.auth, parser=tweepy.parsers.JSONParser()) results: List[Document] = [] for username in self.twitter_users: tweets = api.user_timeline(screen_name=username, count=self.number_tweets) user = api.get_user(screen_name=username)
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/twitter.html
d294aef3ff24-1
user = api.get_user(screen_name=username) docs = self._format_tweets(tweets, user) results.extend(docs) return results def _format_tweets( self, tweets: List[Dict[str, Any]], user_info: dict ) -> Iterable[Document]: """Format tweets into a string.""" for tweet in tweets: metadata = { "created_at": tweet["created_at"], "user_info": user_info, } yield Document( page_content=tweet["text"], metadata=metadata, ) [docs] @classmethod def from_bearer_token( cls, oauth2_bearer_token: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100, ) -> TwitterTweetLoader: """Create a TwitterTweetLoader from OAuth2 bearer token.""" tweepy = _dependable_tweepy_import() auth = tweepy.OAuth2BearerHandler(oauth2_bearer_token) return cls( auth_handler=auth, twitter_users=twitter_users, number_tweets=number_tweets, ) [docs] @classmethod def from_secrets( cls, access_token: str, access_token_secret: str, consumer_key: str, consumer_secret: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100, ) -> TwitterTweetLoader: """Create a TwitterTweetLoader from access tokens and secrets.""" tweepy = _dependable_tweepy_import() auth = tweepy.OAuthHandler( access_token=access_token, access_token_secret=access_token_secret,
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/twitter.html
d294aef3ff24-2
access_token=access_token, access_token_secret=access_token_secret, consumer_key=consumer_key, consumer_secret=consumer_secret, ) return cls( auth_handler=auth, twitter_users=twitter_users, number_tweets=number_tweets, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/twitter.html
947d77b7e87a-0
Source code for langchain.document_loaders.azlyrics """Loader that loads AZLyrics.""" from typing import List from langchain.docstore.document import Document from langchain.document_loaders.web_base import WebBaseLoader [docs]class AZLyricsLoader(WebBaseLoader): """Loader that loads AZLyrics webpages.""" [docs] def load(self) -> List[Document]: """Load webpage.""" soup = self.scrape() title = soup.title.text lyrics = soup.find_all("div", {"class": ""})[2].text text = title + lyrics metadata = {"source": self.web_path} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/azlyrics.html
68c5d2580ba5-0
Source code for langchain.document_loaders.spreedly """Loader that fetches data from Spreedly API.""" import json import urllib.request from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utils import stringify_dict SPREEDLY_ENDPOINTS = { "gateways_options": "https://core.spreedly.com/v1/gateways_options.json", "gateways": "https://core.spreedly.com/v1/gateways.json", "receivers_options": "https://core.spreedly.com/v1/receivers_options.json", "receivers": "https://core.spreedly.com/v1/receivers.json", "payment_methods": "https://core.spreedly.com/v1/payment_methods.json", "certificates": "https://core.spreedly.com/v1/certificates.json", "transactions": "https://core.spreedly.com/v1/transactions.json", "environments": "https://core.spreedly.com/v1/environments.json", } [docs]class SpreedlyLoader(BaseLoader): def __init__(self, access_token: str, resource: str) -> None: self.access_token = access_token self.resource = resource self.headers = { "Authorization": f"Bearer {self.access_token}", "Accept": "application/json", } def _make_request(self, url: str) -> List[Document]: request = urllib.request.Request(url, headers=self.headers) with urllib.request.urlopen(request) as response: json_data = json.loads(response.read().decode()) text = stringify_dict(json_data) metadata = {"source": url}
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/spreedly.html
68c5d2580ba5-1
text = stringify_dict(json_data) metadata = {"source": url} return [Document(page_content=text, metadata=metadata)] def _get_resource(self) -> List[Document]: endpoint = SPREEDLY_ENDPOINTS.get(self.resource) if endpoint is None: return [] return self._make_request(endpoint) [docs] def load(self) -> List[Document]: return self._get_resource() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/spreedly.html
7c5100ee3692-0
Source code for langchain.document_loaders.markdown """Loader that loads Markdown files.""" from typing import List from langchain.document_loaders.unstructured import UnstructuredFileLoader [docs]class UnstructuredMarkdownLoader(UnstructuredFileLoader): """Loader that uses unstructured to load markdown files.""" def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.partition.md import partition_md # NOTE(MthwRobinson) - enables the loader to work when you're using pre-release # versions of unstructured like 0.4.17-dev1 _unstructured_version = __unstructured_version__.split("-")[0] unstructured_version = tuple([int(x) for x in _unstructured_version.split(".")]) if unstructured_version < (0, 4, 16): raise ValueError( f"You are on unstructured version {__unstructured_version__}. " "Partitioning markdown files is only supported in unstructured>=0.4.16." ) return partition_md(filename=self.file_path, **self.unstructured_kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/markdown.html
8303d78970b9-0
Source code for langchain.document_loaders.iugu """Loader that fetches data from IUGU""" import json import urllib.request from typing import List, Optional from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utils import get_from_env, stringify_dict IUGU_ENDPOINTS = { "invoices": "https://api.iugu.com/v1/invoices", "customers": "https://api.iugu.com/v1/customers", "charges": "https://api.iugu.com/v1/charges", "subscriptions": "https://api.iugu.com/v1/subscriptions", "plans": "https://api.iugu.com/v1/plans", } [docs]class IuguLoader(BaseLoader): def __init__(self, resource: str, api_token: Optional[str] = None) -> None: self.resource = resource api_token = api_token or get_from_env("api_token", "IUGU_API_TOKEN") self.headers = {"Authorization": f"Bearer {api_token}"} def _make_request(self, url: str) -> List[Document]: request = urllib.request.Request(url, headers=self.headers) with urllib.request.urlopen(request) as response: json_data = json.loads(response.read().decode()) text = stringify_dict(json_data) metadata = {"source": url} return [Document(page_content=text, metadata=metadata)] def _get_resource(self) -> List[Document]: endpoint = IUGU_ENDPOINTS.get(self.resource) if endpoint is None: return [] return self._make_request(endpoint) [docs] def load(self) -> List[Document]: return self._get_resource() By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/iugu.html
8303d78970b9-1
return self._get_resource() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/iugu.html
f5a2602fee97-0
Source code for langchain.document_loaders.web_base """Web base loader class.""" import asyncio import logging import warnings from typing import Any, Dict, List, Optional, Union import aiohttp import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) default_header_template = { "User-Agent": "", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*" ";q=0.8", "Accept-Language": "en-US,en;q=0.5", "Referer": "https://www.google.com/", "DNT": "1", "Connection": "keep-alive", "Upgrade-Insecure-Requests": "1", } def _build_metadata(soup: Any, url: str) -> dict: """Build metadata from BeautifulSoup output.""" metadata = {"source": url} if title := soup.find("title"): metadata["title"] = title.get_text() if description := soup.find("meta", attrs={"name": "description"}): metadata["description"] = description.get("content", None) if html := soup.find("html"): metadata["language"] = html.get("lang", None) return metadata [docs]class WebBaseLoader(BaseLoader): """Loader that uses urllib and beautiful soup to load webpages.""" web_paths: List[str] requests_per_second: int = 2 """Max number of concurrent requests to make.""" default_parser: str = "html.parser" """Default parser to use for BeautifulSoup.""" requests_kwargs: Dict[str, Any] = {} """kwargs for requests""" def __init__(
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/web_base.html
f5a2602fee97-1
"""kwargs for requests""" def __init__( self, web_path: Union[str, List[str]], header_template: Optional[dict] = None ): """Initialize with webpage path.""" # TODO: Deprecate web_path in favor of web_paths, and remove this # left like this because there are a number of loaders that expect single # urls if isinstance(web_path, str): self.web_paths = [web_path] elif isinstance(web_path, List): self.web_paths = web_path self.session = requests.Session() try: import bs4 # noqa:F401 except ImportError: raise ValueError( "bs4 package not found, please install it with " "`pip install bs4`" ) headers = header_template or default_header_template if not headers.get("User-Agent"): try: from fake_useragent import UserAgent headers["User-Agent"] = UserAgent().random except ImportError: logger.info( "fake_useragent not found, using default user agent." "To get a realistic header for requests, " "`pip install fake_useragent`." ) self.session.headers = dict(headers) @property def web_path(self) -> str: if len(self.web_paths) > 1: raise ValueError("Multiple webpaths found.") return self.web_paths[0] async def _fetch( self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5 ) -> str: async with aiohttp.ClientSession() as session: for i in range(retries): try:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/web_base.html
f5a2602fee97-2
for i in range(retries): try: async with session.get( url, headers=self.session.headers ) as response: return await response.text() except aiohttp.ClientConnectionError as e: if i == retries - 1: raise else: logger.warning( f"Error fetching {url} with attempt " f"{i + 1}/{retries}: {e}. Retrying..." ) await asyncio.sleep(cooldown * backoff**i) raise ValueError("retry count exceeded") async def _fetch_with_rate_limit( self, url: str, semaphore: asyncio.Semaphore ) -> str: async with semaphore: return await self._fetch(url) [docs] async def fetch_all(self, urls: List[str]) -> Any: """Fetch all urls concurrently with rate limiting.""" semaphore = asyncio.Semaphore(self.requests_per_second) tasks = [] for url in urls: task = asyncio.ensure_future(self._fetch_with_rate_limit(url, semaphore)) tasks.append(task) try: from tqdm.asyncio import tqdm_asyncio return await tqdm_asyncio.gather( *tasks, desc="Fetching pages", ascii=True, mininterval=1 ) except ImportError: warnings.warn("For better logging of progress, `pip install tqdm`") return await asyncio.gather(*tasks) @staticmethod def _check_parser(parser: str) -> None: """Check that parser is valid for bs4.""" valid_parsers = ["html.parser", "lxml", "xml", "lxml-xml", "html5lib"] if parser not in valid_parsers: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/web_base.html
f5a2602fee97-3
if parser not in valid_parsers: raise ValueError( "`parser` must be one of " + ", ".join(valid_parsers) + "." ) [docs] def scrape_all(self, urls: List[str], parser: Union[str, None] = None) -> List[Any]: """Fetch all urls, then return soups for all results.""" from bs4 import BeautifulSoup results = asyncio.run(self.fetch_all(urls)) final_results = [] for i, result in enumerate(results): url = urls[i] if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) final_results.append(BeautifulSoup(result, parser)) return final_results def _scrape(self, url: str, parser: Union[str, None] = None) -> Any: from bs4 import BeautifulSoup if parser is None: if url.endswith(".xml"): parser = "xml" else: parser = self.default_parser self._check_parser(parser) html_doc = self.session.get(url, **self.requests_kwargs) html_doc.encoding = html_doc.apparent_encoding return BeautifulSoup(html_doc.text, parser) [docs] def scrape(self, parser: Union[str, None] = None) -> Any: """Scrape data from webpage and return it in BeautifulSoup format.""" if parser is None: parser = self.default_parser return self._scrape(self.web_path, parser) [docs] def load(self) -> List[Document]: """Load text from the url(s) in web_path.""" docs = [] for path in self.web_paths:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/web_base.html
f5a2602fee97-4
docs = [] for path in self.web_paths: soup = self._scrape(path) text = soup.get_text() metadata = _build_metadata(soup, path) docs.append(Document(page_content=text, metadata=metadata)) return docs [docs] def aload(self) -> List[Document]: """Load text from the urls in web_path async into Documents.""" results = self.scrape_all(self.web_paths) docs = [] for i in range(len(results)): soup = results[i] text = soup.get_text() metadata = _build_metadata(soup, self.web_paths[i]) docs.append(Document(page_content=text, metadata=metadata)) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/web_base.html
812ee41a02cb-0
Source code for langchain.document_loaders.youtube """Loader that loads YouTube transcript.""" from __future__ import annotations import logging from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from urllib.parse import parse_qs, urlparse from pydantic import root_validator from pydantic.dataclasses import dataclass from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader logger = logging.getLogger(__name__) SCOPES = ["https://www.googleapis.com/auth/youtube.readonly"] [docs]@dataclass class GoogleApiClient: """A Generic Google Api Client. To use, you should have the ``google_auth_oauthlib,youtube_transcript_api,google`` python package installed. As the google api expects credentials you need to set up a google account and register your Service. "https://developers.google.com/docs/api/quickstart/python" Example: .. code-block:: python from langchain.document_loaders import GoogleApiClient google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) """ credentials_path: Path = Path.home() / ".credentials" / "credentials.json" service_account_path: Path = Path.home() / ".credentials" / "credentials.json" token_path: Path = Path.home() / ".credentials" / "token.json" def __post_init__(self) -> None: self.creds = self._load_credentials() [docs] @root_validator def validate_channel_or_videoIds_is_set( cls, values: Dict[str, Any] ) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both."""
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-1
"""Validate that either folder_id or document_ids is set, but not both.""" if not values.get("credentials_path") and not values.get( "service_account_path" ): raise ValueError("Must specify either channel_name or video_ids") return values def _load_credentials(self) -> Any: """Load credentials.""" # Adapted from https://developers.google.com/drive/api/v3/quickstart/python try: from google.auth.transport.requests import Request from google.oauth2 import service_account from google.oauth2.credentials import Credentials from google_auth_oauthlib.flow import InstalledAppFlow from youtube_transcript_api import YouTubeTranscriptApi # noqa: F401 except ImportError: raise ImportError( "You must run" "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib " "youtube-transcript-api` " "to use the Google Drive loader" ) creds = None if self.service_account_path.exists(): return service_account.Credentials.from_service_account_file( str(self.service_account_path) ) if self.token_path.exists(): creds = Credentials.from_authorized_user_file(str(self.token_path), SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( str(self.credentials_path), SCOPES ) creds = flow.run_local_server(port=0) with open(self.token_path, "w") as token: token.write(creds.to_json()) return creds
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-2
token.write(creds.to_json()) return creds ALLOWED_SCHEMAS = {"http", "https"} ALLOWED_NETLOCK = { "youtu.be", "m.youtube.com", "youtube.com", "www.youtube.com", "www.youtube-nocookie.com", "vid.plus", } def _parse_video_id(url: str) -> Optional[str]: """Parse a youtube url and return the video id if valid, otherwise None.""" parsed_url = urlparse(url) if parsed_url.scheme not in ALLOWED_SCHEMAS: return None if parsed_url.netloc not in ALLOWED_NETLOCK: return None path = parsed_url.path if path.endswith("/watch"): query = parsed_url.query parsed_query = parse_qs(query) if "v" in parsed_query: ids = parsed_query["v"] video_id = ids if isinstance(ids, str) else ids[0] else: return None else: path = parsed_url.path.lstrip("/") video_id = path.split("/")[-1] if len(video_id) != 11: # Video IDs are 11 characters long return None return video_id [docs]class YoutubeLoader(BaseLoader): """Loader that loads Youtube transcripts.""" def __init__( self, video_id: str, add_video_info: bool = False, language: Union[str, Sequence[str]] = "en", translation: str = "en", continue_on_failure: bool = False, ): """Initialize with YouTube video ID.""" self.video_id = video_id self.add_video_info = add_video_info self.language = language
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-3
self.add_video_info = add_video_info self.language = language if isinstance(language, str): self.language = [language] else: self.language = language self.translation = translation self.continue_on_failure = continue_on_failure [docs] @staticmethod def extract_video_id(youtube_url: str) -> str: """Extract video id from common YT urls.""" video_id = _parse_video_id(youtube_url) if not video_id: raise ValueError( f"Could not determine the video ID for the URL {youtube_url}" ) return video_id [docs] @classmethod def from_youtube_url(cls, youtube_url: str, **kwargs: Any) -> YoutubeLoader: """Given youtube URL, load video.""" video_id = cls.extract_video_id(youtube_url) return cls(video_id, **kwargs) [docs] def load(self) -> List[Document]: """Load documents.""" try: from youtube_transcript_api import ( NoTranscriptFound, TranscriptsDisabled, YouTubeTranscriptApi, ) except ImportError: raise ImportError( "Could not import youtube_transcript_api python package. " "Please install it with `pip install youtube-transcript-api`." ) metadata = {"source": self.video_id} if self.add_video_info: # Get more video meta info # Such as title, description, thumbnail url, publish_date video_info = self._get_video_info() metadata.update(video_info) try: transcript_list = YouTubeTranscriptApi.list_transcripts(self.video_id) except TranscriptsDisabled: return [] try:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-4
except TranscriptsDisabled: return [] try: transcript = transcript_list.find_transcript(self.language) except NoTranscriptFound: en_transcript = transcript_list.find_transcript(["en"]) transcript = en_transcript.translate(self.translation) transcript_pieces = transcript.fetch() transcript = " ".join([t["text"].strip(" ") for t in transcript_pieces]) return [Document(page_content=transcript, metadata=metadata)] def _get_video_info(self) -> dict: """Get important video information. Components are: - title - description - thumbnail url, - publish_date - channel_author - and more. """ try: from pytube import YouTube except ImportError: raise ImportError( "Could not import pytube python package. " "Please install it with `pip install pytube`." ) yt = YouTube(f"https://www.youtube.com/watch?v={self.video_id}") video_info = { "title": yt.title or "Unknown", "description": yt.description or "Unknown", "view_count": yt.views or 0, "thumbnail_url": yt.thumbnail_url or "Unknown", "publish_date": yt.publish_date.strftime("%Y-%m-%d %H:%M:%S") if yt.publish_date else "Unknown", "length": yt.length or 0, "author": yt.author or "Unknown", } return video_info [docs]@dataclass class GoogleApiYoutubeLoader(BaseLoader): """Loader that loads all Videos from a Channel To use, you should have the ``googleapiclient,youtube_transcript_api``
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-5
To use, you should have the ``googleapiclient,youtube_transcript_api`` python package installed. As the service needs a google_api_client, you first have to initialize the GoogleApiClient. Additionally you have to either provide a channel name or a list of videoids "https://developers.google.com/docs/api/quickstart/python" Example: .. code-block:: python from langchain.document_loaders import GoogleApiClient from langchain.document_loaders import GoogleApiYoutubeLoader google_api_client = GoogleApiClient( service_account_path=Path("path_to_your_sec_file.json") ) loader = GoogleApiYoutubeLoader( google_api_client=google_api_client, channel_name = "CodeAesthetic" ) load.load() """ google_api_client: GoogleApiClient channel_name: Optional[str] = None video_ids: Optional[List[str]] = None add_video_info: bool = True captions_language: str = "en" continue_on_failure: bool = False def __post_init__(self) -> None: self.youtube_client = self._build_youtube_client(self.google_api_client.creds) def _build_youtube_client(self, creds: Any) -> Any: try: from googleapiclient.discovery import build from youtube_transcript_api import YouTubeTranscriptApi # noqa: F401 except ImportError: raise ImportError( "You must run" "`pip install --upgrade " "google-api-python-client google-auth-httplib2 " "google-auth-oauthlib " "youtube-transcript-api` " "to use the Google Drive loader" )
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-6
"to use the Google Drive loader" ) return build("youtube", "v3", credentials=creds) [docs] @root_validator def validate_channel_or_videoIds_is_set( cls, values: Dict[str, Any] ) -> Dict[str, Any]: """Validate that either folder_id or document_ids is set, but not both.""" if not values.get("channel_name") and not values.get("video_ids"): raise ValueError("Must specify either channel_name or video_ids") return values def _get_transcripe_for_video_id(self, video_id: str) -> str: from youtube_transcript_api import NoTranscriptFound, YouTubeTranscriptApi transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) try: transcript = transcript_list.find_transcript([self.captions_language]) except NoTranscriptFound: for available_transcript in transcript_list: transcript = available_transcript.translate(self.captions_language) continue transcript_pieces = transcript.fetch() return " ".join([t["text"].strip(" ") for t in transcript_pieces]) def _get_document_for_video_id(self, video_id: str, **kwargs: Any) -> Document: captions = self._get_transcripe_for_video_id(video_id) video_response = ( self.youtube_client.videos() .list( part="id,snippet", id=video_id, ) .execute() ) return Document( page_content=captions, metadata=video_response.get("items")[0], ) def _get_channel_id(self, channel_name: str) -> str: request = self.youtube_client.search().list(
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-7
request = self.youtube_client.search().list( part="id", q=channel_name, type="channel", maxResults=1, # we only need one result since channel names are unique ) response = request.execute() channel_id = response["items"][0]["id"]["channelId"] return channel_id def _get_document_for_channel(self, channel: str, **kwargs: Any) -> List[Document]: try: from youtube_transcript_api import ( NoTranscriptFound, TranscriptsDisabled, ) except ImportError: raise ImportError( "You must run" "`pip install --upgrade " "youtube-transcript-api` " "to use the youtube loader" ) channel_id = self._get_channel_id(channel) request = self.youtube_client.search().list( part="id,snippet", channelId=channel_id, maxResults=50, # adjust this value to retrieve more or fewer videos ) video_ids = [] while request is not None: response = request.execute() # Add each video ID to the list for item in response["items"]: if not item["id"].get("videoId"): continue meta_data = {"videoId": item["id"]["videoId"]} if self.add_video_info: item["snippet"].pop("thumbnails") meta_data.update(item["snippet"]) try: page_content = self._get_transcripe_for_video_id( item["id"]["videoId"] ) video_ids.append( Document( page_content=page_content, metadata=meta_data, ) )
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
812ee41a02cb-8
metadata=meta_data, ) ) except (TranscriptsDisabled, NoTranscriptFound) as e: if self.continue_on_failure: logger.error( "Error fetching transscript " + f" {item['id']['videoId']}, exception: {e}" ) else: raise e pass request = self.youtube_client.search().list_next(request, response) return video_ids [docs] def load(self) -> List[Document]: """Load documents.""" document_list = [] if self.channel_name: document_list.extend(self._get_document_for_channel(self.channel_name)) elif self.video_ids: document_list.extend( [ self._get_document_for_video_id(video_id) for video_id in self.video_ids ] ) else: raise ValueError("Must specify either channel_name or video_ids") return document_list By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/youtube.html
d13488dbf3a6-0
Source code for langchain.document_loaders.onedrive """Loader that loads data from OneDrive""" from __future__ import annotations import logging import os import tempfile from enum import Enum from pathlib import Path from typing import TYPE_CHECKING, Dict, List, Optional, Type, Union from pydantic import BaseModel, BaseSettings, Field, FilePath, SecretStr from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.onedrive_file import OneDriveFileLoader if TYPE_CHECKING: from O365 import Account from O365.drive import Drive, Folder SCOPES = ["offline_access", "Files.Read.All"] logger = logging.getLogger(__name__) class _OneDriveSettings(BaseSettings): client_id: str = Field(..., env="O365_CLIENT_ID") client_secret: SecretStr = Field(..., env="O365_CLIENT_SECRET") class Config: env_prefix = "" case_sentive = False env_file = ".env" class _OneDriveTokenStorage(BaseSettings): token_path: FilePath = Field(Path.home() / ".credentials" / "o365_token.txt") class _FileType(str, Enum): DOC = "doc" DOCX = "docx" PDF = "pdf" class _SupportedFileTypes(BaseModel): file_types: List[_FileType] def fetch_mime_types(self) -> Dict[str, str]: mime_types_mapping = {} for file_type in self.file_types: if file_type.value == "doc": mime_types_mapping[file_type.value] = "application/msword" elif file_type.value == "docx": mime_types_mapping[ file_type.value
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/onedrive.html
d13488dbf3a6-1
mime_types_mapping[ file_type.value ] = "application/vnd.openxmlformats-officedocument.wordprocessingml.document" # noqa: E501 elif file_type.value == "pdf": mime_types_mapping[file_type.value] = "application/pdf" return mime_types_mapping [docs]class OneDriveLoader(BaseLoader, BaseModel): settings: _OneDriveSettings = Field(default_factory=_OneDriveSettings) drive_id: str = Field(...) folder_path: Optional[str] = None object_ids: Optional[List[str]] = None auth_with_token: bool = False def _auth(self) -> Type[Account]: """ Authenticates the OneDrive API client using the specified authentication method and returns the Account object. Returns: Type[Account]: The authenticated Account object. """ try: from O365 import FileSystemTokenBackend except ImportError: raise ImportError( "O365 package not found, please install it with `pip install o365`" ) if self.auth_with_token: token_storage = _OneDriveTokenStorage() token_path = token_storage.token_path token_backend = FileSystemTokenBackend( token_path=token_path.parent, token_filename=token_path.name ) account = Account( credentials=( self.settings.client_id, self.settings.client_secret.get_secret_value(), ), scopes=SCOPES, token_backend=token_backend, **{"raise_http_errors": False}, ) else: token_backend = FileSystemTokenBackend( token_path=Path.home() / ".credentials" ) account = Account( credentials=( self.settings.client_id,
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/onedrive.html
d13488dbf3a6-2
) account = Account( credentials=( self.settings.client_id, self.settings.client_secret.get_secret_value(), ), scopes=SCOPES, token_backend=token_backend, **{"raise_http_errors": False}, ) # make the auth account.authenticate() return account def _get_folder_from_path(self, drive: Type[Drive]) -> Union[Folder, Drive]: """ Returns the folder or drive object located at the specified path relative to the given drive. Args: drive (Type[Drive]): The root drive from which the folder path is relative. Returns: Union[Folder, Drive]: The folder or drive object located at the specified path. Raises: FileNotFoundError: If the path does not exist. """ subfolder_drive = drive if self.folder_path is None: return subfolder_drive subfolders = [f for f in self.folder_path.split("/") if f != ""] if len(subfolders) == 0: return subfolder_drive items = subfolder_drive.get_items() for subfolder in subfolders: try: subfolder_drive = list(filter(lambda x: subfolder in x.name, items))[0] items = subfolder_drive.get_items() except (IndexError, AttributeError): raise FileNotFoundError("Path {} not exist.".format(self.folder_path)) return subfolder_drive def _load_from_folder(self, folder: Type[Folder]) -> List[Document]: """ Loads all supported document files from the specified folder and returns a list of Document objects. Args: folder (Type[Folder]): The folder object to load the documents from.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/onedrive.html
d13488dbf3a6-3
folder (Type[Folder]): The folder object to load the documents from. Returns: List[Document]: A list of Document objects representing the loaded documents. """ docs = [] file_types = _SupportedFileTypes(file_types=["doc", "docx", "pdf"]) file_mime_types = file_types.fetch_mime_types() items = folder.get_items() with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}" os.makedirs(os.path.dirname(file_path), exist_ok=True) for file in items: if file.is_file: if file.mime_type in list(file_mime_types.values()): loader = OneDriveFileLoader(file=file) docs.extend(loader.load()) return docs def _load_from_object_ids(self, drive: Type[Drive]) -> List[Document]: """ Loads all supported document files from the specified OneDrive drive based on their object IDs and returns a list of Document objects. Args: drive (Type[Drive]): The OneDrive drive object to load the documents from. Returns: List[Document]: A list of Document objects representing the loaded documents. """ docs = [] file_types = _SupportedFileTypes(file_types=["doc", "docx", "pdf"]) file_mime_types = file_types.fetch_mime_types() with tempfile.TemporaryDirectory() as temp_dir: file_path = f"{temp_dir}" os.makedirs(os.path.dirname(file_path), exist_ok=True) for object_id in self.object_ids if self.object_ids else [""]: file = drive.get_item(object_id) if not file: logging.warning( "There isn't a file with "
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/onedrive.html
d13488dbf3a6-4
logging.warning( "There isn't a file with " f"object_id {object_id} in drive {drive}." ) continue if file.is_file: if file.mime_type in list(file_mime_types.values()): loader = OneDriveFileLoader(file=file) docs.extend(loader.load()) return docs [docs] def load(self) -> List[Document]: """ Loads all supported document files from the specified OneDrive drive a nd returns a list of Document objects. Returns: List[Document]: A list of Document objects representing the loaded documents. Raises: ValueError: If the specified drive ID does not correspond to a drive in the OneDrive storage. """ account = self._auth() storage = account.storage() drive = storage.get_drive(self.drive_id) docs: List[Document] = [] if not drive: raise ValueError(f"There isn't a drive with id {self.drive_id}.") if self.folder_path: folder = self._get_folder_from_path(drive=drive) docs.extend(self._load_from_folder(folder=folder)) elif self.object_ids: docs.extend(self._load_from_object_ids(drive=drive)) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/onedrive.html
1c482ce05450-0
Source code for langchain.document_loaders.github from abc import ABC from datetime import datetime from typing import Dict, Iterator, List, Literal, Optional, Union import requests from pydantic import BaseModel, root_validator, validator from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utils import get_from_dict_or_env class BaseGitHubLoader(BaseLoader, BaseModel, ABC): """Load issues of a GitHub repository.""" repo: str """Name of repository""" access_token: str """Personal access token - see https://github.com/settings/tokens?type=beta""" @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that access token exists in environment.""" values["access_token"] = get_from_dict_or_env( values, "access_token", "GITHUB_PERSONAL_ACCESS_TOKEN" ) return values @property def headers(self) -> Dict[str, str]: return { "Accept": "application/vnd.github+json", "Authorization": f"Bearer {self.access_token}", } [docs]class GitHubIssuesLoader(BaseGitHubLoader): include_prs: bool = True """If True include Pull Requests in results, otherwise ignore them.""" milestone: Union[int, Literal["*", "none"], None] = None """If integer is passed, it should be a milestone's number field. If the string '*' is passed, issues with any milestone are accepted. If the string 'none' is passed, issues without milestones are returned. """ state: Optional[Literal["open", "closed", "all"]] = None
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html
1c482ce05450-1
state: Optional[Literal["open", "closed", "all"]] = None """Filter on issue state. Can be one of: 'open', 'closed', 'all'.""" assignee: Optional[str] = None """Filter on assigned user. Pass 'none' for no user and '*' for any user.""" creator: Optional[str] = None """Filter on the user that created the issue.""" mentioned: Optional[str] = None """Filter on a user that's mentioned in the issue.""" labels: Optional[List[str]] = None """Label names to filter one. Example: bug,ui,@high.""" sort: Optional[Literal["created", "updated", "comments"]] = None """What to sort results by. Can be one of: 'created', 'updated', 'comments'. Default is 'created'.""" direction: Optional[Literal["asc", "desc"]] = None """The direction to sort the results by. Can be one of: 'asc', 'desc'.""" since: Optional[str] = None """Only show notifications updated after the given time. This is a timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.""" @validator("since") def validate_since(cls, v: Optional[str]) -> Optional[str]: if v: try: datetime.strptime(v, "%Y-%m-%dT%H:%M:%SZ") except ValueError: raise ValueError( "Invalid value for 'since'. Expected a date string in " f"YYYY-MM-DDTHH:MM:SSZ format. Received: {v}" ) return v [docs] def lazy_load(self) -> Iterator[Document]: """
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html
1c482ce05450-2
[docs] def lazy_load(self) -> Iterator[Document]: """ Get issues of a GitHub repository. Returns: A list of Documents with attributes: - page_content - metadata - url - title - creator - created_at - last_update_time - closed_time - number of comments - state - labels - assignee - assignees - milestone - locked - number - is_pull_request """ url: Optional[str] = self.url while url: response = requests.get(url, headers=self.headers) response.raise_for_status() issues = response.json() for issue in issues: doc = self.parse_issue(issue) if not self.include_prs and doc.metadata["is_pull_request"]: continue yield doc if response.links and response.links.get("next"): url = response.links["next"]["url"] else: url = None [docs] def load(self) -> List[Document]: """ Get issues of a GitHub repository. Returns: A list of Documents with attributes: - page_content - metadata - url - title - creator - created_at - last_update_time - closed_time - number of comments - state - labels - assignee - assignees - milestone - locked - number - is_pull_request """ return list(self.lazy_load()) [docs] def parse_issue(self, issue: dict) -> Document: """Create Document objects from a list of GitHub issues.""" metadata = {
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html
1c482ce05450-3
"""Create Document objects from a list of GitHub issues.""" metadata = { "url": issue["html_url"], "title": issue["title"], "creator": issue["user"]["login"], "created_at": issue["created_at"], "comments": issue["comments"], "state": issue["state"], "labels": [label["name"] for label in issue["labels"]], "assignee": issue["assignee"]["login"] if issue["assignee"] else None, "milestone": issue["milestone"]["title"] if issue["milestone"] else None, "locked": issue["locked"], "number": issue["number"], "is_pull_request": "pull_request" in issue, } content = issue["body"] if issue["body"] is not None else "" return Document(page_content=content, metadata=metadata) @property def query_params(self) -> str: labels = ",".join(self.labels) if self.labels else self.labels query_params_dict = { "milestone": self.milestone, "state": self.state, "assignee": self.assignee, "creator": self.creator, "mentioned": self.mentioned, "labels": labels, "sort": self.sort, "direction": self.direction, "since": self.since, } query_params_list = [ f"{k}={v}" for k, v in query_params_dict.items() if v is not None ] query_params = "&".join(query_params_list) return query_params @property def url(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html
1c482ce05450-4
return query_params @property def url(self) -> str: return f"https://api.github.com/repos/{self.repo}/issues?{self.query_params}" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/github.html
4d50e4acbb0c-0
Source code for langchain.document_loaders.mastodon """Mastodon document loader.""" from __future__ import annotations import os from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Sequence from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader if TYPE_CHECKING: import mastodon def _dependable_mastodon_import() -> mastodon: try: import mastodon except ImportError: raise ValueError( "Mastodon.py package not found, " "please install it with `pip install Mastodon.py`" ) return mastodon [docs]class MastodonTootsLoader(BaseLoader): """Mastodon toots loader.""" def __init__( self, mastodon_accounts: Sequence[str], number_toots: Optional[int] = 100, exclude_replies: bool = False, access_token: Optional[str] = None, api_base_url: str = "https://mastodon.social", ): """Instantiate Mastodon toots loader. Args: mastodon_accounts: The list of Mastodon accounts to query. number_toots: How many toots to pull for each account. exclude_replies: Whether to exclude reply toots from the load. access_token: An access token if toots are loaded as a Mastodon app. Can also be specified via the environment variables "MASTODON_ACCESS_TOKEN". api_base_url: A Mastodon API base URL to talk to, if not using the default. """ mastodon = _dependable_mastodon_import() access_token = access_token or os.environ.get("MASTODON_ACCESS_TOKEN")
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/mastodon.html
4d50e4acbb0c-1
access_token = access_token or os.environ.get("MASTODON_ACCESS_TOKEN") self.api = mastodon.Mastodon( access_token=access_token, api_base_url=api_base_url ) self.mastodon_accounts = mastodon_accounts self.number_toots = number_toots self.exclude_replies = exclude_replies [docs] def load(self) -> List[Document]: """Load toots into documents.""" results: List[Document] = [] for account in self.mastodon_accounts: user = self.api.account_lookup(account) toots = self.api.account_statuses( user.id, only_media=False, pinned=False, exclude_replies=self.exclude_replies, exclude_reblogs=True, limit=self.number_toots, ) docs = self._format_toots(toots, user) results.extend(docs) return results def _format_toots( self, toots: List[Dict[str, Any]], user_info: dict ) -> Iterable[Document]: """Format toots into documents. Adding user info, and selected toot fields into the metadata. """ for toot in toots: metadata = { "created_at": toot["created_at"], "user_info": user_info, "is_reply": toot["in_reply_to_id"] is not None, } yield Document( page_content=toot["content"], metadata=metadata, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/mastodon.html
a0377a67acd3-0
Source code for langchain.document_loaders.roam """Loader that loads Roam directory dump.""" from pathlib import Path from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader [docs]class RoamLoader(BaseLoader): """Loader that loads Roam files from disk.""" def __init__(self, path: str): """Initialize with path.""" self.file_path = path [docs] def load(self) -> List[Document]: """Load documents.""" ps = list(Path(self.file_path).glob("**/*.md")) docs = [] for p in ps: with open(p) as f: text = f.read() metadata = {"source": str(p)} docs.append(Document(page_content=text, metadata=metadata)) return docs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/roam.html
345a2e6799cc-0
Source code for langchain.document_loaders.rtf """Loader that loads rich text files.""" from typing import Any, List from langchain.document_loaders.unstructured import ( UnstructuredFileLoader, satisfies_min_unstructured_version, ) [docs]class UnstructuredRTFLoader(UnstructuredFileLoader): """Loader that uses unstructured to load rtf files.""" def __init__( self, file_path: str, mode: str = "single", **unstructured_kwargs: Any ): min_unstructured_version = "0.5.12" if not satisfies_min_unstructured_version(min_unstructured_version): raise ValueError( "Partitioning rtf files is only supported in " f"unstructured>={min_unstructured_version}." ) super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.rtf import partition_rtf return partition_rtf(filename=self.file_path, **self.unstructured_kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/rtf.html
0915ac30fae9-0
Source code for langchain.document_loaders.word_document """Loader that loads word documents.""" import os import tempfile from abc import ABC from typing import List from urllib.parse import urlparse import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader [docs]class Docx2txtLoader(BaseLoader, ABC): """Loads a DOCX with docx2txt and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close()
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
0915ac30fae9-1
if hasattr(self, "temp_file"): self.temp_file.close() [docs] def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) [docs]class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Loader that uses unstructured to load word documents.""" def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. "
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
0915ac30fae9-2
f"You are on unstructured version {__unstructured_version__}. " "Partitioning .doc files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
203b6eb4af45-0
Source code for langchain.document_loaders.facebook_chat """Loader that loads Facebook chat json dump.""" import datetime import json from pathlib import Path from typing import List from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader def concatenate_rows(row: dict) -> str: """Combine message information in a readable format ready to be used.""" sender = row["sender_name"] text = row["content"] date = datetime.datetime.fromtimestamp(row["timestamp_ms"] / 1000).strftime( "%Y-%m-%d %H:%M:%S" ) return f"{sender} on {date}: {text}\n\n" [docs]class FacebookChatLoader(BaseLoader): """Loader that loads Facebook messages json directory dump.""" def __init__(self, path: str): """Initialize with path.""" self.file_path = path [docs] def load(self) -> List[Document]: """Load documents.""" p = Path(self.file_path) with open(p, encoding="utf8") as f: d = json.load(f) text = "".join( concatenate_rows(message) for message in d["messages"] if message.get("content") and isinstance(message["content"], str) ) metadata = {"source": str(p)} return [Document(page_content=text, metadata=metadata)] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/facebook_chat.html