max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
2-python-intermediario (Programacao Procedural)/aula01-funcoes/exercicio2.py
Leodf/projetos-python
0
12789251
<reponame>Leodf/projetos-python """ Crie uma função 1 que recebe uma função 2 como parâmetro e retorne o valor da função2 executada. """ def ola_mundo(): return 'Olá mundo!' def mestre(funcao): return funcao() executando = mestre(ola_mundo) print(executando) """ Crie uma função1 que recebe uma função2 como parametro e retorne o valor da funcçao2 executada. Faça a função 1 executar duas funções que recebam um numero diferente de argumentos """ def funcmestre(funcao, *args, **kwargs): return funcao(*args, **kwargs) def falar_oi(nome): return f'Oi {nome} ' def saudacao(nome, saudacao): return f'{saudacao} {nome}' executar = funcmestre(falar_oi, 'Leo') executar2 = funcmestre(saudacao, 'Leo', saudacao='Bom dia') print(executar) print(executar2)
3.578125
4
alluka/__init__.py
FasterSpeeding/Alluka
9
12789252
<gh_stars>1-10 # -*- coding: utf-8 -*- # cython: language_level=3 # BSD 3-Clause License # # Copyright (c) 2020-2022, Faster Speeding # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """A type based dependency injection framework for Python 3.9+.""" from __future__ import annotations __all__: list[str] = [ "AllukaError", "AsyncOnlyError", "AsyncSelfInjecting", "BasicContext", "Client", "Injected", "InjectedDescriptor", "MissingDependencyError", "SelfInjecting", "abc", "inject", ] import typing from . import abc from ._client import BasicContext from ._client import Client from ._client import inject from ._errors import AllukaError from ._errors import AsyncOnlyError from ._errors import MissingDependencyError from ._self_injecting import AsyncSelfInjecting from ._self_injecting import SelfInjecting from ._types import Injected from ._types import InjectedDescriptor __author__: typing.Final[str] = "Faster Speeding" __ci__: typing.Final[str] = "https://github.com/FasterSpeeding/Alluka/actions" __copyright__: typing.Final[str] = "© 2020-2022 Faster Speeding" __coverage__: typing.Final[str] = "https://codeclimate.com/github/FasterSpeeding/Alluka" __docs__: typing.Final[str] = "https://alluka.cursed.solutions/" __email__: typing.Final[str] = "<EMAIL>" __issue_tracker__: typing.Final[str] = "https://github.com/FasterSpeeding/Alluka/issues" __license__: typing.Final[str] = "BSD" __url__: typing.Final[str] = "https://github.com/FasterSpeeding/Alluka" __version__: typing.Final[str] = "0.1.1"
1.375
1
Python/code case/code case 26.py
amazing-2020/pdf
3
12789253
<gh_stars>1-10 import random def number(): return int(input('Enter a number: ')) i = 0 a = random.randint(-10, 100) while True: i += 1 b = number() if a > b: print('Number too small: ') elif a < b: print('Number too big: ') else: print('After %d times you succeed get %d' % (i, a)) break
3.796875
4
classify_images.py
bw4sz/SpeciesClassification
0
12789254
####### # # classify_images.py # # This is a test driver for running our species classifiers and detectors. # The script classifies one or more hard-coded image files. # # Because the inference code has not been assembled into a formal package yet, # you should define API_ROOT to point to the base of our repo. This # will be added to your Python path later in the script. # # This script has two non-code dependencies: # # * a classification model file (and, optionally, a detection model model) # * a taxonomy file, so the scientific names used in the training data can # be mapped to common names. # # We are currently testing against PyTorch 0.4.1 and Cuda 9.0, and we have tested on # both Linux and Windows. # ####### #%% Constants and imports import sys import os import pandas as pd # Directory to which you sync'd the repo. Probably the same # directory this file lives in, but for portability, this file is set up to only # take dependencies on the repo according to this constant. API_ROOT = r'd:\git\SpeciesClassification' # Path to taxa.csv, for latin --> common mapping # # Set to None to disable latin --> common mapping TAXONOMY_PATH = r'd:\temp\taxa.csv' # None IMAGES_TO_CLASSIFY = [ r"D:\temp\animals\African_Elephant\30651.ngsversion.1421960098780.jpg", r"D:\temp\animals\Alligator\Alligator_mississippiensis_01.JPG" ] # CLASSIFICATION_MODEL_PATH = r'd:\temp\models\inc4-incres2-560-78.5\model_deploy.pth.tar' CLASSIFICATION_MODEL_PATH = r"D:\temp\models\resnext-448-78.8\model_best.pth.tar" # Detection (i.e., bounding box generation) is optional; set to None # to disable detection DETECTION_MODEL_PATH = None SUBDIRS_TO_IMPORT = ['DetectionClassificationAPI','FasterRCNNDetection','PyTorchClassification'] # This must be True if detection is enabled. Classification can be run # on the CPU or GPU. USE_GPU = True # List of image sizes to use, one per model in the ensemble. Images will be resized # and reshaped to square images prior to classification. # # We typically specify [560,560] if we're loading our Inception/InceptionResnet # ensemble. For ResNext, we typically specify [448]. # # IMAGE_SIZES = [560, 560] IMAGE_SIZES = [448] #%% Path setup to import the classification code if (not API_ROOT.lower() in map(str.lower,sys.path)): print("Adding {} to the python path".format(API_ROOT)) sys.path.insert(0,API_ROOT) for s in SUBDIRS_TO_IMPORT: importPath = os.path.join(API_ROOT,s) print("Adding {} to the python path".format(API_ROOT)) sys.path.insert(0,importPath) #%% Import classification modules import api as speciesapi #%% Build Latin --> common mapping latinToCommon = {} if TAXONOMY_PATH != None: print("Reading taxonomy file") # Read taxonomy file; takes ~1 minute df = pd.read_csv(TAXONOMY_PATH) df = df.fillna('') # Columns are: # # taxonID,scientificName,parentNameUsageID,taxonRank,vernacularName,wikipedia_url # Create dictionary by ID nRows = df.shape[0] for index, row in df.iterrows(): latinName = row['scientificName'] latinName = latinName.strip() if len(latinName)==0: print("Warning: invalid scientific name at {}".format(index)) latinName = 'unknown' commonName = row['vernacularName'] commonName = commonName.strip() latinName = latinName.lower() commonName = commonName.lower() latinToCommon[latinName] = commonName print("Finished reading taxonomy file") #%% Define Latin-->common lookup def doLatinToCommon(latinName): if len(latinToCommon) == 0: return latinName latinName = latinName.lower() if not latinName in latinToCommon: print("Warning: latin name {} not in lookup table".format(latinName)) commonName = latinName else: commonName = latinToCommon[latinName] commonName = commonName.strip() if (len(commonName) == 0): print("Warning: empty result for latin name {}".format(latinName)) commonName = latinName return commonName #%% Create the model(s) assert os.path.isfile(CLASSIFICATION_MODEL_PATH) if DETECTION_MODEL_PATH != None: assert os.path.isfile(DETECTION_MODEL_PATH) print("Loading model") model = speciesapi.DetectionClassificationAPI(CLASSIFICATION_MODEL_PATH, DETECTION_MODEL_PATH, IMAGE_SIZES, USE_GPU) print("Finished loading model") #%% Classify images nImages = len(IMAGES_TO_CLASSIFY) for iImage,imageFileName in enumerate(IMAGES_TO_CLASSIFY): print("Processing image {} of {}".format(iImage,nImages)) # def predict_image(self, image_path, topK=1, multiCrop=False, predict_mode=PredictMode.classifyUsingDetect): try: prediction = model.predict_image(imageFileName, topK=5, multiCrop=False, predict_mode=speciesapi.PredictMode.classifyOnly) except Exception as e: print("Error classifying image {} ({}): {}".format(iImage,imageFileName,str(e))) continue fn = os.path.splitext(imageFileName)[0] for i in range(0, len(prediction.species)): latinName = prediction.species[i] likelihood = prediction.species_scores[i] commonName = doLatinToCommon(latinName) print('"{}","{}","{}","{}","{}","{}"\n'.format( iImage,fn,i,latinName,commonName,likelihood)) print("Finished classifying {} images".format(nImages))
2.140625
2
xml2csv.py
LynnChan706/object_detection_auto
0
12789255
#!/usr/bin/env python3.5 # coding=utf-8 ''' @date = '17/12/1' @author = 'lynnchan' @email = '<EMAIL>' ''' import os import glob import pandas as pd import xml.etree.ElementTree as ET from gconfig import * train_path = Train_Data_Path test_path = Test_Data_Path def xml_to_csv(path): xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): if os.path.splitext(root.find('filename').text)[1] == '.jpg': value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) else: value = (root.find('filename').text+'.jpg', int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def creat_csv(): if type(train_path) !=list: xml_train = xml_to_csv(train_path) xml_train.to_csv(train_path+'/'+Train_File_Name+'.csv', index=None) print('Successfully converted train xml to csv.') else: for i in train_path: xml_train = xml_to_csv(i) xml_train.to_csv(i + '/' + Train_File_Name + '.csv', index=None) print('Successfully converted list train xml to csv.') if type(test_path) != list: xml_test = xml_to_csv(test_path) xml_test.to_csv(test_path+'/'+Test_File_Name+'.csv', index=None) print('Successfully converted test xml to csv.') else: for i in test_path: xml_train = xml_to_csv(i) xml_train.to_csv(i + '/' + Test_File_Name + '.csv', index=None) print('Successfully converted list train xml to csv.') if __name__ == '__main__': creat_csv()
3
3
notebooks/method_comp_c.py
nedlrichards/tau_decomp
0
12789256
<reponame>nedlrichards/tau_decomp from scipy.io import loadmat import gsw import numpy as np import matplotlib.pyplot as plt from src import Config, lvl_profiles, grid_field, Section, SA_CT_from_sigma0_spiciness0 plt.ion() cf = Config() # sound speed comparison all_lvls = np.load('data/processed/inputed_decomp.npz') z_a = all_lvls['z_a'] x_a = all_lvls['x_a'] press = gsw.p_from_z(-z_a, cf.lat) # extrapolate from stable position into mixed layer stable_lvls = all_lvls['stable_lvls'] filled_lvls = all_lvls['filled_lvls'] spice_lvls = np.concatenate([stable_lvls[[0], :, :], filled_lvls[[1], :, :]]) sig_rud, tau_rud = grid_field(z_a, spice_lvls, cf.sig_lvl[:spice_lvls.shape[1]]) sa_rud, ct_rud = SA_CT_from_sigma0_spiciness0(sig_rud, tau_rud) c_rud = gsw.sound_speed(sa_rud, ct_rud, press[:, None]) # tau difference method decomp_fields = np.load('data/processed/decomposed_fields.npz') z_a_decomp = decomp_fields['z_a'] c_tau_d = decomp_fields['c_spice'] z_i = z_a_decomp < 300 fig, ax = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(cf.jasa_1clm, 4)) cm = ax[0].pcolormesh(x_a / 1e3, z_a, c_rud, cmap=plt.cm.coolwarm, vmin=1497, vmax=1510) cm = ax[1].pcolormesh(x_a / 1e3, z_a_decomp[z_i], c_tau_d[z_i, :], cmap=plt.cm.coolwarm, vmin=1497, vmax=1510) ax[0].set_xlim(0, 199) ax[0].set_ylim(150, 0) fig.supylabel('Depth (m)') ax[1].set_xlabel('Position, $x$ (km)') pos = ax[0].get_position() pos.x0 += 0.07 pos.x1 += 0.07 pos.y0 += 0.04 pos.y1 += 0.09 ax[0].set_position(pos) pos = ax[1].get_position() pos.x0 += 0.07 pos.x1 += 0.07 pos.y0 += 0.02 pos.y1 += 0.07 ax[1].set_position(pos)
1.929688
2
tests/auth/test_auth.py
nabetama/slacky
3
12789257
from tests.test_common import TestSlack class TestAuth(TestSlack): def test_auth(self): assert self.slack.auth def test_auth_test(self): assert self.slack.auth.test def test_auth_test_response(self): assert self.slack.auth.test.status_code == 200
2.078125
2
tests/fit_simulaid.py
hassnabdl/Helix-Analysis-Program
1
12789258
<gh_stars>1-10 import numpy as np def fit_simulaid(phi): """ DEPRECATED AND WORKING FOR SMALL NUMBER OF SAMPLES -- Fit theta such as: phi_i = theta * i + phi_0 (E) Solving the system: | SUM(E) | SUM(E*i for i) that can be written: | a11 * theta + a12 * phi_0 = b1 | a21 * theta + a22 * phi_0 = b2 --- Parameters: phi n --- Return: theta """ n = len(phi)-1 # coefficients a11 = (2*n + 1)*(n + 1)*n/6 a21 = n*(n+1)/2 a12 = a21 a22 = n # Second member b1 = 0 b2 = 0 for i, phi in enumerate(phi): b1 += phi*i b2 += phi theta = (a22*b1 - a12 * b2)/(a22*a11 - a12*a21) return theta def test_fit_simulaid(): import math phi = [0, 1, 2, 3, 4, 5] # should be 1 slope = fit(phi) print(slope) phi = [0, -1, -2, -3, -4, -5] slope = fit(phi) # should be -1 print(slope) # Counter-examples phi = [2.9045003839409125, 3.9638782375957637, 6.855200868214659] slope = fit(phi) # should be positive print(slope) # test_fit_simulaid()
3.375
3
cogs/utils/resolver.py
Lazyuki/DiscordStatsBotPython
2
12789259
<reponame>Lazyuki/DiscordStatsBotPython<filename>cogs/utils/resolver.py import discord import re import shlex ID_REGEX = re.compile(r'([0-9]{15,21})>?\b') # Can access members with dots def Map(dict): __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def has_role(member, role_id): if not member or not member.roles: return False return discord.utils.find(lambda r: r.id == role_id, member.roles) is not None def has_any_role(member, role_ids): if not member or not member.roles: return False return discord.utils.find(lambda r: r.id in role_ids, member.roles) is not None def resolve_minimum_channel(ctx, channel_id): channel = ctx.guild.get_channel(channel_id) if channel is None: channel = Map.__init__({ 'name': f'#deleted-channel({channel_id})', 'id': channel_id }) return channel def resolve_user_id(ctx, arg): id_match = ID_REGEX.match(arg) guild = ctx.guild user_id = None if id_match is None: arg = arg.lower() arg_len = len(arg) username_exact = None potential_matches = {} partial_matches = {} members = guild.members for member in members: username = member.name.lower() usertag = f'{username}#{member.discriminator}'.lower() nick = member.nick.lower() if member.nick else '' member_id = member.id # In order of priority if usertag == arg: return member_id if username == arg: username_exact = member_id elif nick == arg: potential_matches[0] = member_id elif username.startswith(arg): potential_matches[len(username) - arg_len] = member_id elif nick.startswith(arg): potential_matches[len(nick) - arg_len] = member_id elif arg in username: partial_matches[len(username) - arg_len] = member_id elif arg in usertag: partial_matches[len(usertag) - arg_len] = member_id elif arg in nick: partial_matches[len(nick) - arg_len] = member_id if username_exact: return username_exact if potential_matches: closest = min(potential_matches.keys()) return potential_matches[closest] if partial_matches: closest = min(partial_matches.keys()) return partial_matches[closest] else: user_id = int(id_match.group(1)) return user_id def resolve_role(ctx, role): roles = ctx.guild.roles role = role.lower() starts = [] contains = [] for r in roles: name = r.name.lower() if name == role: return r if name.startswith(role): starts.append(r) if role in name: contains.append(r) if starts: return starts[0] if contains: return contains[0] return None def resolve_options(content: str, accepted_options: dict): """ accepted_options: { name: { abbrev: str; boolean: bool; } } """ if (not content) or (not accepted_options): return (content, {}) resolved = {} rest_content = [] names = accepted_options.keys() abbrevs = { opt['abbrev']: key for key, opt in accepted_options.items() } words = shlex.split(content) word_iter = iter(words) try: while True: word = next(word_iter) if word.startswith('--'): name = word[2:] if name in names: opt = accepted_options[name] boolean = opt['boolean'] if boolean: resolved[name] = True else: resolved[name] = next(word_iter) elif word.startswith('-'): abs = word[1:] for a in abs: if a in abbrevs: name = abbrevs[a] opt = accepted_options[name] boolean = opt['boolean'] if boolean: resolved[name] = True else: resolved[name] = next(word_iter) else: rest_content.append(word) except StopIteration: pass return (' '.join(rest_content), resolved)
2.40625
2
common/models/generators.py
Aixile/chainer-gan-experiments
70
12789260
import numpy as np import math import chainer import chainer.functions as F import chainer.links as L from chainer import cuda, optimizers, serializers, Variable from chainer import function from chainer.utils import type_check from .ops import * class DCGANGenerator(chainer.Chain): def __init__(self, latent=128, out_ch=3, base_size=1024, use_bn=True, up_layers=4, upsampling='up_deconv'): layers = {} self.up_layers = up_layers self.base_size = base_size self.latent = latent if use_bn: norm = 'bn' w = chainer.initializers.Normal(0.02) else: norm = None w = None base = base_size layers['c_first'] = NNBlock(latent, 4*4*base, nn='linear', norm=norm, w_init=w) for i in range(up_layers-1): layers['c'+str(i)] = NNBlock(base, base//2, nn=upsampling, norm=norm, w_init=w) base = base//2 layers['c'+str(up_layers-1)] = NNBlock(base, out_ch, nn=upsampling, norm=None, w_init=w, activation=F.tanh) #print(layers) super(DCGANGenerator, self).__init__(**layers) def __call__(self, z, test=False): h = self.c_first(z, test=test) h = F.reshape(h, (h.data.shape[0], self.base_size, 4, 4)) for i in range(self.up_layers): h = getattr(self, 'c'+str(i))(h, test=test) return h
2.078125
2
python_practice/python_tricks/chp3/args_kwargs/example_3_return_nothing.py
sokunmin/deep_learning_practices
0
12789261
def foo(value): if value: return value else: return None def foo2(value): """Bare return statement implies `return None`""" if value: return value else: return def foo3(value): """Missing return statement implies `return None`""" if value: return value print('[1-1] ', type(foo(0))) print('[1-2] ', (foo(0))) print('[2-1] ', type(foo2(0))) print('[2-2] ', (foo2(0))) print('[3-1] ', type(foo3(0))) print('[3-2] ', (foo3(0)))
3.9375
4
start.py
TrixiS/base-bot
0
12789262
<reponame>TrixiS/base-bot<filename>start.py import os import platform from pathlib import Path SYSTEM = platform.system() root_path = Path(__file__).parent os.chdir(str(root_path.absolute())) def install_dependencies(): requirements_path = root_path / "requirements.txt" if SYSTEM == "Windows": install_command = "pip install wheel -r {requirements_path} --quiet" else: install_command = ( "python3 -m pip install -U wheel -r {requirements_path} --quiet" ) os.system(install_command.format(requirements_path=requirements_path)) def start_bot(): if SYSTEM == "Windows": start_command = "python -m bot" else: start_command = "python3 -m bot" os.system(start_command) def run_update(): import update update.main() def main(): install_dependencies() run_update() start_bot() if SYSTEM == "Windows": os.system("pause") if __name__ == "__main__": main()
2.34375
2
merge_csv.py
jfilter/wikipedia-edits-verified-accounts
6
12789263
import csv from pathlib import Path folder = 'recent_changes' all_csv = [pth for pth in Path(folder).iterdir() if pth.suffix == '.csv'] header = None rows = [] for f_csv in all_csv: with open(f_csv) as csvfile: reader = csv.reader(csvfile) header = next(reader) # read header rows += list(reader) with open(f'{folder}_all.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(header) writer.writerows(rows)
3.109375
3
ex067.py
Jordemar-D-Bousquet/Exercicios_Python
0
12789264
<reponame>Jordemar-D-Bousquet/Exercicios_Python # Faça um programa que mostre a tabuada de vários números, um de cada vez, para cada valor digitado pelo usuário. # O programa será interrompido quando o número solicitado for negativo. while True: n = int(input('Digite um número para ver a sua tabuada ou um número negativo para parar: ')) if n < 0: break print('='*30) for c in range(1,11): m = n*c print(f'{n} x {c} = {m}') print('=' * 30) print('Fim da Tabuada!!!')
3.96875
4
src/compas/datastructures/network/_network.py
kathrindoerfler/compas
0
12789265
<reponame>kathrindoerfler/compas<filename>src/compas/datastructures/network/_network.py from __future__ import print_function from __future__ import absolute_import from __future__ import division from compas.datastructures.network.core import BaseNetwork from compas.datastructures.network.core import network_split_edge __all__ = ['Network'] class Network(BaseNetwork): __module__ = "compas.datastructures" split_edge = network_split_edge # ============================================================================= # Main # ============================================================================= if __name__ == "__main__": # from compas.geometry import intersection_line_line_xy from compas.datastructures import Mesh from compas.datastructures import network_find_cycles # from compas_plotters import NetworkPlotter from compas_plotters import MeshPlotter # nodes = [[0, 0, 0], [1, 0, 0], [2, 0, 0], [0, 1, 0], [1, 1, 0], [2, 1, 0]] # edges = [[0, 1], [1, 2], [3, 4], [4, 5], [0, 3], [1, 4], [2, 5], [0, 4], [1, 5], [1, 3], [2, 4]] data = { 0: [-40.0, 55.0, 0.0], 1: [-35.0, 55.0, 0.0], 2: [-30.0, 55.0, 0.0], 4: [-35.0, 60.0, 0.0], 6: [-37.5, 57.5, 0.0], 7: [-32.5, 57.5, 0.0], 8: [-40.0, 53.82, 0.0], 10: [-30.0, 53.82, 0.0], 11: [-35.0, 61.18, 0.0]} # key_index = {key: index for index, key in enumerate(data)} # nodes = data.values() edges = [(0, 8), (0, 1), (1, 2), (10, 2), (0, 6), (6, 4), (4, 11), (4, 7), (7, 2)] # edges = [(key_index[u], key_index[v]) for u, v in edges] # net = Network.from_nodes_and_edges(nodes, edges) # network = net.copy() network = Network() for key, xyz in data.items(): network.add_node(key, x=xyz[0], y=xyz[1], z=xyz[2]) for u, v in edges: network.add_edge(u, v) points = {key: network.node_coordinates(key) for key in network.nodes()} cycles = network_find_cycles(network, breakpoints=network.leaves()) mesh = Mesh.from_vertices_and_faces(points, cycles) # e1 = network.edge_coordinates(0, 4) # e2 = network.edge_coordinates(1, 3) # xyz = intersection_line_line_xy(e1, e2) # network.delete_edge(0, 4) # network.delete_edge(1, 3) # x = network.add_node(x=xyz[0], y=xyz[1], z=xyz[2]) # network.add_edge(x, 0) # network.add_edge(x, 1) # network.add_edge(x, 3) # network.add_edge(x, 4) # plotter = NetworkPlotter(network, figsize=(8, 5)) # plotter.draw_nodes(text='key', radius=0.25) # plotter.draw_edges() # plotter.show() plotter = MeshPlotter(mesh, figsize=(8, 5)) plotter.draw_vertices(text='key', radius=0.25) plotter.draw_edges(keys=list(set(mesh.edges()) - set(mesh.edges_on_boundary()))) plotter.draw_faces(text='key', keys=list(set(mesh.faces()) - set(mesh.faces_on_boundary()))) plotter.save('find_cycles.png')
2.296875
2
primeiros-exercicios/lpc072.py
miguelsndc/PythonFirstLooks
1
12789266
<gh_stars>1-10 menor = 0 for c in range(0, 3): produto = float(input('Digite o preço dos Produtos: ')) menor = produto if produto < menor: menor = produto print(f'Você deve optar pelo produto de {menor}, pois ele é o mais barato.')
3.9375
4
simple.py
pythonflaskserverapps/helloworld
0
12789267
############################################# # global imports from http.server import BaseHTTPRequestHandler, HTTPServer from urllib.parse import unquote import sys import os import json ############################################# ############################################# # local imports from serverutils import process from serverutils.utils import postjson, ProcessManager ############################################# FLASK_SERVER_URL = os.environ["FLASK_SERVER_URL"] SIMPLE_ENGINE_PATH = os.path.join("engines", os.environ["SIMPLE_ENGINE_NAME"]) PROCESS_READ_CALLBACK_URL = FLASK_SERVER_URL + "/read" ############################################# class SimpleProcessManager(ProcessManager): def __init__(self, key): super().__init__(key) def read_line_callback(self, sline): postjson(PROCESS_READ_CALLBACK_URL, { "kind": "procreadline", "prockey": self.key, "sline": sline }) class EngineProcessManager(SimpleProcessManager): def __init__(self, key): super().__init__(key) def popen(self): return process.PopenProcess( SIMPLE_ENGINE_PATH, self.read_line_callback ) class BotProcessManager(SimpleProcessManager): def __init__(self, key): super().__init__(key) def popen(self): return process.PopenProcess( "python", self.read_line_callback, proc_args = ["-u", "bot.py"], ignore_cwd = True ) processmanagers = { "engine": EngineProcessManager("engine"), "bot": BotProcessManager("bot") } ############################################# class testHTTPServer_RequestHandler(BaseHTTPRequestHandler): def do_GET(self): global processmanagers self.send_response(200) self.send_header('Content-type','text/html') self.end_headers() message = "! no command" if len(self.path) > 1: commandstr = unquote(self.path[1:]) print("commandstr", commandstr) try: commandobj = None commandobj = json.loads(commandstr) try: command = commandobj.get("command", None) key = commandobj.get("key", None) if command == "r": message = processmanagers[key].start() elif command == "s": message = processmanagers[key].stop() else: message = processmanagers[key].send_line(command) except: message = "! command error" except: message = "! command parse error" print("status", message) self.wfile.write(bytes(message, "utf8")) ############################################# def start_server(): print('starting server...') server_address = (sys.argv[1], int(sys.argv[2])) httpd = HTTPServer(server_address, testHTTPServer_RequestHandler) print('running server on address', server_address) httpd.serve_forever() ############################################# start_server() print("server started")
2.328125
2
migrations/versions/3b6e7f250153_update_trello_url_type.py
palazzem/gello
44
12789268
<gh_stars>10-100 # -*- coding: utf-8 -*- # # Unless explicitly stated otherwise all files in this repository are licensed # under the Apache 2 License. # # This product includes software developed at Datadog # (https://www.datadoghq.com/). # # Copyright 2018 Datadog, Inc. # """Update trello_url type. Revision ID: 3b6e7f250153 Revises: <PASSWORD> Create Date: 2018-03-30 16:41:29.076091 """ from alembic import op import sqlalchemy as sa revision = '3b6e7f250153' down_revision = '0afe19626b22' def upgrade(): op.alter_column( 'issues', 'trello_card_url', existing_type=sa.String(length=64), type_=sa.Text(), existing_nullable=True ) op.alter_column( 'pull_requests', 'trello_card_url', existing_type=sa.String(length=64), type_=sa.Text(), existing_nullable=True ) def downgrade(): op.alter_column( 'pull_requests', 'trello_card_url', existing_type=sa.Text(), type_=sa.String(length=64), existing_nullable=True ) op.alter_column( 'issues', 'trello_card_url', existing_type=sa.Text(), type_=sa.String(length=64), existing_nullable=True )
1.703125
2
word_count.py
Noahs-ARK/idea_relations
29
12789269
<reponame>Noahs-ARK/idea_relations # -*- coding: utf-8 -*- import collections import re import io import gzip import json import functools import logging import numpy as np import scipy.stats as ss from nltk.corpus import stopwords import utils STOPWORDS = set(stopwords.words("english") + ["said"]) def get_ngram_list(input_words, ngrams=1, filter_stopwords=True, bigram_dict=None): words = [w.lower() for w in input_words.split()] result = [] for start in range(len(words) - ngrams + 1): tmp_words = words[start:start+ngrams] if filter_stopwords and any([w in STOPWORDS for w in tmp_words]): continue w = " ".join(tmp_words) result.append(w) return result def get_mixed_tokens(input_words, ngrams=1, filter_stopwords=True, bigram_dict=None): words = [w.lower() for w in input_words.split()] result, index = [], 0 while index < len(words): w = words[index] if filter_stopwords and w in STOPWORDS: index += 1 continue # look forward if index < len(words) - 1: bigram = w + " " + words[index + 1] if bigram in bigram_dict: result.append(bigram) index += 2 continue result.append(w) index += 1 return result def get_word_count(input_file, filter_stopwords=True, ngrams=1, bigram_dict=None, words_func=None): result = collections.defaultdict(int) for data in utils.read_json_list(input_file): words = words_func(data["text"], ngrams=ngrams, filter_stopwords=filter_stopwords, bigram_dict=bigram_dict) for w in words: result[w] += 1 return result def find_bigrams(filename, output_file, filter_stopwords=True, threshold=100, min_count=5): unigram_count = get_word_count(filename, filter_stopwords=filter_stopwords, ngrams=1, words_func=get_ngram_list) total_words = float(sum(unigram_count.values())) bigram_count = get_word_count(filename, filter_stopwords=filter_stopwords, ngrams=2, words_func=get_ngram_list) bigram_list = [] for w in bigram_count: words = w.split() score = (bigram_count[w] - min_count) * total_words \ / (unigram_count[words[0]] * unigram_count[words[1]]) if score > threshold: bigram_list.append((score, w)) bigram_list.sort(reverse=True) with open(output_file, "w") as fout: for score, w in bigram_list: fout.write("%s\n" % json.dumps({"word": w, "score": score})) def load_bigrams(filename): bigram_dict = {} with open(filename) as fin: for line in fin: data = json.loads(line) bigram_dict[data["word"]] = data["score"] return bigram_dict def get_word_dict(word_count, top=10000, filter_regex=None): if filter_regex: word_count = {w: word_count[w] for w in word_count if all([re.match(filter_regex, sw) for sw in w.split()])} words = get_most_frequent(word_count, top=top) return {v[1]: i for i, v in enumerate(words)} def get_most_frequent(word_cnt, top=10000): words = [(word_cnt[w], w) for w in word_cnt if re.match("\w+", w)] words.sort(reverse=True) min_threshold = words[top - 1][0] return [v for v in words if v[0] >= min_threshold]
2.84375
3
hidden.py
KangaroosInAntarcitica/TwitterMap
0
12789270
# Keep this file separate # https://apps.twitter.com/ # Create new App and get the four strings def oauth(): return {"consumer_key": "ejp9meWGxr5g1jH5qZozgvUwB", "consumer_secret": "<KEY>", "token_key": "<KEY>", "token_secret": "<KEY>"}
2.421875
2
Bugscan_exploits-master/exp_list/exp-602.py
csadsl/poc_exp
11
12789271
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'tyq' # Name: Wordpress Work the flow file upload 2.5.2 Shell Upload Vulnerability # Refer: https://www.bugscan.net/#!/x/21599 def assign(service, arg): if service == "wordpress": return True, arg def audit(arg): path = "/wp-content/plugins/work-the-flow-file-upload/public/assets/jQuery-File-Upload-9.5.0/server/php/index.php" payload = arg + path filename = "Content-Disposition: backdoor.php" shell = "<?php echo md5(123)?>" code, head, res, _, _ = curl.curl('-H \'%s\' -d \'%s\' %s' % (filename, shell, payload)) uploadfile = 'wp-content/plugins/work-the-flow-file-upload/public/assets/jQuery-File-Upload-9.5.0/server/php/files/backdoor.php' code, head, res, _, _ = curl.curl(arg + uploadfile) if code == 200 and '202cb962ac59075b964b07152d234b70' in res: security_hole("webshell url:%s" % (arg + uploadfile)) if __name__ == '__main__': from dummy import * audit(assign('wordpress', 'http://192.168.121.130/wordpress/')[1])
2.296875
2
examples/create_scripts/extensions/e-interval.py
bendichter/api-python
32
12789272
<gh_stars>10-100 # Definitions of extension to IntervalSeries # "isc" is the schema id (or 'namespace') # "fs" must always be the top level key {"fs": {"isc": { "info": { "name": "Interval series code descriptions", "version": "1.0", "date": "April 7, 2016", "author": "<NAME>", "contact": "<EMAIL>", "description": ("Extension to NWB Interval Series to include a code and " "code_description dataset.") }, "schema": { "<IntervalSeries>/": { "description": "Extension to IntervalSeries to include code descriptions.", "codes": { "description": "Codes that are used in the IntervalSeries", "data_type": "int", "dimensions": ["num_codes"] }, "code_descriptions": { "description": "Description of each code", "data_type": "text", "dimensions": ["num_codes"] }} } }}}
1.164063
1
consumer_c.py
tobiaslory/Streaming-with-Kafka
0
12789273
<filename>consumer_c.py from kafka import KafkaConsumer if __name__ == '__main__': kafka_consumer = KafkaConsumer('numbers') for msg in kafka_consumer: print(msg.key.decode("utf-8"), int.from_bytes(msg.value, byteorder='big'))
2.6875
3
core/page/todo/todo.py
gangadhar-kadam/sapphite_lib
0
12789274
<reponame>gangadhar-kadam/sapphite_lib<filename>core/page/todo/todo.py # Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. # MIT License. See license.txt from __future__ import unicode_literals import webnotes from webnotes.model.doc import Document @webnotes.whitelist() def get(arg=None): """get todo list""" return webnotes.conn.sql("""select name, owner, description, date, priority, checked, reference_type, reference_name, assigned_by from `tabToDo` where (owner=%s or assigned_by=%s) order by field(priority, 'High', 'Medium', 'Low') asc, date asc""", (webnotes.session['user'], webnotes.session['user']), as_dict=1) @webnotes.whitelist() def edit(arg=None): import markdown2 args = webnotes.form_dict d = Document('ToDo', args.get('name') or None) d.description = args['description'] d.date = args['date'] d.priority = args['priority'] d.checked = args.get('checked', 0) if not d.owner: d.owner = webnotes.session['user'] d.save(not args.get('name') and 1 or 0) if args.get('name') and d.checked: notify_assignment(d) return d.name @webnotes.whitelist() def delete(arg=None): name = webnotes.form_dict['name'] d = Document('ToDo', name) if d and d.name and d.owner != webnotes.session['user']: notify_assignment(d) webnotes.conn.sql("delete from `tabToDo` where name = %s", name) def notify_assignment(d): doc_type = d.reference_type doc_name = d.reference_name assigned_by = d.assigned_by if doc_type and doc_name and assigned_by: from webnotes.widgets.form import assign_to assign_to.notify_assignment(assigned_by, d.owner, doc_type, doc_name)
2.125
2
podpac/datalib/nasaCMR.py
creare-com/podpac
46
12789275
""" Search using NASA CMR """ from __future__ import division, unicode_literals, print_function, absolute_import import json import logging import requests import numpy as np _logger = logging.getLogger(__name__) from podpac.core.utils import _get_from_url CMR_URL = r"https://cmr.earthdata.nasa.gov/search/" def get_collection_entries(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve metadata about a collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list: A list of collection metadata dictionaries Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ base_url = CMR_URL + "collections.json?" if short_name is not None: kwargs["short_name"] = short_name if keyword is not None: kwargs["keyword"] = keyword query_string = "&".join([k + "=" + v for k, v in kwargs.items()]) # use generic requests session if `session` is not defined if session is None: session = requests pydict = _get_from_url(base_url + query_string, session).json() entries = pydict["feed"]["entry"] return entries def get_collection_id(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve collection id Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list A list of collection id's (ideally only one) Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ entries = get_collection_entries(session=session, short_name=short_name, keyword=keyword, **kwargs) if len(entries) > 1: _logger.warning("Found more than 1 entry for collection_id search") collection_id = [e["id"] for e in entries] return collection_id def search_granule_json(session=None, entry_map=None, **kwargs): """Search for specific files from NASA CMR for a particular collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session entry_map: function A function applied to each individual entry. Could be used to filter out certain data in an entry **kwargs: dict Additional query string parameters. At minimum the provider, provider_id, concept_id, collection_concept_id, short_name, version, or entry_title need to be provided for a granule search. Returns --------- list Entries for each granule in the collection based on the search terms """ base_url = CMR_URL + "granules.json?" if not np.any( [ m not in kwargs for m in [ "provider", "provider_id", "concept_id", "collection_concept_id", "short_name", "version", "entry_title", ] ] ): raise ValueError( "Need to provide either" " provider, provider_id, concept_id, collection_concept_id, short_name, version or entry_title" " for granule search." ) if "page_size" not in kwargs: kwargs["page_size"] = "2000" if entry_map is None: entry_map = lambda x: x query_string = "&".join([k + "=" + str(v) for k, v in kwargs.items()]) if session is None: session = requests url = base_url + query_string if "page_num" not in kwargs: entries = _get_all_granule_pages(session, url, entry_map) else: pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) return entries def _get_all_granule_pages(session, url, entry_map, max_paging_depth=1000000): """Helper function for searching through all pages for a collection. Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session url: str URL to website entry_map: function Function for mapping the entries to a desired format max_paging_depth """ page_size = int([q for q in url.split("?")[1].split("&") if "page_size" in q][0].split("=")[1]) max_pages = int(max_paging_depth / page_size) pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) for i in range(1, max_pages): page_url = url + "&page_num=%d" % (i + 1) page_entries = _get_from_url(page_url, session).json()["feed"]["entry"] if not page_entries: break entries.extend(list(map(entry_map, page_entries))) return entries
3.0625
3
client/dvaclient/constants.py
ysglh/DeepVideoAnalytics
3
12789276
TYPE_QUERY_CONSTANT = 'Q' TYPE_PROCESSING_CONSTANT = 'V'
1.03125
1
scripts/neo4j-delete_all.py
t-umeno/find_udp_server
0
12789277
<reponame>t-umeno/find_udp_server #!/usr/bin/python from neo4j.v1 import GraphDatabase, basic_auth password = "<PASSWORD>" driver = GraphDatabase.driver("bolt://localhost:7687", auth=basic_auth("neo4j", password)) session = driver.session() result = session.run("MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r") session.close()
2.09375
2
Python/Topics/BeautifulSoup/Get the title/main.py
drtierney/hyperskill-problems
5
12789278
import requests from bs4 import BeautifulSoup url = input() r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') print(soup.find("h1").text)
3.28125
3
exercicios/ex036.py
LucasLima337/CEV_Python_Exercicios
0
12789279
<gh_stars>0 # Aprovando Empréstimo import time n = str(input('\033[1;30mDigite seu nome completo: ')).strip().title() vc = float(input('Digite o valor da casa: R$')) s = float(input('Digite o seu salário: R$')) a = int(input('Digite por quantos anos irá pagar: ')) prest = vc / (a * 12) print('') print(f'Olá, {n.split()[0]} {n.split()[-1]}!\033[m') print('') time.sleep(0.75) print('\033[1;30mANALISANDO...\033[m') time.sleep(2) print('') print('\033[1;30m=-=\033[m' * 15) if prest > ((30 / 100) * s): from emoji import emojize e = emojize(':x:', use_aliases=True) print(f'\033[1;31mEMPRÉSTIMO NEGADO! {e}') print('Prestação excedeu 30% do salário!') print(f'PRESTAÇÃO: R${prest:.2f}/mês\033[m') elif prest < ((30 / 100) * s): from emoji import emojize e = emojize(':heavy_check_mark:', use_aliases=True) print(f'\033[1;32mEMPRÉSTIMO APROVADO! {e}\033[m') print(f'\033[1;34mNome Completo: {n}') print(f'Salário: R${s:.2f}') print(f'Valor da Casa: R${vc:.2f}') print(f'Anos de Pagamento: {a} anos.\033[m') print(f'\033[1;32mPRESTAÇÃO: R${prest:.2f}/mês\033[m') print('\033[1;30m=-=\033[m' * 15)
3.328125
3
scaladecore/__init__.py
guiloga/scaladecore
0
12789280
<gh_stars>0 from .managers import ContextManager import os def scalade_func(func): def execute(*args, **kwargs): SCALADE_FI_TOKEN = os.getenv('SCALADE_FI_TOKEN') context = ContextManager.initialize_from_token(SCALADE_FI_TOKEN) return func(context) return execute
1.851563
2
process/pkg/src/song_lyrics/util.py
edublancas/song-lyrics
6
12789281
<reponame>edublancas/song-lyrics import os import yaml from pkg_resources import resource_filename def load_yaml_asset(path): """ Load a yaml located in the assets folder by specifying a relative path to the assets/ folder """ relative_path = os.path.join('assets', path) absolute_path = resource_filename('song_lyrics', relative_path) with open(absolute_path) as f: asset = yaml.load(f) return asset def load_logging_config_file(): content = load_yaml_asset('logging.yaml') return content
3.0625
3
votakvot/resumable.py
allegro/votakvot
2
12789282
<gh_stars>1-10 from __future__ import annotations import abc import datetime import time from typing import Any, Dict, Optional, Union import votakvot class resumable_fn(abc.ABC): snapshot_each: Optional[int] = None snapshot_period: Union[datetime.timedelta, float, None] = None def __init__(self, *args, **kwargs): self.index = 0 self._args = args self._kwargs = kwargs self._state = 0 self._result = None self._lsat = time.time() def __iter__(self): return self def _prepare_snapshot_period(self): if isinstance(self.snapshot_period, datetime.timedelta): self.snapshot_period = self.snapshot_period.total_seconds() def _need_snapshot(self): return ( (self.snapshot_each and not self.index % self.snapshot_each) or (self.snapshot_period and time.time() > self.snapshot_period + self._lsat) ) @classmethod def call(cls, *args, **kwargs): return next(filter(None, cls(*args, **kwargs))) def __getstate__(self): return self.save_state() def __setstate__(self, state): self.load_state(state) def __next__(self): if self._state == 0: # begin self.init(*self._args, **self._kwargs) self._prepare_snapshot_period() self._state = 1 self.snapshot() elif self._state == 1: # loop self.index += 1 if self.is_done(): self._result = self.result() self._state = 3 self.cleanup() self.snapshot() else: self.loop() if not self.is_done() and self._need_snapshot(): self.snapshot() elif self._state == 3: # return self._state = 4 return self._result else: raise StopIteration def snapshot(self): votakvot.current_tracker().snapshot() self._lsat = time.time() @abc.abstractmethod def init(self, *args, **kwargs) -> None: raise NotImplementedError @abc.abstractmethod def loop(self) -> None: raise NotImplementedError @abc.abstractmethod def is_done(self) -> bool: raise NotImplementedError def result(self) -> Any: return None def cleanup(self) -> None: pass def load_state(self, state: Dict): self.__dict__.update(state) def save_state(self) -> Dict: return self.__dict__
2.34375
2
Inventationery/apps/PurchOrder/migrations/0006_auto_20151220_2213.py
alexharmenta/Inventationery
0
12789283
<filename>Inventationery/apps/PurchOrder/migrations/0006_auto_20151220_2213.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('PurchOrder', '0005_auto_20151220_2126'), ] operations = [ migrations.AlterField( model_name='purchordermodel', name='PaymMode', field=models.ForeignKey(blank=True, to='Payments.PaymModeModel', null=True), ), migrations.AlterField( model_name='purchordermodel', name='Payment', field=models.ForeignKey(blank=True, to='Payments.PaymentModel', null=True), ), migrations.DeleteModel( name='PaymentModel', ), migrations.DeleteModel( name='PaymModeModel', ), ]
1.382813
1
src/url_handlers.py
MarkHershey/paperbot
0
12789284
<reponame>MarkHershey/paperbot # built-in modules import re from pathlib import Path from typing import Dict, List, Tuple # external modules from markkk.logger import logger __all__ = ["process_url"] def process_url(url: str) -> Dict[str, str]: if "arxiv.org" in url: src_website = "arxiv" paper_id, paper_url, pdf_url = process_arxiv_url(url) elif "openaccess.thecvf.com" in url: src_website = "cvf" paper_id, paper_url, pdf_url = process_cvf_url(url) elif "openreview.net" in url: src_website = "openreview" paper_id, paper_url, pdf_url = process_openreview_url(url) else: logger.error("URL not supported") raise Exception("URL not supported") tmp_paper_dict = { "paper_id": paper_id, "paper_url": paper_url, "pdf_url": pdf_url, "src_website": src_website, } return tmp_paper_dict def process_arxiv_url(url: str) -> Tuple[str]: def get_paper_id_from_url(url) -> str: while "/" in url: slash_idx = url.find("/") url = url[slash_idx + 1 :] if url.endswith(".pdf"): return url[:-4] else: return url if "arxiv.org/abs" in url: ## abstract page paper_id = get_paper_id_from_url(url) paper_url = url pdf_url = f"https://arxiv.org/pdf/{paper_id}.pdf" return paper_id, paper_url, pdf_url elif "arxiv.org/pdf" in url: ## pdf page paper_id = get_paper_id_from_url(url) paper_url = f"https://arxiv.org/abs/{paper_id}" pdf_url = url return paper_id, paper_url, pdf_url else: logger.error("Unexpected URL Error by arxiv URL Handler.") raise Exception("Unexpected URL Error by arxiv URL Handler.") def process_cvf_url(url: str) -> Tuple[str]: """ Open Access url can be splitted into 5 parts: start: 'https://openaccess.thecvf.com/' context: 'content_CVPR_2020/' pg_type: '/html/' name: 'Wang_Dual_Super-Resolution_Learning_for_Semantic_Segmentation_CVPR_2020_paper' end: '.html' ==> url = start + context + pg_type + name + end """ # url validation if "openaccess.thecvf.com" not in url: logger.error("Unexpected URL Error by CVF URL Handler.") raise Exception("Unexpected URL Error by CVF URL Handler.") def get_paper_id(url) -> str: """ Can parse either main url (paper_url) or pdf_url to find paper_id paper_id in the form of: (context + name) eg: "content_CVPR_2020/Wang_Dual_Super-Resolution_Learning_for_Semantic_Segmentation_CVPR_2020_paper" """ while "/" in url: slash_idx = url.find("/") url = url[slash_idx + 1 :] # stop after slash until "content_CVPR..." flag = re.search("^content", url) if flag != None: break if url.endswith(".html"): paper_id = url.replace("/html", "").replace(".html", "") return paper_id else: paper_id = url.replace("/papers", "").replace(".pdf", "") return paper_id def get_pg_from_paper_id(paper_id: str, parse_mode="abs") -> str: start = "https://openaccess.thecvf.com/" context, name = paper_id.split("/") if parse_mode == "abs": pg_type = "/html/" end = ".html" elif parse_mode == "pdf": pg_type = "/papers/" end = ".pdf" else: raise Exception("parse_mode error") url = start + context + pg_type + name + end return url paper_id = get_paper_id(url) if "/html" in url: ## abstract page paper_url = url pdf_url = get_pg_from_paper_id(paper_id, parse_mode="pdf") return paper_id, paper_url, pdf_url elif "/papers" in url: ## pdf page paper_url = get_pg_from_paper_id(paper_id, parse_mode="abs") pdf_url = url return paper_id, paper_url, pdf_url else: logger.error("Unexpected URL Error by CVF URL Handler.") raise Exception("Unexpected URL Error by CVF URL Handler.") def process_openreview_url(url: str) -> Tuple[str]: """ Open Review url can be splitted into 5 parts: start: 'https://openreview.net/' pg_type: 'forum' or 'pdf' mid: '?id=' paper_id: 'nlAxjsniDzg' ==> url = start + pg_type + mid + paper_id """ # url validation if "openreview.net" not in url: logger.error("Unexpected URL Error by openreview URL Handler.") raise Exception("Unexpected URL Error by openreview URL Handler.") def get_paper_id(url) -> str: while "/" in url: slash_idx = url.find("/") url = url[slash_idx + 1 :] idx = url.find("=") paper_id = url[idx + 1 :] return paper_id def get_pg_from_paper_id(paper_id: str, parse_mode="abs") -> str: start = "https://openreview.net/" mid = "?id=" if parse_mode == "abs": pg_type = "forum" elif parse_mode == "pdf": pg_type = "pdf" else: raise Exception("parse_mode error") url = start + pg_type + mid + paper_id return url paper_id = get_paper_id(url) if "forum" in url: ## abstract page paper_url = url pdf_url = get_pg_from_paper_id(paper_id, parse_mode="pdf") return paper_id, paper_url, pdf_url elif "pdf" in url: ## pdf page paper_url = get_pg_from_paper_id(paper_id, parse_mode="abs") pdf_url = url return paper_id, paper_url, pdf_url else: logger.error("Unexpected URL Error by openreview URL Handler.") raise Exception("Unexpected URL Error by openreview URL Handler.") if __name__ == "__main__": from pprint import pprint pprint(process_url("https://arxiv.org/abs/1301.3781")) pprint( process_url( "https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Advisable_Learning_for_Self-Driving_Vehicles_by_Internalizing_Observation-to-Action_Rules_CVPR_2020_paper.pdf" ) ) pprint(process_url("https://openreview.net/forum?id=H1lj0nNFwB"))
2.359375
2
uitwerkingen/2-2darrays.py
harcel/PyDataScienceIntroNL
0
12789285
<filename>uitwerkingen/2-2darrays.py arr = np.random.randint(0, 10, size=(5,3)) print(arr) arr_reshaped = arr.reshape((3,5)) print(arr_reshaped) print() print(arr.sum(axis=0)) print(arr_reshaped.sum(axis=1)) # Deze zijn niet hetzelfde. De arrays zijn dezelfde als je van links naar rechts van boven naar beneden leest. print() print(arr.transpose().sum(axis=1)) # Met transpose kan dit wel, omdat de rijen en kolommen spiegelt.
3.484375
3
main.py
ShaunJorstad/Number-Puzzle-Solver
0
12789286
<reponame>ShaunJorstad/Number-Puzzle-Solver from board import Board import os def prompt(validInput, promptTitle, default): ''' prompts the user based on the provided options repeatedly until a valid value is selected, and then returned ''' userInput = 'null' while userInput not in validInput.keys(): print(f'{promptTitle}') print(f'Select (default={default}): [', end='') for (key, value) in validInput.items(): print(f'{key} ', end='') print(']') userInput = input(': ') return userInput def useCustomBoard(): ''' prompts the user if they want provide a custom board to solve or not''' os.system('cls' if os.name == 'nt' else 'clear') return '' != prompt({'yes': 'y', '': 'no'}, f'Solve custom board\n(main algorithm analytics are not run on custom boards)', 'no') if __name__ == '__main__': boardSize = 9 board = Board(heuristic=1) board.shuffleValid() if useCustomBoard(): board.customBuild() board.playGame()
3.921875
4
fonctions.py
ImadEM21/win-one
0
12789287
<filename>fonctions.py import re, string, unicodedata import nltk from bs4 import BeautifulSoup from nltk import word_tokenize, sent_tokenize from nltk.corpus import stopwords from nltk.stem import LancasterStemmer, WordNetLemmatizer from nltk.stem import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer,TfidfTransformer,CountVectorizer from pathlib import Path import pandas as pd import gensim import spacy import numpy as np from spacy import displacy from nltk import word_tokenize from nltk.tokenize import MWETokenizer import joblib import seaborn as sns from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics.pairwise import cosine_similarity from nltk.stem.snowball import SnowballStemmer from mongoengine import * import datetime import time import matplotlib.pyplot as plt import multiprocessing import warnings warnings.filterwarnings('ignore') class Candidat(Document): nom = StringField() prenom = StringField() dateNaissaice = DateField(input_formats= '%d-%m-%Y', required=False) email = StringField() numero = StringField() age = StringField() cv = ListField(FileField()) createdAt = DateTimeField(default = datetime.datetime.utcnow) updatedAt = DateTimeField(default = datetime.datetime.utcnow) class CandidatAnonyme(Document): nomAnnonyme = StringField() candidat = ReferenceField(Candidat) class Competence(Document): #nomCompetence = StringField() #niveau = StringField() candidat = ReferenceField(CandidatAnonyme) competences = ListField(StringField()) sns.set_style("darkgrid") snowBallStemmer = SnowballStemmer("french") nlp = spacy.load("fr_core_news_md") french_stopwords = nltk.corpus.stopwords.words('french') newStopWords = ['quelque','quelques','trop','beaucoup','plus','dont','moins','faut','comme','leurs','peu','celle','celui','ci','cela','cette','ce','afin','comment','très','entre','aussi','si','tous','tout','toutes','toute','donc','alors','puisque','ici','vers', 'c47vr04052021 null', 'c64vr04052021 null', 'c82vr04052021 null'] french_stopwords.extend(newStopWords) def remove_urls (data): data = re.sub(r'(https|http)?:\/\/(\w|\.|\/|\?|\=|\&|\%)*\b', ' ', data, flags=re.MULTILINE) return data def remove_html(data): return BeautifulSoup(data).get_text(separator=" ").strip() def remove_quote(data): return data.replace("'"," ") def remove_special_quote(data): return data.replace("’"," ") def remove_back_quote(data): return data.replace("`"," ") def remove_multiple_space(data): return ' '.join(data.split()) def remove_interrogation_reverse(data): return data.replace("¿"," ") def convert_lower_case(data): return np.char.lower(data) def remove_antislash(data): symbols = ["\n", "\t", "\r"] for i in range(len(symbols)): data = data.replace(symbols[i]," ") return data def remove_accents(data): data = ''.join((c for c in unicodedata.normalize('NFD', data) if unicodedata.category(c) != 'Mn')) return data def change_accents(data): return unicodedata.normalize('NFKD', data).encode('ascii', 'ignore').decode('utf-8', 'ignore') def remove_punctuation(data): return re.sub(r'[^\w\s]', '', data) def stemming(data): stemmer = SnowballStemmer('french') tokens = word_tokenize(str(data)) new_text = "" for w in tokens: new_text = new_text + " " + stemmer.stem(w) return new_text def remove_stop_words(data): stop_words = stopwords.words('french') words = word_tokenize(str(data)) new_text = "" for w in words: if w not in stop_words: if len(w.strip()) > 2: new_text = new_text + " " + w return new_text def remove_small_words(data): words = word_tokenize(str(data)) new_text = "" for w in words: if len(w.strip()) > 2: new_text = new_text + " " + w return new_text def preprocess(string_to_test): string_to_test = str(remove_urls(string_to_test)) string_to_test = str(remove_html(string_to_test)) string_to_test = str(remove_antislash(string_to_test)) #string_to_test = str(remove_quote(string_to_test)) #string_to_test = str(remove_special_quote(string_to_test)) string_to_test = str(remove_back_quote(string_to_test)) string_to_test = str(remove_interrogation_reverse(string_to_test)) string_to_test = str(remove_multiple_space(string_to_test)) return string_to_test def preprocess_entities(string_to_test): string_to_test = str(remove_quote(string_to_test)) string_to_test = str(remove_special_quote(string_to_test)) string_to_test = str(remove_punctuation(string_to_test)) string_to_test = str(remove_stop_words(string_to_test)) string_to_test = str(change_accents(string_to_test)) string_to_test = str(remove_multiple_space(string_to_test)) return string_to_test def transform_entities(list_entities_1): list_entities_copy=list_entities_1.copy() list_entities_transforme=[] for ent in list_entities_copy: if(ent.endswith('s')): temp_word=ent[:-1] if (str(temp_word).split()[0].endswith('s')): temp_word2 = str(ent).split()[0][:-1]+" "+str(ent).split()[1][:-1] temp_word3 = str(ent).split()[0]+" "+str(ent).split()[1][:-1] temp_word4 = str(ent).split()[0][:-1]+" "+str(ent).split()[1] if(temp_word2 in list_entities_1): list_entities_transforme.append(temp_word2) elif(temp_word3 in list_entities_1): list_entities_transforme.append(temp_word3) elif(temp_word4 in list_entities_1): list_entities_transforme.append(temp_word4) else: list_entities_transforme.append(ent) else: if(temp_word in list_entities_1): list_entities_transforme.append(temp_word) else: list_entities_transforme.append(ent) elif(ent.split()[0].endswith('s')): temp_word = str(ent).split()[0][:-1]+" "+str(ent).split()[1] if(temp_word in list_entities_1): list_entities_transforme.append(temp_word) else: list_entities_transforme.append(ent) else: list_entities_transforme.append(ent) return list_entities_transforme def transform_entities_simple(list_entities_1): list_entities_copy=list_entities_1.copy() list_entities_transforme=[] for ent in list_entities_copy: if(ent.endswith('s')): temp_word=ent[:-1] if(temp_word in list_entities_1): list_entities_transforme.append(temp_word) else: list_entities_transforme.append(ent) else: list_entities_transforme.append(ent) list_entities_copy=list_entities_transforme.copy() list_entities_transforme=[] for ent in list_entities_copy: if(ent.endswith('e')): temp_word=ent[:-1] if(temp_word in list_entities_1): list_entities_transforme.append(temp_word) else: list_entities_transforme.append(ent) else: list_entities_transforme.append(ent) return list_entities_transforme def preprocess_verbs(string_to_test): string_to_test = str(remove_quote(string_to_test)) string_to_test = str(remove_special_quote(string_to_test)) string_to_test = str(remove_punctuation(string_to_test)) string_to_test = str(remove_multiple_space(string_to_test)) return string_to_test def transform_verbs(list_verbs_final_1,nlp): list_verbs_copy=list_verbs_final_1.copy() list_verbs_transforme=[] for verb in list_verbs_copy: if(verb.endswith('s')): temp_word=verb[:-1] if(temp_word in list_verbs_final_1): list_verbs_transforme.append(temp_word) else: list_verbs_transforme.append(verb) else: list_verbs_transforme.append(verb) list_verbs_copy=list_verbs_transforme.copy() list_verbs_transforme=[] for verb in list_verbs_copy: if(verb.endswith('e')): temp_word=verb[:-1] if(temp_word in list_verbs_final_1): list_verbs_transforme.append(change_accents(str(nlp(temp_word)[0].lemma_))) else: list_verbs_transforme.append(change_accents(str(nlp(verb)[0].lemma_))) else: list_verbs_transforme.append(change_accents(str(nlp(verb)[0].lemma_))) return list_verbs_transforme def tsnescatterplot(model, word, list_names, model_size): """ Plot in seaborn the results from the t-SNE dimensionality reduction algorithm of the vectors of a query word, its list of most similar words, and a list of words. """ if (model_size>300): model_size=300 arrays = np.empty((0, model_size), dtype='f') word_labels = [word] color_list = ['red'] # adds the vector of the query word arrays = np.append(arrays, model.wv.__getitem__([word]), axis=0) # gets list of most similar words close_words = model.wv.most_similar([word]) # adds the vector for each of the closest words to the array for wrd_score in close_words: wrd_vector = model.wv.__getitem__([wrd_score[0]]) word_labels.append(wrd_score[0]) color_list.append('blue') arrays = np.append(arrays, wrd_vector, axis=0) # adds the vector for each of the words from list_names to the array for wrd in list_names: wrd_vector = model.wv.__getitem__([wrd]) word_labels.append(wrd) color_list.append('green') arrays = np.append(arrays, wrd_vector, axis=0) # Reduces the dimensionality from model_size to 50 dimensions with PCA reduc = PCA(n_components=.9).fit_transform(arrays) # Finds t-SNE coordinates for 2 dimensions np.set_printoptions(suppress=True) Y = TSNE(n_components=2, random_state=0, perplexity=15).fit_transform(reduc) # Sets everything up to plot df = pd.DataFrame({'x': [x for x in Y[:, 0]], 'y': [y for y in Y[:, 1]], 'words': word_labels, 'color': color_list}) fig, _ = plt.subplots() fig.set_size_inches(9, 9) # Basic plot p1 = sns.regplot(data=df, x="x", y="y", fit_reg=False, marker="o", scatter_kws={'s': 40, 'facecolors': df['color'] } ) # Adds annotations one by one with a loop for line in range(0, df.shape[0]): p1.text(df["x"][line], df['y'][line], ' ' + df["words"][line].title(), horizontalalignment='left', verticalalignment='bottom', size='medium', color=df['color'][line], weight='normal' ).set_size(15) plt.xlim(Y[:, 0].min()-50, Y[:, 0].max()+50) plt.ylim(Y[:, 1].min()-50, Y[:, 1].max()+50) plt.title('t-SNE visualization for {}'.format(word.title())) def tokenize(text): doc = nlp(text) #with doc.retokenize() as retokenizer: # for ent in doc.ents: # retokenizer.merge(doc[ent.start:ent.end]) return [x.text for x in doc] def multiword_tokenize(text, mwe): # Initialize the MWETokenizer protected_tuples = [word_tokenize(word) for word in mwe] protected_tuples_underscore = ['_'.join(word) for word in protected_tuples] tokenizer = MWETokenizer(protected_tuples) # Tokenize the text. #tokenized_text = tokenizer.tokenize(word_tokenize(text,language='French')) #print(tokenize(text)) tokenized_text = tokenizer.tokenize(tokenize(text)) #print(tokenized_text) # Replace the underscored protected words with the original MWE for i, token in enumerate(tokenized_text): if token in protected_tuples_underscore: tokenized_text[i] = mwe[protected_tuples_underscore.index(token)] return tokenized_text def transformation(text): list_entities=joblib.load('./Pickles/list_entities.pkl',"r") list_entities_transforme=joblib.load('./Pickles/list_entities_transforme.pkl',"r") list_entities_simple=joblib.load('./Pickles/list_entities_simple.pkl',"r") list_entities_simple_transforme=joblib.load('./Pickles/list_entities_simple_transforme.pkl',"r") list_verbs_final=joblib.load('./Pickles/list_verbs_final.pkl',"r") list_verbs_transforme=joblib.load('./Pickles/list_verbs_transforme.pkl',"r") text=preprocess(text) text=text.lower() chars = "/\*_{}[]()>#-.!$?–»|&«<:,@&©" for c in chars: text = text.replace(c,'') text=text.replace(' + ','+') text=text.replace(' +','+') text=text.replace('+ ','+') text=text.lstrip(' ').rstrip(' ') text_token = multiword_tokenize(text, list_entities) text_token_new = [] for text in text_token: if (text not in list_entities_simple and text not in np.asarray(list_entities)): text_token_new.append(remove_punctuation(text)) else: text_token_new.append(text) tokens = [] for text in text_token_new: if text not in french_stopwords and not(text.isdigit()): if((text not in list_entities_simple) and (text not in np.asarray(list_entities)) and (text not in list_verbs_final)): tokens.append(change_accents(text)) else: tokens.append(text) tokens = [text for text in tokens if len(text)>0] text_tokens = [] for text in tokens: if(text in list_entities): text_tokens.append(list_entities_transforme[np.where(np.asarray(list_entities)==text)[0][0]]) elif(text in list_entities_simple): text_tokens.append(list_entities_simple_transforme[np.where(list_entities_simple==text)[0][0]]) elif(text in list_verbs_final): text_tokens.append(list_verbs_transforme[np.where(list_verbs_final==text)[0][0]]) else: text = str(remove_quote(text)) text = str(remove_special_quote(text)) text = str(remove_multiple_space(text)) text_tokens.append(snowBallStemmer.stem(text)) text_tokens = [text for text in text_tokens if len(text)>2] return text_tokens def calcul_similarity(word1,word2,model): arr1 = model.wv[word1].reshape(1, -1) arr2 = model.wv[word2].reshape(1, -1) return cosine_similarity(arr1,arr2)[0][0] def recherche(query,competences,model,CVs,TopK): similarite=np.zeros(len(competences))-1 for i,comp in enumerate(competences): comp=transformation(comp) a=0 for word in query: similarite_word=np.zeros(len(comp))-1 for c,word1 in enumerate(comp): try: #similarite_word[c]=model.similarity(word,word1) similarite_word[c]=calcul_similarity(word,word1,model) except KeyError: continue a+=np.max(similarite_word) similarite[i]=a/len(query) topc=np.argsort(similarite)[::-1][:TopK] result = [] for i in range(TopK): cand = { "candidat": CVs[topc[i]], "resultat": "{0:.2f}".format(similarite[topc[i]]) } result.append(cand) return result ## get word2vec for each sentences by using average word embeddings def word2vec_sentence_embedding(reviews_unigram,model,model_size): #print(reviews_unigram) arr = np.array([0.0 for i in range(0, model_size)]) for index, word_list in enumerate(reviews_unigram): #print(word_list) try: arr += model.wv[word_list] except KeyError: continue if(len(reviews_unigram) == 0): dict_word2vec = arr else: dict_word2vec = arr / len(reviews_unigram) df_word2vec = pd.DataFrame(dict_word2vec).T return df_word2vec def get_sent_embs(sentences_trans,emb_model,model_size,tfidf): sent_embs = [] for desc in range(len(sentences_trans)): #print(desc) if len(sentences_trans[desc]) > 0: #print(desc) sent_emb = np.zeros((1, model_size)) div = 0 sentence_trans_tfidf=tfidf.transform([' '.join(sentences_trans[desc])]).todense() sentence_trans_tfidf=pd.DataFrame(sentence_trans_tfidf, columns=tfidf.get_feature_names()) for word in sentences_trans[desc]: #print(word) if word in emb_model.wv.key_to_index: word_emb = emb_model.wv[word] weight = sentence_trans_tfidf[word][0] #print(word,weight) sent_emb = np.add(sent_emb, word_emb * weight) div += weight else: div += 1e-13 #to avoid dividing by 0 sent_emb = np.divide(sent_emb, div) sent_embs.append(sent_emb.flatten()) return sent_embs def recherche_offre(offre,cv,CVs,TopK): similarite=np.zeros(len(cv))-1 for i,c in enumerate(cv): similarite[i]=np.mean(np.max(cosine_similarity(offre,cv[i]),axis=1)) topc=np.argsort(similarite)[::-1][:TopK] result = [] for i in range(TopK): cand = { "candidat": CVs[topc[i]], "resultat": "{0:.2f}".format(similarite[topc[i]]) } result.append(cand) return result
1.929688
2
config/admin.py
2019342a/improved-enigma
0
12789288
<gh_stars>0 from django.contrib import admin class SkorAdmin(admin.AdminSite): site_title = "Skor" site_header = "Skor" index_title = "Skor administration" site_url = None
1.3125
1
datasets/nmr_wine/__init__.py
ryuzakyl/data-bloodhound
3
12789289
#!/usr/bin/env # -*- coding: utf-8 -*- # Copyright (C) <NAME> - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by <NAME> <<EMAIL>>, January 2017 import os import numpy as np import pandas as pd import scipy.io as sio import utils.datasets as utils # --------------------------------------------------------------- # data set paths __data_path = "{}/data/NMR_40wines.mat".format(os.path.split(__file__)[0]) __pickle_path = "{}/cache/nmr_wine.pickle".format(os.path.split(__file__)[0]) # --------------------------------------------------------------- # TODO: Add docstring with usage examples (see 'uv_fuel' data set) @utils.load_data_from_pickle(__pickle_path) def load_nmr_wines(): """Loads the NMR Wines data set. Returns: A Pandas DataFrame with all the data set info. Examples: >>> ds = load_nmr_wines() >>> ds['wine_data'].shape (40, 8729) >>> ds['wine_ints'].shape (22, 1) """ # loading matlab data set object raw_data = sio.loadmat(__data_path) # validating loaded data if raw_data is None: raise Exception('Error while loading 1H-NMR Wines data.') # getting features labels features_labels = raw_data['ppm'][0].tolist() # getting properties labels props_labels = list(map(lambda x: x[0], raw_data['Label'][0])) # getting samples data data = raw_data['X'] # getting properties data props_data = raw_data['Y'] # creating the wine data set all_data = np.hstack([data, props_data]) all_labels = range(all_data.shape[0]) all_features = features_labels + props_labels wine_ds = utils.build_data_set(all_data.tolist(), all_labels, all_features) # ---------------------- wine_ints_data = raw_data['wine_ints'][0] wine_ints_ds = pd.DataFrame(wine_ints_data) # ---------------------- # the final data set ds = { 'wine_data': wine_ds, 'wine_ints': wine_ints_ds, } # returning the final data set return ds
2.578125
3
footer/menus/__init__.py
AutomataRaven/azaharTEA
5
12789290
__all__ = ['highlightmenu.HighlightMenu','highlightmenu.HighligthStyleMenu']
1.101563
1
run_game.py
hdaftary/Flappy-Birds
0
12789291
import pygame import flappy from thread import callback import speech_recognition as sr import sys if __name__ == '__main__': if len(sys.argv) == 3 and sys.argv[2] == "False": r = sr.Recognizer() m = sr.Microphone() with m as source: r.adjust_for_ambient_noise(source) # we only need to calibrate once, before we start listening # start listening in the background (note that we don't have to do this inside a `with` statement) stop_listening = r.listen_in_background(m, callback) pygame.init() # initialize pygame pygame.display.set_caption('Flappy Birds For Handicapped People') flappy.play_game()
3.140625
3
aws_network_tap/tap.py
vectranetworks/AWS-Session-Mirroring-Tool
3
12789292
<gh_stars>1-10 """ AWS Network Tapping Tool For installing AWS Session Mirroring on Eligible Nitro instances. Took takes a "tap everything" approach at the VPC level. Specific instances can be opted out with the blacklist tool. """ import logging from aws_network_tap.models.ec2_api_client import Ec2ApiClient, VPC_Props from aws_network_tap.models.spile_tapper import SpileTapper from aws_network_tap.models.tag_config import VPCTagConfig def main() -> None: logging.getLogger().setLevel(logging.INFO) region = Ec2ApiClient.get_region() for vpc_prop in Ec2ApiClient.list_vpcs(region=region): # type: VPC_Props logging.info(f" Managing Session Mirroring for VPC {vpc_prop.name}: {vpc_prop.vpc_id}") config = VPCTagConfig(vpc_prop.tags) SpileTapper.manage(region=region, vpc_ids=[vpc_prop.vpc_id], config=config) if __name__ == "__main__": main()
2
2
credoscript/contrib/chemblws.py
tlb-lab/credoscript
0
12789293
<gh_stars>0 import json from urllib import urlencode from urllib2 import quote, urlopen, HTTPError, URLError class ChEMBLWS(object): ''' ''' def __init__(self): ''' ''' self._url = "https://www.ebi.ac.uk/chemblws/{entity}/{target}/{query}.json" def _get_instance(self, entity, target, query): """ """ url = self._url.format(entity=entity, target=target, query=query) try: response = urlopen(url) except HTTPError, error: raise error else: return json.loads(response.read()) def compound_bioactivities(self, chembl_id): """ Get individual compound bioactivities """ return self._get_instance('compounds', chembl_id, 'bioactivities')
3.125
3
baekjoon/python/complete_binary_tree_3038.py
yskang/AlgorithmPracticeWithPython
0
12789294
<gh_stars>0 # Title: 완전 이진 트리 # Link: https://www.acmicpc.net/problem/3038 import sys sys.setrecursionlimit(10 ** 6) read_single_int = lambda: int(sys.stdin.readline().strip()) def f(x: int, y: int, n: int): if y == (1 << n - 1): print(y*3-1-x) return print(x) f(x+y, y*2, n) f(x+y*2, y*2, n) def solution(n: int): f(1, 1, n) def main(): n = read_single_int() solution(n) if __name__ == '__main__': main()
3.21875
3
xls/solvers/python/lec_characterizer_test.py
ted-xie/xls
0
12789295
<filename>xls/solvers/python/lec_characterizer_test.py # Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xls.solvers.lec_characterizer.""" import os import tempfile import portpicker from google.protobuf import text_format from absl.testing import absltest from xls.common import gfile from xls.common import runfiles from xls.ir import op_pb2 from xls.ir import xls_type_pb2 from xls.ir.python import package from xls.solvers.python import lec_characterizer from xls.solvers.python import lec_characterizer_pb2 class LecCharacterizerTest(absltest.TestCase): _CELL_LIBRARY_PATH = 'xls/netlist/fake_cell_library.textproto' def setUp(self): super().setUp() server_path = runfiles.get_path('xls/synthesis/dummy_synthesis_server_main') self.port = portpicker.pick_unused_port() self.lc = lec_characterizer.LecCharacterizer( [server_path, '--port={}'.format(self.port)], self.port) cell_lib_path = runfiles.get_path(self._CELL_LIBRARY_PATH) with gfile.open(cell_lib_path, 'r') as f: self.cell_lib_text = f.read() def tearDown(self): super().tearDown() portpicker.return_port(self.port) # Smoke test showing we're able to generate IR/netlist sources. def test_generates_sources(self): p = package.Package('the_package') ir_text, netlist_text = self.lc._generate_sources( op_pb2.OpProto.OP_ADD, [p.get_bits_type(8), p.get_bits_type(8)], p.get_bits_type(8)) self.assertIn('ret add.1: bits[8]', ir_text) self.assertEqual(netlist_text, '// NETLIST') # Tests that an extremely simple case runs without exploding. def test_lec_smoke(self): p = package.Package('the_package') temp_dir = tempfile.TemporaryDirectory() results_path = os.path.join(temp_dir.name, 'results.textproto') num_iters = 16 byte_type = p.get_bits_type(8) self.lc.run( op=op_pb2.OpProto.OP_ADD, samples=[([byte_type, byte_type], byte_type)], num_iters=num_iters, cell_library_textproto=self.cell_lib_text, results_path=results_path, lec_fn=lambda a, b, c, d: True) # Open results, verify contents results = lec_characterizer_pb2.LecTiming() with gfile.open(results_path, 'r') as f: text_format.Parse(f.read(), results) self.assertEqual(results.ir_function, 'single_op_OP_ADD') self.assertLen(results.test_cases, 1) test_case = results.test_cases[0] self.assertLen(test_case.exec_times_us, num_iters) # Tests that we can correctly append to a preexisting proto file. def test_read_then_write(self): p = package.Package('the_package') temp_dir = tempfile.TemporaryDirectory() results_path = os.path.join(temp_dir.name, 'results.textproto') results = lec_characterizer_pb2.LecTiming() results.ir_function = 'single_op_OP_ADD' # Add one un-touched test case, and add one that should be appended to. proto_byte = xls_type_pb2.TypeProto() proto_byte.type_enum = xls_type_pb2.TypeProto.BITS proto_byte.bit_count = 8 proto_short = xls_type_pb2.TypeProto() proto_short.type_enum = xls_type_pb2.TypeProto.BITS proto_short.bit_count = 16 test_case = results.test_cases.add() param = test_case.function_type.parameters.add() param.CopyFrom(proto_short) param = test_case.function_type.parameters.add() param.CopyFrom(proto_short) test_case.function_type.return_type.CopyFrom(proto_short) test_case = results.test_cases.add() param = test_case.function_type.parameters.add() param.CopyFrom(proto_byte) param = test_case.function_type.parameters.add() param.CopyFrom(proto_byte) test_case.function_type.return_type.CopyFrom(proto_byte) test_case.exec_times_us.extend([1, 3, 7]) test_case.average_us = 3 with gfile.open(results_path, 'w') as f: f.write(text_format.MessageToString(results)) num_iters = 16 byte_type = p.get_bits_type(8) self.lc.run( op=op_pb2.OpProto.OP_ADD, samples=[([byte_type, byte_type], byte_type)], num_iters=num_iters, cell_library_textproto=self.cell_lib_text, results_path=results_path, lec_fn=lambda a, b, c, d: True) results = lec_characterizer_pb2.LecTiming() with gfile.open(results_path, 'r') as f: text_format.Parse(f.read(), results) self.assertEqual(results.ir_function, 'single_op_OP_ADD') self.assertLen(results.test_cases, 2) for test_case in results.test_cases: if test_case.function_type.return_type.bit_count == 16: self.assertEmpty(test_case.exec_times_us) else: self.assertLen(test_case.exec_times_us, 3 + num_iters) if __name__ == '__main__': absltest.main()
2.3125
2
banking/utils.py
justmytwospence/banking-oop
0
12789296
<filename>banking/utils.py import logging logger = logging.getLogger(__name__) def split_name(name): try: names = name.split(" ") assert len(names) == 2 return names[0], names[1] except Exception as e: logger.error(f"Only one first and last name supported.") return None
3.1875
3
basad.py
qitianchan/new-busad
0
12789297
<filename>basad.py # -*- coding: utf-8 -*- from flask import Flask, blueprints, url_for from extentions import db, login_manager from views import auth_blueprint, busad_blueprint from models import User def create_app(): app = Flask(__name__) # app config app.config.from_object('config.DefaultConfig') _init_extention(app) _register_blueprint(app) with app.app_context(): # create database db.create_all() return app def _init_extention(app): """ extention initial :param app: :return: """ db.init_app(app) # login_manager login_manager.init_app(app) login_manager.login_view = 'auth_blueprint.login' @login_manager.user_loader def load_user(user_id): return User.get(user_id) def _register_blueprint(app): """ :param app: :return: """ app.register_blueprint(auth_blueprint) app.register_blueprint(busad_blueprint) if __name__ == '__main__': app = create_app() app.run(port=8001)
2.359375
2
example_motion_sensor_gesture_data.py
coldppc/kpk
0
12789298
''' This example will print the gesture name ''' from communitysdk import list_connected_devices, MotionSensorKit devices = list_connected_devices() msk_filter = filter(lambda device: isinstance(device, MotionSensorKit), devices) msk = next(msk_filter, None) # Get first Motion Sensor Kit if msk == None: print('No Motion Sensor was found :(') else: def on_gesture(gestureValue): print('Gesture detected:', gestureValue) try: msk.set_mode('gesture') except Exception as e: print(e) msk.on_gesture = on_gesture print('Wave your hand above the Motion Sensor:')
3.265625
3
container/src/models/note.py
PowercoderJr/oonote
0
12789299
<gh_stars>0 from app import db class Note(db.Model): id_ = db.Column(db.String(16), primary_key=True) text = db.Column(db.Text) response = db.Column(db.String(100)) created_at = db.Column(db.DateTime) read_at = db.Column(db.DateTime) password = db.Column(db.String(64))
2.078125
2
flasktodo/todos.py
blong191/flask-todo
0
12789300
<filename>flasktodo/todos.py<gh_stars>0 from flask import Blueprint, render_template, request from . import db bp = Blueprint("todos", __name__) @bp.route("/", methods=("GET", "POST")) def index(): """View for home page which shows list of to-do items.""" conn = db.get_db() cur = conn.cursor() cur.execute('SELECT * FROM todos') print(request.form) if request.method == 'POST': #Put in additional tasks the user wants description = request.form['description'] completed = request.form.get('completed') uncompleted = request.form.get('uncompleted') all = request.form.get('all') if description != None: #Add a new task cur.execute( 'INSERT INTO todos (description, completed, created_at) VALUES (%s, FALSE, CURRENT_TIMESTAMP)', (description,) ) #Make sure the new task is reconized by cur cur.execute('SELECT * FROM todos') if uncompleted != None or completed != None: #Checks for which submit was pushed if uncompleted != None: cur.execute('SELECT * FROM todos WHERE completed = FALSE') else: cur.execute('SELECT * FROM todos WHERE completed = TRUE') conn.commit() #if a button(submit) is pressed, show only certain tasks, completed, uncompleted, or all todos = cur.fetchall() cur.close() return render_template("index.html", todos=todos) [1, 2] (1,)
2.96875
3
src/collective/eeafaceted/z3ctable/tests/vocabularies.py
collective/collective.eeafaceted.z3ctable
1
12789301
# encoding: utf-8 from zope.interface import implements from zope.schema.vocabulary import SimpleVocabulary from zope.schema.interfaces import IVocabularyFactory from zope.schema.vocabulary import SimpleTerm from plone.memoize.instance import memoize class TestingVocabulary(object): implements(IVocabularyFactory) @memoize def __call__(self, context): """ """ res = [] res.append(SimpleTerm('existing_key1', 'existing_key1', 'Existing v\xc3\xa9lue 1')) res.append(SimpleTerm('existing_key2', 'existing_key2', 'Existing v\xc3\xa9lue 2')) res.append(SimpleTerm('existing_key3', 'existing_key3', 'Existing v\xc3\xa9lue 3')) return SimpleVocabulary(res) TestingVocabularyFactory = TestingVocabulary() class TestingFullVocabulary(object): implements(IVocabularyFactory) @memoize def __call__(self, context): """ """ res = [] res.append(SimpleTerm('existing_key1', 'existing_key1', 'Full existing value 1')) res.append(SimpleTerm('existing_key2', 'existing_key2', 'Full existing value 2')) res.append(SimpleTerm('existing_key3', 'existing_key3', 'Full existing value 3')) return SimpleVocabulary(res) TestingFullVocabularyFactory = TestingFullVocabulary()
2.125
2
oops_fhir/r4/value_set/related_artifact_type.py
Mikuana/oops_fhir
0
12789302
<filename>oops_fhir/r4/value_set/related_artifact_type.py from pathlib import Path from fhir.resources.valueset import ValueSet as _ValueSet from oops_fhir.utils import ValueSet from oops_fhir.r4.code_system.related_artifact_type import ( RelatedArtifactType as RelatedArtifactType_, ) __all__ = ["RelatedArtifactType"] _resource = _ValueSet.parse_file(Path(__file__).with_suffix(".json")) class RelatedArtifactType(RelatedArtifactType_): """ RelatedArtifactType The type of relationship to the related artifact. Status: draft - Version: 4.0.1 http://hl7.org/fhir/ValueSet/related-artifact-type """ class Meta: resource = _resource
1.953125
2
Project/pix2pix_dense/loss.py
Kaustubh1Verma/CS671_Deep-Learning_2019
0
12789303
<filename>Project/pix2pix_dense/loss.py from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers.core import Flatten, Dense, Dropout from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from tensorflow.python.keras.optimizers import SGD import cv2 from tensorflow.python.keras.applications import VGG19 import tensorflow as tf from tensorflow.python.keras.preprocessing import image from tensorflow.python.keras.models import Model import numpy as np import matplotlib.pyplot as plt import tensorflow.python.keras.backend as k model=VGG19(weights="vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5",include_top=False) model_extractfeatures = Model(input=model.input, output=model.get_layer('block4_pool').output) def feature_extract(x): fc2_features = model_extractfeatures.predict(x) return fc2_features def preprocess(img): cv2.resize(img,(224,224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x def smooth_L1_loss(y_true, y_pred): return tf.losses.huber_loss(y_true, y_pred) def total_loss(y_true, y_pred): # img1=image.load_img(y_true_path, target_size=(224, 224)) # img2=image.load_img(y_pred_path, target_size=(224, 224)) f1=preprocess(y_true) f2=preprocess(y_pred) fx1=feature_extract(f1) fx2=feature_extract(f2) loss1 = tf.reduce_mean(tf.squared_difference(fx1, fx2)) loss2=smooth_L1_loss(y_true,y_pred) return k.eval(loss1),k.eval(loss2)
2.625
3
code-files/frosch2010_Tabu_settings.py
Frosch2010/discord-tabu
2
12789304
class tabu_settings: tabu_channelID_join = None tabu_channelID_team_1 = None tabu_channelID_team_2 = None tabu_channelID_add_terms = None tabu_channelID_bot_admin = None tabu_bot_token = None tabu_server_ID = None tabu_default_save_terms = True tabu_save_after_game = True tabu_save_after_auto_add = True tabu_default_points_to_win = 200 tabu_round_lenght = 60 tabu_switching_lenght = 10 tabu_min_players = 4 tabu_message_auto_delete = 10 tabu_revenge_time = 30 tabu_same_chance = True
1.359375
1
tester.py
jpypi/Multitron
1
12789305
#!/usr/bin/env python3 import numpy as np import pickle from PIL import Image w = pickle.load(open("weights1000.pkl", "rb")) def Classify(example): return w.dot(example) #Seems to get 2, 3, 4 correct... for i in range(0, 5): image = Image.open("test_images/{}.jpg".format(i)).convert("L") x = np.asarray(image.getdata()) x = (255 - x)/255 x = np.r_[x, 1] y = Classify(x) print(y) print("Actual: {} Classification: {}".format(i, np.argmax(y)))
3.046875
3
tests/test_equality.py
calebmarcus/awacs
0
12789306
import unittest from awacs import s3, ec2, iam from awacs.aws import PolicyDocument, Statement, Action, Condition from awacs.aws import StringEquals, StringLike class TestEquality(unittest.TestCase): def test_condition_equality(self): self.assertEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringLike("s3:prefix", ["home/${aws:username}/*"]))) self.assertNotEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringLike("s3:prefix", ["other/${aws:username}/*"]))) self.assertNotEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringEquals("s3:prefix", ["home/${aws:username}/*"]))) def test_arn_equality(self): self.assertEqualWithHash( s3.ARN("myBucket"), s3.ARN("myBucket")) self.assertNotEqualWithHash( s3.ARN("myBucket"), s3.ARN("myOtherBucket")) self.assertEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), ec2.ARN("some-resource", "some-region", "some-account")) self.assertNotEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), ec2.ARN("some-resource", "some-other-region", "some-account")) self.assertNotEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), iam.ARN("some-resource", "some-region", "some-account")) def test_action_equality(self): self.assertEqualWithHash( Action('autoscaling', 'DescribeLaunchConfigurations'), Action('autoscaling', 'DescribeLaunchConfigurations')) self.assertNotEqualWithHash( Action('autoscaling', 'DescribeLaunchConfigurations'), Action('ec2', 'DescribeInstances')) def test_statement_equality(self): one = Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) one_again = Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) two = Statement( Effect="Allow", Action=[ Action('ec2', 'DescribeInstances'), ], Resource=["*"] ) self.assertEqualWithHash(one, one_again) self.assertNotEqualWithHash(one, two) def test_policy_document_equality(self): one = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) ] ) one_again = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) ] ) two = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('ec2', 'DescribeInstances'), ], Resource=["*"] ) ] ) self.assertEqualWithHash(one, one_again) self.assertNotEqualWithHash(one, two) def assertEqualWithHash(self, one, two): self.assertTrue(one == two) self.assertEqual(hash(one), hash(two)) def assertNotEqualWithHash(self, one, two): self.assertTrue(one != two) self.assertNotEqual(hash(one), hash(two))
2.890625
3
tickets/migrations/0001_initial.py
mcm66103/ez-django
1
12789307
<reponame>mcm66103/ez-django<filename>tickets/migrations/0001_initial.py # Generated by Django 2.2.13 on 2021-02-25 00:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('websites', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Ticket', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('status', models.CharField(choices=[('new', 'New'), ('in progress', 'In Progress'), ('ready for deployment', 'Ready For Deployment'), ('complete', 'Complete'), ('rejected', 'Rejected')], default='new', max_length=48)), ('name', models.CharField(max_length=128)), ('description', models.TextField()), ('owner', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='owner', to=settings.AUTH_USER_MODEL)), ('website', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='websites.Website')), ('worker', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='worker', to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), ]
1.617188
2
python-app/app/services/query.py
jnplonte/flask-api
1
12789308
<filename>python-app/app/services/query.py def query(data): finalQuery = {} query = data.split('|') if len(query) >= 1: for qData in query: if (qData.find(':') != -1): qDataFinal = qData.split(':') if (qDataFinal[1].find(',') != -1): arrQDataFinal = {'$in': qDataFinal[1].split(',')} else: arrQDataFinal = qDataFinal[1] finalQuery[qDataFinal[0]] = arrQDataFinal return finalQuery
2.859375
3
src/primaires/scripting/actions/changer_prix.py
vlegoff/tsunami
14
12789309
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant l'action changer_prix.""" from primaires.scripting.action import Action from primaires.scripting.instruction import ErreurExecution class ClasseAction(Action): """Change le prix de l'objet ou de son prototype.""" @classmethod def init_types(cls): cls.ajouter_types(cls.changer_prix, "Objet", "Fraction") cls.ajouter_types(cls.changer_prix, "PrototypeObjet", "Fraction") @staticmethod def changer_prix(prototype_ou_objet, prix): """Change le prix de l'objet ou du prototype précisé. Le prix modifié est à donner en valeur 1 (la plus petite monnaie disponible). Il s'agit donc d'une modification dans la même unité que dans l'éditeur d'objet 'oedit'. Paramètres à préciser : * prototype_ou_objet : l'objet dont on veut changer le prix * prix : le nouveau prix Exemple d'utilisation : changer_prix objet 10 """ prototype_ou_objet._prix = int(prix)
1.53125
2
bot/urls.py
GautamPanickar/PanikarsBot
1
12789310
<reponame>GautamPanickar/PanikarsBot from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^submit', views.submit, name='submit'), ] # a dummy method for making db operations newboston video tutorial #url(r'^(?P<message_id>[0-9]+)/$', views.details, name='details'),
1.820313
2
swd/military_track.py
dfomin/7wd-engine
0
12789311
<reponame>dfomin/7wd-engine from typing import Callable, Optional import numpy as np from .states.military_state_track import MilitaryTrackState class MilitaryTrack: @staticmethod def apply_shields(state: MilitaryTrackState, player_index: int, shields: int, military_tokens_callback: Callable[[int, int], None]): if player_index == 1: shields = -shields state.conflict_pawn = np.clip(state.conflict_pawn + shields, -9, 9) if state.conflict_pawn >= 3 and state.military_tokens[2]: state.military_tokens[2] = False military_tokens_callback(1, -2) if state.conflict_pawn >= 6 and state.military_tokens[3]: state.military_tokens[3] = False military_tokens_callback(1, -5) if state.conflict_pawn <= -3 and state.military_tokens[1]: state.military_tokens[1] = False military_tokens_callback(0, -2) if state.conflict_pawn <= -6 and state.military_tokens[0]: state.military_tokens[0] = False military_tokens_callback(0, -5) @staticmethod def military_supremacist(state: MilitaryTrackState) -> Optional[int]: if state.conflict_pawn == 9: return 0 elif state.conflict_pawn == -9: return 1 return None @staticmethod def weaker_player(state: MilitaryTrackState) -> Optional[int]: if state.conflict_pawn > 0: return 1 elif state.conflict_pawn < 0: return 0 return None @staticmethod def points(state: MilitaryTrackState, player_index: int) -> int: if MilitaryTrack.military_supremacist(state) is not None: return 0 if player_index == 0 and state.conflict_pawn <= 0 or player_index == 1 and state.conflict_pawn >= 0: return 0 return [2, 5, 10][abs(state.conflict_pawn) // 3]
2.390625
2
release-assistant/javcra/application/modifypart/modifyentrance.py
openeuler-mirror/release-tools
1
12789312
#!/usr/bin/python3 # ****************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. # licensed under the Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # http://license.coscl.org.cn/MulanPSL2 # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v2 for more details. # ******************************************************************************/ """ Description: modify entrance """ import datetime import json import re import requests from retrying import retry from javcra.api.gitee_api import Issue from javcra.common.constant import REPO_BASE_URL, RELEASE_URL from javcra.libs.log import logger from javcra.libs.read_excel import download_file class Operation(Issue): """ md operation for release issue description """ def init_md_table(self, t_head=None, body_info=None, block_title="", prefix="", suffix=""): """ initialize the md table of specific part like "CVE part" for release issue Args: t_head: table head. e.g.["CVE", "仓库", "status"] body_info: table body block_title: title of block. e.g: "## 1.CVE" prefix: table prefix. e.g.: "修复cve xx 个" suffix: characters between the end of the table and the next block. Raises: ValueError: The thead must be a list or tuple Returns: str: markdown table str """ if not t_head: t_head = [] if not isinstance(t_head, (list, tuple)): raise ValueError("The thead must be a list or tuple.") thead_str = "|" + "|".join(t_head) + "|\n" + "|-" * len(t_head) + "|\n" tbody_str = self.convert_md_table_format(t_head, body_info) table_str = thead_str + tbody_str if prefix: table_str = prefix + "\n" + table_str return "\n".join([block_title, table_str, suffix]) @staticmethod def convert_md_table_format(table_head, issue_info): """ get markdown table body according to table_head and issue_info Args: table_head: table head like ["issue","status",...] issue_info: issue info like [{"issue":...,"status":...},....] Returns: markdown table str """ if not issue_info: issue_info = [] table_body_str = "" for info in issue_info: table_body_str += "|" for word in table_head: table_body_str += str(info.get(word)) + "|" table_body_str += "\n" return table_body_str @staticmethod def get_block_lines(issue_body_lines, start_flag, end_flag): """ get block lines of specific part from issue body lines Args: issue_body_lines: the lines of issue body start_flag: start flag of specific part, like ""## 1、CVE"" end_flag: end flag of specific part, like "\n" Returns: block_lines: lines in specific part like "cve part" block_start_idx: start index of specific part block_end_idx: end index of specific part """ block_start_idx = 0 block_end_idx = 0 flag = 0 # get block lines for idx, line in enumerate(issue_body_lines): if not flag and line.startswith(start_flag): # represents the start of block flag = 1 block_start_idx = idx continue if flag and line == end_flag: block_end_idx = idx break return issue_body_lines[block_start_idx:block_end_idx], block_start_idx, block_end_idx @staticmethod def modify_block_lines(origin_lines, block_lines, block_start, block_end): """ modify block lines for add or delete operation Args: origin_lines: list, issue body splitlines block_lines: list, block str splitlines block_start: start index of block block_end: end index of block Returns: new lines for issue body, list """ # to get count and then modify str "修复CVE xxx个" fix_line_idx = -1 count = 0 for index, cur_line in enumerate(block_lines): # demo: 修复CVE xxx个 if cur_line.startswith("修复"): fix_line_idx = index # demo: |#I41R53:CVE-2021-36222|krb5| if cur_line.startswith("|#"): count += 1 if fix_line_idx != -1: block_lines[fix_line_idx] = re.sub( "\d+", str(count), block_lines[fix_line_idx] ) # modify block lines origin_lines[block_start:block_end] = block_lines return origin_lines @staticmethod def __append_info_in_specific_block(append_info, block_lines): """ append info in specific block for add operation Args: append_info: issue info or requires info, dict block_lines: lines of specific block Returns: block_lines: block lines after append """ for key, value in append_info.items(): # if the issue to be added is already in the table, then continue if any([key in line for line in block_lines]): logger.info("issue {} already exists in body content.".format(key)) continue # if the requires info to be added already in the table, then not add value_lines = value.splitlines(keepends=True) append_value_lines = [] for line in value_lines: if line not in block_lines: append_value_lines.append(line) value = "".join(append_value_lines) block_lines.append(value) return block_lines @staticmethod def __delete_issue_in_specific_block(delete_issue, block_lines): """ delete issue in specific block for delete operation Args: block_lines: lines of specific block delete_issue: issue to delete Returns: block_lines: block lines after delete """ to_remove_idx = -1 for idx, block_line in enumerate(block_lines): if delete_issue in block_line: to_remove_idx = idx break if to_remove_idx != -1: block_lines.pop(to_remove_idx) else: logger.info("The issue {} does not exist in release issue description." "".format(delete_issue)) return block_lines @staticmethod def __update_info_in_specific_block(update_info, block_lines): """ update info in specific block for update operation Args: update_info: issue to update block_lines: lines of specific block Returns: block_lines: new lines of specific block """ for issue_id, issue_content in update_info.items(): if not issue_content: continue for idx, ln in enumerate(block_lines): if issue_id in ln: block_lines[idx] = issue_content break return block_lines def get_new_body_lines(self, old_issue_info, append_info=None, delete_info=None, update_info=None, start_flag="", end_flag="\n"): """ generating a new issue body by add or delete or update operation Args: old_issue_info: old issue info append_info: issues to add. like {issue_id:{"repo":..,"status":...},...} delete_info: issues to delete. update_info: issues to update. start_flag: start flag of block end_flag: end flag of block. Raises: ValueError: append_info、 delete_info need at least one Returns: new body lines """ if not any((append_info, delete_info, update_info)): raise ValueError("append_info or delete_info or update info need at least one") issue_body_lines = old_issue_info.splitlines(keepends=True) block_lines, block_start_idx, block_end_idx = self.get_block_lines( issue_body_lines, start_flag, end_flag) if append_info: block_lines = self.__append_info_in_specific_block(append_info, block_lines) elif delete_info: block_lines = self.__delete_issue_in_specific_block(delete_info, block_lines) else: block_lines = self.__update_info_in_specific_block(update_info, block_lines) final_lines = self.modify_block_lines(issue_body_lines, block_lines, block_start_idx, block_end_idx) return "".join(final_lines) def create_jenkins_comment(self, jenkins_result): """method to create issue comment Args: jenkins_result: jenkins result Returns: comment_res: Success and failure in creating a comment """ for result in jenkins_result: if not result.get("status"): logger.error("failed to obtain jenkins_result") return th = ["name", "status", "output"] comment = self.init_md_table(th, jenkins_result) comment_res = self.create_issue_comment(comment) if not comment_res: logger.error("Failed to create Jenkins' comment message %s" % comment) return return comment_res def add_for_specific_block(self, body_str, issues, table_head, block_name): """ add info in specific block Args: body_str: str, issue body issues: issues to be add table_head: list, table head block_name: block name Returns: processed issue body str """ if not body_str: raise ValueError("no content of release issue body, failed to add.") issues_dict = dict() issues_info_list = list() # If the block is "requires", then get the md format str directly, like "|bluez|接口变更|" if "requires" in block_name: requires_md_str = self.convert_md_table_format(table_head, issues) if requires_md_str: issues_info_list.append(requires_md_str) issues_dict = {"requires_str": requires_md_str} else: # for other blocks, get detail issue info according to each issue id, then get the md format str # like "|#I41R53:CVE-2021-36222|krb5|已完成|7.5|1.18.2|否|" for issue_id in issues: single_issue_info = self.get_single_issue_info(issue_id, block_name) if single_issue_info: issues_info_list.append(single_issue_info) issue_info = self.convert_md_table_format(table_head, single_issue_info) issues_dict.setdefault(issue_id, issue_info) # if all the info to be add are empty if not issues_info_list: raise ValueError("failed to add, please check whether the issues to be added exists.") return self.get_new_body_lines( body_str, append_info=issues_dict, start_flag=block_name, end_flag="\n" ) def delete_for_specific_block(self, body_str, issues, block_name): """ delete info in specific block Args: body_str: str, issue body issues: issues to be delete block_name:block name Returns: processed issue body str """ if not body_str: raise ValueError("no content of release issue body, failed to delete.") res_str = body_str # delete each issue and then get new issue body lines for issue_id in issues: res_str = self.get_new_body_lines( res_str, delete_info=issue_id, start_flag=block_name, end_flag="\n" ) return res_str @staticmethod def __get_score(body_str): """ get the score of cve Args: body_str: cve issue body str Returns: str: score value or no score """ # to match openEuler评分 for cve euler_score_pattern = re.compile("openEuler评分.*?(?P<euler_score>[0-9\.]+)", flags=re.S) euler_res = euler_score_pattern.search(body_str) if euler_res: return euler_res["euler_score"] else: # to match BaseScore for cve base_score_pattern = re.compile("BaseScore[::](?P<base_score>[0-9\.]+)") base_score = base_score_pattern.search(body_str) return base_score["base_score"] if base_score else "no score info" def __is_abi_change(self, body_str): """ Parsing whether the abi has changed Args: body_str: cve issue body Returns: "是" or "否" """ # to match whether the abi has changed of specific branch abi_content_pattern = re.compile("修复是否涉及abi变化.*?(?P<abi>.*)[\\n$]", flags=re.S) abi_res = abi_content_pattern.search(body_str) if not abi_res: logger.error("The abi pattern did not match the info") return "否" abi_info = abi_res["abi"] branch = self.get_update_issue_branch() if not branch: return "否" for line in abi_info.splitlines(): if branch in line and "是" in line: return "是" return "否" def get_single_issue_info(self, issue_id, block_name): """ get singe issue info for specific block Args: block_name: name of block issue_id: issue id Returns: list: issue info list """ issue_content = self.get_issue_info(issue_number=issue_id) if not issue_content: logger.error("can not get the content of issue {}, perhaps this issue does not exist.".format(issue_id)) return [] repository = issue_content.get("repository", {}) # for all the block, get the dict of repository and status for the issue issue_info = { "仓库": repository.get("name", "无仓库信息"), "status": issue_content.get("issue_state", "无状态信息") } block_names_list = ["## 2、bugfix", "# 3、安装、自编译问题", "# 4、遗留问题"] if block_name in block_names_list: issue_info["issue"] = "#" + issue_id if "遗留" in block_name: issue_info["type"] = issue_content.get("issue_type", "无type信息") issue_info["status"] = "遗留" elif "CVE" in block_name: issue_body = self.get_issue_body(issue_id) if not issue_body: logger.error("empty issue body for {}, can not get the info for {} block.".format(issue_id, block_name)) return [] version_pattern = re.compile("漏洞归属的版本[::](?P<version>.*)") version = version_pattern.search(issue_body) issue_info["CVE"] = "#" + issue_id issue_info["score"] = self.__get_score(issue_body) issue_info["version"] = version["version"] if version else "no version info" issue_info["abi是否变化"] = self.__is_abi_change(issue_body) return [issue_info] def update_for_specific_block(self, body_str, issues, table_head, block_name): """ Update specific table modules Args: body_str: body info issues: list of issue numbers table_head: table head block_name: block name Returns: get_new_body_lines: The new issue of body """ if not body_str: raise ValueError("no content of release issue, failed to update") to_update = {} for issue_id in issues: # latest issue status single_issue_info = self.get_single_issue_info(issue_id, block_name) to_update.setdefault( issue_id, self.convert_md_table_format(table_head, single_issue_info) ) return self.get_new_body_lines( body_str, update_info=to_update, start_flag=block_name, end_flag="\n" ) def operate_for_specific_block(self, table_head, block_name, table_body=None, prefix="", operate="init", body_str=None, issues=None): """ Process init, add, delete operations for specific block Args: table_head: list, table head block_name: str, block name like ""## 1、CVE"" table_body: table_body of specific part for init, like [{..},{..},..]. prefix: prefix of block, like "修复了bugfix xxx个" operate: init, add, delete body_str: issue body, str issues: issue id, list Raises: ValueError: not allowed operate Returns: processed release issue body str """ if not table_body: table_body = [] if operate == "init": return self.init_md_table(table_head, table_body, block_name, prefix) elif operate == "add": return self.add_for_specific_block(body_str, issues, table_head, block_name) elif operate == "delete": return self.delete_for_specific_block(body_str, issues, block_name) elif operate == "update": return self.update_for_specific_block(body_str, issues, table_head, block_name) else: raise ValueError( "not allowed 'operate' value,expected in ['init','add','delete','update'],but given {}".format(operate) ) def init(self, *args): """ init specific block Returns: init str """ return self.get_new_issue_body(operate="init", *args) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): raise NotImplementedError class CveIssue(Operation): """ operation CVE in issue """ def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def create_cve_list(self, user_email): """ The CVE-Manager is triggered to generate the CVE list and archive it Args: user_email (str): gitee user email """ # Take cve within three months start_time = (datetime.datetime.now() + datetime.timedelta(days=-90)).strftime('%Y-%m-%d') email_name = user_email.split('@')[0] url = "https://api.openeuler.org/cve-manager/v1/download/excel/triggerCveData?startTime=" + \ start_time + "&typeName=" + email_name try: response = requests.get(url, headers=self.headers) if response.status_code == 200 and "a task being processed" in response.text: logger.info("The CVE-Manager is triggered to generate the CVE list and archive the CVE list") return True logger.error("The CVE List file fails to be archived," "The response status code is %s," "the response body is %s" % (response.status_code, response.text)) return False except (requests.RequestException, AttributeError) as error: logger.error("The CVE List file fails to be archived because %s " % error) return False def get_cve_list(self, *args): """ Obtain cVE-related information provided by the CVE-Manager. Returns: cve_list: Data in Excel in dictionary form """ user_email, obs_ak, obs_sk = args # trigger cve_manger to archive resp = self.create_cve_list(user_email) if not resp: raise ValueError("trigger cve-manege archive failure") @retry(stop_max_attempt_number=5, wait_fixed=60000) def get_list(): """ Get archived files Returns: cve_list: document content """ now_time = datetime.date( datetime.date.today().year, datetime.date.today().month, datetime.date.today().day, ).strftime("%Y-%m-%d") branch_name = self.get_update_issue_branch() if not branch_name: logger.error("Failed to obtain branch") return [] cve_list = download_file( now_time, "{}_updateinfo.xlsx".format(branch_name), obs_ak, obs_sk ) if not cve_list: logger.error("Failed to obtain CVE data") raise ValueError("Failed to obtain CVE data") return cve_list cve_list = get_list() return cve_list def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for cve block operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ if not issues: issues = [] t_head = ["CVE", "仓库", "status", "score", "version", "abi是否变化"] block_name = "## 1、CVE" logger.info("Start to obtain cve archive information, it may take a few minutes.") cve_list = [] if operate != "init" else self.get_cve_list(*args) cve_prefix = "修复CVE {}个".format(len(cve_list)) return self.operate_for_specific_block(t_head, block_name, prefix=cve_prefix, operate=operate, table_body=cve_list, body_str=body_str, issues=issues) class BugFixIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for bugfix block operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: str: new issue body str """ if not issues: issues = [] table_head = ["issue", "仓库", "status"] block_name = "## 2、bugfix" bugfix_list = [] bugfix_prefix = "修复bugfix {}个".format(len(bugfix_list)) return self.operate_for_specific_block( table_head, block_name, prefix=bugfix_prefix, operate=operate, table_body=bugfix_list, body_str=body_str, issues=issues, ) class RequiresIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) @staticmethod def get_requires_list(): """ get requires list Returns: requires list, like [{"仓库":..., "引入原因":...},...] """ # since the code that generates pkg requires is not in the repository, # so it is assumed that the return value is [] return [] def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for requires block operation Args: operate. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue list Returns: new issue body str """ t_head = ["仓库", "引入原因"] block_name = "## 3、requires" if operate not in ["init", "add"]: raise ValueError("requires block operation only allowed in ['init', 'add'].") issues = self.get_requires_list() return self.operate_for_specific_block( t_head, block_name, operate=operate, body_str=body_str, issues=issues ) class InstallBuildIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for install build block operation Args: operate: operate str. expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ table_head = ["issue", "仓库", "status"] block_name = "# 3、安装、自编译问题" return self.operate_for_specific_block( table_head, block_name, operate=operate, body_str=body_str, issues=issues ) class RemainIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for remain block operation Args: operate: operate str. expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: str: new issue body str """ t_header = ["issue", "仓库", "status", "type"] block_name = "# 4、遗留问题" return self.operate_for_specific_block( t_header, block_name, operate=operate, body_str=body_str, issues=issues ) class IssueOperation(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) args = (repo, token, issue_num) self.cve_object = CveIssue(*args) self.bugfix_object = BugFixIssue(*args) self.requires_object = RequiresIssue(*args) self.install_build_object = InstallBuildIssue(*args) self.remain_object = RemainIssue(*args) def init_repo_table(self): """ init repo table return: md table str """ block_name = "# 2、测试repo源" table_head = ["repo_type", "url"] table_str = self.init_md_table(table_head) return block_name + table_str def create_install_build_issue(self, failed_type, pkg_name, log_data): """ create issue when install failed or build failed Args: failed_type: install failed or build failed pkg_name: package name log_data: Compilation log information return: issue_id """ branch = self.get_update_issue_branch() if not branch: logger.error("failed to create install build issue because the release issue branch not found.") return None release_time = self.get_release_time() if not release_time: logger.error("failed to create install build issue because the release time not found.") return None params = { "repo": pkg_name, "owner": self.owner, "access_token": self.token, "title": "[{brh}] {pkg} {verify_type} failed {release_date}".format(pkg=pkg_name, verify_type=failed_type, brh=branch, release_date=release_time) } command = "" if failed_type == "build": command = "rpmbuild --rebuild" elif failed_type == "install": command = "yum install" params["body"] = """Branch: {brh} Component: {pkg} Instructions to reappear the problem : {command} Expected results: successfully {_type} Actual results: failed to {_type} <b>Partial failure log:</b> <P> {log_data} """.format(brh=branch, pkg=pkg_name, command=command, _type=failed_type, log_data=log_data) issue_id = self.create_issue(params) return issue_id def get_update_version_info(self): """ Get update target and personnel information Returns: update version info """ issue_body = self.get_issue_body(self.issue_num) if issue_body: if re.compile("1、CVE.*?\\n\\n", re.S).search(issue_body): logger.error("Issue has CVE content, maybe you already have operated start update command.") return None if "代码冻结" not in issue_body: logger.error("the code freeze time is not in release issue body.") return None if not issue_body.endswith("\n"): issue_body += "\n" return issue_body return None def get_release_time(self): """ get the date for release Returns: release_date """ issue_body = self.get_issue_body(self.issue_num) if not issue_body: logger.error("no content of release issue body.") return None date_info = re.compile("(?P<release_date>代码冻结.*?\\n\\n)", re.S).search(issue_body) if not date_info: logger.error("the code freeze time is not in release issue body.") return None split_date_info = re.split(r":|:", date_info["release_date"].strip()) try: release_date = split_date_info[1].strip() # The length of the date including year, month, and day is 8 if release_date.isdigit() and len(release_date) == 8: return release_date logger.error("The format of the code freeze date: %s does not meet the requirements." % release_date) return None except IndexError: logger.error("error in getting code freeze date.") return None def get_repo(self, md_type=True): """ get repo according to branch 、date and epol """ branch = self.get_update_issue_branch() if not branch: raise ValueError("can not get the branch, please check.") release_date = self.get_release_time() if not release_date: raise ValueError("can not get the release time, please check.") base_url = REPO_BASE_URL + branch repos = [] repo_dict = { "repo_type": "standard", "url": base_url + "/update_" + release_date + "/" } repos.append(repo_dict) pkglist = self.get_update_list() _, epol_list = self.get_standard_epol_list(branch, pkglist) if epol_list: repo_dict = dict() repo_dict["repo_type"] = "epol" if "sp2" in branch or "SP2" in branch: repo_dict["url"] = base_url + "/EPOL/update_" + release_date + "/main/" else: repo_dict["url"] = base_url + "/EPOL/update_" + release_date + "/" repos.append(repo_dict) if md_type: t_header = ["repo_type", "url"] block_name = "# 2、测试repo源" return self.init_md_table(t_head=t_header, body_info=repos, block_title=block_name) return repos @staticmethod def _process_issue_id(body): """ Process the MD string to get the issue ID Args: body (str): block body Returns: set: current block repos """ content = re.compile("#[a-zA-Z0-9]+", re.S).findall(body) if not content: return content return [con.replace("#", "") for con in content] def _get_install_build_bugfix_issue_id(self, issue_body): """ Gets the corresponding block element with regular, Args issue_body: issue body str Returns: issue number: issue number list """ def update_set(res_obj): # Call the _process_issue_id function to return the issue number res_set = set() issue_list = self._process_issue_id(res_obj) res_set.update(issue_list) return res_set def update_res(issue_res, choice): # If this table object exists, # the final issue is fetched based on the selection issues = set() if issue_res: issues = update_set(issue_res[choice]) return issues # Installs the compiled table information object install_build_res = re.compile("(?P<install_build>3、安装、自编译问题.*?\\n\\n)", re.S).search(issue_body) # Table information object for bugfix bugfix_res = re.compile("(?P<bugfix>2、bugfix.*?\\n\\n)", re.S).search(issue_body) # cve table information object cve_res = re.compile("(?P<cve>1、CVE.*?\\n\\n)", re.S).search(issue_body) install_build_issues = update_res(install_build_res, "install_build") bugfix_issues = update_res(bugfix_res, "bugfix") cve_issues = update_res(cve_res, "cve") if not all([install_build_issues, bugfix_issues, cve_issues]): logger.info("Block has no related issues install_build_issues:%s, " "bugfix_issues: %s,cve_issues: %s " % (install_build_issues, bugfix_issues, cve_issues)) return list(install_build_issues), list(bugfix_issues), list(cve_issues) def update_remain_issue_state(self, issue_list, action): """ Change the issue in bugfix and cve according to whether the command is left Args: issue_list: issues action: add or delete Returns: True or False """ try: if action not in ["add", "delete"]: raise ValueError("action parameter errors must be in add and delete") issue_body = self.get_issue_body(self.issue_num) if not issue_body: raise ValueError("failed to obtain the issue description") _, bugfix_issues, cve_issue = self._get_install_build_bugfix_issue_id(issue_body) to_update = {} not_exist_issues = [] for issue in issue_list: if issue not in bugfix_issues and issue not in cve_issue: not_exist_issues.append(issue) logger.warning("issue %s not exist in cve and bugfix part" % issue) continue if issue in bugfix_issues: t_head = ["issue", "仓库", "status"] operate_ins = getattr(self, "bugfix" + "_object") block_name = '## 2、bugfix' new_con = operate_ins.get_single_issue_info(issue, block_name)[0] else: t_head = ["CVE", "仓库", "status", "score", "version", "abi是否变化"] operate_ins = getattr(self, "cve" + "_object") block_name = '## 1、CVE' new_con = operate_ins.get_single_issue_info(issue, block_name)[0] if action == "add": new_con["status"] = "遗留" to_update.setdefault( issue, self.convert_md_table_format(t_head, [new_con]) ) body_str = self.get_new_body_lines( issue_body, update_info=to_update, start_flag=block_name, end_flag="\n" ) res = self.update_issue(body=body_str) if not res: raise ValueError("failed to %s action issue status,issue is %s" % (action, issue)) except (ValueError, AttributeError, IndexError, TypeError, KeyError) as error: logger.error("In the %s operation, the reasons for the error are as follows: %s" % (action, error)) return False if issue_list == not_exist_issues: return False return True def get_remain_issues(self): """ get issues in remain block Returns: remain issues """ issue_body = self.get_issue_body(self.issue_num) if not issue_body: logger.error("empty body of release issue.") return [] remain_res = re.compile("(?P<remain>4、遗留问题.*?\\n\\n)", re.S).search(issue_body) if not remain_res: logger.error("can not find remain issues label in release issue.") return [] remain_issues = self._process_issue_id(remain_res["remain"]) if not remain_issues: logger.info("can not find any remain issues in release issue.") return list(set(remain_issues)) def get_remain_packages(self): """ get packages in remain block Returns: remain package list """ remain_issues = self.get_remain_issues() remain_pkgs = [] for issue_number in remain_issues: issue_content = self.get_issue_info(issue_number=issue_number) if not issue_content: logger.error("can not get the content of issue %s, perhaps this issue not exist." % issue_number) continue repository = issue_content.get("repository", {}) if repository.get("name"): remain_pkgs.append(repository.get("name")) return list(set(remain_pkgs)) def check_issue_state(self): """ Check the issue status under the bugfix and install_build headers Returns: True: update the status of the issue to the latest status successfully False: failed to update the status of the issue to the latest status """ try: body = self.get_issue_body(self.issue_num) if not body: raise ValueError("failed to get issue description information") # get the bugfix and the issue number under the install_build and cve table headers install_build_issues, bugfix_issues, _ = self._get_install_build_bugfix_issue_id(body) remain_issues = self.get_remain_issues() if install_build_issues: install_build_issues = [issue for issue in install_build_issues if issue not in remain_issues] self.operate_release_issue(operation="update", operate_block="install_build", issues=install_build_issues) if bugfix_issues: bugfix_issues = [issue for issue in bugfix_issues if issue not in remain_issues] self.operate_release_issue(operation="update", operate_block="bugfix", issues=bugfix_issues) except (ValueError, TypeError, KeyError, AttributeError) as error: logger.error("failed to update the status of the issue, the specific reason is %s" % error) return False return True def init_issue_description(self, *args): """ initialize the release issue body when commenting "start-update" command Returns: True or False """ update_info = self.get_update_version_info() if not update_info: return False release_range = "# 1、发布范围\n" cve_block_str = self.cve_object.init(*args) bugfix_block_str = self.bugfix_object.init() requires_block_str = self.requires_object.init() repo_block_str = self.init_repo_table() install_build_block_str = self.install_build_object.init() remain_block_str = self.remain_object.init() body_str = ( update_info + release_range + cve_block_str + bugfix_block_str + requires_block_str + repo_block_str + install_build_block_str + remain_block_str ) return True if self.update_issue(body=body_str) else False def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for specific operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ old_body_str = self.get_issue_body(self.issue_num) if not old_body_str: logger.error("The current issue has no content, please start first.") return False update_block = args[0] # get the block object, like cve block object, and then call # "get_new_issue_body" for this block operate_object = getattr(self, update_block + "_object") body_str = operate_object.get_new_issue_body( operate=operate, body_str=old_body_str, issues=issues) return body_str def update_issue_description(self, operate, update_block, issues=None): """ to update issue description Args: operate: operate in {add,delete}. update_block: block name, like cve or bugfix, issues: issue list. returns: True or False """ if not issues: issues = [] old_body_str = self.get_issue_body(self.issue_num) if not old_body_str: logger.error( "The current issue has no content, please start first.") return False body_str = self.get_new_issue_body(update_block, operate=operate, issues=issues) if not body_str: logger.error( "after update issue description, got empty new release issue body.") return False return True if self.update_issue(body=body_str) else False def count_issue_status(self): """ statistics of the status of all issues Returns: true: the status of all issue is completed false: there is an unfinished issue """ try: body = self.get_issue_body(self.issue_num) # obtain the issue number under installation, compilation and bugfix install_build_issues, bugfix_issues, _ = self._get_install_build_bugfix_issue_id(body) issues = install_build_issues + bugfix_issues unfinished_issues = [] if not issues: logger.info("no issue in install_build and bugfix block.") return True # traverse all issues, get the status of the issue, # and add the unfinished ones to the unfinished list for issue_number in issues: issue_content = self.get_issue_info(issue_number) if not issue_content: logger.error("failed to get the issue info of %s. " % issue_number) continue if issue_content.get("issue_state") != "已完成": unfinished_issues.append(issue_number) if unfinished_issues: logger.info("The following issue status is not complete %s" % ",".join(unfinished_issues)) return False except (ValueError, TypeError) as error: logger.error("an error occurred while counting the status of the issue. " "The error is %s" % error) return False return True @staticmethod def release_announcement(user_name, password): """ release announcement Args: user_name: user name password: password Returns: return true on success, false on failure """ try: response = requests.post(RELEASE_URL, data={"username": user_name, "password": password}) if response.status_code == 200: if "successfully" in json.loads(response.text): logger.info("release announcement successfully") return True logger.error(response.text) return False logger.error("failed to request the announcement address: %s ," "because of the response status code is %s " "response body is %s " % (RELEASE_URL, response.status_code, response.text)) return False except (requests.RequestException, AttributeError, json.JSONDecodeError) as error: logger.error("failed to request the announcement address: %s ," "because of %s" % (RELEASE_URL, error)) return False def operate_release_issue(self, *args, operation="init", operate_block=None, issues=None): """ modify entrance of the release issue Args: operation: {init,add,delete} operate_block: block to operate when the operation is "init", operate_block=None issues: issue list Returns: True or False """ try: if operation == "init": return self.init_issue_description(*args) else: return self.update_issue_description( operate=operation, update_block=operate_block, issues=issues ) except ValueError as e: logger.error(e) return False
1.820313
2
tests/sim_tests.py
yy/clusim
2
12789313
# -*- coding: utf-8 -*- # # Tests for ``sim.py`` # These tests were hand calculated by <NAME>: <EMAIL> # from clusim.clustering import Clustering import clusim.sim as sim from clusim.dag import DAG import clusim.clusimelement as clusimelement from numpy.testing import assert_approx_equal from numpy import mean def test_comparison_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [1]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [2]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) N11, N10, N01, N00 = sim.count_pairwise_cooccurence(c1, c2) assert N11 == 2, "Element Co-occurance counts for N11 does not match. %s != %s" % (N11, 2) assert N10 == 2, "Element Co-occurance counts for N10 does not match. %s != %s" % (N10, 2) assert N01 == 1, "Element Co-occurance counts for N01 does not match. %s != %s" % (N01, 1) assert N00 == 10, "Element Co-occurance counts for N00 does not match. %s != %s" % (N00, 10) known_sim_values = {'jaccard_index': 0.4, 'rand_index': 0.8, 'fowlkes_mallows_index': 0.5773502691896258, 'rogers_tanimoto_index': 2./3., 'southwood_index': 2./3., 'czekanowski_index': 0.5714285714285714, 'dice_index': 0.5714285714285714, 'sorensen_index': 0.5714285714285714, 'pearson_correlation': 0.011363636363636364, 'classification_error': 0.16666666666666674, 'purity_index': 0.8333333333333333, 'fmeasure': 0.5714285714285714, 'nmi': 0.7396673768007593, 'vi': 0.792481250360578, 'geometric_accuracy': 0.8333333333333334, 'overlap_quality': 0.0, 'onmi': 0.7449589906475155, 'omega_index': 0.44444444444444453 } for simfunc in sim.available_similarity_measures: simvalue = eval('sim.' + simfunc+'(c1, c2)') assert simvalue == known_sim_values[simfunc], "Similarity Measure %s does not match. %s != %s" % (simfunc, simvalue, known_sim_values[simfunc]) def test_model_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [1]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) known_rand_values = {'perm': 0.5, 'perm1': 0.5, 'num': 0.510204081632653, 'num1': 0.5, 'all': 0.555555555555556, 'all1': 0.5 } known_mi_values = {'perm': 0.311278124459133, 'perm1': 0.311278124459133, 'num': 0.309927805548467, 'num1': 0.301825892084476, 'all': 0.611635721962606, 'all1': 0.419448541053684 } for rdm in sim.available_random_models: exp_rand_value = sim.expected_rand_index(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm ) assert_approx_equal(exp_rand_value, known_rand_values[rdm], 10**(-10), "Expected Rand Index with %s Random Model does not match. %s != %s" % (rdm, exp_rand_value, known_rand_values[rdm])) exp_mi_value = sim.expected_mi(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm, logbase=2.) assert_approx_equal(exp_mi_value, known_mi_values[rdm], 10**(-10), "Expected MI with %s Random Model does not match. %s != %s" % (rdm, exp_mi_value, known_mi_values[rdm]) ) def test_elementsim_example(): # taken from Fig 3 of Gates et al (2018) Scientific Reports # overlapping clustering c1_elm2clu_dict = {0: [0], 1: [0], 2: [0], 3: [1], 4: [1], 5: [1, 2], 6: [2]} # hierarchical clustering c2_elm2clu_dict = {0: [1], 1: [1], 2: [2], 3: [5], 4: [5], 5: [6, 8], 6: [9]} c2_dag = DAG() c2_dag.add_edges_from([(0, 1), (0, 2), (3, 4), (4, 5), (4, 6), (3, 7), (7, 8), (7, 9)]) c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict, hier_graph=c2_dag) known_elsim = [0.92875658, 0.92875658, 0.85751315, 0.25717544, 0.74282456, 0.82083876, 0.80767074] elsim, ellabels = clusimelement.element_sim_elscore(c1, c2, alpha=0.9, r=1., r2=None, rescale_path_type='max') for i in range(7): assert_approx_equal(elsim[i], known_elsim[i], 10**(-10), "Element-centric similarity for element %s does not match. %s != %s" % (i, elsim[i], known_elsim[i]) ) if __name__ == "__main__": test_comparison_example() test_model_example() test_elementsim_example()
2.390625
2
bindings/pydeck/examples/scripts/update_docs.py
wuweiweiwu/deck.gl
0
12789314
<gh_stars>0 import asyncio import glob import os from pyppeteer import launch here = os.path.dirname(os.path.abspath(__file__)) parent_directory = os.path.join(here, "..") os.chdir(here) example_glob = os.path.join(parent_directory, "*_layer.py") async def run(cmd): """Runs a shell command within asyncio""" proc = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await proc.communicate() print(f"[info] {cmd!r} exited with {proc.returncode}") if stdout: print(f"[stdout]\n{stdout.decode()}") if stderr: print(f"[stderr]\n{stderr.decode()}") async def main(): for fname in glob.glob(example_glob): browser = await launch( autoClose=False, headless=False, args=["--no-sandbox", "--disable-web-security"], ) page = await browser.newPage() print("[info] Converting %s to an image" % fname) await run(" ".join(["python", fname])) png_fname = os.path.splitext(fname)[0] + ".png" html_fname = os.path.join( here, os.path.splitext(os.path.basename(fname))[0] + ".html" ) fpath = "file://%s" % html_fname if "bitmap_layer" in html_fname or "icon_layer" in html_fname: await page.goto(fpath) await asyncio.sleep(10) else: await page.goto( fpath, waitUntil=["load", "networkidle2", "networkidle0"], timeout=30000, ) await page.screenshot({"path": png_fname}) print("[info] Sucessfully converted %s to a png at %s" % (fname, png_fname)) await browser.close() if __name__ == "__main__": asyncio.get_event_loop().run_until_complete(main())
2.578125
3
tests/test_recursiveDecompression.py
zomry1/Hystrix-Box
7
12789315
from HystrixBox.Tools.recursiveDecompression import extract_recursive import filecmp import os TEST1 = '''File not found\n''' TEST2 = '''Not a zip file or corrupted zip file\n''' def compareDir(dir1, dir2): """ Compare two directory trees content. Return False if they differ, True is they are the same. """ compared = filecmp.dircmp(dir1, dir2) if (compared.left_only or compared.right_only or compared.diff_files or compared.funny_files): return False for subdir in compared.common_dirs: if not compareDir(os.path.join(dir1, subdir), os.path.join(dir2, subdir)): return False return True def test_extract_recursive_true(tmpdir): path = tmpdir.strpath extract_recursive('../examples/recursivezip.zip', path) assert compareDir(path, '../examples/RecursiveZipExtracted/') def test_extract_recursive_1layer(tmpdir): path = tmpdir.strpath extract_recursive('../examples/root.zip', path) assert compareDir(path, '../examples/RecursiveZipExtracted/1Introduction/2Introduction/3Introduction') def test_extract_recursive_noFile(capfd, tmpdir): path = tmpdir.strpath extract_recursive('', path) out, err = capfd.readouterr() assert (out == TEST1) def test_extract_recursive_noZipFile(capfd, tmpdir): path = tmpdir.strpath extract_recursive('../examples/extractor.txt', path) out, err = capfd.readouterr() assert (out == TEST2)
2.65625
3
doc/ext/genfortran.py
VACUMM/xoa
7
12789316
"""Generate files to declare fortran functions""" import os import re import logging import importlib from docutils.statemachine import string2lines from sphinx.util.docutils import SphinxDirective path_pat_mod_dir = os.path.join("{gendir}", "{mod_name}") path_pat_mod_file = os.path.join(path_pat_mod_dir, "index.rst") path_pat_func_file = os.path.join(path_pat_mod_dir, "{func_name}.rst") def checkdir(path): pdir = os.path.dirname(path) if not os.path.exists(pdir): os.makedirs(pdir) class GenFortran(SphinxDirective): has_content = True def run(self): if not self.content: return [] # Loop on modules and descriptions rst_toctree = ".. toctree::\n\t:hidden:\n\n" rst_table = ".. list-table::\n\n" for mod_name_desc in self.content: smod = mod_name_desc.split(" ") mod_name = smod[0] mod_desc = " ".join(smod[1:]) rst_toctree += f"\tgenfortran/{mod_name}/index\n" rst_table += f"\t* - :mod:`{mod_name}`\n" rst_table += f"\t - {mod_desc}\n" # Insert toctree and tables rst_all = rst_toctree + "\n\n" + rst_table + "\n" source = self.state_machine.input_lines.source( self.lineno - self.state_machine.input_offset - 1) include_lines = string2lines(rst_all, convert_whitespace=1) self.state_machine.insert_input(include_lines, source) return [] re_directive_match = re.compile( r"^(?P<indent>\s*)\.\.\s+genfortran::\s*\n$").match re_indent_match = re.compile(r"^(?P<indent>\s*)\S.+\n$").match def generate_stub_files(srcdir, mod_name, mod_desc): gendir = os.path.join(srcdir, "genfortran") logging.info(f"Generating rst files for fortran wrapper "+mod_name) mod_content = importlib.import_module(mod_name) func_names = [func for func in dir(mod_content) if not func.startswith('_')] # Write files mod_dir = path_pat_mod_dir.format(**locals()) if not os.path.exists(mod_dir): os.makedirs(mod_dir) mod_file = path_pat_mod_file.format(**locals()) with open(mod_file, "w") as f: f.write(mod_name + "\n" + len(mod_name)*"=" + "\n\n") f.write(mod_desc + "\n\n") f.write(f".. module:: {mod_name}\n\n") rst_table = ".. list-table::\n\n" rst_toctree = ".. toctree::\n\t:hidden:\n\n" for func_name in func_names: rst_table += f"\t* - :func:`{mod_name}.{func_name}`\n" func = getattr(mod_content, func_name) func_sig = func.__doc__.split("\n")[0] rst_table += f"\t - {func_sig}\n" rst_toctree += f"\t{func_name}\n" with open(path_pat_func_file.format( **locals()), "w") as ff: ff.write(func_name+"\n"+len(func_name)*"="+"\n\n") ff.write(f".. currentmodule:: {mod_name}\n\n") out, call = func_sig.split('=') ff.write(f".. autofunction:: {call}\n\n") f.write(rst_toctree+"\n\n") f.write(rst_table) def parse_and_generate(app): """Parse rst files to find directives and generate stub files""" # Get file list env = app.builder.env srcdir = env.srcdir if app.config.genfortran_src_files: srcfiles = [os.path.join(srcdir, srcfile) for srcfile in app.config.genfortran_src_files] else: env = app.builder.env srcfiles = [env.doc2path(x, base=None) for x in env.found_docs if os.path.isfile(env.doc2path(x))] # Parse files for srcfile in srcfiles: if not os.path.exists(srcfile): logging.warning("[genfortran] file not found: "+srcfile) continue with open(srcfile) as f: indent = None for line in f: m = re_directive_match(line) if m: indent = m.group('indent') continue if indent is None: continue m = re.match("^"+indent + r"\s+(?P<mod_name>[\w.]+)" + r"(?P<mod_desc>\s.*)\n$", line) if m: generate_stub_files( srcdir, m.group("mod_name"), m.group("mod_desc").strip()) continue m = re_indent_match(line) if m and len(m.group('indent')) <= len(indent): indent = None def setup(app): app.add_directive("genfortran", GenFortran) app.connect('builder-inited', parse_and_generate) app.add_config_value('genfortran_src_files', [], [], [list]) return {'version': '0.1'}
2.421875
2
src/Methods/DataFromManyPersons/Univariate/__init__.py
syncpy/SyncPy
20
12789317
<gh_stars>10-100 """ This package allows to compute synchronisation between monovariate signals gathered from many persons. """ __all__ = ['Categorical', 'Continuous']
1.070313
1
mo_optimizers/min_norm_solvers.py
timodeist/multi_objective_learning
0
12789318
<reponame>timodeist/multi_objective_learning """ This code is taken from the repository accompanying the manuscript Sener, Ozan, and <NAME>. "Multi-task learning as multi-objective optimization." arXiv preprint arXiv:1810.04650 (2018). Neural Information Processing Systems (NeurIPS) 2018 https://github.com/intel-isl/MultiObjectiveOptimization MIT License Copyright (c) 2018 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import torch class MinNormSolver: MAX_ITER = 250 STOP_CRIT = 1e-5 def _min_norm_element_from2(v1v1, v1v2, v2v2): """ Analytical solution for min_{c} |cx_1 + (1-c)x_2|_2^2 d is the distance (objective) optimzed v1v1 = <x1,x1> v1v2 = <x1,x2> v2v2 = <x2,x2> """ if v1v2 >= v1v1: # Case: Fig 1, third column gamma = 0.999 cost = v1v1 return gamma, cost if v1v2 >= v2v2: # Case: Fig 1, first column gamma = 0.001 cost = v2v2 return gamma, cost # Case: Fig 1, second column gamma = -1.0 * ( (v1v2 - v2v2) / (v1v1+v2v2 - 2*v1v2) ) cost = v2v2 + gamma*(v1v2 - v2v2) return gamma, cost def _min_norm_2d(vecs, dps): """ Find the minimum norm solution as combination of two points This is correct only in 2D ie. min_c |\sum c_i x_i|_2^2 st. \sum c_i = 1 , 1 >= c_1 >= 0 for all i, c_i + c_j = 1.0 for some i, j """ # computes dot products of gradient vectors and applies Algorithm 1 as shown in Sener and Koltun (2018) dmin = 1e8 for i in range(len(vecs)): for j in range(i+1,len(vecs)): if (i,j) not in dps: dps[(i, j)] = 0.0 for k in range(len(vecs[i])): dps[(i,j)] += torch.dot(vecs[i][k], vecs[j][k]).item()#torch.dot(vecs[i][k], vecs[j][k]).data[0] dps[(j, i)] = dps[(i, j)] if (i,i) not in dps: dps[(i, i)] = 0.0 for k in range(len(vecs[i])): dps[(i,i)] += torch.dot(vecs[i][k], vecs[i][k]).item()#torch.dot(vecs[i][k], vecs[i][k]).data[0] if (j,j) not in dps: dps[(j, j)] = 0.0 for k in range(len(vecs[i])): dps[(j, j)] += torch.dot(vecs[j][k], vecs[j][k]).item()#torch.dot(vecs[j][k], vecs[j][k]).data[0] c,d = MinNormSolver._min_norm_element_from2(dps[(i,i)], dps[(i,j)], dps[(j,j)]) if d < dmin: dmin = d # sol contains the pair of vectors, the selected gamma weight and some cost (I dont understand why they matter) sol = [(i,j),c,d] return sol, dps def _projection2simplex(y): """ Given y, it solves argmin_z |y-z|_2 st \sum z = 1 , 1 >= z_i >= 0 for all i """ m = len(y) sorted_y = np.flip(np.sort(y), axis=0) tmpsum = 0.0 tmax_f = (np.sum(y) - 1.0)/m for i in range(m-1): tmpsum+= sorted_y[i] tmax = (tmpsum - 1)/ (i+1.0) if tmax > sorted_y[i+1]: tmax_f = tmax break return np.maximum(y - tmax_f, np.zeros(y.shape)) def _next_point(cur_val, grad, n): proj_grad = grad - ( np.sum(grad) / n ) tm1 = -1.0*cur_val[proj_grad<0]/proj_grad[proj_grad<0] tm2 = (1.0 - cur_val[proj_grad>0])/(proj_grad[proj_grad>0]) skippers = np.sum(tm1<1e-7) + np.sum(tm2<1e-7) t = 1 if len(tm1[tm1>1e-7]) > 0: t = np.min(tm1[tm1>1e-7]) if len(tm2[tm2>1e-7]) > 0: t = min(t, np.min(tm2[tm2>1e-7])) next_point = proj_grad*t + cur_val next_point = MinNormSolver._projection2simplex(next_point) return next_point def find_min_norm_element(vecs): """ Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1. It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j}) Hence, we find the best 2-task solution, and then run the projected gradient descent until convergence """ # Solution lying at the combination of two points dps = {} init_sol, dps = MinNormSolver._min_norm_2d(vecs, dps) # n is the number of vectors fed into the functions. # if all networks are in their assigned subregion, only the loss gradients are given as input and n is equal to the number of losses. # if some networks are not in their assigned subregion then all loss gradients AND and gradients constraint correction \Nabla G are given as input n=len(vecs) sol_vec = np.zeros(n) # init_sol[0] contains the indices of the losses for which the weight gamma (init_sol[1]) was determined so that the resulting convex combination of loss gradients (gamma * loss_grad + (1-gamma) * other_loss_grad) has minimum norm # sol_vec contains the weights gamma and (1-gamma) in the order of the function input vecs (which is the list of loss gradients and constraint correction gradients) sol_vec[init_sol[0][0]] = init_sol[1] sol_vec[init_sol[0][1]] = 1 - init_sol[1] if n < 3: # This is optimal for n=2, so return the solution return sol_vec , init_sol[2] # if there are more than 2 vectors in the input, then run projected gradient descent (?) iter_count = 0 # create matrix of dot products previously computed grad_mat = np.zeros((n,n)) for i in range(n): for j in range(n): grad_mat[i,j] = dps[(i, j)] while iter_count < MinNormSolver.MAX_ITER: grad_dir = -1.0*np.dot(grad_mat, sol_vec) new_point = MinNormSolver._next_point(sol_vec, grad_dir, n) # Re-compute the inner products for line search v1v1 = 0.0 v1v2 = 0.0 v2v2 = 0.0 for i in range(n): for j in range(n): v1v1 += sol_vec[i]*sol_vec[j]*dps[(i,j)] v1v2 += sol_vec[i]*new_point[j]*dps[(i,j)] v2v2 += new_point[i]*new_point[j]*dps[(i,j)] nc, nd = MinNormSolver._min_norm_element_from2(v1v1, v1v2, v2v2) new_sol_vec = nc*sol_vec + (1-nc)*new_point change = new_sol_vec - sol_vec if np.sum(np.abs(change)) < MinNormSolver.STOP_CRIT: return sol_vec, nd sol_vec = new_sol_vec def find_min_norm_element_FW(vecs): """ Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1. It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j}) Hence, we find the best 2-task solution, and then run the Frank Wolfe until convergence """ # Solution lying at the combination of two points dps = {} init_sol, dps = MinNormSolver._min_norm_2d(vecs, dps) n=len(vecs) sol_vec = np.zeros(n) sol_vec[init_sol[0][0]] = init_sol[1] sol_vec[init_sol[0][1]] = 1 - init_sol[1] if n < 3: # This is optimal for n=2, so return the solution return sol_vec , init_sol[2] iter_count = 0 grad_mat = np.zeros((n,n)) for i in range(n): for j in range(n): grad_mat[i,j] = dps[(i, j)] while iter_count < MinNormSolver.MAX_ITER: t_iter = np.argmin(np.dot(grad_mat, sol_vec)) v1v1 = np.dot(sol_vec, np.dot(grad_mat, sol_vec)) v1v2 = np.dot(sol_vec, grad_mat[:, t_iter]) v2v2 = grad_mat[t_iter, t_iter] nc, nd = MinNormSolver._min_norm_element_from2(v1v1, v1v2, v2v2) new_sol_vec = nc*sol_vec new_sol_vec[t_iter] += 1 - nc change = new_sol_vec - sol_vec if np.sum(np.abs(change)) < MinNormSolver.STOP_CRIT: return sol_vec, nd sol_vec = new_sol_vec def gradient_normalizers(grads, losses, normalization_type): gn = {} if normalization_type == 'l2': for t in grads: gn[t] = np.sqrt(np.sum([gr.pow(2).sum().data[0] for gr in grads[t]])) elif normalization_type == 'loss': for t in grads: gn[t] = losses[t] elif normalization_type == 'loss+': for t in grads: gn[t] = losses[t] * np.sqrt(np.sum([gr.pow(2).sum().data[0] for gr in grads[t]])) elif normalization_type == 'none': for t in grads: gn[t] = 1.0 else: print('ERROR: Invalid Normalization Type') return gn
1.25
1
tools/pack.py
sts-q/Einherjar
20
12789319
#!/usr/bin/env python # Copyright (c) <NAME>. # All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys code = ' rtoeani' + 'smcylgfw' + 'dvpbhxuq' + '01234567' + \ '89j-k.z/' + ';:!+@*,?' asm_encodings = [ '__', '_r', '_t', '_o', '_e', '_a', '_n', '_i', '_s', '_m', '_c', '_y', '_l', '_g', '_f', '_w', '_d', '_v', '_p', '_b', '_h', '_x', '_u', '_q', '_0', '_1', '_2', '_3', '_4', '_5', '_6', '_7', '_8', '_9', '_j', '_dash', '_k', '_dot', '_z', '_slash', '_semi', '_colon', '_store', '_plus', '_fetch', '_times', '_comma', '_question', ] huffman_encodings = [ 0b0000, # 0b0001, #r 0b0010, #t 0b0011, #o 0b0100, #e 0b0101, #a 0b0110, #n 0b0111, #i 0b10000, #s 0b10001, #m 0b10010, #c 0b10011, #y 0b10100, #l 0b10101, #g 0b10110, #f 0b10111, #w 0b1100000, #d 0b1100001, #v 0b1100010, #p 0b1100011, #b 0b1100100, #h 0b1100101, #x 0b1100110, #u 0b1100111, #q 0b1101000, #0 0b1101001, #1 0b1101010, #2 0b1101011, #3 0b1101100, #4 0b1101101, #5 0b1101110, #6 0b1101111, #7 0b1110000, #8 0b1110001, #9 0b1110010, #j 0b1110011, #- 0b1110100, #k 0b1110101, #. 0b1110110, #z 0b1110111, #/ 0b1111000, #; 0b1111001, #: 0b1111010, #! 0b1111011, #+ 0b1111100, #@ 0b1111101, #* 0b1111110, #, 0b1111111, #? ] highbit = 0x80000000L mask = 0xffffffffL def packword_num(word): """pack a word into a 32-bit integer like colorForth editor does this routine ignores anything past 28 bits""" packed, bits = 0, 28 for letter in word: lettercode = code.index(letter) length = 4 + (lettercode > 7) + (2 * (lettercode > 15)) # using True as 1 lettercode += (8 * (length == 5)) + ((96 - 16) * (length == 7)) # True=1 packed = (packed << length) + lettercode bits -= length packed <<= bits + 4 return packed def packword(word): """pack a word into a 32-bit integer like colorForth editor does this routine ignores anything past 28 bits""" packed, bits = 0, 28 letter_codes = [] lengths = [] for i in range(0, len(word)): letter = word[i] #lettercode = huffman_encodings[code.index(letter)] lettercode = code.index(letter) length = 4 + (lettercode > 7) + (2 * (lettercode > 15)) # using True as 1 lettercode += (8 * (length == 5)) + ((96 - 16) * (length == 7)) # True=1 letter_codes.append(lettercode) lengths.append(length) packed = (packed << length) + lettercode s = sum(lengths) if s < 32: coded_word = "(" * (len(word) - 1) + asm_encodings[code.index(word[0])] i = 1 while i < len(word): letter = word[i] coded_asm_letter = asm_encodings[code.index(letter)] displacement_for_this_letter = lengths[i] coded_word += "<<" + str(displacement_for_this_letter) + "|" + coded_asm_letter + ")" i = i+1 coded_word += "<<" + str(32 - s) if __name__ == "__main__": word = sys.argv[1] packword(word) packed = packword_num(word) print "0x%x" % packed
1.78125
2
scripts/sha256_gcs_blobs.py
DataBiosphere/azul
17
12789320
<gh_stars>10-100 """ Calculate the SHA-256 of Google Cloud Storage one or more blobs and write the result as custom metadata to each blob. """ import argparse import base64 import hashlib import logging import os import sys import tempfile from typing import ( List, Tuple, ) from urllib import ( parse, ) # PyCharm doesn't seem to recognize PEP 420 namespace packages # noinspection PyPackageRequirements import google.cloud.storage as gcs from azul import ( reject, require, ) from azul.logging import ( configure_script_logging, ) log = logging.getLogger(__name__) class WriteCustomMetadata: def main(self): self._run() exit_code = 0 return exit_code @classmethod def _parse_args(cls, argv): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--source-area', '-s', required=True, help='The Google Cloud Storage URL of the source area. ' 'Syntax is gs://<bucket>[/<path>].') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--blob-path', '-b', action='append', help='The path of a blob object relative to the source area. ' 'Can be specified multiple times.') group.add_argument('--all-blobs', '-B', action='store_true', default=False, help='Process all blobs contained within the source area') parser.add_argument('--force', '-f', action='store_true', default=False, help='Force calculation of SHA256 if blob has an existing ' 'custom metadata value and overwrite if different.') args = parser.parse_args(argv) return args def __init__(self, argv: List[str]) -> None: super().__init__() self.args = self._parse_args(argv) self.gcs = gcs.Client() self.src_bucket, self.src_path = self._parse_gcs_url(self.args.source_area) def _parse_gcs_url(self, gcs_url: str) -> Tuple[gcs.Bucket, str]: """ Parse a GCS URL into its Bucket and path components """ split_url = parse.urlsplit(gcs_url) require(split_url.scheme == 'gs' and split_url.netloc, 'Google Cloud Storage URL must be in gs://<bucket>[/<path>] format') reject(split_url.path.endswith('/'), 'Google Cloud Storage URL must not end with a "/"') if split_url.path: path = split_url.path.lstrip('/') + '/' else: path = '' bucket = gcs.Bucket(self.gcs, split_url.netloc) return bucket, path def _run(self): """ Process each blob path given """ for blob in self.iterate_blobs(): log.info('Processing %s', blob.name) self.write_blob_sha256(blob, self.args.force) def iterate_blobs(self): if self.args.all_blobs: for blob in self.src_bucket.list_blobs(prefix=self.src_path): yield blob else: for blob_path in self.args.blob_path: yield self.get_blob(blob_path) def write_blob_sha256(self, blob: gcs.Blob, force: bool = False) -> None: """ Calculates a blob's SHA256 and writes the value to the blob's custom metadata 'sha256' field. """ current_value = None if blob.metadata is None else blob.metadata.get('sha256') log.info('Current SHA256 value: %s', current_value) if current_value is None or force: file_sha256 = self.calculate_blob_sha256(blob) if current_value == file_sha256: log.info('Calculated SHA256 matches current value, no change.') else: log.info('Saving SHA256 value: %s', file_sha256) blob.metadata = {'sha256': file_sha256} blob.patch() else: log.info('Blob SHA256 not calculated or changed.') def get_blob(self, blob_path: str) -> gcs.Blob: """ Return the blob from the source bucket. """ return self.src_bucket.get_blob(f'{self.src_path}{blob_path}') def calculate_blob_sha256(self, blob: gcs.Blob) -> str: """ Return the SHA256 for the given blob. To calculate the value the file is downloaded to a temporary file that is deleted after the hash is calculated. """ log.info('Downloading file to calculate SHA256, size: %s bytes', format(blob.size, ",d")) file = tempfile.NamedTemporaryFile(mode='w+b', delete=False) file_name = file.name try: blob.download_to_file(file) finally: file.close() with open(file_name, 'rb') as file: file_md5 = hashlib.md5() file_sha256 = hashlib.sha256() while chunk := file.read(8192): file_md5.update(chunk) file_sha256.update(chunk) os.unlink(file_name) # The MD5 hash stored in blob object metadata is base64 encoded file_md5 = base64.b64encode(file_md5.digest()).decode() if blob.md5_hash != file_md5: raise Exception(f'Blob {blob.name} MD5 mismatch', blob.md5_hash, file_md5) # Return SHA256 as 64 character hex string return file_sha256.hexdigest() if __name__ == '__main__': configure_script_logging(log) adapter = WriteCustomMetadata(sys.argv[1:]) sys.exit(adapter.main())
2.828125
3
CSIKit/tools/convert_json.py
FredeJ/CSIKit
67
12789321
<reponame>FredeJ/CSIKit import json from CSIKit.util.csitools import get_CSI from CSIKit.reader import get_reader def generate_json(path: str, metric: str="amplitude") -> str: """ This function converts a csi_trace into the json format. It works for single entry or the whole trace. Parameters: path (str): Path to CSI file location. """ def default(prop): if "complex" in str(type(prop)): return str(prop) if "numpy" in str(type(prop)): return prop.tolist() if "__dict__" in dir(prop): return prop.__dict__ else: print("Prop has no __dict__ {}: \n {}".format(type(prop), prop)) reader = get_reader(path) csi_data = reader.read_file(path) csi_matrix, no_frames, no_subcarriers = get_CSI(csi_data, metric) print("CSI Shape: {}".format(csi_matrix.shape)) print("Number of Frames: {}".format(no_frames)) print("Generating CSI {}...".format(metric)) json_str = json.dumps(csi_matrix, default=default, indent=True) return json_str
2.78125
3
co2usa_load_netCDF.py
uataq/co2usa_data_synthesis
0
12789322
# -*- coding: utf-8 -*- """ co2usa_load_netCDF: Load the CO2-USA Data Synthesis files from netCDF USAGE: The CO2-USA synthesis data is available to download from the ORNL DAAC: https://doi.org/10.3334/ORNLDAAC/1743 To download the data, first sign into your account (or create one if you don't have one). Next, click on "Download Data" to download the entire data set in a zip file. Extract the netCDF files to a folder on your computer. The CO2-USA synthesis data files should be all saved in a single directory: /co2_usa_netCDF_files/[netCDF_files.nc] For example, for the CO2 data file for a Boston site would be: /co2_usa_netCDF_files/boston_co2_HF_29m_1_hour_R0_2020-09-28.nc Set the following variables: city: String of CO2-USA city. Example: city = 'boston' species: String with target species. Example: species = 'co2' read_folder: Path to the directory where you saved the data files. Example: current_folder = os.getcwd() read_folder = current_folder+'\\netCDF_formatted_files\\' The data is in the 'co2usa' variable. For more information, visit the CO2-USA GitHub repository: https://github.com/loganemitchell/co2usa_data_synthesis Written by <NAME> (<EMAIL>) University of Utah Last updated: 2021-06-09 """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import os import glob import netCDF4 as nc #%% Executed this manually to enable interactive figures: #%matplotlib qt #%% current_folder = os.getcwd() read_folder = current_folder+'\\gcloud.utah.edu\\data\\co2-usa\\synthesis_output_ornl_new\\netCDF_formatted_files\\' co2usa = {} city = 'boston' species = 'co2' co2usa[city] = {} all_files = glob.glob(read_folder+city+'_'+species+'*.nc') for fni in range(len(all_files)): #print('Loading '+all_files[fni]) nc_dat = nc.Dataset(all_files[fni]) site = all_files[fni][len(read_folder):all_files[fni].find('_1_hour')] co2usa[city][site] = {} co2usa[city][site]['global_attributes'] = {} # Site global attributes for name in nc_dat.ncattrs(): co2usa[city][site]['global_attributes'][name] = getattr(nc_dat, name) #print("Global attr {} = {}".format(name, getattr(nc_dat, name))) co2usa[city][site]['attributes'] = {} # Variable attributes for name in nc_dat.variables.keys(): co2usa[city][site]['attributes'][name] = {} for attrname in nc_dat.variables[name].ncattrs(): co2usa[city][site]['attributes'][name][attrname] = getattr(nc_dat.variables[name], attrname) #print("{} -- {}".format(attrname, getattr(nc_dat.variables[name], attrname))) for name in nc_dat.variables.keys(): # Variable data co2usa[city][site][name] = nc_dat.variables[name][:].data # Convert to datetime co2usa[city][site]['time'] = pd.to_datetime(co2usa[city][site]['time']*1e9) # Take care of NaNs co2usa[city][site][species][co2usa[city][site][species]==co2usa[city][site]['attributes'][species]['_FillValue']] = np.nan # Remove the temporary netCDF variable del nc_dat #%% Plot the CO2 USA data sites = co2usa[city].keys() f1 = plt.figure(1); f1 = plt.clf(); ax = plt.axes(f1) plt.title(city+' '+species,fontsize=20) for site in sites: if site.find('background') == -1: plt.plot(co2usa[city][site]['time'],co2usa[city][site][species],label=site) for site in sites: if site.find('background') != -1: plt.plot(co2usa[city][site]['time'],co2usa[city][site][species],'k-',label=site) ax.set_ylabel(species,fontsize=15) plt.legend(fontsize=14) plt.grid(b=True,axis='both') plt.show()
2.828125
3
PyObjCTest/test_nsbitmapimagerep.py
Khan/pyobjc-framework-Cocoa
132
12789323
<reponame>Khan/pyobjc-framework-Cocoa from PyObjCTools.TestSupport import * import objc import array import sys from objc import YES, NO from AppKit import * try: unicode except NameError: unicode = str try: long except NameError: long = int class TestNSBitmapImageRep(TestCase): def testInstantiation(self): # widthxheight RGB 24bpp image width = 256 height = 256 dataPlanes = (None, None, None, None, None) dataPlanes = None i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i1) i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i2) def testPixelFormat(self): width = 16 height = 16 i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bitmapFormat_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, NSAlphaFirstBitmapFormat, 0, 0) self.assertIsInstance(i1, NSBitmapImageRep) singlePlane = objc.allocateBuffer(width*height*4) for i in range(0, width*height): si = i * 4 singlePlane[si] = 1 singlePlane[si+1] = 2 singlePlane[si+2] = 3 singlePlane[si+3] = 4 dataPlanes = (singlePlane, None, None, None, None) # test non-planar, premade buffer i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bitmapFormat_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, NSAlphaFirstBitmapFormat, 0, 0) self.assertIsInstance(i2, NSBitmapImageRep) bitmapData = i2.bitmapData() self.assertEqual(len(bitmapData), width * height * 4) def testImageData(self): width = 256 height = 256 rPlane = array.array('B') rPlane.fromlist( [y%256 for y in range(0,height) for x in range(0,width)] ) if sys.version_info[0] == 3: buffer = memoryview else: from __builtin__ import buffer rPlane = buffer(rPlane) gPlane = array.array('B') gPlane.fromlist( [y%256 for y in range(0,height) for x in range(width,0,-1)] ) gPlane = buffer(gPlane) bPlane = array.array('B') bPlane.fromlist( [x%256 for y in range(0,height) for x in range(0,width)] ) bPlane = buffer(bPlane) dataPlanes = (rPlane, gPlane, bPlane, None, None) # test planar, pre-made buffer i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, YES, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i1) singlePlane = objc.allocateBuffer(width*height*3) for i in range(0, width*height): si = i * 3 if sys.version_info[0] == 2: singlePlane[si] = rPlane[i] singlePlane[si+1] = gPlane[i] singlePlane[si+2] = bPlane[i] else: def as_byte(v): if isinstance(v, int): return v else: return ord(v) singlePlane[si] = as_byte(rPlane[i]) singlePlane[si+1] = as_byte(gPlane[i]) singlePlane[si+2] = as_byte(bPlane[i]) dataPlanes = (singlePlane, None, None, None, None) # test non-planar, premade buffer i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) # test grey scale greyPlane = array.array('B') greyPlane.fromlist( [x%256 for x in range(0,height) for x in range(0,width)] ) greyPlanes = (greyPlane, None, None, None, None) greyImage = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(greyPlanes, width, height, 8, 1, NO, YES, NSCalibratedWhiteColorSpace, width, 8) # test planar, NSBIR allocated buffer i3 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, YES, NSDeviceRGBColorSpace, 0, 0) r,g,b,a,o = i3.getBitmapDataPlanes_() self.assertTrue(r) self.assertTrue(g) self.assertTrue(b) self.assertTrue(not a) self.assertTrue(not o) self.assertEqual(len(r), len(rPlane)) self.assertEqual(len(g), len(gPlane)) self.assertEqual(len(b), len(bPlane)) r[0:len(r)] = rPlane[0:len(rPlane)] g[0:len(g)] = gPlane[0:len(gPlane)] b[0:len(b)] = bPlane[0:len(bPlane)] bitmapData = i2.bitmapData() self.assertEqual(len(bitmapData), len(singlePlane)) try: memoryview except NameError: self.assertEqual(bitmapData, singlePlane) else: self.assertEqual(bitmapData.tobytes(), singlePlane) a = array.array('L', [255]*4) self.assertArgIsOut(NSBitmapImageRep.getPixel_atX_y_, 0) d = i2.getPixel_atX_y_(a, 1, 1) self.assertIs(a, d) class TestBadCreation(TestCase): # Redirect stderr to /dev/null for the duration of this test, # NSBitmapImageRep will write an error message to stderr. def setUp(self): import os self.duppedStderr = os.dup(2) fp = os.open('/dev/null', os.O_RDWR) os.dup2(fp, 2) os.close(fp) def tearDown(self): import os os.dup2(self.duppedStderr, 2) def test_AllocInit(self): y = NSBitmapImageRep.alloc() try: self.assertRaises(ValueError, y.init) finally: width = 256 height = 256 dataPlanes = (None, None, None, None, None) y = y.initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) def testConstants(self): self.assertEqual(NSTIFFCompressionNone, 1) self.assertEqual(NSTIFFCompressionCCITTFAX3, 3) self.assertEqual(NSTIFFCompressionCCITTFAX4, 4) self.assertEqual(NSTIFFCompressionLZW, 5) self.assertEqual(NSTIFFCompressionJPEG, 6) self.assertEqual(NSTIFFCompressionNEXT, 32766) self.assertEqual(NSTIFFCompressionPackBits, 32773) self.assertEqual(NSTIFFCompressionOldJPEG, 32865) self.assertEqual(NSTIFFFileType, 0) self.assertEqual(NSBMPFileType, 1) self.assertEqual(NSGIFFileType, 2) self.assertEqual(NSJPEGFileType, 3) self.assertEqual(NSPNGFileType, 4) self.assertEqual(NSJPEG2000FileType, 5) self.assertEqual(NSImageRepLoadStatusUnknownType, -1) self.assertEqual(NSImageRepLoadStatusReadingHeader, -2) self.assertEqual(NSImageRepLoadStatusWillNeedAllData, -3) self.assertEqual(NSImageRepLoadStatusInvalidData, -4) self.assertEqual(NSImageRepLoadStatusUnexpectedEOF, -5) self.assertEqual(NSImageRepLoadStatusCompleted, -6) self.assertEqual(NSAlphaFirstBitmapFormat, 1 << 0) self.assertEqual(NSAlphaNonpremultipliedBitmapFormat, 1 << 1) self.assertEqual(NSFloatingPointSamplesBitmapFormat, 1 << 2) self.assertIsInstance(NSImageCompressionMethod, unicode) self.assertIsInstance(NSImageCompressionFactor, unicode) self.assertIsInstance(NSImageDitherTransparency, unicode) self.assertIsInstance(NSImageRGBColorTable, unicode) self.assertIsInstance(NSImageInterlaced, unicode) self.assertIsInstance(NSImageColorSyncProfileData, unicode) self.assertIsInstance(NSImageFrameCount, unicode) self.assertIsInstance(NSImageCurrentFrame, unicode) self.assertIsInstance(NSImageCurrentFrameDuration, unicode) self.assertIsInstance(NSImageLoopCount, unicode) self.assertIsInstance(NSImageGamma, unicode) self.assertIsInstance(NSImageProgressive, unicode) self.assertIsInstance(NSImageEXIFData, unicode) self.assertIsInstance(NSImageFallbackBackgroundColor, unicode) def testTiffCompression(self): lst, nr = NSBitmapImageRep.getTIFFCompressionTypes_count_(None, None) self.assertIsInstance(lst, tuple) self.assertIsInstance(nr, (int, long)) self.assertEqual(len(lst), nr) self.assertNotEqual(len(lst), 0) self.assertIsInstance(lst[0], (int, long)) def testMethods(self): self.assertResultIsBOOL(NSBitmapImageRep.isPlanar) self.assertResultIsBOOL(NSBitmapImageRep.canBeCompressedUsing_) self.assertArgIsBOOL(NSBitmapImageRep.incrementalLoadFromData_complete_, 1) self.assertArgIsOut(NSBitmapImageRep.getCompression_factor_, 0) self.assertArgIsOut(NSBitmapImageRep.getCompression_factor_, 1) if __name__ == '__main__': main( )
2.109375
2
neutron/tests/api/test_bgp_speaker_extensions.py
wwriverrat/neutron
1
12789324
# Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest import config from tempest import test from tempest_lib import exceptions as lib_exc from neutron.tests.api import base from tempest.common import tempest_fixtures as fixtures CONF = config.CONF class BgpSpeakerTestJSONBase(base.BaseAdminNetworkTest): default_bgp_speaker_args = {'local_as': '1234', 'ip_version': 4, 'name': 'my-bgp-speaker', 'advertise_floating_ip_host_routes': True, 'advertise_tenant_networks': True} default_bgp_peer_args = {'remote_as': '4321', 'name': 'my-bgp-peer', 'peer_ip': '192.168.1.1', 'auth_type': '<PASSWORD>', 'password': '<PASSWORD>'} @classmethod def resource_setup(cls): super(BgpSpeakerTestJSONBase, cls).resource_setup() if not test.is_extension_enabled('bgp_speaker', 'network'): msg = "BGP Speaker extension is not enabled." raise cls.skipException(msg) cls.ext_net_id = CONF.network.public_network_id def create_bgp_speaker(self, auto_delete=True, **args): data = {'bgp_speaker': args} bgp_speaker = self.admin_client.create_bgp_speaker(data) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] if auto_delete: self.addCleanup(self.delete_bgp_speaker, bgp_speaker_id) return bgp_speaker def create_bgp_peer(self, **args): bgp_peer = self.admin_client.create_bgp_peer({'bgp_peer': args}) bgp_peer_id = bgp_peer['bgp-peer']['id'] self.addCleanup(self.delete_bgp_peer, bgp_peer_id) return bgp_peer def update_bgp_speaker(self, id, **args): data = {'bgp_speaker': args} return self.admin_client.update_bgp_speaker(id, data) def delete_bgp_speaker(self, id): return self.admin_client.delete_bgp_speaker(id) def get_bgp_speaker(self, id): return self.admin_client.get_bgp_speaker(id) def create_bgp_speaker_and_peer(self): bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_peer = self.create_bgp_peer(**self.default_bgp_peer_args) return (bgp_speaker, bgp_peer) def delete_bgp_peer(self, id): return self.admin_client.delete_bgp_peer(id) def add_bgp_peer(self, bgp_speaker_id, bgp_peer_id): return self.admin_client.add_bgp_peer_with_id(bgp_speaker_id, bgp_peer_id) def remove_bgp_peer(self, bgp_speaker_id, bgp_peer_id): return self.admin_client.remove_bgp_peer_with_id(bgp_speaker_id, bgp_peer_id) def delete_address_scope(self, id): return self.admin_client.delete_address_scope(id) class BgpSpeakerTestJSON(BgpSpeakerTestJSONBase): """ Tests the following operations in the Neutron API using the REST client for Neutron: Create bgp-speaker Delete bgp-speaker Create bgp-peer Update bgp-peer Delete bgp-peer """ @test.idempotent_id('df259771-7104-4ffa-b77f-bd183600d7f9') def test_delete_bgp_speaker(self): bgp_speaker = self.create_bgp_speaker(auto_delete=False, **self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.delete_bgp_speaker(bgp_speaker_id) self.assertRaises(lib_exc.NotFound, self.get_bgp_speaker, bgp_speaker_id) @test.idempotent_id('81d9dc45-19f8-4c6e-88b8-401d965cd1b0') def test_create_bgp_peer(self): self.create_bgp_peer(**self.default_bgp_peer_args) @test.idempotent_id('6ade0319-1ee2-493c-ac4b-5eb230ff3a77') def test_add_bgp_peer(self): bgp_speaker, bgp_peer = self.create_bgp_speaker_and_peer() bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] bgp_peer_id = bgp_peer['bgp-peer']['id'] self.add_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertEqual(1, len(bgp_peers_list)) self.assertTrue(bgp_peer_id in bgp_peers_list) @test.idempotent_id('f9737708-1d79-440b-8350-779f97d882ee') def test_remove_bgp_peer(self): bgp_peer = self.create_bgp_peer(**self.default_bgp_peer_args) bgp_peer_id = bgp_peer['bgp-peer']['id'] bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.add_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertTrue(bgp_peer_id in bgp_peers_list) bgp_speaker = self.remove_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertTrue(not bgp_peers_list) @test.idempotent_id('23c8eb37-d10d-4f43-b2e7-6542cb6a4405') def test_add_gateway_network(self): self.useFixture(fixtures.LockFixture('gateway_network_binding')) bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.admin_client.add_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) network_list = bgp_speaker['bgp-speaker']['networks'] self.assertEqual(1, len(network_list)) self.assertTrue(self.ext_net_id in network_list) @test.idempotent_id('6cfc7137-0d99-4a3d-826c-9d1a3a1767b0') def test_remove_gateway_network(self): self.useFixture(fixtures.LockFixture('gateway_network_binding')) bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.admin_client.add_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) networks = bgp_speaker['bgp-speaker']['networks'] self.assertTrue(self.ext_net_id in networks) self.admin_client.remove_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) network_list = bgp_speaker['bgp-speaker']['networks'] self.assertTrue(not network_list)
1.554688
2
supports/integration-test/dfsio_create_file.py
ypang2017/Test
2
12789325
<reponame>ypang2017/Test<gh_stars>1-10 import sys from util import * def create_file_DFSIO(num): """ Please use this script in namenode Each time create 10K * 2 files (10K in io_data and 10K in io_control). Then, move these data to TEST_DIR. """ dfsio_cmd = "hadoop jar /usr/lib/hadoop-mapreduce/hadoop-" + \ "mapreduce-client-jobclient-*-tests.jar TestDFSIO " + \ "-write -nrFiles 10000 -fileSize 0KB" for i in range(num): subprocess.call(dfsio_cmd) subprocess.call("hdfs dfs -mv /benchmarks/TestDFSIO/io_control " + TEST_DIR + str(i) + "_control") subprocess.call("hdfs dfs -mv /benchmarks/TestDFSIO/io_data " + TEST_DIR + str(i) + "_data") if __name__ == '__main__': num = 50 try: num = int(sys.argv[1]) except ValueError: print "Usage: python dfsio_create_file [num]" except IndexError: pass create_file_DFSIO(num)
2.46875
2
thirdweb/modules/bundle.py
princetonwong/python-sdk
1
12789326
""" Interact with the Bundle module of the app. Previously `collection`. """ from typing import List from thirdweb_web3 import Web3 from ..abi.erc20 import ERC20 from ..abi.nft import SignatureMint721 as NFT from ..abi.nft_collection import NFTCollection as NFTBundle from ..types.bundle import BundleMetadata, CreateBundleArg, MintBundleArg from ..types.metadata import Metadata from ..types.nft import NftMetadata from .base import BaseModule class BundleModule(BaseModule): """ Interact with the Bundle module of the app. Previously `collection`. """ address: str """ Address of the module """ __abi_module: NFTBundle def __init__(self, address: str, client: Web3): """ :param address: The address of the module :param client: Web3 client Initializes the module """ super().__init__() self.address = address self.__abi_module = NFTBundle(client, address) def get(self, token_id: int) -> BundleMetadata: """ :param token_id: The token id to get :return: Metadata of the bundle Get the metadata for a given token id """ uri = self.__abi_module.uri.call(token_id) meta_str = self.get_storage().get(uri) meta: NftMetadata = NftMetadata.from_json(meta_str) meta.id = token_id return BundleMetadata( metadata=meta, supply=self.__abi_module.total_supply.call(token_id), creator=self.__abi_module.creator.call(token_id), id=token_id ) def get_all(self) -> List[BundleMetadata]: ''' :return: A list of metadata Returns all the bundles in the contract ''' return [self.get(i) for i in range(self.__abi_module.next_token_id.call())] def balance_of(self, address: str, token_id: int) -> int: ''' :param address: The address to check :param token_id: The token id to check :return: The balance Returns the balance for a given token at owned by a specific address ''' return self.__abi_module.balance_of.call(address, token_id) def balance(self, token_id: int) -> int: ''' :param token_id: The token id to check :return: The balance Returns the balance for a given token id for the current signers address ''' return self.__abi_module.balance_of.call( self.get_signer_address(), token_id ) def is_approved(self, address: str, operator: str) -> bool: """ :param address: The address to check :param operator: The operator to check :return: True if approved, False otherwise """ return self.__abi_module.is_approved_for_all.call(address, operator) def set_approval(self, operator: str, approved: bool = True): """ :param operator: The operator to set approval for :param approved: True if you want to approve, False otherwise """ self.execute_tx(self.__abi_module.set_approval_for_all.build_transaction( operator, approved, self.get_transact_opts() )) def transfer(self, to_address: str, token_id: int, amount: int): """ :param to_address: The address to transfer to :param token_id: The token id to transfer :param amount: The amount to transfer Transfers a token to a new owner """ self.execute_tx(self.__abi_module.safe_transfer_from.build_transaction( self.get_signer_address(), to_address, token_id, amount, "", self.get_transact_opts() )) def create(self, metadata: Metadata) -> BundleMetadata: """ :param metadata: The metadata to be stored :return: Metadata of the bundle Creates a bundle. """ return self.create_batch([metadata])[0] def create_batch(self, metas: List[Metadata]) -> List[BundleMetadata]: """ :param metas: The metadata to be stored :return: List of metadatas of the bundles Creates a bundle of NFTs """ meta_with_supply = [CreateBundleArg( metadata=m, supply=0) for m in metas] return self.create_and_mint_batch(meta_with_supply) def create_and_mint(self, meta_with_supply: CreateBundleArg) -> BundleMetadata: """ :param meta_with_supply: Metadata with supply :return: A metadata with supply Create a bundle and mint it to the current signer address """ return self.create_and_mint_batch([meta_with_supply])[0] def create_and_mint_batch(self, meta_with_supply: List[CreateBundleArg]) -> List[BundleMetadata]: """ :param meta_with_supply: A list of metadata with supply :return: A list of metadata with supply Creates bundles and mints them to the current signer address """ if len(meta_with_supply) == 0: raise Exception("No metadata supplied") uris = [self.upload_metadata(meta.metadata) for meta in meta_with_supply] supplies = [a.supply for a in meta_with_supply] receipt = self.execute_tx(self.__abi_module.create_native_tokens.build_transaction( self.get_signer_address(), uris, supplies, "", self.get_transact_opts() )) result = self.__abi_module.get_native_tokens_event( tx_hash=receipt.transactionHash.hex()) token_ids = result[0]['args']['tokenIds'] return [self.get(i) for i in token_ids] def create_with_token(self, token_contract: str, token_amount: int, metadata: dict = None): """ :param token_contract: The address of the token contract :param token_amount: The amount of tokens to mint :param metadata: The metadata to be stored WIP: This method is not yet complete. """ if token_contract == "" or token_contract is None or not self.get_client().isAddress(token_contract): raise Exception("token_contract not a valid address") if token_amount <= 0: raise Exception("token_amount must be greater than 0") uri = self.upload_metadata(metadata) erc20 = ERC20(self.get_client(), token_contract) allowance = erc20.allowance.call( self.get_signer_address(), self.address) if allowance < token_amount: tx = erc20.increase_allowance.build_transaction(self.address, token_amount, self.get_transact_opts()) self.execute_tx(tx) self.execute_tx(self.__abi_module.wrap_erc20.build_transaction( token_contract, token_amount, token_amount, uri, self.get_transact_opts() )) def create_with_nft(self, token_contract: str, token_id: int, metadata): """ :param token_contract: The address of the token contract :param token_id: The id of the token :param metadata: The metadata to be stored WIP: This method is not yet complete. """ asset = NFT(self.get_client(), token_contract) approved = asset.is_approved_for_all.call( self.get_signer_address(), self.address) if not approved: is_token_approved = asset.get_approved.call( token_id).lower() == self.address.lower() if not is_token_approved: self.execute_tx(asset.set_approval_for_all.build_transaction( self.address, True, self.get_transact_opts())) uri = self.upload_metadata(metadata) self.execute_tx(self.__abi_module.wrap_erc721.build_transaction( token_contract, token_id, uri, self.get_transact_opts() )) def create_with_erc721(self, token_contract: str, token_id: int, metadata): """ :param token_contract: The address of the token contract :param token_id: The id of the token :param metadata: The metadata to be stored WIP: This method is not yet complete. Same as create_with_nft() """ return self.create_with_nft(token_contract, token_id, metadata) def create_with_erc20(self, token_contract: str, token_amount: int, metadata): """ :param token_contract: The address of the token contract :param token_amount: The amount of tokens to mint :param metadata: The metadata to be stored WIP: This method is not yet complete. Same as create_with_token() """ return self.create_with_token(token_contract, token_amount, metadata) def mint(self, args: MintBundleArg): """ :param args: The arguments for the mint Mints a bundle to the current signer address """ self.mint_to(self.get_signer_address(), args) def mint_to(self, to_address: str, arg: MintBundleArg): """ :param to_address: The address to mint to :param arg: The arguments for the mint Mints a bundle to the given address """ self.execute_tx(self.__abi_module.mint.build_transaction( to_address, arg.token_id, arg.amount, "", self.get_transact_opts() )) def mint_batch(self, args: List[MintBundleArg]): """ :param args: The arguments for the mint Mints a list of bundles to the current signer address """ self.mint_batch_to(self.get_signer_address(), args) def mint_batch_to(self, to_address, args: List[MintBundleArg]): """ :param to_address: The address to mint to :param args: The arguments for the mint :return: A list of minted bundles Mints a list of bundles to the given address """ ids = [a.token_id for a in args] amounts = [a.amount for a in args] tx = self.__abi_module.mint_batch.build_transaction( to_address, ids, amounts, self.get_transact_opts()) self.execute_tx(tx) def burn(self, args: MintBundleArg): """ :param args: The arguments for the burn Burns a bundle from the current signer address """ self.burn_from(self.get_signer_address(), args) def burn_batch(self, args: List[MintBundleArg]): """ :param args: List of the arguments to burn Burns a list of bundles from the current signer address """ self.burn_batch_from(self.get_signer_address(), args) def burn_from(self, account: str, args: MintBundleArg): """ :param account: The account to burn from :param args: The arguments for the burn Burns a bundle from the given account """ self.execute_tx(self.__abi_module.burn.build_transaction( account, args.token_id, args.amount, self.get_transact_opts() )) def burn_batch_from(self, account: str, args: List[MintBundleArg]): """ :param account: The account to burn from :param args: The arguments for the burn Burns a list of bundles from the given account """ self.execute_tx(self.__abi_module.burn_batch.build_transaction( account, [i.id for i in args], [ i.amount for i in args], self.get_transact_opts() )) def transfer_from(self, from_address: str, to_address: str, args: MintBundleArg): """ :param from_address: The account to transfer from :param to_address: The address to transfer to :param args: The arguments for the transfer Transfers a bundle from the given account to the given address """ self.execute_tx(self.__abi_module.safe_transfer_from.build_transaction( from_address, to_address, args.token_id, args.amount, "", self.get_transact_opts() )) def transfer_batch_from(self, from_address: str, to_address: str, args): """ :param from_address: The account to transfer from :param to_address: The address to transfer to :param args: The arguments for the transfer Transfers a list of bundles from the given account to the given address """ self.execute_tx(self.__abi_module.safe_batch_transfer_from.build_transaction( from_address, to_address, args.token_id, args.amount, "", self.get_transact_opts() )) def set_royalty_bps(self, amount: int): """ :param amount: The amount of BPS to set Sets the royalty BPS """ self.execute_tx(self.__abi_module.set_royalty_bps.build_transaction( amount, self.get_transact_opts() )) def get_abi_module(self) -> NFTBundle: """ :return: The ABI module Returns the ABI module """ return self.__abi_module
2.34375
2
src/kep.py
Nyhilo/kep
0
12789327
# Module imports from sys import argv as args from datetime import datetime # Local imports # Parsing objects0 class file: _date_format = "%Y-%m-%d %H:%M:%S" def __init__(title, date_created=None, date_modified=None, tags=[], files=[]): self.title = title self.date_created = date_created self.date_modified = date_modified self.tags = tags self.files = files def get_default_header(self): header = "" if self.title: header += f"Title: {title}\n" if self.date_created is not None: d = date_created.strftime(self._date_format) header += f"Date Created: {d}\n" if self.date_modified is not None: d = date_modified.strftime(self._date_format) header += f"Date Modified: {d}\n" if len(self.tags) > 0: t = " ".join(self.tags) header += f"Tags: {t}\n" if len(self.files) > 0: t = " ".join(self.files) header += f"Files: {t}\n" header += "-----\n\n" return header class Kep: @classmethod def list(self, subfolder="./"): pass @classmethod def open(self, assetname, location): pass @classmethod def read(self, location, assetname=None): if assetname is None: assetname = location.split('/')[-1] location = location.split('/')[:-1].join('/') if __name__ == '__main__': # Equivalent to `kep list` if len(args) == 1: Kep.list() # Single argument tasks if len(args) == 2: if args[1].lower() == "list": Kep.list() #... # Defaults to kep open args[1] ./ Kep.Open(args[1], "./") # Two argument tasks if len(args) == 3: # Built-in tasks if args[1].lower() == "list": Kep.list(args[2]) if args[1].lower() == "read": Kep.read(args[2]) #... # Default to kep open args[1] args[2] Kep.Open(args[1], args[2])
3
3
pluginsmanager/model/system/system_effect_builder.py
SpotlightKid/PluginsManager
9
12789328
<reponame>SpotlightKid/PluginsManager<gh_stars>1-10 # Copyright 2017 SrMouraSilva # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pluginsmanager.model.system.system_effect import SystemEffect class SystemEffectBuilder(object): """ Automatic system physical ports detection. Maybe the midi ports not will recognize. In these cases, you need to start `a2jmidid`_ to get MIDI-ALSA ports automatically mapped to JACK-MIDI ports. .. _a2jmidid: http://manual.ardour.org/setting-up-your-system/setting-up-midi/midi-on-linux/ :param JackClient jack_client: :class:`.JackClient` instance that will get the information to generate :class:`.SystemEffect` """ def __init__(self, jack_client): self.client = jack_client def build(self): inputs = (port.shortname for port in self.client.audio_inputs) outputs = (port.shortname for port in self.client.audio_outputs) midi_inputs = (port.shortname for port in self.client.midi_inputs) midi_outputs = (port.shortname for port in self.client.midi_outputs) return SystemEffect('system', outputs, inputs, midi_outputs, midi_inputs)
2.09375
2
omnipack/image/image_annotator.py
FrankLeeeee/powerpack
0
12789329
from PIL import Image, ImageDraw, ImageFont class ImageAnnotator(object): def __init__(self, img_path: str, font: str = None, font_size: int = 5): assert isinstance(img_path, str) self._img = Image.open(img_path).convert('RGBA') self._img_draw = ImageDraw.Draw(self._img) if font is None: self._font = None else: assert isinstance(font, str) self._font = ImageFont.truetype(font, font_size) def image(self): return self._img.convert('RGB') def save(self, img_path): self._img.convert('RGB').save(img_path) def draw_line(self, points: list, fill: str = None, width: int = 1): """ Draw a line on image """ assert isinstance(points, (list, tuple)) and len(points) == 2 for pair in points: assert isinstance(pair, tuple) and len(pair) == 2 self._img_draw.line(points, fill, width) def draw_rectangle(self, points: list, outline: str = None, width: int = 1, text: str = None, text_fill: str = None): """ Draw detection bounding box with text """ assert isinstance(points, (list, tuple)) assert len(points) == 2 or len(points) == 4 for pair in points: assert len(pair) == 2 if len(points) == 4: points = [points[0], points[2]] self._img_draw.rectangle(points, outline=outline, width=width) if text is not None: assert isinstance(text, str) text_points = (points[0][0], points[1][1]) self.draw_text(points=text_points, text=text, fill=text_fill) def draw_polygon(self, points: list, outline: str = None, width: int = 1, text: str = None, text_fill: str = None): """ Draw polygon with text """ assert isinstance(points, (tuple, list)) and len(points) > 2 for pair in points: assert isinstance(pair, tuple) and len(pair) == 2 for i in range(len(points)): line_pts = (points[i], points[(i+1) % len(points)]) self.draw_line(points=line_pts, fill=outline, width=width ) if text is not None: assert isinstance(text, str) self.draw_text(points=points[0], text=text, fill=text_fill) def draw_text(self, points: tuple, text: str, fill: str = None, ): """ Draw text on image """ assert isinstance(points, tuple) and len(points) == 2 self._img_draw.text(points, text, font=self._font, fill=fill)
3.234375
3
library/tests/test_fx.py
pimoroni/plasma
9
12789330
import pytest def test_fx_cycle(argv, GPIO): """Test that set_sequence supports the output of a PlasmaFX Sequence""" from plasma import auto from plasma.apa102 import PlasmaAPA102 from plasmafx import Sequence from plasmafx.plugins import FXCycle sequence = Sequence(10) sequence.set_plugin(0, FXCycle()) plasma = auto("APA102:14:15:pixel_count=10") plasma.set_sequence(sequence.get_pixels()) assert isinstance(plasma, PlasmaAPA102)
2.0625
2
meeting/serializers.py
ttppren-github/MeetingSample-Backend
7
12789331
from rest_framework import serializers from meeting.models import Meeting class BaseSerializer(serializers.Serializer): def create(self, validated_data): pass def update(self, instance, validated_data): pass class NewMeetingIn(BaseSerializer): name = serializers.CharField(max_length=128) begin_at = serializers.DateTimeField() end_at = serializers.DateTimeField() mute_type = serializers.ChoiceField(choices=Meeting.MuteType.choices, required=False) password = serializers.CharField(required=False) class NewMeetingOut(serializers.ModelSerializer): number = serializers.SerializerMethodField() class Meta: model = Meeting fields = ('number', 'created') def get_number(self, obj): return obj.call_number class BaseMeetingOut(BaseSerializer): success = serializers.BooleanField() class MeetingInfoIn(BaseSerializer): number = serializers.IntegerField(help_text='Call number of meeting') class MeetingInfoOut(serializers.ModelSerializer): owner_id = serializers.SerializerMethodField() owner_name = serializers.SerializerMethodField() number = serializers.SerializerMethodField() class Meta: model = Meeting fields = ('name', 'number', 'password', 'owner_name', 'owner_id', 'status', 'begin_at', 'end_at') def get_owner_name(self, obj): if obj.owner is None: return None return obj.owner.username def get_owner_id(self, obj): if obj.owner is None: return None return obj.owner.id def get_number(self, obj): return obj.call_number class MeetingListIn(BaseSerializer): beginAt = serializers.DateTimeField(required=False, help_text='Time with zone, etc: 2021-08-12T07:56:41+08:00') endAt = serializers.DateTimeField(required=False) class DelMeetingIn(BaseSerializer): meetings = serializers.ListField(child=serializers.IntegerField(), help_text="list of meeting' number to delete") class JoinMeetingIn(BaseSerializer): number = serializers.IntegerField() password = serializers.CharField(required=False) class MeetingIn(BaseSerializer): number = serializers.IntegerField() class JoinMeetingOut(BaseSerializer): token = serializers.CharField() app_key = serializers.CharField() room_id = serializers.IntegerField() share_user_id = serializers.IntegerField() share_user_token = serializers.CharField() is_breakout = serializers.BooleanField(default=False)
2.140625
2
kachery/steady_download_and_compute_hash.py
flatironinstitute/kachery
8
12789332
import string import random import hashlib import os # import requests import urllib from typing import Union import time def steady_download_and_compute_hash(url: str, algorithm: str, target_path: str) -> str: remote = urllib.request.urlopen(url) str0 = ''.join(random.sample(string.ascii_lowercase, 8)) path_tmp = target_path + '.tmp.' + str0 hh = getattr(hashlib, algorithm)() with open(path_tmp, 'wb') as f: while True: chunk = remote.read(4096) if not chunk: break hh.update(chunk) f.write(chunk) os.rename(path_tmp, target_path) hash0 = hh.hexdigest() return hash0 ## somehow this was not always working -- some bits were wrong for large files! def old_steady_download_and_compute_hash(url: str, algorithm: str, target_path: str, chunk_size: int=1024 * 1024 * 40) -> str: response = requests.head(url) size_bytes = int(response.headers['content-length']) str0 = ''.join(random.sample(string.ascii_lowercase, 8)) path_tmp = target_path + '.tmp.' + str0 try: hh = getattr(hashlib, algorithm)() with open(path_tmp, 'wb') as f: for ii in range(0, size_bytes, chunk_size): jj = ii + chunk_size if jj > size_bytes: jj = size_bytes headers = { 'Range': 'bytes={}-{}'.format(ii, jj - 1) } response = requests.get(url, headers=headers, stream=True) for chunk in response.iter_content(chunk_size=5120): if chunk: # filter out keep-alive new chunks hh.update(chunk) f.write(chunk) os.rename(path_tmp, target_path) hash0 = hh.hexdigest() return hash0 except: if os.path.exists(path_tmp): os.remove(path_tmp) raise
2.640625
3
proto/def.bzl
mikedanese/rules_go
1
12789333
load("@io_bazel_rules_go//go/private:common.bzl", "go_importpath", ) load("@io_bazel_rules_go//go/private:mode.bzl", "RACE_MODE", "NORMAL_MODE", ) load("@io_bazel_rules_go//go/private:providers.bzl", "get_library", "GoLibrary", "GoEmbed", ) load("@io_bazel_rules_go//go/private:rules/prefix.bzl", "go_prefix_default", ) def _go_proto_library_impl(ctx): go_proto_toolchain = ctx.toolchains[ctx.attr._toolchain] importpath = go_importpath(ctx) go_srcs = go_proto_toolchain.compile(ctx, proto_toolchain = ctx.toolchains["@io_bazel_rules_go//proto:proto"], go_proto_toolchain = go_proto_toolchain, lib = ctx.attr.proto, importpath = importpath, ) go_toolchain = ctx.toolchains["@io_bazel_rules_go//go:toolchain"] golib, goembed = go_toolchain.actions.library(ctx, go_toolchain = go_toolchain, srcs = go_srcs, deps = ctx.attr.deps + go_proto_toolchain.deps, embed = ctx.attr.embed, want_coverage = ctx.coverage_instrumented(), importpath = importpath, ) return [ golib, goembed, DefaultInfo( files = depset([get_library(golib, NORMAL_MODE)]), runfiles = golib.runfiles, ), OutputGroupInfo( race = depset([get_library(golib, RACE_MODE)]), ), ] go_proto_library = rule( _go_proto_library_impl, attrs = { "proto": attr.label(mandatory=True, providers=["proto"]), "deps": attr.label_list(providers = [GoLibrary]), "importpath": attr.string(), "embed": attr.label_list(providers = [GoEmbed]), "gc_goopts": attr.string_list(), "_go_prefix": attr.label(default = go_prefix_default), "_go_toolchain_flags": attr.label(default=Label("@io_bazel_rules_go//go/private:go_toolchain_flags")), "_toolchain": attr.string(default = "@io_bazel_rules_go//proto:go_proto"), }, toolchains = [ "@io_bazel_rules_go//go:toolchain", "@io_bazel_rules_go//proto:proto", "@io_bazel_rules_go//proto:go_proto", ], ) """ go_proto_library is a rule that takes a proto_library (in the proto attribute) and produces a go library for it. """ go_grpc_library = rule( _go_proto_library_impl, attrs = { "proto": attr.label(mandatory=True, providers=["proto"]), "deps": attr.label_list(providers = [GoLibrary]), "importpath": attr.string(), "embed": attr.label_list(providers = [GoEmbed]), "gc_goopts": attr.string_list(), "_go_prefix": attr.label(default = go_prefix_default), "_toolchain": attr.string(default = "@io_bazel_rules_go//proto:go_grpc"), "_go_toolchain_flags": attr.label(default=Label("@io_bazel_rules_go//go/private:go_toolchain_flags")), }, toolchains = [ "@io_bazel_rules_go//go:toolchain", "@io_bazel_rules_go//proto:proto", "@io_bazel_rules_go//proto:go_grpc", ], ) """ go_grpc_library is a rule that takes a proto_library (in the proto attribute) and produces a go library that includes grpc services for it. """ def proto_register_toolchains(): native.register_toolchains( "@io_bazel_rules_go//proto:proto", "@io_bazel_rules_go//proto:go_proto", "@io_bazel_rules_go//proto:go_grpc", )
1.6875
2
miyu_bot/commands/docs/documentation_fluent_localization.py
qwewqa/miyu-bot
11
12789334
from fluent.runtime import FluentLocalization class DocumentationFluentLocalization(FluentLocalization): def format_value(self, msg_id, args=None, fallback=None): for bundle in self._bundles(): if not bundle.has_message(msg_id): continue msg = bundle.get_message(msg_id) if not msg.value: continue val, errors = bundle.format_pattern(msg.value, args) return val return fallback if fallback is not None else msg_id
2.390625
2
app.py
IndieDragoness/portfolio
0
12789335
<filename>app.py from flask import Flask, render_template, request, send_file from azure.cosmos import exceptions, CosmosClient, PartitionKey from azure.core.exceptions import ResourceExistsError from scripts import utilities import logging import json import os # ================================== # # _____ # / _ \ ________ __ __ _______ ____ # / /_\ \ \___ /| | \\_ __ \_/ __ \ # / | \ / / | | / | | \/\ ___/ # \____|__ //_____ \|____/ |__| \___ > # \/ \/ \/ # # ================================== # # Microsoft Azure Cosmos DB Initialization # Create Cosmos Client endpoint = os.environ["COSMOS_DATABASE_ENDPOINT"] key = os.environ["COSMOS_DATABASE_KEY"] client = CosmosClient(endpoint, key) database_name = os.environ["COSMOS_DATABASE_NAME"] database = client.get_database_client(database_name) container_name = os.environ["COSMOS_CONTAINER_NAME"] container = database.get_container_client(container_name) # ================================== # # ___________.__ __ # \_ _____/| | _____ ______| | __ # | __) | | \__ \ / ___/| |/ / # | \ | |__ / __ \_ \___ \ | < # \___ / |____/(____ //____ >|__|_ \ # \/ \/ \/ \/ # ================================== # # Static is where all of our static files are stored app = Flask(__name__, static_url_path='/static') # Setup Flask Logging to record events at Runtime logging.basicConfig(filename='record.log', level=logging.DEBUG, format=f'%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s') @app.route("/") def main(): return render_template("index.htm") # Link to disc_drive_project.htm @app.route('/disc_drive_project') def disc_drive_project(): return render_template("disc_drive_project.htm") # Link to particle_accelerator_project.htm @app.route('/particle_accelerator_project') def particle_accelerator_project(): return render_template("particle_accelerator_project.htm") # Link to tensorflow_project.htm @app.route('/tensorflow_project') def tensorflow_project(): return render_template("tensorflow_project.htm") # Link to unity_project.htm @app.route('/unity_project') def unity_project(): return render_template("unity_project.htm") # Link to microsoft_azure_project.htm @app.route('/microsoft_azure_project') def microsoft_azure_project(): return render_template("microsoft_azure_project.htm") # Link to docker_project.htm @app.route('/docker_project') def docker_project(): return render_template("docker_project.htm") # Link to linux_project.htm @app.route('/linux_project') def linux_project(): return render_template("linux_project.htm") # Link to linux_project.htm @app.route('/awx_ansible_project') def awx_ansible_project(): return render_template("awx_ansible_project.htm") # Download my RL-PCG Paper @app.route('/unity_project/download_rlpcg_paper', methods=['POST']) def download_rlpcg_paper(): app.logger.info('Paper Download Detected!') return send_file('static/documents/Teaching_RL_PCG_via_Educational_Game.pdf', as_attachment=True) # Section correlates to the Contact Form in index.htm @app.route('/contact_form_action', methods=['POST']) def contact_form_action(): app.logger.info('Contact Form Submission Detected!') # Retrieve data from HTML inputs name = request.form['Name'] email = request.form['Email'] subject = request.form['Subject'] message = request.form['Message'] # Log data entered app.logger.info('Name: ' + name) app.logger.info('Email: ' + email) app.logger.info('Subject: ' + subject) app.logger.info('Message: ' + message) # Post data to Contact_Form container in Microsoft Azure Cosmos DB try: # Try to create a new entry with given data app.logger.info('Checking if email is already present in database...') # Portfolio Section is the Partition Key for the Portfolio Container (used for point reads and writes) new_entry = {'id': email, 'name': name, 'message': subject + ": " + message, 'portfolio_section': "contact_form"} container.create_item(new_entry) app.logger.info('Email not present! Created new database entry successfully: ' + email) except ResourceExistsError: # Add to existing entry if unable to create a new one app.logger.info('Email already present in database. Adding new message to existing entry: ' + email) # Get the current entry in the database for this email and add this new message properties = container.read() app.logger.info(properties) items = container.read_all_items() app.logger.info(items) item = container.read_item(email, partition_key="contact_form") app.logger.info('Acquired item.\n{}'.format(item)) # Get the number of keys containing "message" substring message_count = utilities.count_string_in_dictionary_keys(str_value="message", dict_value=item) app.logger.info('This is the {} message for this id.'.format(message_count)) item["message{}".format(message_count)] = subject + ": " + message updated_item = container.upsert_item(item) # Scroll the page down to the Contact Form, after Submit is pressed, and say 'Thank you!' return render_template("/index.htm", submit_button_pressed="contact")
2.078125
2
numpy_practice/a2_arrays.py
dkp-1024/my_machine_learning
0
12789336
<gh_stars>0 import numpy as np #creating arrays array = np.zeros(10, dtype='int') # array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # print(array) #creating a 3 row x 5 column matrix array = np.ones((3,5), dtype=float) # array([[ 1., 1., 1., 1., 1.], # [ 1., 1., 1., 1., 1.], # [ 1., 1., 1., 1., 1.]]) # print(array) #creating a matrix with a predefined value array = np.full((3,5),1.23) # array([[ 1.23, 1.23, 1.23, 1.23, 1.23], # [ 1.23, 1.23, 1.23, 1.23, 1.23], # [ 1.23, 1.23, 1.23, 1.23, 1.23]]) # print(array) #create an array with a set sequence array = np.arange(0, 20, 2) # array([0, 2, 4, 6, 8,10,12,14,16,18]) # print(array) #create an array of even space between the given range of values array = np.linspace(0, 1, 5) # array([ 0., 0.25, 0.5 , 0.75, 1.]) # print(array) #create a 3x3 array with mean 0 and standard deviation 1 in a given dimension array = np.random.normal(0, 1, (3,3)) # array([[ 0.72432142, -0.90024075, 0.27363808], # [ 0.88426129, 1.45096856, -1.03547109], # [-0.42930994, -1.02284441, -1.59753603]]) # print(array) #create an identity matrix array = np.eye(3) # array([[ 1., 0., 0.], # [ 0., 1., 0.], # [ 0., 0., 1.]]) #set a random seed np.random.seed(0) x1 = np.random.randint(10, size=6) #one dimension x2 = np.random.randint(10, size=(3,4)) #two dimension x3 = np.random.randint(10, size=(3,4,5)) #three dimension print("x3 ndim:", x3.ndim) print("x3 shape:", x3.shape) print("x3 size: ", x3.size) # ('x3 ndim:', 3) # ('x3 shape:', (3, 4, 5)) # ('x3 size: ', 60) # .............................................................................. # print the results at any level print(array)
3.125
3
src/DeepMatter/VAE_PFM/__init__.py
m3-learning/DeepMatter
2
12789337
""" """ from . import core from . import file from . import machine_learning from . import dictionary_learning
0.972656
1
random_forest_regression.py
manuelmusngi/machine_learning_algorithms_for_development
1
12789338
<gh_stars>1-10 # Random Forest Regression # Import the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Import the dataset dataset = pd.read_('') X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, -1].values # Train the Random Forest Regression model on the dataset from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) regressor.fit(X, y) # Predict the Training set results regressor.predict([[6.5]]) # Visualize the Random Forest Regression results X_grid = np.arange(min(X), max(X), 0.01) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') plt.title('') plt.xlabel('') plt.ylabel('') plt.show()
3.46875
3
moosetools/__init__.py
NidorFanClub/oatcogs
1
12789339
from .moosetools import MooseTools def setup(bot): bot.add_cog(MooseTools())
1.46875
1
models/crnn.py
VanillaBrooks/Splitr
1
12789340
import sys sys.path.insert(0, r'C:\Users\Brooks\github\splitr')# access library code from outside /models # library functions: import torch import time import pandas as pd # Splitr modules: import model_utils # this is really a constructor for a bidirectional LSTM but i figured # BD_LSTM was only 2 letters off of BDSM so why not class BDSM(torch.nn.Module): def __init__(self, num_inputs, num_hidden_layers,char_in, char_out, layer_count=1): super(BDSM, self).__init__() self.char_out = char_out # make the last layer not have a linear layer inside self.rnn = torch.nn.LSTM(num_inputs, num_hidden_layers, num_layers=layer_count, bidirectional=True, batch_first=True) self.linear = torch.nn.Linear(char_in, char_out) self.relu = torch.nn.ReLU() def forward(self, x): # print('>>starting rnn that has output chars of', x.shape) rnn_output, _ = self.rnn(x) # print('raw rnn out', rnn_output.shape) batch, char_count, depth = rnn_output.shape rnn_output = rnn_output.contiguous().view(batch*depth, char_count) # print('reshaped rnn out', rnn_output.shape) linear = self.linear(rnn_output) output = linear.view(batch, self.char_out, depth) # print('after linear shape', output.shape) output =self.relu(output) return output # Convolution cell with adjustable activation / maxpool size / batchnorm class CNN_cell(torch.nn.Module): def __init__(self,in_channels=False,out_channels=False,kernel_size=3,activation=False, pool_shape=False, pool_stride=False, batchnorm=False): super(CNN_cell, self).__init__() _layers = [] if in_channels and out_channels: _layers.append(torch.nn.Conv2d(in_channels, out_channels,kernel_size)) if activation: _layers.append(self.find_activation(activation)) if batchnorm: _layers.append(torch.nn.BatchNorm2d(batchnorm)) if pool_shape and pool_stride: _layers.append(torch.nn.MaxPool2d(pool_shape, pool_stride)) self.cnn = torch.nn.Sequential(*_layers) def find_activation(self, activation): if activation == 'relu': return torch.nn.ReLU() elif activation == 'tanh': return torch.nn.Tanh() elif activation == 'leaky': return torch.nn.LeakyReLU() else: print('activation function call |%s| is not configured' % activation ) def forward(self, input_tensor): output = self.cnn(input_tensor) return output # https://arxiv.org/pdf/1507.05717.pdf class model(torch.nn.Module): def __init__(self, channel_count=1,num_hidden= 256, unique_char_count=57,rnn_layer_stack=1): super(model, self).__init__() # add dropout to cnn layers self.softmax = torch.nn.LogSoftmax(dim=2) # CONVOLUTIONS _cnn_layer = [] _cnn_layer.append(CNN_cell(in_channels=1, out_channels=64, kernel_size=3, activation='relu', pool_shape=False, pool_stride=False)) _cnn_layer.append(CNN_cell(in_channels=64 , out_channels=128, kernel_size=3, activation='relu', pool_shape=(2,2), pool_stride=2)) _cnn_layer.append(CNN_cell(in_channels=128, out_channels=256, kernel_size=3, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=256, out_channels=512, kernel_size=3, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=3, activation='relu', pool_shape=(1,2), pool_stride=2)) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu', batchnorm=512)) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) # RNN LAYERS _bdsm_layer = []# 2048 # _bdsm_layer.append(BDSM(num_inputs=512, num_hidden_layers=num_hidden, char_in=56,char_out=56, layer_count=rnn_layer_stack)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden, char_in=85,char_out=140, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 140, char_out=190, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 190, char_out=250, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 250, char_out=350, layer_count=1)) inc = 1.26 max_len = 80 current = 53 p = 0 while current < max_len: p+=1 prev = current current = int(inc * prev) print(prev, current) _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= prev, char_out=current, layer_count=1)) print('number of rnns stacked %s' % p) # CHAR activations (transcription) self.linear = torch.nn.Sequential( torch.nn.Linear(in_features=num_hidden*2, out_features=unique_char_count),torch.nn.ReLU()) self.cnn = torch.nn.Sequential(*_cnn_layer) self.rnn = torch.nn.Sequential(*_bdsm_layer) def forward(self, x): t = self.cnn(x) batch, depth, height, base = t.shape # print('raw cnn shape: ', t.shape) # import sys # cnn_output = t.view(batch, height, depth*base) cnn_output = t.view(batch, base, height*depth) # print(' NEW after reshape', cnn_output.shape, type(cnn_output)) # sys.exit('exits') rnn_output = self.rnn(cnn_output) batch, char_len, depth = rnn_output.shape rnn_output = rnn_output.contiguous().view(batch*char_len, depth) # print('rnn output ', rnn_output.shape) output = self.linear(rnn_output).view(batch, char_len, -1) output = self.softmax(output) return output
2.921875
3
test/vertex_cover_gen.py
s17k/VertexCover
0
12789341
<reponame>s17k/VertexCover<filename>test/vertex_cover_gen.py import random n = random.randint(1,3) m = random.randint(1, n*(n-1)//2) print str(n) + ' ' + str(m) for i in range(m): a = b = 1 while a == b: a = random.randint(1,n) b = random.randint(1,n) print str(a) + ' ' + str(b) print random.randint(0,5)
3.09375
3
PyTorch/Resources/Examples/02_lstm_sentiment_analysis.py
methylDragon/python-data-tools-reference
9
12789342
# Modified from SUTD and https://github.com/bentrevett/pytorch-sentiment-analysis # Sentiment Analysis on IMDB with FashionMNIST # We're using packed sequences for training # For more info: https://stackoverflow.com/questions/51030782/why-do-we-pack-the-sequences-in-pytorch import torch.nn as nn import torchtext import torch from torchtext.legacy import data from torchtext.legacy import datasets import torch.optim as optim import random import time # MODEL ======================================================================== class BidirectionalLSTM(nn.Module): def __init__(self, input_dim, embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, bidirectional=True, dropout=0.5, pad_idx=0): super().__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional, dropout=dropout) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text, text_lengths): embedded = self.dropout(self.embedding(text)) # Map text to embedding # Pack sequence # Note: We move text_lengths to cpu due to a small bug # https://github.com/pytorch/pytorch/issues/43227 packed_embedded = nn.utils.rnn.pack_padded_sequence( embedded, text_lengths.cpu() ) packed_output, (hidden, cell) = self.rnn(packed_embedded) # Feedforward # Unpack sequence output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output) hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) return self.fc(hidden) # TRAINING UTILITIES =========================================================== def binary_accuracy(preds, y): """ Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 """ # Round predictions to the closest integer rounded_preds = torch.round(torch.sigmoid(preds)) correct = (rounded_preds == y).float() #convert into float for division acc = correct.sum() / len(correct) return acc def train(model, iterator, optimizer, criterion): epoch_loss, epoch_acc = 0, 0 model.train() # Set to training mode for batch in iterator: optimizer.zero_grad() text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) def evaluate(model, iterator, criterion): epoch_loss, epoch_acc = 0, 0 model.eval() # Set to evaluation mode with torch.no_grad(): # Don't track gradients for batch in iterator: text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs if __name__ == "__main__": # MAKE DETERMINISTIC ======================================================= SEED = 1234 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True # LOAD DATA ================================================================ # Spacy is good for tokenisation in other languages TEXT = data.Field(tokenize = 'spacy', include_lengths = True) LABEL = data.LabelField(dtype = torch.float) # If slow, use this instead: # def tokenize(s): # return s.split(' ') # TEXT = data.Field(tokenize=tokenize, include_lengths = True) # Test-valid-train split train_data, test_data = datasets.IMDB.splits(TEXT, LABEL) train_data, valid_data = train_data.split(random_state = random.seed(SEED)) # Visualise example = next(iter(test_data)) example.label example.text # Note: Using glove embeddings (~900mb) TEXT.build_vocab( test_data, max_size = 25000, vectors = "glove.6B.100d", unk_init = torch.Tensor.normal_ # how to initialize unseen words not in glove ) LABEL.build_vocab(test_data) # Data iterators device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size = 64, sort_within_batch = True, device = device) # MODEL ==================================================================== PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] # Specifies index when word is missing model = BidirectionalLSTM(input_dim=len(TEXT.vocab), embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, # To make LSTM deep bidirectional=True, dropout=0.5, pad_idx=PAD_IDX) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) count_parameters(model) # 4,810,857 (wow!) # Copy embeddings to model pretrained_embeddings = TEXT.vocab.vectors model.embedding.weight.data.copy_(pretrained_embeddings) # Zero out <UNK> and <PAD> tokens UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token] model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM) model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM) # TRAIN ==================================================================== optimizer = optim.Adam(model.parameters()) criterion = nn.BCEWithLogitsLoss() model = model.to(device) criterion = criterion.to(device) N_EPOCHS = 5 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): start_time = time.time() train_loss, train_acc = train(model, train_iterator, optimizer, criterion) valid_loss, valid_acc = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'tut2-model.pt') print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%') # WHEN DONE.. ============================================================== model.load_state_dict(torch.load('tut2-model.pt')) test_loss, test_acc = evaluate(model, test_iterator, criterion) print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%') # TRY WITH USER INPUT ====================================================== import spacy nlp = spacy.load('en') def predict_sentiment(model, sentence): model.eval() tokenized = [tok.text for tok in nlp.tokenizer(sentence)] indexed = [TEXT.vocab.stoi[t] for t in tokenized] length = [len(indexed)] tensor = torch.LongTensor(indexed).to(device) tensor = tensor.unsqueeze(1) length_tensor = torch.LongTensor(length) prediction = torch.sigmoid(model(tensor, length_tensor)) return prediction.item() predict_sentiment(model, "This film is great")
3.1875
3
auton_survival/datasets_biolincc.py
mononitogoswami/auton-survival
0
12789343
<reponame>mononitogoswami/auton-survival import pandas as pd import numpy as np def _encode_cols_index(df): columns = df.columns # Convert Objects to Strings for col in columns: if df[col].dtype == 'O': df.loc[:, col] = df[col].values.astype(str) # If Index is Object, covert to String if df.index.dtype == 'O': df.index = df.index.values.astype(str) return df def load_support(location=''): data = pd.read_csv(location+"support2.csv") drop_cols = ['death', 'd.time'] outcomes = data.copy() outcomes['event'] = data['death'] outcomes['time'] = data['d.time'] outcomes = outcomes[['event', 'time']] cat_feats = ['sex', 'dzgroup', 'dzclass', 'income', 'race', 'ca'] num_feats = ['age', 'num.co', 'meanbp', 'wblc', 'hrt', 'resp', 'temp', 'pafi', 'alb', 'bili', 'crea', 'sod', 'ph', 'glucose', 'bun', 'urine', 'adlp', 'adls'] return outcomes, data[cat_feats+num_feats] def load_actg(location=''): data = pd.read_csv(location+"ACTG175.csv", index_col='pidnum') drop_cols = ['cens', 'days', 'arms'] outcomes = data.copy() outcomes['event'] = data['cens'] outcomes['time'] = data['days'] outcomes = outcomes[['event', 'time']] features = data.drop(columns=drop_cols, inplace=False) columns = list(set(features.columns)-set(['Unnamed: 0', 'arms'])) return outcomes, features[columns] def _load_generic_biolincc_dataset(outcome_tbl, time_col, event_col, features, id_col, visit_col=None, baseline_visit=None, location=''): if not isinstance(baseline_visit, (tuple, set, list)): baseline_visit = [baseline_visit] # List of all features to extract all_features = [] for feature in features: all_features+=features[feature] all_features = list(set(all_features)) # Only take the unqiue columns if '.sas' in outcome_tbl: outcomes = pd.read_sas(location+outcome_tbl, index=id_col) elif '.csv' in outcome_tbl: outcomes = pd.read_csv(location+outcome_tbl, index_col=id_col, encoding='latin-1') else: raise NotImplementedError() outcomes = outcomes[[time_col, event_col]] dataset = outcomes.copy() dataset.columns = ['time', 'event'] for feature in features: if '.sas' in outcome_tbl: table = pd.read_sas(location+feature, index=id_col) elif '.csv' in outcome_tbl: table = pd.read_csv(location+feature, index_col=id_col) else: raise NotImplementedError() if (visit_col is not None) and (visit_col in table.columns): mask = np.zeros(len(table[visit_col])).astype('bool') for baseline_visit_ in baseline_visit: mask = mask | (table[visit_col]==baseline_visit_) table = table[mask] table = table[features[feature]] print(table.shape) dataset = dataset.join(table) outcomes = dataset[['time', 'event']] features = dataset[all_features] outcomes = _encode_cols_index(outcomes) features = _encode_cols_index(features) return outcomes, features def load_crash2(endpoint=None, features=None, location=''): if features is None: print("No Features Specified!! using default demographic features.") features = {'CRASH-2_unblindedcodelist.csv': ['t_code'], 'CRASH-2_data_1.csv': ['iage', 'isex', 'ninjurytime', 'iinjurytype', 'isbp', 'irr', 'icc', 'ihr', 'igcseye', 'igcsmotor', 'igcsverbal', 'igcs', 'trandomised', 'ddeath', 'ddischarge']} outcomes, features = _load_generic_biolincc_dataset(outcome_tbl='CRASH-2_data_1.csv', time_col='trandomised', event_col='ddeath', features=features, id_col='ientryid', location=location+'CRASH2/') time_rand = pd.to_datetime(outcomes['time'], format='%d/%m/%Y') time_disch = pd.to_datetime(features['ddischarge'], format='%d/%m/%Y') time_death = pd.to_datetime(features['ddeath'], format='%d/%m/%Y') features.drop(columns=['ddischarge', 'ddeath', 'trandomised'], inplace=True) outcomes['event'] = (~np.isnan(time_death)).astype('int') time = np.empty_like(time_rand) time[~np.isnan(time_disch)] = time_disch[~np.isnan(time_disch)] time[~np.isnan(time_death)] = time_death[~np.isnan(time_death)] outcomes['time'] = (time - time_rand).dt.days features = features.loc[outcomes['time'].values.astype(int)>=0] outcomes = outcomes.loc[outcomes['time'].values.astype(int)>=0] return outcomes, features if endpoint is None: print("No Endpoint specified, using all-cause death as the study endpoint.") endpoint = 'death' # Set the outcome variable event = endpoint if event[-3:] == 'dth': time = 'deathfu' else: time = event + 'fu' def load_bari2d(endpoint=None, features=None, location=''): if features is None: print("No Features Specified!! using default demographic features.") features = {'bari2d_bl.sas7bdat': ['strata', 'weight', 'bmi', 'age', 'sex', 'race'], } if endpoint is None: print("No Endpoint specified, using all-cause death as the study endpoint.") endpoint = 'death' # Set the outcome variable event = endpoint if event[-3:] == 'dth': time = 'deathfu' else: time = event + 'fu' return _load_generic_biolincc_dataset(outcome_tbl='bari2d_endpts.sas7bdat', time_col=time, event_col=event, features=features, id_col='id', location=location+'BARI2D/data/') def load_topcat(endpoint=None, features=None, location=''): # Default Baseline Features to include: if features is None: print("No Features Specified!! using default baseline features.") features = {'t003.sas7bdat': ['age_entry', 'GENDER', 'RACE_WHITE', 'RACE_BLACK', 'RACE_ASIAN', 'RACE_OTHER',], 't005.sas7bdat': ['DM'], 't011.sas7bdat': ['country'], 'outcomes.sas7bdat':['drug'], } if endpoint is None: print("No Endpoint specified, using all-cause death as the study endpoint.") endpoint = 'death' # Set the outcome variable event = endpoint if 'death' in endpoint: time = 'time_death' else: time = 'time_' + event return _load_generic_biolincc_dataset(outcome_tbl='outcomes.sas7bdat', time_col=time, event_col=event, features=features, id_col='ID', location=location+'TOPCAT/datasets/') def load_allhat(endpoint=None, features=None, location=''): # Default Baseline Features to include: if features is None: print("No Features Specified!! using default baseline features.") categorical_features = ['RZGROUP', 'RACE', 'HISPANIC', 'ETHNIC', 'SEX', 'ESTROGEN', 'BLMEDS', 'MISTROKE', 'HXCABG', 'STDEPR', 'OASCVD', 'DIABETES', 'HDLLT35', 'LVHECG', 'WALL25', 'LCHD', 'CURSMOKE', 'ASPIRIN', 'LLT', 'RACE2', 'BLMEDS2', 'GEOREGN'] numeric_features = ['AGE', 'BLWGT', 'BLHGT', 'BLBMI', 'BV2SBP', 'BV2DBP', 'EDUCAT', 'APOTAS', 'BLGFR'] features = {'hyp_vsc.sas7bdat': categorical_features + numeric_features} if endpoint is None: print("No Endpoint specified, using all-cause death as the study endpoint.") endpoint = 'DEATH' # Set the outcome variable event = endpoint if 'CANCER' in endpoint: time = 'DYCANC' elif 'EP_CHD' in endpoint: time = 'DYCHD' else: time = 'DY' + event full_location = location+'ALLHAT/ALLHAT_v2016a/DATA/Summary/' outcomes, features = _load_generic_biolincc_dataset(outcome_tbl='hyp_vsc.sas7bdat', time_col=time, event_col=event, features=features, id_col='STUDYID', location=full_location) outcomes['event'] = 1-(outcomes['event']-1) if 'ESTROGEN' in features.columns: assert 'SEX' in features.columns, "`SEX` needs to be included if using `ESTROGEN`" features['ESTROGEN'][ features['SEX'] == 1.0] = 4.0 features['ESTROGEN'][features['ESTROGEN'].isna()] = 3.0 return outcomes, features def load_proud(endpoint=None, features=None, location=''): raise NotImplementedError() if features is None: print("No Features Specified!! using default baseline features.") categorical_features = ['RZGROUP', 'RACE', 'HISPANIC', 'ETHNIC', 'SEX', 'ESTROGEN', 'BLMEDS', 'MISTROKE', 'HXCABG', 'STDEPR', 'OASCVD', 'DIABETES', 'HDLLT35', 'LVHECG', 'WALL25', 'LCHD', 'CURSMOKE', 'ASPIRIN', 'LLT', 'RACE2', 'BLMEDS2', 'GEOREGN'] numeric_features = ['AGE', 'BLWGT', 'BLHGT', 'BLBMI', 'BV2SBP', 'BV2DBP', 'EDUCAT', 'APOTAS', 'BLGFR'] features = {'hyp_vsc.sas7bdat': categorical_features + numeric_features} if endpoint is None: print("No Endpoint specified, using all-cause death as the study endpoint.") endpoint = 'DEATH' # Set the outcome variable event = endpoint if 'CANCER' in endpoint: time = 'DYCANC' else: time = 'DY' + event full_location = location+'ALLHAT/ALLHAT_v2016a/DATA/Summary/' outcomes, features = _load_generic_biolincc_dataset(outcome_tbl='hyp_vsc.sas7bdat', time_col=time, event_col=event, features=features, id_col='STUDYID', location=full_location) return outcomes, features def load_aimhigh(): raise NotImplementedError() def load_amis(): raise NotImplementedError() def load_bari(): raise NotImplementedError() def load_best(): raise NotImplementedError() def load_clever(): raise NotImplementedError() def load_oat(): raise NotImplementedError() def load_peace(): raise NotImplementedError() def load_sprint_pop(): raise NotImplementedError() def load_stich(): raise NotImplementedError() def load_accord(endpoint=None, features=None, location=''): # Default Baseline Features to include: if features is None: print("No Features Specified!! using default baseline features.") features = { 'ACCORD/3-Data Sets - Analysis/3a-Analysis Data Sets/accord_key.sas7bdat': ['female', 'baseline_age', 'arm', 'cvd_hx_baseline', 'raceclass', 'treatment'], 'ACCORD/3-Data Sets - Analysis/3a-Analysis Data Sets/bloodpressure.sas7bdat': ['sbp', 'dbp', 'hr'], 'ACCORD/4-Data Sets - CRFs/4a-CRF Data Sets/f01_inclusionexclusionsummary.sas7bdat': ['x1diab', 'x2mi', 'x2stroke', 'x2angina','cabg','ptci','cvdhist','orevasc','x2hbac11','x2hbac9','x3malb','x3lvh','x3sten','x4llmeds', 'x4gender','x4hdlf', 'x4hdlm','x4bpmeds','x4notmed','x4smoke','x4bmi'], 'ACCORD/3-Data Sets - Analysis/3a-Analysis Data Sets/lipids.sas7bdat': ['chol', 'trig', 'vldl', 'ldl', 'hdl'], 'ACCORD/3-Data Sets - Analysis/3a-Analysis Data Sets/otherlabs.sas7bdat': ['fpg', 'alt', 'cpk', 'potassium', 'screat', 'gfr', 'ualb', 'ucreat', 'uacr'], } # outcomes = {'ACCORD_Private/Data Sets - Analysis 201604/CVDOutcomes_201604.sas7bdat':['censor_po','type_po', # 'fuyrs_po', 'fuyrs_po7p', 'censor_tm', 'type_tm', # 'fuyrs_tm', 'fuyrs_tm7p', 'censor_cm', 'type_nmi', 'fuyrs_nmi7p', 'censor_nst', # 'type_nst', 'fuyrs_nst', 'fuyrs_nst7p', 'censor_tst', 'fuyrs_tst', 'fuyrs_tst7p' # 'censor_chf', 'fuyrs_chf', 'censor_ex', 'type_ex', 'fuyrs_ex', 'fuyrs_ex7p', # 'censor_maj', 'type_maj', 'fuyrs_maj7p'] # } if endpoint is None: print("No Endpoint specified, using primary study endpoint.") endpoint = 'po' # Set the outcome variable, event = 'censor_'+endpoint time = 'fuyrs_'+endpoint outcome_tbl = 'ACCORD/3-Data Sets - Analysis/3a-Analysis Data Sets/cvdoutcomes.sas7bdat' outcomes, features = _load_generic_biolincc_dataset(outcome_tbl=outcome_tbl, time_col=time, event_col=event, features=features, id_col='MaskID', location=location, visit_col='Visit', baseline_visit=(b'BLR', b'S01')) outcomes['event'] = 1-outcomes['event'] outcomes['time'] = outcomes['time'] outcomes = outcomes.loc[outcomes['time']>1.0] features = features.loc[outcomes.index] outcomes['time'] = outcomes['time']-1 return outcomes, features
2.921875
3
batching_benchmark.py
rdhara/modulo
8
12789344
<reponame>rdhara/modulo import time import random import pandas import seaborn as sns import numpy as np from matplotlib import pyplot as plt class Module(): def __init__(self, proc_time=None): self.proc_time = proc_time def run(self): time.sleep(self.proc_time) class ModuleA(Module): def __init__(self, proc_time=1e-4): super(ModuleA, self).__init__(proc_time) class ModuleB(Module): def __init__(self, proc_time=2e-4): super(ModuleB, self).__init__(proc_time) class ModuleC(Module): def __init__(self, proc_time=3e-4): super(ModuleC, self).__init__(proc_time) class ModuleD(Module): def __init__(self, proc_time=4e-4): super(ModuleD, self).__init__(proc_time) class ModuleE(Module): def __init__(self, proc_time=5e-4): super(ModuleE, self).__init__(proc_time) def generate_task(N, sigma, k=64, max_l=5, mode='homogeneous'): T = [] if mode == 'homogeneous': assert(N % k == 0), 'N must be a multiple of batch size' for _ in range(N // k): layout = [' '.join(random.choice(sigma) for _ in range(random.randrange(2, max_l)))] T.extend(layout*k) elif mode == 'heterogeneous': for _ in range(N): T.append(' '.join(random.choice(sigma) for _ in range(random.randrange(2, max_l)))) else: raise ValueError('Invalid mode {}'.format(mode)) return T class HomogeneousBatching(): def __init__(self, T, M, k, batch_cost=0.0005): self.T = T self.M = M self.k = k self.batch_cost = batch_cost def train(self): t0 = time.time() N = len(self.T) for b in range(N // self.k): layout = list(map(lambda x: self.M[x], self.T[b].split())) for mod in layout: mod.run() time.sleep(self.batch_cost) dt = time.time() - t0 print('ELAPSED TIME: {:.2f} s'.format(dt)) return dt class NoBatching(): def __init__(self, T, M): self.T = T self.M = M def train(self): t0 = time.time() flat_T = [item for sublist in self.T for item in sublist] for layout in flat_T: for mod in layout.split(): self.M[mod].run() dt = time.time() - t0 print('ELAPSED TIME: {:.2f} s'.format(dt)) return dt class HeterogeneousBatching(): def __init__(self, T, M, k, batch_cost=5e-4): self.T = [t.split() for t in T] self.M = M self.k = k self.batch_cost = batch_cost def train(self): t0 = time.time() N = len(self.T) H = {(-1, j) for j in range(N)} T_done = set() T_prog = [0 for _ in range(N)] while len(T_done) < N: P = {m: [] for m in self.M.keys()} P_full = {m: False for m in self.M.keys()} while_ctr = 0 while not sum(P_full.values()) and while_ctr < 1: while_ctr = 0 for t in range(len(self.T)): if t not in T_done and (T_prog[t] - 1, t) in H: mod = self.T[t][T_prog[t]] curr_queue = len(P[mod]) if curr_queue < self.k: while_ctr -= 1 P[mod].append(self.M[mod]) H.remove((T_prog[t] - 1, t)) T_prog[t] += 1 H.add((T_prog[t] - 1, t)) if T_prog[t] == len(self.T[t]): T_done.add(t) if curr_queue + 1 == self.k: P_full[mod] = True while_ctr += 1 for m in P.keys(): self.M[m].run() time.sleep(self.batch_cost) dt = time.time() - t0 print('ELAPSED TIME: {:.2f} s'.format(dt)) return dt M = { 'a': ModuleA(), 'b': ModuleB(), 'c': ModuleC(), 'd': ModuleD(), 'e': ModuleE() } res = [] ns = [256, 1024, 4096, 16384, 65536, 262144] ks = [16, 32, 64, 128] ls = [5, 10, 15, 20] for n in ns: for k in ks: for l in ls: dataset = generate_task(n, 'abcde', k, l, mode='heterogeneous') htb = HeterogeneousBatching(dataset, M, k) nb = NoBatching(dataset, M) res.append({ 'n': n, 'k': k, 'l': l, 'htb_time': htb.train(), 'nb_time': nb.train() }) df = pandas.DataFrame(res) # df = pandas.read_csv('../batching.csv') df['log_htb_time'] = np.log10(df['htb_time']) df['log_nb_time'] = np.log10(df['nb_time']) df['log_n'] = np.log10(df['n']) sns.set_style('whitegrid') sns.set_context('paper', rc={'axes.titlesize':22, 'legend.fontsize':'xx-large', 'axes.labelsize': 16}) sns.set_palette('muted', color_codes=True) f, ((ax1, ax2),(ax3, ax4)) = plt.subplots(2, 2, figsize=(20,16)) plt.suptitle('Experiment Set 1: Fixing k = 64', fontsize=26) plt.subplots_adjust(hspace=0.25) axmap = {1: ax1, 2: ax2, 3: ax3, 4: ax4} for i in range(1, 5): ax = axmap[i] ax.set_title('Maximum layout length $\ell_{max} = $' + str(ls[i-1])) df_sub = df[(df['k'] == 64) & (df['l'] == ls[i-1])] ax.plot(df_sub['log_n'], df_sub['log_htb_time'], c='r', marker='o', label='HTB') ax.plot(df_sub['log_n'], df_sub['log_nb_time'], c='b', marker='o', label='NB') ax.set_xlabel('Log training size (log N)') ax.set_ylabel('Log time (s)') ax.tick_params(labelsize=14) ax.spines['left'].set_color('k') ax.spines['bottom'].set_color('k') f.legend(loc=7) sns.despine() f.savefig('../Figures/kfixed.pdf', dpi=200) f, ((ax1, ax2),(ax3, ax4)) = plt.subplots(2, 2, figsize=(20,16)) plt.suptitle('Experiment Set 2: Fixing N = 65536', fontsize=26) plt.subplots_adjust(hspace=0.25) axmap = {1: ax1, 2: ax2, 3: ax3, 4: ax4} for i in range(1, 5): ax = axmap[i] ax.set_title('Batch size k = {}'.format(ks[i-1])) df_sub = df[(df['n'] == 65536) & (df['k'] == ks[i-1])] ax.plot(df_sub['l'], df_sub['log_htb_time'], c='r', marker='o', label='HTB') ax.plot(df_sub['l'], df_sub['log_nb_time'], c='b', marker='o', label='NB') ax.set_xlabel('Max layout length ($\ell_{max}$)') ax.set_ylabel('Log time (s)') ax.tick_params(labelsize=14) ax.spines['left'].set_color('k') ax.spines['bottom'].set_color('k') f.legend(loc=7) sns.despine() f.savefig('../Figures/Nfixed.pdf', dpi=200) f, ((ax1, ax2),(ax3, ax4)) = plt.subplots(2, 2, figsize=(20,16)) plt.suptitle('Experiment Set 3: Fixing $\ell_{max}$ = 15', fontsize=26) plt.subplots_adjust(hspace=0.25) axmap = {1: ax1, 2: ax2, 3: ax3, 4: ax4} for i in range(1, 5): ax = axmap[i] ax.set_title('Training examples N = {}'.format(ns[i+1])) df_sub = df[(df['l'] == 10) & (df['n'] == ns[i+1])] ax.plot(df_sub['k'], df_sub['log_htb_time'], color='r', marker='o', label='HTB') ax.plot(df_sub['k'], df_sub['log_nb_time'], color='b', marker='o', label='NB') ax.set_xlabel('Batch size (k)') ax.set_ylabel('Log time (s)') ax.tick_params(labelsize=14) ax.spines['left'].set_color('k') ax.spines['bottom'].set_color('k') f.legend(loc=7) sns.despine() f.savefig('../Figures/ellfixed.pdf', dpi=200)
2.234375
2
stacks/vmdkexport/resources/vmexport/vmdknotify/vmdknotify_function.py
aws-samples/ec2-imagebuilder-vmdk-export
0
12789345
################################################## ## Notify VMDK export request ################################################## import os import boto3 from botocore.exceptions import ClientError import json import logging def lambda_handler(event, context): # set logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # print the event details logger.debug(json.dumps(event, indent=2)) # get state machine arn from env vars state_machine_arn = os.environ['STATE_MACHINE_ARN'] image_build_version_arn = event["Records"][0]["Sns"]["Message"] stepfunctions_client = boto3.client('stepfunctions') response = stepfunctions_client.list_executions( stateMachineArn=state_machine_arn, statusFilter='RUNNING', maxResults=1000 ) if len(response['executions']) > 0: return image_build_version_arn response = stepfunctions_client.start_execution( stateMachineArn=state_machine_arn, input="{\"image_build_version_arn\" : \"" + image_build_version_arn + "\"}" ) return image_build_version_arn
1.898438
2
analysis_script/make_time_chart.py
nahimilega/subreddit-analyzer
1
12789346
<reponame>nahimilega/subreddit-analyzer<filename>analysis_script/make_time_chart.py import datetime import random import matplotlib.pyplot as plt import pymongo from datetime import datetime from collections import Counter # Make chart of busy hours # All charts in graph folder def intilise_database(): """ Initilse the database and make a table instance Returns pymongo object of the table """ myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb=myclient['subreddit'] maintable = mydb["posts2"] return maintable db = intilise_database() # make up some data ll = [] for post in db.find(): timestamp = post['time'] dt = datetime.fromtimestamp(timestamp) ll.append(dt.hour) cc = Counter(ll) x = [] y = [] for i in range(24): x.append(str(i)+":00" ) y.append(cc[i]) plt.xlabel('Time (Hours) in UTC') plt.ylabel('No of posts') plt.plot(x,y) # beautify the x-labels plt.gcf().autofmt_xdate() plt.show()
3.140625
3
jakomics/kegg.py
jeffkimbrel/jakomics
0
12789347
<gh_stars>0 import uuid import os import subprocess import re import pandas as pd from jakomics import colors from jakomics.utilities import system_call class KOFAM: def __init__(self, line, t_scale=1.0): parsed = re.split('\t', line) self.parsed = parsed self.gene = parsed[1] self.KO = parsed[2] self.threshold = parsed[3] self.score = float(parsed[4]) self.evalue = float(parsed[5]) self.description = parsed[6] if len(self.threshold) == 0: self.threshold = 0 self.warning = f"WARNING: {self.KO} does not have a KO threshold. All hits >0 will be included." if self.score >= float(self.threshold) * float(t_scale): self.threshold = float(self.threshold) self.passed = True else: self.passed = False def view(self): return [self.gene, self.KO, self.threshold, self.score, self.evalue, self.description] def result(self): return {'gene': self.gene, 'annotation': self.KO, 'score': self.score, 'evalue': self.evalue} def __str__(self): return "<JAKomics KOFAM class>" def run_kofam(faa_path, hal_path, ko_list, cpus=1, t_scale=1, echo=False, run=True): temp_dir = 'KO_' + uuid.uuid4().hex command = f'exec_annotation --no-report-unannotated -k {ko_list} --tmp-dir {temp_dir} {faa_path} -T {t_scale} --cpu {int(cpus)} --profile {hal_path} -f detail-tsv ; rm -fR {temp_dir}' kofam_out = system_call(command, return_type="out", echo=echo, run=run) hits = [] for line in kofam_out: if len(line) > 0 and not line.lstrip().startswith('#'): hits.append(KOFAM(line, t_scale)) return hits def parse_kofam_hits(run_kofam_out): ''' Returns a dictionary of passed results with KO as key and list of kofam classes as value ''' parsed = {} for hit in run_kofam_out: if hit.passed: # print(db['DB_NAME'], genome.short_name, hit.view(), sep="\t") if hit.KO in parsed: parsed[hit.KO].append(hit) else: parsed[hit.KO] = [hit] return parsed def kofam_to_df(run_kofam_out): results = pd.DataFrame(columns=['LOCUS_TAG', 'KO', 'SCORE', 'THRESHOLD', 'EVALUE', 'DESCRIPTION']) for hit in run_kofam_out: if hit.passed: results = results.append( pd.Series(data={'LOCUS_TAG': hit.gene, 'KO': hit.KO, 'SCORE': hit.score, 'THRESHOLD': hit.threshold, 'EVALUE': hit.evalue, 'DESCRIPTION': hit.description } ), ignore_index=True) return results
2.3125
2
lensesio/data/policy.py
rsaggino/lenses-python
13
12789348
from lensesio.core.endpoints import getEndpoints from lensesio.core.exec_action import exec_request class Policy: def __init__(self, verify_cert=True): getEndpoints.__init__(self, "policyEndpoints") self.verify_cert=verify_cert self.lenses_policies_endpoint = self.url + self.lensesPoliciesEndpoint self.policy_headers = { 'Content-Type': 'application/json', 'Accept': 'text/plain application/json', 'x-kafka-lenses-token': self.token} def ViewPolicy(self): self.viewPolicy = exec_request( __METHOD="get", __EXPECTED="json", __URL=self.lenses_policies_endpoint, __HEADERS=self.policy_headers, __VERIFY=self.verify_cert ) return self.viewPolicy def SetPolicy(self, name, obfuscation, impactType, category, fields): if type(fields) is not list: fields = [fields] params = dict( name=name, obfuscation=obfuscation, impactType=impactType, category=category, fields=fields ) self.setPolicy = exec_request( __METHOD="post", __EXPECTED="text", __URL=self.lenses_policies_endpoint, __HEADERS=self.policy_headers, __DATA=params, __VERIFY=self.verify_cert ) return self.setPolicy def DelPolicy(self, name): policies = self.ViewPolicy() for e in policies: if e['name'] == name: policy_id = e['id'] break else: policy_id = None if policy_id: _REQ = self.lenses_policies_endpoint + '/' + policy_id self.delPolicy = exec_request( __METHOD="delete", __EXPECTED="text", __URL=_REQ, __HEADERS=self.policy_headers, __VERIFY=self.verify_cert ) else: return "No policy with name %s" % name return self.delPolicy
2.140625
2
modelling/train_scripts/train_meta.py
TheisFerre/Thesis-paper
0
12789349
<reponame>TheisFerre/Thesis-paper from modelling.models import BaselineGATLSTM, Edgeconvmodel, GATLSTM, Encoder, Decoder, STGNNModel, BaselineGNNLSTM import torch import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau import numpy as np import dill from data_processing.process_dataset import Dataset from torch_geometric.loader import DataLoader import argparse import datetime import logging import os import json from distutils.dir_util import copy_tree import learn2learn as l2l import random from torch.utils.tensorboard import SummaryWriter DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def convert_to_dataloader(data, k_shots=6): data_list = [] for i in range(len(data)): data_list.append(data[i]) loader = DataLoader(data_list, batch_size=k_shots, shuffle=True) return loader def train_model( train_datasets: dict, test_datasets: dict, epochs: int = 200, adapt_lr: float = 0.001, batch_task_size: int = -1, meta_lr: float = 0.001, adaptation_steps: int = 5, weather_features: int = 4, time_features: int = 43, log_dir: str = None, dropout: float = 0.2, hidden_size: int = 32, node_out_features: int = 10, gpu: bool = False ): GAT_model = GATLSTM( node_in_features=1, weather_features=weather_features, time_features=time_features, node_out_features=10, gpu=gpu, hidden_size=hidden_size, dropout_p=0.3 ) model = Edgeconvmodel( node_in_features=1, weather_features=weather_features, time_features=time_features, node_out_features=node_out_features, gpu=gpu, hidden_size=hidden_size, dropout_p=dropout ) model_vanilla = Edgeconvmodel( node_in_features=1, weather_features=weather_features, time_features=time_features, node_out_features=node_out_features, gpu=gpu, hidden_size=hidden_size, dropout_p=dropout ) model_vanilla.to(DEVICE) opt_finetune = optim.RMSprop(model_vanilla.parameters(), 0.001) #arbitrarily set lr model.to(DEVICE) GAT_model.to(DEVICE) maml = l2l.algorithms.MAML(model, lr=adapt_lr, first_order=True) maml_gat = l2l.algorithms.MAML(GAT_model, lr=adapt_lr, first_order=True) opt_gat = optim.Adam(maml_gat.parameters(), meta_lr) opt = optim.Adam(maml.parameters(), meta_lr) lossfn = torch.nn.MSELoss(reduction='mean') if batch_task_size == -1 or batch_task_size > len(train_datasets.keys()): batch_task_size = len(train_datasets.keys()) writer = SummaryWriter(log_dir=log_dir) step_dict = {f_name: 0 for f_name in train_datasets.keys()} for epoch in range(epochs): opt.zero_grad() opt_gat.zero_grad() query_loss_vanilla = 0 meta_train_loss = 0.0 meta_train_loss_gat = 0.0 # num_evals = 0 for f_name, task in random.sample(train_datasets.items(), batch_task_size): learner = maml.clone() learner_gat = maml_gat.clone() support_data = next(iter(task)).to(DEVICE) query_data = next(iter(task)).to(DEVICE) for _ in range(adaptation_steps): # adaptation_steps support_preds = learner(support_data) support_loss = lossfn(support_data.y, support_preds.view(support_data.num_graphs, -1)) learner.adapt(support_loss) support_preds_gat = learner_gat(support_data) support_loss_gat = lossfn(support_data.y, support_preds_gat.view(support_data.num_graphs, -1)) learner_gat.adapt(support_loss_gat) opt_finetune.zero_grad(set_to_none=True) out = model_vanilla(support_data) loss = lossfn(support_data.y, out.view(support_data.num_graphs, -1)) loss.backward() opt_finetune.step() query_preds = learner(query_data) query_loss = lossfn(query_data.y, query_preds.view(query_data.num_graphs, -1)) writer.add_scalar(tag=f"{f_name}/query_loss", scalar_value=query_loss.item(), global_step=step_dict[f_name]) step_dict[f_name] += 1 query_preds_gat = learner_gat(query_data) query_loss_gat = lossfn(query_data.y, query_preds_gat.view(query_data.num_graphs, -1)) writer.add_scalar(tag=f"{f_name}/gat_query_loss", scalar_value=query_loss_gat.item(), global_step=step_dict[f_name]) step_dict[f_name] += 1 with torch.no_grad(): out = model_vanilla(query_data) loss = lossfn(query_data.y, out.view(query_data.num_graphs, -1)) query_loss_vanilla += loss meta_train_loss += query_loss meta_train_loss_gat += query_loss_gat query_loss_vanilla = query_loss_vanilla / batch_task_size meta_train_loss = meta_train_loss / batch_task_size meta_train_loss_gat = meta_train_loss_gat / batch_task_size if epoch % 1 == 0: logger.info(f"Epoch: {epoch+1}") logger.info(f"Meta Train Loss: {meta_train_loss.item()}") logger.info(f"(gat) Meta Train Loss: {meta_train_loss_gat.item()}") logger.info(8 * "#") writer.add_scalar(tag=f"Meta/loss", scalar_value=meta_train_loss.item(), global_step=epoch) writer.add_scalar(tag=f"Meta/gat_loss", scalar_value=meta_train_loss_gat.item(), global_step=epoch) #writer.add_scalar(tag=f"vanilla/loss", scalar_value=query_loss_vanilla.item(), global_step=epoch) meta_train_loss.backward() meta_train_loss_gat.backward() torch.nn.utils.clip_grad_norm_(maml.parameters(), 1) torch.nn.utils.clip_grad_norm_(maml_gat.parameters(), 1) opt.step() opt_gat.step() return model, model_vanilla, GAT_model if __name__ == "__main__": logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) parser = argparse.ArgumentParser(description="Model training argument parser") parser.add_argument("-d", "--data_dir", type=str, help="Directory of datasets") parser.add_argument("-t", "--train_size", type=float, default=0.8, help="Ratio of data to be used for training") parser.add_argument("-b", "--batch_task_size", type=int, default=-1, help="number of tasks to sample") parser.add_argument("-k", "--k_shot", type=int, default=5, help="shots to be used") parser.add_argument("-a", "--adaptation_steps", type=int, default=5, help="Number of adaptation steps") parser.add_argument("-e", "--epochs", type=int, default=200, help="number of epochs") parser.add_argument("-alr", "--adapt_lr", type=float, default=0.001, help="Adaptation learning rate") parser.add_argument("-mlr", "--meta_lr", type=float, default=0.001, help="Meta learning rate") parser.add_argument("-ld", "--log_dir", type=str, default=None, help="directory to log stuff") parser.add_argument("-ex", "--exclude", type=str, default="", help="comma seperated list of datasets to exclude") parser.add_argument("-hs", "--hidden_size", type=int, default=32) parser.add_argument("-dp", "--dropout_p", type=float, default=0.2) parser.add_argument("-no", "--node_out_features", type=int, default=10) parser.add_argument("-g", "--gpu", action='store_true') args = parser.parse_args() train_dataloader_dict = {} test_dataloader_dict = {} exclude_list = args.exclude.split(",") for f in os.listdir(args.data_dir): abs_path = os.path.join(args.data_dir, f) CONTINUE_FLAG=False for exclude_file in exclude_list: if f.startswith(exclude_file) and len(exclude_file) > 0: CONTINUE_FLAG = True if CONTINUE_FLAG: continue with open(abs_path, "rb") as infile: logger.info(abs_path) data = dill.load(infile) train_data, test_data = Dataset.train_test_split(data, num_history=12, shuffle=True, ratio=args.train_size) train_data_dataloader = convert_to_dataloader(train_data, k_shots=args.k_shot) test_data_dataloader = convert_to_dataloader(test_data, k_shots=args.k_shot) f_name = f.split("/")[-1].replace(".pkl", "") train_dataloader_dict[f_name] = train_data_dataloader test_dataloader_dict[f_name] = test_data_dataloader logger.info(str(train_dataloader_dict)) WEATHER_FEATURES = train_data.weather_information.shape[-1] TIME_FEATURES = train_data.time_encoding.shape[-1] start_time = datetime.datetime.now() logger.info(f"Fitting model at time: {str(start_time)}") if args.log_dir is not None: log_dir = f"{args.log_dir}/{start_time.isoformat()}" else: log_dir = None model, vanilla_model, gat_model = train_model( train_datasets=train_dataloader_dict, test_datasets=test_dataloader_dict, adaptation_steps=args.adaptation_steps, batch_task_size=args.batch_task_size, epochs=args.epochs, adapt_lr=args.adapt_lr, meta_lr=args.meta_lr, weather_features=WEATHER_FEATURES, time_features=TIME_FEATURES, hidden_size=args.hidden_size, dropout=args.dropout_p, node_out_features=args.node_out_features, log_dir=log_dir, gpu=args.gpu ) model.to("cpu") torch.save(model.state_dict(), f"{log_dir}/model.pth") vanilla_model.to("cpu") torch.save(vanilla_model.state_dict(), f"{log_dir}/vanilla_model.pth") gat_model.to("cpu") torch.save(gat_model.state_dict(), f"{log_dir}/gat_model.pth") args_dict = vars(args) with open(f"{log_dir}/settings.json", "w") as outfile: json.dump(args_dict, outfile) """end_time = datetime.datetime.now() end_time_str = end_time.strftime("%Y-%m-%d %H:%M:%S") td = end_time - start_time minutes = round(td.total_seconds() / 60, 2) totsec = td.total_seconds() h = int(totsec // 3600) m = int((totsec % 3600) // 60) sec = int((totsec % 3600) % 60) logger.info(f"Total training time: {h}:{m}:{sec}") logger.info(f"Average Epoch time: {round(minutes/args.epochs, 2)} minutes") cur_dir = os.getcwd() while True: split_dir = cur_dir.split("/") if "Thesis" not in split_dir: break else: if split_dir[-1] == "Thesis": break else: os.chdir("..") cur_dir = os.getcwd() os.chdir("models") cur_dir = os.getcwd() logger.info(f"Saving files to {cur_dir}/{args.model}_{end_time_str}") os.mkdir(f"{args.model}_{end_time_str}") args_dict = vars(args) with open(f"{args.model}_{end_time_str}/settings.json", "w") as outfile: json.dump(args_dict, outfile) losses_dict = {"train_loss": train_loss, "test_loss": test_loss} outfile = open(f"{args.model}_{end_time_str}/losses.pkl", "wb") dill.dump(losses_dict, outfile) outfile.close() model.to("cpu") torch.save(model.state_dict(), f"{args.model}_{end_time_str}/model.pth") logger.info("Files saved successfully") os.chdir(f"{args.model}_{end_time_str}") os.mkdir(f"logs") target_dir = "logs" source_dir = f"{os.getenv('HOME')}/.lsbatch" copy_tree(source_dir, target_dir) for f in os.listdir(target_dir): if not f.endswith("err") and not f.endswith("out"): os.remove(f"{target_dir}/{f}")"""
2.34375
2
cirosantilli/utils.py
cirosantilli/python-utils
1
12789350
#!/usr/bin/env python import re import os.path STDERR_SEPARATOR0 = '=' * 60 def iterify(iterable): if isinstance(iterable, basestring): iterable = [iterable] try: iter(iterable) except TypeError: iterable = [iterable] return iterable def resub(resubpair,target): """takes a regex find replace pair (find, replace) and applies it to a target :param resubpair: find re and substitute string :type resubpair: a pair: (re.compile object, string) :param target: what to operate on :type name: string """ return resubpair[0].sub(resubpair[1],target) def resubs(resubpairs,target): """takes several regex find replace pairs [(find1, replace1), (find2,replace2), ... ] and applies them to a target on the order given""" return resubpair[0].sub(resubpair[1],target) for resubpair in resubpairs: target = resub(resubpair,target) return target whitespaces_to_single_space_resub = [re.compile(r"\s+")," "] def whitespaces_to_single_space(s): return resub(whitespaces_to_single_space_resub,s) remove_heading_whitespace_resub = [re.compile(r"^\s+"),""] def remove_heading_whitespace(s): return resub(whitespaces_to_single_space_resub,s) remove_trailling_whitespace_resub = [re.compile(r"\s+$"),""] def remove_trailling_whitespace(s): return resub(remove_trailling_whitespace_resub,s) CONTROL_CHARS_STR = u''.join(map(unichr, range(0,32) + range(127,160))) CONTROL_CHAR_RE = re.compile('[%s]' % re.escape(CONTROL_CHARS_STR), re.UNICODE) def strip_control_chars(s): return CONTROL_CHAR_RE.sub(ur"", s) if __name__ == '__main__': print 'TEST' #FORBIDDEN_PRINTABLE_BASENAME_CHARS_STR = '|\\?*<":>+[]/' MAX_BNAME_LENGTH = 255 FORBIDDEN_PRINTABLE_BASENAME_CHARS_STR = ur"/:\\|*<>\"" FORBIDDEN_BASENAME_CHARS = CONTROL_CHARS_STR + FORBIDDEN_PRINTABLE_BASENAME_CHARS_STR FORBIDDEN_BASENAME_CHARS_RE = re.compile(ur"[%s]" % re.escape(FORBIDDEN_BASENAME_CHARS), re.UNICODE)
3
3