id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
c9638ff90a75-13 | tools = values["tools"]
allowed_tools = agent.get_allowed_tools()
if allowed_tools is not None:
if set(allowed_tools) != set([tool.name for tool in tools]):
raise ValueError(
f"Allowed tools ({allowed_tools}) different than "
f"provided tools ({[tool.name for tool in tools]})"
)
return values
@root_validator()
def validate_return_direct_tool(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.return_direct:
raise ValueError(
"Tools that have `return_direct=True` are not allowed "
"in multi-action agents"
)
return values
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Raise error - saving not supported for Agent Executors."""
raise ValueError(
"Saving not supported for agent executors. "
"If you are trying to save the agent, please use the "
"`.save_agent(...)`"
)
[docs] def save_agent(self, file_path: Union[Path, str]) -> None:
"""Save the underlying agent."""
return self.agent.save(file_path)
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return self.agent.input_keys
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if self.return_intermediate_steps: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-14 | :meta private:
"""
if self.return_intermediate_steps:
return self.agent.return_values + ["intermediate_steps"]
else:
return self.agent.return_values
[docs] def lookup_tool(self, name: str) -> BaseTool:
"""Lookup tool by name."""
return {tool.name: tool for tool in self.tools}[name]
def _should_continue(self, iterations: int, time_elapsed: float) -> bool:
if self.max_iterations is not None and iterations >= self.max_iterations:
return False
if (
self.max_execution_time is not None
and time_elapsed >= self.max_execution_time
):
return False
return True
def _return(
self,
output: AgentFinish,
intermediate_steps: list,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
if run_manager:
run_manager.on_agent_finish(output, color="green", verbose=self.verbose)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
async def _areturn(
self,
output: AgentFinish,
intermediate_steps: list,
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
if run_manager:
await run_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
def _take_next_step(
self, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-15 | return final_output
def _take_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
try:
# Call the LLM to see what to do.
output = self.agent.plan(
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.handle_parsing_errors, bool):
raise_error = not self.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise e
text = str(e)
if isinstance(self.handle_parsing_errors, bool):
if e.send_to_llm:
observation = str(e.observation)
text = str(e.llm_output)
else:
observation = "Invalid or incomplete response"
elif isinstance(self.handle_parsing_errors, str):
observation = self.handle_parsing_errors
elif callable(self.handle_parsing_errors):
observation = self.handle_parsing_errors(e)
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, text)
if run_manager:
run_manager.on_agent_action(output, color="green") | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-16 | if run_manager:
run_manager.on_agent_action(output, color="green")
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = ExceptionTool().run(
output.tool_input,
verbose=self.verbose,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
return [(output, observation)]
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
result = []
for agent_action in actions:
if run_manager:
run_manager.on_agent_action(agent_action, color="green")
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = tool.run(
agent_action.tool_input,
verbose=self.verbose,
color=color,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = InvalidTool().run(
agent_action.tool,
verbose=self.verbose,
color=None,
callbacks=run_manager.get_child() if run_manager else None, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-17 | color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
result.append((agent_action, observation))
return result
async def _atake_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
try:
# Call the LLM to see what to do.
output = await self.agent.aplan(
intermediate_steps,
callbacks=run_manager.get_child() if run_manager else None,
**inputs,
)
except OutputParserException as e:
if isinstance(self.handle_parsing_errors, bool):
raise_error = not self.handle_parsing_errors
else:
raise_error = False
if raise_error:
raise e
text = str(e)
if isinstance(self.handle_parsing_errors, bool):
if e.send_to_llm:
observation = str(e.observation)
text = str(e.llm_output)
else:
observation = "Invalid or incomplete response"
elif isinstance(self.handle_parsing_errors, str):
observation = self.handle_parsing_errors
elif callable(self.handle_parsing_errors):
observation = self.handle_parsing_errors(e)
else: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-18 | observation = self.handle_parsing_errors(e)
else:
raise ValueError("Got unexpected type of `handle_parsing_errors`")
output = AgentAction("_Exception", observation, text)
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = await ExceptionTool().arun(
output.tool_input,
verbose=self.verbose,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
return [(output, observation)]
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
async def _aperform_agent_action(
agent_action: AgentAction,
) -> Tuple[AgentAction, str]:
if run_manager:
await run_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = await tool.arun(
agent_action.tool_input,
verbose=self.verbose,
color=color,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
else: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-19 | **tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = await InvalidTool().arun(
agent_action.tool,
verbose=self.verbose,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
return agent_action, observation
# Use asyncio.gather to run multiple tool.arun() calls concurrently
result = await asyncio.gather(
*[_aperform_agent_action(agent_action) for agent_action in actions]
)
return list(result)
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green", "red"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
while self._should_continue(iterations, time_elapsed):
next_step_output = self._take_next_step(
name_to_tool_map,
color_mapping,
inputs,
intermediate_steps,
run_manager=run_manager,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-20 | inputs,
intermediate_steps,
run_manager=run_manager,
)
if isinstance(next_step_output, AgentFinish):
return self._return(
next_step_output, intermediate_steps, run_manager=run_manager
)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(
tool_return, intermediate_steps, run_manager=run_manager
)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return self._return(output, intermediate_steps, run_manager=run_manager)
async def _acall(
self,
inputs: Dict[str, str],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time() | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-21 | time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
async with asyncio_timeout(self.max_execution_time):
try:
while self._should_continue(iterations, time_elapsed):
next_step_output = await self._atake_next_step(
name_to_tool_map,
color_mapping,
inputs,
intermediate_steps,
run_manager=run_manager,
)
if isinstance(next_step_output, AgentFinish):
return await self._areturn(
next_step_output,
intermediate_steps,
run_manager=run_manager,
)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return await self._areturn(
tool_return, intermediate_steps, run_manager=run_manager
)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(
output, intermediate_steps, run_manager=run_manager
)
except TimeoutError:
# stop early when interrupted by the async timeout
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(
output, intermediate_steps, run_manager=run_manager
)
def _get_tool_return(
self, next_step_output: Tuple[AgentAction, str] | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
c9638ff90a75-22 | self, next_step_output: Tuple[AgentAction, str]
) -> Optional[AgentFinish]:
"""Check if the tool is a returning tool."""
agent_action, observation = next_step_output
name_to_tool_map = {tool.name: tool for tool in self.tools}
# Invalid tools won't be in the map, so we return False.
if agent_action.tool in name_to_tool_map:
if name_to_tool_map[agent_action.tool].return_direct:
return AgentFinish(
{self.agent.return_values[0]: observation},
"",
)
return None
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
a913293a28bc-0 | Source code for langchain.agents.loading
"""Functionality for loading agents."""
import json
import logging
from pathlib import Path
from typing import Any, List, Optional, Union
import yaml
from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.tools import Tool
from langchain.agents.types import AGENT_TO_CLASS
from langchain.base_language import BaseLanguageModel
from langchain.chains.loading import load_chain, load_chain_from_config
from langchain.utilities.loading import try_load_from_hub
logger = logging.getLogger(__file__)
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/"
def _load_agent_from_tools(
config: dict, llm: BaseLanguageModel, tools: List[Tool], **kwargs: Any
) -> BaseSingleActionAgent:
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
combined_config = {**config, **kwargs}
return agent_cls.from_llm_and_tools(llm, tools, **combined_config)
def load_agent_from_config(
config: dict,
llm: Optional[BaseLanguageModel] = None,
tools: Optional[List[Tool]] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
"""Load agent from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify an agent Type in config")
load_from_tools = config.pop("load_from_llm_and_tools", False)
if load_from_tools:
if llm is None:
raise ValueError( | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
a913293a28bc-1 | if load_from_tools:
if llm is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then LLM must be provided"
)
if tools is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then tools must be provided"
)
return _load_agent_from_tools(config, llm, tools, **kwargs)
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
if "llm_chain" in config:
config["llm_chain"] = load_chain_from_config(config.pop("llm_chain"))
elif "llm_chain_path" in config:
config["llm_chain"] = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.")
if "output_parser" in config:
logger.warning(
"Currently loading output parsers on agent is not supported, "
"will just use the default one."
)
del config["output_parser"]
combined_config = {**config, **kwargs}
return agent_cls(**combined_config) # type: ignore
[docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent:
"""Unified method for loading a agent from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_agent_from_file, "agents", {"json", "yaml"} | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
a913293a28bc-2 | path, _load_agent_from_file, "agents", {"json", "yaml"}
):
return hub_result
else:
return _load_agent_from_file(path, **kwargs)
def _load_agent_from_file(
file: Union[str, Path], **kwargs: Any
) -> BaseSingleActionAgent:
"""Load agent from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Load the agent from the config now.
return load_agent_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
9291600aa6ee-0 | Source code for langchain.agents.agent_types
from enum import Enum
[docs]class AgentType(str, Enum):
ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description"
REACT_DOCSTORE = "react-docstore"
SELF_ASK_WITH_SEARCH = "self-ask-with-search"
CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description"
CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description"
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description"
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = (
"structured-chat-zero-shot-react-description"
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html |
fde3fa009cfe-0 | Source code for langchain.agents.load_tools
# flake8: noqa
"""Load tools."""
import warnings
from typing import Any, Dict, List, Optional, Callable, Tuple
from mypy_extensions import Arg, KwArg
from langchain.agents.tools import Tool
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
from langchain.chains.api.base import APIChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.pal.base import PALChain
from langchain.requests import TextRequestsWrapper
from langchain.tools.arxiv.tool import ArxivQueryRun
from langchain.tools.pubmed.tool import PubmedQueryRun
from langchain.tools.base import BaseTool
from langchain.tools.bing_search.tool import BingSearchRun
from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
from langchain.tools.metaphor_search.tool import MetaphorSearchResults
from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun
from langchain.tools.graphql.tool import BaseGraphQLTool
from langchain.tools.human.tool import HumanInputRun
from langchain.tools.python.tool import PythonREPLTool
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain.tools.scenexplain.tool import SceneXplainTool
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
from langchain.tools.shell.tool import ShellTool | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-1 | from langchain.tools.shell.tool import ShellTool
from langchain.tools.sleep.tool import SleepTool
from langchain.tools.wikipedia.tool import WikipediaQueryRun
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun
from langchain.utilities import ArxivAPIWrapper
from langchain.utilities import PubMedAPIWrapper
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
from langchain.utilities.awslambda import LambdaWrapper
from langchain.utilities.graphql import GraphQLAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.twilio import TwilioAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
def _get_python_repl() -> BaseTool:
return PythonREPLTool()
def _get_tools_requests_get() -> BaseTool:
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_post() -> BaseTool:
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_patch() -> BaseTool:
return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_put() -> BaseTool:
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_delete() -> BaseTool: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-2 | def _get_tools_requests_delete() -> BaseTool:
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
def _get_terminal() -> BaseTool:
return ShellTool()
def _get_sleep() -> BaseTool:
return SleepTool()
_BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = {
"python_repl": _get_python_repl,
"requests": _get_tools_requests_get, # preserved for backwards compatability
"requests_get": _get_tools_requests_get,
"requests_post": _get_tools_requests_post,
"requests_patch": _get_tools_requests_patch,
"requests_put": _get_tools_requests_put,
"requests_delete": _get_tools_requests_delete,
"terminal": _get_terminal,
"sleep": _get_sleep,
}
def _get_pal_math(llm: BaseLanguageModel) -> BaseTool:
return Tool(
name="PAL-MATH",
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.",
func=PALChain.from_math_prompt(llm).run,
)
def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool:
return Tool(
name="PAL-COLOR-OBJ",
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
func=PALChain.from_colored_object_prompt(llm).run,
)
def _get_llm_math(llm: BaseLanguageModel) -> BaseTool:
return Tool(
name="Calculator", | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-3 | return Tool(
name="Calculator",
description="Useful for when you need to answer questions about math.",
func=LLMMathChain.from_llm(llm=llm).run,
coroutine=LLMMathChain.from_llm(llm=llm).arun,
)
def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool:
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
return Tool(
name="Open Meteo API",
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
_LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = {
"pal-math": _get_pal_math,
"pal-colored-objects": _get_pal_colored_objects,
"llm-math": _get_llm_math,
"open-meteo-api": _get_open_meteo_api,
}
def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
news_api_key = kwargs["news_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
)
return Tool(
name="News API",
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
func=chain.run,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-4 | func=chain.run,
)
def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
tmdb_bearer_token = kwargs["tmdb_bearer_token"]
chain = APIChain.from_llm_and_api_docs(
llm,
tmdb_docs.TMDB_DOCS,
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
)
return Tool(
name="TMDB API",
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
listen_api_key = kwargs["listen_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm,
podcast_docs.PODCAST_DOCS,
headers={"X-ListenAPI-Key": listen_api_key},
)
return Tool(
name="Podcast API",
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_lambda_api(**kwargs: Any) -> BaseTool:
return Tool(
name=kwargs["awslambda_tool_name"],
description=kwargs["awslambda_tool_description"],
func=LambdaWrapper(**kwargs).run,
)
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool:
return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
def _get_google_search(**kwargs: Any) -> BaseTool: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-5 | def _get_google_search(**kwargs: Any) -> BaseTool:
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_wikipedia(**kwargs: Any) -> BaseTool:
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
def _get_arxiv(**kwargs: Any) -> BaseTool:
return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs))
def _get_pupmed(**kwargs: Any) -> BaseTool:
return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs))
def _get_google_serper(**kwargs: Any) -> BaseTool:
return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
def _get_google_serper_results_json(**kwargs: Any) -> BaseTool:
return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_serpapi(**kwargs: Any) -> BaseTool:
return Tool(
name="Search",
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.",
func=SerpAPIWrapper(**kwargs).run,
coroutine=SerpAPIWrapper(**kwargs).arun,
)
def _get_twilio(**kwargs: Any) -> BaseTool:
return Tool(
name="Text Message",
description="Useful for when you need to send a text message to a provided phone number.",
func=TwilioAPIWrapper(**kwargs).run,
)
def _get_searx_search(**kwargs: Any) -> BaseTool: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-6 | )
def _get_searx_search(**kwargs: Any) -> BaseTool:
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
def _get_bing_search(**kwargs: Any) -> BaseTool:
return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
def _get_metaphor_search(**kwargs: Any) -> BaseTool:
return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs))
def _get_ddg_search(**kwargs: Any) -> BaseTool:
return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs))
def _get_human_tool(**kwargs: Any) -> BaseTool:
return HumanInputRun(**kwargs)
def _get_scenexplain(**kwargs: Any) -> BaseTool:
return SceneXplainTool(**kwargs)
def _get_graphql_tool(**kwargs: Any) -> BaseTool:
graphql_endpoint = kwargs["graphql_endpoint"]
wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint)
return BaseGraphQLTool(graphql_wrapper=wrapper)
def _get_openweathermap(**kwargs: Any) -> BaseTool:
return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs))
_EXTRA_LLM_TOOLS: Dict[
str,
Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]],
] = { | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-7 | ] = {
"news-api": (_get_news_api, ["news_api_key"]),
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
}
_EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = {
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
"google-search-results-json": (
_get_google_search_results_json,
["google_api_key", "google_cse_id", "num_results"],
),
"searx-search-results-json": (
_get_searx_search_results_json,
["searx_host", "engines", "num_results", "aiosession"],
),
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
"metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]),
"ddg-search": (_get_ddg_search, []),
"google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]),
"google-serper-results-json": (
_get_google_serper_results_json,
["serper_api_key", "aiosession"],
),
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]),
"twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]), | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-8 | "searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
"wikipedia": (_get_wikipedia, ["top_k_results", "lang"]),
"arxiv": (
_get_arxiv,
["top_k_results", "load_max_docs", "load_all_available_meta"],
),
"pupmed": (
_get_pupmed,
["top_k_results", "load_max_docs", "load_all_available_meta"],
),
"human": (_get_human_tool, ["prompt_func", "input_func"]),
"awslambda": (
_get_lambda_api,
["awslambda_tool_name", "awslambda_tool_description", "function_name"],
),
"sceneXplain": (_get_scenexplain, []),
"graphql": (_get_graphql_tool, ["graphql_endpoint"]),
"openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]),
}
def _handle_callbacks(
callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks
) -> Callbacks:
if callback_manager is not None:
warnings.warn(
"callback_manager is deprecated. Please use callbacks instead.",
DeprecationWarning,
)
if callbacks is not None:
raise ValueError(
"Cannot specify both callback_manager and callbacks arguments."
)
return callback_manager
return callbacks
[docs]def load_huggingface_tool(
task_or_repo_id: str,
model_repo_id: Optional[str] = None,
token: Optional[str] = None,
remote: bool = False,
**kwargs: Any,
) -> BaseTool:
try: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-9 | **kwargs: Any,
) -> BaseTool:
try:
from transformers import load_tool
except ImportError:
raise ValueError(
"HuggingFace tools require the libraries `transformers>=4.29.0`"
" and `huggingface_hub>=0.14.1` to be installed."
" Please install it with"
" `pip install --upgrade transformers huggingface_hub`."
)
hf_tool = load_tool(
task_or_repo_id,
model_repo_id=model_repo_id,
token=token,
remote=remote,
**kwargs,
)
outputs = hf_tool.outputs
if set(outputs) != {"text"}:
raise NotImplementedError("Multimodal outputs not supported yet.")
inputs = hf_tool.inputs
if set(inputs) != {"text"}:
raise NotImplementedError("Multimodal inputs not supported yet.")
return Tool.from_function(
hf_tool.__call__, name=hf_tool.name, description=hf_tool.description
)
[docs]def load_tools(
tool_names: List[str],
llm: Optional[BaseLanguageModel] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> List[BaseTool]:
"""Load tools based on their name.
Args:
tool_names: name of tools to load.
llm: Optional language model, may be needed to initialize certain tools.
callbacks: Optional callback manager or list of callback handlers.
If not provided, default global callback manager will be used.
Returns:
List of tools.
"""
tools = []
callbacks = _handle_callbacks(
callback_manager=kwargs.get("callback_manager"), callbacks=callbacks | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-10 | callback_manager=kwargs.get("callback_manager"), callbacks=callbacks
)
for name in tool_names:
if name == "requests":
warnings.warn(
"tool name `requests` is deprecated - "
"please use `requests_all` or specify the requests method"
)
if name == "requests_all":
# expand requests into various methods
requests_method_tools = [
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
]
tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS:
tools.append(_BASE_TOOLS[name]())
elif name in _LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
tool = _LLM_TOOLS[name](llm)
tools.append(tool)
elif name in _EXTRA_LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
_get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
missing_keys = set(extra_keys).difference(kwargs)
if missing_keys:
raise ValueError(
f"Tool {name} requires some parameters that were not "
f"provided: {missing_keys}"
)
sub_kwargs = {k: kwargs[k] for k in extra_keys}
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
tools.append(tool)
elif name in _EXTRA_OPTIONAL_TOOLS:
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
fde3fa009cfe-11 | _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
tool = _get_tool_func(**sub_kwargs)
tools.append(tool)
else:
raise ValueError(f"Got unknown tool {name}")
if callbacks is not None:
for tool in tools:
tool.callbacks = callbacks
return tools
[docs]def get_all_tool_names() -> List[str]:
"""Get a list of all possible tool names."""
return (
list(_BASE_TOOLS)
+ list(_EXTRA_OPTIONAL_TOOLS)
+ list(_EXTRA_LLM_TOOLS)
+ list(_LLM_TOOLS)
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
679d207e5db1-0 | Source code for langchain.agents.conversational_chat.base
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
from typing import Any, List, Optional, Sequence, Tuple
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser
from langchain.agents.conversational_chat.prompt import (
PREFIX,
SUFFIX,
TEMPLATE_TOOL_RESPONSE,
)
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from langchain.tools.base import BaseTool
[docs]class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser)
template_tool_response: str = TEMPLATE_TOOL_RESPONSE
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return ConvoOutputParser()
@property
def _agent_type(self) -> str:
raise NotImplementedError
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
679d207e5db1-1 | return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
super()._validate_tools(tools)
validate_tools_single_input(cls.__name__, tools)
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
output_parser: Optional[BaseOutputParser] = None,
) -> BasePromptTemplate:
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
_output_parser = output_parser or cls._get_default_output_parser()
format_instructions = human_message.format(
format_instructions=_output_parser.get_format_instructions()
)
final_prompt = format_instructions.format(
tool_names=tool_names, tools=tool_strings
)
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
messages = [
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template(final_prompt),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[BaseMessage]: | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
679d207e5db1-2 | ) -> List[BaseMessage]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts: List[BaseMessage] = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(
content=self.template_tool_response.format(observation=observation)
)
thoughts.append(human_message)
return thoughts
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
_output_parser = output_parser or cls._get_default_output_parser()
prompt = cls.create_prompt(
tools,
system_message=system_message,
human_message=human_message,
input_variables=input_variables,
output_parser=_output_parser,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
679d207e5db1-3 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
f715e1abf57c-0 | Source code for langchain.agents.mrkl.base
"""Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf."""
from __future__ import annotations
from typing import Any, Callable, List, NamedTuple, Optional, Sequence
from pydantic import Field
from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.output_parser import MRKLOutputParser
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.tools import Tool
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.tools.base import BaseTool
class ChainConfig(NamedTuple):
"""Configuration for chain to use in MRKL system.
Args:
action_name: Name of the action.
action: Action function to call.
action_description: Description of the action.
"""
action_name: str
action: Callable
action_description: str
[docs]class ZeroShotAgent(Agent):
"""Agent for the MRKL chain."""
output_parser: AgentOutputParser = Field(default_factory=MRKLOutputParser)
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return MRKLOutputParser()
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.ZERO_SHOT_REACT_DESCRIPTION
@property
def observation_prefix(self) -> str: | https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html |
f715e1abf57c-1 | @property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool], | https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html |
f715e1abf57c-2 | llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser()
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
validate_tools_single_input(cls.__name__, tools)
for tool in tools:
if tool.description is None:
raise ValueError(
f"Got a tool {tool.name} without a description. For this agent, "
f"a description must always be provided."
)
super()._validate_tools(tools)
[docs]class MRKLChain(AgentExecutor):
"""Chain that implements the MRKL system.
Example:
.. code-block:: python | https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html |
f715e1abf57c-3 | Example:
.. code-block:: python
from langchain import OpenAI, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = PromptTemplate(...)
chains = [...]
mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt)
"""
[docs] @classmethod
def from_chains(
cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any
) -> AgentExecutor:
"""User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Args:
llm: The LLM to use as the agent LLM.
chains: The chains the MRKL system has access to.
**kwargs: parameters to be passed to initialization.
Returns:
An initialized MRKL chain.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains) | https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html |
f715e1abf57c-4 | ]
mrkl = MRKLChain.from_chains(llm, chains)
"""
tools = [
Tool(
name=c.action_name,
func=c.action,
description=c.action_description,
)
for c in chains
]
agent = ZeroShotAgent.from_llm_and_tools(llm, tools)
return cls(agent=agent, tools=tools, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html |
2e6a41142cff-0 | Source code for langchain.agents.agent_toolkits.playwright.toolkit
"""Playwright web browser toolkit."""
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional, Type, cast
from pydantic import Extra, root_validator
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools.base import BaseTool
from langchain.tools.playwright.base import (
BaseBrowserTool,
lazy_import_playwright_browsers,
)
from langchain.tools.playwright.click import ClickTool
from langchain.tools.playwright.current_page import CurrentWebPageTool
from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool
from langchain.tools.playwright.extract_text import ExtractTextTool
from langchain.tools.playwright.get_elements import GetElementsTool
from langchain.tools.playwright.navigate import NavigateTool
from langchain.tools.playwright.navigate_back import NavigateBackTool
if TYPE_CHECKING:
from playwright.async_api import Browser as AsyncBrowser
from playwright.sync_api import Browser as SyncBrowser
else:
try:
# We do this so pydantic can resolve the types when instantiating
from playwright.async_api import Browser as AsyncBrowser
from playwright.sync_api import Browser as SyncBrowser
except ImportError:
pass
[docs]class PlayWrightBrowserToolkit(BaseToolkit):
"""Toolkit for web browser tools."""
sync_browser: Optional["SyncBrowser"] = None
async_browser: Optional["AsyncBrowser"] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator
def validate_imports_and_browser_provided(cls, values: dict) -> dict:
"""Check that the arguments are valid."""
lazy_import_playwright_browsers() | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html |
2e6a41142cff-1 | """Check that the arguments are valid."""
lazy_import_playwright_browsers()
if values.get("async_browser") is None and values.get("sync_browser") is None:
raise ValueError("Either async_browser or sync_browser must be specified.")
return values
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tool_classes: List[Type[BaseBrowserTool]] = [
ClickTool,
NavigateTool,
NavigateBackTool,
ExtractTextTool,
ExtractHyperlinksTool,
GetElementsTool,
CurrentWebPageTool,
]
tools = [
tool_cls.from_browser(
sync_browser=self.sync_browser, async_browser=self.async_browser
)
for tool_cls in tool_classes
]
return cast(List[BaseTool], tools)
[docs] @classmethod
def from_browser(
cls,
sync_browser: Optional[SyncBrowser] = None,
async_browser: Optional[AsyncBrowser] = None,
) -> PlayWrightBrowserToolkit:
"""Instantiate the toolkit."""
# This is to raise a better error than the forward ref ones Pydantic would have
lazy_import_playwright_browsers()
return cls(sync_browser=sync_browser, async_browser=async_browser)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html |
eda5880f8561-0 | Source code for langchain.agents.agent_toolkits.azure_cognitive_services.toolkit
from __future__ import annotations
import sys
from typing import List
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools.azure_cognitive_services import (
AzureCogsFormRecognizerTool,
AzureCogsImageAnalysisTool,
AzureCogsSpeech2TextTool,
AzureCogsText2SpeechTool,
)
from langchain.tools.base import BaseTool
[docs]class AzureCognitiveServicesToolkit(BaseToolkit):
"""Toolkit for Azure Cognitive Services."""
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools = [
AzureCogsFormRecognizerTool(),
AzureCogsSpeech2TextTool(),
AzureCogsText2SpeechTool(),
]
# TODO: Remove check once azure-ai-vision supports MacOS.
if sys.platform.startswith("linux") or sys.platform.startswith("win"):
tools.append(AzureCogsImageAnalysisTool())
return tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/azure_cognitive_services/toolkit.html |
e2cf8219650c-0 | Source code for langchain.agents.agent_toolkits.csv.base
"""Agent for working with csvs."""
from typing import Any, List, Optional, Union
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.base_language import BaseLanguageModel
[docs]def create_csv_agent(
llm: BaseLanguageModel,
path: Union[str, List[str]],
pandas_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Create csv agent by loading to a dataframe and using pandas agent."""
try:
import pandas as pd
except ImportError:
raise ValueError(
"pandas package not found, please install with `pip install pandas`"
)
_kwargs = pandas_kwargs or {}
if isinstance(path, str):
df = pd.read_csv(path, **_kwargs)
elif isinstance(path, list):
df = []
for item in path:
if not isinstance(item, str):
raise ValueError(f"Expected str, got {type(path)}")
df.append(pd.read_csv(item, **_kwargs))
else:
raise ValueError(f"Expected str or list, got {type(path)}")
return create_pandas_dataframe_agent(llm, df, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html |
3a8b1efb69b9-0 | Source code for langchain.agents.agent_toolkits.spark_sql.base
"""Spark SQL agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain.agents.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_spark_sql_agent(
llm: BaseLanguageModel,
toolkit: SparkSQLToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a sql agent from an LLM and tools."""
tools = toolkit.get_tools()
prefix = prefix.format(top_k=top_k)
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html |
3a8b1efb69b9-1 | llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html |
c7bdd0b1e16f-0 | Source code for langchain.agents.agent_toolkits.spark_sql.toolkit
"""Toolkit for interacting with Spark SQL."""
from typing import List
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.tools import BaseTool
from langchain.tools.spark_sql.tool import (
InfoSparkSQLTool,
ListSparkSQLTool,
QueryCheckerTool,
QuerySparkSQLTool,
)
from langchain.utilities.spark_sql import SparkSQL
[docs]class SparkSQLToolkit(BaseToolkit):
"""Toolkit for interacting with Spark SQL."""
db: SparkSQL = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
QuerySparkSQLTool(db=self.db),
InfoSparkSQLTool(db=self.db),
ListSparkSQLTool(db=self.db),
QueryCheckerTool(db=self.db, llm=self.llm),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/toolkit.html |
672ca160c7a3-0 | Source code for langchain.agents.agent_toolkits.spark.base
"""Agent for working with pandas objects."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.tools.python.tool import PythonAstREPLTool
def _validate_spark_df(df: Any) -> bool:
try:
from pyspark.sql import DataFrame as SparkLocalDataFrame
return isinstance(df, SparkLocalDataFrame)
except ImportError:
return False
def _validate_spark_connect_df(df: Any) -> bool:
try:
from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame
return isinstance(df, SparkConnectDataFrame)
except ImportError:
return False
[docs]def create_spark_dataframe_agent(
llm: BaseLLM,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a spark agent from an LLM and dataframe.""" | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html |
672ca160c7a3-1 | ) -> AgentExecutor:
"""Construct a spark agent from an LLM and dataframe."""
if not _validate_spark_df(df) and not _validate_spark_connect_df(df):
raise ValueError("Spark is not installed. run `pip install pyspark`.")
if input_variables is None:
input_variables = ["df", "input", "agent_scratchpad"]
tools = [PythonAstREPLTool(locals={"df": df})]
prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix, input_variables=input_variables
)
partial_prompt = prompt.partial(df=str(df.first()))
llm_chain = LLMChain(
llm=llm,
prompt=partial_prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(
llm_chain=llm_chain,
allowed_tools=tool_names,
callback_manager=callback_manager,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html |
8a3c72e63e7d-0 | Source code for langchain.agents.agent_toolkits.vectorstore.base
"""VectorStore agent."""
from typing import Any, Dict, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX
from langchain.agents.agent_toolkits.vectorstore.toolkit import (
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_vectorstore_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a vectorstore agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
[docs]def create_vectorstore_router_agent( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html |
8a3c72e63e7d-1 | )
[docs]def create_vectorstore_router_agent(
llm: BaseLanguageModel,
toolkit: VectorStoreRouterToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = ROUTER_PREFIX,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a vectorstore router agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html |
fca16cd97652-0 | Source code for langchain.agents.agent_toolkits.vectorstore.toolkit
"""Toolkit for interacting with a vector store."""
from typing import List
from pydantic import BaseModel, Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.llms.openai import OpenAI
from langchain.tools import BaseTool
from langchain.tools.vectorstore.tool import (
VectorStoreQATool,
VectorStoreQAWithSourcesTool,
)
from langchain.vectorstores.base import VectorStore
[docs]class VectorStoreInfo(BaseModel):
"""Information about a vectorstore."""
vectorstore: VectorStore = Field(exclude=True)
name: str
description: str
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs]class VectorStoreToolkit(BaseToolkit):
"""Toolkit for interacting with a vector store."""
vectorstore_info: VectorStoreInfo = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
description = VectorStoreQATool.get_description(
self.vectorstore_info.name, self.vectorstore_info.description
)
qa_tool = VectorStoreQATool(
name=self.vectorstore_info.name,
description=description,
vectorstore=self.vectorstore_info.vectorstore,
llm=self.llm,
)
description = VectorStoreQAWithSourcesTool.get_description(
self.vectorstore_info.name, self.vectorstore_info.description
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html |
fca16cd97652-1 | self.vectorstore_info.name, self.vectorstore_info.description
)
qa_with_sources_tool = VectorStoreQAWithSourcesTool(
name=f"{self.vectorstore_info.name}_with_sources",
description=description,
vectorstore=self.vectorstore_info.vectorstore,
llm=self.llm,
)
return [qa_tool, qa_with_sources_tool]
[docs]class VectorStoreRouterToolkit(BaseToolkit):
"""Toolkit for routing between vectorstores."""
vectorstores: List[VectorStoreInfo] = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools: List[BaseTool] = []
for vectorstore_info in self.vectorstores:
description = VectorStoreQATool.get_description(
vectorstore_info.name, vectorstore_info.description
)
qa_tool = VectorStoreQATool(
name=vectorstore_info.name,
description=description,
vectorstore=vectorstore_info.vectorstore,
llm=self.llm,
)
tools.append(qa_tool)
return tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html |
93be96bd29fd-0 | Source code for langchain.agents.agent_toolkits.python.base
"""Python agent."""
from typing import Any, Dict, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.python.prompt import PREFIX
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.tools.python.tool import PythonREPLTool
[docs]def create_python_agent(
llm: BaseLanguageModel,
tool: PythonREPLTool,
callback_manager: Optional[BaseCallbackManager] = None,
verbose: bool = False,
prefix: str = PREFIX,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a python agent from an LLM and tool."""
tools = [tool]
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/python/base.html |
1ec09efa4e01-0 | Source code for langchain.agents.agent_toolkits.json.base
"""Json agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_json_agent(
llm: BaseLanguageModel,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html |
1ec09efa4e01-1 | return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html |
e124274d62b3-0 | Source code for langchain.agents.agent_toolkits.json.toolkit
"""Toolkit for interacting with a JSON spec."""
from __future__ import annotations
from typing import List
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.json.tool import JsonGetValueTool, JsonListKeysTool, JsonSpec
[docs]class JsonToolkit(BaseToolkit):
"""Toolkit for interacting with a JSON spec."""
spec: JsonSpec
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
JsonListKeysTool(spec=self.spec),
JsonGetValueTool(spec=self.spec),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/toolkit.html |
97188a1c52ae-0 | Source code for langchain.agents.agent_toolkits.zapier.toolkit
"""Zapier Toolkit."""
from typing import List
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.zapier.tool import ZapierNLARunAction
from langchain.utilities.zapier import ZapierNLAWrapper
[docs]class ZapierToolkit(BaseToolkit):
"""Zapier Toolkit."""
tools: List[BaseTool] = []
[docs] @classmethod
def from_zapier_nla_wrapper(
cls, zapier_nla_wrapper: ZapierNLAWrapper
) -> "ZapierToolkit":
"""Create a toolkit from a ZapierNLAWrapper."""
actions = zapier_nla_wrapper.list()
tools = [
ZapierNLARunAction(
action_id=action["id"],
zapier_description=action["description"],
params_schema=action["params"],
api_wrapper=zapier_nla_wrapper,
)
for action in actions
]
return cls(tools=tools)
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return self.tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html |
33f9de32e719-0 | Source code for langchain.agents.agent_toolkits.pandas.base
"""Agent for working with pandas objects."""
from typing import Any, Dict, List, Optional, Tuple
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.prompt import (
MULTI_DF_PREFIX,
PREFIX,
SUFFIX_NO_DF,
SUFFIX_WITH_DF,
SUFFIX_WITH_MULTI_DF,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.tools.python.tool import PythonAstREPLTool
def _get_multi_prompt(
dfs: List[Any],
prefix: Optional[str] = None,
suffix: Optional[str] = None,
input_variables: Optional[List[str]] = None,
include_df_in_prompt: Optional[bool] = True,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
num_dfs = len(dfs)
if suffix is not None:
suffix_to_use = suffix
include_dfs_head = True
elif include_df_in_prompt:
suffix_to_use = SUFFIX_WITH_MULTI_DF
include_dfs_head = True
else:
suffix_to_use = SUFFIX_NO_DF
include_dfs_head = False
if input_variables is None:
input_variables = ["input", "agent_scratchpad", "num_dfs"]
if include_dfs_head:
input_variables += ["dfs_head"]
if prefix is None:
prefix = MULTI_DF_PREFIX
df_locals = {}
for i, dataframe in enumerate(dfs): | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
33f9de32e719-1 | df_locals = {}
for i, dataframe in enumerate(dfs):
df_locals[f"df{i + 1}"] = dataframe
tools = [PythonAstREPLTool(locals=df_locals)]
prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables
)
partial_prompt = prompt.partial()
if "dfs_head" in input_variables:
dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs])
partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head)
if "num_dfs" in input_variables:
partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs))
return partial_prompt, tools
def _get_single_prompt(
df: Any,
prefix: Optional[str] = None,
suffix: Optional[str] = None,
input_variables: Optional[List[str]] = None,
include_df_in_prompt: Optional[bool] = True,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
if suffix is not None:
suffix_to_use = suffix
include_df_head = True
elif include_df_in_prompt:
suffix_to_use = SUFFIX_WITH_DF
include_df_head = True
else:
suffix_to_use = SUFFIX_NO_DF
include_df_head = False
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
if include_df_head:
input_variables += ["df_head"]
if prefix is None:
prefix = PREFIX
tools = [PythonAstREPLTool(locals={"df": df})]
prompt = ZeroShotAgent.create_prompt( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
33f9de32e719-2 | prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables
)
partial_prompt = prompt.partial()
if "df_head" in input_variables:
partial_prompt = partial_prompt.partial(df_head=str(df.head().to_markdown()))
return partial_prompt, tools
def _get_prompt_and_tools(
df: Any,
prefix: Optional[str] = None,
suffix: Optional[str] = None,
input_variables: Optional[List[str]] = None,
include_df_in_prompt: Optional[bool] = True,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
try:
import pandas as pd
except ImportError:
raise ValueError(
"pandas package not found, please install with `pip install pandas`"
)
if include_df_in_prompt is not None and suffix is not None:
raise ValueError("If suffix is specified, include_df_in_prompt should not be.")
if isinstance(df, list):
for item in df:
if not isinstance(item, pd.DataFrame):
raise ValueError(f"Expected pandas object, got {type(df)}")
return _get_multi_prompt(
df,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
include_df_in_prompt=include_df_in_prompt,
)
else:
if not isinstance(df, pd.DataFrame):
raise ValueError(f"Expected pandas object, got {type(df)}")
return _get_single_prompt(
df,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
include_df_in_prompt=include_df_in_prompt,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
33f9de32e719-3 | include_df_in_prompt=include_df_in_prompt,
)
[docs]def create_pandas_dataframe_agent(
llm: BaseLanguageModel,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: Optional[str] = None,
suffix: Optional[str] = None,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
include_df_in_prompt: Optional[bool] = True,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a pandas agent from an LLM and dataframe."""
prompt, tools = _get_prompt_and_tools(
df,
prefix=prefix,
suffix=suffix,
input_variables=input_variables,
include_df_in_prompt=include_df_in_prompt,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(
llm_chain=llm_chain,
allowed_tools=tool_names,
callback_manager=callback_manager,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
33f9de32e719-4 | return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
34bfc966d2f0-0 | Source code for langchain.agents.agent_toolkits.nla.toolkit
"""Toolkit for interacting with API's using natural language."""
from __future__ import annotations
from typing import Any, List, Optional, Sequence
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.agents.agent_toolkits.nla.tool import NLATool
from langchain.base_language import BaseLanguageModel
from langchain.requests import Requests
from langchain.tools.base import BaseTool
from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec
from langchain.tools.plugin import AIPlugin
[docs]class NLAToolkit(BaseToolkit):
"""Natural Language API Toolkit Definition."""
nla_tools: Sequence[NLATool] = Field(...)
"""List of API Endpoint Tools."""
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools for all the API operations."""
return list(self.nla_tools)
@staticmethod
def _get_http_operation_tools(
llm: BaseLanguageModel,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> List[NLATool]:
"""Get the tools for all the API operations."""
if not spec.paths:
return []
http_operation_tools = []
for path in spec.paths:
for method in spec.get_methods_for_path(path):
endpoint_tool = NLATool.from_llm_and_method(
llm=llm,
path=path,
method=method,
spec=spec,
requests=requests,
verbose=verbose,
**kwargs,
)
http_operation_tools.append(endpoint_tool)
return http_operation_tools | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html |
34bfc966d2f0-1 | )
http_operation_tools.append(endpoint_tool)
return http_operation_tools
[docs] @classmethod
def from_llm_and_spec(
cls,
llm: BaseLanguageModel,
spec: OpenAPISpec,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> NLAToolkit:
"""Instantiate the toolkit by creating tools for each operation."""
http_operation_tools = cls._get_http_operation_tools(
llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs
)
return cls(nla_tools=http_operation_tools)
[docs] @classmethod
def from_llm_and_url(
cls,
llm: BaseLanguageModel,
open_api_url: str,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> NLAToolkit:
"""Instantiate the toolkit from an OpenAPI Spec URL"""
spec = OpenAPISpec.from_url(open_api_url)
return cls.from_llm_and_spec(
llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs
)
[docs] @classmethod
def from_llm_and_ai_plugin(
cls,
llm: BaseLanguageModel,
ai_plugin: AIPlugin,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> NLAToolkit:
"""Instantiate the toolkit from an OpenAPI Spec URL"""
spec = OpenAPISpec.from_url(ai_plugin.api.url) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html |
34bfc966d2f0-2 | spec = OpenAPISpec.from_url(ai_plugin.api.url)
# TODO: Merge optional Auth information with the `requests` argument
return cls.from_llm_and_spec(
llm=llm,
spec=spec,
requests=requests,
verbose=verbose,
**kwargs,
)
[docs] @classmethod
def from_llm_and_ai_plugin_url(
cls,
llm: BaseLanguageModel,
ai_plugin_url: str,
requests: Optional[Requests] = None,
verbose: bool = False,
**kwargs: Any,
) -> NLAToolkit:
"""Instantiate the toolkit from an OpenAPI Spec URL"""
plugin = AIPlugin.from_url(ai_plugin_url)
return cls.from_llm_and_ai_plugin(
llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html |
4bf2393d4f81-0 | Source code for langchain.agents.agent_toolkits.jira.toolkit
"""Jira Toolkit."""
from typing import List
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.jira.tool import JiraAction
from langchain.utilities.jira import JiraAPIWrapper
[docs]class JiraToolkit(BaseToolkit):
"""Jira Toolkit."""
tools: List[BaseTool] = []
[docs] @classmethod
def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit":
actions = jira_api_wrapper.list()
tools = [
JiraAction(
name=action["name"],
description=action["description"],
mode=action["mode"],
api_wrapper=jira_api_wrapper,
)
for action in actions
]
return cls(tools=tools)
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return self.tools
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/jira/toolkit.html |
0e9332918c23-0 | Source code for langchain.agents.agent_toolkits.file_management.toolkit
"""Toolkit for interacting with the local filesystem."""
from __future__ import annotations
from typing import List, Optional
from pydantic import root_validator
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.file_management.copy import CopyFileTool
from langchain.tools.file_management.delete import DeleteFileTool
from langchain.tools.file_management.file_search import FileSearchTool
from langchain.tools.file_management.list_dir import ListDirectoryTool
from langchain.tools.file_management.move import MoveFileTool
from langchain.tools.file_management.read import ReadFileTool
from langchain.tools.file_management.write import WriteFileTool
_FILE_TOOLS = {
tool_cls.__fields__["name"].default: tool_cls
for tool_cls in [
CopyFileTool,
DeleteFileTool,
FileSearchTool,
MoveFileTool,
ReadFileTool,
WriteFileTool,
ListDirectoryTool,
]
}
[docs]class FileManagementToolkit(BaseToolkit):
"""Toolkit for interacting with a Local Files."""
root_dir: Optional[str] = None
"""If specified, all file operations are made relative to root_dir."""
selected_tools: Optional[List[str]] = None
"""If provided, only provide the selected tools. Defaults to all."""
@root_validator
def validate_tools(cls, values: dict) -> dict:
selected_tools = values.get("selected_tools") or []
for tool_name in selected_tools:
if tool_name not in _FILE_TOOLS:
raise ValueError(
f"File Tool of name {tool_name} not supported."
f" Permitted tools: {list(_FILE_TOOLS)}"
)
return values | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html |
0e9332918c23-1 | )
return values
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
allowed_tools = self.selected_tools or _FILE_TOOLS.keys()
tools: List[BaseTool] = []
for tool in allowed_tools:
tool_cls = _FILE_TOOLS[tool]
tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore
return tools
__all__ = ["FileManagementToolkit"]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html |
b4b591fdb38d-0 | Source code for langchain.agents.agent_toolkits.gmail.toolkit
from __future__ import annotations
from typing import TYPE_CHECKING, List
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.tools import BaseTool
from langchain.tools.gmail.create_draft import GmailCreateDraft
from langchain.tools.gmail.get_message import GmailGetMessage
from langchain.tools.gmail.get_thread import GmailGetThread
from langchain.tools.gmail.search import GmailSearch
from langchain.tools.gmail.send_message import GmailSendMessage
from langchain.tools.gmail.utils import build_resource_service
if TYPE_CHECKING:
# This is for linting and IDE typehints
from googleapiclient.discovery import Resource
else:
try:
# We do this so pydantic can resolve the types when instantiating
from googleapiclient.discovery import Resource
except ImportError:
pass
SCOPES = ["https://mail.google.com/"]
[docs]class GmailToolkit(BaseToolkit):
"""Toolkit for interacting with Gmail."""
api_resource: Resource = Field(default_factory=build_resource_service)
class Config:
"""Pydantic config."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
GmailCreateDraft(api_resource=self.api_resource),
GmailSendMessage(api_resource=self.api_resource),
GmailSearch(api_resource=self.api_resource),
GmailGetMessage(api_resource=self.api_resource),
GmailGetThread(api_resource=self.api_resource),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/gmail/toolkit.html |
ab354669c51c-0 | Source code for langchain.agents.agent_toolkits.openapi.base
"""OpenAPI spec agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_openapi_agent(
llm: BaseLanguageModel,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html |
ab354669c51c-1 | input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html |
c58e52615b2f-0 | Source code for langchain.agents.agent_toolkits.openapi.toolkit
"""Requests toolkit."""
from __future__ import annotations
from typing import Any, List
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.agents.agent_toolkits.json.base import create_json_agent
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION
from langchain.agents.tools import Tool
from langchain.base_language import BaseLanguageModel
from langchain.requests import TextRequestsWrapper
from langchain.tools import BaseTool
from langchain.tools.json.tool import JsonSpec
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
class RequestsToolkit(BaseToolkit):
"""Toolkit for making requests."""
requests_wrapper: TextRequestsWrapper
def get_tools(self) -> List[BaseTool]:
"""Return a list of tools."""
return [
RequestsGetTool(requests_wrapper=self.requests_wrapper),
RequestsPostTool(requests_wrapper=self.requests_wrapper),
RequestsPatchTool(requests_wrapper=self.requests_wrapper),
RequestsPutTool(requests_wrapper=self.requests_wrapper),
RequestsDeleteTool(requests_wrapper=self.requests_wrapper),
]
[docs]class OpenAPIToolkit(BaseToolkit):
"""Toolkit for interacting with a OpenAPI api."""
json_agent: AgentExecutor
requests_wrapper: TextRequestsWrapper
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
json_agent_tool = Tool(
name="json_explorer",
func=self.json_agent.run,
description=DESCRIPTION,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html |
c58e52615b2f-1 | func=self.json_agent.run,
description=DESCRIPTION,
)
request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper)
return [*request_toolkit.get_tools(), json_agent_tool]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
json_spec: JsonSpec,
requests_wrapper: TextRequestsWrapper,
**kwargs: Any,
) -> OpenAPIToolkit:
"""Create json agent from llm, then initialize."""
json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs)
return cls(json_agent=json_agent, requests_wrapper=requests_wrapper)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html |
0124b7e86a51-0 | Source code for langchain.agents.agent_toolkits.sql.base
"""SQL agent."""
from typing import Any, Dict, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
[docs]def create_sql_agent(
llm: BaseLanguageModel,
toolkit: SQLDatabaseToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a sql agent from an LLM and tools."""
tools = toolkit.get_tools()
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html |
0124b7e86a51-1 | llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html |
b1aa22658a2d-0 | Source code for langchain.agents.agent_toolkits.sql.toolkit
"""Toolkit for interacting with a SQL database."""
from typing import List
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.sql_database import SQLDatabase
from langchain.tools import BaseTool
from langchain.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QueryCheckerTool,
QuerySQLDataBaseTool,
)
[docs]class SQLDatabaseToolkit(BaseToolkit):
"""Toolkit for interacting with SQL databases."""
db: SQLDatabase = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
@property
def dialect(self) -> str:
"""Return string representation of dialect to use."""
return self.db.dialect
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
query_sql_database_tool_description = (
"Input to this tool is a detailed and correct SQL query, output is a "
"result from the database. If the query is not correct, an error message "
"will be returned. If an error is returned, rewrite the query, check the "
"query, and try again. If you encounter an issue with Unknown column "
"'xxxx' in 'field list', using schema_sql_db to query the correct table "
"fields."
)
info_sql_database_tool_description = (
"Input to this tool is a comma-separated list of tables, output is the "
"schema and sample rows for those tables. " | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html |
b1aa22658a2d-1 | "schema and sample rows for those tables. "
"Be sure that the tables actually exist by calling list_tables_sql_db "
"first! Example Input: 'table1, table2, table3'"
)
return [
QuerySQLDataBaseTool(
db=self.db, description=query_sql_database_tool_description
),
InfoSQLDatabaseTool(
db=self.db, description=info_sql_database_tool_description
),
ListSQLDatabaseTool(db=self.db),
QueryCheckerTool(db=self.db, llm=self.llm),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html |
c5ec7823547b-0 | Source code for langchain.agents.agent_toolkits.powerbi.base
"""Power BI agent."""
from typing import Any, Dict, List, Optional
from langchain.agents import AgentExecutor
from langchain.agents.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.utilities.powerbi import PowerBIDataset
[docs]def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit],
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a pbi agent from an LLM and tools."""
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools() | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html |
c5ec7823547b-1 | tools = toolkit.get_tools()
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k),
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
),
callback_manager=callback_manager, # type: ignore
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html |
3863e666c185-0 | Source code for langchain.agents.agent_toolkits.powerbi.toolkit
"""Toolkit for interacting with a Power BI dataset."""
from typing import List, Optional
from pydantic import Field
from langchain.agents.agent_toolkits.base import BaseToolkit
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.tools import BaseTool
from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY
from langchain.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain.utilities.powerbi import PowerBIDataset
[docs]class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with PowerBI dataset."""
powerbi: PowerBIDataset = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
[docs] def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
if self.callback_manager:
chain = LLMChain(
llm=self.llm,
callback_manager=self.callback_manager,
prompt=PromptTemplate(
template=QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
else:
chain = LLMChain(
llm=self.llm,
prompt=PromptTemplate(
template=QUESTION_TO_QUERY, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html |
3863e666c185-1 | prompt=PromptTemplate(
template=QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
return [
QueryPowerBITool(
llm_chain=chain,
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html |
f09268cdea5b-0 | Source code for langchain.agents.agent_toolkits.powerbi.chat_base
"""Power BI agent."""
from typing import Any, Dict, List, Optional
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.agents.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chat_models.base import BaseChatModel
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_memory import BaseChatMemory
from langchain.utilities.powerbi import PowerBIDataset
[docs]def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit],
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Dict[str, Any],
) -> AgentExecutor:
"""Construct a pbi agent from an Chat LLM and tools.
If you supply only a toolkit and no powerbi dataset, the same LLM is used for both.
"""
if toolkit is None: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html |
f09268cdea5b-1 | """
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html |
9870d6e76239-0 | Source code for langchain.agents.structured_chat.base
import re
from typing import Any, List, Optional, Sequence, Tuple
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.structured_chat.output_parser import (
StructuredChatOutputParserWithRetries,
)
from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import AgentAction
from langchain.tools import BaseTool
HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}"
[docs]class StructuredChatAgent(Agent):
output_parser: AgentOutputParser = Field(
default_factory=StructuredChatOutputParserWithRetries
)
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> str:
agent_scratchpad = super()._construct_scratchpad(intermediate_steps)
if not isinstance(agent_scratchpad, str):
raise ValueError("agent_scratchpad should be of type string.")
if agent_scratchpad:
return (
f"This was your previous work " | https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html |
9870d6e76239-1 | return (
f"This was your previous work "
f"(but I haven't seen any of it! I only see what "
f"you return as final answer):\n{agent_scratchpad}"
)
else:
return agent_scratchpad
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
pass
@classmethod
def _get_default_output_parser(
cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any
) -> AgentOutputParser:
return StructuredChatOutputParserWithRetries.from_llm(llm=llm)
@property
def _stop(self) -> List[str]:
return ["Observation:"]
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) | https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html |
9870d6e76239-2 | template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
human_message_template=human_message_template,
format_instructions=format_instructions,
input_variables=input_variables,
memory_prompts=memory_prompts,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools] | https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html |
9870d6e76239-3 | )
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser(llm=llm)
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
@property
def _agent_type(self) -> str:
raise ValueError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html |
87d05810d9bb-0 | Source code for langchain.agents.self_ask_with_search.base
"""Chain that does self ask with search."""
from typing import Any, Sequence, Union
from pydantic import Field
from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser
from langchain.agents.agent_types import AgentType
from langchain.agents.self_ask_with_search.output_parser import SelfAskOutputParser
from langchain.agents.self_ask_with_search.prompt import PROMPT
from langchain.agents.tools import Tool
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.prompts.base import BasePromptTemplate
from langchain.tools.base import BaseTool
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
class SelfAskWithSearchAgent(Agent):
"""Agent for the self-ask-with-search paper."""
output_parser: AgentOutputParser = Field(default_factory=SelfAskOutputParser)
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return SelfAskOutputParser()
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.SELF_ASK_WITH_SEARCH
@classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Prompt does not depend on tools."""
return PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
validate_tools_single_input(cls.__name__, tools)
super()._validate_tools(tools)
if len(tools) != 1:
raise ValueError(f"Exactly one tool must be specified, but got {tools}") | https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html |
87d05810d9bb-1 | raise ValueError(f"Exactly one tool must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Intermediate Answer"}:
raise ValueError(
f"Tool name should be Intermediate Answer, got {tool_names}"
)
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Intermediate answer: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
return ""
[docs]class SelfAskWithSearchChain(AgentExecutor):
"""Chain that does self ask with search.
Example:
.. code-block:: python
from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper
search_chain = GoogleSerperAPIWrapper()
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
"""
def __init__(
self,
llm: BaseLanguageModel,
search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper],
**kwargs: Any,
):
"""Initialize with just an LLM and a search chain."""
search_tool = Tool(
name="Intermediate Answer",
func=search_chain.run,
coroutine=search_chain.arun,
description="Search",
)
agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool])
super().__init__(agent=agent, tools=[search_tool], **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html |
aa35e0cff4a1-0 | Source code for langchain.agents.conversational.base
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
from typing import Any, List, Optional, Sequence
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.agent_types import AgentType
from langchain.agents.conversational.output_parser import ConvoOutputParser
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.tools.base import BaseTool
[docs]class ConversationalAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
ai_prefix: str = "AI"
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser)
@classmethod
def _get_default_output_parser(
cls, ai_prefix: str = "AI", **kwargs: Any
) -> AgentOutputParser:
return ConvoOutputParser(ai_prefix=ai_prefix)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.CONVERSATIONAL_REACT_DESCRIPTION
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod
def create_prompt(
cls, | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html |
aa35e0cff4a1-1 | [docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
ai_prefix: String to use before AI output.
human_prefix: String to use before human output.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(
tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix
)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
super()._validate_tools(tools)
validate_tools_single_input(cls.__name__, tools) | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html |
aa35e0cff4a1-2 | validate_tools_single_input(cls.__name__, tools)
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
ai_prefix=ai_prefix,
human_prefix=human_prefix,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser(
ai_prefix=ai_prefix
)
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
ai_prefix=ai_prefix,
output_parser=_output_parser,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html |
0a6f6480406e-0 | Source code for langchain.agents.react.base
"""Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf."""
from typing import Any, List, Optional, Sequence
from pydantic import Field
from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser
from langchain.agents.agent_types import AgentType
from langchain.agents.react.output_parser import ReActOutputParser
from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT
from langchain.agents.react.wiki_prompt import WIKI_PROMPT
from langchain.agents.tools import Tool
from langchain.agents.utils import validate_tools_single_input
from langchain.base_language import BaseLanguageModel
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.tools.base import BaseTool
class ReActDocstoreAgent(Agent):
"""Agent for the ReAct chain."""
output_parser: AgentOutputParser = Field(default_factory=ReActOutputParser)
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return ReActOutputParser()
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.REACT_DOCSTORE
@classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Return default prompt."""
return WIKI_PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
validate_tools_single_input(cls.__name__, tools)
super()._validate_tools(tools)
if len(tools) != 2: | https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html |
0a6f6480406e-1 | super()._validate_tools(tools)
if len(tools) != 2:
raise ValueError(f"Exactly two tools must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Lookup", "Search"}:
raise ValueError(
f"Tool names should be Lookup and Search, got {tool_names}"
)
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def _stop(self) -> List[str]:
return ["\nObservation:"]
@property
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
return "Thought:"
class DocstoreExplorer:
"""Class to assist with exploration of a document store."""
def __init__(self, docstore: Docstore):
"""Initialize with a docstore, and set initial document to None."""
self.docstore = docstore
self.document: Optional[Document] = None
self.lookup_str = ""
self.lookup_index = 0
def search(self, term: str) -> str:
"""Search for a term in the docstore, and if found save."""
result = self.docstore.search(term)
if isinstance(result, Document):
self.document = result
return self._summary
else:
self.document = None
return result
def lookup(self, term: str) -> str:
"""Lookup a term in document (if saved)."""
if self.document is None:
raise ValueError("Cannot lookup without a successful search first")
if term.lower() != self.lookup_str: | https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html |
0a6f6480406e-2 | if term.lower() != self.lookup_str:
self.lookup_str = term.lower()
self.lookup_index = 0
else:
self.lookup_index += 1
lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()]
if len(lookups) == 0:
return "No Results"
elif self.lookup_index >= len(lookups):
return "No More Results"
else:
result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})"
return f"{result_prefix} {lookups[self.lookup_index]}"
@property
def _summary(self) -> str:
return self._paragraphs[0]
@property
def _paragraphs(self) -> List[str]:
if self.document is None:
raise ValueError("Cannot get paragraphs without a document")
return self.document.page_content.split("\n\n")
[docs]class ReActTextWorldAgent(ReActDocstoreAgent):
"""Agent for the ReAct TextWorld chain."""
[docs] @classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Return default prompt."""
return TEXTWORLD_PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
validate_tools_single_input(cls.__name__, tools)
super()._validate_tools(tools)
if len(tools) != 1:
raise ValueError(f"Exactly one tool must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Play"}:
raise ValueError(f"Tool name should be Play, got {tool_names}") | https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html |
0a6f6480406e-3 | raise ValueError(f"Tool name should be Play, got {tool_names}")
[docs]class ReActChain(AgentExecutor):
"""Chain that implements the ReAct paper.
Example:
.. code-block:: python
from langchain import ReActChain, OpenAI
react = ReAct(llm=OpenAI())
"""
def __init__(self, llm: BaseLanguageModel, docstore: Docstore, **kwargs: Any):
"""Initialize with the LLM and a docstore."""
docstore_explorer = DocstoreExplorer(docstore)
tools = [
Tool(
name="Search",
func=docstore_explorer.search,
description="Search for a term in the docstore.",
),
Tool(
name="Lookup",
func=docstore_explorer.lookup,
description="Lookup a term in the docstore.",
),
]
agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)
super().__init__(agent=agent, tools=tools, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 11, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html |
3b989edf2637-0 | Source code for langchain.utilities.searx_search
"""Utility for using SearxNG meta search API.
SearxNG is a privacy-friendly free metasearch engine that aggregates results from
`multiple search engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and databases and
supports the `OpenSearch
<https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md>`_
specification.
More details on the installation instructions `here. <../../integrations/searx.html>`_
For the search API refer to https://docs.searxng.org/dev/search_api.html
Quick Start
-----------
In order to use this utility you need to provide the searx host. This can be done
by passing the named parameter :attr:`searx_host <SearxSearchWrapper.searx_host>`
or exporting the environment variable SEARX_HOST.
Note: this is the only required parameter.
Then create a searx search instance like this:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
# when the host starts with `http` SSL is disabled and the connection
# is assumed to be on a private network
searx_host='http://self.hosted'
search = SearxSearchWrapper(searx_host=searx_host)
You can now use the ``search`` instance to query the searx API.
Searching
---------
Use the :meth:`run() <SearxSearchWrapper.run>` and
:meth:`results() <SearxSearchWrapper.results>` methods to query the searx API.
Other methods are available for convenience.
:class:`SearxResults` is a convenience wrapper around the raw json result. | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-1 | :class:`SearxResults` is a convenience wrapper around the raw json result.
Example usage of the ``run`` method to make a search:
.. code-block:: python
s.run(query="what is the best search engine?")
Engine Parameters
-----------------
You can pass any `accepted searx search API
<https://docs.searxng.org/dev/search_api.html>`_ parameters to the
:py:class:`SearxSearchWrapper` instance.
In the following example we are using the
:attr:`engines <SearxSearchWrapper.engines>` and the ``language`` parameters:
.. code-block:: python
# assuming the searx host is set as above or exported as an env variable
s = SearxSearchWrapper(engines=['google', 'bing'],
language='es')
Search Tips
-----------
Searx offers a special
`search syntax <https://docs.searxng.org/user/index.html#search-syntax>`_
that can also be used instead of passing engine parameters.
For example the following query:
.. code-block:: python
s = SearxSearchWrapper("langchain library", engines=['github'])
# can also be written as:
s = SearxSearchWrapper("langchain library !github")
# or even:
s = SearxSearchWrapper("langchain library !gh")
In some situations you might want to pass an extra string to the search query.
For example when the `run()` method is called by an agent. The search suffix can
also be used as a way to pass extra parameters to searx or the underlying search
engines.
.. code-block:: python
# select the github engine and pass the search suffix | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-2 | .. code-block:: python
# select the github engine and pass the search suffix
s = SearchWrapper("langchain library", query_suffix="!gh")
s = SearchWrapper("langchain library")
# select github the conventional google search syntax
s.run("large language models", query_suffix="site:github.com")
*NOTE*: A search suffix can be defined on both the instance and the method level.
The resulting query will be the concatenation of the two with the former taking
precedence.
See `SearxNG Configured Engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and
`SearxNG Search Syntax <https://docs.searxng.org/user/index.html#id1>`_
for more details.
Notes
-----
This wrapper is based on the SearxNG fork https://github.com/searxng/searxng which is
better maintained than the original Searx project and offers more features.
Public searxNG instances often use a rate limiter for API usage, so you might want to
use a self hosted instance and disable the rate limiter.
If you are self-hosting an instance you can customize the rate limiter for your
own network as described `here <https://github.com/searxng/searxng/pull/2129>`_.
For a list of public SearxNG instances see https://searx.space/
"""
import json
from typing import Any, Dict, List, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator, validator
from langchain.utils import get_from_dict_or_env
def _get_default_params() -> dict:
return {"language": "en", "format": "json"} | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-3 | return {"language": "en", "format": "json"}
[docs]class SearxResults(dict):
"""Dict like wrapper around search api results."""
_data = ""
def __init__(self, data: str):
"""Take a raw result from Searx and make it into a dict like object."""
json_data = json.loads(data)
super().__init__(json_data)
self.__dict__ = self
def __str__(self) -> str:
"""Text representation of searx result."""
return self._data
@property
def results(self) -> Any:
"""Silence mypy for accessing this field.
:meta private:
"""
return self.get("results")
@property
def answers(self) -> Any:
"""Helper accessor on the json result."""
return self.get("answers")
[docs]class SearxSearchWrapper(BaseModel):
"""Wrapper for Searx API.
To use you need to provide the searx host by passing the named parameter
``searx_host`` or exporting the environment variable ``SEARX_HOST``.
In some situations you might want to disable SSL verification, for example
if you are running searx locally. You can do this by passing the named parameter
``unsecure``. You can also pass the host url scheme as ``http`` to disable SSL.
Example:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://localhost:8888")
Example with SSL disabled:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-4 | .. code-block:: python
from langchain.utilities import SearxSearchWrapper
# note the unsecure parameter is not needed if you pass the url scheme as
# http
searx = SearxSearchWrapper(searx_host="http://localhost:8888",
unsecure=True)
"""
_result: SearxResults = PrivateAttr()
searx_host: str = ""
unsecure: bool = False
params: dict = Field(default_factory=_get_default_params)
headers: Optional[dict] = None
engines: Optional[List[str]] = []
categories: Optional[List[str]] = []
query_suffix: Optional[str] = ""
k: int = 10
aiosession: Optional[Any] = None
@validator("unsecure")
def disable_ssl_warnings(cls, v: bool) -> bool:
"""Disable SSL warnings."""
if v:
# requests.urllib3.disable_warnings()
try:
import urllib3
urllib3.disable_warnings()
except ImportError as e:
print(e)
return v
@root_validator()
def validate_params(cls, values: Dict) -> Dict:
"""Validate that custom searx params are merged with default ones."""
user_params = values["params"]
default = _get_default_params()
values["params"] = {**default, **user_params}
engines = values.get("engines")
if engines:
values["params"]["engines"] = ",".join(engines)
categories = values.get("categories")
if categories:
values["params"]["categories"] = ",".join(categories) | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-5 | if categories:
values["params"]["categories"] = ",".join(categories)
searx_host = get_from_dict_or_env(values, "searx_host", "SEARX_HOST")
if not searx_host.startswith("http"):
print(
f"Warning: missing the url scheme on host \
! assuming secure https://{searx_host} "
)
searx_host = "https://" + searx_host
elif searx_host.startswith("http://"):
values["unsecure"] = True
cls.disable_ssl_warnings(True)
values["searx_host"] = searx_host
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _searx_api_query(self, params: dict) -> SearxResults:
"""Actual request to searx API."""
raw_result = requests.get(
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
)
# test if http result is ok
if not raw_result.ok:
raise ValueError("Searx API returned an error: ", raw_result.text)
res = SearxResults(raw_result.text)
self._result = res
return res
async def _asearx_api_query(self, params: dict) -> SearxResults:
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(
self.searx_host,
headers=self.headers,
params=params,
ssl=(lambda: False if self.unsecure else None)(),
) as response: | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-6 | ) as response:
if not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
else:
async with self.aiosession.get(
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
) as response:
if not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
return result
[docs] def run(
self,
query: str,
engines: Optional[List[str]] = None,
categories: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Run query through Searx API and parse results.
You can pass any other params to the searx query API.
Args:
query: The query to search for.
query_suffix: Extra suffix appended to the query.
engines: List of engines to use for the query.
categories: List of categories to use for the query.
**kwargs: extra parameters to pass to the searx API.
Returns:
str: The result of the query.
Raises:
ValueError: If an error occured with the query.
Example:
This will make a query to the qwant engine:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://my.searx.host") | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
3b989edf2637-7 | searx.run("what is the weather in France ?", engine="qwant")
# the same result can be achieved using the `!` syntax of searx
# to select the engine using `query_suffix`
searx.run("what is the weather in France ?", query_suffix="!qwant")
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
if isinstance(categories, list) and len(categories) > 0:
params["categories"] = ",".join(categories)
res = self._searx_api_query(params)
if len(res.answers) > 0:
toret = res.answers[0]
# only return the content of the results list
elif len(res.results) > 0:
toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]])
else:
toret = "No good search result found"
return toret
[docs] async def arun(
self,
query: str,
engines: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Asynchronously version of `run`.""" | https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html |
Subsets and Splits