id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
fa678718cb2d-47
Returns Document results for search. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a similarity search against the query string. Parameters embedding (List[float]) – The embedding vector to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Document results for search. Return type List[Document] similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-48
Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Return type List[float], List[Tuple[Document, any, any]] similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results with score. For more information about the search parameters, take a look at the pymilvus documentation found here: https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md Parameters embedding (List[float]) – The embedding vector being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. timeout (int, optional) – How long to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns Result doc and score. Return type List[Tuple[Document, float]] class langchain.vectorstores.MongoDBAtlasVectorSearch(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding')[source]# Wrapper around MongoDB Atlas Vector Search. To use, you should have both: - the pymongo python package installed
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-49
To use, you should have both: - the pymongo python package installed - a connection string associated with a MongoDB Atlas Cluster having deployed an Atlas Search index Example from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.embeddings.openai import OpenAIEmbeddings from pymongo import MongoClient mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch(collection, embeddings) add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, **kwargs: Any) → List[source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_connection_string(connection_string: str, namespace: str, embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch[source]# classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[Collection[MongoDBDocumentType]] = None, **kwargs: Any) → MongoDBAtlasVectorSearch[source]# Construct MongoDBAtlasVectorSearch wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Adds the documents to a provided MongoDB Atlas Vector Search index(Lucene) This is intended to be a quick way to get started. Example
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-50
This is intended to be a quick way to get started. Example similarity_search(query: str, k: int = 4, pre_filter: Optional[dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return MongoDB documents most similar to query. Use the knnBeta Operator available in MongoDB Atlas Search This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Parameters query – Text to look up documents similar to. k – Optional Number of Documents to return. Defaults to 4. pre_filter – Optional Dictionary of argument(s) to prefilter on document fields. post_filter_pipeline – Optional Pipeline of MongoDB aggregation stages following the knnBeta search. Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, *, k: int = 4, pre_filter: Optional[dict] = None, post_filter_pipeline: Optional[List[Dict]] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return MongoDB documents most similar to query, along with scores. Use the knnBeta Operator available in MongoDB Atlas Search This feature is in early access and available only for evaluation purposes, to validate functionality, and to gather feedback from a small closed group of early access users. It is not recommended for production deployments as we may introduce breaking changes. For more: https://www.mongodb.com/docs/atlas/atlas-search/knn-beta Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-51
Parameters query – Text to look up documents similar to. k – Optional Number of Documents to return. Defaults to 4. pre_filter – Optional Dictionary of argument(s) to prefilter on document fields. post_filter_pipeline – Optional Pipeline of MongoDB aggregation stages following the knnBeta search. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.MyScale(embedding: langchain.embeddings.base.Embeddings, config: Optional[langchain.vectorstores.myscale.MyScaleSettings] = None, **kwargs: Any)[source]# Wrapper around MyScale vector database You need a clickhouse-connect python package, and a valid account to connect to MyScale. MyScale can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit[myscale official site](https://docs.myscale.com/en/overview/) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. ids – Optional list of ids to associate with the texts. batch_size – Batch size of insertion metadata – Optional column data to be inserted Returns List of ids from adding the texts into the vectorstore. drop() → None[source]# Helper function: Drop data escape_str(value: str) → str[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-52
Helper function: Drop data escape_str(value: str) → str[source]# classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[langchain.vectorstores.myscale.MyScaleSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) → langchain.vectorstores.myscale.MyScale[source]# Create Myscale wrapper with existing texts Parameters embedding_function (Embeddings) – Function to extract text embedding texts (Iterable[str]) – List or tuple of strings to be added config (MyScaleSettings, Optional) – Myscale configuration text_ids (Optional[Iterable], optional) – IDs for the texts. Defaults to None. batch_size (int, optional) – Batchsize when transmitting data to MyScale. Defaults to 32. metadata (List[dict], optional) – metadata to texts. Defaults to None. into (Other keyword arguments will pass) – [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns MyScale Index property metadata_column: str# similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a similarity search with MyScale Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-53
of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of Documents Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a similarity search with MyScale by vectors Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of (Document, similarity) Return type List[Document] similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Perform a similarity search with MyScale Parameters query (str) – query string k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – where condition string. Defaults to None. NOTE – Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use {self.metadata_column}.attribute instead of attribute alone. The default name for it is metadata. Returns List of documents most similar to the query text and cosine distance in float for each.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-54
List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. Return type List[Document] pydantic settings langchain.vectorstores.MyScaleSettings[source]# MyScale Client Configuration Attribute: myscale_host (str)An URL to connect to MyScale backend.Defaults to ‘localhost’. myscale_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (dict): index build parameter. database (str) : Database name to find the table. Defaults to ‘default’. table (str) : Table name to operate on. Defaults to ‘vector_table’. metric (str)Metric to compute distance,supported are (‘l2’, ‘cosine’, ‘ip’). Defaults to ‘cosine’. column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {‘id’: ‘text_id’, ‘vector’: ‘text_embedding’, ‘text’: ‘text_plain’, ‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map. Show JSON schema{ "title": "MyScaleSettings",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-55
Show JSON schema{ "title": "MyScaleSettings", "description": "MyScale Client Configuration\n\nAttribute:\n myscale_host (str) : An URL to connect to MyScale backend.\n Defaults to 'localhost'.\n myscale_port (int) : URL port to connect with HTTP. Defaults to 8443.\n username (str) : Username to login. Defaults to None.\n password (str) : Password to login. Defaults to None.\n index_type (str): index type string.\n index_param (dict): index build parameter.\n database (str) : Database name to find the table. Defaults to 'default'.\n table (str) : Table name to operate on.\n Defaults to 'vector_table'.\n metric (str) : Metric to compute distance,\n supported are ('l2', 'cosine', 'ip'). Defaults to 'cosine'.\n column_map (Dict) : Column type map to project column name onto langchain\n semantics. Must have keys: `text`, `id`, `vector`,\n must be same size to number of columns. For example:\n .. code-block:: python\n\n {\n 'id': 'text_id',\n 'vector': 'text_embedding',\n 'text': 'text_plain',\n 'metadata': 'metadata_dictionary_in_json',\n }\n\n Defaults to identity map.", "type": "object", "properties": { "host": { "title": "Host", "default": "localhost", "env_names": "{'myscale_host'}", "type": "string" }, "port": { "title": "Port",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-56
}, "port": { "title": "Port", "default": 8443, "env_names": "{'myscale_port'}", "type": "integer" }, "username": { "title": "Username", "env_names": "{'myscale_username'}", "type": "string" }, "password": { "title": "Password", "env_names": "{'myscale_password'}", "type": "string" }, "index_type": { "title": "Index Type", "default": "IVFFLAT", "env_names": "{'myscale_index_type'}", "type": "string" }, "index_param": { "title": "Index Param", "env_names": "{'myscale_index_param'}", "type": "object", "additionalProperties": { "type": "string" } }, "column_map": { "title": "Column Map", "default": { "id": "id", "text": "text", "vector": "vector", "metadata": "metadata" }, "env_names": "{'myscale_column_map'}", "type": "object", "additionalProperties": { "type": "string" } }, "database": { "title": "Database", "default": "default", "env_names": "{'myscale_database'}", "type": "string" }, "table": { "title": "Table",
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-57
}, "table": { "title": "Table", "default": "langchain", "env_names": "{'myscale_table'}", "type": "string" }, "metric": { "title": "Metric", "default": "cosine", "env_names": "{'myscale_metric'}", "type": "string" } }, "additionalProperties": false } Config env_file: str = .env env_file_encoding: str = utf-8 env_prefix: str = myscale_ Fields column_map (Dict[str, str]) database (str) host (str) index_param (Optional[Dict[str, str]]) index_type (str) metric (str) password (Optional[str]) port (int) table (str) username (Optional[str]) field column_map: Dict[str, str] = {'id': 'id', 'metadata': 'metadata', 'text': 'text', 'vector': 'vector'}# field database: str = 'default'# field host: str = 'localhost'# field index_param: Optional[Dict[str, str]] = None# field index_type: str = 'IVFFLAT'# field metric: str = 'cosine'# field password: Optional[str] = None# field port: int = 8443# field table: str = 'langchain'# field username: Optional[str] = None# class langchain.vectorstores.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: langchain.embeddings.base.Embeddings, **kwargs: Any)[source]# Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-58
Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch[source]# Construct OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-59
search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-60
metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: “must” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search:search_type: “script_scoring”; default: “approximate_search” space_type: “l2”, “l1”, “linf”, “cosinesimil”, “innerproduct”, “hammingbit”; default: “l2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} Optional Args for Painless Scripting Search:search_type: “painless_scripting”; default: “approximate_search” space_type: “l2Squared”, “l1Norm”, “cosineSimilarity”; default: “l2Squared” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return docs and it’s scores most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-61
k – Number of Documents to return. Defaults to 4. Returns List of Documents along with its scores most similar to the query. Optional Args:same as similarity_search class langchain.vectorstores.Pinecone(index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None)[source]# Wrapper around Pinecone vector database. To use, you should have the pinecone-client python package installed. Example from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. namespace – Optional pinecone namespace to add the texts to. Returns List of ids from adding the texts into the vectorstore. classmethod from_existing_index(index_name: str, embedding: langchain.embeddings.base.Embeddings, text_key: str = 'text', namespace: Optional[str] = None) → langchain.vectorstores.pinecone.Pinecone[source]# Load pinecone vectorstore from index name.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-62
Load pinecone vectorstore from index name. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = 'text', index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any) → langchain.vectorstores.pinecone.Pinecone[source]# Construct Pinecone wrapper from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return pinecone documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-63
Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return pinecone documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Qdrant(client: Any, collection_name: str, embeddings: Optional[langchain.embeddings.base.Embeddings] = None, content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', embedding_function: Optional[Callable] = None)[source]# Wrapper around Qdrant vector database. To use you should have the qdrant-client package installed. Example from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) CONTENT_KEY = 'page_content'# METADATA_KEY = 'metadata'# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, batch_size: int = 64, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-64
Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. batch_size – How many vectors upload per-request. Default: 64 Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = 'Cosine', content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', batch_size: int = 64, shard_number: Optional[int] = None, replication_factor: Optional[int] = None, write_consistency_factor: Optional[int] = None, on_disk_payload: Optional[bool] = None, hnsw_config: Optional[common_types.HnswConfigDiff] = None, optimizers_config: Optional[common_types.OptimizersConfigDiff] = None, wal_config: Optional[common_types.WalConfigDiff] = None, quantization_config: Optional[common_types.QuantizationConfig] = None, init_from: Optional[common_types.InitFrom] = None, **kwargs: Any) → Qdrant[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-65
Construct Qdrant wrapper from a list of texts. Parameters texts – A list of texts to be indexed in Qdrant. embedding – A subclass of Embeddings, responsible for text vectorization. metadatas – An optional list of metadata. If provided it has to be of the same length as a list of texts. ids – Optional list of ids to associate with the texts. Ids have to be uuid-like strings. location – If :memory: - use in-memory Qdrant instance. If str - use it as a url parameter. If None - fallback to relying on host and port parameters. url – either host or str of “Optional[scheme], host, Optional[port], Optional[prefix]”. Default: None port – Port of the REST API interface. Default: 6333 grpc_port – Port of the gRPC interface. Default: 6334 prefer_grpc – If true - use gPRC interface whenever possible in custom methods. Default: False https – If true - use HTTPS(SSL) protocol. Default: None api_key – API key for authentication in Qdrant Cloud. Default: None prefix – If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout – Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host – Host name of Qdrant service. If url and host are None, set to ‘localhost’. Default: None path – Path in which the vectors will be stored while using local mode. Default: None collection_name – Name of the Qdrant collection to be used. If not provided,
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-66
collection_name – Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func – Distance function. One of: “Cosine” / “Euclid” / “Dot”. Default: “Cosine” content_payload_key – A payload key used to store the content of the document. Default: “page_content” metadata_payload_key – A payload key used to store the metadata of the document. Default: “metadata” batch_size – How many vectors upload per-request. Default: 64 shard_number – Number of shards in collection. Default is 1, minimum is 1. replication_factor – Replication factor for collection. Default is 1, minimum is 1. Defines how many copies of each shard will be created. Have effect only in distributed mode. write_consistency_factor – Write consistency factor for collection. Default is 1, minimum is 1. Defines how many replicas should apply the operation for us to consider it successful. Increasing this number will make the collection more resilient to inconsistencies, but will also make it fail if not enough replicas are available. Does not have any performance impact. Have effect only in distributed mode. on_disk_payload – If true - point`s payload will not be stored in memory. It will be read from the disk every time it is requested. This setting saves RAM by (slightly) increasing the response time. Note: those payload values that are involved in filtering and are indexed - remain in RAM. hnsw_config – Params for HNSW index optimizers_config – Params for optimizer wal_config – Params for Write-Ahead-Log quantization_config – Params for quantization, if None - quantization will be disabled init_from – Use data stored in another collection to initialize this collection
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-67
init_from – Use data stored in another collection to initialize this collection **kwargs – Additional arguments passed directly into REST client initialization This is a user-friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-68
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of Documents most similar to the query.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-69
Returns List of Documents most similar to the query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[MetadataFilter] = None, search_params: Optional[common_types.SearchParams] = None, offset: int = 0, score_threshold: Optional[float] = None, consistency: Optional[common_types.ReadConsistency] = None, **kwargs: Any) → List[Tuple[Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. search_params – Additional search params offset – Offset of the first result to return. May be used to paginate results. Note: large offset values may cause performance issues. score_threshold – Define a minimal score threshold for the result. If defined, less similar results will not be returned. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. consistency – Read consistency of the search. Defines how many replicas should be queried before returning the result. Values: - int - number of replicas to query, values should present in all queried replicas ’majority’ - query all replicas, but return values present in themajority of replicas ’quorum’ - query the majority of replicas, return values present inall of them ’all’ - query all replicas, and return values present in all replicas Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-70
distance in float for each. Lower score represents more similarity. class langchain.vectorstores.Redis(redis_url: str, index_name: str, embedding_function: typing.Callable, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', relevance_score_fn: typing.Optional[typing.Callable[[float], float]] = <function _default_relevance_score>, **kwargs: typing.Any)[source]# Wrapper around Redis vector database. To use, you should have the redis python package installed. Example from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Redis( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, keys: Optional[List[str]] = None, batch_size: int = 1000, **kwargs: Any) → List[str][source]# Add more texts to the vectorstore. Parameters texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. Defaults to None. embeddings (Optional[List[List[float]]], optional) – Optional pre-generated embeddings. Defaults to None. keys (Optional[List[str]], optional) – Optional key values to use as ids. Defaults to None. batch_size (int, optional) – Batch size to use for writes. Defaults to 1000. Returns List of ids added to the vectorstore Return type List[str]
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-71
Returns List of ids added to the vectorstore Return type List[str] as_retriever(**kwargs: Any) → langchain.vectorstores.redis.RedisVectorStoreRetriever[source]# static drop_index(index_name: str, delete_documents: bool, **kwargs: Any) → bool[source]# Drop a Redis search index. Parameters index_name (str) – Name of the index to drop. delete_documents (bool) – Whether to drop the associated documents. Returns Whether or not the drop was successful. Return type bool classmethod from_existing_index(embedding: langchain.embeddings.base.Embeddings, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → langchain.vectorstores.redis.Redis[source]# Connect to an existing Redis index. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → langchain.vectorstores.redis.Redis[source]# Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-72
This is intended to be a quick way to get started. .. rubric:: Example classmethod from_texts_return_keys(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', distance_metric: Literal['COSINE', 'IP', 'L2'] = 'COSINE', **kwargs: Any) → Tuple[langchain.vectorstores.redis.Redis, List[str]][source]# Create a Redis vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in Redis. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. .. rubric:: Example similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] similarity_search_limit_score(query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any) → List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text within the score_threshold range. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-73
k (int) – The number of documents to return. Default is 4. score_threshold (float) – The minimum matching score required for a document 0.2. (to be considered a match. Defaults to) – similarity (Because the similarity calculation algorithm is based on cosine) – :param : :param the smaller the angle: :param the higher the similarity.: Returns A list of documents that are most similar to the query text, including the match score for each document. Return type List[Document] Note If there are no documents that satisfy the score_threshold value, an empty list is returned. similarity_search_with_score(query: str, k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.SKLearnVectorStore(embedding: langchain.embeddings.base.Embeddings, *, persist_path: Optional[str] = None, serializer: Literal['json', 'bson', 'parquet'] = 'json', metric: str = 'cosine', **kwargs: Any)[source]# A simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-74
kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, persist_path: Optional[str] = None, **kwargs: Any) → langchain.vectorstores.sklearn.SKLearnVectorStore[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-75
:param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. persist() → None[source]# similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_with_score(query: str, *, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# class langchain.vectorstores.SingleStoreDB(embedding: langchain.embeddings.base.Embeddings, *, table_name: str = 'embeddings', content_field: str = 'content', metadata_field: str = 'metadata', vector_field: str = 'vector', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any)[source]# This class serves as a Pythonic interface to the SingleStore DB database. The prerequisite for using this class is the installation of the singlestoredb Python package. The SingleStoreDB vectorstore can be created by providing an embedding function and the relevant parameters for the database connection, connection pool, and optionally, the names of the table and the fields to use. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, **kwargs: Any) → List[str][source]# Add more texts to the vectorstore. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-76
Add more texts to the vectorstore. Parameters texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. Defaults to None. embeddings (Optional[List[List[float]]], optional) – Optional pre-generated embeddings. Defaults to None. Returns empty list Return type List[str] as_retriever(**kwargs: Any) → langchain.vectorstores.singlestoredb.SingleStoreDBRetriever[source]# connection_kwargs# Create connection pool. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, table_name: str = 'embeddings', content_field: str = 'content', metadata_field: str = 'metadata', vector_field: str = 'vector', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any) → langchain.vectorstores.singlestoredb.SingleStoreDB[source]# Create a SingleStoreDB vectorstore from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new table for the embeddings in SingleStoreDB. Adds the documents to the newly created table. This is intended to be a quick way to get started. .. rubric:: Example similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text. Uses cosine similarity. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-77
k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] similarity_search_with_score(query: str, k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Uses cosine similarity. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each vector_field# Pass the rest of the kwargs to the connection. class langchain.vectorstores.SupabaseVectorStore(client: supabase.client.Client, embedding: Embeddings, table_name: str, query_name: Union[str, None] = None)[source]# VectorStore for a Supabase postgres database. Assumes you have the pgvector extension installed and a match_documents (or similar) function. For more details: https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase You can implement your own match_documents function in order to limit the search space to a subset of documents based on your own authorization or business logic. Note that the Supabase Python client does not yet support async operations. If you’d like to use max_marginal_relevance_search, please review the instructions below on modifying the match_documents function to return matched embeddings. add_texts(texts: Iterable[str], metadatas: Optional[List[dict[Any, Any]]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-78
Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. add_vectors(vectors: List[List[float]], documents: List[langchain.schema.Document]) → List[str][source]# classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[supabase.client.Client] = None, table_name: Optional[str] = 'documents', query_name: Union[str, None] = 'match_documents', **kwargs: Any) → SupabaseVectorStore[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search requires that query_name returns matched embeddings alongside the match documents. The following function demonstrates how to do this: ```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536),
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-79
```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536), match_count int) RETURNS TABLE(id bigint, content text, metadata jsonb, embedding vector(1536), similarity float) LANGUAGE plpgsql AS $$ # variable_conflict use_column BEGINRETURN query SELECT id, content, metadata, embedding, 1 -(docstore.embedding <=> query_embedding) AS similarity FROMdocstore ORDER BYdocstore.embedding <=> query_embedding LIMIT match_count; END; $$; ``` max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. query_name: str# similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-80
Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_by_vector_returning_embeddings(query: List[float], k: int) → List[Tuple[langchain.schema.Document, float, numpy.ndarray[numpy.float32, Any]]][source]# similarity_search_by_vector_with_relevance_scores(query: List[float], k: int) → List[Tuple[langchain.schema.Document, float]][source]# similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) table_name: str# class langchain.vectorstores.Tair(embedding_function: langchain.embeddings.base.Embeddings, url: str, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', search_params: Optional[dict] = None, **kwargs: Any)[source]# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Add texts data to an existing index.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-81
Add texts data to an existing index. create_index_if_not_exist(dim: int, distance_type: str, index_type: str, data_type: str, **kwargs: Any) → bool[source]# static drop_index(index_name: str = 'langchain', **kwargs: Any) → bool[source]# Drop an existing index. Parameters index_name (str) – Name of the index to drop. Returns True if the index is dropped successfully. Return type bool classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) → langchain.vectorstores.tair.Tair[source]# Return VectorStore initialized from documents and embeddings. classmethod from_existing_index(embedding: langchain.embeddings.base.Embeddings, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) → langchain.vectorstores.tair.Tair[source]# Connect to an existing Tair index. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, index_name: str = 'langchain', content_key: str = 'content', metadata_key: str = 'metadata', **kwargs: Any) → langchain.vectorstores.tair.Tair[source]# Return VectorStore initialized from texts and embeddings. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Returns the most similar indexed documents to the query text. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-82
Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] class langchain.vectorstores.Tigris(client: TigrisClient, embeddings: Embeddings, index_name: str)[source]# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids for documents. Ids will be autogenerated if not provided. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, client: Optional[TigrisClient] = None, index_name: Optional[str] = None, **kwargs: Any) → Tigris[source]# Return VectorStore initialized from texts and embeddings. property search_index: TigrisVectorStore# similarity_search(query: str, k: int = 4, filter: Optional[TigrisFilter] = None, **kwargs: Any) → List[Document][source]# Return docs most similar to query.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-83
Return docs most similar to query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[TigrisFilter] = None) → List[Tuple[Document, float]][source]# Run similarity search with Chroma with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[TigrisFilter]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]] class langchain.vectorstores.Typesense(typesense_client: Client, embedding: Embeddings, *, typesense_collection_name: Optional[str] = None, text_key: str = 'text')[source]# Wrapper around Typesense vector search. To use, you should have the typesense python package installed. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense import typesense node = { "host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net "port": "8108", # For Typesense Cloud use 443 "protocol": "http" # For Typesense Cloud use https } typesense_client = typesense.Client( { "nodes": [node], "api_key": "<API_KEY>", "connection_timeout_seconds": 2 } ) typesense_collection_name = "langchain-memory" embedding = OpenAIEmbeddings() vectorstore = Typesense( typesense_client, typesense_collection_name, embedding.embed_query, "text", )
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-84
typesense_collection_name, embedding.embed_query, "text", ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embedding and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_client_params(embedding: langchain.embeddings.base.Embeddings, *, host: str = 'localhost', port: Union[str, int] = '8108', protocol: str = 'http', typesense_api_key: Optional[str] = None, connection_timeout_seconds: int = 2, **kwargs: Any) → langchain.vectorstores.typesense.Typesense[source]# Initialize Typesense directly from client parameters. Example from langchain.embedding.openai import OpenAIEmbeddings from langchain.vectorstores import Typesense # Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY". vectorstore = Typesense( OpenAIEmbeddings(), host="localhost", port="8108", protocol="http", typesense_collection_name="langchain-memory", )
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-85
protocol="http", typesense_collection_name="langchain-memory", ) classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, typesense_client: Optional[Client] = None, typesense_client_params: Optional[dict] = None, typesense_collection_name: Optional[str] = None, text_key: str = 'text', **kwargs: Any) → Typesense[source]# Construct Typesense wrapper from raw text. similarity_search(query: str, k: int = 4, filter: Optional[str] = '', **kwargs: Any) → List[langchain.schema.Document][source]# Return typesense documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[str] = '') → List[Tuple[langchain.schema.Document, float]][source]# Return typesense documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – typesense filter_by expression to filter documents on Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Vectara(vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None)[source]# Implementation of Vector Store using Vectara (https://vectara.com). .. rubric:: Example
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-86
.. rubric:: Example from langchain.vectorstores import Vectara vectorstore = Vectara( vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. as_retriever(**kwargs: Any) → langchain.vectorstores.vectara.VectaraRetriever[source]# classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.vectara.Vectara[source]# Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. .. rubric:: Example from langchain import Vectara vectara = Vectara.from_texts( texts, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, ) similarity_search(query: str, k: int = 5, lambda_val: float = 0.025, filter: Optional[str] = None, n_sentence_context: int = 0, **kwargs: Any) → List[langchain.schema.Document][source]# Return Vectara documents most similar to query, along with scores. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-87
Return Vectara documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 5. filter – Dictionary of argument(s) to filter on metadata. For example a filter can be “doc.rating > 3.0 and part.lang = ‘deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. n_sentence_context – number of sentences before/after the matching segment to add Returns List of Documents most similar to the query similarity_search_with_score(query: str, k: int = 5, lambda_val: float = 0.025, filter: Optional[str] = None, n_sentence_context: int = 0, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return Vectara documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 5. lambda_val – lexical match parameter for hybrid search. filter – Dictionary of argument(s) to filter on metadata. For example a filter can be “doc.rating > 3.0 and part.lang = ‘deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. n_sentence_context – number of sentences before/after the matching segment to add Returns List of Documents most similar to the query and score for each. class langchain.vectorstores.VectorStore[source]# Interface for vector stores. async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-88
Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-89
Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → langchain.vectorstores.base.VectorStoreRetriever[source]# async asearch(query: str, search_type: str, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-90
Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-91
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query using specified search type. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-92
Returns List of Tuples of (doc, similarity_score) class langchain.vectorstores.Weaviate(client: typing.Any, index_name: str, text_key: str, embedding: typing.Optional[langchain.embeddings.base.Embeddings] = None, attributes: typing.Optional[typing.List[str]] = None, relevance_score_fn: typing.Optional[typing.Callable[[float], float]] = <function _default_score_normalizer>, by_text: bool = True)[source]# Wrapper around Weaviate vector database. To use, you should have the weaviate-client python package installed. Example import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Upload texts with metadata (properties) to Weaviate. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.weaviate.Weaviate[source]# Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings,
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-93
weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-94
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_text(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Look up similar documents by embedding vector in Weaviate. similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. class langchain.vectorstores.Zilliz(embedding_function: langchain.embeddings.base.Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
fa678718cb2d-95
classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: dict[str, Any] = {}, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any) → langchain.vectorstores.zilliz.Zilliz[source]# Create a Zilliz collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. collection_name (str, optional) – Collection name to use. Defaults to “LangChainCollection”. connection_args (dict[str, Any], optional) – Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional) – Which consistency level to use. Defaults to “Session”. index_params (Optional[dict], optional) – Which index_params to use. Defaults to None. search_params (Optional[dict], optional) – Which search params to use. Defaults to None. drop_old (Optional[bool], optional) – Whether to drop the collection with that name if it exists. Defaults to False. Returns Zilliz Vector Store Return type Zilliz previous Document Loaders next Retrievers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/vectorstores.html
37669183a796-0
.rst .pdf Agent Toolkits Agent Toolkits# Agent toolkits. pydantic model langchain.agents.agent_toolkits.AzureCognitiveServicesToolkit[source]# Toolkit for Azure Cognitive Services. get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.FileManagementToolkit[source]# Toolkit for interacting with a Local Files. field root_dir: Optional[str] = None# If specified, all file operations are made relative to root_dir. field selected_tools: Optional[List[str]] = None# If provided, only provide the selected tools. Defaults to all. get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.GmailToolkit[source]# Toolkit for interacting with Gmail. field api_resource: Resource [Optional]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.JiraToolkit[source]# Jira Toolkit. field tools: List[langchain.tools.base.BaseTool] = []# classmethod from_jira_api_wrapper(jira_api_wrapper: langchain.utilities.jira.JiraAPIWrapper) → langchain.agents.agent_toolkits.jira.toolkit.JiraToolkit[source]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.JsonToolkit[source]# Toolkit for interacting with a JSON spec. field spec: langchain.tools.json.tool.JsonSpec [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-1
get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.NLAToolkit[source]# Natural Language API Toolkit Definition. field nla_tools: Sequence[langchain.agents.agent_toolkits.nla.tool.NLATool] [Required]# List of API Endpoint Tools. classmethod from_llm_and_ai_plugin(llm: langchain.base_language.BaseLanguageModel, ai_plugin: langchain.tools.plugin.AIPlugin, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, **kwargs: Any) → langchain.agents.agent_toolkits.nla.toolkit.NLAToolkit[source]# Instantiate the toolkit from an OpenAPI Spec URL classmethod from_llm_and_ai_plugin_url(llm: langchain.base_language.BaseLanguageModel, ai_plugin_url: str, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, **kwargs: Any) → langchain.agents.agent_toolkits.nla.toolkit.NLAToolkit[source]# Instantiate the toolkit from an OpenAPI Spec URL classmethod from_llm_and_spec(llm: langchain.base_language.BaseLanguageModel, spec: langchain.tools.openapi.utils.openapi_utils.OpenAPISpec, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, **kwargs: Any) → langchain.agents.agent_toolkits.nla.toolkit.NLAToolkit[source]# Instantiate the toolkit by creating tools for each operation. classmethod from_llm_and_url(llm: langchain.base_language.BaseLanguageModel, open_api_url: str, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, **kwargs: Any) → langchain.agents.agent_toolkits.nla.toolkit.NLAToolkit[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-2
Instantiate the toolkit from an OpenAPI Spec URL get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools for all the API operations. pydantic model langchain.agents.agent_toolkits.OpenAPIToolkit[source]# Toolkit for interacting with a OpenAPI api. field json_agent: langchain.agents.agent.AgentExecutor [Required]# field requests_wrapper: langchain.requests.TextRequestsWrapper [Required]# classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, json_spec: langchain.tools.json.tool.JsonSpec, requests_wrapper: langchain.requests.TextRequestsWrapper, **kwargs: Any) → langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit[source]# Create json agent from llm, then initialize. get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.PlayWrightBrowserToolkit[source]# Toolkit for web browser tools. field async_browser: Optional['AsyncBrowser'] = None# field sync_browser: Optional['SyncBrowser'] = None# classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → PlayWrightBrowserToolkit[source]# Instantiate the toolkit. get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.PowerBIToolkit[source]# Toolkit for interacting with PowerBI dataset. field callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None# field examples: Optional[str] = None# field llm: langchain.base_language.BaseLanguageModel [Required]# field max_iterations: int = 5#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-3
field max_iterations: int = 5# field powerbi: langchain.utilities.powerbi.PowerBIDataset [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.SQLDatabaseToolkit[source]# Toolkit for interacting with SQL databases. field db: langchain.sql_database.SQLDatabase [Required]# field llm: langchain.base_language.BaseLanguageModel [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. property dialect: str# Return string representation of dialect to use. pydantic model langchain.agents.agent_toolkits.SparkSQLToolkit[source]# Toolkit for interacting with Spark SQL. field db: langchain.utilities.spark_sql.SparkSQL [Required]# field llm: langchain.base_language.BaseLanguageModel [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.VectorStoreInfo[source]# Information about a vectorstore. field description: str [Required]# field name: str [Required]# field vectorstore: langchain.vectorstores.base.VectorStore [Required]# pydantic model langchain.agents.agent_toolkits.VectorStoreRouterToolkit[source]# Toolkit for routing between vectorstores. field llm: langchain.base_language.BaseLanguageModel [Optional]# field vectorstores: List[langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo] [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-4
Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.VectorStoreToolkit[source]# Toolkit for interacting with a vector store. field llm: langchain.base_language.BaseLanguageModel [Optional]# field vectorstore_info: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo [Required]# get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. pydantic model langchain.agents.agent_toolkits.ZapierToolkit[source]# Zapier Toolkit. field tools: List[langchain.tools.base.BaseTool] = []# classmethod from_zapier_nla_wrapper(zapier_nla_wrapper: langchain.utilities.zapier.ZapierNLAWrapper) → langchain.agents.agent_toolkits.zapier.toolkit.ZapierToolkit[source]# Create a toolkit from a ZapierNLAWrapper. get_tools() → List[langchain.tools.base.BaseTool][source]# Get the tools in the toolkit. langchain.agents.agent_toolkits.create_csv_agent(llm: langchain.base_language.BaseLanguageModel, path: Union[str, List[str]], pandas_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Create csv agent by loading to a dataframe and using pandas agent.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-5
langchain.agents.agent_toolkits.create_json_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.json.toolkit.JsonToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with JSON.\nYour goal is to return a final answer by interacting with the JSON.\nYou have access to the following tools which help you learn more about the JSON you are interacting with.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nDo not make up any information that is not contained in the JSON.\nYour input to the tools should be in the form of `data["key"][0]` where `data` is the JSON blob you are interacting with, and the syntax used is Python. \nYou should only use keys that you know for a fact exist. You must validate that a key exists by seeing it previously when calling `json_spec_list_keys`. \nIf you have not seen a key in one of those responses, you cannot use it.\nYou should only add one key at a time to the path. You cannot add multiple keys at once.\nIf you encounter a "KeyError", go back to the previous key, look at the available keys, and try again.\n\nIf the question does not seem to be related to the JSON, just return "I don\'t know" as the answer.\nAlways begin your interaction with the `json_spec_list_keys` tool with input "data" to see what keys exist in the JSON.\n\nNote that sometimes the value at a given path is large. In this case, you will get an error "Value is a large dictionary, should explore its keys directly".\nIn this case, you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-6
you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys exist at that path.\nDo not simply refer the user to the JSON or a section of the JSON, as this is not a valid answer. Keep digging until you find the answer and explicitly return it.\n', suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I should look at the keys that exist in data to see what I have access to\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-7
Construct a json agent from an LLM and tools.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-8
langchain.agents.agent_toolkits.create_openapi_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = "You are an agent designed to answer questions by making web requests to an API given the openapi spec.\n\nIf the question does not seem related to the API, return I don't know. Do not make up an answer.\nOnly use information provided by the tools to construct your response.\n\nFirst, find the base URL needed to make the request.\n\nSecond, find the relevant paths needed to answer the question. Take note that, sometimes, you might need to make more than one request to more than one path to answer the question.\n\nThird, find the required parameters needed to make the request. For GET requests, these are usually URL parameters and for POST requests, these are request body parameters.\n\nFourth, make the requests needed to answer the question. Ensure that you are sending the correct parameters to the request by checking which parameters are required. For parameters with a fixed set of values, please use the spec to look at which values are allowed.\n\nUse the exact parameter names as listed in the spec, do not make up any names or abbreviate the names of parameters.\nIf you get a not found error, ensure that you are using a path that actually exists in the spec.\n", suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should explore the spec to find the base url for the API.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-9
you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-10
Construct a json agent from an LLM and tools. langchain.agents.agent_toolkits.create_pandas_dataframe_agent(llm: langchain.base_language.BaseLanguageModel, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', agent_executor_kwargs: Optional[Dict[str, Any]] = None, include_df_in_prompt: Optional[bool] = True, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# Construct a pandas agent from an LLM and dataframe.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-11
langchain.agents.agent_toolkits.create_pbi_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to help users interact with a PowerBI Dataset.\n\nAgent has access to a tool that can write a query based on the question and then run those against PowerBI, Microsofts business intelligence tool. The questions from the users should be interpreted as related to the dataset that is available and not general questions about the world. If the question does not seem related to the dataset, just return "This does not appear to be part of this dataset." as the answer.\n\nGiven an input question, ask to run the questions against the dataset, then look at the results and return the answer, the answer should be a complete sentence that answers the question, if multiple rows are asked find a way to write that in a easily readible format for a human, also make sure to represent numbers in readable ways, like 1M instead of 1000000. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I can first ask which tables I have, then how each table is defined and then ask the query tool the question I need, and finally create a nice sentence that answers the question.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-12
you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-13
Construct a pbi agent from an LLM and tools.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-14
langchain.agents.agent_toolkits.create_pbi_chat_agent(llm: langchain.chat_models.base.BaseChatModel, toolkit: Optional[langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit], powerbi: Optional[langchain.utilities.powerbi.PowerBIDataset] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Assistant is a large language model built to help users interact with a PowerBI Dataset.\n\nAssistant has access to a tool that can write a query based on the question and then run those against PowerBI, Microsofts business intelligence tool. The questions from the users should be interpreted as related to the dataset that is available and not general questions about the world. If the question does not seem related to the dataset, just return "This does not appear to be part of this dataset." as the answer.\n\nGiven an input question, ask to run the questions against the dataset, then look at the results and return the answer, the answer should be a complete sentence that answers the question, if multiple rows are asked find a way to write that in a easily readible format for a human, also make sure to represent numbers in readable ways, like 1M instead of 1000000. Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\n', suffix: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-15
(remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}\n", examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[langchain.memory.chat_memory.BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-16
Construct a pbi agent from an Chat LLM and tools. If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. langchain.agents.agent_toolkits.create_python_agent(llm: langchain.base_language.BaseLanguageModel, tool: langchain.tools.python.tool.PythonREPLTool, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, verbose: bool = False, prefix: str = 'You are an agent designed to write and execute python code to answer questions.\nYou have access to a python REPL, which you can use to execute python code.\nIf you get an error, debug your code and try again.\nOnly use the output of your code to answer the question. \nYou might know the answer without running any code, but you should still run the code to get the answer.\nIf it does not seem like you can write code to answer the question, just return "I don\'t know" as the answer.\n', agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# Construct a python agent from an LLM and tool.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-17
Construct a python agent from an LLM and tool. langchain.agents.agent_toolkits.create_spark_dataframe_agent(llm: langchain.llms.base.BaseLLM, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = '\nYou are working with a spark dataframe in Python. The name of the dataframe is `df`.\nYou should use the tools below to answer the question posed of you:', suffix: str = '\nThis is the result of `print(df.first())`:\n{df}\n\nBegin!\nQuestion: {input}\n{agent_scratchpad}', input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# Construct a spark agent from an LLM and dataframe.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-18
langchain.agents.agent_toolkits.create_spark_sql_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with Spark SQL.\nGiven an input question, create a syntactically correct Spark SQL query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for the relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-19
Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-20
Construct a sql agent from an LLM and tools.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-21
langchain.agents.agent_toolkits.create_sql_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for the relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.  Then I should query the schema of the most relevant tables.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-22
to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-23
Construct a sql agent from an LLM and tools. langchain.agents.agent_toolkits.create_vectorstore_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions about sets of documents.\nYou have access to tools for interacting with the documents, and the inputs to the tools are questions.\nSometimes, you will be asked to provide sources for your questions, in which case you should use the appropriate tool to do so.\nIf the question does not seem relevant to any of the tools provided, just return "I don\'t know" as the answer.\n', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]# Construct a vectorstore agent from an LLM and tools. langchain.agents.agent_toolkits.create_vectorstore_router_agent(llm: langchain.base_language.BaseLanguageModel, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions.\nYou have access to tools for interacting with different sources, and the inputs to the tools are questions.\nYour main task is to decide which of the tools is relevant for answering question at hand.\nFor complex questions, you can break the question down into sub questions and use tools to answers the sub questions.\n', verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any]) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
37669183a796-24
Construct a vectorstore router agent from an LLM and tools. previous Tools next Utilities By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/agent_toolkits.html
24db8f99ff8a-0
.rst .pdf SerpAPI SerpAPI# For backwards compatiblity. pydantic model langchain.serpapi.SerpAPIWrapper[source]# Wrapper around SerpAPI. To use, you should have the google-search-results python package installed, and the environment variable SERPAPI_API_KEY set with your API key, or pass serpapi_api_key as a named parameter to the constructor. Example from langchain import SerpAPIWrapper serpapi = SerpAPIWrapper() field aiosession: Optional[aiohttp.client.ClientSession] = None# field params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}# field serpapi_api_key: Optional[str] = None# async aresults(query: str) → dict[source]# Use aiohttp to run query through SerpAPI and return the results async. async arun(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result async. get_params(query: str) → Dict[str, str][source]# Get parameters for SerpAPI. results(query: str) → dict[source]# Run query through SerpAPI and return the raw result. run(query: str, **kwargs: Any) → str[source]# Run query through SerpAPI and parse result. By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/serpapi.html
e56e9b3601d4-0
.rst .pdf Retrievers Retrievers# pydantic model langchain.retrievers.ArxivRetriever[source]# It is effectively a wrapper for ArxivAPIWrapper. It wraps load() to get_relevant_documents(). It uses all ArxivAPIWrapper arguments without any change. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents class langchain.retrievers.AwsKendraIndexRetriever(kclient: Any, kendraindex: str, k: int = 3, languagecode: str = 'en')[source]# Wrapper around AWS Kendra. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Run search on Kendra index and get top k documents docs = get_relevant_documents(‘This is my query’) k: int# Number of documents to query for. kclient: Any# boto3 client for Kendra. kendraindex: str# Kendra index id languagecode: str# Languagecode used for querying. pydantic model langchain.retrievers.AzureCognitiveSearchRetriever[source]# Wrapper around Azure Cognitive Search.
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-1
Wrapper around Azure Cognitive Search. field aiosession: Optional[aiohttp.client.ClientSession] = None# ClientSession, in case we want to reuse connection for better performance. field api_key: str = ''# API Key. Both Admin and Query keys work, but for reading data it’s recommended to use a Query key. field api_version: str = '2020-06-30'# API version field content_key: str = 'content'# Key in a retrieved result to set as the Document page_content. field index_name: str = ''# Name of Index inside Azure Cognitive Search service field service_name: str = ''# Name of Azure Cognitive Search service async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.ChatGPTPluginRetriever[source]# field aiosession: Optional[aiohttp.client.ClientSession] = None# field bearer_token: str [Required]# field filter: Optional[dict] = None# field top_k: int = 3# field url: str [Required]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-2
Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.ContextualCompressionRetriever[source]# Retriever that wraps a base retriever and compresses the results. field base_compressor: langchain.retrievers.document_compressors.base.BaseDocumentCompressor [Required]# Compressor for compressing retrieved documents. field base_retriever: langchain.schema.BaseRetriever [Required]# Base Retriever to use for getting relevant documents. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns Sequence of relevant documents class langchain.retrievers.DataberryRetriever(datastore_url: str, top_k: Optional[int] = None, api_key: Optional[str] = None)[source]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents api_key: Optional[str]# datastore_url: str# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents top_k: Optional[int]#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-3
Returns List of relevant documents top_k: Optional[int]# class langchain.retrievers.ElasticSearchBM25Retriever(client: Any, index_name: str)[source]# Wrapper around Elasticsearch using BM25 as a retrieval method. To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the “Deployments” page. To obtain your Elastic Cloud password for the default “elastic” user: Log in to the Elastic Cloud console at https://cloud.elastic.co Go to “Security” > “Users” Locate the “elastic” user and click “Edit” Click “Reset password” Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. add_texts(texts: Iterable[str], refresh_indices: bool = True) → List[str][source]# Run more texts through the embeddings and add to the retriver. Parameters texts – Iterable of strings to add to the retriever. refresh_indices – bool to refresh ElasticSearch indices Returns List of ids from adding the texts into the retriever. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-4
Parameters query – string to find relevant documents for Returns List of relevant documents classmethod create(elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75) → langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever[source]# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.KNNRetriever[source]# field embeddings: langchain.embeddings.base.Embeddings [Required]# field index: Any = None# field k: int = 4# field relevancy_threshold: Optional[float] = None# field texts: List[str] [Required]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents classmethod from_texts(texts: List[str], embeddings: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.retrievers.knn.KNNRetriever[source]# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents class langchain.retrievers.MergerRetriever(retrievers: List[langchain.schema.BaseRetriever])[source]# This class merges the results of multiple retrievers. Parameters retrievers – A list of retrievers to merge.
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-5
Parameters retrievers – A list of retrievers to merge. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Asynchronously get the relevant documents for a given query. Parameters query – The query to search for. Returns A list of relevant documents. async amerge_documents(query: str) → List[langchain.schema.Document][source]# Asynchronously merge the results of the retrievers. Parameters query – The query to search for. Returns A list of merged documents. get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get the relevant documents for a given query. Parameters query – The query to search for. Returns A list of relevant documents. merge_documents(query: str) → List[langchain.schema.Document][source]# Merge the results of the retrievers. Parameters query – The query to search for. Returns A list of merged documents. class langchain.retrievers.MetalRetriever(client: Any, params: Optional[dict] = None)[source]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.PineconeHybridSearchRetriever[source]# field alpha: float = 0.5# field embeddings: langchain.embeddings.base.Embeddings [Required]# field index: Any = None#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-6
field index: Any = None# field sparse_encoder: Any = None# field top_k: int = 4# add_texts(texts: List[str], ids: Optional[List[str]] = None, metadatas: Optional[List[dict]] = None) → None[source]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.PubMedRetriever[source]# It is effectively a wrapper for PubMedAPIWrapper. It wraps load() to get_relevant_documents(). It uses all PubMedAPIWrapper arguments without any change. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.RemoteLangChainRetriever[source]# field headers: Optional[dict] = None# field input_key: str = 'message'# field metadata_key: str = 'metadata'# field page_content_key: str = 'page_content'# field response_key: str = 'response'# field url: str [Required]#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-7
field response_key: str = 'response'# field url: str [Required]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.SVMRetriever[source]# field embeddings: langchain.embeddings.base.Embeddings [Required]# field index: Any = None# field k: int = 4# field relevancy_threshold: Optional[float] = None# field texts: List[str] [Required]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents classmethod from_texts(texts: List[str], embeddings: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.retrievers.svm.SVMRetriever[source]# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.SelfQueryRetriever[source]# Retriever that wraps around a vector store and uses an LLM to generate the vector store queries. field llm_chain: langchain.chains.llm.LLMChain [Required]# The LLMChain for generating the vector store queries.
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-8
The LLMChain for generating the vector store queries. field search_kwargs: dict [Optional]# Keyword arguments to pass in to the vector store search. field search_type: str = 'similarity'# The search type to perform on the vector store. field structured_query_translator: langchain.chains.query_constructor.ir.Visitor [Required]# Translator for turning internal query language into vectorstore search params. field vectorstore: langchain.vectorstores.base.VectorStore [Required]# The underlying vector store from which documents will be retrieved. field verbose: bool = False# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, document_contents: str, metadata_field_info: List[langchain.chains.query_constructor.schema.AttributeInfo], structured_query_translator: Optional[langchain.chains.query_constructor.ir.Visitor] = None, chain_kwargs: Optional[Dict] = None, enable_limit: bool = False, **kwargs: Any) → langchain.retrievers.self_query.base.SelfQueryRetriever[source]# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.TFIDFRetriever[source]# field docs: List[langchain.schema.Document] [Required]# field k: int = 4# field tfidf_array: Any = None# field vectorizer: Any = None#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-9
field tfidf_array: Any = None# field vectorizer: Any = None# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents classmethod from_documents(documents: Iterable[langchain.schema.Document], *, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any) → langchain.retrievers.tfidf.TFIDFRetriever[source]# classmethod from_texts(texts: Iterable[str], metadatas: Optional[Iterable[dict]] = None, tfidf_params: Optional[Dict[str, Any]] = None, **kwargs: Any) → langchain.retrievers.tfidf.TFIDFRetriever[source]# get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents pydantic model langchain.retrievers.TimeWeightedVectorStoreRetriever[source]# Retriever combining embedding similarity with recency. field decay_rate: float = 0.01# The exponential decay factor used as (1.0-decay_rate)**(hrs_passed). field default_salience: Optional[float] = None# The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. field k: int = 4# The maximum number of documents to retrieve in a given call. field memory_stream: List[langchain.schema.Document] [Optional]# The memory_stream of documents to search through. field other_score_keys: List[str] = []#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-10
field other_score_keys: List[str] = []# Other keys in the metadata to factor into the score, e.g. ‘importance’. field search_kwargs: dict [Optional]# Keyword arguments to pass to the vectorstore similarity search. field vectorstore: langchain.vectorstores.base.VectorStore [Required]# The vectorstore to store documents and determine salience. async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Add documents to vectorstore. add_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Add documents to vectorstore. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Return documents that are relevant to the query. get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Return documents that are relevant to the query. get_salient_docs(query: str) → Dict[int, Tuple[langchain.schema.Document, float]][source]# Return documents that are salient to the query. class langchain.retrievers.VespaRetriever(app: Vespa, body: Dict, content_field: str, metadata_fields: Optional[Sequence[str]] = None)[source]# async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-11
Parameters query – string to find relevant documents for Returns List of relevant documents classmethod from_params(url: str, content_field: str, *, k: Optional[int] = None, metadata_fields: Union[Sequence[str], Literal['*']] = (), sources: Optional[Union[Sequence[str], Literal['*']]] = None, _filter: Optional[str] = None, yql: Optional[str] = None, **kwargs: Any) → langchain.retrievers.vespa_retriever.VespaRetriever[source]# Instantiate retriever from params. Parameters url (str) – Vespa app URL. content_field (str) – Field in results to return as Document page_content. k (Optional[int]) – Number of Documents to return. Defaults to None. metadata_fields (Sequence[str] or "*") – Fields in results to include in document metadata. Defaults to empty tuple (). sources (Sequence[str] or "*" or None) – Sources to retrieve from. Defaults to None. _filter (Optional[str]) – Document filter condition expressed in YQL. Defaults to None. yql (Optional[str]) – Full YQL query to be used. Should not be specified if _filter or sources are specified. Defaults to None. kwargs (Any) – Keyword arguments added to query body. get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents_with_filter(query: str, *, _filter: Optional[str] = None) → List[langchain.schema.Document][source]#
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-12
class langchain.retrievers.WeaviateHybridSearchRetriever(client: Any, index_name: str, text_key: str, alpha: float = 0.5, k: int = 4, attributes: Optional[List[str]] = None, create_schema_if_missing: bool = True)[source]# class Config[source]# Configuration for this pydantic object. arbitrary_types_allowed = True# extra = 'forbid'# add_documents(docs: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Upload documents to Weaviate. async aget_relevant_documents(query: str, where_filter: Optional[Dict[str, object]] = None) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str, where_filter: Optional[Dict[str, object]] = None) → List[langchain.schema.Document][source]# Look up similar documents in Weaviate. pydantic model langchain.retrievers.WikipediaRetriever[source]# It is effectively a wrapper for WikipediaAPIWrapper. It wraps load() to get_relevant_documents(). It uses all WikipediaAPIWrapper arguments without any change. async aget_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents
https://python.langchain.com/en/latest/reference/modules/retrievers.html
e56e9b3601d4-13
Parameters query – string to find relevant documents for Returns List of relevant documents class langchain.retrievers.ZepRetriever(session_id: str, url: str, top_k: Optional[int] = None)[source]# A Retriever implementation for the Zep long-term memory store. Search your user’s long-term chat history with Zep. Note: You will need to provide the user’s session_id to use this retriever. More on Zep: Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. For server installation instructions, see: https://getzep.github.io/deployment/quickstart/ async aget_relevant_documents(query: str, metadata: Optional[Dict] = None) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents get_relevant_documents(query: str, metadata: Optional[Dict] = None) → List[langchain.schema.Document][source]# Get documents relevant for a query. Parameters query – string to find relevant documents for Returns List of relevant documents previous Vector Stores next Document Compressors By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/retrievers.html
7cef05c07832-0
.rst .pdf Text Splitter Text Splitter# Functionality for splitting text. class langchain.text_splitter.CharacterTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]# Implementation of splitting text that looks at characters. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.Language(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]# CPP = 'cpp'# GO = 'go'# HTML = 'html'# JAVA = 'java'# JS = 'js'# LATEX = 'latex'# MARKDOWN = 'markdown'# PHP = 'php'# PROTO = 'proto'# PYTHON = 'python'# RST = 'rst'# RUBY = 'ruby'# RUST = 'rust'# SCALA = 'scala'# SWIFT = 'swift'# class langchain.text_splitter.LatexTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Latex-formatted layout elements. class langchain.text_splitter.MarkdownTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Markdown-formatted headings. class langchain.text_splitter.NLTKTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]# Implementation of splitting text that looks at sentences using NLTK. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Python syntax.
https://python.langchain.com/en/latest/reference/modules/text_splitter.html
7cef05c07832-1
Attempts to split the text along Python syntax. class langchain.text_splitter.RecursiveCharacterTextSplitter(separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any)[source]# Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. classmethod from_language(language: langchain.text_splitter.Language, **kwargs: Any) → langchain.text_splitter.RecursiveCharacterTextSplitter[source]# static get_separators_for_language(language: langchain.text_splitter.Language) → List[str][source]# split_text(text: str) → List[str][source]# Split text into multiple components. class langchain.text_splitter.SentenceTransformersTokenTextSplitter(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any)[source]# Implementation of splitting text that looks at tokens. count_tokens(*, text: str) → int[source]# split_text(text: str) → List[str][source]# Split text into multiple components. class langchain.text_splitter.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any)[source]# Implementation of splitting text that looks at sentences using Spacy. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False)[source]# Interface for splitting text into chunks.
https://python.langchain.com/en/latest/reference/modules/text_splitter.html
7cef05c07832-2
Interface for splitting text into chunks. async atransform_documents(documents: Sequence[langchain.schema.Document], **kwargs: Any) → Sequence[langchain.schema.Document][source]# Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[langchain.schema.Document][source]# Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → langchain.text_splitter.TextSplitter[source]# Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → langchain.text_splitter.TS[source]# Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[langchain.schema.Document]) → List[langchain.schema.Document][source]# Split documents. abstract split_text(text: str) → List[str][source]# Split text into multiple components. transform_documents(documents: Sequence[langchain.schema.Document], **kwargs: Any) → Sequence[langchain.schema.Document][source]# Transform sequence of documents by splitting them. class langchain.text_splitter.TokenTextSplitter(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any)[source]# Implementation of splitting text that looks at tokens.
https://python.langchain.com/en/latest/reference/modules/text_splitter.html
7cef05c07832-3
Implementation of splitting text that looks at tokens. split_text(text: str) → List[str][source]# Split text into multiple components. class langchain.text_splitter.Tokenizer(chunk_overlap: 'int', tokens_per_chunk: 'int', decode: 'Callable[[list[int]], str]', encode: 'Callable[[str], List[int]]')[source]# chunk_overlap: int# decode: Callable[[list[int]], str]# encode: Callable[[str], List[int]]# tokens_per_chunk: int# langchain.text_splitter.split_text_on_tokens(*, text: str, tokenizer: langchain.text_splitter.Tokenizer) → List[str][source]# Split incoming text and return chunks. previous Docstore next Document Loaders By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/text_splitter.html
bdbf99f63d6a-0
.rst .pdf PromptTemplates PromptTemplates# Prompt template classes. pydantic model langchain.prompts.BaseChatPromptTemplate[source]# format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") abstract format_messages(**kwargs: Any) → List[langchain.schema.BaseMessage][source]# Format kwargs into a list of messages. format_prompt(**kwargs: Any) → langchain.schema.PromptValue[source]# Create Chat Messages. pydantic model langchain.prompts.BasePromptTemplate[source]# Base class for all prompt templates, returning a prompt. field input_variables: List[str] [Required]# A list of the names of the variables the prompt template expects. field output_parser: Optional[langchain.schema.BaseOutputParser] = None# How to parse the output of calling an LLM on this formatted prompt. dict(**kwargs: Any) → Dict[source]# Return dictionary representation of prompt. abstract format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") abstract format_prompt(**kwargs: Any) → langchain.schema.PromptValue[source]# Create Chat Messages. partial(**kwargs: Union[str, Callable[[], str]]) → langchain.prompts.base.BasePromptTemplate[source]# Return a partial of the prompt template. save(file_path: Union[pathlib.Path, str]) → None[source]# Save the prompt. Parameters file_path – Path to directory to save prompt to. Example: .. code-block:: python
https://python.langchain.com/en/latest/reference/modules/prompts.html
bdbf99f63d6a-1
Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) pydantic model langchain.prompts.ChatPromptTemplate[source]# format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") format_messages(**kwargs: Any) → List[langchain.schema.BaseMessage][source]# Format kwargs into a list of messages. partial(**kwargs: Union[str, Callable[[], str]]) → langchain.prompts.base.BasePromptTemplate[source]# Return a partial of the prompt template. save(file_path: Union[pathlib.Path, str]) → None[source]# Save the prompt. Parameters file_path – Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) pydantic model langchain.prompts.FewShotPromptTemplate[source]# Prompt template that contains few shot examples. field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]# PromptTemplate used to format an individual example. field example_selector: Optional[langchain.prompts.example_selector.base.BaseExampleSelector] = None# ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided. field example_separator: str = '\n\n'# String separator used to join the prefix, the examples, and suffix. field examples: Optional[List[dict]] = None# Examples to format into the prompt. Either this or example_selector should be provided. field input_variables: List[str] [Required]# A list of the names of the variables the prompt template expects. field prefix: str = ''#
https://python.langchain.com/en/latest/reference/modules/prompts.html
bdbf99f63d6a-2
field prefix: str = ''# A prompt template string to put before the examples. field suffix: str [Required]# A prompt template string to put after the examples. field template_format: str = 'f-string'# The format of the prompt template. Options are: ‘f-string’, ‘jinja2’. field validate_template: bool = True# Whether or not to try validating the template. dict(**kwargs: Any) → Dict[source]# Return a dictionary of the prompt. format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") pydantic model langchain.prompts.FewShotPromptWithTemplates[source]# Prompt template that contains few shot examples. field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]# PromptTemplate used to format an individual example. field example_selector: Optional[langchain.prompts.example_selector.base.BaseExampleSelector] = None# ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided. field example_separator: str = '\n\n'# String separator used to join the prefix, the examples, and suffix. field examples: Optional[List[dict]] = None# Examples to format into the prompt. Either this or example_selector should be provided. field input_variables: List[str] [Required]# A list of the names of the variables the prompt template expects. field prefix: Optional[langchain.prompts.base.StringPromptTemplate] = None# A PromptTemplate to put before the examples. field suffix: langchain.prompts.base.StringPromptTemplate [Required]# A PromptTemplate to put after the examples.
https://python.langchain.com/en/latest/reference/modules/prompts.html
bdbf99f63d6a-3
A PromptTemplate to put after the examples. field template_format: str = 'f-string'# The format of the prompt template. Options are: ‘f-string’, ‘jinja2’. field validate_template: bool = True# Whether or not to try validating the template. dict(**kwargs: Any) → Dict[source]# Return a dictionary of the prompt. format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") pydantic model langchain.prompts.MessagesPlaceholder[source]# Prompt template that assumes variable is already list of messages. format_messages(**kwargs: Any) → List[langchain.schema.BaseMessage][source]# To a BaseMessage. property input_variables: List[str]# Input variables for this prompt template. langchain.prompts.Prompt# alias of langchain.prompts.prompt.PromptTemplate pydantic model langchain.prompts.PromptTemplate[source]# Schema to represent a prompt for an LLM. Example from langchain import PromptTemplate prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}") field input_variables: List[str] [Required]# A list of the names of the variables the prompt template expects. field template: str [Required]# The prompt template. field template_format: str = 'f-string'# The format of the prompt template. Options are: ‘f-string’, ‘jinja2’. field validate_template: bool = True# Whether or not to try validating the template. format(**kwargs: Any) → str[source]# Format the prompt with the inputs. Parameters kwargs – Any arguments to be passed to the prompt template. Returns
https://python.langchain.com/en/latest/reference/modules/prompts.html
bdbf99f63d6a-4
Parameters kwargs – Any arguments to be passed to the prompt template. Returns A formatted string. Example: prompt.format(variable1="foo") classmethod from_examples(examples: List[str], suffix: str, input_variables: List[str], example_separator: str = '\n\n', prefix: str = '', **kwargs: Any) → langchain.prompts.prompt.PromptTemplate[source]# Take examples in list format with prefix and suffix to create a prompt. Intended to be used as a way to dynamically create a prompt from examples. Parameters examples – List of examples to use in the prompt. suffix – String to go after the list of examples. Should generally set up the user’s input. input_variables – A list of variable names the final prompt template will expect. example_separator – The separator to use in between examples. Defaults to two new line characters. prefix – String that should go before any examples. Generally includes examples. Default to an empty string. Returns The final prompt generated. classmethod from_file(template_file: Union[str, pathlib.Path], input_variables: List[str], **kwargs: Any) → langchain.prompts.prompt.PromptTemplate[source]# Load a prompt from a file. Parameters template_file – The path to the file containing the prompt template. input_variables – A list of variable names the final prompt template will expect. Returns The prompt loaded from the file. classmethod from_template(template: str, **kwargs: Any) → langchain.prompts.prompt.PromptTemplate[source]# Load a prompt template from a template. pydantic model langchain.prompts.StringPromptTemplate[source]# String prompt should expose the format method, returning a prompt. format_prompt(**kwargs: Any) → langchain.schema.PromptValue[source]# Create Chat Messages.
https://python.langchain.com/en/latest/reference/modules/prompts.html
bdbf99f63d6a-5
Create Chat Messages. langchain.prompts.load_prompt(path: Union[str, pathlib.Path]) → langchain.prompts.base.BasePromptTemplate[source]# Unified method for loading a prompt from LangChainHub or local fs. previous Prompts next Example Selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 11, 2023.
https://python.langchain.com/en/latest/reference/modules/prompts.html
b7a7c0737c44-0
.rst .pdf Experimental Modules Contents Autonomous Agents Generative Agents Experimental Modules# This module contains experimental modules and reproductions of existing work using LangChain primitives. Autonomous Agents# Here, we document the BabyAGI and AutoGPT classes from the langchain.experimental module. class langchain.experimental.BabyAGI(*, memory: Optional[langchain.schema.BaseMemory] = None, callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, verbose: bool = None, task_list: collections.deque = None, task_creation_chain: langchain.chains.base.Chain, task_prioritization_chain: langchain.chains.base.Chain, execution_chain: langchain.chains.base.Chain, task_id_counter: int = 1, vectorstore: langchain.vectorstores.base.VectorStore, max_iterations: Optional[int] = None)[source]# Controller model for the BabyAGI agent. model Config[source]# Configuration for this pydantic object. arbitrary_types_allowed = True# execute_task(objective: str, task: str, k: int = 5) → str[source]# Execute a task. classmethod from_llm(llm: langchain.base_language.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, verbose: bool = False, task_execution_chain: Optional[langchain.chains.base.Chain] = None, **kwargs: Dict[str, Any]) → langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI[source]# Initialize the BabyAGI Controller. get_next_task(result: str, task_description: str, objective: str) → List[Dict][source]# Get the next task.
https://python.langchain.com/en/latest/reference/modules/experimental.html