id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
b61218194d0e-1
"""Total probability mass of tokens to consider at each step.""" top_k: int = 50 """The number of highest probability tokens to keep for top-k filtering.""" repetition_penalty: float = 1.0 """Penalizes repeated tokens. 1.0 means no penalty.""" length_penalty: float = 1.0 """Exponential penalty to the length.""" do_sample: bool = True """Whether to use sampling (True) or greedy decoding.""" num_beams: int = 1 """Number of beams for beam search.""" early_stopping: bool = False """Whether to stop beam search at num_beams sentences.""" num_return_sequences: int = 1 """How many completions to generate for each prompt.""" nlpcloud_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" nlpcloud_api_key = get_from_dict_or_env( values, "nlpcloud_api_key", "NLPCLOUD_API_KEY" ) try: import nlpcloud values["client"] = nlpcloud.Client( values["model_name"], nlpcloud_api_key, gpu=True, lang="en" ) except ImportError: raise ImportError( "Could not import nlpcloud python package. " "Please install it with `pip install nlpcloud`." ) return values @property def _default_params(self) -> Mapping[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/llms/nlpcloud.html
b61218194d0e-2
@property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling NLPCloud API.""" return { "temperature": self.temperature, "min_length": self.min_length, "max_length": self.max_length, "length_no_input": self.length_no_input, "remove_input": self.remove_input, "remove_end_sequence": self.remove_end_sequence, "bad_words": self.bad_words, "top_p": self.top_p, "top_k": self.top_k, "repetition_penalty": self.repetition_penalty, "length_penalty": self.length_penalty, "do_sample": self.do_sample, "num_beams": self.num_beams, "early_stopping": self.early_stopping, "num_return_sequences": self.num_return_sequences, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "nlpcloud" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call out to NLPCloud's create endpoint. Args: prompt: The prompt to pass into the model. stop: Not supported by this interface (pass in init method) Returns: The string generated by the model. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/llms/nlpcloud.html
b61218194d0e-3
The string generated by the model. Example: .. code-block:: python response = nlpcloud("Tell me a joke.") """ if stop and len(stop) > 1: raise ValueError( "NLPCloud only supports a single stop sequence per generation." "Pass in a list of length 1." ) elif stop and len(stop) == 1: end_sequence = stop[0] else: end_sequence = None response = self.client.generation( prompt, end_sequence=end_sequence, **self._default_params ) return response["generated_text"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/nlpcloud.html
0c3a20467387-0
Source code for langchain.llms.ctransformers """Wrapper around the C Transformers library.""" from typing import Any, Dict, Optional, Sequence from pydantic import root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM [docs]class CTransformers(LLM): """Wrapper around the C Transformers LLM interface. To use, you should have the ``ctransformers`` python package installed. See https://github.com/marella/ctransformers Example: .. code-block:: python from langchain.llms import CTransformers llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2") """ client: Any #: :meta private: model: str """The path to a model file or directory or the name of a Hugging Face Hub model repo.""" model_type: Optional[str] = None """The model type.""" model_file: Optional[str] = None """The name of the model file in repo or directory.""" config: Optional[Dict[str, Any]] = None """The config parameters. See https://github.com/marella/ctransformers#config""" lib: Optional[str] = None """The path to a shared library or one of `avx2`, `avx`, `basic`.""" @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_type": self.model_type, "model_file": self.model_file, "config": self.config, } @property
https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
0c3a20467387-1
"config": self.config, } @property def _llm_type(self) -> str: """Return type of llm.""" return "ctransformers" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that ``ctransformers`` package is installed.""" try: from ctransformers import AutoModelForCausalLM except ImportError: raise ImportError( "Could not import `ctransformers` package. " "Please install it with `pip install ctransformers`" ) config = values["config"] or {} values["client"] = AutoModelForCausalLM.from_pretrained( values["model"], model_type=values["model_type"], model_file=values["model_file"], lib=values["lib"], **config, ) return values def _call( self, prompt: str, stop: Optional[Sequence[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Generate text from a prompt. Args: prompt: The prompt to generate text from. stop: A list of sequences to stop generation when encountered. Returns: The generated text. Example: .. code-block:: python response = llm("Tell me a joke.") """ text = [] _run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager() for chunk in self.client(prompt, stop=stop, stream=True): text.append(chunk)
https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
0c3a20467387-2
text.append(chunk) _run_manager.on_llm_new_token(chunk, verbose=self.verbose) return "".join(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/ctransformers.html
6cbaabe87e86-0
Source code for langchain.llms.huggingface_endpoint """Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceEndpoint(LLM): """Wrapper around HuggingFaceHub Inference Endpoints. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceEndpoint endpoint_url = ( "https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud" ) hf = HuggingFaceEndpoint( endpoint_url=endpoint_url, huggingfacehub_api_token="my-api-key" ) """ endpoint_url: str = "" """Endpoint URL to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config:
https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
6cbaabe87e86-1
huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.hf_api import HfApi try: HfApi( endpoint="https://huggingface.co", # Can be a Private Hub endpoint. token=huggingfacehub_api_token, ).whoami() except Exception as e: raise ValueError( "Could not authenticate with huggingface_hub. " "Please check your API token." ) from e except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) values["huggingfacehub_api_token"] = huggingfacehub_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_endpoint" def _call( self,
https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
6cbaabe87e86-2
return "huggingface_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} # payload samples parameter_payload = {"inputs": prompt, "parameters": _model_kwargs} # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.huggingfacehub_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post( self.endpoint_url, headers=headers, json=parameter_payload ) except requests.exceptions.RequestException as e: # This is the correct syntax raise ValueError(f"Error raised by inference endpoint: {e}") generated_text = response.json() if "error" in generated_text: raise ValueError( f"Error raised by inference API: {generated_text['error']}" ) if self.task == "text-generation": # Text generation return includes the starter text. text = generated_text[0]["generated_text"][len(prompt) :] elif self.task == "text2text-generation": text = generated_text[0]["generated_text"] elif self.task == "summarization":
https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
6cbaabe87e86-3
elif self.task == "summarization": text = generated_text[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/huggingface_endpoint.html
ec486957182e-0
Source code for langchain.llms.anthropic """Wrapper around Anthropic APIs.""" import re import warnings from typing import Any, Callable, Dict, Generator, List, Mapping, Optional, Tuple, Union from pydantic import BaseModel, Extra, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env class _AnthropicCommon(BaseModel): client: Any = None #: :meta private: model: str = "claude-v1" """Model name to use.""" max_tokens_to_sample: int = 256 """Denotes the number of tokens to predict per generation.""" temperature: Optional[float] = None """A non-negative float that tunes the degree of randomness in generation.""" top_k: Optional[int] = None """Number of most likely tokens to consider at each step.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" streaming: bool = False """Whether to stream the results.""" default_request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to Anthropic Completion API. Default is 600 seconds.""" anthropic_api_key: Optional[str] = None HUMAN_PROMPT: Optional[str] = None AI_PROMPT: Optional[str] = None count_tokens: Optional[Callable[[str], int]] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" anthropic_api_key = get_from_dict_or_env(
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
ec486957182e-1
anthropic_api_key = get_from_dict_or_env( values, "anthropic_api_key", "ANTHROPIC_API_KEY" ) try: import anthropic values["client"] = anthropic.Client( api_key=anthropic_api_key, default_request_timeout=values["default_request_timeout"], ) values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT values["AI_PROMPT"] = anthropic.AI_PROMPT values["count_tokens"] = anthropic.count_tokens except ImportError: raise ImportError( "Could not import anthropic python package. " "Please it install it with `pip install anthropic`." ) return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Anthropic API.""" d = { "max_tokens_to_sample": self.max_tokens_to_sample, "model": self.model, } if self.temperature is not None: d["temperature"] = self.temperature if self.top_k is not None: d["top_k"] = self.top_k if self.top_p is not None: d["top_p"] = self.top_p return d @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{}, **self._default_params} def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if stop is None: stop = []
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
ec486957182e-2
if stop is None: stop = [] # Never want model to invent new turns of Human / Assistant dialog. stop.extend([self.HUMAN_PROMPT]) return stop [docs]class Anthropic(LLM, _AnthropicCommon): r"""Wrapper around Anthropic's large language models. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key") # Simplest invocation, automatically wrapped with HUMAN_PROMPT # and AI_PROMPT. response = model("What are the biggest risks facing humanity?") # Or if you want to use the chat mode, build a few-shot-prompt, or # put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT: raw_prompt = "What are the biggest risks facing humanity?" prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}" response = model(prompt) """ @root_validator() def raise_warning(cls, values: Dict) -> Dict: """Raise warning that this class is deprecated.""" warnings.warn( "This Anthropic LLM is deprecated. " "Please use `from langchain.chat_models import ChatAnthropic` instead" ) return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
ec486957182e-3
extra = Extra.forbid @property def _llm_type(self) -> str: """Return type of llm.""" return "anthropic-llm" def _wrap_prompt(self, prompt: str) -> str: if not self.HUMAN_PROMPT or not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if prompt.startswith(self.HUMAN_PROMPT): return prompt # Already wrapped. # Guard against common errors in specifying wrong number of newlines. corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt) if n_subs == 1: return corrected_prompt # As a last resort, wrap the prompt ourselves to emulate instruct-style. return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: r"""Call out to Anthropic's completion endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What are the biggest risks facing humanity?" prompt = f"\n\nHuman: {prompt}\n\nAssistant:" response = model(prompt) """ stop = self._get_anthropic_stop(stop) if self.streaming: stream_resp = self.client.completion_stream(
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
ec486957182e-4
if self.streaming: stream_resp = self.client.completion_stream( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **self._default_params, ) current_completion = "" for data in stream_resp: delta = data["completion"][len(current_completion) :] current_completion = data["completion"] if run_manager: run_manager.on_llm_new_token(delta, **data) return current_completion response = self.client.completion( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **self._default_params, ) return response["completion"] async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> str: """Call out to Anthropic's completion endpoint asynchronously.""" stop = self._get_anthropic_stop(stop) if self.streaming: stream_resp = await self.client.acompletion_stream( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **self._default_params, ) current_completion = "" async for data in stream_resp: delta = data["completion"][len(current_completion) :] current_completion = data["completion"] if run_manager: await run_manager.on_llm_new_token(delta, **data) return current_completion response = await self.client.acompletion( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **self._default_params, ) return response["completion"]
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
ec486957182e-5
**self._default_params, ) return response["completion"] [docs] def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator: r"""Call Anthropic completion_stream and return the resulting generator. BETA: this is a beta feature while we figure out the right abstraction. Once that happens, this interface could change. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) return self.client.completion_stream( prompt=self._wrap_prompt(prompt), stop_sequences=stop, **self._default_params, ) [docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/anthropic.html
3f9b725500cf-0
Source code for langchain.llms.rwkv """Wrapper for the RWKV model. Based on https://github.com/saharNooby/rwkv.cpp/blob/master/rwkv/chat_with_bot.py https://github.com/BlinkDL/ChatRWKV/blob/main/v2/chat.py """ from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import BaseModel, Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens [docs]class RWKV(LLM, BaseModel): r"""Wrapper around RWKV language models. To use, you should have the ``rwkv`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import RWKV model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32") # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained RWKV model file.""" tokens_path: str """Path to the RWKV tokens file.""" strategy: str = "cpu fp32" """Token context window.""" rwkv_verbose: bool = True """Print debug information.""" temperature: float = 1.0 """The temperature to use for sampling.""" top_p: float = 0.5 """The top-p value to use for sampling.""" penalty_alpha_frequency: float = 0.4 """Positive values penalize new tokens based on their existing frequency
https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html
3f9b725500cf-1
"""Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim..""" penalty_alpha_presence: float = 0.4 """Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics..""" CHUNK_LEN: int = 256 """Batch size for prompt processing.""" max_tokens_per_generation: int = 256 """Maximum number of tokens to generate.""" client: Any = None #: :meta private: tokenizer: Any = None #: :meta private: pipeline: Any = None #: :meta private: model_tokens: Any = None #: :meta private: model_state: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _default_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "verbose": self.verbose, "top_p": self.top_p, "temperature": self.temperature, "penalty_alpha_frequency": self.penalty_alpha_frequency, "penalty_alpha_presence": self.penalty_alpha_presence, "CHUNK_LEN": self.CHUNK_LEN, "max_tokens_per_generation": self.max_tokens_per_generation, } @staticmethod def _rwkv_param_names() -> Set[str]: """Get the identifying parameters.""" return { "verbose", } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment."""
https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html
3f9b725500cf-2
"""Validate that the python package exists in the environment.""" try: import tokenizers except ImportError: raise ImportError( "Could not import tokenizers python package. " "Please install it with `pip install tokenizers`." ) try: from rwkv.model import RWKV as RWKVMODEL from rwkv.utils import PIPELINE values["tokenizer"] = tokenizers.Tokenizer.from_file(values["tokens_path"]) rwkv_keys = cls._rwkv_param_names() model_kwargs = {k: v for k, v in values.items() if k in rwkv_keys} model_kwargs["verbose"] = values["rwkv_verbose"] values["client"] = RWKVMODEL( values["model"], strategy=values["strategy"], **model_kwargs ) values["pipeline"] = PIPELINE(values["client"], values["tokens_path"]) except ImportError: raise ValueError( "Could not import rwkv python package. " "Please install it with `pip install rwkv`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params, **{k: v for k, v in self.__dict__.items() if k in RWKV._rwkv_param_names()}, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "rwkv-4" def run_rnn(self, _tokens: List[str], newline_adj: int = 0) -> Any: AVOID_REPEAT_TOKENS = []
https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html
3f9b725500cf-3
AVOID_REPEAT_TOKENS = [] AVOID_REPEAT = ",:?!" for i in AVOID_REPEAT: dd = self.pipeline.encode(i) assert len(dd) == 1 AVOID_REPEAT_TOKENS += dd tokens = [int(x) for x in _tokens] self.model_tokens += tokens out: Any = None while len(tokens) > 0: out, self.model_state = self.client.forward( tokens[: self.CHUNK_LEN], self.model_state ) tokens = tokens[self.CHUNK_LEN :] END_OF_LINE = 187 out[END_OF_LINE] += newline_adj # adjust \n probability if self.model_tokens[-1] in AVOID_REPEAT_TOKENS: out[self.model_tokens[-1]] = -999999999 return out def rwkv_generate(self, prompt: str) -> str: self.model_state = None self.model_tokens = [] logits = self.run_rnn(self.tokenizer.encode(prompt).ids) begin = len(self.model_tokens) out_last = begin occurrence: Dict = {} decoded = "" for i in range(self.max_tokens_per_generation): for n in occurrence: logits[n] -= ( self.penalty_alpha_presence + occurrence[n] * self.penalty_alpha_frequency ) token = self.pipeline.sample_logits( logits, temperature=self.temperature, top_p=self.top_p ) END_OF_TEXT = 0 if token == END_OF_TEXT: break if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 logits = self.run_rnn([token])
https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html
3f9b725500cf-4
occurrence[token] += 1 logits = self.run_rnn([token]) xxx = self.tokenizer.decode(self.model_tokens[out_last:]) if "\ufffd" not in xxx: # avoid utf-8 display issues decoded += xxx out_last = begin + i + 1 if i >= self.max_tokens_per_generation - 100: break return decoded def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: r"""RWKV generation Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text = self.rwkv_generate(prompt) if stop is not None: text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/rwkv.html
9a5feace4e4c-0
Source code for langchain.chat_models.azure_openai """Azure OpenAI chat wrapper.""" from __future__ import annotations import logging from typing import Any, Dict, Mapping from pydantic import root_validator from langchain.chat_models.openai import ChatOpenAI from langchain.schema import ChatResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureChatOpenAI(ChatOpenAI): """Wrapper around Azure OpenAI Chat Completion API. To use this class you must have a deployed model on Azure OpenAI. Use `deployment_name` in the constructor to refer to the "Model deployment name" in the Azure portal. In addition, you should have the ``openai`` python package installed, and the following environment variables set or passed in constructor in lower case: - ``OPENAI_API_TYPE`` (default: ``azure``) - ``OPENAI_API_KEY`` - ``OPENAI_API_BASE`` - ``OPENAI_API_VERSION`` - ``OPENAI_PROXY`` For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name `35-turbo-dev`, the constructor should look like: .. code-block:: python AzureChatOpenAI( deployment_name="35-turbo-dev", openai_api_version="2023-03-15-preview", ) Be aware the API version may change. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. """ deployment_name: str = "" openai_api_type: str = "azure" openai_api_base: str = ""
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
9a5feace4e4c-1
openai_api_base: str = "" openai_api_version: str = "" openai_api_key: str = "" openai_organization: str = "" openai_proxy: str = "" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", ) values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
9a5feace4e4c-2
except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { **super()._default_params, "engine": self.deployment_name, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: openai_creds = { "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_creds, **super()._invocation_params} @property def _llm_type(self) -> str: return "azure-openai-chat" def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: for res in response["choices"]: if res.get("finish_reason", None) == "content_filter": raise ValueError( "Azure has not provided the response due to a content" " filter being triggered" ) return super()._create_chat_result(response) By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
9a5feace4e4c-3
) return super()._create_chat_result(response) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/azure_openai.html
ee32f1594022-0
Source code for langchain.chat_models.promptlayer_openai """PromptLayer wrapper.""" import datetime from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models import ChatOpenAI from langchain.schema import BaseMessage, ChatResult [docs]class PromptLayerChatOpenAI(ChatOpenAI): """Wrapper around OpenAI Chat large language models and PromptLayer. To use, you should have the ``openai`` and ``promptlayer`` python package installed, and the environment variable ``OPENAI_API_KEY`` and ``PROMPTLAYER_API_KEY`` set with your openAI API key and promptlayer key respectively. All parameters that can be passed to the OpenAI LLM can also be passed here. The PromptLayerChatOpenAI adds to optional parameters: ``pl_tags``: List of strings to tag the request with. ``return_pl_id``: If True, the PromptLayer request ID will be returned in the ``generation_info`` field of the ``Generation`` object. Example: .. code-block:: python from langchain.chat_models import PromptLayerChatOpenAI openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo") """ pl_tags: Optional[List[str]] return_pl_id: Optional[bool] = False def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
ee32f1594022-1
) -> ChatResult: """Call ChatOpenAI generate and then call PromptLayer API to log the request.""" from promptlayer.utils import get_api_key, promptlayer_api_request request_start_time = datetime.datetime.now().timestamp() generated_responses = super()._generate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) pl_request_id = promptlayer_api_request( "langchain.PromptLayerChatOpenAI", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: """Call ChatOpenAI agenerate and then call PromptLayer to log.""" from promptlayer.utils import get_api_key, promptlayer_api_request_async request_start_time = datetime.datetime.now().timestamp() generated_responses = await super()._agenerate(messages, stop, run_manager)
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
ee32f1594022-2
generated_responses = await super()._agenerate(messages, stop, run_manager) request_end_time = datetime.datetime.now().timestamp() message_dicts, params = super()._create_message_dicts(messages, stop) for i, generation in enumerate(generated_responses.generations): response_dict, params = super()._create_message_dicts( [generation.message], stop ) pl_request_id = await promptlayer_api_request_async( "langchain.PromptLayerChatOpenAI.async", "langchain", message_dicts, params, self.pl_tags, response_dict, request_start_time, request_end_time, get_api_key(), return_pl_id=self.return_pl_id, ) if self.return_pl_id: if generation.generation_info is None or not isinstance( generation.generation_info, dict ): generation.generation_info = {} generation.generation_info["pl_request_id"] = pl_request_id return generated_responses @property def _llm_type(self) -> str: return "promptlayer-openai-chat" @property def _identifying_params(self) -> Mapping[str, Any]: return { **super()._identifying_params, "pl_tags": self.pl_tags, "return_pl_id": self.return_pl_id, } By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/promptlayer_openai.html
0c1e4b78ffca-0
Source code for langchain.chat_models.vertexai """Wrapper around Google VertexAI chat-based models.""" from dataclasses import dataclass, field from typing import Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.vertexai import _VertexAICommon from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatResult, HumanMessage, SystemMessage, ) from langchain.utilities.vertexai import raise_vertex_import_error @dataclass class _MessagePair: """InputOutputTextPair represents a pair of input and output texts.""" question: HumanMessage answer: AIMessage @dataclass class _ChatHistory: """InputOutputTextPair represents a pair of input and output texts.""" history: List[_MessagePair] = field(default_factory=list) system_message: Optional[SystemMessage] = None def _parse_chat_history(history: List[BaseMessage]) -> _ChatHistory: """Parse a sequence of messages into history. A sequence should be either (SystemMessage, HumanMessage, AIMessage, HumanMessage, AIMessage, ...) or (HumanMessage, AIMessage, HumanMessage, AIMessage, ...). Args: history: The list of messages to re-create the history of the chat. Returns: A parsed chat history. Raises: ValueError: If a sequence of message is odd, or a human message is not followed by a message from AI (e.g., Human, Human, AI or AI, AI, Human). """ if not history:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html
0c1e4b78ffca-1
""" if not history: return _ChatHistory() first_message = history[0] system_message = first_message if isinstance(first_message, SystemMessage) else None chat_history = _ChatHistory(system_message=system_message) messages_left = history[1:] if system_message else history if len(messages_left) % 2 != 0: raise ValueError( f"Amount of messages in history should be even, got {len(messages_left)}!" ) for question, answer in zip(messages_left[::2], messages_left[1::2]): if not isinstance(question, HumanMessage) or not isinstance(answer, AIMessage): raise ValueError( "A human message should follow a bot one, " f"got {question.type}, {answer.type}." ) chat_history.history.append(_MessagePair(question=question, answer=answer)) return chat_history [docs]class ChatVertexAI(_VertexAICommon, BaseChatModel): """Wrapper around Vertex AI large language models.""" model_name: str = "chat-bison" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import ChatModel except ImportError: raise_vertex_import_error() values["client"] = ChatModel.from_pretrained(values["model_name"]) return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html
0c1e4b78ffca-2
) -> ChatResult: """Generate next turn in the conversation. Args: messages: The history of the conversation as a list of messages. stop: The list of stop words (optional). run_manager: The Callbackmanager for LLM run, it's not used at the moment. Returns: The ChatResult that contains outputs generated by the model. Raises: ValueError: if the last message in the list is not from human. """ if not messages: raise ValueError( "You should provide at least one message to start the chat!" ) question = messages[-1] if not isinstance(question, HumanMessage): raise ValueError( f"Last message in the list should be from human, got {question.type}." ) history = _parse_chat_history(messages[:-1]) context = history.system_message.content if history.system_message else None chat = self.client.start_chat(context=context, **self._default_params) for pair in history.history: chat._history.append((pair.question.content, pair.answer.content)) response = chat.send_message(question.content, **self._default_params) text = self._enforce_stop_words(response.text, stop) return ChatResult(generations=[ChatGeneration(message=AIMessage(content=text))]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: raise NotImplementedError( """Vertex AI doesn't support async requests at the moment.""" ) By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html
0c1e4b78ffca-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/vertexai.html
ef05ca6fd5bd-0
Source code for langchain.chat_models.openai """OpenAI chat wrapper.""" from __future__ import annotations import logging import sys from typing import ( TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Union, ) from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import tiktoken logger = logging.getLogger(__name__) def _import_tiktoken() -> Any: try: import tiktoken except ImportError: raise ValueError( "Could not import tiktoken python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install tiktoken`." ) return tiktoken def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry(
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-1
return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) def _convert_dict_to_message(_dict: dict) -> BaseMessage: role = _dict["role"] if role == "user": return HumanMessage(content=_dict["content"]) elif role == "assistant": return AIMessage(content=_dict["content"]) elif role == "system": return SystemMessage(content=_dict["content"]) else: return ChatMessage(content=_dict["content"], role=role) def _convert_message_to_dict(message: BaseMessage) -> dict: if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage):
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-2
elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} else: raise ValueError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict [docs]class ChatOpenAI(BaseChatModel): """Wrapper around OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") """ client: Any #: :meta private: model_name: str = Field(default="gpt-3.5-turbo", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None """Base URL path for API requests, leave blank if not using a proxy or service emulator."""
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-3
leave blank if not using a proxy or service emulator.""" openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-4
if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) try: import openai except ImportError: raise ValueError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) if values["n"] < 1:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-5
) if values["n"] < 1: raise ValueError("n must be at least 1.") if values["n"] > 1 and values["streaming"]: raise ValueError("n must be 1 when streaming.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return { "model": self.model_name, "request_timeout": self.request_timeout, "max_tokens": self.max_tokens, "stream": self.streaming, "n": self.n, "temperature": self.temperature, **self.model_kwargs, } def _create_retry_decorator(self) -> Callable[[Any], Any]: import openai min_seconds = 1 max_seconds = 60 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) [docs] def completion_with_retry(self, **kwargs: Any) -> Any: """Use tenacity to retry the completion call."""
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-6
"""Use tenacity to retry the completion call.""" retry_decorator = self._create_retry_decorator() @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return self.client.create(**kwargs) return _completion_with_retry(**kwargs) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: overall_token_usage: dict = {} for output in llm_outputs: if output is None: # Happens in streaming continue token_usage = output["token_usage"] for k, v in token_usage.items(): if k in overall_token_usage: overall_token_usage[k] += v else: overall_token_usage[k] = v return {"token_usage": overall_token_usage, "model_name": self.model_name} def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True for stream_resp in self.completion_with_retry( messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} )
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-7
{"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) response = self.completion_with_retry(messages=message_dicts, **params) return self._create_chat_result(response) def _create_message_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = dict(self._invocation_params) if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for res in response["choices"]: message = _convert_dict_to_message(res["message"]) gen = ChatGeneration(message=message) generations.append(gen) llm_output = {"token_usage": response["usage"], "model_name": self.model_name} return ChatResult(generations=generations, llm_output=llm_output) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: message_dicts, params = self._create_message_dicts(messages, stop) if self.streaming: inner_completion = "" role = "assistant" params["stream"] = True async for stream_resp in await acompletion_with_retry(
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-8
async for stream_resp in await acompletion_with_retry( self, messages=message_dicts, **params ): role = stream_resp["choices"][0]["delta"].get("role", role) token = stream_resp["choices"][0]["delta"].get("content", "") inner_completion += token if run_manager: await run_manager.on_llm_new_token(token) message = _convert_dict_to_message( {"content": inner_completion, "role": role} ) return ChatResult(generations=[ChatGeneration(message=message)]) else: response = await acompletion_with_retry( self, messages=message_dicts, **params ) return self._create_chat_result(response) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _invocation_params(self) -> Mapping[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, "model": self.model_name, } if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _llm_type(self) -> str: """Return type of chat model.""" return "openai-chat"
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-9
"""Return type of chat model.""" return "openai-chat" def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: tiktoken_ = _import_tiktoken() model = self.model_name if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" # Returns the number of tokens used by a list of messages. try: encoding = tiktoken_.encoding_for_model(model) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken_.get_encoding(model) return model, encoding [docs] def get_token_ids(self, text: str) -> List[int]: """Get the tokens present in the text with tiktoken package.""" # tiktoken NOT supported for Python 3.7 or below if sys.version_info[1] <= 7: return super().get_token_ids(text) _, encoding_model = self._get_encoding_model() return encoding_model.encode(text) [docs] def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
ef05ca6fd5bd-10
Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" if sys.version_info[1] <= 7: return super().get_num_tokens_from_messages(messages) model, encoding = self._get_encoding_model() if model == "gpt-3.5-turbo-0301": # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"get_num_tokens_from_messages() is not presently implemented " f"for model {model}." "See https://github.com/openai/openai-python/blob/main/chatml.md for " "information on how messages are converted to tokens." ) num_tokens = 0 messages_dict = [_convert_message_to_dict(m) for m in messages] for message in messages_dict: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name # every reply is primed with <im_start>assistant num_tokens += 3 return num_tokens By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/openai.html
9c94f72abc3f-0
Source code for langchain.chat_models.google_palm """Wrapper around Google's PaLM Chat API.""" from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional from pydantic import BaseModel, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: import google.generativeai as genai logger = logging.getLogger(__name__) class ChatGooglePalmError(Exception): pass def _truncate_at_stop_tokens( text: str, stop: Optional[List[str]], ) -> str: """Truncates text at the earliest stop token found.""" if stop is None: return text for stop_token in stop: stop_token_idx = text.find(stop_token) if stop_token_idx != -1: text = text[:stop_token_idx] return text def _response_to_result( response: genai.types.ChatResponse, stop: Optional[List[str]], ) -> ChatResult: """Converts a PaLM API response into a LangChain ChatResult.""" if not response.candidates: raise ChatGooglePalmError("ChatResponse must have at least one candidate.")
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-1
raise ChatGooglePalmError("ChatResponse must have at least one candidate.") generations: List[ChatGeneration] = [] for candidate in response.candidates: author = candidate.get("author") if author is None: raise ChatGooglePalmError(f"ChatResponse must have an author: {candidate}") content = _truncate_at_stop_tokens(candidate.get("content", ""), stop) if content is None: raise ChatGooglePalmError(f"ChatResponse must have a content: {candidate}") if author == "ai": generations.append( ChatGeneration(text=content, message=AIMessage(content=content)) ) elif author == "human": generations.append( ChatGeneration( text=content, message=HumanMessage(content=content), ) ) else: generations.append( ChatGeneration( text=content, message=ChatMessage(role=author, content=content), ) ) return ChatResult(generations=generations) def _messages_to_prompt_dict( input_messages: List[BaseMessage], ) -> genai.types.MessagePromptDict: """Converts a list of LangChain messages into a PaLM API MessagePrompt structure.""" import google.generativeai as genai context: str = "" examples: List[genai.types.MessageDict] = [] messages: List[genai.types.MessageDict] = [] remaining = list(enumerate(input_messages)) while remaining: index, input_message = remaining.pop(0) if isinstance(input_message, SystemMessage): if index != 0: raise ChatGooglePalmError("System message must be first input message.")
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-2
raise ChatGooglePalmError("System message must be first input message.") context = input_message.content elif isinstance(input_message, HumanMessage) and input_message.example: if messages: raise ChatGooglePalmError( "Message examples must come before other messages." ) _, next_input_message = remaining.pop(0) if isinstance(next_input_message, AIMessage) and next_input_message.example: examples.extend( [ genai.types.MessageDict( author="human", content=input_message.content ), genai.types.MessageDict( author="ai", content=next_input_message.content ), ] ) else: raise ChatGooglePalmError( "Human example message must be immediately followed by an " " AI example response." ) elif isinstance(input_message, AIMessage) and input_message.example: raise ChatGooglePalmError( "AI example message must be immediately preceded by a Human " "example message." ) elif isinstance(input_message, AIMessage): messages.append( genai.types.MessageDict(author="ai", content=input_message.content) ) elif isinstance(input_message, HumanMessage): messages.append( genai.types.MessageDict(author="human", content=input_message.content) ) elif isinstance(input_message, ChatMessage): messages.append( genai.types.MessageDict( author=input_message.role, content=input_message.content ) ) else: raise ChatGooglePalmError( "Messages without an explicit role not supported by PaLM API." ) return genai.types.MessagePromptDict( context=context, examples=examples,
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-3
context=context, examples=examples, messages=messages, ) def _create_retry_decorator() -> Callable[[Any], Any]: """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions""" import google.api_core.exceptions multiplier = 2 min_seconds = 1 max_seconds = 60 max_retries = 10 return retry( reraise=True, stop=stop_after_attempt(max_retries), wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(google.api_core.exceptions.ResourceExhausted) | retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable) | retry_if_exception_type(google.api_core.exceptions.GoogleAPIError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def chat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _chat_with_retry(**kwargs: Any) -> Any: return llm.client.chat(**kwargs) return _chat_with_retry(**kwargs) async def achat_with_retry(llm: ChatGooglePalm, **kwargs: Any) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator async def _achat_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.chat_async(**kwargs) return await _achat_with_retry(**kwargs)
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-4
return await _achat_with_retry(**kwargs) [docs]class ChatGooglePalm(BaseChatModel, BaseModel): """Wrapper around Google's PaLM Chat API. To use you must have the google.generativeai Python package installed and either: 1. The ``GOOGLE_API_KEY``` environment varaible set with your API key, or 2. Pass your API key using the google_api_key kwarg to the ChatGoogle constructor. Example: .. code-block:: python from langchain.chat_models import ChatGooglePalm chat = ChatGooglePalm() """ client: Any #: :meta private: model_name: str = "models/chat-bison-001" """Model name to use.""" google_api_key: Optional[str] = None temperature: Optional[float] = None """Run inference with this temperature. Must by in the closed interval [0.0, 1.0].""" top_p: Optional[float] = None """Decode using nucleus sampling: consider the smallest set of tokens whose probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" top_k: Optional[int] = None """Decode using top-k sampling: consider the set of top_k most probable tokens. Must be positive.""" n: int = 1 """Number of chat completions to generate for each prompt. Note that the API may not return the full n completions if duplicates are generated.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate api key, python package exists, temperature, top_p, and top_k."""
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-5
"""Validate api key, python package exists, temperature, top_p, and top_k.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" ) try: import google.generativeai as genai genai.configure(api_key=google_api_key) except ImportError: raise ChatGooglePalmError( "Could not import google.generativeai python package. " "Please install it with `pip install google-generativeai`" ) values["client"] = genai if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") if values["top_k"] is not None and values["top_k"] <= 0: raise ValueError("top_k must be positive") return values def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult: prompt = _messages_to_prompt_dict(messages) response: genai.types.ChatResponse = chat_with_retry( self, model=self.model_name, prompt=prompt, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, candidate_count=self.n, ) return _response_to_result(response, stop)
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
9c94f72abc3f-6
) return _response_to_result(response, stop) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: prompt = _messages_to_prompt_dict(messages) response: genai.types.ChatResponse = await achat_with_retry( self, model=self.model_name, prompt=prompt, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k, candidate_count=self.n, ) return _response_to_result(response, stop) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "n": self.n, } @property def _llm_type(self) -> str: return "google-palm-chat" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/google_palm.html
e92bf4bdc192-0
Source code for langchain.chat_models.anthropic from typing import Any, Dict, List, Optional from pydantic import Extra from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.chat_models.base import BaseChatModel from langchain.llms.anthropic import _AnthropicCommon from langchain.schema import ( AIMessage, BaseMessage, ChatGeneration, ChatMessage, ChatResult, HumanMessage, SystemMessage, ) [docs]class ChatAnthropic(BaseChatModel, _AnthropicCommon): r"""Wrapper around Anthropic's large language model. To use, you should have the ``anthropic`` python package installed, and the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python import anthropic from langchain.llms import Anthropic model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key") """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _llm_type(self) -> str: """Return type of chat model.""" return "anthropic-chat" def _convert_one_message_to_text(self, message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"{self.HUMAN_PROMPT} {message.content}" elif isinstance(message, AIMessage):
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
e92bf4bdc192-1
elif isinstance(message, AIMessage): message_text = f"{self.AI_PROMPT} {message.content}" elif isinstance(message, SystemMessage): message_text = f"{self.HUMAN_PROMPT} <admin>{message.content}</admin>" else: raise ValueError(f"Got unknown type {message}") return message_text def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str: """Format a list of strings into a single string with necessary newlines. Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary newlines. """ return "".join( self._convert_one_message_to_text(message) for message in messages ) def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. Returns: str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags. """ if not self.AI_PROMPT: raise NameError("Please ensure the anthropic package is loaded") if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = self._convert_messages_to_text(messages) return ( text.rstrip() ) # trim off the trailing ' ' that might come from the "Assistant: " def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> ChatResult:
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
e92bf4bdc192-2
) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = self.client.completion_stream(**params) for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: run_manager.on_llm_new_token( delta, ) else: response = self.client.completion(**params) completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, ) -> ChatResult: prompt = self._convert_messages_to_prompt(messages) params: Dict[str, Any] = {"prompt": prompt, **self._default_params} if stop: params["stop_sequences"] = stop if self.streaming: completion = "" stream_resp = await self.client.acompletion_stream(**params) async for data in stream_resp: delta = data["completion"][len(completion) :] completion = data["completion"] if run_manager: await run_manager.on_llm_new_token( delta, ) else: response = await self.client.acompletion(**params) completion = response["completion"] message = AIMessage(content=completion)
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
e92bf4bdc192-3
completion = response["completion"] message = AIMessage(content=completion) return ChatResult(generations=[ChatGeneration(message=message)]) [docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError("Please ensure the anthropic package is loaded") return self.count_tokens(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chat_models/anthropic.html
fc6046c4dbfd-0
Source code for langchain.prompts.few_shot """Prompt template that contains few shot examples.""" from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.prompts.base import ( DEFAULT_FORMATTER_MAPPING, StringPromptTemplate, check_valid_template, ) from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.prompts.prompt import PromptTemplate [docs]class FewShotPromptTemplate(StringPromptTemplate): """Prompt template that contains few shot examples.""" examples: Optional[List[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" example_selector: Optional[BaseExampleSelector] = None """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: str """A prompt template string to put after the examples.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: str = "" """A prompt template string to put before the examples.""" template_format: str = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2'.""" validate_template: bool = True """Whether or not to try validating the template.""" @root_validator(pre=True) def check_examples_and_selector(cls, values: Dict) -> Dict: """Check that one and only one of examples/example_selector are provided."""
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
fc6046c4dbfd-1
"""Check that one and only one of examples/example_selector are provided.""" examples = values.get("examples", None) example_selector = values.get("example_selector", None) if examples and example_selector: raise ValueError( "Only one of 'examples' and 'example_selector' should be provided" ) if examples is None and example_selector is None: raise ValueError( "One of 'examples' and 'example_selector' should be provided" ) return values @root_validator() def template_is_valid(cls, values: Dict) -> Dict: """Check that prefix, suffix and input variables are consistent.""" if values["validate_template"]: check_valid_template( values["prefix"] + values["suffix"], values["template_format"], values["input_variables"] + list(values["partial_variables"]), ) return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def _get_examples(self, **kwargs: Any) -> List[dict]: if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError [docs] def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use.
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
fc6046c4dbfd-2
# Get the examples to use. examples = self._get_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall template. pieces = [self.prefix, *example_strings, self.suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) @property def _prompt_type(self) -> str: """Return the prompt type key.""" return "few_shot" [docs] def dict(self, **kwargs: Any) -> Dict: """Return a dictionary of the prompt.""" if self.example_selector: raise ValueError("Saving an example selector is not currently supported") return super().dict(**kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
96fca020a6dd-0
Source code for langchain.prompts.chat """Chat prompt template.""" from __future__ import annotations from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, List, Sequence, Tuple, Type, TypeVar, Union from pydantic import BaseModel, Field from langchain.memory.buffer import get_buffer_string from langchain.prompts.base import BasePromptTemplate, StringPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AIMessage, BaseMessage, ChatMessage, HumanMessage, PromptValue, SystemMessage, ) class BaseMessagePromptTemplate(BaseModel, ABC): @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To messages.""" @property @abstractmethod def input_variables(self) -> List[str]: """Input variables for this prompt template.""" [docs]class MessagesPlaceholder(BaseMessagePromptTemplate): """Prompt template that assumes variable is already list of messages.""" variable_name: str [docs] def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """To a BaseMessage.""" value = kwargs[self.variable_name] if not isinstance(value, list): raise ValueError( f"variable {self.variable_name} should be a list of base messages, " f"got {value}" ) for v in value: if not isinstance(v, BaseMessage): raise ValueError( f"variable {self.variable_name} should be a list of base messages," f" got {value}" ) return value @property def input_variables(self) -> List[str]: """Input variables for this prompt template."""
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
96fca020a6dd-1
"""Input variables for this prompt template.""" return [self.variable_name] MessagePromptTemplateT = TypeVar( "MessagePromptTemplateT", bound="BaseStringMessagePromptTemplate" ) class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC): prompt: StringPromptTemplate additional_kwargs: dict = Field(default_factory=dict) @classmethod def from_template( cls: Type[MessagePromptTemplateT], template: str, template_format: str = "f-string", **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_template(template, template_format=template_format) return cls(prompt=prompt, **kwargs) @classmethod def from_template_file( cls: Type[MessagePromptTemplateT], template_file: Union[str, Path], input_variables: List[str], **kwargs: Any, ) -> MessagePromptTemplateT: prompt = PromptTemplate.from_file(template_file, input_variables) return cls(prompt=prompt, **kwargs) @abstractmethod def format(self, **kwargs: Any) -> BaseMessage: """To a BaseMessage.""" def format_messages(self, **kwargs: Any) -> List[BaseMessage]: return [self.format(**kwargs)] @property def input_variables(self) -> List[str]: return self.prompt.input_variables class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate): role: str def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return ChatMessage( content=text, role=self.role, additional_kwargs=self.additional_kwargs ) class HumanMessagePromptTemplate(BaseStringMessagePromptTemplate):
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
96fca020a6dd-2
) class HumanMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return HumanMessage(content=text, additional_kwargs=self.additional_kwargs) class AIMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return AIMessage(content=text, additional_kwargs=self.additional_kwargs) class SystemMessagePromptTemplate(BaseStringMessagePromptTemplate): def format(self, **kwargs: Any) -> BaseMessage: text = self.prompt.format(**kwargs) return SystemMessage(content=text, additional_kwargs=self.additional_kwargs) class ChatPromptValue(PromptValue): messages: List[BaseMessage] def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return self.messages [docs]class BaseChatPromptTemplate(BasePromptTemplate, ABC): [docs] def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() [docs] def format_prompt(self, **kwargs: Any) -> PromptValue: messages = self.format_messages(**kwargs) return ChatPromptValue(messages=messages) [docs] @abstractmethod def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """Format kwargs into a list of messages.""" [docs]class ChatPromptTemplate(BaseChatPromptTemplate, ABC): input_variables: List[str] messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] @classmethod
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
96fca020a6dd-3
messages: List[Union[BaseMessagePromptTemplate, BaseMessage]] @classmethod def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate: prompt_template = PromptTemplate.from_template(template, **kwargs) message = HumanMessagePromptTemplate(prompt=prompt_template) return cls.from_messages([message]) @classmethod def from_role_strings( cls, string_messages: List[Tuple[str, str]] ) -> ChatPromptTemplate: messages = [ ChatMessagePromptTemplate( prompt=PromptTemplate.from_template(template), role=role ) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_strings( cls, string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]] ) -> ChatPromptTemplate: messages = [ role(prompt=PromptTemplate.from_template(template)) for role, template in string_messages ] return cls.from_messages(messages) @classmethod def from_messages( cls, messages: Sequence[Union[BaseMessagePromptTemplate, BaseMessage]] ) -> ChatPromptTemplate: input_vars = set() for message in messages: if isinstance(message, BaseMessagePromptTemplate): input_vars.update(message.input_variables) return cls(input_variables=list(input_vars), messages=messages) [docs] def format(self, **kwargs: Any) -> str: return self.format_prompt(**kwargs).to_string() [docs] def format_messages(self, **kwargs: Any) -> List[BaseMessage]: kwargs = self._merge_partial_and_user_variables(**kwargs) result = [] for message_template in self.messages:
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
96fca020a6dd-4
result = [] for message_template in self.messages: if isinstance(message_template, BaseMessage): result.extend([message_template]) elif isinstance(message_template, BaseMessagePromptTemplate): rel_params = { k: v for k, v in kwargs.items() if k in message_template.input_variables } message = message_template.format_messages(**rel_params) result.extend(message) else: raise ValueError(f"Unexpected input: {message_template}") return result [docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: raise NotImplementedError @property def _prompt_type(self) -> str: raise NotImplementedError [docs] def save(self, file_path: Union[Path, str]) -> None: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
9d63fb169c0b-0
Source code for langchain.prompts.base """BasePrompt schema definition.""" from __future__ import annotations import json from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Mapping, Optional, Set, Union import yaml from pydantic import BaseModel, Extra, Field, root_validator from langchain.formatting import formatter from langchain.schema import BaseMessage, BaseOutputParser, HumanMessage, PromptValue def jinja2_formatter(template: str, **kwargs: Any) -> str: """Format a template using jinja2.""" try: from jinja2 import Template except ImportError: raise ImportError( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." ) return Template(template).render(**kwargs) def validate_jinja2(template: str, input_variables: List[str]) -> None: input_variables_set = set(input_variables) valid_variables = _get_jinja2_variables_from_template(template) missing_variables = valid_variables - input_variables_set extra_variables = input_variables_set - valid_variables error_message = "" if missing_variables: error_message += f"Missing variables: {missing_variables} " if extra_variables: error_message += f"Extra variables: {extra_variables}" if error_message: raise KeyError(error_message.strip()) def _get_jinja2_variables_from_template(template: str) -> Set[str]: try: from jinja2 import Environment, meta except ImportError: raise ImportError( "jinja2 not installed, which is needed to use the jinja2_formatter. "
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
9d63fb169c0b-1
"Please install it with `pip install jinja2`." ) env = Environment() ast = env.parse(template) variables = meta.find_undeclared_variables(ast) return variables DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = { "f-string": formatter.format, "jinja2": jinja2_formatter, } DEFAULT_VALIDATOR_MAPPING: Dict[str, Callable] = { "f-string": formatter.validate_input_variables, "jinja2": validate_jinja2, } def check_valid_template( template: str, template_format: str, input_variables: List[str] ) -> None: """Check that template string is valid.""" if template_format not in DEFAULT_FORMATTER_MAPPING: valid_formats = list(DEFAULT_FORMATTER_MAPPING) raise ValueError( f"Invalid template format. Got `{template_format}`;" f" should be one of {valid_formats}" ) try: validator_func = DEFAULT_VALIDATOR_MAPPING[template_format] validator_func(template, input_variables) except KeyError as e: raise ValueError( "Invalid prompt schema; check for mismatched or missing input parameters. " + str(e) ) class StringPromptValue(PromptValue): text: str def to_string(self) -> str: """Return prompt as string.""" return self.text def to_messages(self) -> List[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=self.text)] [docs]class BasePromptTemplate(BaseModel, ABC): """Base class for all prompt templates, returning a prompt.""" input_variables: List[str] """A list of the names of the variables the prompt template expects."""
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
9d63fb169c0b-2
"""A list of the names of the variables the prompt template expects.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field( default_factory=dict ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] @abstractmethod def format_prompt(self, **kwargs: Any) -> PromptValue: """Create Chat Messages.""" @root_validator() def validate_variable_names(cls, values: Dict) -> Dict: """Validate variable names do not include restricted names.""" if "stop" in values["input_variables"]: raise ValueError( "Cannot have an input variable named 'stop', as it is used internally," " please rename." ) if "stop" in values["partial_variables"]: raise ValueError( "Cannot have an partial variable named 'stop', as it is used " "internally, please rename." ) overall = set(values["input_variables"]).intersection( values["partial_variables"] ) if overall: raise ValueError( f"Found overlapping input and partial variables: {overall}" ) return values [docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: """Return a partial of the prompt template.""" prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs}
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
9d63fb169c0b-3
prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict) def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]: # Get partial params: partial_kwargs = { k: v if isinstance(v, str) else v() for k, v in self.partial_variables.items() } return {**partial_kwargs, **kwargs} [docs] @abstractmethod def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ @property def _prompt_type(self) -> str: """Return the prompt type key.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of prompt.""" prompt_dict = super().dict(**kwargs) prompt_dict["_type"] = self._prompt_type return prompt_dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the prompt. Args: file_path: Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: raise ValueError("Cannot save prompt with partial variables.") # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
9d63fb169c0b-4
save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save prompt_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(prompt_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs]class StringPromptTemplate(BasePromptTemplate, ABC): """String prompt should expose the format method, returning a prompt.""" [docs] def format_prompt(self, **kwargs: Any) -> PromptValue: """Create Chat Messages.""" return StringPromptValue(text=self.format(**kwargs)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
b8ee990c8f3f-0
Source code for langchain.prompts.prompt """Prompt schema definition.""" from __future__ import annotations from pathlib import Path from string import Formatter from typing import Any, Dict, List, Union from pydantic import Extra, root_validator from langchain.prompts.base import ( DEFAULT_FORMATTER_MAPPING, StringPromptTemplate, _get_jinja2_variables_from_template, check_valid_template, ) [docs]class PromptTemplate(StringPromptTemplate): """Schema to represent a prompt for an LLM. Example: .. code-block:: python from langchain import PromptTemplate prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}") """ input_variables: List[str] """A list of the names of the variables the prompt template expects.""" template: str """The prompt template.""" template_format: str = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2'.""" validate_template: bool = True """Whether or not to try validating the template.""" @property def _prompt_type(self) -> str: """Return the prompt type key.""" return "prompt" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ kwargs = self._merge_partial_and_user_variables(**kwargs)
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
b8ee990c8f3f-1
""" kwargs = self._merge_partial_and_user_variables(**kwargs) return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs) @root_validator() def template_is_valid(cls, values: Dict) -> Dict: """Check that template and input variables are consistent.""" if values["validate_template"]: all_inputs = values["input_variables"] + list(values["partial_variables"]) check_valid_template( values["template"], values["template_format"], all_inputs ) return values [docs] @classmethod def from_examples( cls, examples: List[str], suffix: str, input_variables: List[str], example_separator: str = "\n\n", prefix: str = "", **kwargs: Any, ) -> PromptTemplate: """Take examples in list format with prefix and suffix to create a prompt. Intended to be used as a way to dynamically create a prompt from examples. Args: examples: List of examples to use in the prompt. suffix: String to go after the list of examples. Should generally set up the user's input. input_variables: A list of variable names the final prompt template will expect. example_separator: The separator to use in between examples. Defaults to two new line characters. prefix: String that should go before any examples. Generally includes examples. Default to an empty string. Returns: The final prompt generated. """ template = example_separator.join([prefix, *examples, suffix]) return cls(input_variables=input_variables, template=template, **kwargs) [docs] @classmethod def from_file(
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
b8ee990c8f3f-2
[docs] @classmethod def from_file( cls, template_file: Union[str, Path], input_variables: List[str], **kwargs: Any ) -> PromptTemplate: """Load a prompt from a file. Args: template_file: The path to the file containing the prompt template. input_variables: A list of variable names the final prompt template will expect. Returns: The prompt loaded from the file. """ with open(str(template_file), "r") as f: template = f.read() return cls(input_variables=input_variables, template=template, **kwargs) [docs] @classmethod def from_template(cls, template: str, **kwargs: Any) -> PromptTemplate: """Load a prompt template from a template.""" if "template_format" in kwargs and kwargs["template_format"] == "jinja2": # Get the variables for the template input_variables = _get_jinja2_variables_from_template(template) else: input_variables = { v for _, v, _, _ in Formatter().parse(template) if v is not None } if "partial_variables" in kwargs: partial_variables = kwargs["partial_variables"] input_variables = { var for var in input_variables if var not in partial_variables } return cls( input_variables=list(sorted(input_variables)), template=template, **kwargs ) # For backwards compatibility. Prompt = PromptTemplate By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
8eccc9cc9134-0
Source code for langchain.prompts.few_shot_with_templates """Prompt template that contains few shot examples.""" from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, StringPromptTemplate from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.prompts.prompt import PromptTemplate [docs]class FewShotPromptWithTemplates(StringPromptTemplate): """Prompt template that contains few shot examples.""" examples: Optional[List[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" example_selector: Optional[BaseExampleSelector] = None """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: StringPromptTemplate """A PromptTemplate to put after the examples.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: Optional[StringPromptTemplate] = None """A PromptTemplate to put before the examples.""" template_format: str = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2'.""" validate_template: bool = True """Whether or not to try validating the template.""" @root_validator(pre=True) def check_examples_and_selector(cls, values: Dict) -> Dict: """Check that one and only one of examples/example_selector are provided.""" examples = values.get("examples", None)
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
8eccc9cc9134-1
examples = values.get("examples", None) example_selector = values.get("example_selector", None) if examples and example_selector: raise ValueError( "Only one of 'examples' and 'example_selector' should be provided" ) if examples is None and example_selector is None: raise ValueError( "One of 'examples' and 'example_selector' should be provided" ) return values @root_validator() def template_is_valid(cls, values: Dict) -> Dict: """Check that prefix, suffix and input variables are consistent.""" if values["validate_template"]: input_variables = values["input_variables"] expected_input_variables = set(values["suffix"].input_variables) expected_input_variables |= set(values["partial_variables"]) if values["prefix"] is not None: expected_input_variables |= set(values["prefix"].input_variables) missing_vars = expected_input_variables.difference(input_variables) if missing_vars: raise ValueError( f"Got input_variables={input_variables}, but based on " f"prefix/suffix expected {expected_input_variables}" ) return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def _get_examples(self, **kwargs: Any) -> List[dict]: if self.examples is not None: return self.examples elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: raise ValueError [docs] def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template.
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
8eccc9cc9134-2
Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = self._get_examples(**kwargs) # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall prefix. if self.prefix is None: prefix = "" else: prefix_kwargs = { k: v for k, v in kwargs.items() if k in self.prefix.input_variables } for k in prefix_kwargs.keys(): kwargs.pop(k) prefix = self.prefix.format(**prefix_kwargs) # Create the overall suffix suffix_kwargs = { k: v for k, v in kwargs.items() if k in self.suffix.input_variables } for k in suffix_kwargs.keys(): kwargs.pop(k) suffix = self.suffix.format( **suffix_kwargs, ) pieces = [prefix, *example_strings, suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) @property def _prompt_type(self) -> str: """Return the prompt type key.""" return "few_shot_with_templates" [docs] def dict(self, **kwargs: Any) -> Dict: """Return a dictionary of the prompt.""" if self.example_selector:
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
8eccc9cc9134-3
"""Return a dictionary of the prompt.""" if self.example_selector: raise ValueError("Saving an example selector is not currently supported") return super().dict(**kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
3f574573f4a2-0
Source code for langchain.prompts.loading """Load prompts from disk.""" import importlib import json import logging from pathlib import Path from typing import Union import yaml from langchain.output_parsers.regex import RegexParser from langchain.prompts.base import BasePromptTemplate from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/prompts/" logger = logging.getLogger(__name__) def load_prompt_from_config(config: dict) -> BasePromptTemplate: """Load prompt from Config Dict.""" if "_type" not in config: logger.warning("No `_type` key found, defaulting to `prompt`.") config_type = config.pop("_type", "prompt") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} prompt not supported") prompt_loader = type_to_loader_dict[config_type] return prompt_loader(config) def _load_template(var_name: str, config: dict) -> dict: """Load template from disk if applicable.""" # Check if template_path exists in config. if f"{var_name}_path" in config: # If it does, make sure template variable doesn't also exist. if var_name in config: raise ValueError( f"Both `{var_name}_path` and `{var_name}` cannot be provided." ) # Pop the template path from the config. template_path = Path(config.pop(f"{var_name}_path")) # Load the template. if template_path.suffix == ".txt": with open(template_path) as f:
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
3f574573f4a2-1
with open(template_path) as f: template = f.read() else: raise ValueError # Set the template variable to the extracted variable. config[var_name] = template return config def _load_examples(config: dict) -> dict: """Load examples if necessary.""" if isinstance(config["examples"], list): pass elif isinstance(config["examples"], str): with open(config["examples"]) as f: if config["examples"].endswith(".json"): examples = json.load(f) elif config["examples"].endswith((".yaml", ".yml")): examples = yaml.safe_load(f) else: raise ValueError( "Invalid file format. Only json or yaml formats are supported." ) config["examples"] = examples else: raise ValueError("Invalid examples format. Only list or string are supported.") return config def _load_output_parser(config: dict) -> dict: """Load output parser.""" if "output_parser" in config and config["output_parser"]: _config = config.pop("output_parser") output_parser_type = _config.pop("_type") if output_parser_type == "regex_parser": output_parser = RegexParser(**_config) else: raise ValueError(f"Unsupported output parser {output_parser_type}") config["output_parser"] = output_parser return config def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate: """Load the few shot prompt from the config.""" # Load the suffix and prefix templates. config = _load_template("suffix", config) config = _load_template("prefix", config) # Load the example prompt.
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
3f574573f4a2-2
config = _load_template("prefix", config) # Load the example prompt. if "example_prompt_path" in config: if "example_prompt" in config: raise ValueError( "Only one of example_prompt and example_prompt_path should " "be specified." ) config["example_prompt"] = load_prompt(config.pop("example_prompt_path")) else: config["example_prompt"] = load_prompt_from_config(config["example_prompt"]) # Load the examples. config = _load_examples(config) config = _load_output_parser(config) return FewShotPromptTemplate(**config) def _load_prompt(config: dict) -> PromptTemplate: """Load the prompt template from config.""" # Load the template from disk if necessary. config = _load_template("template", config) config = _load_output_parser(config) return PromptTemplate(**config) [docs]def load_prompt(path: Union[str, Path]) -> BasePromptTemplate: """Unified method for loading a prompt from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_prompt_from_file, "prompts", {"py", "json", "yaml"} ): return hub_result else: return _load_prompt_from_file(path) def _load_prompt_from_file(file: Union[str, Path]) -> BasePromptTemplate: """Load prompt from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f)
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
3f574573f4a2-3
with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) elif file_path.suffix == ".py": spec = importlib.util.spec_from_loader( "prompt", loader=None, origin=str(file_path) ) if spec is None: raise ValueError("could not load spec") helper = importlib.util.module_from_spec(spec) with open(file_path, "rb") as f: exec(f.read(), helper.__dict__) if not isinstance(helper.PROMPT, BasePromptTemplate): raise ValueError("Did not get object of type BasePromptTemplate.") return helper.PROMPT else: raise ValueError(f"Got unsupported file type {file_path.suffix}") # Load the prompt from the config now. return load_prompt_from_config(config) type_to_loader_dict = { "prompt": _load_prompt, "few_shot": _load_few_shot_prompt, # "few_shot_with_templates": _load_few_shot_with_templates_prompt, } By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
aed627abb0c0-0
Source code for langchain.prompts.example_selector.length_based """Select examples based on length.""" import re from typing import Callable, Dict, List from pydantic import BaseModel, validator from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.prompts.prompt import PromptTemplate def _get_length_based(text: str) -> int: return len(re.split("\n| ", text)) [docs]class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): """Select examples based on length.""" examples: List[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" get_text_length: Callable[[str], int] = _get_length_based """Function to measure prompt length. Defaults to word count.""" max_length: int = 2048 """Max length for the prompt, beyond which examples are cut.""" example_text_lengths: List[int] = [] #: :meta private: [docs] def add_example(self, example: Dict[str, str]) -> None: """Add new example to list.""" self.examples.append(example) string_example = self.example_prompt.format(**example) self.example_text_lengths.append(self.get_text_length(string_example)) @validator("example_text_lengths", always=True) def calculate_example_text_lengths(cls, v: List[int], values: Dict) -> List[int]: """Calculate text lengths if they don't exist.""" # Check if text lengths were passed in if v: return v # If they were not, calculate them example_prompt = values["example_prompt"] get_text_length = values["get_text_length"]
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/length_based.html
aed627abb0c0-1
get_text_length = values["get_text_length"] string_examples = [example_prompt.format(**eg) for eg in values["examples"]] return [get_text_length(eg) for eg in string_examples] [docs] def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the input lengths.""" inputs = " ".join(input_variables.values()) remaining_length = self.max_length - self.get_text_length(inputs) i = 0 examples = [] while remaining_length > 0 and i < len(self.examples): new_length = remaining_length - self.example_text_lengths[i] if new_length < 0: break else: examples.append(self.examples[i]) remaining_length = new_length i += 1 return examples By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/length_based.html
68742d912109-0
Source code for langchain.prompts.example_selector.semantic_similarity """Example selector that selects examples based on SemanticSimilarity.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Type from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings from langchain.prompts.example_selector.base import BaseExampleSelector from langchain.vectorstores.base import VectorStore def sorted_values(values: Dict[str, str]) -> List[Any]: """Return a list of values in dict sorted by key.""" return [values[val] for val in sorted(values)] [docs]class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel): """Example selector that selects examples based on SemanticSimilarity.""" vectorstore: VectorStore """VectorStore than contains information about examples.""" k: int = 4 """Number of examples to select.""" example_keys: Optional[List[str]] = None """Optional keys to filter examples to.""" input_keys: Optional[List[str]] = None """Optional keys to filter input to. If provided, the search is based on the input variables instead of all variables.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] def add_example(self, example: Dict[str, str]) -> str: """Add new example to vectorstore.""" if self.input_keys: string_example = " ".join( sorted_values({key: example[key] for key in self.input_keys}) ) else: string_example = " ".join(sorted_values(example)) ids = self.vectorstore.add_texts([string_example], metadatas=[example]) return ids[0]
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/semantic_similarity.html
68742d912109-1
return ids[0] [docs] def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on semantic similarity.""" # Get the docs with the highest similarity. if self.input_keys: input_variables = {key: input_variables[key] for key in self.input_keys} query = " ".join(sorted_values(input_variables)) example_docs = self.vectorstore.similarity_search(query, k=self.k) # Get the examples from the metadata. # This assumes that examples are stored in metadata. examples = [dict(e.metadata) for e in example_docs] # If example keys are provided, filter examples to those keys. if self.example_keys: examples = [{k: eg[k] for k in self.example_keys} for eg in examples] return examples [docs] @classmethod def from_examples( cls, examples: List[dict], embeddings: Embeddings, vectorstore_cls: Type[VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, **vectorstore_cls_kwargs: Any, ) -> SemanticSimilarityExampleSelector: """Create k-shot example selector using example list and embeddings. Reshuffles examples dynamically based on query similarity. Args: examples: List of examples to use in the prompt. embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings(). vectorstore_cls: A vector store DB interface class, e.g. FAISS. k: Number of examples to select input_keys: If provided, the search is based on the input variables instead of all variables.
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/semantic_similarity.html
68742d912109-2
instead of all variables. vectorstore_cls_kwargs: optional kwargs containing url for vector store Returns: The ExampleSelector instantiated, backed by a vector store. """ if input_keys: string_examples = [ " ".join(sorted_values({k: eg[k] for k in input_keys})) for eg in examples ] else: string_examples = [" ".join(sorted_values(eg)) for eg in examples] vectorstore = vectorstore_cls.from_texts( string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs ) return cls(vectorstore=vectorstore, k=k, input_keys=input_keys) [docs]class MaxMarginalRelevanceExampleSelector(SemanticSimilarityExampleSelector): """ExampleSelector that selects examples based on Max Marginal Relevance. This was shown to improve performance in this paper: https://arxiv.org/pdf/2211.13892.pdf """ fetch_k: int = 20 """Number of examples to fetch to rerank.""" [docs] def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on semantic similarity.""" # Get the docs with the highest similarity. if self.input_keys: input_variables = {key: input_variables[key] for key in self.input_keys} query = " ".join(sorted_values(input_variables)) example_docs = self.vectorstore.max_marginal_relevance_search( query, k=self.k, fetch_k=self.fetch_k ) # Get the examples from the metadata. # This assumes that examples are stored in metadata. examples = [dict(e.metadata) for e in example_docs]
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/semantic_similarity.html
68742d912109-3
examples = [dict(e.metadata) for e in example_docs] # If example keys are provided, filter examples to those keys. if self.example_keys: examples = [{k: eg[k] for k in self.example_keys} for eg in examples] return examples [docs] @classmethod def from_examples( cls, examples: List[dict], embeddings: Embeddings, vectorstore_cls: Type[VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, fetch_k: int = 20, **vectorstore_cls_kwargs: Any, ) -> MaxMarginalRelevanceExampleSelector: """Create k-shot example selector using example list and embeddings. Reshuffles examples dynamically based on query similarity. Args: examples: List of examples to use in the prompt. embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings(). vectorstore_cls: A vector store DB interface class, e.g. FAISS. k: Number of examples to select input_keys: If provided, the search is based on the input variables instead of all variables. vectorstore_cls_kwargs: optional kwargs containing url for vector store Returns: The ExampleSelector instantiated, backed by a vector store. """ if input_keys: string_examples = [ " ".join(sorted_values({k: eg[k] for k in input_keys})) for eg in examples ] else: string_examples = [" ".join(sorted_values(eg)) for eg in examples] vectorstore = vectorstore_cls.from_texts( string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs )
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/semantic_similarity.html
68742d912109-4
) return cls(vectorstore=vectorstore, k=k, fetch_k=fetch_k, input_keys=input_keys) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/prompts/example_selector/semantic_similarity.html
b1c978110697-0
Source code for langchain.agents.initialize """Load agent.""" from typing import Any, Optional, Sequence from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import AGENT_TO_CLASS, load_agent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.tools.base import BaseTool [docs]def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. agent_kwargs: Additional key word arguments to pass to the underlying agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be."
https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
b1c978110697-1
"but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) else: raise ValueError( "Somehow both `agent` and `agent_path` are None, " "this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
c9638ff90a75-0
Source code for langchain.agents.agent """Chain that takes in an input and produces an action and action input.""" from __future__ import annotations import asyncio import json import logging import time from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import yaml from pydantic import BaseModel, root_validator from langchain.agents.agent_types import AgentType from langchain.agents.tools import InvalidTool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, AsyncCallbackManagerForToolRun, CallbackManagerForChainRun, CallbackManagerForToolRun, Callbacks, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.input import get_color_mapping from langchain.prompts.base import BasePromptTemplate from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AgentAction, AgentFinish, BaseMessage, BaseOutputParser, OutputParserException, ) from langchain.tools.base import BaseTool from langchain.utilities.asyncio import asyncio_timeout logger = logging.getLogger(__name__) [docs]class BaseSingleActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-1
return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-2
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseSingleActionAgent: raise NotImplementedError @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _type = self._agent_type if isinstance(_type, AgentType): _dict["_type"] = str(_type.value) else: _dict["_type"] = _type return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-3
directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class BaseMultiActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]:
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-4
**kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish({"output": "Agent stopped due to max iterations."}, "") else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _dict["_type"] = str(self._agent_type) return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-5
Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class AgentOutputParser(BaseOutputParser): [docs] @abstractmethod def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse text into agent action/finish.""" [docs]class LLMSingleActionAgent(BaseSingleActionAgent): llm_chain: LLMChain output_parser: AgentOutputParser stop: List[str] @property def input_keys(self) -> List[str]: return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def plan(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-6
return _dict [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = self.llm_chain.run( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = await self.llm_chain.arun( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": "", "observation_prefix": "" if len(self.stop) == 0 else self.stop[0], }
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-7
} [docs]class Agent(BaseSingleActionAgent): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain output_parser: AgentOutputParser allowed_tools: Optional[List[str]] = None [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def get_allowed_tools(self) -> Optional[List[str]]: return self.allowed_tools @property def return_values(self) -> List[str]: return ["output"] def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts [docs] def plan( self,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-8
return thoughts [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps."""
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-9
"""Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" [docs] @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-10
"""Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass @classmethod @abstractmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: """Get default output parser for this class.""" [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-11
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self.output_parser.parse(full_output) if isinstance(parsed_output, AgentFinish): # If we can extract, we send the correct stuff return parsed_output else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": self.llm_prefix, "observation_prefix": self.observation_prefix, } class ExceptionTool(BaseTool): name = "_Exception"
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c9638ff90a75-12
} class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query [docs]class AgentExecutor(Chain): """Consists of an agent using tools.""" agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] tools: Sequence[BaseTool] return_intermediate_steps: bool = False max_iterations: Optional[int] = 15 max_execution_time: Optional[float] = None early_stopping_method: str = "force" handle_parsing_errors: Union[ bool, str, Callable[[OutputParserException], str] ] = False [docs] @classmethod def from_agent_and_tools( cls, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] allowed_tools = agent.get_allowed_tools()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html