id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
d716902bc319-0
Source code for langchain.memory.vectorstore """Class for a VectorStore-backed memory object.""" from typing import Any, Dict, List, Optional, Union from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import Document from langchain.vectorstores.base import VectorStoreRetriever [docs]class VectorStoreRetrieverMemory(BaseMemory): """Class for a VectorStore-backed memory object.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" @property def memory_variables(self) -> List[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key [docs] def load_memory_variables( self, inputs: Dict[str, Any] ) -> Dict[str, Union[List[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.get_relevant_documents(query)
https://python.langchain.com/en/latest/_modules/langchain/memory/vectorstore.html
d716902bc319-1
docs = self.retriever.get_relevant_documents(query) result: Union[List[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def _form_documents( self, inputs: Dict[str, Any], outputs: Dict[str, str] ) -> List[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history filtered_inputs = {k: v for k, v in inputs.items() if k != self.memory_key} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) [docs] def clear(self) -> None: """Nothing to clear.""" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/vectorstore.html
a5d0d8815534-0
Source code for langchain.memory.buffer from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory, BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import get_buffer_string [docs]class ConversationBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: @property def buffer(self) -> Any: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs]class ConversationStringBufferMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" """Prefix to use for AI generated responses.""" buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @root_validator() def validate_chains(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer.html
a5d0d8815534-1
def validate_chains(cls, values: Dict) -> Dict: """Validate that return messages is not True.""" if values.get("return_messages", False): raise ValueError( "return_messages must be False for ConversationStringBufferMemory" ) return values @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] self.buffer += "\n" + "\n".join([human, ai]) [docs] def clear(self) -> None: """Clear memory contents.""" self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer.html
2688281252ae-0
Source code for langchain.memory.summary from __future__ import annotations from typing import Any, Dict, List, Type from pydantic import BaseModel, root_validator from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import SUMMARY_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseChatMessageHistory, BaseMessage, SystemMessage, get_buffer_string, ) class SummarizerMixin(BaseModel): human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel prompt: BasePromptTemplate = SUMMARY_PROMPT summary_message_cls: Type[BaseMessage] = SystemMessage def predict_new_summary( self, messages: List[BaseMessage], existing_summary: str ) -> str: new_lines = get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) chain = LLMChain(llm=self.llm, prompt=self.prompt) return chain.predict(summary=existing_summary, new_lines=new_lines) [docs]class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin): """Conversation summarizer to memory.""" buffer: str = "" memory_key: str = "history" #: :meta private: [docs] @classmethod def from_messages( cls, llm: BaseLanguageModel, chat_memory: BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any, ) -> ConversationSummaryMemory:
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
2688281252ae-1
**kwargs: Any, ) -> ConversationSummaryMemory: obj = cls(llm=llm, chat_memory=chat_memory, **kwargs) for i in range(0, len(obj.chat_memory.messages), summarize_step): obj.buffer = obj.predict_new_summary( obj.chat_memory.messages[i : i + summarize_step], obj.buffer ) return obj @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" if self.return_messages: buffer: Any = [self.summary_message_cls(content=self.buffer)] else: buffer = self.buffer return {self.memory_key: buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.buffer = self.predict_new_summary( self.chat_memory.messages[-2:], self.buffer ) [docs] def clear(self) -> None: """Clear memory contents."""
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
2688281252ae-2
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
9934c661e53f-0
Source code for langchain.memory.combined import warnings from typing import Any, Dict, List, Set from pydantic import validator from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMemory [docs]class CombinedMemory(BaseMemory): """Class for combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables)
https://python.langchain.com/en/latest/_modules/langchain/memory/combined.html
9934c661e53f-1
for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) memory_data = { **memory_data, **data, } return memory_data [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) [docs] def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/combined.html
7859f8bcaff1-0
Source code for langchain.memory.buffer_window from typing import Any, Dict, List from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" buffer: Any = self.buffer[-self.k * 2 :] if self.k > 0 else [] if not self.return_messages: buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: buffer} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer_window.html
87a574cff794-0
Source code for langchain.memory.simple from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class SimpleMemory(BaseMemory): """Simple memory for storing context or other bits of information that shouldn't ever change between prompts. """ memories: Dict[str, Any] = dict() @property def memory_variables(self) -> List[str]: return list(self.memories.keys()) [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: return self.memories [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/simple.html
97744e46ff89-0
Source code for langchain.memory.readonly from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class ReadOnlySharedMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/readonly.html
7d4364b37c40-0
Source code for langchain.memory.kg from typing import Any, Dict, List, Type, Union from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseMessage, SystemMessage, get_buffer_string, ) [docs]class ConversationKGMemory(BaseChatMemory): """Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel summary_message_cls: Type[BaseMessage] = SystemMessage """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summary_strings = []
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
7d4364b37c40-1
entities = self._get_current_entities(inputs) summary_strings = [] for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summary = f"On {entity}: {'. '.join(knowledge)}." summary_strings.append(summary) context: Union[str, List] if not summary_strings: context = [] if self.return_messages else "" elif self.return_messages: context = [ self.summary_message_cls(content=text) for text in summary_strings ] else: context = "\n".join(summary_strings) return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key [docs] def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix,
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
7d4364b37c40-2
human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) [docs] def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) [docs] def clear(self) -> None: """Clear memory contents."""
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
7d4364b37c40-3
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.kg.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
c03b8a97050b-0
Source code for langchain.memory.summary_buffer from typing import Any, Dict, List from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.summary import SummarizerMixin from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin): """Buffer with summarizer for storing conversation memory.""" max_token_limit: int = 2000 moving_summary_buffer: str = "" memory_key: str = "history" @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer = self.buffer if self.moving_summary_buffer != "": first_messages: List[BaseMessage] = [ self.summary_message_cls(content=self.moving_summary_buffer) ] buffer = first_messages + buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix ) return {self.memory_key: final_buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/memory/summary_buffer.html
c03b8a97050b-1
if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.prune() [docs] def prune(self) -> None: """Prune buffer if it exceeds max token limit""" buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) [docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/summary_buffer.html
e7676da47855-0
Source code for langchain.memory.chat_message_histories.redis import json import logging from typing import List, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) [docs]class RedisChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, url: str = "redis://localhost:6379/0", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: self.redis_client = redis.Redis.from_url(url=url) except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m.decode("utf-8")) for m in _items[::-1]] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Redis"""
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/redis.html
e7676da47855-1
"""Append the message to the record in Redis""" self.redis_client.lpush(self.key, json.dumps(_message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) [docs] def clear(self) -> None: """Clear session memory from Redis""" self.redis_client.delete(self.key) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/redis.html
03b9178d7d2a-0
Source code for langchain.memory.chat_message_histories.in_memory from typing import List from pydantic import BaseModel from langchain.schema import ( BaseChatMessageHistory, BaseMessage, ) [docs]class ChatMessageHistory(BaseChatMessageHistory, BaseModel): messages: List[BaseMessage] = [] [docs] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" self.messages.append(message) [docs] def clear(self) -> None: self.messages = [] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/in_memory.html
eae6068a09dc-0
Source code for langchain.memory.chat_message_histories.cassandra import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_KEYSPACE_NAME = "chat_history" DEFAULT_TABLE_NAME = "message_store" DEFAULT_USERNAME = "cassandra" DEFAULT_PASSWORD = "cassandra" DEFAULT_PORT = 9042 [docs]class CassandraChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in Cassandra. Args: contact_points: list of ips to connect to Cassandra cluster session_id: arbitrary key that is used to store the messages of a single chat session. port: port to connect to Cassandra cluster username: username to connect to Cassandra cluster password: password to connect to Cassandra cluster keyspace_name: name of the keyspace to use table_name: name of the table to use """ def __init__( self, contact_points: List[str], session_id: str, port: int = DEFAULT_PORT, username: str = DEFAULT_USERNAME, password: str = DEFAULT_PASSWORD, keyspace_name: str = DEFAULT_KEYSPACE_NAME, table_name: str = DEFAULT_TABLE_NAME, ): self.contact_points = contact_points self.session_id = session_id self.port = port self.username = username self.password = password self.keyspace_name = keyspace_name self.table_name = table_name try: from cassandra import ( AuthenticationFailed, OperationTimedOut, UnresolvableContactPoints, )
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
eae6068a09dc-1
OperationTimedOut, UnresolvableContactPoints, ) from cassandra.cluster import Cluster, PlainTextAuthProvider except ImportError: raise ValueError( "Could not import cassandra-driver python package. " "Please install it with `pip install cassandra-driver`." ) self.cluster: Cluster = Cluster( contact_points, port=port, auth_provider=PlainTextAuthProvider( username=self.username, password=self.password ), ) try: self.session = self.cluster.connect() except ( AuthenticationFailed, UnresolvableContactPoints, OperationTimedOut, ) as error: logger.error( "Unable to establish connection with \ cassandra chat message history database" ) raise error self._prepare_cassandra() def _prepare_cassandra(self) -> None: """Create the keyspace and table if they don't exist yet""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"""CREATE KEYSPACE IF NOT EXISTS {self.keyspace_name} WITH REPLICATION = {{ 'class' : 'SimpleStrategy', 'replication_factor' : 1 }};""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history keyspace: {self.keyspace_name}." ) raise error self.session.set_keyspace(self.keyspace_name) try: self.session.execute( f"""CREATE TABLE IF NOT EXISTS {self.table_name} (id UUID, session_id varchar,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
eae6068a09dc-2
{self.table_name} (id UUID, session_id varchar, history text, PRIMARY KEY ((session_id), id) );""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history table: {self.table_name}" ) raise error @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Cassandra""" from cassandra import ReadFailure, ReadTimeout, Unavailable try: rows = self.session.execute( f"""SELECT * FROM {self.table_name} WHERE session_id = '{self.session_id}' ;""" ) except (Unavailable, ReadTimeout, ReadFailure) as error: logger.error("Unable to Retreive chat history messages from cassadra") raise error if rows: items = [json.loads(row.history) for row in rows] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Cassandra""" import uuid from cassandra import Unavailable, WriteFailure, WriteTimeout try: self.session.execute( """INSERT INTO message_store (id, session_id, history) VALUES (%s, %s, %s);""", (uuid.uuid4(), self.session_id, json.dumps(_message_to_dict(message))), ) except (Unavailable, WriteTimeout, WriteFailure) as error: logger.error("Unable to write chat history messages to cassandra") raise error
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
eae6068a09dc-3
logger.error("Unable to write chat history messages to cassandra") raise error [docs] def clear(self) -> None: """Clear session memory from Cassandra""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"DELETE FROM {self.table_name} WHERE session_id = '{self.session_id}';" ) except (Unavailable, OperationTimedOut) as error: logger.error("Unable to clear chat history messages from cassandra") raise error def __del__(self) -> None: if self.session: self.session.shutdown() if self.cluster: self.cluster.shutdown() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
a1c2c68264be-0
Source code for langchain.memory.chat_message_histories.file import json import logging from pathlib import Path from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class FileChatMessageHistory(BaseChatMessageHistory): """ Chat message history that stores history in a local file. Args: file_path: path of the local file to store the messages. """ def __init__(self, file_path: str): self.file_path = Path(file_path) if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text(json.dumps([])) @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text(json.dumps(messages)) [docs] def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text(json.dumps([])) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/file.html
18233249c401-0
Source code for langchain.memory.chat_message_histories.mongodb import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_DBNAME = "chat_history" DEFAULT_COLLECTION_NAME = "message_store" [docs]class MongoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in MongoDB. Args: connection_string: connection string to connect to MongoDB session_id: arbitrary key that is used to store the messages of a single chat session. database_name: name of the database to use collection_name: name of the collection to use """ def __init__( self, connection_string: str, session_id: str, database_name: str = DEFAULT_DBNAME, collection_name: str = DEFAULT_COLLECTION_NAME, ): from pymongo import MongoClient, errors self.connection_string = connection_string self.session_id = session_id self.database_name = database_name self.collection_name = collection_name try: self.client: MongoClient = MongoClient(connection_string) except errors.ConnectionFailure as error: logger.error(error) self.db = self.client[database_name] self.collection = self.db[collection_name] self.collection.create_index("SessionId") @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from MongoDB""" from pymongo import errors try: cursor = self.collection.find({"SessionId": self.session_id}) except errors.OperationFailure as error: logger.error(error) if cursor:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/mongodb.html
18233249c401-1
except errors.OperationFailure as error: logger.error(error) if cursor: items = [json.loads(document["History"]) for document in cursor] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in MongoDB""" from pymongo import errors try: self.collection.insert_one( { "SessionId": self.session_id, "History": json.dumps(_message_to_dict(message)), } ) except errors.WriteError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from MongoDB""" from pymongo import errors try: self.collection.delete_many({"SessionId": self.session_id}) except errors.WriteError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/mongodb.html
4fa91a1ffffa-0
Source code for langchain.memory.chat_message_histories.momento from __future__ import annotations import json from datetime import timedelta from typing import TYPE_CHECKING, Any, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) from langchain.utils import get_from_env if TYPE_CHECKING: import momento def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None: """Create cache if it doesn't exist. Raises: SdkException: Momento service or network error Exception: Unexpected response """ from momento.responses import CreateCache create_cache_response = cache_client.create_cache(cache_name) if isinstance(create_cache_response, CreateCache.Success) or isinstance( create_cache_response, CreateCache.CacheAlreadyExists ): return None elif isinstance(create_cache_response, CreateCache.Error): raise create_cache_response.inner_exception else: raise Exception(f"Unexpected response cache creation: {create_cache_response}") [docs]class MomentoChatMessageHistory(BaseChatMessageHistory): """Chat message history cache that uses Momento as a backend. See https://gomomento.com/""" def __init__( self, session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = "message_store:", ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True, ): """Instantiate a chat message history cache that uses Momento as a backend. Note: to instantiate the cache client passed to MomentoChatMessageHistory,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
4fa91a1ffffa-1
Note: to instantiate the cache client passed to MomentoChatMessageHistory, you must have a Momento account at https://gomomento.com/. Args: session_id (str): The session ID to use for this chat session. cache_client (CacheClient): The Momento cache client. cache_name (str): The name of the cache to use to store the messages. key_prefix (str, optional): The prefix to apply to the cache key. Defaults to "message_store:". ttl (Optional[timedelta], optional): The TTL to use for the messages. Defaults to None, ie the default TTL of the cache will be used. ensure_cache_exists (bool, optional): Create the cache if it doesn't exist. Defaults to True. Raises: ImportError: Momento python package is not installed. TypeError: cache_client is not of type momento.CacheClientObject """ try: from momento import CacheClient from momento.requests import CollectionTtl except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if not isinstance(cache_client, CacheClient): raise TypeError("cache_client must be a momento.CacheClient object.") if ensure_cache_exists: _ensure_cache_exists(cache_client, cache_name) self.key = key_prefix + session_id self.cache_client = cache_client self.cache_name = cache_name if ttl is not None: self.ttl = CollectionTtl.of(ttl) else: self.ttl = CollectionTtl.from_cache_ttl() [docs] @classmethod def from_client_params( cls, session_id: str,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
4fa91a1ffffa-2
def from_client_params( cls, session_id: str, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any, ) -> MomentoChatMessageHistory: """Construct cache from CacheClient parameters.""" try: from momento import CacheClient, Configurations, CredentialProvider except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if configuration is None: configuration = Configurations.Laptop.v1() auth_token = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN") credentials = CredentialProvider.from_string(auth_token) cache_client = CacheClient(configuration, credentials, default_ttl=ttl) return cls(session_id, cache_client, cache_name, ttl=ttl, **kwargs) @property def messages(self) -> list[BaseMessage]: # type: ignore[override] """Retrieve the messages from Momento. Raises: SdkException: Momento service or network error Exception: Unexpected response Returns: list[BaseMessage]: List of cached messages """ from momento.responses import CacheListFetch fetch_response = self.cache_client.list_fetch(self.cache_name, self.key) if isinstance(fetch_response, CacheListFetch.Hit): items = [json.loads(m) for m in fetch_response.value_list_string] return messages_from_dict(items) elif isinstance(fetch_response, CacheListFetch.Miss): return [] elif isinstance(fetch_response, CacheListFetch.Error):
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
4fa91a1ffffa-3
return [] elif isinstance(fetch_response, CacheListFetch.Error): raise fetch_response.inner_exception else: raise Exception(f"Unexpected response: {fetch_response}") [docs] def add_message(self, message: BaseMessage) -> None: """Store a message in the cache. Args: message (BaseMessage): The message object to store. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheListPushBack item = json.dumps(_message_to_dict(message)) push_response = self.cache_client.list_push_back( self.cache_name, self.key, item, ttl=self.ttl ) if isinstance(push_response, CacheListPushBack.Success): return None elif isinstance(push_response, CacheListPushBack.Error): raise push_response.inner_exception else: raise Exception(f"Unexpected response: {push_response}") [docs] def clear(self) -> None: """Remove the session's messages from the cache. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheDelete delete_response = self.cache_client.delete(self.cache_name, self.key) if isinstance(delete_response, CacheDelete.Success): return None elif isinstance(delete_response, CacheDelete.Error): raise delete_response.inner_exception else: raise Exception(f"Unexpected response: {delete_response}") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
302daf0307b7-0
Source code for langchain.memory.chat_message_histories.cosmos_db """Azure CosmosDB Memory History.""" from __future__ import annotations import logging from types import TracebackType from typing import TYPE_CHECKING, Any, List, Optional, Type from langchain.schema import ( BaseChatMessageHistory, BaseMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) if TYPE_CHECKING: from azure.cosmos import ContainerProxy [docs]class CosmosDBChatMessageHistory(BaseChatMessageHistory): """Chat history backed by Azure CosmosDB.""" def __init__( self, cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None, ): """ Initializes a new instance of the CosmosDBChatMessageHistory class. Make sure to call prepare_cosmos or use the context manager to make sure your database is ready. Either a credential or a connection string must be provided. :param cosmos_endpoint: The connection endpoint for the Azure Cosmos DB account. :param cosmos_database: The name of the database to use. :param cosmos_container: The name of the container to use. :param session_id: The session ID to use, can be overwritten while loading. :param user_id: The user ID to use, can be overwritten while loading. :param credential: The credential to use to authenticate to Azure Cosmos DB. :param connection_string: The connection string to use to authenticate.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
302daf0307b7-1
:param connection_string: The connection string to use to authenticate. :param ttl: The time to live (in seconds) to use for documents in the container. :param cosmos_client_kwargs: Additional kwargs to pass to the CosmosClient. """ self.cosmos_endpoint = cosmos_endpoint self.cosmos_database = cosmos_database self.cosmos_container = cosmos_container self.credential = credential self.conn_string = connection_string self.session_id = session_id self.user_id = user_id self.ttl = ttl self.messages: List[BaseMessage] = [] try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosClient, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc if self.credential: self._client = CosmosClient( url=self.cosmos_endpoint, credential=self.credential, **cosmos_client_kwargs or {}, ) elif self.conn_string: self._client = CosmosClient.from_connection_string( conn_str=self.conn_string, **cosmos_client_kwargs or {}, ) else: raise ValueError("Either a connection string or a credential must be set.") self._container: Optional[ContainerProxy] = None [docs] def prepare_cosmos(self) -> None: """Prepare the CosmosDB client. Use this function or the context manager to make sure your database is ready. """ try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
302daf0307b7-2
PartitionKey, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc database = self._client.create_database_if_not_exists(self.cosmos_database) self._container = database.create_container_if_not_exists( self.cosmos_container, partition_key=PartitionKey("/user_id"), default_ttl=self.ttl, ) self.load_messages() def __enter__(self) -> "CosmosDBChatMessageHistory": """Context manager entry point.""" self._client.__enter__() self.prepare_cosmos() return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: """Context manager exit""" self.upsert_messages() self._client.__exit__(exc_type, exc_val, traceback) [docs] def load_messages(self) -> None: """Retrieve the messages from Cosmos""" if not self._container: raise ValueError("Container not initialized") try: from azure.cosmos.exceptions import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosHttpResponseError, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc try: item = self._container.read_item( item=self.session_id, partition_key=self.user_id ) except CosmosHttpResponseError:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
302daf0307b7-3
) except CosmosHttpResponseError: logger.info("no session found") return if "messages" in item and len(item["messages"]) > 0: self.messages = messages_from_dict(item["messages"]) [docs] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" self.messages.append(message) self.upsert_messages() [docs] def upsert_messages(self) -> None: """Update the cosmosdb item.""" if not self._container: raise ValueError("Container not initialized") self._container.upsert_item( body={ "id": self.session_id, "user_id": self.user_id, "messages": messages_to_dict(self.messages), } ) [docs] def clear(self) -> None: """Clear session memory from this memory and cosmos.""" self.messages = [] if self._container: self._container.delete_item( item=self.session_id, partition_key=self.user_id ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
d8e18f006e0a-0
Source code for langchain.memory.chat_message_histories.dynamodb import logging from typing import List, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class DynamoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table with name `table_name` and a partition Key of `SessionId` is present. Args: table_name: name of the DynamoDB table session_id: arbitrary key that is used to store the messages of a single chat session. endpoint_url: URL of the AWS endpoint to connect to. This argument is optional and useful for test purposes, like using Localstack. If you plan to use AWS cloud service, you normally don't have to worry about setting the endpoint_url. """ def __init__( self, table_name: str, session_id: str, endpoint_url: Optional[str] = None ): import boto3 if endpoint_url: client = boto3.resource("dynamodb", endpoint_url=endpoint_url) else: client = boto3.resource("dynamodb") self.table = client.Table(table_name) self.session_id = session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from DynamoDB""" from botocore.exceptions import ClientError try: response = self.table.get_item(Key={"SessionId": self.session_id}) except ClientError as error:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/dynamodb.html
d8e18f006e0a-1
except ClientError as error: if error.response["Error"]["Code"] == "ResourceNotFoundException": logger.warning("No record found with session id: %s", self.session_id) else: logger.error(error) if response and "Item" in response: items = response["Item"]["History"] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in DynamoDB""" from botocore.exceptions import ClientError messages = messages_to_dict(self.messages) _message = _message_to_dict(message) messages.append(_message) try: self.table.put_item( Item={"SessionId": self.session_id, "History": messages} ) except ClientError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from DynamoDB""" from botocore.exceptions import ClientError try: self.table.delete_item(Key={"SessionId": self.session_id}) except ClientError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/dynamodb.html
1788e5617a56-0
Source code for langchain.memory.chat_message_histories.postgres import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_CONNECTION_STRING = "postgresql://postgres:mypassword@localhost/chat_history" [docs]class PostgresChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, connection_string: str = DEFAULT_CONNECTION_STRING, table_name: str = "message_store", ): import psycopg from psycopg.rows import dict_row try: self.connection = psycopg.connect(connection_string) self.cursor = self.connection.cursor(row_factory=dict_row) except psycopg.OperationalError as error: logger.error(error) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() def _create_table_if_not_exists(self) -> None: create_table_query = f"""CREATE TABLE IF NOT EXISTS {self.table_name} ( id SERIAL PRIMARY KEY, session_id TEXT NOT NULL, message JSONB NOT NULL );""" self.cursor.execute(create_table_query) self.connection.commit() @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from PostgreSQL""" query = f"SELECT message FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) items = [record["message"] for record in self.cursor.fetchall()] messages = messages_from_dict(items) return messages
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/postgres.html
1788e5617a56-1
messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL("INSERT INTO {} (session_id, message) VALUES (%s, %s);").format( sql.Identifier(self.table_name) ) self.cursor.execute( query, (self.session_id, json.dumps(_message_to_dict(message))) ) self.connection.commit() [docs] def clear(self) -> None: """Clear session memory from PostgreSQL""" query = f"DELETE FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) self.connection.commit() def __del__(self) -> None: if self.cursor: self.cursor.close() if self.connection: self.connection.close() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/postgres.html
29d93a7a718e-0
.rst .pdf Indexes Indexes# Indexes refer to ways to structure documents so that LLMs can best interact with them. LangChain has a number of modules that help you load, structure, store, and retrieve documents. Docstore Text Splitter Document Loaders Vector Stores Retrievers Document Compressors Document Transformers previous Embeddings next Docstore By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/indexes.html
69af32dbe667-0
.rst .pdf Models Models# LangChain provides interfaces and integrations for a number of different types of models. LLMs Chat Models Embeddings previous API References next Chat Models By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/models.html
45336e00c0a5-0
.rst .pdf Prompts Prompts# The reference guides here all relate to objects for working with Prompts. PromptTemplates Example Selector Output Parsers previous How to serialize prompts next PromptTemplates By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/prompts.html
7d66d15c4122-0
.rst .pdf Agents Agents# Reference guide for Agents and associated abstractions. Agents Tools Agent Toolkits previous Memory next Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/agents.html
2cfcb2537b9f-0
.md .pdf Installation Contents Official Releases Installing from source Installation# Official Releases# LangChain is available on PyPi, so to it is easily installable with: pip install langchain That will install the bare minimum requirements of LangChain. A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc. By default, the dependencies needed to do that are NOT installed. However, there are two other ways to install LangChain that do bring in those dependencies. To install modules needed for the common LLM providers, run: pip install langchain[llms] To install all modules needed for all integrations, run: pip install langchain[all] Note that if you are using zsh, you’ll need to quote square brackets when passing them as an argument to a command, for example: pip install 'langchain[all]' Installing from source# If you want to install from source, you can do so by cloning the repo and running: pip install -e . previous SQL Question Answering Benchmarking: Chinook next API References Contents Official Releases Installing from source By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/installation.html
290e16503ce6-0
.rst .pdf Memory Memory# class langchain.memory.CassandraChatMessageHistory(contact_points: List[str], session_id: str, port: int = 9042, username: str = 'cassandra', password: str = 'cassandra', keyspace_name: str = 'chat_history', table_name: str = 'message_store')[source]# Chat message history that stores history in Cassandra. Parameters contact_points – list of ips to connect to Cassandra cluster session_id – arbitrary key that is used to store the messages of a single chat session. port – port to connect to Cassandra cluster username – username to connect to Cassandra cluster password – password to connect to Cassandra cluster keyspace_name – name of the keyspace to use table_name – name of the table to use add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in Cassandra clear() → None[source]# Clear session memory from Cassandra property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from Cassandra pydantic model langchain.memory.ChatMessageHistory[source]# field messages: List[langchain.schema.BaseMessage] = []# add_message(message: langchain.schema.BaseMessage) → None[source]# Add a self-created message to the store clear() → None[source]# Remove all messages from the store pydantic model langchain.memory.CombinedMemory[source]# Class for combining multiple memories’ data together. Validators check_input_key » memories check_repeated_memory_variable » memories field memories: List[langchain.schema.BaseMemory] [Required]# For tracking all the memories that should be accessed. clear() → None[source]# Clear context from this session for every memory.
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-1
clear() → None[source]# Clear context from this session for every memory. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Load all vars from sub-memories. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this session for every memory. property memory_variables: List[str]# All the memory variables that this instance provides. pydantic model langchain.memory.ConversationBufferMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# field human_prefix: str = 'Human'# load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. property buffer: Any# String buffer of memory. pydantic model langchain.memory.ConversationBufferWindowMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# field human_prefix: str = 'Human'# field k: int = 5# load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Return history buffer. property buffer: List[langchain.schema.BaseMessage]# String buffer of memory. pydantic model langchain.memory.ConversationEntityMemory[source]# Entity extractor & summarizer to memory. field ai_prefix: str = 'AI'# field chat_history_key: str = 'history'# field entity_cache: List[str] = []#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-2
field entity_extraction_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-3
line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:', template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-4
field entity_store: langchain.memory.entity.BaseEntityStore [Optional]# field entity_summarization_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['entity', 'summary', 'history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant helping a human keep track of facts about relevant people, places, and concepts in their life. Update the summary of the provided entity in the "Entity" section based on the last line of your conversation with the human. If you are writing the summary for the first time, return a single sentence.\nThe update should only include facts that are relayed in the last line of conversation about the provided entity, and should only contain facts about the provided entity.\n\nIf there is no new information about the provided entity or the information is not worth noting (not an important or relevant fact to remember long-term), return the existing summary unchanged.\n\nFull conversation history (for context):\n{history}\n\nEntity to summarize:\n{entity}\n\nExisting summary of {entity}:\n{summary}\n\nLast line of conversation:\nHuman: {input}\nUpdated summary:', template_format='f-string', validate_template=True)# field human_prefix: str = 'Human'# field k: int = 3# field llm: langchain.base_language.BaseLanguageModel [Required]# clear() → None[source]# Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. property buffer: List[langchain.schema.BaseMessage]# pydantic model langchain.memory.ConversationKGMemory[source]# Knowledge graph memory for storing conversation memory.
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-5
Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. field ai_prefix: str = 'AI'#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-6
field entity_extraction_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='You are an AI assistant reading the transcript of a conversation between an AI and a human. Extract all of the proper nouns from the last line of conversation. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nThe conversation history is provided just in case of a coreference (e.g. "What do you know about him" where "him" is defined in a previous line) -- ignore items mentioned there that are not in the last line.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return (e.g. the user is just issuing a greeting or having a simple conversation).\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: how\'s it going today?\nAI: "It\'s going great! How about you?"\nPerson #1: good! busy working on Langchain. lots to do.\nAI: "That sounds like a lot of work! What kind of things are you doing to make Langchain better?"\nLast line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-7
line:\nPerson #1: i\'m trying to improve Langchain\'s interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I\'m working with Person #2.\nOutput: Langchain, Person #2\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:', template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-8
field human_prefix: str = 'Human'# field k: int = 2# field kg: langchain.graphs.networkx_graph.NetworkxEntityGraph [Optional]#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-9
field knowledge_extraction_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the last line of conversation. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nConversation history:\nPerson #1: Did you hear aliens landed in Area 51?\nAI: No, I didn't hear that. What do you know about Area 51?\nPerson #1: It's a secret military base in Nevada.\nAI: What do you know about Nevada?\nLast line of conversation:\nPerson #1: It's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: Hello.\nAI: Hi! How are you?\nPerson #1: I'm good. How are you?\nAI: I'm good too.\nLast line of conversation:\nPerson #1: I'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nConversation history:\nPerson #1: What do you know about Descartes?\nAI: Descartes was a French philosopher, mathematician, and scientist who lived in the 17th
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-10
Descartes was a French philosopher, mathematician, and scientist who lived in the 17th century.\nPerson #1: The Descartes I'm referring to is a standup comedian and interior designer from Montreal.\nAI: Oh yes, He is a comedian and an interior designer. He has been in the industry for 30 years. His favorite food is baked bean pie.\nLast line of conversation:\nPerson #1: Oh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nConversation history (for reference only):\n{history}\nLast line of conversation (for extraction):\nHuman: {input}\n\nOutput:", template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-11
field llm: langchain.base_language.BaseLanguageModel [Required]# field summary_message_cls: Type[langchain.schema.BaseMessage] = <class 'langchain.schema.SystemMessage'># Number of previous utterances to include in the context. clear() → None[source]# Clear memory contents. get_current_entities(input_string: str) → List[str][source]# get_knowledge_triplets(input_string: str) → List[langchain.graphs.networkx_graph.KnowledgeTriple][source]# load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. pydantic model langchain.memory.ConversationStringBufferMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# Prefix to use for AI generated responses. field buffer: str = ''# field human_prefix: str = 'Human'# field input_key: Optional[str] = None# field output_key: Optional[str] = None# clear() → None[source]# Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. property memory_variables: List[str]# Will always return list of memory variables. :meta private: pydantic model langchain.memory.ConversationSummaryBufferMemory[source]# Buffer with summarizer for storing conversation memory. field max_token_limit: int = 2000# field memory_key: str = 'history'# field moving_summary_buffer: str = ''#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-12
field memory_key: str = 'history'# field moving_summary_buffer: str = ''# clear() → None[source]# Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. prune() → None[source]# Prune buffer if it exceeds max token limit save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. property buffer: List[langchain.schema.BaseMessage]# pydantic model langchain.memory.ConversationSummaryMemory[source]# Conversation summarizer to memory. field buffer: str = ''# clear() → None[source]# Clear memory contents. classmethod from_messages(llm: langchain.base_language.BaseLanguageModel, chat_memory: langchain.schema.BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any) → langchain.memory.summary.ConversationSummaryMemory[source]# load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. pydantic model langchain.memory.ConversationTokenBufferMemory[source]# Buffer for storing conversation memory. field ai_prefix: str = 'AI'# field human_prefix: str = 'Human'# field llm: langchain.base_language.BaseLanguageModel [Required]# field max_token_limit: int = 2000# field memory_key: str = 'history'# load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-13
Save context from this conversation to buffer. Pruned. property buffer: List[langchain.schema.BaseMessage]# String buffer of memory. class langchain.memory.CosmosDBChatMessageHistory(cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None)[source]# Chat history backed by Azure CosmosDB. add_message(message: langchain.schema.BaseMessage) → None[source]# Add a self-created message to the store clear() → None[source]# Clear session memory from this memory and cosmos. load_messages() → None[source]# Retrieve the messages from Cosmos prepare_cosmos() → None[source]# Prepare the CosmosDB client. Use this function or the context manager to make sure your database is ready. upsert_messages() → None[source]# Update the cosmosdb item. class langchain.memory.DynamoDBChatMessageHistory(table_name: str, session_id: str, endpoint_url: Optional[str] = None)[source]# Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table with name table_name and a partition Key of SessionId is present. Parameters table_name – name of the DynamoDB table session_id – arbitrary key that is used to store the messages of a single chat session. endpoint_url – URL of the AWS endpoint to connect to. This argument is optional and useful for test purposes, like using Localstack. If you plan to use AWS cloud service, you normally don’t have to worry about setting the endpoint_url. add_message(message: langchain.schema.BaseMessage) → None[source]#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-14
add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in DynamoDB clear() → None[source]# Clear session memory from DynamoDB property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from DynamoDB class langchain.memory.FileChatMessageHistory(file_path: str)[source]# Chat message history that stores history in a local file. Parameters file_path – path of the local file to store the messages. add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in the local file clear() → None[source]# Clear session memory from the local file property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from the local file pydantic model langchain.memory.InMemoryEntityStore[source]# Basic in-memory entity store. field store: Dict[str, Optional[str]] = {}# clear() → None[source]# Delete all entities from store. delete(key: str) → None[source]# Delete entity value from store. exists(key: str) → bool[source]# Check if entity exists in store. get(key: str, default: Optional[str] = None) → Optional[str][source]# Get entity value from store. set(key: str, value: Optional[str]) → None[source]# Set entity value in store. class langchain.memory.MomentoChatMessageHistory(session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = 'message_store:', ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]# Chat message history cache that uses Momento as a backend. See https://gomomento.com/
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-15
See https://gomomento.com/ add_message(message: langchain.schema.BaseMessage) → None[source]# Store a message in the cache. Parameters message (BaseMessage) – The message object to store. Raises SdkException – Momento service or network error. Exception – Unexpected response. clear() → None[source]# Remove the session’s messages from the cache. Raises SdkException – Momento service or network error. Exception – Unexpected response. classmethod from_client_params(session_id: str, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any) → MomentoChatMessageHistory[source]# Construct cache from CacheClient parameters. property messages: list[langchain.schema.BaseMessage]# Retrieve the messages from Momento. Raises SdkException – Momento service or network error Exception – Unexpected response Returns List of cached messages Return type list[BaseMessage] class langchain.memory.MongoDBChatMessageHistory(connection_string: str, session_id: str, database_name: str = 'chat_history', collection_name: str = 'message_store')[source]# Chat message history that stores history in MongoDB. Parameters connection_string – connection string to connect to MongoDB session_id – arbitrary key that is used to store the messages of a single chat session. database_name – name of the database to use collection_name – name of the collection to use add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in MongoDB clear() → None[source]# Clear session memory from MongoDB property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from MongoDB
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-16
property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from MongoDB class langchain.memory.PostgresChatMessageHistory(session_id: str, connection_string: str = 'postgresql://postgres:mypassword@localhost/chat_history', table_name: str = 'message_store')[source]# add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in PostgreSQL clear() → None[source]# Clear session memory from PostgreSQL property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from PostgreSQL pydantic model langchain.memory.ReadOnlySharedMemory[source]# A memory wrapper that is read-only and cannot be changed. field memory: langchain.schema.BaseMemory [Required]# clear() → None[source]# Nothing to clear, got a memory like a vault. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Load memory variables from memory. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Nothing should be saved or changed property memory_variables: List[str]# Return memory variables. class langchain.memory.RedisChatMessageHistory(session_id: str, url: str = 'redis://localhost:6379/0', key_prefix: str = 'message_store:', ttl: Optional[int] = None)[source]# add_message(message: langchain.schema.BaseMessage) → None[source]# Append the message to the record in Redis clear() → None[source]# Clear session memory from Redis property key: str# Construct the record key to use property messages: List[langchain.schema.BaseMessage]# Retrieve the messages from Redis pydantic model langchain.memory.RedisEntityStore[source]#
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-17
Retrieve the messages from Redis pydantic model langchain.memory.RedisEntityStore[source]# Redis-backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. field key_prefix: str = 'memory_store'# field recall_ttl: Optional[int] = 259200# field redis_client: Any = None# field session_id: str = 'default'# field ttl: Optional[int] = 86400# clear() → None[source]# Delete all entities from store. delete(key: str) → None[source]# Delete entity value from store. exists(key: str) → bool[source]# Check if entity exists in store. get(key: str, default: Optional[str] = None) → Optional[str][source]# Get entity value from store. set(key: str, value: Optional[str]) → None[source]# Set entity value in store. property full_key_prefix: str# pydantic model langchain.memory.SQLiteEntityStore[source]# SQLite-backed Entity store field session_id: str = 'default'# field table_name: str = 'memory_store'# clear() → None[source]# Delete all entities from store. delete(key: str) → None[source]# Delete entity value from store. exists(key: str) → bool[source]# Check if entity exists in store. get(key: str, default: Optional[str] = None) → Optional[str][source]# Get entity value from store. set(key: str, value: Optional[str]) → None[source]# Set entity value in store. property full_table_name: str# pydantic model langchain.memory.SimpleMemory[source]# Simple memory for storing context or other bits of information that shouldn’t
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-18
Simple memory for storing context or other bits of information that shouldn’t ever change between prompts. field memories: Dict[str, Any] = {}# clear() → None[source]# Nothing to clear, got a memory like a vault. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, str][source]# Return key-value pairs given the text input to the chain. If None, return all memories save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Nothing should be saved or changed, my memory is set in stone. property memory_variables: List[str]# Input keys this memory class will load dynamically. pydantic model langchain.memory.VectorStoreRetrieverMemory[source]# Class for a VectorStore-backed memory object. field input_key: Optional[str] = None# Key name to index the inputs to load_memory_variables. field memory_key: str = 'history'# Key name to locate the memories in the result of load_memory_variables. field retriever: langchain.vectorstores.base.VectorStoreRetriever [Required]# VectorStoreRetriever object to connect to. field return_docs: bool = False# Whether or not to return the result of querying the database directly. clear() → None[source]# Nothing to clear. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Union[List[langchain.schema.Document], str]][source]# Return history buffer. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None[source]# Save context from this conversation to buffer. property memory_variables: List[str]# The list of keys emitted from the load_memory_variables method. previous Document Transformers next Agents By Harrison Chase
https://python.langchain.com/en/latest/reference/modules/memory.html
290e16503ce6-19
previous Document Transformers next Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/memory.html
15bd39437f78-0
.rst .pdf Utilities Utilities# General utilities. pydantic model langchain.utilities.ApifyWrapper[source]# Wrapper around Apify. To use, you should have the apify-client python package installed, and the environment variable APIFY_API_TOKEN set with your API key, or pass apify_api_token as a named parameter to the constructor. field apify_client: Any = None# field apify_client_async: Any = None# async acall_actor(actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], langchain.schema.Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None) → langchain.document_loaders.apify_dataset.ApifyDatasetLoader[source]# Run an Actor on the Apify platform and wait for results to be ready. Parameters actor_id (str) – The ID or name of the Actor on the Apify platform. run_input (Dict) – The input object of the Actor that you’re trying to run. dataset_mapping_function (Callable) – A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional) – Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional) – Optional memory limit for the run, in megabytes. timeout_secs (int, optional) – Optional timeout for the run, in seconds. Returns A loader that will fetch the records from theActor run’s default dataset. Return type ApifyDatasetLoader
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-1
Return type ApifyDatasetLoader call_actor(actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], langchain.schema.Document], *, build: Optional[str] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None) → langchain.document_loaders.apify_dataset.ApifyDatasetLoader[source]# Run an Actor on the Apify platform and wait for results to be ready. Parameters actor_id (str) – The ID or name of the Actor on the Apify platform. run_input (Dict) – The input object of the Actor that you’re trying to run. dataset_mapping_function (Callable) – A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. build (str, optional) – Optionally specifies the actor build to run. It can be either a build tag or build number. memory_mbytes (int, optional) – Optional memory limit for the run, in megabytes. timeout_secs (int, optional) – Optional timeout for the run, in seconds. Returns A loader that will fetch the records from theActor run’s default dataset. Return type ApifyDatasetLoader pydantic model langchain.utilities.ArxivAPIWrapper[source]# Wrapper around ArxivAPI. To use, you should have the arxiv python package installed. https://lukasschwab.me/arxiv.py/index.html This wrapper will use the Arxiv API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results. It limits the Document content by doc_content_chars_max. Set doc_content_chars_max=None if you don’t want to limit the content size. Parameters
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-2
Set doc_content_chars_max=None if you don’t want to limit the content size. Parameters top_k_results – number of the top-scored document used for the arxiv tool ARXIV_MAX_QUERY_LENGTH – the cut limit on the query used for the arxiv tool. load_max_docs – a limit to the number of loaded documents load_all_available_meta – if True: the metadata of the loaded Documents gets all available meta info(see https://lukasschwab.me/arxiv.py/index.html#Result), if False: the metadata gets only the most informative fields. field arxiv_exceptions: Any = None# field doc_content_chars_max: int = 4000# field load_all_available_meta: bool = False# field load_max_docs: int = 100# field top_k_results: int = 3# load(query: str) → List[langchain.schema.Document][source]# Run Arxiv search and get the article texts plus the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search Returns: a list of documents with the document.page_content in text format run(query: str) → str[source]# Run Arxiv search and get the article meta information. See https://lukasschwab.me/arxiv.py/index.html#Search See https://lukasschwab.me/arxiv.py/index.html#Result It uses only the most informative fields of article meta information. class langchain.utilities.BashProcess(strip_newlines: bool = False, return_err_output: bool = False, persistent: bool = False)[source]# Executes bash commands and returns the output. process_output(output: str, command: str) → str[source]# run(commands: Union[str, List[str]]) → str[source]# Run commands and return final output.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-3
Run commands and return final output. pydantic model langchain.utilities.BingSearchAPIWrapper[source]# Wrapper for Bing Search API. In order to set this up, follow instructions at: https://levelup.gitconnected.com/api-tutorial-how-to-use-bing-web-search-api-in-python-4165d5592a7e field bing_search_url: str [Required]# field bing_subscription_key: str [Required]# field k: int = 10# results(query: str, num_results: int) → List[Dict][source]# Run query through BingSearch and return metadata. Parameters query – The query to search for. num_results – The number of results to return. Returns snippet - The description of the result. title - The title of the result. link - The link to the result. Return type A list of dictionaries with the following keys run(query: str) → str[source]# Run query through BingSearch and parse result. pydantic model langchain.utilities.DuckDuckGoSearchAPIWrapper[source]# Wrapper for DuckDuckGo Search API. Free and does not require any setup field k: int = 10# field max_results: int = 5# field region: Optional[str] = 'wt-wt'# field safesearch: str = 'moderate'# field time: Optional[str] = 'y'# get_snippets(query: str) → List[str][source]# Run query through DuckDuckGo and return concatenated results. results(query: str, num_results: int) → List[Dict[str, str]][source]# Run query through DuckDuckGo and return metadata. Parameters query – The query to search for. num_results – The number of results to return. Returns
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-4
num_results – The number of results to return. Returns snippet - The description of the result. title - The title of the result. link - The link to the result. Return type A list of dictionaries with the following keys run(query: str) → str[source]# pydantic model langchain.utilities.GooglePlacesAPIWrapper[source]# Wrapper around Google Places API. To use, you should have the googlemaps python package installed,an API key for the google maps platform, and the enviroment variable ‘’GPLACES_API_KEY’’ set with your API key , or pass ‘gplaces_api_key’ as a named parameter to the constructor. By default, this will return the all the results on the input query.You can use the top_k_results argument to limit the number of results. Example from langchain import GooglePlacesAPIWrapper gplaceapi = GooglePlacesAPIWrapper() field gplaces_api_key: Optional[str] = None# field top_k_results: Optional[int] = None# fetch_place_details(place_id: str) → Optional[str][source]# format_place_details(place_details: Dict[str, Any]) → Optional[str][source]# run(query: str) → str[source]# Run Places search and get k number of places that exists that match. pydantic model langchain.utilities.GoogleSearchAPIWrapper[source]# Wrapper for Google Search API. Adapted from: Instructions adapted from https://stackoverflow.com/questions/ 37083058/ programmatically-searching-google-in-python-using-custom-search TODO: DOCS for using it 1. Install google-api-python-client - If you don’t already have a Google account, sign up. - If you have never created a Google APIs Console project, read the Managing Projects page and create a project in the Google API Console.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-5
read the Managing Projects page and create a project in the Google API Console. - Install the library using pip install google-api-python-client The current version of the library is 2.70.0 at this time 2. To create an API key: - Navigate to the APIs & Services→Credentials panel in Cloud Console. - Select Create credentials, then select API key from the drop-down menu. - The API key created dialog box displays your newly created key. - You now have an API_KEY 3. Setup Custom Search Engine so you can search the entire web - Create a custom search engine in this link. - In Sites to search, add any valid URL (i.e. www.stackoverflow.com). - That’s all you have to fill up, the rest doesn’t matter. In the left-side menu, click Edit search engine → {your search engine name} → Setup Set Search the entire web to ON. Remove the URL you added from the list of Sites to search. - Under Search engine ID you’ll find the search-engine-ID. 4. Enable the Custom Search API - Navigate to the APIs & Services→Dashboard panel in Cloud Console. - Click Enable APIs and Services. - Search for Custom Search API and click on it. - Click Enable. URL for it: https://console.cloud.google.com/apis/library/customsearch.googleapis .com field google_api_key: Optional[str] = None# field google_cse_id: Optional[str] = None# field k: int = 10# field siterestrict: bool = False# results(query: str, num_results: int) → List[Dict][source]# Run query through GoogleSearch and return metadata. Parameters query – The query to search for. num_results – The number of results to return. Returns snippet - The description of the result.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-6
Returns snippet - The description of the result. title - The title of the result. link - The link to the result. Return type A list of dictionaries with the following keys run(query: str) → str[source]# Run query through GoogleSearch and parse result. pydantic model langchain.utilities.GoogleSerperAPIWrapper[source]# Wrapper around the Serper.dev Google Search API. You can create a free API key at https://serper.dev. To use, you should have the environment variable SERPER_API_KEY set with your API key, or pass serper_api_key as a named parameter to the constructor. Example from langchain import GoogleSerperAPIWrapper google_serper = GoogleSerperAPIWrapper() field aiosession: Optional[aiohttp.client.ClientSession] = None# field gl: str = 'us'# field hl: str = 'en'# field k: int = 10# field serper_api_key: Optional[str] = None# field tbs: Optional[str] = None# field type: Literal['news', 'search', 'places', 'images'] = 'search'# async aresults(query: str, **kwargs: Any) → Dict[source]# Run query through GoogleSearch. async arun(query: str, **kwargs: Any) → str[source]# Run query through GoogleSearch and parse result async. results(query: str, **kwargs: Any) → Dict[source]# Run query through GoogleSearch. run(query: str, **kwargs: Any) → str[source]# Run query through GoogleSearch and parse result. pydantic model langchain.utilities.GraphQLAPIWrapper[source]# Wrapper around GraphQL API. To use, you should have the gql python package installed.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-7
Wrapper around GraphQL API. To use, you should have the gql python package installed. This wrapper will use the GraphQL API to conduct queries. field custom_headers: Optional[Dict[str, str]] = None# field graphql_endpoint: str [Required]# run(query: str) → str[source]# Run a GraphQL query and get the results. pydantic model langchain.utilities.LambdaWrapper[source]# Wrapper for AWS Lambda SDK. Docs for using: pip install boto3 Create a lambda function using the AWS Console or CLI Run aws configure and enter your AWS credentials field awslambda_tool_description: Optional[str] = None# field awslambda_tool_name: Optional[str] = None# field function_name: Optional[str] = None# run(query: str) → str[source]# Invoke Lambda function and parse result. pydantic model langchain.utilities.MetaphorSearchAPIWrapper[source]# Wrapper for Metaphor Search API. field k: int = 10# field metaphor_api_key: str [Required]# results(query: str, num_results: int) → List[Dict][source]# Run query through Metaphor Search and return metadata. Parameters query – The query to search for. num_results – The number of results to return. Returns title - The title of the url - The url author - Author of the content, if applicable. Otherwise, None. date_created - Estimated date created, in YYYY-MM-DD format. Otherwise, None. Return type A list of dictionaries with the following keys async results_async(query: str, num_results: int) → List[Dict][source]# Get results from the Metaphor Search API asynchronously. pydantic model langchain.utilities.OpenWeatherMapAPIWrapper[source]#
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-8
pydantic model langchain.utilities.OpenWeatherMapAPIWrapper[source]# Wrapper for OpenWeatherMap API using PyOWM. Docs for using: Go to OpenWeatherMap and sign up for an API key Save your API KEY into OPENWEATHERMAP_API_KEY env variable pip install pyowm field openweathermap_api_key: Optional[str] = None# field owm: Any = None# run(location: str) → str[source]# Get the current weather information for a specified location. pydantic model langchain.utilities.PowerBIDataset[source]# Create PowerBI engine from dataset ID and credential or token. Use either the credential or a supplied token to authenticate. If both are supplied the credential is used to generate a token. The impersonated_user_name is the UPN of a user to be impersonated. If the model is not RLS enabled, this will be ignored. Validators fix_table_names » table_names token_or_credential_present » all fields field aiosession: Optional[aiohttp.ClientSession] = None# field credential: Optional[TokenCredential] = None# field dataset_id: str [Required]# field group_id: Optional[str] = None# field impersonated_user_name: Optional[str] = None# field sample_rows_in_table_info: int = 1# Constraints exclusiveMinimum = 0 maximum = 10 field schemas: Dict[str, str] [Optional]# field table_names: List[str] [Required]# field token: Optional[str] = None# async aget_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]# Get information about specified tables. async arun(command: str) → Any[source]# Execute a DAX command and return the result asynchronously.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-9
Execute a DAX command and return the result asynchronously. get_schemas() → str[source]# Get the available schema’s. get_table_info(table_names: Optional[Union[List[str], str]] = None) → str[source]# Get information about specified tables. get_table_names() → Iterable[str][source]# Get names of tables available. run(command: str) → Any[source]# Execute a DAX command and return a json representing the results. property headers: Dict[str, str]# Get the token. property request_url: str# Get the request url. property table_info: str# Information about all tables in the database. pydantic model langchain.utilities.PubMedAPIWrapper[source]# Wrapper around PubMed API. This wrapper will use the PubMed API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results of an input search. Parameters top_k_results – number of the top-scored document used for the PubMed tool load_max_docs – a limit to the number of loaded documents load_all_available_meta – if True: the metadata of the loaded Documents gets all available meta info(see https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch) if False: the metadata gets only the most informative fields. field doc_content_chars_max: int = 2000# field email: str = '[email protected]'# field load_all_available_meta: bool = False# field load_max_docs: int = 25# field top_k_results: int = 3# load(query: str) → List[dict][source]# Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-10
Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata. load_docs(query: str) → List[langchain.schema.Document][source]# retrieve_article(uid: str, webenv: str) → dict[source]# run(query: str) → str[source]# Run PubMed search and get the article meta information. See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch It uses only the most informative fields of article meta information. pydantic model langchain.utilities.PythonREPL[source]# Simulates a standalone Python REPL. field globals: Optional[Dict] [Optional] (alias '_globals')# field locals: Optional[Dict] [Optional] (alias '_locals')# run(command: str) → str[source]# Run command with own globals/locals and returns anything printed. pydantic model langchain.utilities.SearxSearchWrapper[source]# Wrapper for Searx API. To use you need to provide the searx host by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. In some situations you might want to disable SSL verification, for example if you are running searx locally. You can do this by passing the named parameter unsecure. You can also pass the host url scheme as http to disable SSL. Example from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://localhost:8888") Example with SSL disabled:from langchain.utilities import SearxSearchWrapper # note the unsecure parameter is not needed if you pass the url scheme as # http searx = SearxSearchWrapper(searx_host="http://localhost:8888", unsecure=True) Validators
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-11
unsecure=True) Validators disable_ssl_warnings » unsecure validate_params » all fields field aiosession: Optional[Any] = None# field categories: Optional[List[str]] = []# field engines: Optional[List[str]] = []# field headers: Optional[dict] = None# field k: int = 10# field params: dict [Optional]# field query_suffix: Optional[str] = ''# field searx_host: str = ''# field unsecure: bool = False# async aresults(query: str, num_results: int, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Asynchronously query with json results. Uses aiohttp. See results for more info. async arun(query: str, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Asynchronously version of run. results(query: str, num_results: int, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Run query through Searx API and returns the results with metadata. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. num_results – Limit the number of results to return. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns {snippet: The description of the result. title: The title of the result. link: The link to the result.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-12
title: The title of the result. link: The link to the result. engines: The engines used for the result. category: Searx category of the result. } Return type Dict with the following keys run(query: str, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Run query through Searx API and parse results. You can pass any other params to the searx query API. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns The result of the query. Return type str Raises ValueError – If an error occured with the query. Example This will make a query to the qwant engine: from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://my.searx.host") searx.run("what is the weather in France ?", engine="qwant") # the same result can be achieved using the `!` syntax of searx # to select the engine using `query_suffix` searx.run("what is the weather in France ?", query_suffix="!qwant") pydantic model langchain.utilities.SerpAPIWrapper[source]# Wrapper around SerpAPI. To use, you should have the google-search-results python package installed, and the environment variable SERPAPI_API_KEY set with your API key, or pass serpapi_api_key as a named parameter to the constructor. Example
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-13
serpapi_api_key as a named parameter to the constructor. Example from langchain import SerpAPIWrapper serpapi = SerpAPIWrapper() field aiosession: Optional[aiohttp.client.ClientSession] = None# field params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}# field serpapi_api_key: Optional[str] = None# async aresults(query: str) → dict[source]# Use aiohttp to run query through SerpAPI and return the results async. async arun(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result async. get_params(query: str) → Dict[str, str][source]# Get parameters for SerpAPI. results(query: str) → dict[source]# Run query through SerpAPI and return the raw result. run(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result. class langchain.utilities.SparkSQL(spark_session: Optional[SparkSession] = None, catalog: Optional[str] = None, schema: Optional[str] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3)[source]# classmethod from_uri(database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any) → langchain.utilities.spark_sql.SparkSQL[source]# Creating a remote Spark Session via Spark connect. For example: SparkSQL.from_uri(“sc://localhost:15002”) get_table_info(table_names: Optional[List[str]] = None) → str[source]#
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-14
get_table_info(table_names: Optional[List[str]] = None) → str[source]# get_table_info_no_throw(table_names: Optional[List[str]] = None) → str[source]# Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If sample_rows_in_table_info, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. get_usable_table_names() → Iterable[str][source]# Get names of tables available. run(command: str, fetch: str = 'all') → str[source]# run_no_throw(command: str, fetch: str = 'all') → str[source]# Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned. pydantic model langchain.utilities.TextRequestsWrapper[source]# Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. field aiosession: Optional[aiohttp.client.ClientSession] = None# field headers: Optional[Dict[str, str]] = None# async adelete(url: str, **kwargs: Any) → str[source]# DELETE the URL and return the text asynchronously. async aget(url: str, **kwargs: Any) → str[source]# GET the URL and return the text asynchronously. async apatch(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PATCH the URL and return the text asynchronously.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-15
PATCH the URL and return the text asynchronously. async apost(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# POST to the URL and return the text asynchronously. async aput(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PUT the URL and return the text asynchronously. delete(url: str, **kwargs: Any) → str[source]# DELETE the URL and return the text. get(url: str, **kwargs: Any) → str[source]# GET the URL and return the text. patch(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PATCH the URL and return the text. post(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# POST to the URL and return the text. put(url: str, data: Dict[str, Any], **kwargs: Any) → str[source]# PUT the URL and return the text. property requests: langchain.requests.Requests# pydantic model langchain.utilities.TwilioAPIWrapper[source]# Sms Client using Twilio. To use, you should have the twilio python package installed, and the environment variables TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN, and TWILIO_FROM_NUMBER, or pass account_sid, auth_token, and from_number as named parameters to the constructor. Example from langchain.utilities.twilio import TwilioAPIWrapper twilio = TwilioAPIWrapper( account_sid="ACxxx", auth_token="xxx", from_number="+10123456789" ) twilio.run('test', '+12484345508') field account_sid: Optional[str] = None# Twilio account string identifier.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-16
field account_sid: Optional[str] = None# Twilio account string identifier. field auth_token: Optional[str] = None# Twilio auth token. field from_number: Optional[str] = None# A Twilio phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format, an [alphanumeric sender ID](https://www.twilio.com/docs/sms/send-messages#use-an-alphanumeric-sender-id), or a [Channel Endpoint address](https://www.twilio.com/docs/sms/channels#channel-addresses) that is enabled for the type of message you want to send. Phone numbers or [short codes](https://www.twilio.com/docs/sms/api/short-code) purchased from Twilio also work here. You cannot, for example, spoof messages from a private cell phone number. If you are using messaging_service_sid, this parameter must be empty. run(body: str, to: str) → str[source]# Run body through Twilio and respond with message sid. Parameters body – The text of the message you want to send. Can be up to 1,600 characters in length. to – The destination phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164) format for SMS/MMS or [Channel user address](https://www.twilio.com/docs/sms/channels#channel-addresses) for other 3rd-party channels. pydantic model langchain.utilities.WikipediaAPIWrapper[source]# Wrapper around WikipediaAPI. To use, you should have the wikipedia python package installed. This wrapper will use the Wikipedia API to conduct searches and fetch page summaries. By default, it will return the page summaries of the top-k results.
https://python.langchain.com/en/latest/reference/modules/utilities.html
15bd39437f78-17
of the top-k results. It limits the Document content by doc_content_chars_max. field doc_content_chars_max: int = 4000# field lang: str = 'en'# field load_all_available_meta: bool = False# field top_k_results: int = 3# load(query: str) → List[langchain.schema.Document][source]# Run Wikipedia search and get the article text plus the meta information. See Returns: a list of documents. run(query: str) → str[source]# Run Wikipedia search and get page summaries. pydantic model langchain.utilities.WolframAlphaAPIWrapper[source]# Wrapper for Wolfram Alpha. Docs for using: Go to wolfram alpha and sign up for a developer account Create an app and get your APP ID Save your APP ID into WOLFRAM_ALPHA_APPID env variable pip install wolframalpha field wolfram_alpha_appid: Optional[str] = None# run(query: str) → str[source]# Run query through WolframAlpha and parse result. previous Agent Toolkits next Experimental Modules By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/utilities.html
6c4c047a51a9-0
.rst .pdf SearxNG Search Contents Quick Start Searching Engine Parameters Search Tips SearxNG Search# Utility for using SearxNG meta search API. SearxNG is a privacy-friendly free metasearch engine that aggregates results from multiple search engines and databases and supports the OpenSearch specification. More details on the installation instructions here. For the search API refer to https://docs.searxng.org/dev/search_api.html Quick Start# In order to use this utility you need to provide the searx host. This can be done by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. Note: this is the only required parameter. Then create a searx search instance like this: from langchain.utilities import SearxSearchWrapper # when the host starts with `http` SSL is disabled and the connection # is assumed to be on a private network searx_host='http://self.hosted' search = SearxSearchWrapper(searx_host=searx_host) You can now use the search instance to query the searx API. Searching# Use the run() and results() methods to query the searx API. Other methods are available for convenience. SearxResults is a convenience wrapper around the raw json result. Example usage of the run method to make a search: s.run(query="what is the best search engine?") Engine Parameters# You can pass any accepted searx search API parameters to the SearxSearchWrapper instance. In the following example we are using the engines and the language parameters: # assuming the searx host is set as above or exported as an env variable
https://python.langchain.com/en/latest/reference/modules/searx_search.html
6c4c047a51a9-1
# assuming the searx host is set as above or exported as an env variable s = SearxSearchWrapper(engines=['google', 'bing'], language='es') Search Tips# Searx offers a special search syntax that can also be used instead of passing engine parameters. For example the following query: s = SearxSearchWrapper("langchain library", engines=['github']) # can also be written as: s = SearxSearchWrapper("langchain library !github") # or even: s = SearxSearchWrapper("langchain library !gh") In some situations you might want to pass an extra string to the search query. For example when the run() method is called by an agent. The search suffix can also be used as a way to pass extra parameters to searx or the underlying search engines. # select the github engine and pass the search suffix s = SearchWrapper("langchain library", query_suffix="!gh") s = SearchWrapper("langchain library") # select github the conventional google search syntax s.run("large language models", query_suffix="site:github.com") NOTE: A search suffix can be defined on both the instance and the method level. The resulting query will be the concatenation of the two with the former taking precedence. See SearxNG Configured Engines and SearxNG Search Syntax for more details. Notes This wrapper is based on the SearxNG fork searxng/searxng which is better maintained than the original Searx project and offers more features. Public searxNG instances often use a rate limiter for API usage, so you might want to use a self hosted instance and disable the rate limiter.
https://python.langchain.com/en/latest/reference/modules/searx_search.html
6c4c047a51a9-2
use a self hosted instance and disable the rate limiter. If you are self-hosting an instance you can customize the rate limiter for your own network as described here. For a list of public SearxNG instances see https://searx.space/ class langchain.utilities.searx_search.SearxResults(data: str)[source]# Dict like wrapper around search api results. property answers: Any# Helper accessor on the json result. pydantic model langchain.utilities.searx_search.SearxSearchWrapper[source]# Wrapper for Searx API. To use you need to provide the searx host by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. In some situations you might want to disable SSL verification, for example if you are running searx locally. You can do this by passing the named parameter unsecure. You can also pass the host url scheme as http to disable SSL. Example from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://localhost:8888") Example with SSL disabled:from langchain.utilities import SearxSearchWrapper # note the unsecure parameter is not needed if you pass the url scheme as # http searx = SearxSearchWrapper(searx_host="http://localhost:8888", unsecure=True) Validators disable_ssl_warnings » unsecure validate_params » all fields field aiosession: Optional[Any] = None# field categories: Optional[List[str]] = []# field engines: Optional[List[str]] = []# field headers: Optional[dict] = None# field k: int = 10# field params: dict [Optional]# field query_suffix: Optional[str] = ''#
https://python.langchain.com/en/latest/reference/modules/searx_search.html
6c4c047a51a9-3
field params: dict [Optional]# field query_suffix: Optional[str] = ''# field searx_host: str = ''# field unsecure: bool = False# async aresults(query: str, num_results: int, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Asynchronously query with json results. Uses aiohttp. See results for more info. async arun(query: str, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Asynchronously version of run. results(query: str, num_results: int, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Run query through Searx API and returns the results with metadata. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. num_results – Limit the number of results to return. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns {snippet: The description of the result. title: The title of the result. link: The link to the result. engines: The engines used for the result. category: Searx category of the result. } Return type Dict with the following keys run(query: str, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]#
https://python.langchain.com/en/latest/reference/modules/searx_search.html
6c4c047a51a9-4
Run query through Searx API and parse results. You can pass any other params to the searx query API. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns The result of the query. Return type str Raises ValueError – If an error occured with the query. Example This will make a query to the qwant engine: from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://my.searx.host") searx.run("what is the weather in France ?", engine="qwant") # the same result can be achieved using the `!` syntax of searx # to select the engine using `query_suffix` searx.run("what is the weather in France ?", query_suffix="!qwant") Contents Quick Start Searching Engine Parameters Search Tips By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/searx_search.html
7487ca26a34d-0
.rst .pdf Embeddings Embeddings# Wrappers around embedding modules. pydantic model langchain.embeddings.AlephAlphaAsymmetricSemanticEmbedding[source]# Wrapper for Aleph Alpha’s Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) field aleph_alpha_api_key: Optional[str] = None# API key for Aleph Alpha API. field compress_to_size: Optional[int] = 128# Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim. field contextual_control_threshold: Optional[int] = None# Attention control parameters only apply to those tokens that have explicitly been set in the request. field control_log_additive: Optional[bool] = True# Apply controls on prompt items by adding the log(control_factor) to attention scores. field hosting: Optional[str] = 'https://api.aleph-alpha.com'# Optional parameter that specifies which datacenters may process the request. field model: Optional[str] = 'luminous-base'# Model name to use. field normalize: Optional[bool] = True# Should returned embeddings be normalized embed_documents(texts: List[str]) → List[List[float]][source]#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-1
embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s asymmetric Document endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.AlephAlphaSymmetricSemanticEmbedding[source]# The symmetric version of the Aleph Alpha’s semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric .. rubric:: Example from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding() text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s Document endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.BedrockEmbeddings[source]# Embeddings provider to invoke Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-2
If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. field credentials_profile_name: Optional[str] = None# The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html field model_id: str = 'amazon.titan-e1t-medium'# Id of the model to call, e.g., amazon.titan-e1t-medium, this is equivalent to the modelId property in the list-foundation-models api field model_kwargs: Optional[Dict] = None# Key word arguments to pass to the model. field region_name: Optional[str] = None# The aws region e.g., us-west-2. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. embed_documents(texts: List[str], chunk_size: int = 1) → List[List[float]][source]# Compute doc embeddings using a Bedrock model. Parameters texts – The list of texts to embed. chunk_size – Bedrock currently only allows single string inputs, so chunk size is always 1. This input is here only for compatibility with the embeddings interface. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a Bedrock model. Parameters text – The text to embed. Returns Embeddings for the text.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-3
Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.CohereEmbeddings[source]# Wrapper around Cohere embedding models. To use, you should have the cohere python package installed, and the environment variable COHERE_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings( model="embed-english-light-v2.0", cohere_api_key="my-api-key" ) field model: str = 'embed-english-v2.0'# Model name to use. field truncate: Optional[str] = None# Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”) embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Cohere’s embedding endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Cohere’s embedding endpoint. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.DeepInfraEmbeddings[source]# Wrapper around Deep Infra’s embedding inference service. To use, you should have the environment variable DEEPINFRA_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings(
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-4
deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) field embed_instruction: str = 'passage: '# Instruction used to embed documents. field model_id: str = 'sentence-transformers/clip-ViT-B-32'# Embeddings model to use. field model_kwargs: Optional[dict] = None# Other model keyword args field normalize: bool = False# whether to normalize the computed embeddings field query_instruction: str = 'query: '# Instruction used to embed the query. embed_documents(texts: List[str]) → List[List[float]][source]# Embed documents using a Deep Infra deployed embedding model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Embed a query using a Deep Infra deployed embedding model. Parameters text – The text to embed. Returns Embeddings for the text. class langchain.embeddings.ElasticsearchEmbeddings(client: MlClient, model_id: str, *, input_field: str = 'text_field')[source]# Wrapper around Elasticsearch embedding models. This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster. In Elasticsearch you need to have an embedding model loaded and deployed.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-5
In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html embed_documents(texts: List[str]) → List[List[float]][source]# Generate embeddings for a list of documents. Parameters texts (List[str]) – A list of document text strings to generate embeddings for. Returns A list of embeddings, one for each document in the inputlist. Return type List[List[float]] embed_query(text: str) → List[float][source]# Generate an embedding for a single query text. Parameters text (str) – The query text to generate an embedding for. Returns The embedding for the input query text. Return type List[float] classmethod from_credentials(model_id: str, *, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_password: Optional[str] = None, input_field: str = 'text_field') → langchain.embeddings.elasticsearch.ElasticsearchEmbeddings[source]# Instantiate embeddings from Elasticsearch credentials. Parameters model_id (str) – The model_id of the model deployed in the Elasticsearch cluster. input_field (str) – The name of the key for the input text field in the document. Defaults to ‘text_field’. es_cloud_id – (str, optional): The Elasticsearch cloud ID to connect to. es_user – (str, optional): Elasticsearch username. es_password – (str, optional): Elasticsearch password. Example from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field'
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-6
# Optional, only if different from 'text_field' input_field = "your_input_field" # Credentials can be passed in two ways. Either set the env vars # ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically # pulled in, or pass them in directly as kwargs. embeddings = ElasticsearchEmbeddings.from_credentials( model_id, input_field=input_field, # es_cloud_id="foo", # es_user="bar", # es_password="baz", ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) classmethod from_es_connection(model_id: str, es_connection: Elasticsearch, input_field: str = 'text_field') → ElasticsearchEmbeddings[source]# Instantiate embeddings from an existing Elasticsearch connection. This method provides a way to create an instance of the ElasticsearchEmbeddings class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbeddings instance. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to ‘text_field’. Returns: ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class. Example from elasticsearch import Elasticsearch from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Create Elasticsearch connection
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-7
input_field = "your_input_field" # Create Elasticsearch connection es_connection = Elasticsearch( hosts=["localhost:9200"], http_auth=("user", "password") ) # Instantiate ElasticsearchEmbeddings using the existing connection embeddings = ElasticsearchEmbeddings.from_es_connection( model_id, es_connection, input_field=input_field, ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) pydantic model langchain.embeddings.FakeEmbeddings[source]# embed_documents(texts: List[str]) → List[List[float]][source]# Embed search docs. embed_query(text: str) → List[float][source]# Embed query text. pydantic model langchain.embeddings.HuggingFaceEmbeddings[source]# Wrapper around sentence_transformers embedding models. To use, you should have the sentence_transformers python package installed. Example from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) field cache_folder: Optional[str] = None# Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable. field encode_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass when calling the encode method of the model. field model_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass to the model. field model_name: str = 'sentence-transformers/all-mpnet-base-v2'#
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-8
field model_name: str = 'sentence-transformers/all-mpnet-base-v2'# Model name to use. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace transformer model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace transformer model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.HuggingFaceHubEmbeddings[source]# Wrapper around HuggingFaceHub embedding models. To use, you should have the huggingface_hub python package installed, and the environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass it as a named parameter to the constructor. Example from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) field model_kwargs: Optional[dict] = None# Key word arguments to pass to the model. field repo_id: str = 'sentence-transformers/all-mpnet-base-v2'# Model name to use. field task: Optional[str] = 'feature-extraction'# Task to call the model with. embed_documents(texts: List[str]) → List[List[float]][source]# Call out to HuggingFaceHub’s embedding endpoint for embedding search docs. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-9
Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to HuggingFaceHub’s embedding endpoint for embedding query text. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.HuggingFaceInstructEmbeddings[source]# Wrapper around sentence_transformers embedding models. To use, you should have the sentence_transformers and InstructorEmbedding python packages installed. Example from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) field cache_folder: Optional[str] = None# Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable. field embed_instruction: str = 'Represent the document for retrieval: '# Instruction to use for embedding documents. field encode_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass when calling the encode method of the model. field model_kwargs: Dict[str, Any] [Optional]# Key word arguments to pass to the model. field model_name: str = 'hkunlp/instructor-large'# Model name to use. field query_instruction: str = 'Represent the question for retrieving supporting documents: '# Instruction to use for embedding query. embed_documents(texts: List[str]) → List[List[float]][source]# Compute doc embeddings using a HuggingFace instruct model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-10
Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Compute query embeddings using a HuggingFace instruct model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.LlamaCppEmbeddings[source]# Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: abetlen/llama-cpp-python Example from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") field f16_kv: bool = False# Use half-precision for key/value cache. field logits_all: bool = False# Return logits for all tokens, not just the last token. field n_batch: Optional[int] = 8# Number of tokens to process in parallel. Should be a number between 1 and n_ctx. field n_ctx: int = 512# Token context window. field n_gpu_layers: Optional[int] = None# Number of layers to be loaded into gpu memory. Default None. field n_parts: int = -1# Number of parts to split the model into. If -1, the number of parts is automatically determined. field n_threads: Optional[int] = None# Number of threads to use. If None, the number of threads is automatically determined. field seed: int = -1# Seed. If -1, a random seed is used. field use_mlock: bool = False# Force system to keep model in RAM. field vocab_only: bool = False# Only load the vocabulary, no weights.
https://python.langchain.com/en/latest/reference/modules/embeddings.html
7487ca26a34d-11
field vocab_only: bool = False# Only load the vocabulary, no weights. embed_documents(texts: List[str]) → List[List[float]][source]# Embed a list of documents using the Llama model. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Embed a query using the Llama model. Parameters text – The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.MiniMaxEmbeddings[source]# Wrapper around MiniMax’s embedding inference service. To use, you should have the environment variable MINIMAX_GROUP_ID and MINIMAX_API_KEY set with your API token, or pass it as a named parameter to the constructor. Example from langchain.embeddings import MiniMaxEmbeddings embeddings = MiniMaxEmbeddings() query_text = "This is a test query." query_result = embeddings.embed_query(query_text) document_text = "This is a test document." document_result = embeddings.embed_documents([document_text]) field embed_type_db: str = 'db'# For embed_documents field embed_type_query: str = 'query'# For embed_query field endpoint_url: str = 'https://api.minimax.chat/v1/embeddings'# Endpoint URL to use. field minimax_api_key: Optional[str] = None# API Key for MiniMax API. field minimax_group_id: Optional[str] = None# Group ID for MiniMax API. field model: str = 'embo-01'# Embeddings model name to use. embed_documents(texts: List[str]) → List[List[float]][source]# Embed documents using a MiniMax embedding endpoint. Parameters
https://python.langchain.com/en/latest/reference/modules/embeddings.html