max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
quasimodo/assertion_normalization/subject_removal_submodule.py
Aunsiels/CSK
16
12789451
<filename>quasimodo/assertion_normalization/subject_removal_submodule.py<gh_stars>10-100 from quasimodo.data_structures.submodule_interface import SubmoduleInterface from quasimodo.data_structures.subject import Subject import logging to_remove = ["it", "some", "one", "we", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "you", "he", "she", "they", "me", "an", "someone", "mr", "ms", "anyone", "1", "2", "3", "4", "5", "6", "7", "8", "9"] class SubjectRemovalSubmodule(SubmoduleInterface): def __init__(self, module_reference): super().__init__() self._module_reference = module_reference self._name = "Subject Removal" def process(self, input_interface): logging.info("Start removing some subjects") subjects = set(input_interface.get_subjects()) for subject in to_remove: subject = Subject(subject) if subject in subjects: subjects.remove(subject) subjects = list(subjects) return input_interface.replace_subjects(subjects)
2.40625
2
Nodes/Statements/Iterative/LegacyFor.py
Mohsin-Ul-Islam/YAPL
0
12789452
class Node: def __init__(self, initialization, condition, increment, body): self.initialization = initialization self.condition = condition self.increment = increment self.body = body def visit(self, context): rvalue = None self.initialization.visit(context) while self.condition.visit(context): rvalue = self.body.visit(context) self.increment.visit(context) return rvalue
3.09375
3
Lecture/Lecture06-Sorting/linearSearch.py
tonysulfaro/CSE-331
2
12789453
<filename>Lecture/Lecture06-Sorting/linearSearch.py<gh_stars>1-10 def linearSearch3(a,key): for i in range(len(a)): if(a[i]== key): return i return None def recLinearSearch(alist, l, r, key): if r<l: return -1 if alist[l]==key: return l return recLinearSearch(alist,l+1,r,key) # Recursive function to search x in arr[l..r] def recSearch(arr, l, r, x): if r < l: return -1 if arr[l] == x: return l return recSearch(arr, l + 1, r, x) def linearSearch2(a,v): i=0 while i < len(a) and v !=a[i]: i=i+1 if i>= len(a): i=None else: return i def linearSearch(a, value): position = 0 found = False while position < len(a) and not found: if a[position] == value: found = True position += 1 return found # def linearSearch(a, value): # position = 0 # found = False # while position < len(a) and #your code goes here # #your code goes here # #your code goes here # #your code goes here # #your code goes here # #alist = [2, 4, 93, 17, 77, 31, 44, 55, 20] alist = [2, 4, 93, 17] if not(linearSearch2(alist,100)==None): print("Found it at index: ", linearSearch2(alist,17)) else: print("Not found") n=len(alist) if linearSearch(alist,100): print("Found") else: print("Not found") print(recLinearSearch(alist,0,n-1,100)) blist = [54,26,93]
4.125
4
scrapybot/urls/da.py
roadt/scrapybot
0
12789454
from . import mongodb def art(**kwargs): '''generate urls of art with s= (search text), u= (","-separated author_names), t= (","-separated tags) ''' with mongodb() as db: cond = {} _fill_cond(cond, kwargs) urls = map(lambda e: e['url'], db.art.find(cond, {'url': 1})) return { 'url': urls } def art_to_down(**kwargs): '''generate urls of art which not yet downloaded with s= (search text), u= (","-separated author_names), t= (","-separated tags) ''' with mongodb() as db: cond = { "file_url" : {'$eq' :None}} cond = _fill_cond(cond, kwargs) urls = map(lambda e: e['url'], db.art.find(cond, {'url': 1})) return { 'url' : urls} def _fill_cond(cond, kwargs): if 's' in kwargs: cond['$text'] = { '$search' : kwargs.get('s') } if 'u' in kwargs: cond['author_name'] = { '$in' : kwargs.get('u').split(',') } if 't' in kwargs: cond['tag_names'] = { '$in' : kwargs.get('t').split(',') } return cond
2.8125
3
t_time.py
ibramuppal/learning_tensorflow
0
12789455
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf #hello_constant = tf.constant('Hello World!') #with tf.Session() as sess: # output = sess.run(hello_constant) # print(output) # this is how you create an input field in Tensorflow # not the tf.string part but the tf.placeholder part # the tf.string part is just the type of placeholder that this specific case is x = tf.placeholder(tf.string) y = tf.placeholder(tf.int32) z = tf.placeholder(tf.float32) with tf.Session() as sess: #output = sess.run(x, feed_dict={x: 'Hello World' }) output = sess.run([x, y, z], feed_dict={x: 'Test String', y:123, z: 45.67}) print(output)
3.0625
3
tests/test_lambda_assigning.py
GibranHL0/lime-lynter
0
12789456
"""Test the lambda assigning visitor.""" import ast import pytest from lime_lynter.Violations.correctness import LambdaAssigningViolation from lime_lynter.Visitors.Correctness.correctness import LambdaAssigningVisitor lambda_assigning = """ f = lambda x: 2 * x """ @pytest.mark.parametrize('code', [lambda_assigning]) def test_lambda_assigning( code, ): """ Test lambda assigning. Args: code: Sample code. """ tree = ast.parse(code) visitor = LambdaAssigningVisitor() visitor.run(tree) for violation in visitor.violations: isinstance(violation, LambdaAssigningViolation) assert len(visitor.violations) == 1
2.890625
3
utils/losses.py
BaekduChoi/DescreenGAN
0
12789457
<filename>utils/losses.py<gh_stars>0 import sys import os sys.path.append(os.path.join(os.path.dirname(__file__),'.')) from torch import nn import torch from torch.nn import functional as F from torch.nn.utils import spectral_norm as SN import torchvision def klvloss(mu,logvar) : return torch.mean(-0.5*torch.sum(1+logvar-mu.pow(2)-logvar.exp())) """ Loss for LSGAN """ class LSGANLoss(object) : def __init__(self,device) : super().__init__() self.loss = nn.MSELoss() self.device = device def get_label(self,prediction,is_real) : if is_real : return torch.ones_like(prediction) else : return torch.zeros_like(prediction) def __call__(self,prediction,is_real) : label = self.get_label(prediction,is_real) label.to(self.device) return self.loss(prediction,label) """ Loss for relativistic average LSGAN """ class RaLSGANLoss(object) : def __init__(self,device) : super().__init__() self.loss = nn.MSELoss() self.device = device def __call__(self,real,fake) : avg_real = torch.mean(real,dim=0,keepdim=True) avg_fake = torch.mean(fake,dim=0,keepdim=True) loss1 = self.loss(real-avg_fake,torch.ones_like(real).to(self.device)) loss2 = self.loss(fake-avg_real,-torch.ones_like(fake).to(self.device)) return loss1+loss2 """ Loss for hingeGAN discriminator """ class HingeGANLossD(object) : def __init__(self) : super().__init__() def __call__(self,prediction,is_real) : if is_real : loss = F.relu(1-prediction) else : loss = F.relu(1+prediction) return loss.mean() """ Loss for hingeGAN generator """ class HingeGANLossG(object) : def __init__(self) : super().__init__() def __call__(self,prediction) : return -prediction.mean() """ Loss for relativistic average hingeGAN """ class RaHingeGANLoss(object) : def __init__(self) : super().__init__() def __call__(self,real,fake) : avg_real = torch.mean(real,dim=0,keepdim=True) avg_fake = torch.mean(fake,dim=0,keepdim=True) dxr = real - avg_fake dxf = fake - avg_real loss1 = F.relu(1-dxr) loss2 = F.relu(1+dxf) return (loss1+loss2).mean() """ Code adapted from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49 """ class PerceptualLoss(torch.nn.Module): def __init__(self, resize=True, loss_type = 'mse', feature_layers=[3], before_act=False): super().__init__() assert loss_type in ['mse','l1'] self.loss = F.l1_loss if loss_type == 'l1' else F.mse_loss # self.bl = (torchvision.models.vgg19(pretrained=True).features[:27].eval()) # for p in self.bl.parameters(): # p.requires_grad = False blocks = [] if before_act : blocks.append(torchvision.models.vgg19(pretrained=True).features[:3].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[3:8].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[8:17].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[17:26].eval()) else : blocks.append(torchvision.models.vgg19(pretrained=True).features[:4].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[4:9].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[9:18].eval()) blocks.append(torchvision.models.vgg19(pretrained=True).features[18:27].eval()) for bl in blocks : for p in bl.parameters(): p.requires_grad = False self.blocks = torch.nn.ModuleList(blocks) self.feature_layers = feature_layers self.transform = torch.nn.functional.interpolate self.resize = resize self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def forward(self, input, target): if input.shape[1] != 3: input = input.repeat(1, 3, 1, 1) target = target.repeat(1, 3, 1, 1) input = (input-self.mean) / self.std target = (target-self.mean) / self.std if self.resize: input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False) target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False) x = input y = target loss = 0. for i,block in enumerate(self.blocks) : x = block(x.clone()) y = block(y.clone()) if i in self.feature_layers : loss += self.loss(x,y) return loss
2.28125
2
leiaapi/generated/api/annotation_api.py
labinnovationdocapost/leia-api-python-sdk
0
12789458
<reponame>labinnovationdocapost/leia-api-python-sdk<filename>leiaapi/generated/api/annotation_api.py<gh_stars>0 # coding: utf-8 """ LEIA RESTful API for AI Leia API # noqa: E501 OpenAPI spec version: 1.0.0 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from leiaapi.generated.api_client import ApiClient class AnnotationApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_annotation(self, body, token, annotation_type, document_id, **kwargs): # noqa: E501 """Creates an annotation # noqa: E501 Creates an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_annotation(body, token, annotation_type, document_id, async_req=True) >>> result = thread.get() :param async_req bool :param object body: The prediction that should be associated to document in this annotation, in free form json (required) :param str token: The login token obtained via GET /login/{api_key} (required) :param AnnotationTypes annotation_type: The type of the annotation (required) :param str document_id: The id of the document to annotate (required) :param str name: The name of the annotation (for information purposes only) :param list[str] tags: The tags of the annotation :return: Annotation If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_annotation_with_http_info(body, token, annotation_type, document_id, **kwargs) # noqa: E501 else: (data) = self.create_annotation_with_http_info(body, token, annotation_type, document_id, **kwargs) # noqa: E501 return data def create_annotation_with_http_info(self, body, token, annotation_type, document_id, **kwargs): # noqa: E501 """Creates an annotation # noqa: E501 Creates an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_annotation_with_http_info(body, token, annotation_type, document_id, async_req=True) >>> result = thread.get() :param async_req bool :param object body: The prediction that should be associated to document in this annotation, in free form json (required) :param str token: The login token obtained via GET /login/{api_key} (required) :param AnnotationTypes annotation_type: The type of the annotation (required) :param str document_id: The id of the document to annotate (required) :param str name: The name of the annotation (for information purposes only) :param list[str] tags: The tags of the annotation :return: Annotation If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'token', 'annotation_type', 'document_id', 'name', 'tags'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `create_annotation`") # noqa: E501 # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `create_annotation`") # noqa: E501 # verify the required parameter 'annotation_type' is set if ('annotation_type' not in params or params['annotation_type'] is None): raise ValueError("Missing the required parameter `annotation_type` when calling `create_annotation`") # noqa: E501 # verify the required parameter 'document_id' is set if ('document_id' not in params or params['document_id'] is None): raise ValueError("Missing the required parameter `document_id` when calling `create_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'document_id' in params: path_params['document_id'] = params['document_id'] # noqa: E501 query_params = [] if 'annotation_type' in params: query_params.append(('annotation_type', params['annotation_type'])) # noqa: E501 if 'name' in params: query_params.append(('name', params['name'])) # noqa: E501 if 'tags' in params: query_params.append(('tags', params['tags'])) # noqa: E501 collection_formats['tags'] = 'multi' # noqa: E501 header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{document_id}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Annotation', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_annotation(self, token, annotation_id, **kwargs): # noqa: E501 """Deletes an annotation # noqa: E501 Deletes an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_annotation(token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (for information purposes only) (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_annotation_with_http_info(token, annotation_id, **kwargs) # noqa: E501 else: (data) = self.delete_annotation_with_http_info(token, annotation_id, **kwargs) # noqa: E501 return data def delete_annotation_with_http_info(self, token, annotation_id, **kwargs): # noqa: E501 """Deletes an annotation # noqa: E501 Deletes an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_annotation_with_http_info(token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (for information purposes only) (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['token', 'annotation_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `delete_annotation`") # noqa: E501 # verify the required parameter 'annotation_id' is set if ('annotation_id' not in params or params['annotation_id'] is None): raise ValueError("Missing the required parameter `annotation_id` when calling `delete_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'annotation_id' in params: path_params['annotation_id'] = params['annotation_id'] # noqa: E501 query_params = [] header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{annotation_id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_annotation(self, token, annotation_id, **kwargs): # noqa: E501 """Retrieves an annotation # noqa: E501 Retrieves an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_annotation(token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (for information purposes only) (required) :return: Annotation If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_annotation_with_http_info(token, annotation_id, **kwargs) # noqa: E501 else: (data) = self.get_annotation_with_http_info(token, annotation_id, **kwargs) # noqa: E501 return data def get_annotation_with_http_info(self, token, annotation_id, **kwargs): # noqa: E501 """Retrieves an annotation # noqa: E501 Retrieves an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_annotation_with_http_info(token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (for information purposes only) (required) :return: Annotation If the method is called asynchronously, returns the request thread. """ all_params = ['token', 'annotation_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `get_annotation`") # noqa: E501 # verify the required parameter 'annotation_id' is set if ('annotation_id' not in params or params['annotation_id'] is None): raise ValueError("Missing the required parameter `annotation_id` when calling `get_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'annotation_id' in params: path_params['annotation_id'] = params['annotation_id'] # noqa: E501 query_params = [] header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{annotation_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Annotation', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_annotations(self, token, **kwargs): # noqa: E501 """Retrieves annotations (paginated) # noqa: E501 Retrieves annotations # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_annotations(token, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: If specified, filters the annotations id :param AnnotationTypes annotation_type: If specified, filters the annotations by type :param str name: If specified, filters the annotations by name :param list[str] tags: If specified, filters the annotations by tag :param str document_id: If specified, filters the annotations attached to a given document :param datetime created_after: If specified, keeps only annotations created after given UTC timestamp (ISO 8601 format : yyyy-MM-ddThh:mm:ss) :param datetime created_before: If specified, keeps only annotations created before given UTC timestamp (ISO 8601 format : yyyy-MM-ddThh:mm:ss) :param int offset: Number of the first annotation to send (pagination) :param int limit: Maximum number of annotation to send (pagination) :return: list[Annotation] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_annotations_with_http_info(token, **kwargs) # noqa: E501 else: (data) = self.get_annotations_with_http_info(token, **kwargs) # noqa: E501 return data def get_annotations_with_http_info(self, token, **kwargs): # noqa: E501 """Retrieves annotations (paginated) # noqa: E501 Retrieves annotations # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_annotations_with_http_info(token, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: If specified, filters the annotations id :param AnnotationTypes annotation_type: If specified, filters the annotations by type :param str name: If specified, filters the annotations by name :param list[str] tags: If specified, filters the annotations by tag :param str document_id: If specified, filters the annotations attached to a given document :param datetime created_after: If specified, keeps only annotations created after given UTC timestamp (ISO 8601 format : yyyy-MM-ddThh:mm:ss) :param datetime created_before: If specified, keeps only annotations created before given UTC timestamp (ISO 8601 format : yyyy-MM-ddThh:mm:ss) :param int offset: Number of the first annotation to send (pagination) :param int limit: Maximum number of annotation to send (pagination) :return: list[Annotation] If the method is called asynchronously, returns the request thread. """ all_params = ['token', 'annotation_id', 'annotation_type', 'name', 'tags', 'document_id', 'created_after', 'created_before', 'offset', 'limit'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_annotations" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `get_annotations`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'annotation_id' in params: query_params.append(('annotation_id', params['annotation_id'])) # noqa: E501 if 'annotation_type' in params: query_params.append(('annotation_type', params['annotation_type'])) # noqa: E501 if 'name' in params: query_params.append(('name', params['name'])) # noqa: E501 if 'tags' in params: query_params.append(('tags', params['tags'])) # noqa: E501 collection_formats['tags'] = 'multi' # noqa: E501 if 'document_id' in params: query_params.append(('document_id', params['document_id'])) # noqa: E501 if 'created_after' in params: query_params.append(('created_after', params['created_after'])) # noqa: E501 if 'created_before' in params: query_params.append(('created_before', params['created_before'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'limit' in params: query_params.append(('limit', params['limit'])) # noqa: E501 header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Annotation]', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def tag_annotation(self, token, annotation_id, tag, **kwargs): # noqa: E501 """Tags an annotation # noqa: E501 Tags an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.tag_annotation(token, annotation_id, tag, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (required) :param str tag: The tag to add to the annotation (required) :return: Annotation If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.tag_annotation_with_http_info(token, annotation_id, tag, **kwargs) # noqa: E501 else: (data) = self.tag_annotation_with_http_info(token, annotation_id, tag, **kwargs) # noqa: E501 return data def tag_annotation_with_http_info(self, token, annotation_id, tag, **kwargs): # noqa: E501 """Tags an annotation # noqa: E501 Tags an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.tag_annotation_with_http_info(token, annotation_id, tag, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (required) :param str tag: The tag to add to the annotation (required) :return: Annotation If the method is called asynchronously, returns the request thread. """ all_params = ['token', 'annotation_id', 'tag'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method tag_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `tag_annotation`") # noqa: E501 # verify the required parameter 'annotation_id' is set if ('annotation_id' not in params or params['annotation_id'] is None): raise ValueError("Missing the required parameter `annotation_id` when calling `tag_annotation`") # noqa: E501 # verify the required parameter 'tag' is set if ('tag' not in params or params['tag'] is None): raise ValueError("Missing the required parameter `tag` when calling `tag_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'annotation_id' in params: path_params['annotation_id'] = params['annotation_id'] # noqa: E501 if 'tag' in params: path_params['tag'] = params['tag'] # noqa: E501 query_params = [] header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{annotation_id}/tag/{tag}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Annotation', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def untag_annotation(self, token, annotation_id, tag, **kwargs): # noqa: E501 """Untags an annotation # noqa: E501 Untags an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.untag_annotation(token, annotation_id, tag, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (required) :param str tag: The tag to delete from the annotation (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.untag_annotation_with_http_info(token, annotation_id, tag, **kwargs) # noqa: E501 else: (data) = self.untag_annotation_with_http_info(token, annotation_id, tag, **kwargs) # noqa: E501 return data def untag_annotation_with_http_info(self, token, annotation_id, tag, **kwargs): # noqa: E501 """Untags an annotation # noqa: E501 Untags an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.untag_annotation_with_http_info(token, annotation_id, tag, async_req=True) >>> result = thread.get() :param async_req bool :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation (required) :param str tag: The tag to delete from the annotation (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['token', 'annotation_id', 'tag'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method untag_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `untag_annotation`") # noqa: E501 # verify the required parameter 'annotation_id' is set if ('annotation_id' not in params or params['annotation_id'] is None): raise ValueError("Missing the required parameter `annotation_id` when calling `untag_annotation`") # noqa: E501 # verify the required parameter 'tag' is set if ('tag' not in params or params['tag'] is None): raise ValueError("Missing the required parameter `tag` when calling `untag_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'annotation_id' in params: path_params['annotation_id'] = params['annotation_id'] # noqa: E501 if 'tag' in params: path_params['tag'] = params['tag'] # noqa: E501 query_params = [] header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{annotation_id}/tag/{tag}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_annotation(self, body, token, annotation_id, **kwargs): # noqa: E501 """Updates an annotation # noqa: E501 Updates an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_annotation(body, token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param object body: The new prediction that should be associated to document in this annotation, in free form json (required) :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation to modify (required) :param str name: The new name of the annotation (won't change if not set) :return: Annotation If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_annotation_with_http_info(body, token, annotation_id, **kwargs) # noqa: E501 else: (data) = self.update_annotation_with_http_info(body, token, annotation_id, **kwargs) # noqa: E501 return data def update_annotation_with_http_info(self, body, token, annotation_id, **kwargs): # noqa: E501 """Updates an annotation # noqa: E501 Updates an annotation # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_annotation_with_http_info(body, token, annotation_id, async_req=True) >>> result = thread.get() :param async_req bool :param object body: The new prediction that should be associated to document in this annotation, in free form json (required) :param str token: The login token obtained via GET /login/{api_key} (required) :param str annotation_id: The id of the annotation to modify (required) :param str name: The new name of the annotation (won't change if not set) :return: Annotation If the method is called asynchronously, returns the request thread. """ all_params = ['body', 'token', 'annotation_id', 'name'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_annotation" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `update_annotation`") # noqa: E501 # verify the required parameter 'token' is set if ('token' not in params or params['token'] is None): raise ValueError("Missing the required parameter `token` when calling `update_annotation`") # noqa: E501 # verify the required parameter 'annotation_id' is set if ('annotation_id' not in params or params['annotation_id'] is None): raise ValueError("Missing the required parameter `annotation_id` when calling `update_annotation`") # noqa: E501 collection_formats = {} path_params = {} if 'annotation_id' in params: path_params['annotation_id'] = params['annotation_id'] # noqa: E501 query_params = [] if 'name' in params: query_params.append(('name', params['name'])) # noqa: E501 header_params = {} if 'token' in params: header_params['token'] = params['token'] # noqa: E501 form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/annotation/{annotation_id}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Annotation', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
1.9375
2
src/minifier.py
kraifpatrik/Xpanda
0
12789459
# -*- coding: utf-8 -*- import re def minify(code: str) -> str: # Mark end of directives code = re.sub(r"([^\S\n]*#[^\n]+)", "%NEWLINE%\\1%NEWLINE%", code) # Remove comments code = re.sub(r"//[^\n]*", "", code) code = re.sub(r"/\*(?:\*[^/]|[^*])*\*/", "", code) # Remove newlines code = re.sub(r"\n+", " ", code) # Collapse whitespace code = re.sub(r"\s{2,}", " ", code) for c in r"+-*%/!~|&=$<>[]{}().:,;?": code = re.sub(f"\\s*\{c}\\s*", c, code) # Add in newlines for directives code = code.replace("%NEWLINE%", "\n") code = re.sub(r"\n\s+", "\n", code) return code.strip()
2.96875
3
foodProj/foodApp/admin.py
cs-fullstack-2019-spring/django-authentication-cw-ChelsGreg
0
12789460
<reponame>cs-fullstack-2019-spring/django-authentication-cw-ChelsGreg<filename>foodProj/foodApp/admin.py from django.contrib import admin from .models import FoodModel # Register your models here. admin.site.register(FoodModel)
1.296875
1
registration/migrations/0006_alter_child_birth_date.py
screw-pack/hazel
0
12789461
<filename>registration/migrations/0006_alter_child_birth_date.py # Generated by Django 3.2.4 on 2021-06-11 12:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('registration', '0005_auto_20210611_0904'), ] operations = [ migrations.AlterField( model_name='child', name='birth_date', field=models.CharField(max_length=20), ), ]
1.617188
2
Complexity/complexity.py
dykra/ComplexityEstimator
0
12789462
<reponame>dykra/ComplexityEstimator<gh_stars>0 # -*- coding: utf-8 -*- import numpy as np import signal import sys from Complexity.executionHelpers import exec_fun_with_time, create_loggers_helper, exec_fun_without_output from Complexity.exceptions import TimeOutException import importlib import time def create_loggers(): import logging logger = create_loggers_helper(logging.getLogger(__name__)) logger.setLevel(logging.ERROR) return logger def complexity_estimate(structure, fun, create_struct_fun, time, given_array): logger = create_loggers() logger.debug("I am in complexity_estimate.") np_array__n = np.array(list(range(1000, 100000000, 1000))) # tablica z wartościami N array_time = pack_create_array(time, np_array__n, structure, fun, create_struct_fun) np_array_time = np.array(array_time) names_array = ["n", "n * log(n)", "n^2"] if np_array_time.size < np_array__n.size: np_array__n = np.delete(np_array__n, list(range(np_array_time.size, np_array__n.size))) np_tmp_array = np.array([np.var(np.log(np_array_time / np_array__n)), np.var(np.log(np_array_time / (np_array__n * np.log(np_array__n)))), np.var(np.log(np_array_time / np_array__n ** 2))] ) logger.info("complexity_ estimate finished correctly.") if not given_array: if np_tmp_array.min() == 0: return [i for (i, x) in enumerate(np_tmp_array) if x == 0], names_array return np_tmp_array.argmin(), names_array # gives the index corresponding to the minimum if np_tmp_array.min() == 0: return [i for (i, x) in enumerate(np_tmp_array) if x == 0], names_array, array_time, np_array__n return np_tmp_array.argmin(), names_array, array_time, np_array__n # gives the index corresponding to the minimum def dead_line(timeout, *args, **kwargs): print("Timeout is " + "%s" % timeout) def decorate(f): logger = create_loggers() logger.info("I am decorating " + f.__name__) def handler(signum, frame): logger.warning("TimeOut exception is going to be raised in " + f.__name__) raise TimeOutException("Deadline for creating table.") def new_f(*args, **kwargs): signal.signal(signal.SIGALRM, handler) signal.alarm(timeout) return f(*args, **kwargs) new_f.func_name = f.__name__ return new_f return decorate def give_complexity(file, fun, create_struct_fun, time): (minimum, names_array) = complexity_estimate(file, fun, create_struct_fun, time, False) if isinstance(minimum, list): logger = create_loggers() logger.info("Few results are highly possible") return [names_array[i] for i in minimum] return names_array[minimum] def pack_create_array(deadline, np_array__n, file, fun, create_struct_fun): @dead_line(deadline) def create_array_with_times(np_array__n, file, fun, create_struct_fun): logger = create_loggers() logger.info("I am in create_array") np_array_time = [] for i in range(np_array__n.size): try: # time_execution = exec_fun_with_time(file, create_struct_fun, fun, np_array__n[i]) module = importlib.import_module(file) function = getattr(module, create_struct_fun) structure = function(np_array__n[i]) time1 = time.time() exec_fun_without_output(file, fun, structure) time2 = time.time() time_execution = (time2 - time1) * 1000000 np_array_time.append(time_execution) except TimeOutException: logger.warning("Creating time array was interrupted.") break except Exception as e: print(e.args) logger.error("Exception was raised in create_array") sys.exit(1) return np_array_time return create_array_with_times(np_array__n, file, fun, create_struct_fun)
2.578125
3
store/migrations/0009_auto_20200502_1612.py
it5prasoon/ShoppingCart
2
12789463
# Generated by Django 2.0 on 2020-05-02 10:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('store', '0008_variation'), ] operations = [ migrations.AddField( model_name='variation', name='image', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='images', to='store.Product'), ), migrations.AddField( model_name='variation', name='price', field=models.DecimalField(blank=True, decimal_places=2, max_digits=100, null=True), ), ]
1.53125
2
apps/usuarios/models.py
Marthox1999/ProyectoDesarrolloII
0
12789464
from django.db import models import hashlib from django.core.validators import RegexValidator from inventario.models import DetallesProducto class Cliente(models.Model): TIPO_DOC = { ('PAS','Pasaporte'), ('CC','Cedula de Ciudadania'), ('TI','Tarjeta de Identidad'), } nombre = models.CharField(max_length=128, unique=True, primary_key=True) clave = models.CharField(max_length=128, editable=True) fechaNacimiento = models.DateField() direccion = models.CharField(max_length=32) telefono_regex = RegexValidator(regex=r'^\+?1?\d{7,10}$', message="El telefono debe tener formato: '+7777777'. Up to 10 digits allowed.") telefono = models.CharField(validators=[telefono_regex], max_length=12, blank=True) # validators should be a list tipoDocumento = models.CharField(max_length=3, choices = TIPO_DOC) numeroDocumento = models.IntegerField() #super().save(*args, **kwargs) para guardar en esta tabla def save(self, *args, **kwargs): self.clave = hashlib.md5(self.clave.encode('utf-8')).hexdigest() super(Cliente, self).save(*args, **kwargs) def autenticarCliente(self, *args, **kwargs): auth = Cliente.objects.filter(nombre=self.nombre, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest()).exists() return auth def buscarCliente(self, *args, **kwargs): aux = Cliente.objects.filter(nombre=self.nombre, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest()) return aux class AdministradorDuenio (models.Model): TIPO = { ('ADMIN','Administrador'), ('CEO','Duenio'), } pkAdministradorDuenio = models.AutoField(primary_key=True) nombreUsuario = models.CharField(max_length=128, unique=True) clave = models.CharField(max_length=128, editable=True) tipo = models.CharField(max_length=5, choices=TIPO) #super().save(*args, **kwargs) para guardar en esta tabla def save(self, *args, **kwargs): self.clave = hashlib.md5(self.clave.encode('utf-8')).hexdigest() super(AdministradorDuenio, self).save(*args, **kwargs) def autenticarAdmin(self, *args, **kwargs): auth = AdministradorDuenio.objects.filter(nombreUsuario=self.nombreUsuario, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest(), tipo='ADMIN').exists() return auth def autenticarDuenio(self, *args, **kwargs): auth = AdministradorDuenio.objects.filter(nombreUsuario=self.nombreUsuario, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest(), tipo='CEO').exists() return auth #ProductosEnCarrito class Carrito(models.Model): pkCarrito = models.AutoField(primary_key=True) fkNombreCliente = models.ForeignKey(Cliente, on_delete=models.SET_NULL, null=True) fkDetalleProducto = models.ForeignKey(DetallesProducto, on_delete=models.CASCADE) cantidad = models.IntegerField() precioActual = models.FloatField()
2.1875
2
rlpyt/distributions/discrete.py
cambel/rlpyt
17
12789465
<reponame>cambel/rlpyt import torch from rlpyt.utils.tensor import to_onehot, from_onehot class DiscreteMixin: def __init__(self, dim, dtype=torch.long, onehot_dtype=torch.float): self._dim = dim self.dtype = dtype self.onehot_dtype = onehot_dtype @property def dim(self): return self._dim def to_onehot(self, indexes, dtype=None): return to_onehot(indexes, self._dim, dtype=dtype or self.onehot_dtype) def from_onehot(self, onehot, dtype=None): return from_onehot(onehot, dtpye=dtype or self.dtype)
2.28125
2
results-tables/test/test_experiments.py
alepulver/my-thesis
0
12789466
import experiments import stages from nose.tools import assert_equals import factory rows = None def setup_module(): global rows data = factory.Stages() rows = data.indexed_rows() class TestExperiments: @classmethod def setup_class(cls): stgs = [stages.stage_from(r) for r in rows] exps = experiments.experiments_from(stgs) cls.experiments = {} for e in exps: cls.experiments[e.experiment_id()] = e def test_complete(self): exp = self.experiments['a7e32988-9e4b-4a2d-bbb2-a35798e7e8f1'] assert_equals(exp.has_stage('timeline'), True) assert_equals(type(exp.get_stage('timeline')), stages.Timeline) assert_equals(exp.time_start(), 1410966188680) assert_equals(exp.time_duration(), 556956) assert_equals(exp.num_stages(), 8) #assert_equals(exp.experiment_id(), 'a7e32988-9e4b-4a2d-bbb2-a35798e7e8f1') assert_equals(exp.size_in_bytes(), 131271) assert_equals(exp.is_complete(), True) def test_incomplete(self): exp = self.experiments['c16705a3-64c1-43e5-b70f-24a769dced32'] assert_equals(exp.has_stage('timeline'), False) assert_equals(exp.num_stages(), 6) #assert_equals(exp.experiment_id(), 'c16705a3-64c1-43e5-b70f-24a769dced32') assert_equals(exp.is_complete(), False)
2.328125
2
gateway/hmsGateway.py
rauterRaphael/HomeMonitoringSystem
0
12789467
import regex as re import requests from time import sleep from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress from digi.xbee.exception import TimeoutException from datetime import datetime class MSG_TYPES: ACKN = 0 SYNC = 1 UPDA = 2 SYNACK = 3 class UpdatePayload: lightIntensity = 0 temperature = 0 batteryLevel = 0 rssiToGateway = 0 motionDetected = 0 class AckPayload: seqNumToAck = 0 class SynAckPayload: nodeId = 0 utcSec = "" defaultSleep = 0 class HMSFrame: seqNum = 0 nodeId = 0 srcAddr = 0 dstAddr = 0 msgType = 0 payloadLen = 0 payload = "" cksum = 0 class HMSGateway(): SENSOR_NODE_ID = "SENSOR_NODE" SENSOR_NODE_ADDR = "0013A200416B4BA2" #SENSOR_NODE_ADDR = "0000000000000001" nodeUrl = "http://127.0.0.1:8000/rest/node/" dataUrl = "http://127.0.0.1:8000/rest/data/" defaultSleep = 30 ACKS = [] LAST_UPDA = [] lastSyncedAt = [] src_node = None sequenceNum = 0 nodeID = 0 nodeAddr = 0 SYNC_IN_PROGRESS = False NODE_ID_WITH_ADDRESS = [] def postNodeInfo(self, nodeID, rssi, motionDetected): postData = { "nodeId": nodeID, "rssi": rssi, "motionDetected": motionDetected, "updated_at": "{}".format(datetime.now()) } requests.post(self.nodeUrl, data = postData) def postNodeData(self, nodeID, updatePayload): postData = { "fromNodeID": nodeID, "lightIntensity": updatePayload.lightIntensity, "temperature": updatePayload.temperature, "batteryLevel": updatePayload.batteryLevel } requests.post(self.dataUrl, data = postData) def encode_hms_frame(self, txFrame): txFrame.payloadLen, txFrame.payload = self.encode_hmsframe_payload(txFrame) frameAsStr = ''.join(( str(txFrame.seqNum) + ";", str(txFrame.nodeId) + ";", str(txFrame.srcAddr) + ";", str(txFrame.dstAddr) + ";", str(txFrame.msgType) + ";", str(txFrame.payloadLen) + ";", str(txFrame.payload) + ";", str(txFrame.cksum) + ";", )) print(frameAsStr) return bytearray(frameAsStr, 'utf-8') def decode_hms_frame(self, rxMsg): frameData = rxMsg.split(";") if len(frameData) != 9: return None rxFrame = HMSFrame() rxFrame.seqNum = int(frameData[0]) rxFrame.nodeId = int(frameData[1]) rxFrame.srcAddr = int(frameData[2]) rxFrame.dstAddr = int(frameData[3]) rxFrame.msgType = int(frameData[4]) rxFrame.payloadLen = int(frameData[5]) rxFrame.payload = frameData[6] rxFrame.cksum = int(frameData[7]) # check cksum rxFrame.payload = self.decode_hmsframe_payload(rxFrame) return rxFrame def encode_hmsframe_payload(self, txFrame): if txFrame.payload == "": print("No payload in frame") return 0, "" if txFrame.msgType == MSG_TYPES.ACKN: print("ACK payload") ackPayloadAsStr = str(txFrame.payload.seqNumToAck) + "|" return len(ackPayloadAsStr), ackPayloadAsStr elif txFrame.msgType == MSG_TYPES.SYNACK: print("SYNACK payload") synAckPayloadAsStr = ''.join(( str(txFrame.payload.nodeId) + "|", str(txFrame.payload.utcSec) + "|", str(txFrame.payload.defaultSleep) + "|", )) return len(synAckPayloadAsStr), synAckPayloadAsStr else: print("Payload not known") return 0, "" def decode_hmsframe_payload(self, rxFrame): if rxFrame.payloadLen == 0: return "" payload = rxFrame.payload.split("|") if rxFrame.msgType == MSG_TYPES.ACKN: if len(payload) != 2: return "" acknPayload = AckPayload() acknPayload.seqNumToAck = int(payload[0]) return acknPayload elif rxFrame.msgType == MSG_TYPES.UPDA: if len(payload) != 6: return "" print("Updating") updatePayload = UpdatePayload() updatePayload.lightIntensity = int(payload[0]) updatePayload.temperature = int(payload[1]) updatePayload.batteryLevel = int(payload[2]) updatePayload.rssiToGateway = int(payload[3]) updatePayload.motionDetected = int(payload[4]) return updatePayload elif rxFrame.msgType == MSG_TYPES.SYNC: return "" else: print("Unknown msg type to decode") return "" def process_received_frame(self, rxFrame): if rxFrame.dstAddr == 0: if rxFrame.msgType == MSG_TYPES.ACKN and rxFrame.payload != "": self.ACKS.append(rxFrame.payload.seqNumToAck) print("ACK RECEVIED") elif rxFrame.msgType == MSG_TYPES.SYNC: print("SYNC RECEVIED") self.handle_sync_request(rxFrame) elif rxFrame.msgType == MSG_TYPES.UPDA: print("UPDA RECEVIED") if rxFrame.nodeId != self.getNextSensorIdOrSync(rxFrame)[1]: self.NODE_ID_WITH_ADDRESS = [item for item in self.NODE_ID_WITH_ADDRESS if item[1] != rxFrame.srcAddr] self.handle_sync_request(rxFrame) else: if self.store_node_sync_if_needed(rxFrame) == True: self.handle_sync_request(rxFrame) else: txFrame = HMSFrame() txFrame.msgType = MSG_TYPES.ACKN txFrame.dstAddr = rxFrame.srcAddr acknPayload = AckPayload() acknPayload.seqNumToAck = rxFrame.seqNum txFrame.payload = acknPayload print("SENDING ACK") self.send_HMS_Frame(txFrame) sleep(0.2) current = int((datetime.utcnow()-datetime(1970,1,1)).total_seconds()) nodeNotFound = True for i in range(0, len(self.LAST_UPDA)): if self.LAST_UPDA[i][0] == rxFrame.nodeId: nodeNotFound = False if self.LAST_UPDA[i][1] < current - self.defaultSleep: self.LAST_UPDA[i] = (rxFrame.nodeId, current) self.postNodeData(rxFrame.nodeId, rxFrame.payload) self.postNodeInfo(rxFrame.nodeId, rxFrame.payload.rssiToGateway, rxFrame.payload.motionDetected) if nodeNotFound == True: self.LAST_UPDA.append((rxFrame.nodeId, current)) self.postNodeData(rxFrame.nodeId, rxFrame.payload) self.postNodeInfo(rxFrame.nodeId, rxFrame.payload.rssiToGateway, rxFrame.payload.motionDetected) elif rxFrame.msgType == MSG_TYPES.SYNACK: print("SYNACK RECEVIED") else: print("Msg not for Gateway") def store_node_sync_if_needed(self, rxFrame): nodeNotFound = True syncNode = False current = int((datetime.utcnow()-datetime(1970,1,1)).total_seconds()) for i in range(0, len(self.lastSyncedAt)): if self.lastSyncedAt[i][0] == rxFrame.nodeId and self.lastSyncedAt[i][1] < (current - 600): self.lastSyncedAt[i] = (rxFrame.nodeId, current) nodeNotFound = False syncNode = True if nodeNotFound == True: self.lastSyncedAt.append((rxFrame.nodeId, current)) return syncNode def send_HMS_Frame(self, txFrame): txFrame.nodeId = self.nodeID txFrame.seqNum = self.sequenceNum txFrame.cksum = 0 txFrame.srcAddr = self.nodeAddr encodedFrame = self.encode_hms_frame(txFrame) self.src_node.set_sync_ops_timeout(0.8) for i in range(0, 5): try: self.src_node.send_data_broadcast(encodedFrame) except Exception as e: pass self.sequenceNum += 1 return txFrame.seqNum def handle_sync_request(self, rxFrame): self.SYNC_IN_PROGRESS = True txFrame = HMSFrame() txFrame.msgType = MSG_TYPES.SYNACK txFrame.dstAddr = rxFrame.srcAddr synAckPayload = SynAckPayload() synAckPayload.nodeId = self.getNextSensorIdOrSync(rxFrame)[1] now = datetime.now() synAckPayload.utcSec = now.strftime("%y:%m:%d:0%w:%H:%M:%S") synAckPayload.defaultSleep = self.defaultSleep txFrame.payload = synAckPayload self.send_frame_and_wait_for_ack(txFrame, synAckPayload) def getNextSensorIdOrSync(self, rxFrame): for item in self.NODE_ID_WITH_ADDRESS: if item[1] == rxFrame.srcAddr: return True, item[0] maxNodeId = len(self.NODE_ID_WITH_ADDRESS) + 1 self.NODE_ID_WITH_ADDRESS.append((maxNodeId, rxFrame.srcAddr)) return False, maxNodeId def data_receive_callback(self, frame): if frame is not None: rx_data = frame.data.decode(errors='replace') if rx_data != "": rxMsg = rx_data.split("STR:")[1] if rxMsg != "": rxMsg = rxMsg.replace("#", "") print(rxMsg) hmsFrame = self.decode_hms_frame(rxMsg) self.process_received_frame(hmsFrame) def send_frame_and_wait_for_ack(self, txFrame, payload, waitForAck=False): max_retries = 5 num_retry = 0 while(num_retry < max_retries): seqNumToAck = self.send_HMS_Frame(txFrame) sleep(1) if seqNumToAck in self.ACKS: self.ACKS.remove(seqNumToAck) break num_retry += 1 txFrame.payload = payload print("RETRYING - NO ACK RECEIVED") def init_and_open_xbee_device(self): serialPort = input("Serial Port [COM4]: ") if serialPort == "": serialPort = "COM4" bdrate = input("Baudrate [115200]: ") if bdrate == "": bdrate = 115200 else: bdrate = int(bdrate) try: self.src_node = XBeeDevice(serialPort, bdrate) self.src_node.open() return True except Exception as e: pass return True #################################### def runApp(self): print("\n\n### HOME MONITORING SYSTEM - GATEWAY ###\n\n") ret = self.init_and_open_xbee_device() if not ret: print("Initialization failed -> check log\n") print("XBEE Device initialized\n") self.src_node.add_data_received_callback(self.data_receive_callback) print("# CALLBACK ADDED #\n") while(1): sleep(1)
2.609375
3
src/tests/unit/test_auth_hasher.py
DmitryBurnaev/podcast
1
12789468
import uuid from modules.auth.hasher import PBKDF2PasswordHasher def test_password_encode(): hasher = PBKDF2PasswordHasher() row_password = uuid.<PASSWORD>().hex encoded = hasher.encode(row_password, salt="<PASSWORD>") algorithm, iterations, salt, hash_ = encoded.split("$", 3) assert salt == "test_salt" assert algorithm == "pbkdf2_sha256" assert hash_ != row_password def test_password_verify(): hasher = PBKDF2PasswordHasher() row_password = uuid.<PASSWORD>().hex encoded = hasher.encode(row_password, salt="<PASSWORD>") assert hasher.verify(row_password, encoded)
3.140625
3
et_micc_build/__init__.py
etijskens/et-micc-build
0
12789469
# -*- coding: utf-8 -*- """ Package et_micc_build ===================== Top-level package for et_micc_build. """ import et_micc_build.cli_micc_build import et_micc # et-micc and et--micc-build have identical version string, although # they are different packages. __version__ = et_micc.__version__
1.265625
1
apps/profiles/test/test_admin.py
ecoo-app/ecoo-backend
1
12789470
# TODO:FIXME: add tests for the admin pages and for the admin actions
0.90625
1
packjobs/packjobs.py
migueldiascosta/packjobs
0
12789471
#!/usr/bin/env python import os import sys import argparse from glob import glob from textwrap import dedent from collections import namedtuple __version__ = 20200612 __doc__ = """Pack multiple small jobs into large queue jobs * How it works * The script merely generates a queue job script and a (mpi-aware) python script * An outer mpirun in the queue job script places job launchers in the correct nodes * An Inner mpirun in the job launchers run the application inside each node * The "trick" here is simply to make the queue treat the inner mpi processes as if they were openmp threads of the outer mpi processes * How to use * Run ./packjobs.py -h to see all the command line options * Test run with e.g. 2 nodes, 12 procs per job, 2*24/12=4 simultaneous jobs, 1 hour: ./packjobs.py -i jobs_folder -r vasp_std -m VASP --nodes 2 --cpn 24 --ppj 12 --time 1 * Production run with e.g. 50 nodes, 4 procs per job, 50*24/4=300 simultaneous jobs, 24 hours: ./packjobs.py -i jobs_folder -r vasp_std -m VASP --nodes 50 --cpn 24 --ppj 4 --time 24 * Limitations * If subfolders are added to the job folder after the launchers start running, the new subfolders will not be considered, although this may change in the future * However, this script can be run multiple times on the same job folder, without duplications (the script tags each subfolder as "running" or "done") * After a queue job is killed or expires, you may need to clean any "running" tags with "--clean running" """ def parse_arguments(): """Use argparse to get parameters from the command line""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-V', '--version', action='version', version='%%(prog)s %s' % __version__) parser.add_argument('-i', '--input', dest='folder', type=str, help="folder containing job folders (mandatory)", required=True) parser.add_argument('-r', '--run', dest='job_cmd', type=str, help="job command (e.g. vasp_std) (mandatory)", required=True) parser.add_argument('-m', '--mod', dest='job_mod', type=str, help="app module (e.g. VASP) (mandatory)", required=True) parser.add_argument('-p', '--python-mod', dest='python_mod', type=str, help="python module (e.g. Python)", default='Python') parser.add_argument('-n', '--nodes', dest='nodes', type=int, help="number of nodes (mandatory)", required=True) parser.add_argument('-t', '--time', dest='hours', type=int, default=1, help="number of hours for qjob (default: 1)") parser.add_argument('-q', '--queue', dest='queue', type=str, default='normal', help="name of batch queue for qjob (default: normal)") parser.add_argument('-b', '--batch', dest='batch', type=str, default='pbs', help="name of batch system for qjob, currently pbs or lsf (default: pbs)") parser.add_argument('--cpn', '--cores-per-node', dest='cores_per_node', type=int, default=24, help="number of cores per node (default: 24)") parser.add_argument('--mpn', '--memory-per-node', dest='memory_per_node', type=int, default=96, help="memory per node, in GB (default: 96)") parser.add_argument('--ppj', '--procs-per-job', dest='procs_per_job', type=int, default=1, help="number of mpi processes per job (default: 1)") parser.add_argument('-d', '--dry-run', dest='dry', action='store_true', default=False, help="don't submit, only create scripts (default: false)") parser.add_argument('-f', '--force', dest='force', action='store_true', default=False, help="don't ask for confirmation when deleting files (default: false)") parser.add_argument('-c', '--clean', action='append', default=[], choices=['done', 'running', 'scripts', 'all'], help='delete previously generated file (default: false)') args = parser.parse_args() if 'all' in args.clean: args.clean.append('done') args.clean.append('running') args.clean.append('scripts') if not os.path.isdir(args.folder): print("\n Folder %s does not exist, exiting" % args.folder) sys.exit(1) if args.cores_per_node % args.procs_per_job != 0: print("\n cores_per_node must be divisible by procs_per_job") sys.exit(1) args.jobs_per_node = int(args.cores_per_node/args.procs_per_job) print("\n Requesting %s nodes, %s cores per node, using %s processes per job" % (args.nodes, args.cores_per_node, args.procs_per_job)) print("\n This means %s jobs per node, %s simultaneous jobs at any given time\n" % (args.jobs_per_node, args.jobs_per_node*args.nodes)) return args class PackJobs: __doc__ = __doc__ def __init__(self, **kwargs): """Takes keywords and maps them explicitly to class attributes""" self.nodes = kwargs.pop('nodes') self.folder = kwargs.pop('folder') self.job_cmd = kwargs.pop('job_cmd') self.job_mod = kwargs.pop('job_mod') self.python_mod = kwargs.pop('python_mod') self.hours = kwargs.pop('hours', 1) self.queue = kwargs.pop('queue', 'normal') self.batch = kwargs.pop('batch', 'pbs') self.cores_per_node = kwargs.pop('cores_per_node', 24) self.memory_per_node = kwargs.pop('memory_per_node', 96) self.procs_per_job = kwargs.pop('procs_per_job', 1) self.jobs_per_node = kwargs.pop('jobs_per_node', int(self.cores_per_node/self.procs_per_job)) self.dry = kwargs.pop('dry', False) self.force = kwargs.pop('force', False) self.clean = kwargs.pop('clean', False) if len(kwargs.keys()) > 0: self.log("don't know what to do with remaining arguments %s" % str(kwargs)) if self.batch == 'lsf': self.qjob_script_template = self.qjob_lsf_template self.qjob_sub_cmd = 'bsub <' self.qjob_stat_cmd = 'bjobs' else: self.qjob_script_template = self.qjob_pbs_template self.qjob_sub_cmd = 'qsub' self.qjob_stat_cmd = 'qstat' self.mpirun_job = '' self.qjob_script_path = '' def run(self): """Run all steps (clean, read_jobs, write_scripts, submit_jobs)""" self.clean_files() self.read_jobs() self.write_scripts() self.submit_jobs() def clean_files(self): """Clean previously generated files if requested applicable""" if 'all' in self.clean: self.log("Warning: Deleting all files (but not subfolders) in %s" % self.folder) if self.confirm(): for f in glob(os.path.join(self.folder, '*')): if os.path.isfile(f): os.remove(f) else: if 'scripts' in self.clean: self.log("Warning: Deleting any previously generated qjob and worker scripts") if self.confirm(): for qjob_script in glob(os.path.join(self.folder, 'qjob.script')): os.remove(qjob_script) for worker_py in glob(os.path.join(self.folder, 'worker*.py')): os.remove(worker_py) def read_jobs(self): """Look for jobs in job folder""" self.log("Reading from folder %s" % self.folder) Job = namedtuple('Job', ['folder', 'running', 'done']) all_jobs = sorted([Job(subfolder, os.path.isfile(os.path.join(self.folder, subfolder, 'running')), os.path.isfile(os.path.join(self.folder, subfolder, 'done'))) for subfolder in os.listdir(self.folder) if os.path.isdir(os.path.join(self.folder, subfolder))]) running_jobs = [job.folder for job in all_jobs if job.running] finished_jobs = [job.folder for job in all_jobs if job.done] unstarted_jobs = [job.folder for job in all_jobs if not job.running and not job.done] self.log("Found %s jobs, %s of them currently running, %s of them done" % (len(all_jobs), len(running_jobs), len(finished_jobs))) jobs = unstarted_jobs if 'running' in self.clean: self.log("Warning: Forcing execution of jobs tagged as running") if self.confirm(): for job in running_jobs: os.remove(os.path.join(self.folder, job, 'running')) jobs.extend(running_jobs) if 'done' in self.clean: self.log("Warning: Forcing execution of jobs tagged as done") if self.confirm(): for job in finished_jobs: os.remove(os.path.join(self.folder, job, 'done')) jobs.extend(finished_jobs) if len(jobs) > 0: self.log("Adding %s jobs" % len(jobs)) if len(jobs) < self.jobs_per_node*self.nodes: print("WARNING: with these jobs and parameters, some cores will be idle") else: self.log("No jobs left to run, exiting. You may want to use clean done and/or clean running") sys.exit(1) def write_scripts(self): """Write queue job and launcher scripts according to given parameters""" self.mpirun_job = "mpirun -host $(hostname) -np %s %s > out 2> error" % \ (self.procs_per_job, self.job_cmd) var_dict = { 'folder': self.folder, 'job_cmd': self.mpirun_job, 'job_mod': self.job_mod, 'python_mod': self.python_mod, 'nnodes': self.nodes, 'cpn': self.cores_per_node, 'mpn': self.memory_per_node, 'sjpn': self.jobs_per_node, 'ppj': self.procs_per_job, 'hours': self.hours, 'queue': self.queue, 'njobs': self.jobs_per_node*self.nodes, 'nslots': int(self.nodes*self.cores_per_node), } existing_workers = glob(os.path.join(self.folder, 'worker*.py')) worker = 'worker%s' % (len(existing_workers)+1) worker_py = worker + '.py' var_dict['worker'] = worker var_dict['worker_py'] = worker_py worker_py_path = os.path.join(self.folder, worker_py) if not self.dry: self.log("Writing %s" % worker_py_path) f = open(worker_py_path, 'w') f.write(dedent(self.worker_script_template % var_dict)) f.close() os.system("chmod +x %s" % worker_py_path) existing_qjobs = glob(os.path.join(self.folder, 'qjob*.script')) self.qjob_script_path = os.path.join(self.folder, 'qjob%s.script' % (len(existing_qjobs) + 1)) if not self.dry: self.log("Writing %s" % self.qjob_script_path) f = open(self.qjob_script_path, 'w') f.write(dedent(self.qjob_script_template % var_dict)) f.close() def submit_jobs(self): """Submit queue job""" if not self.dry: self.log("Submitting %s" % self.qjob_script_path) folder, script = os.path.split(self.qjob_script_path) os.system("cd %s; %s %s" % (folder, self.qjob_sub_cmd, script)) sys.stdout.write("\n") os.system(self.qjob_stat_cmd) def log(self, msg): """Print formatted log message""" output = " " if self.dry: output += "(dry run) " output += msg output += "\n\n" sys.stdout.write(output) def confirm(self, prompt=None, default_yes=True, abort_no=False): """Prompt for confirmation, optionally aborting execution""" if self.dry: return False if self.force: return True if prompt is None: prompt = 'Proceed?' if default_yes: prompt = '%s [%s]|%s: ' % (prompt, 'y', 'n') else: prompt = '%s [%s]|%s: ' % (prompt, 'n', 'y') while True: ask = getattr(__builtins__, 'raw_input', input) ans = ask(prompt) if not ans: return default_yes if ans not in ['y', 'Y', 'n', 'N']: print('please enter y or n.') continue if ans in ('Y', 'y'): return True if ans in ('N', 'n'): if abort_no: sys.exit(1) else: return False qjob_pbs_template = """\ #!/bin/bash #PBS -N %(worker)s #PBS -l select=%(nnodes)s:ncpus=%(cpn)s:mpiprocs=%(sjpn)s:ompthreads=%(ppj)s:mem=%(mpn)sGB #PBS -l walltime=%(hours)s:00:00 #PBS -j oe #PBS -q %(queue)s cd $PBS_O_WORKDIR module purge module load %(python_mod)s %(job_mod)s # this mpirun, combined with mpiprocs and ompthreads queue settings, # starts job launchers in the correct nodes mpirun -np %(njobs)s ./%(worker_py)s """ qjob_lsf_template = """\ #!/bin/bash #BSUB -J %(worker)s #BSUB -n %(nslots)s #BSUB -q %(queue)s #BSUB -R \"span[ptile=%(sjpn)s]\" #BSUB -R \"rusage[mem=%(mpn)s000]\" #BSUB -W %(hours)s:00 #BSUB -eo #BSUB -x module purge module load %(python_mod)s %(job_mod)s # this mpirun, combined with the span[ptile] queue setting, # starts job launchers in the correct nodes mpirun -np %(njobs)s ./%(worker_py)s """ worker_script_template = """\ #!/usr/bin/env python import os import sys import glob import argparse from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() jobs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d)]) j = rank name = os.path.splitext(os.path.basename(sys.argv[0]))[0] status = open('status.' + name + '.rank' + str(rank), 'w') while j < len(jobs): running = os.path.isfile(os.path.join(jobs[j], 'running')) done = os.path.isfile(os.path.join(jobs[j], 'done')) if not running and not done: status.write("running " + jobs[j] + "\\n") status.flush() os.chdir(jobs[j]) open('running', 'w').close() error = os.system("%(job_cmd)s") if not error: os.remove('running') open('done', 'w').close() status.write(jobs[j] + " done\\n") status.flush() else: status.write(jobs[j] + " failed\\n") status.flush() os.chdir('..') else: status.write(jobs[j] + " skipped\\n") status.flush() j += size status.write("finished\\n") status.close() """ if __name__ == "__main__": args_dict = vars(parse_arguments()) p = PackJobs(**args_dict) p.run()
2.5
2
op_search.py
Yale-LILY/QueryReformulator
3
12789472
# -*- coding: utf-8 -*- ''' Custom theano class to query the search engine. ''' import numpy as np import theano from theano import gof from theano import tensor import parameters as prm import utils import average_precision import random class Search(theano.Op): __props__ = () def __init__(self,options): self.options = options self.options['reformulated_queries'] = {} def make_node(self, x1, x2, x3, x4): assert hasattr(self, '_props'), "Your version of theano is too old to support __props__." x1 = tensor.as_tensor_variable(x1) x2 = tensor.as_tensor_variable(x2) x3 = tensor.as_tensor_variable(x3) x4 = tensor.as_tensor_variable(x4) out = [tensor.fmatrix().type(), tensor.itensor3().type(), tensor.imatrix().type(), tensor.fmatrix().type()] return theano.Apply(self, [x1, x2, x3, x4], out) def perform(self, node, inputs, output_storage): q_m = inputs[0] D_truth = inputs[1] n_iter = int(inputs[2]) is_train = int(inputs[3]) #outputs metrics = np.zeros((len(q_m), len(prm.metrics_map)), np.float32) if is_train: max_feedback_docs = prm.max_feedback_docs_train else: max_feedback_docs = prm.max_feedback_docs D_i = -2 * np.ones((len(q_m), max_feedback_docs, prm.max_words_input), np.int32) D_gt_m = np.zeros((len(q_m), prm.max_candidates), np.float32) D_id = np.zeros((len(q_m), prm.max_candidates), np.int32) # no need to retrieve extra terms in the last iteration if n_iter == prm.n_iterations - 1: extra_terms = False else: extra_terms = True # allow the search engine to cache queries only in the first iteration. if n_iter == 0: save_cache = prm.use_cache else: save_cache = False max_cand = prm.max_candidates qs = [] for i, q_lst in enumerate(self.options['current_queries']): q = [] for j, word in enumerate(q_lst): if q_m[i,j] == 1: q.append(str(word)) q = ' '.join(q) if len(q) == 0: q = 'dummy' qs.append(q) # only used to print the reformulated queries. self.options['reformulated_queries'][n_iter] = qs # always return one more candidate because one of them might be the input doc. candss = self.options['engine'].get_candidates(qs, max_cand, prm.max_feedback_docs, save_cache, extra_terms) for i, cands in enumerate(candss): D_truth_dic = {} for d_truth in D_truth[i]: if d_truth > -1: D_truth_dic[d_truth] = 0 D_id[i,:len(cands.keys())] = cands.keys() j = 0 m = 0 cand_ids = [] selected_docs = np.arange(prm.max_feedback_docs) if is_train: selected_docs = np.random.choice(selected_docs, size=prm.max_feedback_docs_train, replace=False) for k, (cand_id, (words_idx, words)) in enumerate(cands.items()): cand_ids.append(cand_id) # no need to add candidate words in the last iteration. if n_iter < prm.n_iterations - 1: # only add docs selected by sampling (if training). if k in selected_docs: words = words[:prm.max_terms_per_doc] words_idx = words_idx[:prm.max_terms_per_doc] D_i[i,m,:len(words_idx)] = words_idx # append empty strings, so the list size becomes <dim>. words = words + max(0, prm.max_words_input - len(words)) * [''] # append new words to the list of current queries. self.options['current_queries'][i] += words m += 1 if cand_id in D_truth_dic: D_gt_m[i,j] = 1. j += 1 cands_set = set(cands.keys()) if qs[i].lower() in self.options['engine'].title_id_map: input_doc_id = self.options['engine'].title_id_map[qs[i].lower()] # Remove input doc from returned docs. # This operation does not raise an error if the element is not there. cands_set.discard(input_doc_id) intersec = len(set(D_truth_dic.keys()) & cands_set) recall = intersec / max(1., float(len(D_truth_dic))) precision = intersec / max(1., float(prm.max_candidates)) metrics[i,prm.metrics_map['RECALL']] = recall metrics[i,prm.metrics_map['PRECISION']] = precision metrics[i,prm.metrics_map['F1']] = 2 * recall * precision / max(0.01, recall + precision) avg_precision = average_precision.compute(D_truth_dic.keys(), cand_ids) metrics[i,prm.metrics_map['MAP']] = avg_precision metrics[i,prm.metrics_map['LOG-GMAP']] = np.log(avg_precision + 1e-5) output_storage[0][0] = metrics output_storage[1][0] = D_i output_storage[2][0] = D_id output_storage[3][0] = D_gt_m def grad(self, inputs, output_grads): return [tensor.zeros_like(ii, dtype=theano.config.floatX) for ii in inputs]
2.296875
2
moe/moe_project.py
cgruber/make-open-easy
5
12789473
<filename>moe/moe_project.py #!/usr/bin/env python # # Copyright 2011 Google Inc. All Rights Reserved. """Objects to represent a MOE Project.""" __author__ = '<EMAIL> (<NAME>)' from moe import base from moe import config_utils from moe.translators import python_translators from moe.translators import translators from moe.translators import undo_scrubbing_translator class MoeProjectContext(object): """A MoeProjectContext comprises the objects to do stuff with a project. Most MOE apps will only have one MoeProjectContext in their runtime. But they might, and that's why MoeProjectContext is not a global but MoeRun is. """ def __init__(self, config, db): self.config = config self.db = db self.translators = MakeTranslators( config.config_json.get('translators', []), self) self.internal_repository, self.internal_codebase_creator = ( config.internal_repository_config.MakeRepository()) self.public_repository, self.public_codebase_creator = ( config.public_repository_config.MakeRepository()) _SCRUBBING_TRANSLATOR_CONFIG_KEYS = [ u'from_project_space', u'to_project_space', u'scrubber_config', u'type', ] _TRANSLATOR_CONFIG_KEYS = [ u'from_project_space', u'to_project_space', u'type', ] def MakeTranslators(translators_config, project): """Construct the Translators from their config. Args: translators_config: array of dictionaries (of the sort that come from JSON) project: MoeProjectContext Returns: list of translators.Translator """ result = [] dependent_scrubber_configs = [] for config_json in translators_config: type_arg = config_json.get(u'type') if not type_arg: raise base.Error('Translator config requires a "type"') if type_arg == u'scrubber': config_utils.CheckJsonKeys('translator_config', config_json, _SCRUBBING_TRANSLATOR_CONFIG_KEYS) result.append(translators.ScrubberInvokingTranslator( config_json.get('from_project_space'), config_json.get('to_project_space'), config_json.get('scrubber_config'))) continue if type_arg == u'python_2to3': config_utils.CheckJsonKeys('translator_config', config_json, _TRANSLATOR_CONFIG_KEYS) result.append(python_translators.TwoToThreeTranslator( config_json.get('from_project_space'), config_json.get('to_project_space'))) continue if type_arg == u'python_3to2': config_utils.CheckJsonKeys('translator_config', config_json, _TRANSLATOR_CONFIG_KEYS) result.append(python_translators.ThreeToTwoTranslator( config_json.get('from_project_space'), config_json.get('to_project_space'))) continue if type_arg == u'identity': config_utils.CheckJsonKeys('translator_config', config_json, _TRANSLATOR_CONFIG_KEYS) result.append(translators.IdentityTranslator( config_json.get('from_project_space'), config_json.get('to_project_space'))) continue if type_arg in set([u'undo_scrubbing']): dependent_scrubber_configs.append(config_json) continue raise base.Error('Translator type "%s" unknown' % type_arg) # TODO(dbentley): new translator type that uses project arg for config_json in dependent_scrubber_configs: # These are scrubbers that are dependent on other translators. # We can only process them once the first round of translators are # constructed. type_arg = config_json.get(u'type') if type_arg == u'undo_scrubbing': # The undo scrubber undoes a previous scrubbing translator. Which # previous translator? The one that has the opposite from/to project # spaces as this one. config_utils.CheckJsonKeys('translator_config', config_json, _TRANSLATOR_CONFIG_KEYS) forward_translator = None for t in result: if (t.ToProjectSpace() == config_json.get('from_project_space') and t.FromProjectSpace() == config_json.get('to_project_space')): forward_translator = t break else: raise base.Error( 'Could find no forward_translator from %s to %s to undo' % (config_json.get('to_project_space'), config_json.get('from_project_space'))) result.append(undo_scrubbing_translator.UndoScrubbingTranslator( config_json.get('from_project_space'), config_json.get('to_project_space'), project, forward_translator )) return result
2.5
2
print_nightscout_profiles.py
viq/print_nightscout_profiles
0
12789474
#!/usr/bin/env python """ Fetch profile changes from nightscout and display their contents """ # Make it work on both python 2 and 3 # Probably a bit wide, but I'm still learning from __future__ import absolute_import, with_statement, print_function, unicode_literals # Built-in modules import argparse from datetime import datetime import json import logging # External modules import requests from texttable import Texttable logging.basicConfig(level=logging.INFO) TIMED_ENTRIES = ['carbratio', 'sens', 'basal', 'target_low', 'target_high'] def normalize(profile, entry): """ Set entry to blank if it doesn't exist, thus avoiding KeyError """ try: if profile[entry]: pass except KeyError: profile[entry] = '' def normalize_entry(entry): """ Clean up an entry before further processing """ logging.debug("Normalizing entry: %s", entry) try: if entry["timeAsSeconds"]: pass except KeyError: entry_timeasseconds = datetime.strptime(entry["time"], "%H:%M") entry[ "timeAsSeconds"] = 3600 * entry_timeasseconds.hour + 60 * entry_timeasseconds.minute try: if entry["time"]: pass except KeyError: entry_hour = int(entry['timeAsSeconds'] / 3600) entry_minute = int(entry['timeAsSeconds'] % 60) entry["time"] = str(entry_hour).rjust( 2, '0') + ":" + str(entry_minute).rjust(2, '0') entry["start"] = entry["time"] + ":00" entry["minutes"] = int(entry["timeAsSeconds"]) / 60 def get_profile_switches(nightscout, token, date_from, count): """ Get list of profile switch events """ p_url = ( nightscout + "/api/v1/treatments.json?find[eventType][$eq]=Profile%20Switch&count=" + count + "&find[created_at][$gte]=" + date_from) if token is not None: p_url = p_url + "&token=" + token p_switch = requests.get(p_url).json() logging.debug("Profiles: %s", p_switch) for profile in p_switch: print("Profile named {} enabled at {} for duration {}".format( profile['profile'], profile['created_at'], profile['duration'])) extracted_profile = json.loads(profile['profileJson']) extracted_profile['name'] = profile['profile'] for key in ['timezone', 'delay', 'startDate']: normalize(extracted_profile, key) for entry_type in TIMED_ENTRIES: for entry in extracted_profile[entry_type]: normalize_entry(entry) display_text(extracted_profile) def display_text(p_data): """ Display profile in text format """ # p_data = profile_data[0]["store"][profile_name] logging.debug("Data keys: %s", p_data.keys()) # Single value data singletons = Texttable() singletons.set_deco(Texttable.HEADER) singletons.set_cols_align(["c", "c", "c", "c", "c", "c"]) singletons.add_rows([ ["Profile name", "Timezone", "Units", "DIA", "Delay", "Start date"], [ p_data["name"], p_data["timezone"], p_data["units"], p_data["dia"], p_data["delay"], p_data["startDate"], ], ]) print(singletons.draw() + "\n") times = {} tgt_low = {v["time"]: v["value"] for v in p_data["target_low"]} tgt_high = {v["time"]: v["value"] for v in p_data["target_high"]} carb_ratio = {v["time"]: v["value"] for v in p_data["carbratio"]} sens = {v["time"]: v["value"] for v in p_data["sens"]} basal = {v["time"]: v["value"] for v in p_data["basal"]} logging.debug(tgt_high, tgt_low, carb_ratio, sens, basal) for (time, basal) in basal.items(): times.setdefault(time, {}) times[time]["basal"] = basal for (time, sens) in sens.items(): times.setdefault(time, {}) times[time]["sens"] = sens for (time, c_r) in carb_ratio.items(): times.setdefault(time, {}) times[time]["carbratio"] = c_r for (time, tgt_h) in tgt_high.items(): times.setdefault(time, {}) times[time]["tgt_high"] = tgt_h for (time, tgt_l) in tgt_low.items(): times.setdefault(time, {}) times[time]["tgt_low"] = tgt_l logging.debug("Times: %s", times) times_list = [["Time", "Basal", "ISF", "CR", "Target Low", "Target High"]] for time in sorted(times.keys()): times_list.append([ time, times[time].get("basal", ""), times[time].get("sens", ""), times[time].get("carbratio", ""), times[time].get("tgt_low", ""), times[time].get("tgt_high", ""), ]) times_table = Texttable() times_table.set_cols_align(["c", "c", "c", "c", "c", "c"]) times_table.add_rows(times_list) print(times_table.draw() + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get nightscout profile.") parser.add_argument( "--nightscout", help="Nightscout URL", required=True, nargs="?", const="http://127.0.0.1:1337", default="http://127.0.0.1:1337", ) parser.add_argument("--token", help="Authenticaton token") parser.add_argument("--from", help="Starting date to look for profile change events", dest="date_from") parser.add_argument("--count", help="Number of profiles to display") logging.debug(vars(parser.parse_args())) # https://stackoverflow.com/questions/4575747/get-selected-subcommand-with-argparse/44948406#44948406 # I have no idea what it does, but it seems to do the trick kwargs = vars(parser.parse_args()) get_profile_switches(**kwargs)
2.546875
3
duct/sources/redis.py
geostarling/duct
12
12789475
<reponame>geostarling/duct """ .. module:: redis :platform: Unix :synopsis: A source module for redis stats .. moduleauthor:: <NAME> <<EMAIL>> """ from zope.interface import implementer from twisted.internet import defer from twisted.python import log from duct.interfaces import IDuctSource from duct.objects import Source from duct.aggregators import Counter @implementer(IDuctSource) class Queues(Source): """Query llen from redis-cli **Configuration arguments:** :param queue: Queue name (defaults to 'celery', just because) :type queue: str. :param db: DB number :type db: int. :param clipath: Path to redis-cli (default: /usr/bin/redis-cli) :type clipath: str. **Metrics:** :(service_name): Queue length :(service_name): Queue rate """ ssh = True def __init__(self, *a, **kw): Source.__init__(self, *a, **kw) self.queue = self.config.get('queue', 'celery') self.db = int(self.config.get('db', 0)) self.clipath = self.config.get('clipath', '/usr/bin/redis-cli') @defer.inlineCallbacks def get(self): out, err, code = yield self.fork(self.clipath, args=('-n', str(self.db), 'llen', self.queue,)) if code == 0: val = int(out.strip('\n').split()[-1]) defer.returnValue([ self.createEvent('ok', '%s queue length' % self.queue, val), self.createEvent('ok', 'Queue rate', val, prefix='rate', aggregation=Counter) ]) else: err = 'Error running %s: %s' % (self.clipath, repr(err)) log.msg(err) defer.returnValue(self.createEvent('critical', err, None))
2.03125
2
baseframe/__init__.py
sauravsrijan/pydocstyle-test
0
12789476
<filename>baseframe/__init__.py # -*- coding: utf-8 -*- from __future__ import absolute_import import types import json import gettext from pytz import timezone, UTC from pytz.tzinfo import BaseTzInfo from speaklater import is_lazy_string import six from furl import furl import pycountry from flask import Blueprint, request, current_app from flask.json import JSONEncoder as JSONEncoderBase from flask_assets import Environment, Bundle from flask_caching import Cache from flask_babelex import Babel, Domain from coaster.assets import split_namespec from coaster.auth import current_auth, request_has_auth from coaster.sqlalchemy import RoleAccessProxy, MarkdownComposite try: from flask_debugtoolbar import DebugToolbarExtension except ImportError: DebugToolbarExtension = None try: from flask_debugtoolbar_lineprofilerpanel.profile import line_profile except ImportError: line_profile = None from ._version import * # NOQA from .assets import assets, Version from . import translations __all__ = ['baseframe', 'baseframe_js', 'baseframe_css', 'assets', 'Version', '_', '__'] # NOQA networkbar_cache = Cache(with_jinja2_ext=False) asset_cache = Cache(with_jinja2_ext=False) cache = Cache() babel = Babel() if DebugToolbarExtension is not None: # pragma: no cover toolbar = DebugToolbarExtension() else: # pragma: no cover toolbar = None THEME_FILES = { 'bootstrap3': { 'ajaxform.html.jinja2': 'baseframe/bootstrap3/ajaxform.html.jinja2', 'autoform.html.jinja2': 'baseframe/bootstrap3/autoform.html.jinja2', 'delete.html.jinja2': 'baseframe/bootstrap3/delete.html.jinja2', 'message.html.jinja2': 'baseframe/bootstrap3/message.html.jinja2', 'redirect.html.jinja2': 'baseframe/bootstrap3/redirect.html.jinja2' }, 'mui': { 'ajaxform.html.jinja2': 'baseframe/mui/ajaxform.html.jinja2', 'autoform.html.jinja2': 'baseframe/mui/autoform.html.jinja2', 'delete.html.jinja2': 'baseframe/mui/delete.html.jinja2', 'message.html.jinja2': 'baseframe/mui/message.html.jinja2', 'redirect.html.jinja2': 'baseframe/mui/redirect.html.jinja2' } } baseframe_translations = Domain(translations.__path__[0], domain='baseframe') _ = baseframe_translations.gettext __ = baseframe_translations.lazy_gettext class JSONEncoder(JSONEncoderBase): """ Custom JSON encoder that adds support to types that are not supported by Flask's JSON encoder. Eg: lazy_gettext """ def default(self, o): if is_lazy_string(o): return six.text_type(o) if isinstance(o, BaseTzInfo): return o.zone if isinstance(o, RoleAccessProxy): return dict(o) if isinstance(o, furl): return o.url if isinstance(o, types.GeneratorType): return list(o) if isinstance(o, MarkdownComposite): return {'text': o.text, 'html': o.html} return super(JSONEncoder, self).default(o) def _select_jinja_autoescape(filename): """ Returns `True` if autoescaping should be active for the given template name. """ if filename is None: return False return filename.endswith(('.html', '.htm', '.xml', '.xhtml', '.html.jinja', '.html.jinja2', '.xml.jinja', '.xml.jinja2', '.xhtml.jinja', '.xhtml.jinja2')) class BaseframeBlueprint(Blueprint): def init_app(self, app, requires=[], ext_requires=[], bundle_js=None, bundle_css=None, assetenv=None, theme='bootstrap3'): """ Initialize an app and load necessary assets. :param requires: List of required assets. If an asset has both .js and .css components, both will be added to the requirement list. Loaded assets will be minified and concatenated into the app's ``static/js`` and ``static/css`` folders. If an asset has problems with either of these, it should be loaded pre-bundled via the ``bundle_js`` and ``bundle_css`` parameters. :param ext_requires: Same as requires, but will be loaded from an external cookiefree server if ``ASSET_SERVER`` is in config, before the reqular requires list. Assets are loaded as part of ``requires`` if there is no asset server :param bundle_js: Bundle of additional JavaScript :param bundle_css: Bundle of additional CSS :param assetenv: Environment for assets (in case your app needs a custom environment) """ # Since Flask 0.11, templates are no longer auto reloaded. # Setting the config alone doesn't seem to work, so we explicitly # set the jinja environment here. if app.config.get('TEMPLATES_AUTO_RELOAD') or ( app.config.get('TEMPLATES_AUTO_RELOAD') is None and app.config.get('DEBUG')): app.jinja_env.auto_reload = True app.jinja_env.add_extension('jinja2.ext.do') app.jinja_env.autoescape = _select_jinja_autoescape if app.subdomain_matching: # Does this app want a static subdomain? (Default: yes, 'static'). # Apps can disable this by setting STATIC_SUBDOMAIN = None. # Since Werkzeug internally uses '' instead of None, but takes None # as the default parameter, we remap '' to None in our config subdomain = app.config.get('STATIC_SUBDOMAIN', 'static') or None if subdomain: for rule in app.url_map.iter_rules('static'): # For safety, seek out and update the static route added by Flask. # Do not touch additional static routes added by the app or other # blueprints if not rule.subdomain: # Will be '' not None rule.subdomain = subdomain rule.refresh() break else: subdomain = None ignore_js = ['!jquery.js'] ignore_css = [] ext_js = [] ext_css = [] if app.config.get('ASSET_SERVER'): for itemgroup in ext_requires: sub_js = [] sub_css = [] if not isinstance(itemgroup, (list, tuple)): itemgroup = [itemgroup] for item in itemgroup: name, spec = split_namespec(item) for alist, ilist, ext in [(sub_js, ignore_js, '.js'), (sub_css, ignore_css, '.css')]: if name + ext in assets: alist.append(name + ext + six.text_type(spec)) ilist.append('!' + name + ext) if sub_js: ext_js.append(sub_js) if sub_css: ext_css.append(sub_css) else: requires = [item for itemgroup in ext_requires for item in (itemgroup if isinstance(itemgroup, (list, tuple)) else [itemgroup])] + requires app.config['ext_js'] = ext_js app.config['ext_css'] = ext_css assets_js = [] assets_css = [] for item in requires: name, spec = split_namespec(item) for alist, ext in [(assets_js, '.js'), (assets_css, '.css')]: if name + ext in assets: alist.append(name + ext + six.text_type(spec)) js_all = Bundle(assets.require(*(ignore_js + assets_js)), filters='uglipyjs', output='js/baseframe-packed.js') css_all = Bundle(assets.require(*(ignore_css + assets_css)), filters=['cssrewrite', 'cssmin'], output='css/baseframe-packed.css') if bundle_js: js_all = Bundle(js_all, bundle_js) if bundle_css: css_all = Bundle(css_all, bundle_css) if assetenv is None: app.assets = Environment(app) else: app.assets = assetenv app.assets.register('js_jquery', assets.require('jquery.js')) app.assets.register('js_all', js_all) app.assets.register('css_all', css_all) app.register_blueprint(self, static_subdomain=subdomain) # Optional config for a client app to use a manifest file # to load fingerprinted assets # If used with webpack, the client app is expected to specify its own webpack.config.js # Set `ASSETS_MANIFEST_PATH` in `app.config` to the path for `manifest.json`. # Eg: "static/build/manifest.json" # Set `ASSET_BASE_PATH` in `app.config` to the path in which the compiled assets are present. # Eg: "static/build" if app.config.get('ASSET_MANIFEST_PATH'): # Load assets into config from a manifest file with app.open_resource(app.config['ASSET_MANIFEST_PATH']) as f: asset_bundles = json.loads(f.read()) if app.config.get('assets'): raise ValueError("Loading assets via a manifest file needs the `ASSETS` config key to be unused") app.config['assets'] = {} for asset_key, asset_path in asset_bundles['assets'].items(): app.config['assets'][asset_key] = asset_path app.config.setdefault('CACHE_KEY_PREFIX', 'flask_cache_' + app.name + '/') nwcacheconfig = dict(app.config) nwcacheconfig['CACHE_KEY_PREFIX'] = 'networkbar_' if 'CACHE_TYPE' not in nwcacheconfig: nwcacheconfig['CACHE_TYPE'] = 'simple' acacheconfig = dict(app.config) acacheconfig['CACHE_KEY_PREFIX'] = 'asset_' if 'CACHE_TYPE' not in acacheconfig: acacheconfig['CACHE_TYPE'] = 'simple' networkbar_cache.init_app(app, config=nwcacheconfig) asset_cache.init_app(app, config=acacheconfig) cache.init_app(app) babel.init_app(app) if toolbar is not None: if 'DEBUG_TB_PANELS' not in app.config: app.config['DEBUG_TB_PANELS'] = [ 'flask_debugtoolbar.panels.versions.VersionDebugPanel', 'flask_debugtoolbar.panels.timer.TimerDebugPanel', 'flask_debugtoolbar.panels.headers.HeaderDebugPanel', 'flask_debugtoolbar.panels.request_vars.RequestVarsDebugPanel', 'flask_debugtoolbar.panels.config_vars.ConfigVarsDebugPanel', 'flask_debugtoolbar.panels.template.TemplateDebugPanel', 'flask_debugtoolbar.panels.sqlalchemy.SQLAlchemyDebugPanel', 'flask_debugtoolbar.panels.logger.LoggingPanel', 'flask_debugtoolbar.panels.route_list.RouteListDebugPanel', 'flask_debugtoolbar.panels.profiler.ProfilerDebugPanel', ] if line_profile is not None: app.config['DEBUG_TB_PANELS'].append( 'flask_debugtoolbar_lineprofilerpanel.panels.LineProfilerPanel') toolbar.init_app(app) app.json_encoder = JSONEncoder # If this app has a Lastuser extension registered, give it a cache lastuser = getattr(app, 'extensions', {}).get('lastuser') if lastuser and hasattr(lastuser, 'init_cache'): lastuser.init_cache(app=app, cache=cache) app.config['tz'] = timezone(app.config.get('TIMEZONE', 'UTC')) if theme not in THEME_FILES: raise ValueError("Unrecognised theme: %s" % theme) app.config['theme'] = theme if 'NETWORKBAR_DATA' not in app.config: app.config['NETWORKBAR_DATA'] = 'https://api.hasgeek.com/1/networkbar/networkbar.json' if isinstance(app.config.get('NETWORKBAR_DATA'), (list, tuple)): app.config['NETWORKBAR_LINKS'] = app.config['NETWORKBAR_DATA'] app.config.setdefault('RECAPTCHA_DATA_ATTRS', {}) app.config['RECAPTCHA_DATA_ATTRS'].setdefault('callback', 'onInvisibleRecaptchaSubmit') app.config['RECAPTCHA_DATA_ATTRS'].setdefault('size', 'invisible') def register(self, app, options, first_registration=False): """ Called by :meth:`Flask.register_blueprint` to register all views and callbacks registered on the blueprint with the application. Creates a :class:`.BlueprintSetupState` and calls each :meth:`record` callback with it. :param app: The application this blueprint is being registered with. :param options: Keyword arguments forwarded from :meth:`~Flask.register_blueprint`. :param first_registration: Whether this is the first time this blueprint has been registered on the application. """ self._got_registered_once = True state = self.make_setup_state(app, options, first_registration) if self.has_static_folder: state.add_url_rule( self.static_url_path + '/<path:filename>', view_func=self.send_static_file, endpoint='static', subdomain=options.get('static_subdomain')) for deferred in self.deferred_functions: deferred(state) baseframe = BaseframeBlueprint('baseframe', __name__, static_folder='static', static_url_path='/_baseframe', template_folder='templates') @babel.localeselector def get_locale(): # If this app and request have a user that specifies a locale, use it user = current_auth.actor # Use 'actor' instead of 'user' to support anon users if user is not None and hasattr(user, 'locale') and user.locale: return user.locale # Otherwise try to guess the language from the user accept # header the browser transmits. We support a few in this # example. The best match wins. # FIXME: Do this properly. Don't use a random selection of languages return request.accept_languages.best_match(['de', 'fr', 'es', 'hi', 'te', 'ta', 'kn', 'ml', 'en']) or 'en' @babel.timezoneselector def get_timezone(): # If this app and request have a user, return user's timezone, # else return app default timezone if current_auth.actor is not None: # Use 'actor' instead of 'user' to support anon users user = current_auth.actor if hasattr(user, 'tz'): return user.tz elif hasattr(user, 'timezone'): return timezone(user.timezone) return current_app.config.get('tz') or UTC def localized_country_list(): """ Returns a list of country codes (ISO3166-1 alpha-2) and country names, localized to the user's locale as determined by :func:`get_locale`. The localized list is cached for 24 hours. """ return _localized_country_list_inner(get_locale()) @cache.memoize(timeout=86400) def _localized_country_list_inner(locale): """ Inner function supporting :func:`localized_country_list`. """ if locale == 'en': countries = [(country.name, country.alpha_2) for country in pycountry.countries] else: pycountry_locale = gettext.translation('iso3166-1', pycountry.LOCALES_DIR, languages=[locale]) if six.PY2: countries = [(pycountry_locale.gettext(country.name).decode('utf-8'), country.alpha_2) for country in pycountry.countries] else: countries = [(pycountry_locale.gettext(country.name), country.alpha_2) for country in pycountry.countries] countries.sort() return [(code, name) for (name, code) in countries] def localize_timezone(datetime, tz=None): """ Convert a datetime into the user's timezone, or into the specified timezone. Naive datetimes are assumed to be in UTC. """ if not datetime.tzinfo: datetime = UTC.localize(datetime) if not tz: tz = get_timezone() if isinstance(tz, six.string_types): tz = timezone(tz) return datetime.astimezone(tz) @baseframe.after_app_request def process_response(response): if request.endpoint in ('static', 'baseframe.static'): if 'Access-Control-Allow-Origin' not in response.headers: # This is required for webfont resources # Note: We do not serve static assets in production, nginx does. # That means this piece of code will never be called in production. response.headers['Access-Control-Allow-Origin'] = '*' if 'Vary' in response.headers: vary_values = [item.strip() for item in response.headers['Vary'].split(',')] if 'Accept-Language' not in vary_values: vary_values.append('Accept-Language') if 'Cookie' not in vary_values: vary_values.append('Cookie') response.headers['Vary'] = ', '.join(vary_values) else: response.headers['Vary'] = 'Accept-Language, Cookie' # Prevent pages from being placed in an iframe. If the response already # set has a value for this option, let it pass through if 'X-Frame-Options' in response.headers: frameoptions = response.headers.get('X-Frame-Options') if not frameoptions or frameoptions == 'ALLOW': # 'ALLOW' is an unofficial signal from the app to Baseframe. # It signals us to remove the header and not set a default response.headers.pop('X-Frame-Options') else: if request_has_auth() and getattr(current_auth, 'login_required', False): # Protect only login_required pages from appearing in frames response.headers['X-Frame-Options'] = 'SAMEORIGIN' # In memoriam. http://www.gnuterrypratchett.com/ response.headers['X-Clacks-Overhead'] = 'GNU Terry Pratchett' return response # Replace gettext handlers for imports b_ = _ b__ = __ from flask_babelex import gettext as _, lazy_gettext as __ from .utils import * # NOQA from .views import * # NOQA from .errors import * # NOQA from .filters import * # NOQA # Deprecated imports from .deprecated import * # NOQA
1.710938
2
checksum_utils.py
piyushkumar2903/python-utils
0
12789477
import hashlib import logging import os import shutil import sys LOGGER = logging.getLogger() _MISSING_FILE_PATH_MSG = "Missing parameter file_path: %s" def generate_sha256_checksum(file_path): ''' Purpose: Calculate the SHA256 checksum of a given file Parameters: Path to file Returns: The SHA256 checksum or None if something went wrong during calculation ''' if not file_path \ or not os.path.isfile(file_path): LOGGER.debug(_MISSING_FILE_PATH_MSG, str(file_path)) return None sha_hash = hashlib.sha256() buffer = 4096 with open(file_path, 'rb') as sha_file: while True: data = sha_file.read(buffer) if not data: break sha_hash.update(data) return sha_hash.hexdigest() def generate_md5_checksum(file_path): ''' Purpose: Will calculate a file's checksum (md5) Returns: either False or the MD5 checksum of the file Parameters: path to file ''' if not file_path: LOGGER.debug(_MISSING_FILE_PATH_MSG, str(file_path)) return None checksum_readable = "" if os.path.isfile(file_path): with open(file_path, mode='rb') as checksum_file: checksum = hashlib.md5() for buf in iter(partial(checksum_file.read, 128), b''): checksum.update(buf) checksum_readable = checksum.hexdigest() else: return None return checksum_readable
3.671875
4
evalutils/evalutils.py
HolyGuacamole/evalutils
0
12789478
# -*- coding: utf-8 -*- import json import logging from abc import ABC, abstractmethod from pathlib import Path from typing import Tuple, Dict, Set, Callable from warnings import warn from pandas import DataFrame, merge, Series, concat from .exceptions import FileLoaderError, ValidationError, ConfigurationError from .io import first_int_in_filename_key, FileLoader, CSVLoader from .validators import DataFrameValidator logger = logging.getLogger(__name__) class BaseEvaluation(ABC): def __init__( self, *, ground_truth_path: Path = Path("/usr/src/evaluation/ground-truth/"), predictions_path: Path = Path("/input/"), file_sorter_key: Callable = first_int_in_filename_key, file_loader: FileLoader, validators: Tuple[DataFrameValidator, ...], join_key: str = None, aggregates: Set[str] = { "mean", "std", "min", "max", "25%", "50%", "75%", "count", "uniq", "freq", }, output_file: Path = Path("/output/metrics.json"), ): self._ground_truth_path = ground_truth_path self._predictions_path = predictions_path self._file_sorter_key = file_sorter_key self._file_loader = file_loader self._validators = validators self._join_key = join_key self._aggregates = aggregates self._output_file = output_file self._ground_truth_cases = DataFrame() self._predictions_cases = DataFrame() self._cases = DataFrame() self._case_results = DataFrame() self._aggregate_results = {} super().__init__() if isinstance(self._file_loader, CSVLoader) and self._join_key is None: raise ConfigurationError( f"You must set a `join_key` when using {self._file_loader}." ) @property def _metrics(self): return { "case": self._case_results.to_dict(), "aggregates": self._aggregate_results, } def evaluate(self): self.load() self.validate() self.merge_ground_truth_and_predictions() self.cross_validate() self.score() self.save() def load(self): self._ground_truth_cases = self._load_cases( folder=self._ground_truth_path ) self._predictions_cases = self._load_cases( folder=self._predictions_path ) def _load_cases(self, *, folder: Path) -> DataFrame: cases = None for f in sorted(folder.glob("**/*"), key=self._file_sorter_key): try: new_cases = self._file_loader.load(fname=f) except FileLoaderError: logger.warning( f"Could not load {f.name} using {self._file_loader}." ) else: if cases is None: cases = [new_cases] else: cases.append(new_cases) if cases is None: raise FileLoaderError( f"Could not load and files in {folder} with " f"{self._file_loader}." ) return DataFrame(cases) def validate(self): self._validate_data_frame(df=self._ground_truth_cases) self._validate_data_frame(df=self._predictions_cases) def _validate_data_frame(self, *, df: DataFrame): for validator in self._validators: validator.validate(df=df) @abstractmethod def merge_ground_truth_and_predictions(self): pass @abstractmethod def cross_validate(self): pass def _raise_missing_predictions_error(self, *, missing=None): if missing is not None: message = ( "Predictions missing: you did not submit predictions for " f"{missing}. Please try again." ) else: message = ( "Predictions missing: you did not submit enough predictions, " "please try again." ) raise ValidationError(message) def _raise_extra_predictions_error(self, *, extra=None): if extra is not None: message = ( "Too many predictions: we do not have the ground truth data " f"for {extra}. Please try again." ) else: message = ( "Too many predictions: you submitted too many predictions, " "please try again." ) raise ValidationError(message) @abstractmethod def score(self): pass # noinspection PyUnusedLocal @staticmethod def score_case(*, idx: int, case: DataFrame) -> Dict: return {} def score_aggregates(self) -> Dict: aggregate_results = {} for col in self._case_results.columns: aggregate_results[col] = self.aggregate_series( series=self._case_results[col] ) return aggregate_results def aggregate_series(self, *, series: Series) -> Dict: summary = series.describe() valid_keys = [a for a in self._aggregates if a in summary] series_summary = {} for k in valid_keys: value = summary[k] # % in keys could cause problems when looking up values later key = k.replace("%", "pc") try: json.dumps(value) except TypeError: logger.warning( f"Could not serialize {key}: {value} as json, " f"so converting {value} to int." ) value = int(value) series_summary[key] = value return series_summary def save(self): self.write_metrics_json() def write_metrics_json(self): with open(self._output_file, "w") as f: f.write(json.dumps(self._metrics)) class ClassificationEvaluation(BaseEvaluation): """ ClassificationEvaluations have the same number of predictions as the number of ground truth cases. These can be things like, what is the stage of this case, or segment some things in this case. """ def merge_ground_truth_and_predictions(self): if self._join_key: kwargs = {"on": self._join_key} else: kwargs = {"left_index": True, "right_index": True} self._cases = merge( left=self._ground_truth_cases, right=self._predictions_cases, indicator=True, how="outer", suffixes=("_ground_truth", "_prediction"), **kwargs, ) def cross_validate(self): missing = [p for _, p in self._cases.iterrows() if p["_merge"] == "left_only"] if missing: if self._join_key: missing = [p[self._join_key] for p in missing] self._raise_missing_predictions_error(missing=missing) extra = [p for _, p in self._cases.iterrows() if p["_merge"] == "right_only"] if extra: if self._join_key: extra = [p[self._join_key] for p in extra] self._raise_extra_predictions_error(extra=extra) def score(self): self._case_results = DataFrame() for idx, case in self._cases.iterrows(): self._case_results = self._case_results.append( self.score_case(idx=idx, case=case), ignore_index=True ) self._aggregate_results = self.score_aggregates() class Evaluation(ClassificationEvaluation): """ Legacy class, you should use ClassificationEvaluation instead. """ def __init__(self, *args, **kwargs): warn( ( "The Evaluation class is deprecated, " "please use ClassificationEvaluation instead" ), DeprecationWarning ) super().__init__(*args, **kwargs) class DetectionEvaluation(BaseEvaluation): """ DetectionEvaluations have a different number of predictions from the number of ground truth annotations. An example would be detecting lung nodules in a CT volume, or malignant cells in a pathology slide. """ def merge_ground_truth_and_predictions(self): self._cases = concat( [self._ground_truth_cases, self._predictions_cases], keys=["ground_truth", "predictions"] ) def cross_validate(self): expected_keys = set(self._ground_truth_cases[self._join_key]) submitted_keys = set(self._predictions_cases[self._join_key]) missing = expected_keys - submitted_keys if missing: self._raise_missing_predictions_error(missing=missing) extra = submitted_keys - expected_keys if extra: self._raise_extra_predictions_error(extra=extra) def score(self): cases = set(self._ground_truth_cases[self._join_key]) self._case_results = DataFrame() for idx, case in enumerate(cases): self._case_results = self._case_results.append( self.score_case( idx=idx, case=self._cases.loc[self._cases[self._join_key] == case], ), ignore_index=True ) self._aggregate_results = self.score_aggregates() def score_aggregates(self): aggregate_results = super().score_aggregates() totals = self._case_results.sum() for s in totals.index: aggregate_results[s]["sum"] = totals[s] tp = aggregate_results["true_positives"]["sum"] fp = aggregate_results["false_positives"]["sum"] fn = aggregate_results["false_negatives"]["sum"] aggregate_results["precision"] = tp / (tp + fp) aggregate_results["recall"] = tp / (tp + fn) aggregate_results["f1_score"] = 2 * tp / ((2 * tp) + fp + fn) return aggregate_results
2.09375
2
snakewm/apps/system/exit snakewm/__init__.py
Admicos/snakeware
0
12789479
import pygame def load(manager, params): return pygame.quit()
1.679688
2
hackerrank/4. sets/4.py
Eurydia/Xian-assignment
0
12789480
<reponame>Eurydia/Xian-assignment n = int(input().rstrip()) s = set() for _ in range(n): country = input().rstrip() s.add(country) print(len(s))
3.375
3
provarme_dashboard/migrations/0011_merge_20190626_1024.py
arferreira/dropazul_app
0
12789481
# Generated by Django 2.0.5 on 2019-06-26 10:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('provarme_dashboard', '0009_order'), ('provarme_dashboard', '0010_auto_20190625_2058'), ] operations = [ ]
1.296875
1
bot/botmain.py
TagesenergieBot/Tagesenergie-Twitterbot
0
12789482
<reponame>TagesenergieBot/Tagesenergie-Twitterbot<gh_stars>0 import tweepy from bot import timetool, loggingservice, grabber from secret import keys bot_username = 'Tagesenergie-Twitterbot' logfile_name = bot_username + ".log" def create_tweet(): """Creates the text of the tweet.""" try: text = "Die Tagesenergie-Werte vom " + timetool.get_date() text = text + "\nMagie-O-Meter: " + grabber.get_magicvalue() text = text + "\nEnergie Impulswert: " + grabber.get_energyimpulsvalue() text = text + "\nBewusstwerdungsindex: " + grabber.get_consiousvalue() except AttributeError as ae: loggingservice.log(repr(ae), logfile_name) text = grabber.get_errortext() return text def tweet(text): """Send out the text as a tweet.""" # Twitter authentication auth = tweepy.OAuthHandler(keys.CONSUMER_KEY, keys.CONSUMER_SECRET) auth.set_access_token(keys.ACCESS_TOKEN, keys.ACCESS_SECRET) api = tweepy.API(auth) # Send the tweet and log success or failure try: api.update_status(text) except tweepy.error.TweepError as e: loggingservice.log(repr(e), logfile_name) else: loggingservice.log("Tweeted:\n" + text + "\n", logfile_name) if __name__ == "__main__": tweet_text = create_tweet() tweet(tweet_text)
2.578125
3
deepforest/_version.py
ethanwhite/DeepForest-pytorch
0
12789483
__version__ = '__version__ = '0.1.43''
1.0625
1
Plots.py
airanmehr/Utils
0
12789484
<filename>Plots.py ''' Copyleft May 11, 2016 <NAME>, PhD Student, Bafna Lab, UC San Diego, Email: <EMAIL> ''' from __future__ import print_function import matplotlib as mpl import numpy as np import pandas as pd import pylab as plt import seaborn as sns import UTILS.Util as utl import UTILS.Hyperoxia as htl from UTILS import * def setStyle(style="darkgrid", lw=2, fontscale=1, fontsize=10): sns.axes_style(style) mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size': fontsize}); mpl.rc('text', usetex=True) sns.set_context(font_scale=fontscale, rc={"lines.linewidth": lw}) class PLOS: max_width = 7.5 min_width = 2.6 max_height = 8.75 dpi = 300 extention = 'tiff' @staticmethod def get_figsize(width=None, height=None): if width is not None: width = min(width, PLOS.max_width) return (width, 2. / 3 * width) else: return (6, 4) def get_axis_limits(ax, upper=True): return ax.get_xlim()[(0, 1)[upper]], ax.get_ylim()[(0, 1)[upper]] def annotate(comment, loc=1, fontsize=26, xpad=0.05, ypad=0.05, ax=None, axtoplot=None): """ Args: comment: text """ if ax is None: ax = plt.gca() if axtoplot is None: axtoplot = ax xrang = getAxRange(ax, 0) yrang = getAxRange(ax, 1) xy = get_axis_limits(ax, upper=False)[0] + xpad * xrang, get_axis_limits(ax)[1] - ypad * yrang axtoplot.annotate(comment, xy=xy, xycoords='data', size=fontsize, horizontalalignment='left', verticalalignment='top') def getAxRange(ax, axi=0): return get_axis_limits(ax, upper=True)[axi] - get_axis_limits(ax, upper=False)[axi] def getColorMap(n): colors = ['darkblue', 'r', 'green', 'darkviolet', 'k', 'darkorange', 'olive', 'darkgrey', 'chocolate', 'rosybrown', 'gold', 'aqua'] if n == 1: return [colors[0]] if n <= len(colors): return colors[:n] return [mpl.cm.jet(1. * i / n) for i in range(n)] def getMarker(n, addDashed=True): markers = np.array(['o', '^', 's', 'D', 'd', 'h', '*', 'p','v', '3', 'H', '8','<','2', '4'])[:n]# '<', '>' if addDashed: markers = map(lambda x: '--' + x, markers) return markers # mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':30}) ; # mpl.rc('text', usetex=True) def addGlobalPOSIndex(df,chroms): if df is not None: df['gpos'] = df.POS + chroms.offset.loc[df.CHROM].values df.set_index('gpos', inplace=True); df.sort_index(inplace=True) def GenomeChromosomewise(df, candSNPs=None, genes=None, axes=None,outliers=None): markerSize = 6 fontsize = 6 chrsize = df.reset_index().groupby('CHROM').POS.max() if axes is None: if chrsize.shape[0]>1: _, axes = plt.subplots(int(np.ceil(chrsize.shape[0] / 2.)), 2, sharey= True, dpi=200, figsize=(12, 6)); ax = axes.reshape(-1) else: ax = [plt.subplots(1,1, sharey=True, dpi=200, figsize=(10, 6))[1]] for j, (chrom, a) in enumerate(df.groupby(level=0)): if candSNPs is not None: try: candSNPs.loc[chrom] for pos in candSNPs.loc[chrom].index.values: ax[j].axvline(pos, color='r', linewidth=0.5, alpha=0.5) ax[j].annotate( '{:.0f},{:.2f}'.format(candSNPs['rank'].loc[(chrom, pos)], candSNPs.nu0.loc[(chrom, pos)]), xy=(pos, a.max()), xytext=(pos, a.max()), fontsize=fontsize - 2) except: pass if genes is not None: try: X = genes.loc[chrom] if len(genes.loc[chrom].shape) == 1: X = pd.DataFrame(X).T for _, row in X.iterrows(): ax[j].fill_between([row.start, row.end], a.min(), a.max(), color='r') ax[j].annotate(row['name'], xy=(row.start, a.max()), xytext=(row.start, a.max()), fontsize=fontsize - 2) except: pass ax[j].scatter(a.loc[chrom].index, a.loc[chrom], s=markerSize, alpha=0.8, edgecolors='none') if outliers is not None: try: ax[j].scatter(outliers.loc[chrom].index, outliers.loc[chrom], s=markerSize, c='r', alpha=0.8, edgecolors='none') except: pass setSize(ax[j], fontsize) # ax[j].set_xlim([-1000, chrsize[chrom] + 1000]) # ax[j].set_title(chrom, fontsize=fontsize+2) ax[j].set_xlabel(chrom , fontsize=fontsize + 6) # annotate(chrom, ax=ax[j],fontsize=fontsize+4) ax[j].locator_params(axis='x', nbins=10) plt.tight_layout(pad=0.1) plt.gcf().subplots_adjust(bottom=0.1) def Manhattan(data, columns=None, names=None, fname=None, colors=['black', 'gray'], markerSize=20, ylim=None, show=True, std_th=None, top_k=None, cutoff=None, common=None, Outliers=None, shade=None, fig=None, ticksize=16, sortedAlready=False,lw=1,axes=None,shareY=False,color=None,CHROMLen=None,alpha=0.4,shade2=None): def reset_index(x): if x is None: return None if 'CHROM' not in x.columns.values: return x.reset_index() else: return x if type(data) == pd.Series: DF = pd.DataFrame(data) else: DF = data if columns is None: columns=DF.columns if names is None:names=columns df = reset_index(DF) Outliers = reset_index(Outliers) if not sortedAlready: df = df.sort_index() if not show: plt.ioff() from itertools import cycle def plotOne(b, d, name, chroms,common,shade,shade2,ax): a = b.dropna() c = d.loc[a.index] if ax is None: ax=plt.gca() def plotShade(shade,c): for _ , row in shade.iterrows(): if shareY: MAX = DF.replace({np.inf: None}).max().max() MIN = DF.replace({-np.inf: None}).min().min() else: MAX = a.replace({np.inf: None}).max() MIN = a.replace({-np.inf: None}).min() ax.fill_between([row.gstart, row.gend], MIN,MAX, color=c, alpha=alpha) if 'name' in row.index: if row['name'] == 1: row.gstart -= 1e6 if row['name']== 8: row.gstart=row.gend+1e6 if row['name'] == 'LR2.1': row.gstart -= 2e6 if row['name'] == 'LR2.2': row.gstart += 1e6 xy=(row.gstart, (MAX*1.1)) try:shadename=row['name'] except:shadename=row['gene'] ax.text(xy[0],xy[1],shadename,fontsize=ticksize+2,rotation=0,ha= 'center', va= 'bottom') if shade is not None: plotShade(shade,c='b') if shade2 is not None: plotShade(shade2,c='r') # ax.annotate(' '+shadename, # # bbox=dict(boxstyle='round,pad=1.2', fc='yellow', alpha=0.3), # xy=xy, xytext=xy, xycoords='data',horizontalalignment='center',fontsize=ticksize,rotation=90,verticalalignment='bottom') ax.scatter(a.index, a, s=markerSize, c=c, alpha=0.8, edgecolors='none') outliers=None if Outliers is not None: outliers=Outliers[name].dropna() if cutoff is not None: outliers = a[a >= cutoff[name]] elif top_k is not None: outliers = a.sort_values(ascending=False).iloc[:top_k] elif std_th is not None: outliers = a[a > a.mean() + std_th * a.std()] if outliers is not None: if len(outliers): ax.scatter(outliers.index, outliers, s=markerSize, c='r', alpha=0.8, edgecolors='none') # ax.axhline(outliers.min(), color='k', ls='--',lw=lw) if common is not None: for ii in common.index: plt.axvline(ii,c='g',alpha=0.5) ax.axis('tight'); if CHROMLen is not None: ax.set_xlim(0, CHROMLen.sum()); else: ax.set_xlim(max(0,a.index[0]-10000), a.index[-1]); setSize(ax,ticksize) ax.set_ylabel(name, fontsize=ticksize * 1.5) if chroms.shape[0]>1: plt.xticks([x for x in chroms.mid], [str(x) for x in chroms.index], rotation=-90, fontsize=ticksize * 1.5) # plt.setp(plt.gca().get_xticklabels(), visible=False) plt.locator_params(axis='y', nbins=4) mpl.rc('ytick', labelsize=ticksize) if ylim is not None: plt.ylim(ymin=ylim) chroms = pd.DataFrame(df.groupby('CHROM').POS.apply(lambda x:x.max()-x.min()).rename('len').loc[df.reset_index().CHROM.unique()] + 1000) chroms = pd.DataFrame(df.groupby('CHROM').POS.apply(lambda x:x.max()).rename('len').loc[df.reset_index().CHROM.unique()] + 1000) if CHROMLen is not None: chroms=pd.DataFrame(CHROMLen) chroms['offset'] = np.append([0], chroms.len.cumsum().iloc[:-1].values) chroms['color'] = [c for (_, c) in zip(range(chroms.shape[0]), cycle(colors))] if color is not None: chroms['color']=color chroms['start']=df.groupby('CHROM').POS.min() if CHROMLen is not None: chroms['start']=0 chroms['mid'] = [x + y / 2 for x, y in zip(chroms.offset+chroms.start, chroms.len)] chroms['mid'] = [x + y / 2 for x, y in zip(chroms.offset+chroms.start, chroms.len)] df['color'] = chroms.color.loc[df.CHROM].values df['gpos'] = df.POS + chroms.offset.loc[df.CHROM].values df['color'] = chroms.color.loc[df.CHROM].values df.set_index('gpos', inplace=True); def fff(shade): shade['gstart'] = shade.start # shade['gend'] = shade.end # if chroms.shape[0] > 1: shade['gstart'] += chroms.offset.loc[shade.CHROM].values shade['gend'] += + chroms.offset.loc[shade.CHROM].values if 'name' in shade.columns: shade.sort_values('gstart', ascending=False, inplace=True) shade['ID'] = range(1, shade.shape[0] + 1) return shade if shade is not None: shade=fff(shade) if shade2 is not None: shade2 = fff(shade2) addGlobalPOSIndex(common, chroms); addGlobalPOSIndex(Outliers, chroms) if fig is None and axes is None: fig,axes=plt.subplots(columns.size, 1, sharex=True,sharey=shareY,figsize=(20, columns.size * 4)); if columns.size==1: axes=[axes] elif axes is None: axes=fig.axes for i in range(columns.size): if not i: sh=shade else: if shade is not None and 'name' in shade.columns: sh= shade.drop('name', 1) plotOne(df[columns[i]], df.color, names[i], chroms,common, sh,shade2,axes[i]) # plt.setp(plt.gca().get_xticklabels(), visible=True) xlabel='Chromosome' if chroms.shape[0]==1: xlabel+=' {}'.format(chroms.index[0]) axes[-1].set_xlabel(xlabel, size=ticksize * 1.5) plt.gcf().subplots_adjust(bottom=0.2,hspace=0.05) if fname is not None: print ('saving ', fname) plt.savefig(fname) if not show: plt.ion() return fig def TimeSeries(data, methodColumn=None, ax=None, fname=None, color='r', ci=1,shade=[0,50],samplingTimes=None): """ Args: data: a dataframe containing mu and st fields, methodColumn: when method column is given, it plots together ax: fname: Returns: """ if ax is None: fig=plt.figure(figsize=(12,4), dpi=200) if methodColumn is None: dfs=[('aa',data)] else: dfs=data.groupby(methodColumn) for name,df in dfs: if 'color' in df.columns:color=df.color.unique()[0] df.mu.plot(linewidth=1, color=color, label=name, ax=ax) # plt.gca().fill_between(df.index, (df.mu+df.st).apply(lambda x:min(x,1)), (df.mu-df.st).apply(lambda x:max(x,0)), color=color, alpha=0.25) ax.fill_between(df.index.values.astype(int), (df.mu + ci * df.st), (df.mu - ci * df.st), color=color, alpha=0.25) if shade is not None: ax.axvspan(shade[0], shade[1], alpha=0.25, color='black') ax.set_xticks(np.append([50], plt.xticks()[0])) if samplingTimes is not None: for t in samplingTimes:ax.axvline(t,color='k',ls='--',lw=1,alpha=0.35) mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':26}) ; # mpl.rc('text', usetex=True) if fname is not None: plt.savefig(fname) def QQPval(a,z,nq=20, s=40, alpha=0.8, fname=None): """pplt.QQPval(exp10(logpa),exp10(logpz))""" def getQuantilesLog2(): q=[1] for i in range(nq):q+=[q[-1]/2.] q=pd.Series(q,index=q).iloc[1:] return q q=getQuantilesLog2() qq=pd.DataFrame(q.apply(lambda x: [abs((x)),z.quantile(x),a.quantile(x)]).sort_index().tolist(),index=q,columns=['expected','null','data']).applymap(lambda x: -np.log10(x)) plt.figure(figsize=(8,6),dpi=200) qq.plot.scatter(x='expected',y='null',color='k',s=s,alpha=alpha,ax=plt.gca()) qq.plot.scatter(x='expected',y='data',ax=plt.gca(),s=s,alpha=alpha,color='r',lw = 0); plt.ylim([-1, plt.ylim()[1]]); xmax = plt.xlim()[1] plt.plot([0, xmax], [0, xmax],ls='--', c="k",alpha=0.3) plt.xlim([0,xmax]) plt.xlabel('Expected -log$_{10}$($p$-value)'); plt.ylabel('Observed -log$_{10}$($p$-value)') mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':26}) ; mpl.rc('text', usetex=True) if fname is not None: plt.savefig(fname) def plotSiteReal(site, ax=None, fontsize=8, legend=False, title=None): if ax is None: dpi = 300 _, ax = plt.subplots(1, 1, figsize=(3, 2), dpi=dpi, sharex=True, sharey=True) sns.set_context("notebook", font_scale=1, rc={"lines.linewidth": 1.2}) pos = site.name site = site.sort_index().groupby(level=[0, 1]).apply(lambda x: (x.iloc[0], x.iloc[1])) df = site.apply(lambda x: pd.Series(np.random.binomial(x[1], x[0] / x[1], 10000)) / x[1]).T df = df.stack(['REP', 'GEN']).reset_index(['REP', 'GEN']) idx = pd.Series(range(site.index.get_level_values('GEN').unique().shape[0]), index=np.sort(site.index.get_level_values('GEN').unique())) ax = sns.boxplot(data=df, x='GEN', y=0, hue='REP', width=0.3, ax=ax); for i, mybox in enumerate(ax.artists): # Change the appearance of that box c = mybox.get_facecolor() mybox.set_facecolor('None') mybox.set_edgecolor(c) for j in range(i * 6, i * 6 + 6): line = ax.lines[j] line.set_color(c) line.set_mfc('None') for nnn,(_, xxx) in enumerate(site.apply(lambda x: x[0] / x[1]).unstack('REP').iteritems()): # print idx.loc[xxx.dropna().index] + (nnn - 1) * (0.1) try: pd.Series(xxx.dropna().values, index=idx.loc[xxx.dropna().index] + (nnn - 1) * (0.1)).plot(style='-o', color= sns.color_palette()[ nnn], ax=ax, markersize=3, grid=False, linewidth=0.5) except: pass handles, labels = ax.get_legend_handles_labels(); ax.set_xlim([ax.get_xlim()[0] - ax.get_xlim()[1] * 0.03, ax.get_xlim()[1] + ax.get_xlim()[1] * 0.03]) ax.set_ylim([ax.get_ylim()[0] - ax.get_ylim()[1] * 0.03, ax.get_ylim()[1] + ax.get_ylim()[1] * 0.03]) if legend: ax.legend(handles[3:], map(lambda x: 'Replicate {}'.format(int(x) + 1), labels[3:]), loc='best', title='', fontsize=fontsize - 2) else: ax.legend_.remove() ax.set_ylabel('') ax.set_xlabel('Generation') setSize(ax, fontsize=fontsize - 2) if title is not None: ax.set_title('{}:{}'.format(pos[0], pos[1]), fontsize=fontsize) ax.xaxis.grid(True, linewidth=6) def getNameColorMarker(df): f = lambda x: x.method.replace('HMM', r'$\mathcal{H}$').replace('MarkovChain', r'$\mathcal{M}') # + '$,\pi=$' + str(int(x.q * 100)) # f = lambda x: x.method.replace('HMM', r'$\mathcal{H}$') cols = ['method'] if 'q' in df.index.names: cols = ['q'] + cols names = df.unstack('S').reset_index()[cols].drop_duplicates() names['name'] = names.apply(f, axis=1) names = names.set_index(cols).sort_index(level='method') names['marker'] = getMarker(names.shape[0]) names['color'] = getColorMap(names.shape[0]) return names def plotOnePower(df, info, axes, legendSubplot=-1, fontsize=7, markersize=5, ylabel='Hard', panel=list('ABC')): for j, (name, dff) in enumerate(df.groupby(level='coverage')): dff = dff.unstack('S') dff = dff.sortlevel(['method'], ascending=True) names = info.loc[dff.reset_index('coverage').index] dff.index = names.name dff.T.plot(ax=axes[j], legend=False, color=names.color.tolist(), style=names.marker.tolist(), markersize=markersize) axes[j].axhline(y=5, color='k'); setTicks(dff) if j == legendSubplot: handles, labels = axes[j].get_legend_handles_labels() axes[j].legend(handles[::-1], labels[::-1], loc='center left', fontsize=fontsize) if name == np.inf: name = r'$\infty$' else: name = '{:.0f}'.format(name) if ylabel == 'Hard': axes[j].set_title(r'$\lambda=$' + name, fontsize=fontsize) axes[j].set_xlabel(r'$s$') axes[j].set_ylabel(r'Power ({} Sweep)'.format(ylabel)) setSize(axes[j], fontsize=fontsize) def setSize(ax, fontsize=5): for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) try: for item in ([ax.zaxis.label] + ax.get_zticklabels()): item.set_fontsize(fontsize) except: pass def setLegendSize(ax, fontsize=5): handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, prop={'size': fontsize}, loc='best') def setTicks(df): plt.xticks(df.columns.values); plt.xlim([0.018, 0.105]); plt.ylim([-2.0, 105]); plt.yticks(np.sort(np.append(np.arange(20, 101, 20), [5]))) plt.xlabel('') def savefig(name, dpi,path=PATH.paperFigures,extensions=['pdf','tiff']): import os for e in extensions: os.system('rm -f '+ path+ name + '.'+e) plt.savefig(path+ name + '.'+e, dpi=dpi) def plotQuantile(df, kde): from UTILS import Util as utl quantiles = np.sort(np.append(np.linspace(0.0, 1, 1000)[:-1], np.linspace(0.999, 1, 10))) qq = pd.concat([utl.getQantilePvalues(df.COMALE, kde, quantiles=quantiles), utl.getQantilePvalues(df.COMALENC, kde, quantiles=quantiles)], axis=1); qq.columns = ['data', 'null']; QQPval(qq, fname=utl.paperFiguresPath + 'qq.pdf') def plotGeneTrack(a,ax=None,ntracks=4,minx=None,maxx=None,genesToColor=None): d=0.01 if ax is None: plt.figure(); ax=plt.gca() for i ,(n,row) in enumerate(a.set_index('name')[['start', 'end']].iterrows()): y=(i%ntracks) *d if minx is not None: row['start']=max(minx,row['start']) if maxx is not None: row['end'] = min(maxx, row['end']) c=None;alpha=1 if genesToColor is not None: alpha=0.75 c='k' if n in genesToColor: c='r' ax.plot([row['start'],row['end']],[y,y],lw=5,label=n,c=c,alpha=alpha) # xy=row.min()-5000,y+d/3 xy = row.min() , y + d / 4 text = ax.annotate(n, xy=xy, horizontalalignment='left', verticalalignment='bottom', size=5) # text=ax.annotate(n, xy=xy, xytext=xy,horizontalalignment='left',verticalalignment='bottom',size=5) ax.legend() ax.set_ylim([-d/3,(ntracks-1)*d+2*d -d]) ax.yaxis.set_major_formatter(plt.NullFormatter()) # ax.legend(frameon=True, loc='upper left', bbox_to_anchor=(-0.0, 1.2), ncol=5); try:ax.legend_.remove() except:pass ax.set_ylabel('Genes \n') # ax.xaxis.label.set_size(2) def overlap(I, a,start=None,end=None): if start is not None:return I[(I.start <= end) & (I.end >= start)] return I[(I.start <= a.index[-1]) & (I.end >= a.index[0])] def plotTracks(a,i=None,dosharey=True,marker='o',ls='',alpha=0.3,CHROM=None,xmin=None,xmax=None, ymax=None,ymin=None,hline=None,dmel=False,ntracks=-1,dpi=200,figWidth=7,colors=None, cjet=None,markersize=4,CMAP=None,genesToColor=None,oneColorCMAP=False,plotColorBar=True, hue=None,ax=None,DROP_CR_Genes=False,subsample=None,fontsize=12,fig=None,alpha_shade=0.2): if subsample is not None: if subsample<a.shape[0] and subsample>0: np.random.seed(0) a=a.sample(subsample).sort_index() GENECOORDS=None if ntracks>0: if CHROM is None: if 'CHROM' in a.index.names: CHROM = a.index.get_level_values('CHROM').unique()[0] a = a.loc[CHROM] else: CHROM = i.CHROM if dmel is not None: f=utl.home+'storage/Data/Dmelanogaster/geneCoordinates/dmel{}.df'.format(dmel) GENECOORDS=pd.read_pickle(f).set_index('CHROM').loc[[CHROM]] GENECOORDS['len']=GENECOORDS.end - GENECOORDS.start else: from Scripts.KyrgysHAPH import Util as kutl GENECOORDS=kutl.GENECOORS.loc[[CHROM]] if len(a.index.names)==1: a.index.name='POS' if len(a.shape)==1: a=pd.DataFrame(a) def sharey(): ma = max(map(lambda ax: ax.get_ylim()[1], plt.gcf().axes)) mi = min(map(lambda ax: ax.get_ylim()[0], plt.gcf().axes)) for ax in plt.gcf().axes[:-1]: ax.set_ylim([mi, ma]) if ntracks<0:plt.gcf().axes[-1].set_ylim([mi, ma]) n=a.shape[1] if ntracks>0:n+=1 if ax is None and fig is None: fig, ax = plt.subplots(n, 1, sharex=True,figsize=(figWidth,n*1.5),dpi=dpi) if ntracks>0: axgene=ax[-1] if n>1:ax=ax.reshape(-1) else: ax=[ax] # print a.shape for ii in range(a.shape[1]): color='darkblue' if colors is not None: color=colors[ii] if CMAP is not None: col=a.columns[ii] df=a[[col]].join(CMAP.rename('c'),how='inner').reset_index() # cmap=sns.cubehelix_palette("coolwarm", as_cmap=True) # cmap=sns.dark_palette("purple",input="xkcd", as_cmap=True,reverse=True,light=1) # cmap=sns.diverging_palette(240, 10, as_cmap=True, center = "dark") # cmap=sns.color_palette("coolwarm", as_cmap=True) # cmap=sns.choose_colorbrewer_palette("coolwarm", as_cmap=True) if oneColorCMAP: cmap = sns.cubehelix_palette(dark=0, light=.85, as_cmap=True) else: cmap = 'jet' dfc=df[['POS',col,'c']].dropna() sc=ax[ii].scatter(dfc.POS,dfc[col], c=dfc.c.values,cmap=cmap,alpha=alpha,s=markersize) if plotColorBar: if fig is None: fig=plt.gcf() cbaxes = fig.add_axes([0.905, 0.537, 0.02, 0.412]) #[ lower left corner X, Y, width, height] tl=np.linspace(0,1,5) cb = plt.colorbar(sc, cax=cbaxes, ticks=tl, orientation='vertical') cb.ax.set_yticklabels(["%.2f" % x for x in tl],size=8) cb.set_label(label='Final Frequency', size=10) dosharey=False else: if cjet is not None: for jj,_ in a.iterrows(): a.loc[[jj]].iloc[:, ii].plot(legend=False, ax=ax[ii], marker=marker, ls=ls, alpha=alpha, c=cjet.loc[jj],markersize=4) elif hue is not None: for name in hue.groupby(0).size().sort_values().index[::-1]: # if name!=2:continue jj = hue[hue[0] == name]['index'].sort_values().tolist() color=hue[hue[0] == name].c.iloc[0] a.iloc[:, ii].loc[jj].plot(legend=False, ax=ax[ii], marker=marker, ls=ls, c=color, alpha=alpha,markersize=markersize) else: a.iloc[:, ii].plot(legend=False, ax=ax[ii],marker=marker,ls=ls,c=color,alpha=alpha,markersize=markersize) if hline is not None:ax[ii].axhline(hline, c='r', alpha=0.6) ax[ii].set_ylabel(a.columns[ii]) setSize(ax[ii],fontsize) # plotGeneTrack(overlap(kutl.GENECOORS.loc[[i.CHROM]], 0,xmin, xmax), ax[-1], minx=a.index.min(), maxx=a.index.max()) if xmin is None: xmin, xmax=a.index[0],a.index[-1] if ymax is not None: axylim=(ax,ax[:-1])[ntracks>0] for axi in axylim: if ymin is not None: axi.set_ylim([ymin, ymax]) else:axi.set_ylim([axi.get_ylim()[0],ymax]) if ntracks>0: if DROP_CR_Genes: GENECOORDS=GENECOORDS[GENECOORDS.name.apply(lambda x: x[:2] != 'CR').values] plotGeneTrack(overlap(GENECOORDS, a, xmin, xmax), axgene, minx=xmin, maxx=xmax,ntracks=ntracks,genesToColor=genesToColor) if dosharey:sharey() if i is not None: for ii in range(a.shape[1]): ax[ii].fill_between([i.start, i.end], ax[ii].get_ylim()[0], ax[ii].get_ylim()[1], color = 'k', alpha = alpha_shade) # ax[-1].fill_between([i.start, i.end], ax[ii].get_ylim()[0], ax[ii].get_ylim()[1], color='k', alpha=alpha_shade) if CHROM is not None: jj=-1 if plotColorBar: jj-=1 ax[jj].set_xlabel('Chromosome {}'.format(CHROM)) # plt.tight_layout() plt.gcf().subplots_adjust(top=0.95, left=0.09) if CMAP is not None: plt.gcf().subplots_adjust(hspace=0.0) return GENECOORDS def plotTracksList(a,i,marker=None, ls='-',shade=True, alpha=0.3,height=1.5): from Scripts.KyrgysHAPH import Util as kutl n=len(a)+1 fig, ax = plt.subplots(n, 1, sharex=True,figsize=(10,n*height),dpi=200) for ii in range(len(a)): if marker is None:a.iloc[ ii].plot(legend=True, ax=ax[ii]) else: color = getColorMap(a.iloc[ ii].shape[1]) for jj in range(a.iloc[ ii].shape[1]): a.iloc[ii].iloc[:,jj].plot( ax=ax[ii], marker=marker, ls=ls, color=color[jj],alpha=alpha, markersize=4, label=a.iloc[ii].columns[jj]) if shade: ax[ii].fill_between([i.start, i.end], ax[ii].get_ylim()[0], ax[ii].get_ylim()[1], color='k', alpha=0.2) ax[ii].set_ylabel(a.index[ii]) plotGeneTrack(overlap(kutl.GENECOORS.loc[[i.CHROM]], None,start=i.start,end=i.end), ax[-1],minx=a.iloc[0].index.min(),maxx=a.iloc[0].index.max()) if shade: ax[-1].fill_between([i.start, i.end], ax[-1].get_ylim()[0], ax[-1].get_ylim()[1], color='k', alpha=0.1) plt.xlabel('Chromosome {}'.format(i.CHROM)) plt.gcf().subplots_adjust(top=0.95, left=0.09,hspace=0.03) def plotDAF(i,pairs,AA=False,pad=500000,lite=0.2,lites=None,delta=True,ABS=False,pos=None,compact=False): try: if delta: ylim = [-1.05, 1.05] diff=lambda x: x.iloc[:,0]-x.iloc[:,1] # for pair in pairs:print utl.loadFreqs(pair, i,pad=pad,AA=AA) a= utl.quickMergeGenome(map(lambda pair: diff(utl.loadFreqs(pair, i,pad=pad,AA=AA)).rename(pair[0]+'\nvs\n'+pair[1]),pairs)).loc[i.CHROM] else: pairs=list(set(pairs)) print(pairs) ylim = [-.05, 1.05] a = utl.loadFreqs(list(set(pairs)), i, pad=pad, AA=AA).loc[i.CHROM] xmin,xmax=[utl.BED.expand(i, pad).start, utl.BED.expand(i, pad).end] if a is None: print('AA',i.CHROM,i.start,i.end,AA) return if lite>0: a = a[a.iloc[:, 0] >= lite] if lites is not None: for ii , lite in enumerate(lites): a = a[a.iloc[:, ii].abs() >= lite] if ABS is True: a=a.abs(); ylim[0] +=1 a=a[a.iloc[:,0].abs()>0] # a = a.apply(lambda x: x.dropna().rolling(50, center=True).mean()) if pos is not None: a=a.loc[pos] if compact: plotTracksList(pd.Series([a]), i, ls='', marker='o', shade=False); plt.gcf().axes[0].set_ylabel('Derived Allele Freq.'); plt.gcf().axes[0].legend(borderaxespad=0.4, fontsize=12, frameon=True, shadow=not True) else: plotTracks(a, i, xmin=xmin, xmax=xmax) plt.xlim(xmin,xmax) if ylim is not None: for x in plt.gcf().axes[:-1]:x.set_ylim(ylim) return a except:pass def plotDAFpops(i,pop=None,HA=False,additionalPairs=[],against=None,pairs=None,lite=0,AA=False,delta=True,ABS=False,pos=None,pad=500000,compact=False): if pairs is None: if not HA: if against is None: # pairs=[[pop, 'JPT'], [pop, 'SAS'], [pop, 'AMR'], [pop, 'EUR'], [pop, 'YRI']] pairs = [[pop, 'EAS'], [pop, 'SAS'], [pop, 'EUR']] else: pairs=[[pop,x] for x in against] else: pairs = [[pop, 'TIB'], [pop, 'AND'], [pop, 'ETH'], [pop, 'BGI'],[pop, 'EAS'],[pop, 'AFR'],[pop, 'EUR']] pairs = additionalPairs+ pairs if not delta: pairs=[pop]+ [pair[1] for pair in pairs] else: pairs=[ pair for pair in pairs if pair[0]!=pair[1]] return plotDAF(i,pairs,lite=lite, AA= AA, delta=delta,ABS=ABS,pos=pos,pad=pad,compact=compact) def plotPBS(i,pops,additionalPairs=[],lite=0,AA=False,delta=True,pad=500000,pos=None): try: ie=utl.BED.expand(i,pad=pad) a=utl.pbsi(ie,pops) a = a[a.iloc[:, 0] > lite] a = a[a.iloc[:, -1] > 0] # print utl.BED.expand(i, pad).start xmin, xmax = [utl.BED.expand(i, pad).start, utl.BED.expand(i, pad).end] if pos is not None: a = a.loc[pos] plotTracks(a, i,xmax=xmax,xmin=xmin) plt.xlim(xmin,xmax) for x in plt.gcf().axes[:-2]:x.set_ylim([-0.05,1.05]) plt.gcf().axes[-2].set_ylim([0,1]) # plt.figure() # b = pd.concat([a.PBS], keys=[i.CHROM]) # b.index.names=['CHROM','POS'] # Manhattan(utl.scanGenome(b)) # plt.figure() # Manhattan(utl.scanGenome(b),np.sum) # plt.show() except:pass class Trajectory: @staticmethod def Fly(xx,reps=[1],title='',pop='H',ax=None,hue=None,color=None,sumFreqCutoff=0,subsample=-1,titles=None, foldOn=None,fname=None,alpha=None,suptitle=None,logscale=True,fontsize=14,ticksSize=10,noticks=[7, 15]): if len(xx.columns.names)<2: xx=htl.aug(xx) x=xx[xx.sort_index(1)[pop].loc[:,pd.IndexSlice[:,reps]].sum(1)>sumFreqCutoff] if subsample>0 and subsample<x.shape[0]: ii=np.random.choice(x.shape[0], subsample, replace=False) x=x.iloc[ii] if hue is not None: hue=hue.iloc[ii] if color is not None: hue = pd.Series([color for _ in range(x.shape[0])], index=x.index.tolist(),name='c').reset_index() hue[0] = True if ax is not None: try: len(ax) axes=ax except: axes = [ax] else: fig, axes = plt.subplots(1, len(reps), sharey=True, figsize=(3*len(reps)+2, 3), dpi=100) if len(reps)==1:axes=[axes] for i,rep in enumerate(reps): if not i: if title!='':title='('+title+')' ax=axes[i] xrep=x.xs(rep, 1, 2)[pop] if len(noticks): for t in noticks: if t in xrep.columns: xrep=xrep.drop(t,1) Trajectory.FlyRep(xrep, suff=' Rep. {}'.format(rep),ax=ax,hue=hue,title=title,foldOn=foldOn,alpha=alpha,logscale=logscale) if fname is not None:plt.savefig(fname) for ax in axes: setSize(ax,ticksSize) if logscale: ax.set_xlim(99,300) if titles is not None: for ax,t in zip(axes,titles): ax.set_title(t,fontsize=fontsize) axes[0].set_ylabel('Allele Frequency', fontsize=fontsize) axes[(0,1)[len(axes)==3]].set_xlabel('Generation', fontsize=fontsize) if len(reps)==3: plt.gcf().tight_layout(pad=0.1) if suptitle: # plt.suptitle(suptitle,fontsize=14) # plt.gcf().tight_layout(pad=0.1, rect=[0.0, 0, 0.9, .9]) axt=axes[-1].twinx() axt.set_ylabel(suptitle,fontsize=fontsize) axt.set_yticks([]) # plt.setp(axes[-1].get_yticklabels(), visible=False) # axes[-1].set_yticks([]) @staticmethod def FlyRep(zz, suff='', ax=None, hue=None, title='', hueDenovo=False, foldOn=None,alpha=None,logscale=True): if not zz.shape[0]: return if alpha is None: alpha = 0.12 def one(y, ax, pref, hue,alpha): x = y.copy(True) if not (foldOn is None): x = x.T if foldOn>0: fold = x[foldOn] < 0.5 else: fold = x[-foldOn] > 0.5 x.loc[fold, :] = 1 - x.loc[fold, :] x = x.T g = list(map(str, x.index.values.astype(int))) if logscale:x.index = x.index.values + 100 x=x.rename({280:290}) # print x title = pref + suff # title = '' if hue is None: x.plot(legend=False, c='k', alpha=alpha, ax=ax, title=title) else: for name in hue.groupby(0).size().sort_values().index[::-1]: group = hue[hue[0] == name] xx = x.loc[:, group['index']] # print xx lab = str(group[0].iloc[0]) try: lab += ' {}'.format(xx.shape[1]) except: pass c = group['c'].iloc[0] # alpha = (0.2, 1)[name == 'BA'] for iii, (_, y) in enumerate(xx.T.iterrows()): if not iii: y.plot(legend=False, c=c, label=lab, alpha=alpha, ax=ax, title=title) else: y.plot(legend=False, c=c, label='_nolegend_', alpha=alpha, ax=ax, title=title) # plt.tight_layout(rect=[0, 0, 0.5, 1]) # ax.legend(bbox_to_anchor=(1., 0.9)) # ax.legend() if logscale: ax.set_xscale("log", basex=2); ax.get_xaxis().set_major_formatter(mpl.ticker.ScalarFormatter()) # print(x.index.tolist()) ax.set_xticks(x.index) ax.set_xticklabels(g) # ax.tick_params(axis='both', which='both', bottom='on', top='on', labelbottom='on', right='on', left='on', # labelleft='on', labelright='on') if ax is None: fig, ax = plt.subplots(1, 1, sharey=True, figsize=(6, 3), dpi=100) one(zz.T, ax, title + '', hue,alpha) ax.set_title(ax.get_title() + ' ({} SNPs {})'.format(zz.shape[0], '')) @staticmethod def clusters(a,seq,i=None,reps=[1,2,3],ss=300,pop=['H'],allpops=False): if allpops: pop=list('HCL') if len(a.columns.names)<2: a=htl.aug(a) reps=[1];pop=['H'] if i is not None: seq=map(lambda x: utl.mask(x, i), seq) SNPS=[] def snps(V): v=V.copy(True) v.iloc[1:-1] = v.iloc[1:-1].replace({False: None}); v = v.dropna(); v = v.astype(int) return v for p in pop: axes = plt.subplots(len(seq), len(reps), figsize=(3.5*len(reps)+2, len(seq)*3), sharex=True, sharey=True)[1] if len(seq) ==1: axes=[axes] for xx, ax in zip(seq, axes): if i is not None or 'CHROM' in a.index.names: aa=a.loc[pd.IndexSlice[i.CHROM, utl.TI(xx), :]] else: aa=a.loc[utl.TI(xx)] SNPS+=[ snps(xx)] Trajectory.Fly(aa, pop=p, subsample=ss,reps=reps, ax=ax); if len(pop)>1: plt.suptitle(p) @staticmethod def Win(j, X, ax, rep=1, subsample=-1, verbose=False, foldOn=None): x = utl.mask(X, j.loc[j.name], full=True) if not x.shape[0]: return ss = lambda x: x if subsample > 0: ss = lambda x: x.iloc[np.random.choice(x.shape[0], min(x.shape[0], subsample), replace=False)] x = ss(x) Trajectory.Fly(x, reps=[rep], ax=ax, foldOn=foldOn) ax.set_title('({}) {}. n={}'.format(j.name + 1, Trajectory.title(j.iloc[0]), x.shape[0]), fontsize=12) if verbose: print('{},'.format(j.name),) @staticmethod def title(istr): CHROM, start = istr.split('-')[0].split(':'); end = istr.split('-')[1] return '{}:{:,d}K-{:,d}k'.format(CHROM, int(start) / 1000, int(end) / 1000) @staticmethod def slidingWindowRep(batch, X, rep, subsample=-1, verbose=False, foldOn=None, name='',shape=None): if shape is None: rows, cols = 10, 10 rows = batch.shape[0] / 10 else: rows,cols=shape ax = plt.subplots(rows, cols, dpi=100, figsize=(4*cols, 3 * rows), sharex=True, sharey=True)[1].reshape(-1) batch.groupby(level=0).apply( lambda i: Trajectory.Win(i, X, ax[i.name], subsample=subsample, rep=rep, verbose=verbose, foldOn=foldOn)); title = 'Interval {}. {}:{}K-{}K Rep {}. '.format(name, batch.iloc[0].split('-')[0].split(':')[0], int(batch.iloc[0].split('-')[0].split(':')[1]) / 1000, int(batch.iloc[-1].split('-')[1]) / 1000, rep) title += ('ALT allele', 'MAF at Gen {}'.format(foldOn))[foldOn != None] plt.suptitle(title, fontsize=12, y=1.08) @staticmethod def slidingWindowReps(batch, X, subsample=-1, verbose=False, foldOn=None): for i in batch: Trajectory.Fly(utl.mask(X,i),reps=[1,2,3],foldOn=foldOn) plt.suptitle(Trajectory.title(i), fontsize=16, y=1.04) @staticmethod def getBatch(i = 'chr2R:7700000-7730000',N=100,step = 10000): return pd.Series(np.arange(0, step * N, step)).apply(lambda x: utl.BED.shift(i, x)) def FlySFSRep(a,title=None,subplots=True,includeOther=True): if includeOther: b = utl.renameColumns(a.H, 'H', pre=True) b=pd.concat([b,a.C[180].rename('C180'),a.L[180].rename('L180')],1) fs = (10, 6) else: b = utl.renameColumns(a.H, 'F', pre=True) b=b.drop('F7',1) fs = (6, 3) # b=b.round(1).apply(lambda x: x.value_counts()).fillna(0) b=b.apply(utl.sfs).fillna(0) b.plot.bar(width=0.9,subplots=subplots,layout=(-1, 3), figsize=fs,sharex=True,sharey=True,color='k',alpha=0.75); plt.gcf().axes[0].set_ylabel('Num. of SNPs') plt.gcf().axes[3].set_ylabel('Num. of SNPs') plt.gcf().axes[4].set_xlabel('Frequency Bin') for ax in plt.gcf().axes: ax.set_title('') # if title!=None: # plt.suptitle(title) # annotate(title,loc=0,ax=plt.gcf().axes[0]) # plt.gcf().tight_layout(pad=0.2, rect=[0.0, 0.2, 1, 1]) plt.subplots_adjust(left=.0, bottom=.0, right=1, top=.9,wspace=0.05, hspace=0.05) # plt.tight_layout() def FlySFS(a,reps=[1,2,3]): for rep in reps: FlySFSRep(a.xs(rep,1,2),includeOther=False) plt.suptitle('Rep. {}'.format( rep),fontsize=14) # def getColorBlindHex(): return sns.color_palette('colorblind').as_hex() def visualizeRealFeatures(X,hue=None,transform=None): # pplt.visualizeRealFeatures(X.join(a.CHD),hue='CHD') XX=X.copy(True) cols=utl.TI(X.apply(lambda x: x.unique().size)>2).tolist() if hue is not None: cols+=[hue] XX=XX[list(set(cols))] scale = lambda x: x / (x.max() - x.min()) if transform=='scale': XX = scale(XX) XX=XX-XX.min() elif transform == 'z': XX=XX.apply(utl.pval.zscore) ax = plt.subplots(3, 1, figsize=(XX.shape[1]/1.5, 8), dpi=150, sharex= True)[1] if hue is not None: XX=XX.melt(id_vars=[hue]) palette = {0: 'gray', 1: 'r'} color=None else: XX=XX.melt() palette=None color='gray' palette=None sns.stripplot(data=XX, x='variable', y='value', jitter=0.15, ax=ax[0], alpha=0.2, hue=hue,palette=palette) try: sns.violinplot(data=XX, x='variable', y='value', ax=ax[1], hue=hue, palette=palette, color=color, split=True) except: sns.violinplot(data=XX, x='variable', y='value', ax=ax[1], hue=hue, palette=palette, color=color, split=False) sns.boxplot(data=XX, x='variable', y='value', ax=ax[2]) # ax[1].set_xticks(ax[1].get_xticks(), rotation='vertical') plt.xticks(rotation=90) ax[0].set_xlabel('');ax[1].set_xlabel('') try:ax[1].legend_.remove() except:pass def visualizeOneRealFeat(data,x,y): ax = plt.subplots(1, 3, sharey=True, dpi=100, figsize=(12, 3.5))[1] sns.stripplot(data=data, x=x, y=y, jitter=0.1, alpha=0.1, ax=ax[0]) sns.boxplot(data=data, x=x, y=y, ax=ax[1]) sns.violinplot(data=data, x=x, y=y, ax=ax[2]) def visualizeCatFeatures(X,hue): XX = X.copy(True) cols = utl.TI(XX.apply(lambda x: x.unique().size) < 10).tolist() XX = XX[cols].astype(int) norm = lambda x: x / x.sum() r=[] rows=max(1,int(np.ceil(len(cols)/3.))) ax=plt.subplots(rows,3,dpi=150,figsize=(8,rows*2))[1].reshape(-1) j=0 for c in XX.columns: if c==hue:continue norm(pd.crosstab(XX[hue], XX[c])).plot.bar(ax=ax[j]) leg=ax[j].legend(loc='best', prop={'size': 6}) leg.set_title(c, prop={'size': 6}) j+=1 ax = plt.subplots(rows, 3, dpi=150, figsize=(8, rows * 2))[1].reshape(-1) j = 0 for c in XX.columns: if c == hue: continue norm(pd.crosstab(XX[hue], XX[c])).T.plot.bar(ax=ax[j]) leg = ax[j].legend(loc='best', prop={'size': 6}) leg.set_title(hue, prop={'size': 6}) j += 1 def visualizeFeatures(X,hue=None): visualizeCatFeatures(X, hue) visualizeRealFeatures(X, hue) def puComment(fig, comment): if comment is not None: fig.text(.05, .05, 'Comment: ' + comment, fontsize=26, color='red')
2.3125
2
tests/test_parser.py
1st1/httptools
1
12789485
import httptools import unittest from unittest import mock RESPONSE1_HEAD = b'''HTTP/1.1 200 OK Date: Mon, 23 May 2005 22:38:34 GMT Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT ETag: "3f80f-1b6-3e1cb03b" Content-Type: text/html; charset=UTF-8 Content-Length: 130 Accept-Ranges: bytes Connection: close ''' RESPONSE1_BODY = b''' <html> <head> <title>An Example Page</title> </head> <body> Hello World, this is a very simple HTML document. </body> </html>''' CHUNKED_REQUEST1_1 = b'''POST /test.php?a=b+c HTTP/1.2 User-Agent: Fooo Host: bar Transfer-Encoding: chunked 5\r\nhello\r\n6\r\n world\r\n''' CHUNKED_REQUEST1_2 = b'''0\r\nVary: *\r\nUser-Agent: spam\r\n\r\n''' class TestResponseParser(unittest.TestCase): def test_parser_response_1(self): m = mock.Mock() headers = {} m.on_header.side_effect = headers.__setitem__ p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD) self.assertEqual(p.get_http_version(), '1.1') self.assertEqual(p.get_status_code(), 200) m.on_status.assert_called_once_with(b'OK') m.on_headers_complete.assert_called_once_with() self.assertEqual(m.on_header.call_count, 8) self.assertEqual(len(headers), 8) self.assertEqual(headers.get(b'Connection'), b'close') self.assertEqual(headers.get(b'Content-Type'), b'text/html; charset=UTF-8') self.assertFalse(m.on_body.called) p.feed_data(bytearray(RESPONSE1_BODY)) m.on_body.assert_called_once_with(RESPONSE1_BODY) m.on_message_complete.assert_called_once_with() self.assertFalse(m.on_url.called) self.assertFalse(m.on_chunk_header.called) self.assertFalse(m.on_chunk_complete.called) with self.assertRaisesRegex( httptools.HttpParserError, 'data received after completed connection'): p.feed_data(b'12123123') def test_parser_response_2(self): with self.assertRaisesRegex(TypeError, 'expected bytes'): httptools.HttpResponseParser(None).feed_data('') def test_parser_response_3(self): callbacks = {'on_header', 'on_headers_complete', 'on_body', 'on_message_complete'} for cbname in callbacks: with self.subTest('{} callback fails correctly'.format(cbname)): with self.assertRaisesRegex(httptools.HttpParserCallbackError, 'callback failed'): m = mock.Mock() getattr(m, cbname).side_effect = Exception() p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD + RESPONSE1_BODY) def test_parser_response_4(self): p = httptools.HttpResponseParser(None) with self.assertRaises(httptools.HttpParserInvalidStatusError): p.feed_data(b'HTTP/1.1 1299 FOOSPAM\r\n') def test_parser_response_5(self): m = mock.Mock() m.on_status = None m.on_header = None m.on_body = None m.on_headers_complete = None m.on_chunk_header = None m.on_chunk_complete = None p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD) p.feed_data(RESPONSE1_BODY) m.on_message_complete.assert_called_once_with() class TestRequestParser(unittest.TestCase): def test_parser_request_chunked_1(self): m = mock.Mock() p = httptools.HttpRequestParser(m) p.feed_data(CHUNKED_REQUEST1_1) self.assertEqual(p.get_method(), b'POST') m.on_url.assert_called_once_with(b'/test.php?a=b+c') self.assertEqual(p.get_http_version(), '1.2') m.on_header.assert_called_with(b'Transfer-Encoding', b'chunked') m.on_chunk_header.assert_called_with() m.on_chunk_complete.assert_called_with() self.assertFalse(m.on_message_complete.called) m.reset_mock() p.feed_data(CHUNKED_REQUEST1_2) m.on_chunk_header.assert_called_with() m.on_chunk_complete.assert_called_with() m.on_header.assert_called_with(b'User-Agent', b'spam') self.assertEqual(m.on_header.call_count, 2) m.on_message_complete.assert_called_once_with() def test_parser_request_chunked_2(self): m = mock.Mock() headers = {} m.on_header.side_effect = headers.__setitem__ m.on_url = None m.on_body = None m.on_headers_complete = None m.on_chunk_header = None m.on_chunk_complete = None p = httptools.HttpRequestParser(m) p.feed_data(CHUNKED_REQUEST1_1) p.feed_data(CHUNKED_REQUEST1_2) self.assertEqual( headers, {b'User-Agent': b'spam', b'Transfer-Encoding': b'chunked', b'Host': b'bar', b'Vary': b'*'}) def test_parser_request_2(self): p = httptools.HttpRequestParser(None) with self.assertRaises(httptools.HttpParserInvalidMethodError): p.feed_data(b'SPAM /test.php?a=b+c HTTP/1.2') def test_parser_request_3(self): p = httptools.HttpRequestParser(None) with self.assertRaises(httptools.HttpParserInvalidURLError): p.feed_data(b'POST HTTP/1.2') class TestUrlParser(unittest.TestCase): def parse(self, url:bytes): parsed = httptools.parse_url(url) return (parsed.schema, parsed.host, parsed.port, parsed.path, parsed.query, parsed.fragment, parsed.userinfo) def test_parser_url_1(self): self.assertEqual( self.parse(b'dsf://aaa/b/c?aa#123'), (b'dsf', b'aaa', None, b'/b/c', b'aa', b'123', None)) self.assertEqual( self.parse(b'dsf://i:n@aaa:88/b/c?aa#123'), (b'dsf', b'aaa', 88, b'/b/c', b'aa', b'123', b'i:n')) self.assertEqual( self.parse(b'////'), (None, None, None, b'////', None, None, None)) self.assertEqual( self.parse(b'////1/1?a=b&c[]=d&c[]=z'), (None, None, None, b'////1/1', b'a=b&c[]=d&c[]=z', None, None)) self.assertEqual( self.parse(b'/////?#123'), (None, None, None, b'/////', None, b'123', None)) self.assertEqual( self.parse(b'/a/b/c?b=1&'), (None, None, None, b'/a/b/c', b'b=1&', None, None)) def test_parser_url_2(self): self.assertEqual( self.parse(b''), (None, None, None, None, None, None, None)) def test_parser_url_3(self): with self.assertRaises(httptools.HttpParserInvalidURLError): self.parse(b' ') def test_parser_url_4(self): with self.assertRaises(httptools.HttpParserInvalidURLError): self.parse(b':///1') def test_parser_url_5(self): self.assertEqual( self.parse(b'http://[fdf8:f53e:61e4::18:4]:67/'), (b'http', b'fdf8:f53e:61e4::18:4', 67, b'/', None, None, None)) def test_parser_url_6(self): self.assertEqual( self.parse(bytearray(b'/')), (None, None, None, b'/', None, None, None)) def test_parser_url_7(self): url = httptools.parse_url(b'/') with self.assertRaisesRegex(AttributeError, 'not writable'): url.port = 0 def test_parser_url_8(self): with self.assertRaises(TypeError): httptools.parse_url(None)
2.984375
3
integration_test/test_heartbeat_checker.py
lynix94/nbase-arc
176
12789486
<gh_stars>100-1000 # # Copyright 2015 <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import testbase import util import time import gateway_mgmt import redis_mgmt import smr_mgmt import default_cluster import config import load_generator import telnet import json import constant as c class TestHeartbeatChecker( unittest.TestCase ): cluster = config.clusters[0] leader_cm = config.clusters[0]['servers'][0] max_load_generator = 1 load_gen_thrd_list = {} key_base = 'key_thbc' @classmethod def setUpClass( cls ): return 0 @classmethod def tearDownClass( cls ): return 0 def setUp( self ): util.set_process_logfile_prefix( 'TestHeartbeatChecker_%s' % self._testMethodName ) self.conf_checker = default_cluster.initialize_starting_up_smr_before_redis( self.cluster ) self.assertIsNotNone(self.conf_checker, 'failed to initialize cluster') def tearDown( self ): testbase.defaultTearDown(self) def getseq_log(self, s): smr = smr_mgmt.SMR( s['id'] ) try: ret = smr.connect( s['ip'], s['smr_mgmt_port'] ) if ret != 0: return smr.write( 'getseq log\r\n' ) response = smr.read_until( '\r\n', 1 ) util.log('getseq log (pgs%d) = %s' % (s['id'], response[:-2])) smr.disconnect() except IOError: pass def get_expected_smr_state( self, server, expected, max_try=60 ): for i in range( 0, max_try ): state = util.get_smr_state( server, self.leader_cm ) if state == expected: break; time.sleep( 1 ) return state def state_transition( self ): server = util.get_server_by_role( self.cluster['servers'], 'slave' ) self.assertNotEquals( server, None, 'failed to get_server_by_role-slave' ) # get gateway info ip, port = util.get_rand_gateway( self.cluster ) gw = gateway_mgmt.Gateway( self.cluster['servers'][0]['id'] ) # check initial state state = self.get_expected_smr_state( server, 'N' ) role = util.get_role_of_server( server ) self.assertEquals( 'N', state, 'server%d - state:%s, role:%s, expected:N' % (server['id'], state, role) ) # shutdown ret = testbase.request_to_shutdown_smr( server ) self.assertEquals( ret, 0, 'failed to shutdown smr' ) ret = testbase.request_to_shutdown_redis( server ) self.assertEquals( ret, 0, 'failed to shutdown redis' ) time.sleep( 3 ) # check state F expected = 'F' state = self.get_expected_smr_state( server, expected ) self.assertEquals( expected , state, 'server%d - state:%s, but expected:%s' % (server['id'], state, expected) ) # set value ret = gw.connect( ip, port ) self.assertEquals( ret, 0, 'failed to connect to gateway, %s:%d' % (ip, port) ) timestamp = 0.0 for i in range( 0, 100 ): timestamp = time.time() key = 'new_key_haha' cmd = 'set %s %f\r\n' % (key, timestamp) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n' ) gw.disconnect() # recovery ret = testbase.request_to_start_smr( server ) self.assertEquals( ret, 0, 'failed to start smr' ) ret = testbase.request_to_start_redis( server ) self.assertEquals( ret, 0, 'failed to start redis' ) ret = testbase.wait_until_finished_to_set_up_role( server, 10 ) self.assertEquals( ret, 0, 'failed to role change. smr_id:%d' % (server['id']) ) time.sleep( 5 ) redis = redis_mgmt.Redis( server['id'] ) ret = redis.connect( server['ip'], server['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis' ) # check state N expected = 'N' max_try = 20 for i in range( 0, max_try ): state = self.get_expected_smr_state( server, expected ) if state == expected: break time.sleep( 1 ) role = util.get_role_of_server( server ) self.assertEquals( expected , state, 'server%d - state:%s, role:%s, but expected:%s' % (server['id'], state, role, expected) ) def test_1_state_transition( self ): util.print_frame() self.state_transition() def get_mss( self ): # get master, slave1, and slave2 master = util.get_server_by_role( self.cluster['servers'], 'master' ) self.assertNotEquals( master, None, 'failed to get master' ) slave1 = util.get_server_by_role( self.cluster['servers'], 'slave' ) self.assertNotEquals( slave1, None, 'failed to get slave1' ) slave2 = None for server in self.cluster['servers']: id = server['id'] if id != master['id'] and id != slave1['id']: slave2 = server break self.assertNotEquals( slave2, None, 'failed to get slave2' ) return master, slave1, slave2 def test_2_consistent_after_failover( self ): util.print_frame() for i in range(3): util.log('loop %d' % i) self.consistent_after_failover() def consistent_after_failover( self ): max = 10000 wait_count = 15 key = 'caf' # get master, slave1, and slave2 master, slave1, slave2 = self.get_mss() # set value ip, port = util.get_rand_gateway( self.cluster ) gw = gateway_mgmt.Gateway( ip ) gw.connect( ip, port ) for i in range( 0, max ): cmd = 'set %s%d %d\r\n' % (key, i, i) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n' ) time.sleep( 5 ) # shutdown servers = [master, slave1, slave2] for server in servers: util.log('before shutdown pgs%d' % server['id']) for s in servers: self.getseq_log(s) ret = testbase.request_to_shutdown_smr( server ) self.assertEqual( ret, 0, 'failed to shutdown smr, server:%d' % server['id'] ) ret = testbase.request_to_shutdown_redis( server ) self.assertEquals( ret, 0, 'failed to shutdown redis' ) time.sleep( 5 ) # check state F for server in servers: state = self.get_expected_smr_state( server, 'F' ) self.assertEquals( 'F', state, 'server%d - state:%s' % (server['id'], state) ) # recovery for server in servers: ret = testbase.request_to_start_smr( server ) self.assertEqual( ret, 0, 'failed to start smr, server:%d' % server['id'] ) ret = testbase.request_to_start_redis( server, False ) self.assertEqual( ret, 0, 'failed to start redis, server:%d' % server['id'] ) util.log('after restart pgs%d' % server['id']) for s in servers: self.getseq_log(s) time.sleep( 5 ) # wait for master election for i in xrange(10): ret = util.check_cluster( self.cluster['cluster_name'], self.leader_cm['ip'], self.leader_cm['cm_port'] ) if ret: break time.sleep(1) # check state for server in servers: ret = testbase.wait_until_finished_to_set_up_role( server, wait_count ) self.assertEquals( ret, 0, 'failed to role change. server:%d' % (server['id']) ) state = self.get_expected_smr_state( server, 'N' ) role = util.get_role_of_server( server ) self.assertEquals( 'N', state, 'server%d - state:%s, role:%s' % (server['id'], state, role) ) the_number_of_master = 0 the_number_of_slave = 0 for server in servers: role = util.get_role_of_server( server ) if role == c.ROLE_MASTER: the_number_of_master = the_number_of_master + 1 elif role == c.ROLE_SLAVE: the_number_of_slave = the_number_of_slave + 1 self.assertTrue( 1 == the_number_of_master and 2 == the_number_of_slave, 'failed to set roles, the number of master:%d, the number of slave:%d' % (the_number_of_master, the_number_of_slave) ) # get master, slave1, and slave2 master, slave1, slave2 = self.get_mss() # connect to a master`s redis and set data redis = redis_mgmt.Redis( master['id'] ) ret = redis.connect( master['ip'], master['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis, server:%d' % master['id'] ) for i in range( max, max*2 ): cmd = 'set %s%d %d\r\n' % (key, i, i) redis.write( cmd ) res = redis.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n', 'failed to get response, server:%d' % master['id'] ) redis.disconnect() # check slaves`s data slaves = [slave1, slave2] for slave in slaves: slave_redis = redis_mgmt.Redis( slave['id'] ) ret = slave_redis .connect( slave['ip'], slave['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis, server:%d' % slave['id'] ) for i in range( 0, max*2 ): cmd = 'get %s%d\r\n' % (key, i) slave_redis.write( cmd ) trash = slave_redis.read_until( '\r\n' ) res = slave_redis.read_until( '\r\n' ) self.assertEquals( res, '%d\r\n' % i, 'inconsistent, server:%d, expected %d but %s' % (slave['id'], i, res) ) slave_redis.disconnect() def test_3_heartbeat_target_connection_count( self ): util.print_frame() util.log( 'wait until all connections are established' ) for i in range(1, 8): time.sleep(1) util.log( '%d sec' % i ) # check pgs for server in self.cluster['servers']: before_cnt_redis = util.get_clients_count_of_redis(server['ip'], server['redis_port']) before_cnt_smr = util.get_clients_count_of_smr(server['smr_mgmt_port']) cmd = 'pgs_leave %s %d forced' % (self.cluster['cluster_name'], server['id']) ret = util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) jobj = json.loads(ret) self.assertEqual( jobj['state'], 'success', 'failed : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) # check redis success = False for i in range(5): after_cnt = util.get_clients_count_of_redis(server['ip'], server['redis_port']) if after_cnt <= 2: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to redis%d(%s:%d) is %d, exptected:n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) util.log( 'succeeded : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) # check smr success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_smr(server['smr_mgmt_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) util.log( 'succeeded : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) # Go back to initial configuration self.assertTrue(util.pgs_join(self.leader_cm['ip'], self.leader_cm['cm_port'], server['cluster_name'], server['id']), 'failed to join pgs %d' % server['id']) # check gateway for server in self.cluster['servers']: before_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) cmd = 'gw_del %s %d' % (self.cluster['cluster_name'], server['id']) ret = util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) jobj = json.loads(ret) self.assertEqual( jobj['state'], 'success', 'failed : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) util.log( 'succeeded : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) # Go back to initial configuration self.assertTrue(util.gw_add(server['cluster_name'], server['id'], server['pm_name'], server['ip'], server['gateway_port'], self.leader_cm['ip'], self.leader_cm['cm_port']), 'failed to add gw %d' % server['id']) def test_4_elect_master_randomly( self ): util.print_frame() for i in range(1): self.elect_master_randomly() def elect_master_randomly( self ): # set data ip, port = util.get_rand_gateway(self.cluster) gw = gateway_mgmt.Gateway( '0' ) gw.connect( ip, port ) for i in range( 0, 1000 ): cmd = 'set %s%d %d\r\n' % (self.key_base, i, i) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEqual( res, '+OK\r\n', 'failed to set values to gw(%s:%d). cmd:%s, res:%s' % (ip, port, cmd[:-2], res[:-2]) ) server_ids = [] for server in self.cluster['servers']: server_ids.append( server['id'] ) for try_cnt in range( 30 ): # get master, slave1, slave2 m, s1, s2 = util.get_mss( self.cluster ) self.assertNotEqual( m, None, 'master is None.' ) self.assertNotEqual( s1, None, 'slave1 is None.' ) self.assertNotEqual( s2, None, 'slave2 is None.' ) util.log( 'master id : %d' % m['id'] ) if try_cnt != 0: if m['id'] in server_ids: server_ids.remove( m['id'] ) smr = smr_mgmt.SMR( m['id'] ) ret = smr.connect( m['ip'], m['smr_mgmt_port'] ) self.assertEqual( ret, 0, 'failed to connect to master. %s:%d' % (m['ip'], m['smr_mgmt_port']) ) cmd = 'role lconn\r\n' smr.write( cmd ) reply = smr.read_until( '\r\n' ) self.assertEqual( reply, '+OK\r\n', 'failed : cmd="%s", reply="%s"' % (cmd[:-2], reply[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd[:-2], reply[:-2]) ) # wait until role-change is finished for role_change_try_cnt in range( 5 ): count_master = 0 count_slave = 0 for server in self.cluster['servers']: real_role = util.get_role_of_server( server ) real_role = util.roleNumberToChar( real_role ) if real_role == 'M': count_master = count_master + 1 elif real_role == 'S': count_slave = count_slave + 1 if count_master == 1 and count_slave == 2: break; time.sleep( 1 ) # check the number of master and slave self.assertEqual( count_master, 1, 'failed : the number of master is not 1, count_master=%d, count_slave=%d' % (count_master, count_slave) ) self.assertEqual( count_slave, 2, 'failed : the number of slave is not 2, count_master=%d, count_slave=%d' % (count_master, count_slave) ) util.log( 'succeeded : the number of master is 1 and the number of slave is 2' ) # check states of all pgs in pg for try_cnt in range( 3 ): ok = True for s in self.cluster['servers']: real_role = util.get_role_of_server( s ) real_role = util.roleNumberToChar( real_role ) smr_info = util.get_smr_info( s, self.leader_cm ) cc_role = smr_info['smr_Role'] cc_hb = smr_info['hb'] if cc_hb != 'Y': ok = False if real_role != cc_role: ok = False if ok: util.log( 'succeeded : a role of real pgs is the same with a role in cc, id=%d, real=%s, cc=%s, hb=%s' % (s['id'], real_role, cc_role, cc_hb) ) else: util.log( '\n\n**********************************************************\n\nretry: a role of real pgs is not the same with a role in cc, id=%d, real=%s, cc=%s, hb=%s' % (s['id'], real_role, cc_role, cc_hb) ) if ok == False: time.sleep( 0.5 ) else: break self.assertTrue( ok, 'failed : role check' ) if len( server_ids ) == 0: util.log( 'succeeded : all smrs have been as a master' ) return 0 self.assertEqual( 0, len( server_ids ) , 'failed : remains server ids=[%s]' % (','.join('%d' % id for id in server_ids)) ) return 0 def test_5_from_n_to_1_heartbeat_checkers( self ): util.print_frame() for i in range( 0, len( self.cluster['servers'] ) - 1 ): util.log( 'loop %d' % i ) server = self.cluster['servers'][i] self.assertEquals( 0, testbase.request_to_shutdown_cm( server ), 'failed to request_to_shutdown_cm, server:%d' % server['id'] ) time.sleep( 20 ) self.leader_cm = self.cluster['servers'][i+1] self.match_cluster_info(self.leader_cm['ip'], self.leader_cm['cm_port'], self.cluster) self.state_transition() # Go back to initial configuration self.assertTrue(util.recover_confmaster(self.cluster, [0,1], 0), 'failed to recover confmaster.') def test_6_from_3_to_6_heartbeat_checkers( self ): util.print_frame() hbc_svr_list = [] i = 5000 + len( self.cluster['servers'] ) for server in self.cluster['servers']: i = i + 1 hbc_svr = {} hbc_svr['id'] = i hbc_svr['ip'] = server['ip'] hbc_svr['zk_port'] = server['zk_port'] hbc_svr_list.append(hbc_svr) ret = testbase.setup_cm( i ) self.assertEquals( 0, ret, 'failed to copy heartbeat checker, server:%d' % hbc_svr['id'] ) ret = testbase.request_to_start_cm( i, i ) self.assertEquals( 0, ret, 'failed to request_to_start_cm, server:%d' % hbc_svr['id'] ) self.state_transition() # Go back to initial configuration for hbc_svr in hbc_svr_list: self.assertEqual(0, testbase.request_to_shutdown_cm(hbc_svr), 'failed to shutdown confmaster') def test_7_remaining_hbc_connection( self ): util.print_frame() # check pgs for server in self.cluster['servers']: before_cnt_redis = util.get_clients_count_of_redis(server['ip'], server['redis_port']) before_cnt_smr = util.get_clients_count_of_smr(server['smr_mgmt_port']) cmd = 'pgs_leave %s %d forced\r\npgs_del %s %d' % (self.cluster['cluster_name'], server['id'], self.cluster['cluster_name'], server['id']) util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) for server in self.cluster['servers']: # check redis success = False for i in range(5): after_cnt = util.get_clients_count_of_redis(server['ip'], server['redis_port']) if after_cnt <= 2: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) util.log( 'succeeded : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) # check smr success = False expected = 0 for i in range(5): after_cnt = util.get_clients_count_of_smr(server['smr_mgmt_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) util.log( 'succeeded : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) # check gateway for server in self.cluster['servers']: before_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) cmd = 'gw_del %s %d' % (self.cluster['cluster_name'], server['id']) util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) for server in self.cluster['servers']: success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) util.log( 'succeeded : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) # Go back to initial configuration # Cleanup PG self.assertTrue(util.cm_success(util.cm_command( self.leader_cm['ip'], self.leader_cm['cm_port'], 'pg_del %s %d' % (self.cluster['cluster_name'], self.cluster['servers'][0]['pg_id'])))[0]) # Cleanup processes of PGS and GW for s in self.cluster['servers']: self.assertEqual(0, util.shutdown_redis(s['id'], s['redis_port']), 'failed to kill redis %d process' % s['id']) self.assertEqual(0, util.shutdown_smr(s['id'], s['ip'], s['smr_base_port']), 'failed to kill smr %d process' % s['id']) self.assertEqual(0, util.shutdown_gateway(s['id'], s['gateway_port']), 'failed to kill gw %d process' % s['id']) # Recover PG self.assertTrue( util.install_pg(self.cluster, self.cluster['servers'], self.cluster['servers'][0], start_gw=True), 'failed to recover PGS and GW in a PM') def match_cluster_info(self, cm_ip, cm_port, cluster): # Cluster cluster_info = util.cluster_info(cm_ip, cm_port, cluster['cluster_name'])['cluster_info'] self.assertEquals(cluster_info['PN_PG_Map'], '0 8192') self.assertEquals(cluster_info['Key_Space_Size'], 8192) # PG for pg_id in cluster['pg_id_list']: pg = util.pg_info(cm_ip, cm_port, cluster['cluster_name'], pg_id) self.assertIsNotNone(pg) for s in self.cluster['servers']: # GW gw_info = util.get_gw_info(cm_ip, cm_port, cluster['cluster_name'], s['id']) self.assertEquals(gw_info['port'], s['gateway_port']) self.assertEquals(gw_info['state'], 'N') self.assertEquals(gw_info['hb'], 'Y') self.assertEquals(gw_info['pm_Name'], s['pm_name']) self.assertEquals(gw_info['pm_IP'], s['ip']) # PGS pgs_info = util.get_pgs_info(cm_ip, cm_port, cluster['cluster_name'], s['id']) self.assertEquals(pgs_info['pg_ID'], s['pg_id']) self.assertEquals(pgs_info['pm_Name'], s['pm_name']) self.assertEquals(pgs_info['pm_IP'], s['ip']) self.assertEquals(pgs_info['backend_Port_Of_Redis'], s['redis_port']) self.assertEquals(pgs_info['replicator_Port_Of_SMR'], s['smr_base_port']) self.assertEquals(pgs_info['management_Port_Of_SMR'], s['smr_mgmt_port']) self.assertEquals(pgs_info['state'], 'N') self.assertEquals(pgs_info['hb'], 'Y') self.assertEquals(pgs_info['color'], 'GREEN') self.assertTrue(pgs_info['smr_Role'] == 'M' or pgs_info['smr_Role'] == 'S') self.assertEquals(pgs_info['old_master_version'], '201')
1.710938
2
examples/nonogram/tests/cases.py
notechats/notegame
17
12789487
<reponame>notechats/notegame # -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function from pynogram.core.common import ( BOX, SPACE, ) # TODO: more solved rows CASES = [ ([], '???', [SPACE, SPACE, SPACE]), ([1, 1, 5], '---#-- - # ', [ SPACE, SPACE, SPACE, BOX, SPACE, SPACE, None, None, None, None, None, None, None, None, None, SPACE, None, None, None, BOX, BOX, BOX, BOX, None]), ([9, 1, 1, 1], ' --#########------- #- - ', [ SPACE, SPACE, SPACE, SPACE, SPACE, BOX, BOX, BOX, BOX, BOX, BOX, BOX, BOX, BOX, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, None, None, SPACE, BOX, SPACE, None, SPACE, None]), ([5, 6, 3, 1, 1], ' #- ----- ##- --- #-', [ None, None, None, None, None, None, None, None, None, SPACE, None, BOX, BOX, BOX, BOX, BOX, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, SPACE, None, None, None, BOX, BOX, BOX, SPACE, None, None, None, None, None, None, SPACE, SPACE, SPACE, None, None, SPACE, BOX, SPACE]), ([4, 2], ' # . ', [ None, BOX, BOX, BOX, None, SPACE, BOX, BOX]), ([4, 2], ' # . ', [ BOX, BOX, BOX, BOX, SPACE, None, BOX, None]), ((1, 1, 2, 1, 1, 3, 1), [ BOX, SPACE, SPACE, None, None, SPACE, None, BOX, None, SPACE, SPACE, BOX, None, None, None, None, None, BOX, None, None, None, None], [ BOX, SPACE, SPACE, None, None, SPACE, None, BOX, None, SPACE, SPACE, BOX, SPACE, None, None, None, None, BOX, None, None, None, None]), ] BAD_CASES = [ ([4, 2], ' # . '), ([4, 2], ' # .# #'), ((5, 3, 2, 2, 4, 2, 2), '-#####----###-----------##- ### '), ]
1.914063
2
weight_comparisons.py
bartulem/KISN-pancortical-kinematics
2
12789488
<gh_stars>1-10 """ Compares tuning-curve rate differences in weight/no-weight sessions. @author: bartulem """ import os import sys import json import scipy.stats import numpy as np from mpl_toolkits.mplot3d.art3d import Line3DCollection import matplotlib.patches as patches import matplotlib.colorbar as cbar import matplotlib.pyplot as plt from scipy.ndimage.filters import gaussian_filter1d, uniform_filter1d from tqdm import tqdm from random import gauss from mpl_toolkits.axes_grid1.inset_locator import inset_axes import sessions2load import make_ratemaps import neural_activity def extract_json_data(json_file='', features=None, peak_min=True, der='1st', rate_stability_bound=True, ref_dict=None, test_session='weight', composite_score=True): """ Description ---------- This function extracts json data (weight/tuning peaks/stability) and returns it packed into a dictionary. ---------- Parameters ---------- **kwargs (dictionary) json_file (str) Absolute path to the .json file of interest. composite_score (bool) To use the composite score for rate maps, instead of something else; defaults to True. features (list) List of features you're interested in (der not necessary!); defaults to ['Speeds']. peak_min (int / bool) The minimum rate for light1 to even be considered; defaults to True. rate_stability_bound (int / bool) How much is the OF2 peak rate allowed to deviate from OF1 (in terms of percent OF1 rate); defaults to True. der (str) Derivative of choice; defaults to '1st'. ref_dict (dict) The reference and second light session: defaults to {'ref_session': 'light1', 'other_session': 'light2'} test_session (str) The test session of interest; defaults to 'weight'. ---------- Returns ---------- data_dict (dict) A dictionary which contains the desired data. ---------- """ if ref_dict is None: ref_dict = {'ref_session': 'light1', 'other_session': 'light2'} if features is None: features = ['Speeds'] with open(json_file) as j_file: json_data = json.load(j_file) weight_dict = {} for feature in features: for feature_type in [feature, f'{feature}_{der}_der']: if der == '2nd' and feature == 'Speeds': continue else: if composite_score: weight_dict[feature_type] = {'auc': {ref_dict['ref_session']: [], test_session: [], ref_dict['other_session']: []}, 'peaks': {ref_dict['ref_session']: [], test_session: [], ref_dict['other_session']: []}, 'information_rates': {ref_dict['ref_session']: [], test_session: [], ref_dict['other_session']: []}, 'stability': {'{}-{}'.format(ref_dict['ref_session'], test_session): [], '{}-{}'.format(ref_dict['other_session'], test_session): [], '{}-{}'.format(ref_dict['ref_session'], ref_dict['other_session']): []}} for cl_num in json_data.keys(): if composite_score: for key in json_data[cl_num]['features'].keys(): if key in weight_dict.keys() and len(json_data[cl_num]['features'][key][ref_dict['ref_session']]['rm']) > 5: ref_session_data = json_data[cl_num]['features'][key][ref_dict['ref_session']]['rm'] test_session_data = json_data[cl_num]['features'][key][test_session]['rm'] other_session_data = json_data[cl_num]['features'][key][ref_dict['other_session']]['rm'] if (peak_min is True or np.max(ref_session_data) > peak_min) \ and (peak_min is True or np.max(test_session_data) > peak_min) \ and (peak_min is True or np.max(other_session_data) > peak_min) \ and rate_stability_bound is True or abs(json_data[cl_num]['baseline_firing_rates'][ref_dict['ref_session']] - json_data[cl_num]['baseline_firing_rates'][test_session]) \ < (json_data[cl_num]['baseline_firing_rates'][ref_dict['ref_session']] * (rate_stability_bound / 100)): weight_dict[key]['auc'][ref_dict['ref_session']].append(np.sum(ref_session_data)) weight_dict[key]['auc'][test_session].append(np.sum(test_session_data)) weight_dict[key]['auc'][ref_dict['other_session']].append(np.sum(other_session_data)) weight_dict[key]['peaks'][ref_dict['ref_session']].append(json_data[cl_num]['features'][key][ref_dict['ref_session']]['x'][np.argmax(ref_session_data)]) weight_dict[key]['peaks'][test_session].append(json_data[cl_num]['features'][key][test_session]['x'][np.argmax(test_session_data)]) weight_dict[key]['peaks'][ref_dict['other_session']].append(json_data[cl_num]['features'][key][ref_dict['other_session']]['x'][np.argmax(other_session_data)]) weight_dict[key]['information_rates'][ref_dict['ref_session']].append(json_data[cl_num]['features'][key]['ICr-{}'.format(ref_dict['ref_session'])]) weight_dict[key]['information_rates'][test_session].append(json_data[cl_num]['features'][key]['ICr-{}'.format(test_session)]) weight_dict[key]['information_rates'][ref_dict['other_session']].append(json_data[cl_num]['features'][key]['ICr-{}'.format(ref_dict['other_session'])]) weight_dict[key]['stability']['{}-{}'.format(ref_dict['ref_session'], test_session)].append(scipy.stats.spearmanr(ref_session_data, test_session_data)[0]) weight_dict[key]['stability']['{}-{}'.format(ref_dict['other_session'], test_session)].append(scipy.stats.spearmanr(other_session_data, test_session_data)[0]) weight_dict[key]['stability']['{}-{}'.format(ref_dict['ref_session'], ref_dict['other_session'])].append(scipy.stats.spearmanr(ref_session_data, other_session_data)[0]) return weight_dict def make_shuffled_distributions(weight_dict, ref_dict, test_session, n_shuffles=1000): shuffled_dict = {} for feature in tqdm(weight_dict.keys()): shuffled_dict[feature] = {'auc': {'null_differences': np.zeros(n_shuffles), 'true_difference': 0, 'z-value': 1, 'p-value': 1}, 'peaks': {'null_differences': np.zeros(n_shuffles), 'true_difference': 0, 'z-value': 1, 'p-value': 1}, 'stability': {'null_differences': np.zeros(n_shuffles), 'true_difference': 0, 'z-value': 1, 'p-value': 1}, 'information_rates': {'null_differences': np.zeros(n_shuffles), 'true_difference': 0, 'z-value': 1, 'p-value': 1}} for attribute in ['auc', 'information_rates']: shuffled_dict[feature][attribute]['true_difference'] = np.mean(np.diff(np.array([weight_dict[feature][attribute][test_session], weight_dict[feature][attribute][ref_dict['ref_session']]]), axis=0)) corr_arr = np.array([weight_dict[feature]['stability']['{}-{}'.format(ref_dict['ref_session'], test_session)], weight_dict[feature]['stability']['{}-{}'.format(ref_dict['ref_session'], ref_dict['other_session'])]]) corr_arr[corr_arr > .99] = .99 true_difference_corr = np.mean(np.diff(np.arctanh(corr_arr), axis=0)) for sh in range(n_shuffles): joint_arr = np.array([weight_dict[feature]['auc'][test_session], weight_dict[feature]['auc'][ref_dict['ref_session']]]) joint_arr_peaks = np.array([weight_dict[feature]['peaks'][test_session], weight_dict[feature]['peaks'][ref_dict['ref_session']]]) joint_arr_ir = np.array([weight_dict[feature]['information_rates'][test_session], weight_dict[feature]['information_rates'][ref_dict['ref_session']]]) joint_arr_corr = np.arctanh(corr_arr.copy()) for col in range(joint_arr.shape[1]): np.random.shuffle(joint_arr[:, col]) shuffled_dict[feature]['auc']['null_differences'][sh] = np.mean(np.diff(joint_arr, axis=0)) np.random.shuffle(joint_arr_peaks[:, col]) shuffled_dict[feature]['peaks']['null_differences'][sh] = np.mean(np.diff(joint_arr_peaks, axis=0)) np.random.shuffle(joint_arr_ir[:, col]) shuffled_dict[feature]['information_rates']['null_differences'][sh] = np.mean(np.diff(joint_arr_ir, axis=0)) np.random.shuffle(joint_arr_corr[:, col]) shuffled_dict[feature]['stability']['null_differences'][sh] = np.mean(np.diff(joint_arr_corr, axis=0)) for attribute in ['auc', 'peaks', 'information_rates']: shuffled_dict[feature][attribute]['z-value'] = (shuffled_dict[feature][attribute]['true_difference'] - shuffled_dict[feature][attribute]['null_differences'].mean()) \ / shuffled_dict[feature][attribute]['null_differences'].std() p_val_attribute = 1 - scipy.stats.norm.cdf(shuffled_dict[feature][attribute]['z-value']) if p_val_attribute < .5: shuffled_dict[feature][attribute]['p-value'] = p_val_attribute else: shuffled_dict[feature][attribute]['p-value'] = 1 - p_val_attribute shuffled_dict[feature]['stability']['z-value'] = (true_difference_corr - shuffled_dict[feature]['stability']['null_differences'].mean()) \ / shuffled_dict[feature]['stability']['null_differences'].std() p_val_correlations = 1 - scipy.stats.norm.cdf(shuffled_dict[feature]['stability']['z-value']) if p_val_correlations < .5: shuffled_dict[feature]['stability']['p-value'] = p_val_correlations else: shuffled_dict[feature]['stability']['p-value'] = 1 - p_val_correlations shuffled_dict[feature]['stability']['true_difference'] = np.tanh(true_difference_corr) shuffled_dict[feature]['stability']['null_differences'] = np.tanh(shuffled_dict[feature]['stability']['null_differences']) return shuffled_dict class WeightComparer: def __init__(self, weight_json_file='', chosen_features=None, rate_stability_bound=True, peak_min=True, save_dir='', save_fig=False, fig_format='png', der='1st', baseline_dict={}, ref_dict=None, test_session_type='weight', beh_plot_sessions={}): if chosen_features is None: chosen_features = ['Speeds'] if ref_dict is None: ref_dict = {'ref_session': 'light1', 'other_session': 'light2'} self.weight_json_file = weight_json_file self.chosen_features = chosen_features self.peak_min = peak_min self.rate_stability_bound = rate_stability_bound self.save_dir = save_dir self.save_fig = save_fig self.fig_format = fig_format self.der = der self.baseline_dict = baseline_dict self.ref_dict = ref_dict self.test_session_type = test_session_type self.beh_plot_sessions = beh_plot_sessions def baseline_rate_change_over_time(self, **kwargs): """ Description ---------- This method plots how the baseline firing rate changes over time for all clusters that were significant for at least one 1-D feature. [1] The first plot considers six example clusters from all animals that specific brain area was recorded from. In each session (light1, weight, light2), spikes are allocated into 10 second bins and smoothed with a Gaussian (sigma=1). They are then concatenated into a single array and a rolling mean (size=50) is calculated over the whole window. ---------- Parameters ---------- **kwargs (dictionary) condensing_bin (int) The size of the bin for calculating rates (in seconds); defaults to 10. smooth_sd (int) The SD of the smoothing window; defaults to 1 (bin). rolling_average_window (int) The size of the rolling mean window; defaults to 50 (bins). ---------- Returns ---------- baseline_change_examples (plot) A plot with cluster examples for firing rate changes over sessions. ---------- """ condensing_bin = kwargs['condensing_bin'] if 'condensing_bin' in kwargs.keys() and type(kwargs['condensing_bin']) == int else 10 smooth_sd = kwargs['smooth_sd'] if 'smooth_sd' in kwargs.keys() and type(kwargs['smooth_sd']) == int else 1 rolling_average_window = kwargs['rolling_average_window'] if 'rolling_average_window' in kwargs.keys() and type(kwargs['rolling_average_window']) == int else 50 # activity_dict = {} # for animal in self.baseline_dict.keys(): # activity_dict[animal] = {} # for cl_id in self.baseline_dict[animal]['cl_ids']: # activity_dict[animal][cl_id] = {'light1': 0, self.test_session_type: 0, 'light2': 0} # for idx, session_name in enumerate(['light1', self.test_session_type, 'light2']): # file_id, \ # activity_dictionary, \ # purged_spikes_dictionary = neural_activity.Spikes(input_file=self.baseline_dict[animal]['files'][idx]).convert_activity_to_frames_with_shuffles(get_clusters=cl_id, # to_shuffle=False, # condense_arr=True, # condense_bin_ms=int(1000*condensing_bin)) # activity_dict[animal][cl_id][session_name] = gaussian_filter1d(input=activity_dictionary[cl_id]['activity'].todense(), sigma=smooth_sd) / condensing_bin # # plot_dict = {} # labels = {} # borders = {} # for animal in activity_dict.keys(): # plot_dict[animal] = {} # labels[animal] = {} # borders[animal] = [0, 0, 0] # for cl_idx, cl_id in enumerate(activity_dict[animal].keys()): # concatenated_activity = np.concatenate((activity_dict[animal][cl_id]['light1'], # activity_dict[animal][cl_id][self.test_session_type], # activity_dict[animal][cl_id]['light2'])) # labels[animal][cl_id] = concatenated_activity.max() # smoothed_activity = uniform_filter1d(concatenated_activity, size=rolling_average_window) # plot_dict[animal][cl_id] = smoothed_activity / smoothed_activity.max() # if cl_idx == 0: # borders[animal][0] = activity_dict[animal][cl_id]['light1'].shape[0] # borders[animal][1] = activity_dict[animal][cl_id]['light1'].shape[0] \ # + activity_dict[animal][cl_id][self.test_session_type].shape[0] # borders[animal][2] = activity_dict[animal][cl_id]['light1'].shape[0] \ # + activity_dict[animal][cl_id][self.test_session_type].shape[0]\ # + activity_dict[animal][cl_id]['light2'].shape[0] # # row_num = len(self.baseline_dict.keys()) # fig, ax = plt.subplots(nrows=row_num, ncols=1, figsize=(6.4, row_num*4.8)) # for animal_idx, animal in enumerate(self.baseline_dict.keys()): # ax = plt.subplot(row_num, 1, animal_idx+1) # for cl_id in sorted(labels[animal], key=labels[animal].get, reverse=True): # ax.plot(plot_dict[animal][cl_id], '-', # color='#000000', # alpha=labels[animal][cl_id] / 100 + .05, # label=f'{labels[animal][cl_id]} spikes/s') # ax.legend(frameon=False) # ax.set_title(f'Rat #{animal}') # for bo_idx, border in enumerate(borders[animal]): # if bo_idx < 2: # ax.axvline(x=border, ls='-.', color='#000000', alpha=.25) # ax.set_xticks([borders[animal][0] // 2, # (borders[animal][1]+borders[animal][0]) // 2, # (borders[animal][2]+borders[animal][1]) // 2]) # ax.set_xticklabels(['light1', self.test_session_type, 'light2']) # ax.tick_params(axis='both', which='both', length=0) # ax.set_ylabel('Order of recordings') # ax.set_ylabel('Peak normalized activity') # ax.spines['top'].set_visible(False) # ax.spines['right'].set_visible(False) # ax.spines['bottom'].set_visible(False) # if self.save_fig: # if os.path.exists(self.save_dir): # fig.savefig(f'{self.save_dir}{os.sep}baseline_change_examples.{self.fig_format}', dpi=300) # else: # print("Specified save directory doesn't exist. Try again.") # sys.exit() # plt.show() # statistics on baseline rate change with open(self.weight_json_file, 'r') as json_file: data = json.load(json_file) baseline_rates = {'light1': [], self.test_session_type: [], 'light2': []} for cl_num in data.keys(): baseline_rates['light1'].append(data[cl_num]['baseline_firing_rates']['light1']) baseline_rates['light2'].append(data[cl_num]['baseline_firing_rates']['light2']) baseline_rates[self.test_session_type].append(data[cl_num]['baseline_firing_rates'][self.test_session_type]) # fig2, ax2 = plt.subplots(nrows=1, ncols=1) # ax2 = plt.subplot(1, 1, 1) # hist_l1, edges = np.histogram(a=baseline_rates['light1'], bins=np.linspace(0, 40, 50)) # hist_l2, edges2 = np.histogram(a=baseline_rates['light2'], bins=np.linspace(0, 40, 50)) # test_session, edges2 = np.histogram(a=baseline_rates[self.test_session_type], bins=np.linspace(0, 40, 50)) # bin_centers = 0.5*(edges[1:]+edges[:-1]) # plt.plot(bin_centers, hist_l1, c='#000000', alpha=.35, label='light1') # plt.plot(bin_centers, hist_l2, c='#000000', alpha=.45, label='light2') # plt.plot(bin_centers, test_session, c='#000000', alpha=1, label=self.test_session_type) # plt.legend() # plt.title('Baseline firing rate distributions') # plt.xlabel('Baseline firing rate (spikes/s)') # plt.ylabel('Unit count') # if self.save_fig: # if os.path.exists(self.save_dir): # fig2.savefig(f'{self.save_dir}{os.sep}firing_rate_distributions.{self.fig_format}', dpi=300) # else: # print("Specified save directory doesn't exist. Try again.") # sys.exit() # plt.show() # fig2, ax2 = plt.subplots(nrows=1, ncols=1) # ax2 = plt.subplot(1, 1, 1) # ax2.scatter(x=[gauss(.2, .025) for x in range(len(baseline_rates['light1']))], y=baseline_rates['light1'], # color='#000000', alpha=.15, s=10) # ax2.boxplot(x=baseline_rates['light1'], positions=[.35], notch=True, sym='', widths=.1) # ax2.scatter(x=[gauss(.6, .025) for x in range(len(baseline_rates[self.test_session_type]))], y=baseline_rates[self.test_session_type], # color='#000000', alpha=.75, s=10) # ax2.boxplot(x=baseline_rates[self.test_session_type], positions=[.75], notch=True, sym='', widths=.1) # ax2.scatter(x=[gauss(1., .025) for x in range(len(baseline_rates['light2']))], y=baseline_rates['light2'], # color='#000000', alpha=.15, s=10) # ax2.boxplot(x=baseline_rates['light2'], positions=[1.15], notch=True, sym='', widths=.1) # ax2.set_xticks([.275, .675, 1.075]) # ax2.set_xticklabels(['light1', self.test_session_type, 'light2']) # ax2.set_ylabel('Firing rate (spikes/s)') # ax2.set_yscale('log') # ax2.spines['top'].set_visible(False) # ax2.spines['right'].set_visible(False) # if self.save_fig: # if os.path.exists(self.save_dir): # fig2.savefig(f'{self.save_dir}{os.sep}baseline_change_statistics1.{self.fig_format}', dpi=300) # else: # print("Specified save directory doesn't exist. Try again.") # sys.exit() # plt.show() diff_light1_weight = np.diff(np.array([baseline_rates[self.test_session_type], baseline_rates['light1']]), axis=0).ravel() diff_weight_light2 = np.diff(np.array([baseline_rates['light2'], baseline_rates[self.test_session_type]]), axis=0).ravel() diff_light1_light2 = np.diff(np.array([baseline_rates['light2'], baseline_rates['light1']]), axis=0).ravel() shuffled = np.zeros((3, 1000)) for sh in tqdm(range(1000)): for idx, n in enumerate([(self.test_session_type, 'light1'), ('light2', self.test_session_type), ('light2', 'light1')]): joint_arr = np.array([baseline_rates[n[0]], baseline_rates[n[1]]]) for col in range(joint_arr.shape[1]): np.random.shuffle(joint_arr[:, col]) shuffled[idx, sh] = np.mean(np.diff(joint_arr, axis=0)) fig3, ax3 = plt.subplots(nrows=1, ncols=3, figsize=(6.4 * 3, 4.8)) ax31 = plt.subplot(1, 3, 1) hist_n, hist_bins, hist_patches = ax31.hist(diff_light1_weight, bins=np.linspace(-7.5, 7.5, 50), histtype='stepfilled', color='#FFFFFF', edgecolor='#000000') ax31.axvline(x=0, ls='-.', color='#000000', alpha=.25) ax31.plot(diff_light1_weight.mean(), 12, marker='o', color='#000000') ax31.set_xlabel(f'light1 - {self.test_session_type} (spikes/s)') ax31.set_ylabel('Number of units') p_value = 1 - scipy.stats.norm.cdf((diff_light1_weight.mean() - shuffled[0, :].mean()) / shuffled[0, :].std()) ax31.text(x=4, y=480, s=f'p={p_value:.2e}') axins1 = inset_axes(ax31, width='40%', height='30%', loc=2) axins1.hist(shuffled[0, :], bins=np.linspace(-.15, .15, 20), histtype='stepfilled', color='#000000', alpha=.25) axins1.axvline(x=np.nanpercentile(shuffled[0, :], 99.5), color='#000000', ls='-.', alpha=.5) axins1.plot(diff_light1_weight.mean(), 10, marker='o', color='#000000') axins1.set_xticks([-.1, 0, .1, .2]) axins1.set_yticks([0, 50, 100, 150]) ax32 = plt.subplot(1, 3, 2) ax32.hist(diff_weight_light2, bins=hist_bins, histtype='stepfilled', color='#FFFFFF', edgecolor='#000000') ax32.axvline(x=0, ls='-.', color='#000000', alpha=.25) ax32.plot(diff_weight_light2.mean(), 12, marker='o', color='#000000') ax32.set_xlabel(f'{self.test_session_type} - light2 (spikes/s)') p_value_2 = 1 - scipy.stats.norm.cdf((diff_weight_light2.mean() - shuffled[1, :].mean()) / shuffled[1, :].std()) ax32.text(x=6, y=490, s=f'p={p_value_2:.2f}') axins2 = inset_axes(ax32, width='40%', height='30%', loc=2) axins2.hist(shuffled[1, :], bins=np.linspace(-.15, .15, 20), histtype='stepfilled', color='#000000', alpha=.25) axins2.plot(diff_weight_light2.mean(), 10, marker='o', color='#000000') axins2.set_xticks([-.1, 0, .1]) axins2.set_yticks([0, 50, 100, 150]) ax33 = plt.subplot(1, 3, 3) ax33.hist(diff_light1_light2, bins=hist_bins, histtype='stepfilled', color='#FFFFFF', edgecolor='#000000') ax33.axvline(x=0, ls='-.', color='#000000', alpha=.25) ax33.plot(diff_light1_light2.mean(), 10, marker='o', color='#000000') ax33.set_xlabel('light1 - light2 (spikes/s)') p_value_3 = 1 - scipy.stats.norm.cdf((diff_light1_light2.mean() - shuffled[2, :].mean()) / shuffled[2, :].std()) ax33.text(x=4, y=420, s=f'p={p_value_3:.2e}') axins3 = inset_axes(ax33, width='40%', height='30%', loc=2) axins3.hist(shuffled[2, :], bins=np.linspace(-.15, .15, 20), histtype='stepfilled', color='#000000', alpha=.25) axins3.axvline(x=np.nanpercentile(shuffled[2, :], 99.5), color='#000000', ls='-.', alpha=.5) axins3.plot(diff_light1_light2.mean(), 7, marker='o', color='#000000') axins3.set_xticks([-.1, 0, .1, .2]) axins3.set_yticks([0, 50, 100]) if self.save_fig: if os.path.exists(self.save_dir): fig3.savefig(f'{self.save_dir}{os.sep}baseline_change_statistics2.{self.fig_format}', dpi=300) else: print("Specified save directory doesn't exist. Try again.") sys.exit() plt.show() def plot_weight_features(self, **kwargs): """ Description ---------- This method plots the raw distribution of light1-light2 and light1-weight peak rate differences, also in form of a scatter plot and probability density distribution. ---------- Parameters ---------- **kwargs (dictionary) peak_min (int / bool) The minimum rate for light1 to even be considered; defaults to True. rate_stability_bound (int / float / bool) How much is the OF2 peak rate allowed to deviate from OF1 (in terms of percent OF1 rate); defaults to True. hist_max (int) The ymax value for the shuffled histograms; defaults to 275. hist_step (int) The step for y-values on the shuffled histogramsl defaults to 50. ---------- Returns ---------- weight_feature_distributions (plot) A plot with weight peak rate differences distributions. ---------- """ hist_max = kwargs['hist_max'] if 'hist_max' in kwargs.keys() and type(kwargs['hist_max']) == int else 301 hist_step = kwargs['hist_step'] if 'hist_step' in kwargs.keys() and type(kwargs['hist_step']) == int else 50 weight_dict = extract_json_data(json_file=self.weight_json_file, features=self.chosen_features, peak_min=self.peak_min, rate_stability_bound=self.rate_stability_bound, der=self.der, ref_dict=self.ref_dict, test_session=self.test_session_type) shuffled_dict = make_shuffled_distributions(weight_dict=weight_dict, ref_dict=self.ref_dict, test_session=self.test_session_type) fig = plt.figure(figsize=(16, 20)) gs_left = [.075, .325, .575, .825] gs_right = [.25, .5, .75, .98] for gs_idx, gs in enumerate(['auc', 'peaks', 'information_rates', 'stability']): gs1 = fig.add_gridspec(nrows=12, ncols=3, left=gs_left[gs_idx], right=gs_right[gs_idx], wspace=.1, hspace=.5) if gs != 'peaks': ax1 = fig.add_subplot(gs1[:2, :]) ax2 = fig.add_subplot(gs1[6:8, :]) ax3 = fig.add_subplot(gs1[3:5, :]) ax4 = fig.add_subplot(gs1[9:11, :]) for chosen_feature in self.chosen_features: if 'head' in chosen_feature or 'Head' in chosen_feature: axes_list = [ax1, ax2] else: axes_list = [ax3, ax4] chosen_feature_der = f'{chosen_feature}_{self.der}_der' feature_colors = [[val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature][0], [val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature_der][0]] for color_idx, (ax, specific_feature) in enumerate(zip(axes_list, [chosen_feature, chosen_feature_der])): if gs != 'stability': ax.scatter(x=np.array(weight_dict[specific_feature][gs][self.ref_dict['ref_session']]), y=np.array(weight_dict[specific_feature][gs][self.test_session_type]), color=feature_colors[color_idx], alpha=1, s=10) else: ax.scatter(x=np.array(weight_dict[chosen_feature][gs]['{}-{}'.format(self.ref_dict['ref_session'], self.ref_dict['other_session'])]), y=np.array(weight_dict[chosen_feature][gs]['{}-{}'.format(self.ref_dict['ref_session'], self.test_session_type)]), color=feature_colors[color_idx], alpha=1, s=10) for ax_idx, ax in enumerate([ax1, ax2, ax3, ax4]): if ax_idx == 0: ax.set_title(gs.replace('_', ' ')) if gs == 'auc': ax.plot([1, 3e3], [1, 3e3], ls='-.', lw=.5, color='#000000') ax.set_xlim(1, 3e3) ax.set_xscale('log') ax.set_ylim(1, 3e3) ax.set_yscale('log') ax.tick_params(axis='both', which='major', length=0, labelsize=8, pad=.5) ax.set_xlabel('{} AUC (spikes/s)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} AUC (spikes/s)'.format(self.test_session_type), labelpad=.1) elif gs == 'information_rates': ax.plot([.001, 1], [.001, 1], ls='-.', lw=.5, color='#000000') ax.tick_params(axis='both', which='major', length=0, labelsize=8, pad=.75) ax.set_xlim(.001, 1) ax.set_xscale('log') ax.set_ylim(.001, 1) ax.set_yscale('log') ax.set_xlabel('{} info rate (bits/spike)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel(f'{self.test_session_type} info rate (bits/spike)', labelpad=.1) else: ax.plot([-0.1, 1.1], [-0.1, 1.1], ls='-.', lw=.5, color='#000000') ax.set_xlim(-0.1, 1.1) ax.set_ylim(-0.1, 1.1) ax.set_xticks([0, .25, .5, .75, 1]) ax.set_yticks([0, .25, .5, .75, 1]) ax.tick_params(axis='both', which='major', length=1, labelsize=8, pad=.75) ax.set_xlabel('{}-{} correlation'.format(self.ref_dict['ref_session'], self.ref_dict['other_session']), labelpad=.1) ax.set_ylabel('{}-{} correlation'.format(self.test_session_type, self.ref_dict['ref_session']), labelpad=.1) else: head_count = 0 back_count = 0 gs_x = {'head': [0, 1, 1], 'head_der': [6, 7, 7], 'back': [3, 4, 4], 'back_der': [9, 10, 10]} for chosen_feature in self.chosen_features: chosen_feature_der = f'{chosen_feature}_{self.der}_der' feature_colors = [[val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature][0], [val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature_der][0]] if 'head' in chosen_feature or 'Head' in chosen_feature: ax2 = fig.add_subplot(gs1[gs_x['head'][head_count], head_count]) ax3 = fig.add_subplot(gs1[gs_x['head_der'][head_count], head_count]) else: ax2 = fig.add_subplot(gs1[gs_x['back'][back_count], back_count]) ax3 = fig.add_subplot(gs1[gs_x['back_der'][back_count], back_count]) for color_idx, (ax, specific_feature) in enumerate(zip([ax2, ax3], [chosen_feature, chosen_feature_der])): ax.scatter(x=np.array(weight_dict[specific_feature][gs][self.ref_dict['ref_session']]), y=np.array(weight_dict[specific_feature][gs][self.test_session_type]), color=feature_colors[color_idx], alpha=1, s=10) ax.tick_params(axis='both', which='major', length=1, labelsize=6, pad=.75) if 'head' in chosen_feature or 'Head' in chosen_feature: if 'der' not in specific_feature: if 'pitch' not in specific_feature: ax.plot([-180, 180], [-180, 180], ls='-.', lw=.5, color='#000000') ax.set_xlim(-180, 180) ax.set_ylim(-180, 180) ax.set_xticks([-180, -90, 0, 90, 180]) ax.set_yticks([-180, -90, 0, 90, 180]) ax.set_xlabel('{} (deg)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (deg)'.format(self.test_session_type), labelpad=.1) else: ax.plot([-90, 90], [-90, 90], ls='-.', lw=.5, color='#000000') ax.set_xlim(-90, 90) ax.set_ylim(-90, 90) ax.set_xticks([-90, -45, 0, 45, 90]) ax.set_yticks([-90, -45, 0, 45, 90]) ax.set_xlabel('{} (deg)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (deg)'.format(self.test_session_type), labelpad=.1) else: ax.plot([-400, 400], [-400, 400], ls='-.', lw=.5, color='#000000') ax.set_xlim(-400, 400) ax.set_ylim(-400, 400) ax.set_xticks([-400, -200, 0, 200, 400]) ax.set_yticks([-400, -200, 0, 200, 400]) ax.set_xlabel('{} (deg/s)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (deg/s)'.format(self.test_session_type), labelpad=.1) else: if back_count < 2: if 'der' not in specific_feature: ax.plot([-60, 60], [-60, 60], ls='-.', lw=.5, color='#000000') ax.set_xlim(-60, 60) ax.set_ylim(-60, 60) ax.set_xticks([-60, -30, 0, 30, 60]) ax.set_yticks([-60, -30, 0, 30, 60]) ax.set_xlabel('{} (deg)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (deg)'.format(self.test_session_type), labelpad=.1) else: ax.plot([-110, 110], [-110, 110], ls='-.', lw=.5, color='#000000') ax.set_xlim(-110, 110) ax.set_ylim(-110, 110) ax.set_xticks([-100, -50, 0, 50, 100]) ax.set_yticks([-100, -50, 0, 50, 100]) ax.set_xlabel('{} (deg/s)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (deg/s)'.format(self.test_session_type), labelpad=.1) else: if 'der' not in specific_feature: ax.plot([0, 18], [0, 18], ls='-.', lw=.5, color='#000000') ax.set_xlim(0, 18) ax.set_ylim(0, 18) ax.set_xticks([0, 4.5, 9, 13.5, 18]) ax.set_yticks([0, 4.5, 9, 13.5, 18]) ax.set_xlabel('{} (cm)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (cm)'.format(self.test_session_type), labelpad=.1) else: ax.plot([-10, 10], [-10, 10], ls='-.', lw=.5, color='#000000') ax.set_xlim(-10, 10) ax.set_ylim(-10, 10) ax.set_xticks([-10, -5, 0, 5, 10]) ax.set_yticks([-10, -5, 0, 5, 10]) ax.set_xlabel('{} (cm/s)'.format(self.ref_dict['ref_session']), labelpad=.1) ax.set_ylabel('{} (cm/s)'.format(self.test_session_type), labelpad=.1) if 'head' in chosen_feature or 'Head' in chosen_feature: head_count += 1 else: back_count += 1 head_col = 0 back_col = 0 for chosen_feature in self.chosen_features: if 'head' in chosen_feature or 'Head' in chosen_feature: row_list = [2, 8] col = head_col else: row_list = [5, 11] col = back_col chosen_feature_der = f'{chosen_feature}_{self.der}_der' feature_colors = [[val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature][0], [val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key == chosen_feature_der][0]] for color_idx, (row, specific_feature) in enumerate(zip(row_list, [chosen_feature, chosen_feature_der])): ax = fig.add_subplot(gs1[row, col]) ax.hist(shuffled_dict[specific_feature][gs]['null_differences'], bins=10, histtype='stepfilled', color='#808080', edgecolor='#000000', alpha=.5) ax.axvline(x=np.nanpercentile(shuffled_dict[specific_feature][gs]['null_differences'], 0.5), color='#000000', ls='-.', lw=.5) ax.axvline(x=np.nanpercentile(shuffled_dict[specific_feature][gs]['null_differences'], 99.5), color='#000000', ls='-.', lw=.5) ax.set_ylim(ymax=hist_max) ax.plot(shuffled_dict[specific_feature][gs]['true_difference'], 0 + .05 * hist_max, marker='o', color=feature_colors[color_idx], markersize=5) if col < 1: ax.set_ylabel('Shuffled count', labelpad=.1, fontsize=6) ax.set_yticks(np.arange(0, hist_max, hist_step)) elif col == 1: if gs == 'auc': ax.set_xlabel('{} - {} AUC difference (spikes/s)'.format(self.ref_dict['ref_session'], self.test_session_type), labelpad=.5, fontsize=6) elif gs == 'peaks': ax.set_xlabel('{} - {} peak position difference'.format(self.ref_dict['ref_session'], self.test_session_type), labelpad=.5, fontsize=6) elif gs == 'information_rates': ax.set_xlabel('{} - {} difference (bits/spike)'.format(self.ref_dict['ref_session'], self.test_session_type), labelpad=.5, fontsize=6) else: ax.set_xlabel('{}-{} to {}-{} difference (rho)'.format(self.ref_dict['ref_session'], self.ref_dict['other_session'], self.ref_dict['ref_session'], self.test_session_type), labelpad=.5, fontsize=6) ax.set_yticklabels([]) else: ax.set_yticklabels([]) ax.tick_params(axis='both', which='both', labelsize=5) if 'head' in chosen_feature or 'Head' in chosen_feature: head_col += 1 else: back_col += 1 if self.save_fig: if os.path.exists(self.save_dir): fig.savefig(f'{self.save_dir}{os.sep}weight_features_comparisons.{self.fig_format}', dpi=300) else: print("Specified save directory doesn't exist. Try again.") sys.exit() plt.show() def plot_weight_statistics(self, **kwargs): """ Description ---------- This method plots the raw statistics of light1-light2 and light1-weight peak rate differences: their means and dependent samples t-test for each feature (and first derivative). ---------- Parameters ---------- **kwargs (dictionary) ---------- Returns ---------- weight_statistics (plot) A plot with weight peak rate differences statistics. ---------- """ weight_dict = extract_json_data(json_file=self.weight_json_file, features=self.chosen_features, peak_min=self.peak_min, rate_stability_bound=self.rate_stability_bound, der=self.der, ref_dict=self.ref_dict, test_session=self.test_session_type) shuffled_dict = make_shuffled_distributions(weight_dict=weight_dict, ref_dict=self.ref_dict, test_session=self.test_session_type) weight_stats_dict = {'features': {'auc': [], 'information_rates': [], 'stability': [], 'z_auc': [], 'z_information_rates': [], 'z_stability': [], 'cl_n': [], 'names': [], 'feature_colors': []}, 'features_der': {'auc': [], 'information_rates': [], 'stability': [], 'z_auc': [], 'z_information_rates': [], 'z_stability': [], 'cl_n': [], 'names': [], 'feature_colors': []}} for feature in weight_dict.keys(): if 'der' not in feature: weight_stats_dict['features']['auc'].append(shuffled_dict[feature]['auc']['p-value']) weight_stats_dict['features']['information_rates'].append(shuffled_dict[feature]['information_rates']['p-value']) weight_stats_dict['features']['stability'].append(shuffled_dict[feature]['stability']['p-value']) weight_stats_dict['features']['z_auc'].append(shuffled_dict[feature]['auc']['z-value']) weight_stats_dict['features']['z_information_rates'].append(shuffled_dict[feature]['information_rates']['z-value']) weight_stats_dict['features']['z_stability'].append(shuffled_dict[feature]['stability']['z-value']) weight_stats_dict['features']['cl_n'].append(len(weight_dict[feature]['auc'][self.test_session_type])) weight_stats_dict['features']['names'].append(feature) weight_stats_dict['features']['feature_colors'].append([val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key in feature][0]) else: weight_stats_dict['features_der']['auc'].append(shuffled_dict[feature]['auc']['p-value']) weight_stats_dict['features_der']['information_rates'].append(shuffled_dict[feature]['information_rates']['p-value']) weight_stats_dict['features_der']['stability'].append(shuffled_dict[feature]['stability']['p-value']) weight_stats_dict['features_der']['z_auc'].append(shuffled_dict[feature]['auc']['z-value']) weight_stats_dict['features_der']['z_information_rates'].append(shuffled_dict[feature]['information_rates']['z-value']) weight_stats_dict['features_der']['z_stability'].append(shuffled_dict[feature]['stability']['z-value']) weight_stats_dict['features_der']['cl_n'].append(len(weight_dict[feature]['auc'][self.test_session_type])) weight_stats_dict['features_der']['names'].append(feature) weight_stats_dict['features_der']['feature_colors'].append([val for key, val in make_ratemaps.Ratemap.feature_colors.items() if key in feature][0]) print(weight_stats_dict) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(30, 5)) ax1 = plt.subplot(111) left_point, middle_point, right_point = 2, 3, 4 cmap = plt.cm.seismic_r normal_range = plt.Normalize(vmin=-4, vmax=0) for idx, feature in enumerate(weight_stats_dict['features']['names']): probabilities = np.log10([weight_stats_dict['features']['stability'][idx], weight_stats_dict['features']['auc'][idx], weight_stats_dict['features']['information_rates'][idx], weight_stats_dict['features_der']['stability'][idx], weight_stats_dict['features_der']['auc'][idx], weight_stats_dict['features_der']['information_rates'][idx]]) colors = plt.cm.seismic_r(normal_range(probabilities)) for y_idx, y_point in enumerate([1, 3]): if y_idx == 0: co = colors[3:] else: co = colors[:3] p = patches.Polygon(xy=np.array([[left_point, y_point], [right_point, y_point], [middle_point, (2 * np.sqrt(3) / 6) + y_point]]), closed=True, ec='#000000', fc=co[0]) p2 = patches.Polygon(xy=np.array([[left_point, y_point], [middle_point, (2 * np.sqrt(3) / 2) + y_point], [middle_point, (2 * np.sqrt(3) / 6) + y_point]]), closed=True, ec='#000000', fc=co[1]) p3 = patches.Polygon(xy=np.array([[right_point, y_point], [middle_point, (2 * np.sqrt(3) / 2) + y_point], [middle_point, (2 * np.sqrt(3) / 6) + y_point]]), closed=True, ec='#000000', fc=co[2]) ax1.add_patch(p) ax1.add_patch(p2) ax1.add_patch(p3) ax1.text(x=left_point + .3, y=5.5, s=feature.replace('_', ' '), fontsize=8) ax1.text(x=left_point + .5, y=5, s='n_clusters={}'.format(weight_stats_dict['features']['cl_n'][idx]), fontsize=8) ax1.text(x=left_point + .5, y=.5, s='n_clusters={}'.format(weight_stats_dict['features_der']['cl_n'][idx]), fontsize=8) left_point += 3 middle_point += 3 right_point += 3 ax1.text(x=.6, y=4, s='Feature', fontsize=8) ax1.text(x=.6, y=2, s='Derivative', fontsize=8) ax1.set_xlim(0, 35) ax1.set_ylim(0, 6) ax1.spines['bottom'].set_visible(False) ax1.spines['left'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.set_xticks([]) ax1.set_yticks([]) cax, _ = cbar.make_axes(ax1) color_bar = cbar.ColorbarBase(cax, cmap=cmap, norm=normal_range) color_bar.set_label('log$_{10}$(p-value)') color_bar.ax.tick_params(size=0) if self.save_fig: if os.path.exists(self.save_dir): fig.savefig(f'{self.save_dir}{os.sep}weight_features_statistics.{self.fig_format}', dpi=300) else: print("Specified save directory doesn't exist. Try again.") sys.exit() plt.show() def plot_behavioral_comparisons(self, **kwargs): """ Description ---------- This method plots behavioral differences in two sets of sessions: weight and no-weight. ---------- Parameters ---------- **kwargs (list) z_axis_bounds (int) The min and max of the z-axis; defaults [5, 20]. ---------- Returns ---------- weight_behavioral_comparisons (plot) A plot comparing behavior in weight vs. no-weight sessions. ---------- """ z_axis_bounds = kwargs['z_axis_bounds'] if 'z_axis_bounds' in kwargs.keys() and type(kwargs['z_axis_bounds']) == list else [5, 20] three_d_occ = {'baseline': {}, 'test': {}} for session_type in self.beh_plot_sessions.keys(): for file_loc in self.beh_plot_sessions[session_type]: file_name, point_data = sessions2load.Session(session=file_loc).data_loader(extract_variables=['sorted_point_data']) temp_neck_data = point_data['sorted_point_data'][:, 4, :] for i in range(2): temp_neck_data[:, i] += abs(min(temp_neck_data[:, i])) print(min(temp_neck_data[:, 2]), max(temp_neck_data[:, 2])) three_d_occ[session_type][file_name] = temp_neck_data * 100 fig = plt.figure(figsize=(10, 5)) fig.subplots_adjust(right=.8, wspace=.5) normal_range = plt.Normalize(vmin=z_axis_bounds[0], vmax=z_axis_bounds[1]) for idx, session_type in enumerate(three_d_occ.keys()): ax = fig.add_subplot(1, 2, idx + 1, projection='3d') for session_data in three_d_occ[session_type].keys(): color_array = three_d_occ[session_type][session_data][:, 2].copy() neck_point = three_d_occ[session_type][session_data].reshape(-1, 1, 3) segments = np.concatenate([neck_point[:-1], neck_point[1:]], axis=1) lc = Line3DCollection(segments, cmap=plt.get_cmap('cividis'), norm=normal_range) lc.set_array(color_array) ax.add_collection3d(lc) ax.set_title(session_type) ax.set_xlim(0, 200) ax.set_ylim(0, 200) ax.set_zlim(z_axis_bounds[0], z_axis_bounds[1]) ax.set_zticks(range(z_axis_bounds[0], z_axis_bounds[1] + 1, 5)) ax.set_xlabel('X (cm)') ax.set_ylabel('Y (cm)') ax.set_zlabel('Z (cm)') ax.grid(False) ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.view_init(elev=None, azim=30) if idx > 0: cbar_ax = fig.add_axes([0.85, 0.25, 0.01, 0.4]) color_bar = cbar.ColorbarBase(cbar_ax, cmap=plt.cm.cividis, norm=normal_range) color_bar.set_label('Neck elevation (cm)') color_bar.ax.locator_params(nbins=4) color_bar.ax.tick_params(size=0) if self.save_fig: if os.path.exists(self.save_dir): fig.savefig(f'{self.save_dir}{os.sep}weight_behavioral_comparisons.{self.fig_format}', dpi=300) else: print("Specified save directory doesn't exist. Try again.") sys.exit() plt.show()
2.140625
2
neuronpp_gym/agents/agent1d.py
ziemowit-s/neuronpp_gym
1
12789489
from neuronpp_gym.core.agent_core import AgentCore class Agent1D(AgentCore): def build(self, input_size: int): """ Build Agent for 1 Dimensional input. Before Agent step() you need to call: 1. agent.build() 2. agent.init() """ if self._built: raise RuntimeError("The Agent have been already built.") if not isinstance(input_size, int): raise ValueError("input_size can only be of type int.") self._build(input_shape=(input_size,), input_size=input_size, input_cell_num=input_size) def _make_observation(self, observation, poisson=False, stepsize=None): """ Make 1D input observation :param observation: 1 dim array of numbers :return: """ if self.input_size != observation.size: raise RuntimeError("Observation must be of same size as self.input_size, which is " "a product of input_shape.") input_syns = [s for c in self.input_cells for s in c.syns] self._make_single_observation(observation=observation, syns=input_syns, poisson=poisson, stepsize=stepsize)
3.34375
3
tethysapp/modflow/app.py
Aquaveo/tethysapp-modflow
0
12789490
<filename>tethysapp/modflow/app.py from tethys_sdk.base import TethysAppBase, url_map_maker from tethys_sdk.app_settings import PersistentStoreDatabaseSetting, PersistentStoreConnectionSetting, \ SpatialDatasetServiceSetting, CustomSetting from tethys_sdk.permissions import Permission import tethysapp.modflow.signals # noqa class Modflow(TethysAppBase): """ Tethys app class for Modflow. """ name = 'Groundwater Model Simulations' index = 'modflow:home' icon = 'modflow/images/icon-gms-tethys-170.png' package = 'modflow' root_url = 'modflow' color = '#BA0C2F' description = 'Application for evaluating pumping location and pumping rates effects on aquifers' tags = '' enable_feedback = False feedback_emails = [] # Services SCHEDULER_NAME = 'remote_cluster' GEOSERVER_NAME = 'primary_geoserver' DATABASE_NAME = 'primary_db' MODEL_DB_CON_01 = 'model_db_1' BASE_SCENARIO_ID = 1 def custom_settings(self): """ Define custom settings. """ custom_settings = ( CustomSetting( name='bing_api_key', type=CustomSetting.TYPE_STRING, description='API key for BING basemap service.', required=False ), CustomSetting( name='minx_extent', type=CustomSetting.TYPE_STRING, description='Min X Extent for Model Selection Map View', required=True ), CustomSetting( name='miny_extent', type=CustomSetting.TYPE_STRING, description='Min Y Extent for Model Selection Map View', required=True ), CustomSetting( name='maxx_extent', type=CustomSetting.TYPE_STRING, description='Max X Extent for Model Selection Map View', required=True ), CustomSetting( name='maxy_extent', type=CustomSetting.TYPE_STRING, description='Max Y Extent for Model Selection Map View', required=True ), CustomSetting( name='custom_base_maps', type=CustomSetting.TYPE_STRING, description='Comma separated urls for basemap services (ex. name1:url1, name2:url2)', required=False ), ) return custom_settings def url_maps(self): """ Add controllers """ from modflow_adapter.models.app_users.modflow_model_resource import ModflowModelResource from modflow_adapter.services.modflow_spatial_manager import ModflowSpatialManager from tethysext.atcore.urls import app_users, spatial_reference from tethysapp.modflow.models.app_users import ModflowOrganization from tethysapp.modflow.services.map_manager import ModflowMapManager from tethysapp.modflow.controllers.resources import ModifyModflowModel from tethysapp.modflow.controllers.map_view.modflow_model_map_view import ModflowModelMapView UrlMap = url_map_maker(self.root_url) # Get the urls for the app_users extension url_maps = [] app_users_urls = app_users.urls( url_map_maker=UrlMap, app=self, persistent_store_name=self.DATABASE_NAME, base_template='modflow/base.html', custom_models=( ModflowModelResource, ModflowOrganization ), custom_controllers=( ModifyModflowModel, ), ) url_maps.extend(app_users_urls) spatial_reference_urls = spatial_reference.urls( url_map_maker=UrlMap, app=self, persistent_store_name=self.DATABASE_NAME ) url_maps.extend(spatial_reference_urls) url_maps.extend(( UrlMap( name='home', url='modflow', controller=ModflowModelMapView.as_controller( _app=self, _persistent_store_name=self.DATABASE_NAME, geoserver_name=self.GEOSERVER_NAME, _Organization=ModflowOrganization, _Resource=ModflowModelResource, _SpatialManager=ModflowSpatialManager, _MapManager=ModflowMapManager ), regex=['[0-9A-Za-z-_.]+', '[0-9A-Za-z-_.{}]+'] ), UrlMap( name='model_view', url='modflow/{resource_id}/map', controller=ModflowModelMapView.as_controller( _app=self, _persistent_store_name=self.DATABASE_NAME, geoserver_name=self.GEOSERVER_NAME, _Organization=ModflowOrganization, _Resource=ModflowModelResource, _SpatialManager=ModflowSpatialManager, _MapManager=ModflowMapManager ), regex=['[0-9A-Za-z-_.]+', '[0-9A-Za-z-_.{}]+'] ), UrlMap( name='modpath', url='modflow/modpath', controller='modflow.controllers.executables.modpath.modpath' ), UrlMap( name='get-flow-path-json', url='modflow/get-flow-path-json', controller='modflow.controllers.executables.modpath.get_flow_path_json' ), UrlMap( name='pump-impact', url='modflow/pump-impact', controller='modflow.controllers.executables.pump_impact.pump_impact' ), UrlMap( name='get-pump-impact-json', url='modflow/get-pump-impact-json', controller='modflow.controllers.executables.pump_impact.get_pump_impact_json' ), UrlMap( name='check-job-status', url='modflow/check-job-status', controller='modflow.controllers.executables.job_status.check_status' ), UrlMap( name='check-point-status', url='modflow/check-point-status', controller='modflow.controllers.rest.map.check_point_status' ), UrlMap( name='check-well-depth', url='modflow/check-well-depth', controller='modflow.controllers.rest.map.check_well_depth' ), UrlMap( name='pump-schedule-data', url='modflow/pump-schedule-data', controller='modflow.controllers.rest.map.pump_schedule_data' ), UrlMap( name='update-help-modal-status', url='modflow/update-help-modal-status', controller='modflow.controllers.rest.map.update_help_modal_status' ), UrlMap( name='settings', url='settings', controller='modflow.controllers.manage.modflow_settings.modflow_settings' ), )) return url_maps def persistent_store_settings(self): """ Define Persistent Store Settings. """ ps_settings = ( PersistentStoreDatabaseSetting( name=self.DATABASE_NAME, description='Primary database for Modflow.', initializer='modflow.models.init_primary_db', required=True, spatial=True ), PersistentStoreConnectionSetting( name=self.MODEL_DB_CON_01, description='First node of model database server pool.', required=True ), ) return ps_settings def spatial_dataset_service_settings(self): """ Example spatial_dataset_service_settings method. """ sds_settings = ( SpatialDatasetServiceSetting( name=self.GEOSERVER_NAME, description='spatial dataset service for app to use', engine=SpatialDatasetServiceSetting.GEOSERVER, required=True, ), ) return sds_settings def permissions(self): """ Example permissions method. """ # Viewer Permissions admin_user = Permission( name='admin_user', description='Admin User' ) from tethysext.atcore.services.app_users.permissions_manager import AppPermissionsManager from tethysext.atcore.permissions.app_users import PermissionsGenerator # Generate permissions for App Users permissions_manager = AppPermissionsManager(self.namespace) pg = PermissionsGenerator(permissions_manager) permissions = pg.generate() permissions.append(admin_user) return permissions
2.015625
2
mul.py
JohnBernad/Final-project--calculator
0
12789491
def mul(): num1 = float(input("Enter first number : ")) num2 = float(input("Enter second number : ")) p=num1*num2 print("the product is",p)
4
4
cernatschool/test_pixel.py
CERNatschool/beta-attenuation
1
12789492
#!/usr/bin/env python # -*- coding: utf-8 -*- #...the usual suspects. import os, inspect #...for the unit testing. import unittest #...for the logging. import logging as lg #...for the pixel wrapper class. from pixel import Pixel class PixelTest(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_create_pixel(self): p = Pixel(100, 200, 1234, -1, 256, 256) # The tests #----------- self.assertEqual(p.get_x(), 100) self.assertEqual(p.get_y(), 200) self.assertEqual(p.getX(), 51300) self.assertEqual(p.getC(), 1234) self.assertEqual(p.get_mask(), -1) self.assertEqual(p.get_neighbours(), {}) self.assertEqual(p.pixel_entry(), "{\"x\":100, \"y\":200, \"c\":1234},\n") if __name__ == "__main__": lg.basicConfig(filename='log_test_pixel.txt', filemode='w', level=lg.DEBUG) lg.info("") lg.info("===============================================") lg.info(" Logger output from cernatschool/test_pixel.py ") lg.info("===============================================") lg.info("") unittest.main()
2.734375
3
module_2/utils.py
JaRo123/ams-ml-python-course
3
12789493
"""Helper methods for Module 2.""" import errno import glob import os.path import pickle import time import calendar import numpy import pandas import matplotlib.colors import matplotlib.pyplot as pyplot import sklearn.metrics import sklearn.linear_model import sklearn.tree import sklearn.ensemble from module_4 import roc_curves from module_4 import performance_diagrams as perf_diagrams from module_4 import attributes_diagrams as attr_diagrams # Directories. MODULE2_DIR_NAME = '.' SHORT_COURSE_DIR_NAME = '..' DEFAULT_FEATURE_DIR_NAME = ( '{0:s}/data/track_data_ncar_ams_3km_csv_small' ).format(SHORT_COURSE_DIR_NAME) # Variable names. METADATA_COLUMNS = [ 'Step_ID', 'Track_ID', 'Ensemble_Name', 'Ensemble_Member', 'Run_Date', 'Valid_Date', 'Forecast_Hour', 'Valid_Hour_UTC' ] EXTRANEOUS_COLUMNS = [ 'Duration', 'Centroid_Lon', 'Centroid_Lat', 'Centroid_X', 'Centroid_Y', 'Storm_Motion_U', 'Storm_Motion_V', 'Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape', 'Location', 'Scale' ] TARGET_NAME = 'RVORT1_MAX-future_max' BINARIZED_TARGET_NAME = 'strong_future_rotation_flag' NUM_VALUES_KEY = 'num_values' MEAN_VALUE_KEY = 'mean_value' MEAN_OF_SQUARES_KEY = 'mean_of_squares' MAE_KEY = 'mean_absolute_error' MSE_KEY = 'mean_squared_error' MEAN_BIAS_KEY = 'mean_bias' MAE_SKILL_SCORE_KEY = 'mae_skill_score' MSE_SKILL_SCORE_KEY = 'mse_skill_score' MAX_PEIRCE_SCORE_KEY = 'max_peirce_score' AUC_KEY = 'area_under_roc_curve' MAX_CSI_KEY = 'max_csi' BRIER_SCORE_KEY = 'brier_score' BRIER_SKILL_SCORE_KEY = 'brier_skill_score' # Plotting constants. DEFAULT_FIG_WIDTH_INCHES = 10 DEFAULT_FIG_HEIGHT_INCHES = 10 SMALL_FIG_WIDTH_INCHES = 10 SMALL_FIG_HEIGHT_INCHES = 10 FIGURE_RESOLUTION_DPI = 300 BAR_GRAPH_COLOUR = numpy.array([27, 158, 119], dtype=float) / 255 BAR_GRAPH_EDGE_WIDTH = 2 BAR_GRAPH_FONT_SIZE = 14 BAR_GRAPH_FONT_COLOUR = numpy.array([217, 95, 2], dtype=float) / 255 FONT_SIZE = 20 pyplot.rc('font', size=FONT_SIZE) pyplot.rc('axes', titlesize=FONT_SIZE) pyplot.rc('axes', labelsize=FONT_SIZE) pyplot.rc('xtick', labelsize=FONT_SIZE) pyplot.rc('ytick', labelsize=FONT_SIZE) pyplot.rc('legend', fontsize=FONT_SIZE) pyplot.rc('figure', titlesize=FONT_SIZE) # Misc constants. DATE_FORMAT = '%Y%m%d' DATE_FORMAT_REGEX = '[0-9][0-9][0-9][0-9][0-1][0-9][0-3][0-9]' RANDOM_SEED = 6695 LAMBDA_TOLERANCE = 1e-10 def time_string_to_unix(time_string, time_format): """Converts time from string to Unix format. Unix format = seconds since 0000 UTC 1 Jan 1970. :param time_string: Time string. :param time_format: Format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: unix_time_sec: Time in Unix format. """ return calendar.timegm(time.strptime(time_string, time_format)) def time_unix_to_string(unix_time_sec, time_format): """Converts time from Unix format to string. Unix format = seconds since 0000 UTC 1 Jan 1970. :param unix_time_sec: Time in Unix format. :param time_format: Desired format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: time_string: Time string. """ return time.strftime(time_format, time.gmtime(unix_time_sec)) def _remove_future_data(predictor_table): """Removes future data from predictors. :param predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: predictor_table: Same but with fewer columns. """ predictor_names = list(predictor_table) columns_to_remove = [p for p in predictor_names if 'future' in p] return predictor_table.drop(columns_to_remove, axis=1, inplace=False) def _feature_file_name_to_date(csv_file_name): """Parses date from name of feature (CSV) file. :param csv_file_name: Path to input file. :return: date_string: Date (format "yyyymmdd"). """ pathless_file_name = os.path.split(csv_file_name)[-1] date_string = pathless_file_name.replace( 'track_step_NCARSTORM_d01_', '' ).replace('-0000.csv', '') # Verify. time_string_to_unix(time_string=date_string, time_format=DATE_FORMAT) return date_string def find_many_feature_files(first_date_string, last_date_string, feature_dir_name=DEFAULT_FEATURE_DIR_NAME): """Finds feature files in the given date range. :param first_date_string: First date ("yyyymmdd") in range. :param last_date_string: Last date ("yyyymmdd") in range. :param feature_dir_name: Name of directory with feature (CSV) files. :return: csv_file_names: 1-D list of paths to feature files. """ first_time_unix_sec = time_string_to_unix( time_string=first_date_string, time_format=DATE_FORMAT) last_time_unix_sec = time_string_to_unix( time_string=last_date_string, time_format=DATE_FORMAT) csv_file_pattern = '{0:s}/track_step_NCARSTORM_d01_{1:s}-0000.csv'.format( feature_dir_name, DATE_FORMAT_REGEX) csv_file_names = glob.glob(csv_file_pattern) csv_file_names.sort() file_date_strings = [_feature_file_name_to_date(f) for f in csv_file_names] file_times_unix_sec = numpy.array([ time_string_to_unix(time_string=d, time_format=DATE_FORMAT) for d in file_date_strings ], dtype=int) good_indices = numpy.where(numpy.logical_and( file_times_unix_sec >= first_time_unix_sec, file_times_unix_sec <= last_time_unix_sec ))[0] return [csv_file_names[k] for k in good_indices] def read_feature_file(csv_file_name): """Reads features from CSV file. :param csv_file_name: Path to input file. :return: metadata_table: pandas DataFrame with metadata. Each row is one storm object. :return: predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: target_table: pandas DataFrame with target values. Each row is one storm object. """ predictor_table = pandas.read_csv(csv_file_name, header=0, sep=',') predictor_table.drop(EXTRANEOUS_COLUMNS, axis=1, inplace=True) metadata_table = predictor_table[METADATA_COLUMNS] predictor_table.drop(METADATA_COLUMNS, axis=1, inplace=True) target_table = predictor_table[[TARGET_NAME]] predictor_table.drop([TARGET_NAME], axis=1, inplace=True) predictor_table = _remove_future_data(predictor_table) return metadata_table, predictor_table, target_table def read_many_feature_files(csv_file_names): """Reads features from many CSV files. :param csv_file_names: 1-D list of paths to input files. :return: metadata_table: See doc for `read_feature_file`. :return: predictor_table: Same. :return: target_table: Same. """ num_files = len(csv_file_names) list_of_metadata_tables = [pandas.DataFrame()] * num_files list_of_predictor_tables = [pandas.DataFrame()] * num_files list_of_target_tables = [pandas.DataFrame()] * num_files for i in range(num_files): print('Reading data from: "{0:s}"...'.format(csv_file_names[i])) (list_of_metadata_tables[i], list_of_predictor_tables[i], list_of_target_tables[i] ) = read_feature_file(csv_file_names[i]) if i == 0: continue list_of_metadata_tables[i] = list_of_metadata_tables[i].align( list_of_metadata_tables[0], axis=1 )[0] list_of_predictor_tables[i] = list_of_predictor_tables[i].align( list_of_predictor_tables[0], axis=1 )[0] list_of_target_tables[i] = list_of_target_tables[i].align( list_of_target_tables[0], axis=1 )[0] metadata_table = pandas.concat( list_of_metadata_tables, axis=0, ignore_index=True) predictor_table = pandas.concat( list_of_predictor_tables, axis=0, ignore_index=True) target_table = pandas.concat( list_of_target_tables, axis=0, ignore_index=True) return metadata_table, predictor_table, target_table def _update_normalization_params(intermediate_normalization_dict, new_values): """Updates normalization params for one predictor. :param intermediate_normalization_dict: Dictionary with the following keys. intermediate_normalization_dict['num_values']: Number of values on which current estimates are based. intermediate_normalization_dict['mean_value']: Current estimate for mean. intermediate_normalization_dict['mean_of_squares']: Current mean of squared values. :param new_values: numpy array of new values (will be used to update `intermediate_normalization_dict`). :return: intermediate_normalization_dict: Same as input but with updated values. """ if MEAN_VALUE_KEY not in intermediate_normalization_dict: intermediate_normalization_dict = { NUM_VALUES_KEY: 0, MEAN_VALUE_KEY: 0., MEAN_OF_SQUARES_KEY: 0. } these_means = numpy.array([ intermediate_normalization_dict[MEAN_VALUE_KEY], numpy.mean(new_values) ]) these_weights = numpy.array([ intermediate_normalization_dict[NUM_VALUES_KEY], new_values.size ]) intermediate_normalization_dict[MEAN_VALUE_KEY] = numpy.average( these_means, weights=these_weights) these_means = numpy.array([ intermediate_normalization_dict[MEAN_OF_SQUARES_KEY], numpy.mean(new_values ** 2) ]) intermediate_normalization_dict[MEAN_OF_SQUARES_KEY] = numpy.average( these_means, weights=these_weights) intermediate_normalization_dict[NUM_VALUES_KEY] += new_values.size return intermediate_normalization_dict def _get_standard_deviation(intermediate_normalization_dict): """Computes stdev from intermediate normalization params. :param intermediate_normalization_dict: See doc for `_update_normalization_params`. :return: standard_deviation: Standard deviation. """ num_values = float(intermediate_normalization_dict[NUM_VALUES_KEY]) multiplier = num_values / (num_values - 1) return numpy.sqrt(multiplier * ( intermediate_normalization_dict[MEAN_OF_SQUARES_KEY] - intermediate_normalization_dict[MEAN_VALUE_KEY] ** 2 )) def get_normalization_params(csv_file_names): """Computes normalization params (mean and stdev) for each predictor. :param csv_file_names: 1-D list of paths to input files. :return: normalization_dict: See input doc for `normalize_images`. """ predictor_names = None norm_dict_by_predictor = None for this_file_name in csv_file_names: print('Reading data from: "{0:s}"...'.format(this_file_name)) this_predictor_table = read_feature_file(this_file_name)[1] if predictor_names is None: predictor_names = list(this_predictor_table) norm_dict_by_predictor = [{}] * len(predictor_names) for m in range(len(predictor_names)): norm_dict_by_predictor[m] = _update_normalization_params( intermediate_normalization_dict=norm_dict_by_predictor[m], new_values=this_predictor_table[predictor_names[m]].values ) print('\n') normalization_dict = {} for m in range(len(predictor_names)): this_mean = norm_dict_by_predictor[m][MEAN_VALUE_KEY] this_stdev = _get_standard_deviation(norm_dict_by_predictor[m]) normalization_dict[predictor_names[m]] = numpy.array( [this_mean, this_stdev] ) message_string = ( 'Mean and standard deviation for "{0:s}" = {1:.4f}, {2:.4f}' ).format(predictor_names[m], this_mean, this_stdev) print(message_string) return normalization_dict def normalize_predictors(predictor_table, normalization_dict=None): """Normalizes predictors to z-scores. :param predictor_table: See doc for `read_feature_file`. :param normalization_dict: Dictionary. Each key is the name of a predictor value, and the corresponding value is a length-2 numpy array with [mean, standard deviation]. If `normalization_dict is None`, mean and standard deviation will be computed for each predictor. :return: predictor_table: Normalized version of input. :return: normalization_dict: See doc for input variable. If input was None, this will be a newly created dictionary. Otherwise, this will be the same dictionary passed as input. """ predictor_names = list(predictor_table) num_predictors = len(predictor_names) if normalization_dict is None: normalization_dict = {} for m in range(num_predictors): this_mean = numpy.mean(predictor_table[predictor_names[m]].values) this_stdev = numpy.std( predictor_table[predictor_names[m]].values, ddof=1 ) normalization_dict[predictor_names[m]] = numpy.array( [this_mean, this_stdev] ) for m in range(num_predictors): this_mean = normalization_dict[predictor_names[m]][0] this_stdev = normalization_dict[predictor_names[m]][1] these_norm_values = ( predictor_table[predictor_names[m]].values - this_mean ) / this_stdev predictor_table = predictor_table.assign(**{ predictor_names[m]: these_norm_values }) return predictor_table, normalization_dict def denormalize_predictors(predictor_table, normalization_dict): """Denormalizes predictors from z-scores back to original scales. :param predictor_table: See doc for `normalize_predictors`. :param normalization_dict: Same. :return: predictor_table: Denormalized version of input. """ predictor_names = list(predictor_table) num_predictors = len(predictor_names) for m in range(num_predictors): this_mean = normalization_dict[predictor_names[m]][0] this_stdev = normalization_dict[predictor_names[m]][1] these_denorm_values = ( this_mean + this_stdev * predictor_table[predictor_names[m]].values ) predictor_table = predictor_table.assign(**{ predictor_names[m]: these_denorm_values }) return predictor_table def get_binarization_threshold(csv_file_names, percentile_level): """Computes binarization threshold for target variable. Binarization threshold will be [q]th percentile of all target values, where q = `percentile_level`. :param csv_file_names: 1-D list of paths to input files. :param percentile_level: q in the above discussion. :return: binarization_threshold: Binarization threshold (used to turn each target value into a yes-or-no label). """ max_target_values = numpy.array([]) for this_file_name in csv_file_names: print('Reading data from: "{0:s}"...'.format(this_file_name)) this_target_table = read_feature_file(this_file_name)[-1] max_target_values = numpy.concatenate(( max_target_values, this_target_table[TARGET_NAME].values )) binarization_threshold = numpy.percentile( max_target_values, percentile_level) print('\nBinarization threshold for "{0:s}" = {1:.4e}'.format( TARGET_NAME, binarization_threshold )) return binarization_threshold def binarize_target_values(target_values, binarization_threshold): """Binarizes target values. E = number of examples (storm objects) :param target_values: length-E numpy array of real-number target values. :param binarization_threshold: Binarization threshold. :return: target_values: length-E numpy array of binarized target values (integers in 0...1). """ return (target_values >= binarization_threshold).astype(int) def _lambdas_to_sklearn_inputs(lambda1, lambda2): """Converts lambdas to input arguments for scikit-learn. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: alpha: Input arg for scikit-learn model. :return: l1_ratio: Input arg for scikit-learn model. """ return lambda1 + lambda2, lambda1 / (lambda1 + lambda2) def setup_linear_regression(lambda1=0., lambda2=0.): """Sets up (but does not train) linear-regression model. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: model_object: Instance of `sklearn.linear_model`. """ assert lambda1 >= 0 assert lambda2 >= 0 if lambda1 < LAMBDA_TOLERANCE and lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.LinearRegression( fit_intercept=True, normalize=False) if lambda1 < LAMBDA_TOLERANCE: return sklearn.linear_model.Ridge( alpha=lambda2, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) if lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.Lasso( alpha=lambda1, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) alpha, l1_ratio = _lambdas_to_sklearn_inputs( lambda1=lambda1, lambda2=lambda2) return sklearn.linear_model.ElasticNet( alpha=alpha, l1_ratio=l1_ratio, fit_intercept=True, normalize=False, random_state=RANDOM_SEED) def train_linear_regression(model_object, training_predictor_table, training_target_table): """Trains linear-regression model. :param model_object: Untrained model created by `setup_linear_regression`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[TARGET_NAME].values ) return model_object def _create_directory(directory_name=None, file_name=None): """Creates directory (along with parents if necessary). This method creates directories only when necessary, so you don't have to worry about it overwriting anything. :param directory_name: Name of desired directory. :param file_name: [used only if `directory_name is None`] Path to desired file. All directories in path will be created. """ if directory_name is None: directory_name = os.path.split(file_name)[0] try: os.makedirs(directory_name) except OSError as this_error: if this_error.errno == errno.EEXIST and os.path.isdir(directory_name): pass else: raise def write_model(model_object, pickle_file_name): """Writes model to Pickle file. :param model_object: Trained model (instance of `sklearn.linear_model`, for example). :param pickle_file_name: Path to output file. """ print('Writing model to: "{0:s}"...'.format(pickle_file_name)) _create_directory(file_name=pickle_file_name) file_handle = open(pickle_file_name, 'wb') pickle.dump(model_object, file_handle) file_handle.close() def evaluate_regression( target_values, predicted_target_values, mean_training_target_value, verbose=True, create_plots=True, dataset_name=None): """Evaluates regression model. E = number of examples :param target_values: length-E numpy array of actual target values. :param predicted_target_values: length-E numpy array of predictions. :param mean_training_target_value: Mean target value in training data. :param verbose: Boolean flag. If True, will print results to command window. :param create_plots: Boolean flag. If True, will create plots. :param dataset_name: Dataset name (e.g., "validation"). Used only if `create_plots == True or verbose == True`. :return: evaluation_dict: Dictionary with the following keys. evaluation_dict['mean_absolute_error']: Mean absolute error (MAE). evaluation_dict['mean_squared_error']: Mean squared error (MSE). evaluation_dict['mean_bias']: Mean bias (signed error). evaluation_dict['mae_skill_score']: MAE skill score (fractional improvement over climatology, in range -1...1). evaluation_dict['mse_skill_score']: MSE skill score (fractional improvement over climatology, in range -1...1). """ signed_errors = predicted_target_values - target_values mean_bias = numpy.mean(signed_errors) mean_absolute_error = numpy.mean(numpy.absolute(signed_errors)) mean_squared_error = numpy.mean(signed_errors ** 2) climo_signed_errors = mean_training_target_value - target_values climo_mae = numpy.mean(numpy.absolute(climo_signed_errors)) climo_mse = numpy.mean(climo_signed_errors ** 2) mae_skill_score = (climo_mae - mean_absolute_error) / climo_mae mse_skill_score = (climo_mse - mean_squared_error) / climo_mse evaluation_dict = { MAE_KEY: mean_absolute_error, MSE_KEY: mean_squared_error, MEAN_BIAS_KEY: mean_bias, MAE_SKILL_SCORE_KEY: mae_skill_score, MSE_SKILL_SCORE_KEY: mse_skill_score } if verbose or create_plots: dataset_name = dataset_name[0].upper() + dataset_name[1:] if verbose: print('{0:s} MAE (mean absolute error) = {1:.3e} s^-1'.format( dataset_name, evaluation_dict[MAE_KEY] )) print('{0:s} MSE (mean squared error) = {1:.3e} s^-2'.format( dataset_name, evaluation_dict[MSE_KEY] )) print('{0:s} bias (mean signed error) = {1:.3e} s^-1'.format( dataset_name, evaluation_dict[MEAN_BIAS_KEY] )) message_string = ( '{0:s} MAE skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[MAE_SKILL_SCORE_KEY]) print(message_string) message_string = ( '{0:s} MSE skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[MSE_SKILL_SCORE_KEY]) print(message_string) if not create_plots: return evaluation_dict figure_object, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) attr_diagrams.plot_regression_relia_curve( observed_values=target_values, forecast_values=predicted_target_values, num_bins=20, figure_object=figure_object, axes_object=axes_object) axes_object.set_xlabel(r'Forecast value (s$^{-1}$)') axes_object.set_ylabel(r'Conditional mean observation (s$^{-1}$)') title_string = '{0:s} reliability curve for max future vorticity'.format( dataset_name) axes_object.set_title(title_string) pyplot.show() return evaluation_dict def plot_model_coefficients(model_object, predictor_names): """Plots coefficients for linear- or logistic-regression model. :param model_object: Trained instance of `sklearn.linear_model`. :param predictor_names: 1-D list of predictor names, in the same order used to train the model. """ coefficients = model_object.coef_ num_dimensions = len(coefficients.shape) if num_dimensions > 1: coefficients = coefficients[0, ...] num_predictors = len(predictor_names) y_coords = numpy.linspace( 0, num_predictors - 1, num=num_predictors, dtype=float) _, axes_object = pyplot.subplots( 1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES) ) axes_object.barh( y_coords, coefficients, color=BAR_GRAPH_COLOUR, edgecolor=BAR_GRAPH_COLOUR, linewidth=BAR_GRAPH_EDGE_WIDTH) pyplot.xlabel('Coefficient') pyplot.ylabel('Predictor variable') pyplot.yticks([], []) x_tick_values, _ = pyplot.xticks() pyplot.xticks(x_tick_values, rotation=90) x_min = numpy.percentile(coefficients, 1.) x_max = numpy.percentile(coefficients, 99.) pyplot.xlim([x_min, x_max]) for j in range(num_predictors): axes_object.text( 0, y_coords[j], predictor_names[j], color=BAR_GRAPH_FONT_COLOUR, horizontalalignment='center', verticalalignment='center', fontsize=BAR_GRAPH_FONT_SIZE) def _add_colour_bar( axes_object, colour_map_object, values_to_colour, min_colour_value, max_colour_value, colour_norm_object=None, orientation_string='vertical', extend_min=True, extend_max=True): """Adds colour bar to existing axes. :param axes_object: Existing axes (instance of `matplotlib.axes._subplots.AxesSubplot`). :param colour_map_object: Colour scheme (instance of `matplotlib.pyplot.cm`). :param values_to_colour: numpy array of values to colour. :param min_colour_value: Minimum value in colour scheme. :param max_colour_value: Max value in colour scheme. :param colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`, defining the scale of the colour map. If `colour_norm_object is None`, will assume that scale is linear. :param orientation_string: Orientation of colour bar ("vertical" or "horizontal"). :param extend_min: Boolean flag. If True, the bottom of the colour bar will have an arrow. If False, it will be a flat line, suggesting that lower values are not possible. :param extend_max: Same but for top of colour bar. :return: colour_bar_object: Colour bar (instance of `matplotlib.pyplot.colorbar`) created by this method. """ if colour_norm_object is None: colour_norm_object = matplotlib.colors.Normalize( vmin=min_colour_value, vmax=max_colour_value, clip=False) scalar_mappable_object = pyplot.cm.ScalarMappable( cmap=colour_map_object, norm=colour_norm_object) scalar_mappable_object.set_array(values_to_colour) if extend_min and extend_max: extend_string = 'both' elif extend_min: extend_string = 'min' elif extend_max: extend_string = 'max' else: extend_string = 'neither' if orientation_string == 'horizontal': padding = 0.075 else: padding = 0.05 colour_bar_object = pyplot.colorbar( ax=axes_object, mappable=scalar_mappable_object, orientation=orientation_string, pad=padding, extend=extend_string, shrink=0.8) colour_bar_object.ax.tick_params(labelsize=FONT_SIZE) return colour_bar_object def plot_scores_2d( score_matrix, min_colour_value, max_colour_value, x_tick_labels, y_tick_labels, colour_map_object=pyplot.cm.plasma): """Plots scores on 2-D grid. M = number of rows in grid N = number of columns in grid :param score_matrix: M-by-N numpy array of scores. :param min_colour_value: Minimum value in colour scheme. :param max_colour_value: Max value in colour scheme. :param x_tick_labels: length-N numpy array of tick values. :param y_tick_labels: length-M numpy array of tick values. :param colour_map_object: Colour scheme (instance of `matplotlib.pyplot.cm`). """ _, axes_object = pyplot.subplots( 1, 1, figsize=(DEFAULT_FIG_WIDTH_INCHES, DEFAULT_FIG_HEIGHT_INCHES) ) pyplot.imshow( score_matrix, cmap=colour_map_object, origin='lower', vmin=min_colour_value, vmax=max_colour_value) x_tick_values = numpy.linspace( 0, score_matrix.shape[1] - 1, num=score_matrix.shape[1], dtype=float ) y_tick_values = numpy.linspace( 0, score_matrix.shape[0] - 1, num=score_matrix.shape[0], dtype=float ) pyplot.xticks(x_tick_values, x_tick_labels) pyplot.yticks(y_tick_values, y_tick_labels) _add_colour_bar( axes_object=axes_object, colour_map_object=colour_map_object, values_to_colour=score_matrix, min_colour_value=min_colour_value, max_colour_value=max_colour_value) def setup_logistic_regression(lambda1=0., lambda2=0.): """Sets up (but does not train) logistic-regression model. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: model_object: Instance of `sklearn.linear_model.SGDClassifier`. """ assert lambda1 >= 0 assert lambda2 >= 0 if lambda1 < LAMBDA_TOLERANCE and lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='none', fit_intercept=True, verbose=0, random_state=RANDOM_SEED) if lambda1 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='l2', alpha=lambda2, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) if lambda2 < LAMBDA_TOLERANCE: return sklearn.linear_model.SGDClassifier( loss='log', penalty='l1', alpha=lambda1, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) alpha, l1_ratio = _lambdas_to_sklearn_inputs( lambda1=lambda1, lambda2=lambda2) return sklearn.linear_model.SGDClassifier( loss='log', penalty='elasticnet', alpha=alpha, l1_ratio=l1_ratio, fit_intercept=True, verbose=0, random_state=RANDOM_SEED) def train_logistic_regression(model_object, training_predictor_table, training_target_table): """Trains logistic-regression model. :param model_object: Untrained model created by `setup_logistic_regression`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def eval_binary_classifn( observed_labels, forecast_probabilities, training_event_frequency, verbose=True, create_plots=True, dataset_name=None): """Evaluates binary-classification model. E = number of examples :param observed_labels: length-E numpy array of observed labels (integers in 0...1, where 1 means that event occurred). :param forecast_probabilities: length-E numpy array with forecast probabilities of event (positive class). :param training_event_frequency: Frequency of event in training data. :param verbose: Boolean flag. If True, will print results to command window. :param create_plots: Boolean flag. If True, will create plots. :param dataset_name: Dataset name (e.g., "validation"). Used only if `create_plots == True or verbose == True`. """ pofd_by_threshold, pod_by_threshold = roc_curves.get_points_in_roc_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities) max_peirce_score = numpy.nanmax(pod_by_threshold - pofd_by_threshold) area_under_roc_curve = sklearn.metrics.auc( x=pofd_by_threshold, y=pod_by_threshold) pod_by_threshold, success_ratio_by_threshold = ( perf_diagrams.get_points_in_perf_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities) ) csi_by_threshold = ( (pod_by_threshold ** -1 + success_ratio_by_threshold ** -1 - 1) ** -1 ) max_csi = numpy.nanmax(csi_by_threshold) mean_forecast_by_bin, event_freq_by_bin, num_examples_by_bin = ( attr_diagrams.get_points_in_relia_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, num_bins=20) ) uncertainty = training_event_frequency * (1. - training_event_frequency) this_numerator = numpy.nansum( num_examples_by_bin * (mean_forecast_by_bin - event_freq_by_bin) ** 2 ) reliability = this_numerator / numpy.sum(num_examples_by_bin) this_numerator = numpy.nansum( num_examples_by_bin * (event_freq_by_bin - training_event_frequency) ** 2 ) resolution = this_numerator / numpy.sum(num_examples_by_bin) brier_score = uncertainty + reliability - resolution brier_skill_score = (resolution - reliability) / uncertainty evaluation_dict = { MAX_PEIRCE_SCORE_KEY: max_peirce_score, AUC_KEY: area_under_roc_curve, MAX_CSI_KEY: max_csi, BRIER_SCORE_KEY: brier_score, BRIER_SKILL_SCORE_KEY: brier_skill_score } if verbose or create_plots: dataset_name = dataset_name[0].upper() + dataset_name[1:] if verbose: print('{0:s} Max Peirce score (POD - POFD) = {1:.3f}'.format( dataset_name, evaluation_dict[MAX_PEIRCE_SCORE_KEY] )) print('{0:s} AUC (area under ROC curve) = {1:.3f}'.format( dataset_name, evaluation_dict[AUC_KEY] )) print('{0:s} Max CSI (critical success index) = {1:.3f}'.format( dataset_name, evaluation_dict[MAX_CSI_KEY] )) print('{0:s} Brier score = {1:.3f}'.format( dataset_name, evaluation_dict[BRIER_SCORE_KEY] )) message_string = ( '{0:s} Brier skill score (improvement over climatology) = {1:.3f}' ).format(dataset_name, evaluation_dict[BRIER_SKILL_SCORE_KEY]) print(message_string) if not create_plots: return evaluation_dict _, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) roc_curves.plot_roc_curve( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, axes_object=axes_object) title_string = '{0:s} ROC curve (AUC = {1:.3f})'.format( dataset_name, evaluation_dict[AUC_KEY] ) pyplot.title(title_string) pyplot.show() _, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) perf_diagrams.plot_performance_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, axes_object=axes_object) title_string = '{0:s} performance diagram (max CSI = {1:.3f})'.format( dataset_name, evaluation_dict[MAX_CSI_KEY] ) pyplot.title(title_string) pyplot.show() figure_object, axes_object = pyplot.subplots( 1, 1, figsize=(SMALL_FIG_WIDTH_INCHES, SMALL_FIG_HEIGHT_INCHES) ) attr_diagrams.plot_attributes_diagram( observed_labels=observed_labels, forecast_probabilities=forecast_probabilities, num_bins=20, figure_object=figure_object, axes_object=axes_object) title_string = ( '{0:s} attributes diagram (Brier skill score = {1:.3f})' ).format(dataset_name, evaluation_dict[BRIER_SKILL_SCORE_KEY]) axes_object.set_title(title_string) pyplot.show() return evaluation_dict def setup_classification_tree(min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) decision tree for classification. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.tree.DecisionTreeClassifier`. """ return sklearn.tree.DecisionTreeClassifier( criterion='entropy', min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, random_state=RANDOM_SEED) def train_classification_tree(model_object, training_predictor_table, training_target_table): """Trains decision tree for classification. :param model_object: Untrained model created by `setup_classification_tree`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def setup_classification_forest( max_predictors_per_split, num_trees=100, min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) random forest for classification. :param max_predictors_per_split: Max number of predictors to try at each split. :param num_trees: Number of trees. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.ensemble.RandomForestClassifier`. """ return sklearn.ensemble.RandomForestClassifier( n_estimators=num_trees, min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, max_features=max_predictors_per_split, bootstrap=True, random_state=RANDOM_SEED, verbose=2) def train_classification_forest(model_object, training_predictor_table, training_target_table): """Trains random forest for classification. :param model_object: Untrained model created by `setup_classification_forest`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object def setup_classification_gbt( max_predictors_per_split, num_trees=100, learning_rate=0.1, min_examples_at_split=30, min_examples_at_leaf=30): """Sets up (but does not train) gradient-boosted trees for classification. :param max_predictors_per_split: Max number of predictors to try at each split. :param num_trees: Number of trees. :param learning_rate: Learning rate. :param min_examples_at_split: Minimum number of examples at split node. :param min_examples_at_leaf: Minimum number of examples at leaf node. :return: model_object: Instance of `sklearn.ensemble.GradientBoostingClassifier`. """ return sklearn.ensemble.GradientBoostingClassifier( loss='exponential', learning_rate=learning_rate, n_estimators=num_trees, min_samples_split=min_examples_at_split, min_samples_leaf=min_examples_at_leaf, max_features=max_predictors_per_split, random_state=RANDOM_SEED, verbose=2) def train_classification_gbt(model_object, training_predictor_table, training_target_table): """Trains gradient-boosted trees for classification. :param model_object: Untrained model created by `setup_classification_gbt`. :param training_predictor_table: See doc for `read_feature_file`. :param training_target_table: Same. :return: model_object: Trained version of input. """ model_object.fit( X=training_predictor_table.as_matrix(), y=training_target_table[BINARIZED_TARGET_NAME].values ) return model_object
1.890625
2
api/resources_portal/views/organization_invitations.py
AlexsLemonade/resources-portal
0
12789494
<gh_stars>0 from rest_framework import serializers, status, viewsets from rest_framework.permissions import BasePermission, IsAuthenticated from rest_framework.response import Response from resources_portal.models import ( Organization, OrganizationInvitation, OrganizationUserSetting, User, ) from resources_portal.notifier import send_notifications class OrganizationInvitationSerializer(serializers.ModelSerializer): requester = serializers.PrimaryKeyRelatedField(queryset=User.objects.all()) request_receiver = serializers.PrimaryKeyRelatedField(queryset=User.objects.all()) organization = serializers.PrimaryKeyRelatedField(queryset=Organization.objects.all()) invite_or_request = serializers.CharField() class Meta: model = OrganizationInvitation fields = ( "id", "created_at", "updated_at", "status", "invite_or_request", "organization", "request_receiver", "requester", ) read_only_fields = ( "id", "created_at", "updated_at", "organization", "request_receiver", "requester", ) class IsMemberAndOrganizationIsntPersonal(BasePermission): def has_permission(self, request, view): if "organization" not in request.data: return False organization = Organization.objects.get(pk=request.data["organization"]) return ( not organization.is_personal_organization and request.user in organization.members.all() ) class OrganizationInvitationViewSet(viewsets.ModelViewSet): queryset = OrganizationInvitation.objects.all() serializer_class = OrganizationInvitationSerializer permission_classes = [IsAuthenticated, IsMemberAndOrganizationIsntPersonal] http_method_names = ["post", "options"] def update_organizations(self, new_status, invitation, old_member): if new_status == "ACCEPTED": if invitation.invite_or_request == "INVITE": new_member = invitation.request_receiver # associated_user = invitation.requester else: new_member = invitation.requester # Do we want to send to this user instead of new_member? # associated_user = invitation.request_receiver invitation.organization.members.add(new_member) invitation.organization.assign_member_perms(new_member) OrganizationUserSetting.objects.get_or_create( user=new_member, organization=invitation.organization ) # This is the logic we'll want for the invitation flow, but # for now they're always being added. # notification_type = f"ORG_{invitation.invite_or_request}_{new_status}" send_notifications( "ORGANIZATION_NEW_MEMBER", new_member, new_member, invitation.organization ) send_notifications("ORGANIZATION_INVITE", new_member, old_member, invitation.organization) def create(self, request, *args, **kwargs): if not request.user.is_authenticated: return Response(status=status.HTTP_401_UNAUTHORIZED) serializer = OrganizationInvitationSerializer(data=request.data) serializer.is_valid(raise_exception=True) requester = serializer.validated_data["requester"] organization = serializer.validated_data["organization"] invite_or_request = serializer.validated_data["invite_or_request"] if invite_or_request == "INVITE" and not requester.has_perm("add_members", organization): return Response( data={"detail": f"{requester} does not have permission to add members"}, status=status.HTTP_403_FORBIDDEN, ) # For now invitations are auto-accepted so we don't need these notifications. # if request.data["invite_or_request"] == "INVITE": # notification = Notification( # notification_type="ORG_INVITE_CREATED", # notified_user=request.user, # associated_user=request_receiver, # organization=organization, # ) # notification.save() # else: # notification = Notification( # notification_type="ORG_REQUEST_CREATED", # notified_user=request_receiver, # associated_user=request.user, # organization=organization, # ) # notification.save() # Facilitate adding without confirmation by making the # invitation accepted automatically. request.data["status"] = "ACCEPTED" response = super(OrganizationInvitationViewSet, self).create(request, *args, **kwargs) # questionable invitation = OrganizationInvitation.objects.get(id=response.data["id"]) self.update_organizations(request.data["status"], invitation, request.user) return response # For now, we don't need to update or destroy because we allow users to # be added to organizatons without confirmation. # def update(self, request, *args, **kwargs): # if not request.user.is_authenticated: # return Response(status=status.HTTP_401_UNAUTHORIZED) # invitation = OrganizationInvitation.objects.get(pk=kwargs["pk"]) # requester_accepting = ( # request.user == invitation.requester and invitation.invite_or_request == "INVITE" # ) # request_receiver_approving = ( # request.user == invitation.request_receiver # and invitation.invite_or_request == "REQUEST" # ) # if not (requester_accepting or request_receiver_approving): # return Response( # data={ # "detail": f"The current user, {request.user}, is not the correct user to handle invitation id {invitation.id}" # }, # status=status.HTTP_403_FORBIDDEN, # ) # if not invitation.status == "PENDING": # return Response( # data={ # "detail": f"Invitation id {invitation.id} has already been resolved with a status of {invitation.status}" # }, # status=status.HTTP_400_BAD_REQUEST, # ) # new_status = request.data["status"] # response_status = super(OrganizationInvitationViewSet, self).update( # request, *args, **kwargs # ) # self.update_organizations(new_status, invitation) # return response_status # def destroy(self, request, *args, **kwargs): # if not request.user.is_authenticated: # return Response(status=status.HTTP_401_UNAUTHORIZED) # invitation = OrganizationInvitation.objects.get(pk=kwargs["pk"]) # if not request.user == invitation.requester: # return Response( # data={ # "detail": f"The current user, {request.user}, is not the requester of invitation id {invitation.id}" # }, # status=status.HTTP_403_FORBIDDEN, # ) # return super(OrganizationInvitationViewSet, self).destroy(request, *args, **kWargs)
2
2
code/scripts/normalize_to_cpm.py
YimengYang/wol
0
12789495
#!/usr/bin/env python3 """Normalize a BIOM table of counts to copies per million sequences (cpm). Usage: normalize_to_cpm.py input.biom output.biom Notes: This is a pure BIOM solution, in contrast to the more complicated and slower Pandas solution. """ from sys import argv from biom import load_table from biom.util import biom_open n = 1000000 table = load_table(argv[1]) table.transform( lambda data, id_, md: (data / data.sum() * n).round(), axis='sample') with biom_open(argv[2], 'w') as f: table.to_hdf5(f, table.generated_by)
2.53125
3
pmutt/tests/reaction/test_pmutt_reaction.py
wittregr/pMuTT
28
12789496
<gh_stars>10-100 # -*- coding: utf-8 -*- """ pmutt.test_pmutt_model_reaction Tests for pmutt module """ import unittest import numpy as np from ase.build import molecule from pmutt import constants as c from pmutt import reaction as rxn from pmutt.empirical.nasa import Nasa from pmutt.statmech import StatMech, presets class TestReaction(unittest.TestCase): def setUp(self): '''Reactions using Nasa polynomial''' self.H2O_nasa = Nasa(name='H2O', T_low=200., T_mid=1000., T_high=3500., elements={ 'H': 2, 'O': 1 }, a_low=[ 4.19864056E+00, -2.03643410E-03, 6.52040211E-06, -5.48797062E-09, 1.77197817E-12, -3.02937267E+04, -8.49032208E-01 ], a_high=[ 3.03399249E+00, 2.17691804E-03, -1.64072518E-07, -9.70419870E-11, 1.68200992E-14, -3.00042971E+04, 4.96677010E+00 ]) self.H2_nasa = Nasa(name='H2', T_low=200., T_mid=1000., T_high=3500., elements={'H': 2}, a_low=[ 2.34433112E+00, 7.98052075E-03, -1.94781510E-05, 2.01572094E-08, -7.37611761E-12, -9.17935173E+02, 6.83010238E-01 ], a_high=[ 3.33727920E+00, -4.94024731E-05, 4.99456778E-07, -1.79566394E-10, 2.00255376E-14, -9.50158922E+02, -3.20502331E+00 ]) self.O2_nasa = Nasa(name='O2', T_low=200., T_mid=1000., T_high=3500., elements={'O': 2}, a_low=[ 3.78245636E+00, -2.99673416E-03, 9.84730201E-06, -9.68129509E-09, 3.24372837E-12, -1.06394356E+03, 3.65767573E+00 ], a_high=[ 3.28253784E+00, 1.48308754E-03, -7.57966669E-07, 2.09470555E-10, -2.16717794E-14, -1.08845772E+03, 5.45323129E+00 ]) self.rxn_nasa = rxn.Reaction(reactants=[self.H2_nasa, self.O2_nasa], reactants_stoich=[1., 0.5], products=[self.H2O_nasa], products_stoich=[1.]) self.rxn_nasa_dict = { 'class': "<class 'pmutt.reaction.Reaction'>", 'products': [{ 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.03399249, 0.00217691804, -1.64072518e-07, -9.7041987e-11, 1.68200992e-14, -30004.2971, 4.9667701 ], 'a_low': [ 4.19864056, -0.0020364341, 6.52040211e-06, -5.48797062e-09, 1.77197817e-12, -30293.7267, -0.849032208 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'H': 2, 'O': 1 }, 'name': 'H2O', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }], 'products_stoich': [1.0], 'reactants': [{ 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.3372792, -4.94024731e-05, 4.99456778e-07, -1.79566394e-10, 2.00255376e-14, -950.158922, -3.20502331 ], 'a_low': [ 2.34433112, 0.00798052075, -1.9478151e-05, 2.01572094e-08, -7.37611761e-12, -917.935173, 0.683010238 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'H': 2 }, 'name': 'H2', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }, { 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.28253784, 0.00148308754, -7.57966669e-07, 2.09470555e-10, -2.16717794e-14, -1088.45772, 5.45323129 ], 'a_low': [ 3.78245636, -0.00299673416, 9.84730201e-06, -9.68129509e-09, 3.24372837e-12, -1063.94356, 3.65767573 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'O': 2 }, 'name': 'O2', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }], 'reactants_stoich': [1.0, 0.5], 'transition_state': None, 'transition_state_stoich': None, 'reaction_str': 'H2+0.50O2=H2O', } '''Reactions using StatMech''' ideal_gas_param = presets['idealgas'] self.H2O_sm = StatMech(name='H2O', atoms=molecule('H2O'), symmetrynumber=2, vib_wavenumbers=[3825.434, 3710.2642, 1582.432], potentialenergy=-6.7598, spin=0., **ideal_gas_param) self.H2_sm = StatMech(name='H2', atoms=molecule('H2'), symmetrynumber=2, vib_wavenumbers=[4306.1793], potentialenergy=-14.2209, spin=0., **ideal_gas_param) self.O2_sm = StatMech(name='O2', atoms=molecule('O2'), symmetrynumber=2, vib_wavenumbers=[1556.], potentialenergy=-9.862407, spin=1., **ideal_gas_param) # This is an arbitrary transition state for testing self.H2O_TS_sm = StatMech(name='H2O_TS', atoms=molecule('H2O'), symmetrynumber=1., vib_wavenumbers=[4000., 3900., 1600.], potentialenergy=-5.7598, spin=0., **ideal_gas_param) self.rxn_sm = rxn.Reaction(reactants=[self.H2_sm, self.O2_sm], reactants_stoich=[1., 0.5], products=[self.H2O_sm], products_stoich=[1.], transition_state=[self.H2O_TS_sm], transition_state_stoich=[1.]) self.species_dict = { 'H2O': self.H2O_sm, 'H2': self.H2_sm, 'O2': self.O2_sm, 'H2O_TS': self.H2O_TS_sm } self.maxDiff = None def test_compare_element_balance(self): self.assertIsNone(self.rxn_nasa.check_element_balance()) def test_get_species(self): self.assertDictEqual(self.rxn_sm.get_species(key='name'), self.species_dict) def test_get_q_state(self): exp_q_react = self.H2_sm.get_q(T=c.T0('K')) \ * self.O2_sm.get_q(T=c.T0('K'))**0.5 exp_q_prod = self.H2O_sm.get_q(T=c.T0('K')) exp_q_TS = self.H2O_TS_sm.get_q(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='reactants', T=c.T0('K')), exp_q_react) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='products', T=c.T0('K')), exp_q_prod) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='transition state', T=c.T0('K')), exp_q_TS) def test_get_CvoR_state(self): exp_CvoR_react = self.H2_sm.get_CvoR(T=c.T0('K')) \ + self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 exp_CvoR_prod = self.H2O_sm.get_CvoR(T=c.T0('K')) exp_CvoR_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='reactants', T=c.T0('K')), exp_CvoR_react) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='products', T=c.T0('K')), exp_CvoR_prod) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='transition state', T=c.T0('K')), exp_CvoR_TS) def test_get_Cv_state(self): units = 'J/mol/K' exp_Cv_react = self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ + self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 exp_Cv_prod = self.H2O_sm.get_Cv(T=c.T0('K'), units=units) exp_Cv_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='reactants', T=c.T0('K'), units=units), exp_Cv_react) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='products', T=c.T0('K'), units=units), exp_Cv_prod) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='transition state', T=c.T0('K'), units=units), exp_Cv_TS) def test_get_CpoR_state(self): exp_CpoR_react = self.H2_sm.get_CpoR(T=c.T0('K')) \ + self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 exp_CpoR_prod = self.H2O_sm.get_CpoR(T=c.T0('K')) exp_CpoR_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='reactants', T=c.T0('K')), exp_CpoR_react) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='products', T=c.T0('K')), exp_CpoR_prod) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='transition state', T=c.T0('K')), exp_CpoR_TS) def test_get_Cp_state(self): units = 'J/mol/K' exp_Cp_react = self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ + self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 exp_Cp_prod = self.H2O_sm.get_Cp(T=c.T0('K'), units=units) exp_Cp_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='reactants', T=c.T0('K'), units=units), exp_Cp_react) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='products', T=c.T0('K'), units=units), exp_Cp_prod) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='transition state', T=c.T0('K'), units=units), exp_Cp_TS) def test_get_EoRT_state(self): exp_EoRT_react = self.H2_sm.get_EoRT(T=c.T0('K')) \ + self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 exp_EoRT_prod = self.H2O_sm.get_EoRT(T=c.T0('K')) exp_EoRT_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='reactants', T=c.T0('K')), exp_EoRT_react) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='products', T=c.T0('K')), exp_EoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='transition state', T=c.T0('K')), exp_EoRT_TS) def test_get_E_state(self): units = 'J/mol' exp_E_react = self.H2_sm.get_E(T=c.T0('K'), units=units) \ + self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 exp_E_prod = self.H2O_sm.get_E(T=c.T0('K'), units=units) exp_E_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='reactants', T=c.T0('K'), units=units), exp_E_react) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='products', T=c.T0('K'), units=units), exp_E_prod) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='transition state', T=c.T0('K'), units=units), exp_E_TS) def test_get_UoRT_state(self): exp_UoRT_react = self.H2_sm.get_UoRT(T=c.T0('K')) \ + self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 exp_UoRT_prod = self.H2O_sm.get_UoRT(T=c.T0('K')) exp_UoRT_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='reactants', T=c.T0('K')), exp_UoRT_react) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='products', T=c.T0('K')), exp_UoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='transition state', T=c.T0('K')), exp_UoRT_TS) def test_get_U_state(self): units = 'J/mol' exp_U_react = self.H2_sm.get_U(T=c.T0('K'), units=units) \ + self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 exp_U_prod = self.H2O_sm.get_U(T=c.T0('K'), units=units) exp_U_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='reactants', T=c.T0('K'), units=units), exp_U_react) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='products', T=c.T0('K'), units=units), exp_U_prod) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='transition state', T=c.T0('K'), units=units), exp_U_TS) def test_get_HoRT_state(self): exp_HoRT_react = self.H2_sm.get_HoRT(T=c.T0('K')) \ + self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_HoRT_prod = self.H2O_sm.get_HoRT(T=c.T0('K')) exp_HoRT_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='reactants', T=c.T0('K')), exp_HoRT_react) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='products', T=c.T0('K')), exp_HoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='transition state', T=c.T0('K')), exp_HoRT_TS) def test_get_H_state(self): units = 'J/mol' exp_H_react = self.H2_sm.get_H(T=c.T0('K'), units=units) \ + self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_H_prod = self.H2O_sm.get_H(T=c.T0('K'), units=units) exp_H_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='reactants', T=c.T0('K'), units=units), exp_H_react) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='products', T=c.T0('K'), units=units), exp_H_prod) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='transition state', T=c.T0('K'), units=units), exp_H_TS) def test_get_SoR_state(self): exp_SoR_react = self.H2_sm.get_SoR(T=c.T0('K')) \ + self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_SoR_prod = self.H2O_sm.get_SoR(T=c.T0('K')) exp_SoR_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='reactants', T=c.T0('K')), exp_SoR_react) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='products', T=c.T0('K')), exp_SoR_prod) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='transition state', T=c.T0('K')), exp_SoR_TS) def test_get_S_state(self): units = 'J/mol/K' exp_S_react = self.H2_sm.get_S(T=c.T0('K'), units=units) \ + self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 exp_S_prod = self.H2O_sm.get_S(T=c.T0('K'), units=units) exp_S_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='reactants', T=c.T0('K'), units=units), exp_S_react) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='products', T=c.T0('K'), units=units), exp_S_prod) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='transition state', T=c.T0('K'), units=units), exp_S_TS) def test_get_FoRT_state(self): exp_FoRT_react = self.H2_sm.get_FoRT(T=c.T0('K')) \ + self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 exp_FoRT_prod = self.H2O_sm.get_FoRT(T=c.T0('K')) exp_FoRT_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='reactants', T=c.T0('K')), exp_FoRT_react) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='products', T=c.T0('K')), exp_FoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='transition state', T=c.T0('K')), exp_FoRT_TS) def test_get_F_state(self): units = 'J/mol' exp_F_react = self.H2_sm.get_F(T=c.T0('K'), units=units) \ + self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 exp_F_prod = self.H2O_sm.get_F(T=c.T0('K'), units=units) exp_F_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='reactants', T=c.T0('K'), units=units), exp_F_react) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='products', T=c.T0('K'), units=units), exp_F_prod) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='transition state', T=c.T0('K'), units=units), exp_F_TS) def test_get_GoRT_state(self): exp_GoRT_react = self.H2_sm.get_GoRT(T=c.T0('K')) \ + self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 exp_GoRT_prod = self.H2O_sm.get_GoRT(T=c.T0('K')) exp_GoRT_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='reactants', T=c.T0('K')), exp_GoRT_react) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='products', T=c.T0('K')), exp_GoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='transition state', T=c.T0('K')), exp_GoRT_TS) def test_get_G_state(self): units = 'J/mol' exp_G_react = self.H2_sm.get_G(T=c.T0('K'), units=units) \ + self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 exp_G_prod = self.H2O_sm.get_G(T=c.T0('K'), units=units) exp_G_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='reactants', T=c.T0('K'), units=units), exp_G_react) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='products', T=c.T0('K'), units=units), exp_G_prod) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='transition state', T=c.T0('K'), units=units), exp_G_TS) def test_get_delta_CvoR(self): exp_sm_CvoR = self.H2O_sm.get_CvoR(T=c.T0('K')) \ - self.H2_sm.get_CvoR(T=c.T0('K')) \ - self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_CvoR(T=c.T0('K')), exp_sm_CvoR) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), rev=True), -exp_sm_CvoR) exp_sm_CvoR_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) \ - self.H2_sm.get_CvoR(T=c.T0('K')) \ - self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 exp_sm_CvoR_rev_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) \ - self.H2O_sm.get_CvoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), act=True), exp_sm_CvoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), rev=True, act=True), exp_sm_CvoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_CvoR_act(T=c.T0('K'), rev=True), exp_sm_CvoR_rev_TS) def test_get_delta_Cv(self): units = 'J/mol/K' exp_sm_Cv = self.H2O_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), units=units), exp_sm_Cv) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), units=units, rev=True), -exp_sm_Cv) exp_sm_Cv_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 exp_sm_Cv_rev_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2O_sm.get_Cv(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), act=True, units=units), exp_sm_Cv_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), rev=True, units=units, act=True), exp_sm_Cv_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_Cv_act(T=c.T0('K'), rev=True, units=units), exp_sm_Cv_rev_TS) def test_get_delta_CpoR(self): exp_nasa_CpoR = self.H2O_nasa.get_CpoR(T=c.T0('K')) \ - self.H2_nasa.get_CpoR(T=c.T0('K')) \ - self.O2_nasa.get_CpoR(T=c.T0('K'))*0.5 exp_sm_CpoR = self.H2O_sm.get_CpoR(T=c.T0('K')) \ - self.H2_sm.get_CpoR(T=c.T0('K')) \ - self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_CpoR(T=c.T0('K')), exp_nasa_CpoR) self.assertAlmostEqual( self.rxn_nasa.get_delta_CpoR(T=c.T0('K'), rev=True), -exp_nasa_CpoR) self.assertAlmostEqual(self.rxn_sm.get_delta_CpoR(T=c.T0('K')), exp_sm_CpoR) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), rev=True), -exp_sm_CpoR) exp_sm_CpoR_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) \ - self.H2_sm.get_CpoR(T=c.T0('K')) \ - self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 exp_sm_CpoR_rev_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) \ - self.H2O_sm.get_CpoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), act=True), exp_sm_CpoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), rev=True, act=True), exp_sm_CpoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_CpoR_act(T=c.T0('K'), rev=True), exp_sm_CpoR_rev_TS) def test_get_delta_Cp(self): units = 'J/mol/K' exp_nasa_Cp = self.H2O_nasa.get_Cp(T=c.T0('K'), units=units) \ - self.H2_nasa.get_Cp(T=c.T0('K'), units=units) \ - self.O2_nasa.get_Cp(T=c.T0('K'), units=units)*0.5 exp_sm_Cp = self.H2O_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_Cp(T=c.T0('K'), units=units), exp_nasa_Cp) self.assertAlmostEqual( self.rxn_nasa.get_delta_Cp(T=c.T0('K'), units=units, rev=True), -exp_nasa_Cp) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), units=units), exp_sm_Cp) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), units=units, rev=True), -exp_sm_Cp) exp_sm_Cp_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 exp_sm_Cp_rev_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2O_sm.get_Cp(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), act=True, units=units), exp_sm_Cp_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_Cp_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_Cp_act(T=c.T0('K'), rev=True, units=units), exp_sm_Cp_rev_TS) def test_get_delta_EoRT(self): exp_sm_EoRT = self.H2O_sm.get_EoRT(T=c.T0('K')) \ - self.H2_sm.get_EoRT(T=c.T0('K')) \ - self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_EoRT(T=c.T0('K')), exp_sm_EoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), rev=True), -exp_sm_EoRT) exp_sm_EoRT_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) \ - self.H2_sm.get_EoRT(T=c.T0('K')) \ - self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 exp_sm_EoRT_rev_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) \ - self.H2O_sm.get_EoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), act=True), exp_sm_EoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), rev=True, act=True), exp_sm_EoRT_rev_TS) def test_get_delta_E(self): units = 'J/mol' exp_sm_E = self.H2O_sm.get_E(T=c.T0('K'), units=units) \ - self.H2_sm.get_E(T=c.T0('K'), units=units) \ - self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), units=units), exp_sm_E) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), rev=True, units=units), -exp_sm_E) exp_sm_E_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) \ - self.H2_sm.get_E(T=c.T0('K'), units=units) \ - self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 exp_sm_E_rev_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) \ - self.H2O_sm.get_E(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), act=True, units=units), exp_sm_E_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_E_rev_TS) def test_get_delta_UoRT(self): exp_sm_UoRT = self.H2O_sm.get_UoRT(T=c.T0('K')) \ - self.H2_sm.get_UoRT(T=c.T0('K')) \ - self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_UoRT(T=c.T0('K')), exp_sm_UoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), rev=True), -exp_sm_UoRT) exp_sm_UoRT_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) \ - self.H2_sm.get_UoRT(T=c.T0('K')) \ - self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 exp_sm_UoRT_rev_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) \ - self.H2O_sm.get_UoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), act=True), exp_sm_UoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), rev=True, act=True), exp_sm_UoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_UoRT_act(T=c.T0('K'), rev=True), exp_sm_UoRT_rev_TS) def test_get_delta_U(self): units = 'J/mol' exp_sm_U = self.H2O_sm.get_U(T=c.T0('K'), units=units) \ - self.H2_sm.get_U(T=c.T0('K'), units=units) \ - self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), units=units), exp_sm_U) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), rev=True, units=units), -exp_sm_U) exp_sm_U_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) \ - self.H2_sm.get_U(T=c.T0('K'), units=units) \ - self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 exp_sm_U_rev_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) \ - self.H2O_sm.get_U(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), act=True, units=units), exp_sm_U_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_U_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_U_act(T=c.T0('K'), rev=True, units=units), exp_sm_U_rev_TS) def test_get_delta_HoRT(self): exp_nasa_HoRT = self.H2O_nasa.get_HoRT(T=c.T0('K')) \ - self.H2_nasa.get_HoRT(T=c.T0('K')) \ - self.O2_nasa.get_HoRT(T=c.T0('K'))*0.5 exp_sm_HoRT = self.H2O_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_HoRT(T=c.T0('K')), exp_nasa_HoRT) self.assertAlmostEqual( self.rxn_nasa.get_delta_HoRT(T=c.T0('K'), rev=True), -exp_nasa_HoRT) self.assertAlmostEqual(self.rxn_sm.get_delta_HoRT(T=c.T0('K')), exp_sm_HoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), rev=True), -exp_sm_HoRT) exp_sm_HoRT_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_sm_HoRT_rev_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2O_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), act=True), exp_sm_HoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), rev=True, act=True), exp_sm_HoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_HoRT_act(T=c.T0('K'), rev=True), exp_sm_HoRT_rev_TS) def test_get_delta_H(self): units = 'J/mol' exp_nasa_H = self.H2O_nasa.get_H(T=c.T0('K'), units=units) \ - self.H2_nasa.get_H(T=c.T0('K'), units=units) \ - self.O2_nasa.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_H = self.H2O_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_H(T=c.T0('K'), units=units), exp_nasa_H) self.assertAlmostEqual( self.rxn_nasa.get_delta_H(T=c.T0('K'), units=units, rev=True), -exp_nasa_H) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), units=units), exp_sm_H) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), units=units, rev=True), -exp_sm_H) exp_sm_H_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_H_rev_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2O_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), act=True, units=units), exp_sm_H_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_H_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_H_act(T=c.T0('K'), rev=True, units=units), exp_sm_H_rev_TS) def test_get_delta_SoR(self): exp_nasa_SoR = self.H2O_nasa.get_SoR(T=c.T0('K')) \ - self.H2_nasa.get_SoR(T=c.T0('K')) \ - self.O2_nasa.get_SoR(T=c.T0('K'))*0.5 exp_sm_SoR = self.H2O_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_SoR(T=c.T0('K')), exp_nasa_SoR) self.assertAlmostEqual( self.rxn_nasa.get_delta_SoR(T=c.T0('K'), rev=True), -exp_nasa_SoR) self.assertAlmostEqual(self.rxn_sm.get_delta_SoR(T=c.T0('K')), exp_sm_SoR) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), rev=True), -exp_sm_SoR) exp_sm_SoR_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_sm_SoR_rev_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2O_sm.get_SoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), act=True), exp_sm_SoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), rev=True, act=True), exp_sm_SoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_SoR_act(T=c.T0('K'), rev=True), exp_sm_SoR_rev_TS) def test_get_delta_S(self): units = 'J/mol/K' exp_nasa_S = self.H2O_nasa.get_S(T=c.T0('K'), units=units) \ - self.H2_nasa.get_S(T=c.T0('K'), units=units) \ - self.O2_nasa.get_S(T=c.T0('K'), units=units)*0.5 exp_sm_S = self.H2O_sm.get_S(T=c.T0('K'), units=units) \ - self.H2_sm.get_S(T=c.T0('K'), units=units) \ - self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_S(T=c.T0('K'), units=units), exp_nasa_S) self.assertAlmostEqual( self.rxn_nasa.get_delta_S(T=c.T0('K'), units=units, rev=True), -exp_nasa_S) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), units=units), exp_sm_S) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), rev=True, units=units), -exp_sm_S) exp_sm_S_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) \ - self.H2_sm.get_S(T=c.T0('K'), units=units) \ - self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 exp_sm_S_rev_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) \ - self.H2O_sm.get_S(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), act=True, units=units), exp_sm_S_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_S_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_S_act(T=c.T0('K'), rev=True, units=units), exp_sm_S_rev_TS) def test_get_delta_FoRT(self): exp_sm_FoRT = self.H2O_sm.get_FoRT(T=c.T0('K')) \ - self.H2_sm.get_FoRT(T=c.T0('K')) \ - self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_FoRT(T=c.T0('K')), exp_sm_FoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), rev=True), -exp_sm_FoRT) exp_sm_FoRT_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) \ - self.H2_sm.get_FoRT(T=c.T0('K')) \ - self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 exp_sm_FoRT_rev_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) \ - self.H2O_sm.get_FoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), act=True), exp_sm_FoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), rev=True, act=True), exp_sm_FoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_FoRT_act(T=c.T0('K'), rev=True), exp_sm_FoRT_rev_TS) def test_get_delta_F(self): units = 'J/mol' exp_sm_F = self.H2O_sm.get_F(T=c.T0('K'), units=units) \ - self.H2_sm.get_F(T=c.T0('K'), units=units) \ - self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), units=units), exp_sm_F) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), units=units, rev=True), -exp_sm_F) exp_sm_F_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) \ - self.H2_sm.get_F(T=c.T0('K'), units=units) \ - self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 exp_sm_F_rev_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) \ - self.H2O_sm.get_F(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), act=True, units=units), exp_sm_F_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_F_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_F_act(T=c.T0('K'), rev=True, units=units), exp_sm_F_rev_TS) def test_get_delta_GoRT(self): exp_nasa_GoRT = self.H2O_nasa.get_GoRT(T=c.T0('K')) \ - self.H2_nasa.get_GoRT(T=c.T0('K')) \ - self.O2_nasa.get_GoRT(T=c.T0('K'))*0.5 exp_sm_GoRT = self.H2O_sm.get_GoRT(T=c.T0('K')) \ - self.H2_sm.get_GoRT(T=c.T0('K')) \ - self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_GoRT(T=c.T0('K')), exp_nasa_GoRT) self.assertAlmostEqual( self.rxn_nasa.get_delta_GoRT(T=c.T0('K'), rev=True), -exp_nasa_GoRT) self.assertAlmostEqual(self.rxn_sm.get_delta_GoRT(T=c.T0('K')), exp_sm_GoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), rev=True), -exp_sm_GoRT) exp_sm_GoRT_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) \ - self.H2_sm.get_GoRT(T=c.T0('K')) \ - self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 exp_sm_GoRT_rev_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) \ - self.H2O_sm.get_GoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), act=True), exp_sm_GoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), rev=True, act=True), exp_sm_GoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_GoRT_act(T=c.T0('K'), rev=True), exp_sm_GoRT_rev_TS) def test_get_delta_G(self): units = 'J/mol' exp_nasa_G = self.H2O_nasa.get_G(T=c.T0('K'), units=units) \ - self.H2_nasa.get_G(T=c.T0('K'), units=units) \ - self.O2_nasa.get_G(T=c.T0('K'), units=units)*0.5 exp_sm_G = self.H2O_sm.get_G(T=c.T0('K'), units=units) \ - self.H2_sm.get_G(T=c.T0('K'), units=units) \ - self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_G(T=c.T0('K'), units=units), exp_nasa_G) self.assertAlmostEqual( self.rxn_nasa.get_delta_G(T=c.T0('K'), rev=True, units=units), -exp_nasa_G) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), units=units), exp_sm_G) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), rev=True, units=units), -exp_sm_G) exp_sm_G_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) \ - self.H2_sm.get_G(T=c.T0('K'), units=units) \ - self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 exp_sm_G_rev_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) \ - self.H2O_sm.get_G(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), act=True, units=units), exp_sm_G_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_G_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_G_act(T=c.T0('K'), rev=True, units=units), exp_sm_G_rev_TS) def test_get_EoRT_act(self): exp_sm_EoRT = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_sm_EoRT_rev = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2O_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual(self.rxn_sm.get_EoRT_act(T=c.T0('K')), exp_sm_EoRT) self.assertAlmostEqual(self.rxn_sm.get_EoRT_act(T=c.T0('K'), rev=True), exp_sm_EoRT_rev) def test_get_E_act(self): units = 'J/mol' exp_sm_E = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_E_rev = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2O_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual(self.rxn_sm.get_E_act(T=c.T0('K'), units=units), exp_sm_E) self.assertAlmostEqual( self.rxn_sm.get_E_act(T=c.T0('K'), rev=True, units=units), exp_sm_E_rev) def test_get_A(self): # Testing partition function method exp_sm_q = self.H2O_TS_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.H2_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.O2_sm.get_q(T=c.T0('K'), include_ZPE=False)**0.5 exp_sm_A = c.kb('J/K') * c.T0('K') / c.h('J s') * exp_sm_q exp_sm_q_rev = self.H2O_TS_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.H2O_sm.get_q(T=c.T0('K'), include_ZPE=False) exp_sm_A_rev = c.kb('J/K') * c.T0('K') / c.h('J s') * exp_sm_q_rev np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K')), exp_sm_A, decimal=0) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), rev=True), exp_sm_A_rev, decimal=0) # Testing entropy method exp_sm_SoR = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_sm_A = c.kb('J/K') * c.T0('K') / c.h('J s') * np.exp(exp_sm_SoR) exp_sm_SoR_rev = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2O_sm.get_SoR(T=c.T0('K')) exp_sm_A_rev = c.kb('J/K')*c.T0('K')/c.h('J s') \ * np.exp(exp_sm_SoR_rev) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), use_q=False), exp_sm_A, decimal=0) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), rev=True, use_q=False), exp_sm_A_rev, decimal=0) def test_from_string(self): reaction_str = 'H2+0.5O2=H2O_TS=H2O' self.assertEqual( rxn.Reaction.from_string(reaction_str=reaction_str, species=self.species_dict), self.rxn_sm) def test_to_dict(self): self.assertEqual(self.rxn_nasa.to_dict(), self.rxn_nasa_dict) def test_from_dict(self): self.assertEqual(rxn.Reaction.from_dict(self.rxn_nasa_dict), self.rxn_nasa) class TestHelperReaction(unittest.TestCase): def test__parse_reaction(self): reaction_str = 'H2+0.5O2=H2O' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], None, None) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) reaction_str = ' H2 + 0.5 O2 = H2O ' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], None, None) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) reaction_str = ' H2 + 0.5 O2 = H2O_TS = H2O ' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], ['H2O_TS'], [1.]) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) def test__parse_reaction_state(self): reaction_str = 'H2+0.5O2' expected_output = (['H2', 'O2'], [1., 0.5]) self.assertTupleEqual( rxn._parse_reaction_state(reaction_str=reaction_str), expected_output) if __name__ == '__main__': unittest.main()
2.3125
2
src/pybel_tools/summary/visualization.py
cthoyt/pybel-tools
6
12789497
# -*- coding: utf-8 -*- """Functions for summarizing graphs. This module contains functions that provide aggregate summaries of graphs including visualization with matplotlib, printing summary information, and exporting summarized graphs """ import logging import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pybel import BELGraph __all__ = [ 'plot_summary_axes', 'plot_summary', ] logger = logging.getLogger(__name__) def plot_summary_axes(graph: BELGraph, lax, rax, logx: bool = True): """Plot the graph summary statistics on the given axes. After, you should run :func:`plt.tight_layout` and you must run :func:`plt.show` to view. Shows: 1. Count of nodes, grouped by function type 2. Count of edges, grouped by relation type :param pybel.BELGraph graph: A BEL graph :param lax: An axis object from matplotlib :param rax: An axis object from matplotlib Example usage: >>> import matplotlib.pyplot as plt >>> from pybel import from_pickle >>> from pybel_tools.summary import plot_summary_axes >>> graph = from_pickle('~/dev/bms/aetionomy/parkinsons.gpickle') >>> fig, axes = plt.subplots(1, 2, figsize=(10, 4)) >>> plot_summary_axes(graph, axes[0], axes[1]) >>> plt.tight_layout() >>> plt.show() """ function_counter = graph.count.functions() relation_counter = graph.count.relations() function_df = pd.DataFrame.from_dict(dict(function_counter), orient='index').reset_index() function_df.columns = ['Function', 'Count'] function_df.sort_values('Count', ascending=False, inplace=True) relation_df = pd.DataFrame.from_dict(dict(relation_counter), orient='index').reset_index() relation_df.columns = ['Relation', 'Count'] relation_df.sort_values('Count', ascending=False, inplace=True) sns.barplot(x='Count', y='Function', data=function_df, ax=lax, orient='h') lax.set_title('Number of nodes: {}'.format(graph.number_of_nodes())) sns.barplot(x='Count', y='Relation', data=relation_df, ax=rax, orient='h') rax.set_title('Number of edges: {}'.format(graph.number_of_edges())) if logx: lax.set_xscale('log') rax.set_xscale('log') def plot_summary(graph: BELGraph, logx: bool = True, **kwargs): """Plot your graph summary statistics. This function is a thin wrapper around :func:`plot_summary_axis`. It automatically takes care of building figures given matplotlib's pyplot module as an argument. After, you need to run :func:`plt.show`. :code:`plt` is given as an argument to avoid needing matplotlib as a dependency for this function Shows: 1. Count of nodes, grouped by function type 2. Count of edges, grouped by relation type :param kwargs: keyword arguments to give to :func:`plt.subplots` Example usage: >>> import matplotlib.pyplot as plt >>> from pybel import from_pickle >>> from pybel_tools.summary import plot_summary >>> graph = from_pickle('~/dev/bms/aetionomy/parkinsons.gpickle') >>> plot_summary(graph, figsize=(10, 4)) >>> plt.show() """ fig, (lax, rax) = plt.subplots(1, 2, **kwargs) plot_summary_axes(graph, lax, rax, logx=logx) plt.tight_layout() return fig, (lax, rax)
3.640625
4
setup.py
noisyboiler/flask-wamp
4
12789498
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from setuptools import setup, find_packages from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst')) as f: long_description = f.read() setup( name='Flask-WAMP', version='0.1.0', description='WAMP RPC and Pub/Sub for Flask', long_description=long_description, long_description_content_type='text/x-rst', url='https://github.com/noisyboiler/flask-wamp', author='<NAME>', author_email='<EMAIL>', license='BSD', zip_safe=False, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], keywords='WAMP RPC Flask', packages=find_packages(), install_requires=[ "Flask==1.0.2", "wampy==0.9.20", ], extras_require={ 'dev': [ "crossbar==0.15.0", "autobahn==0.17.2", "Twisted==17.9.0", "pytest==4.0.2", "mock==1.3.0", "pytest-capturelog==0.7", "colorlog", "flake8==3.5.0", "gevent-websocket==0.10.1", "coverage>=3.7.1", "Twisted==17.9.0", ], }, )
1.664063
2
loadCal.py
weizy0219/loadBank
1
12789499
<reponame>weizy0219/loadBank<filename>loadCal.py from openpyxl import Workbook,load_workbook from itertools import product,chain ''' 从Excel文件中载入阻抗列表,经过计划并格式化 ''' def loadfromexcel ( excelfilename ): """ 从指定的Excel文件中读取所有有效行并返回所有行组成的元组 :param excelfilename :return:allrows """ wb=load_workbook( filename= excelfilename ) ws=wb.active allrows=tuple(ws.rows) #读取所有有效单元 return allrows def writetoexcel( excelfilename ): """ 将文件写入excel表格中 :param excelfilename: :return: """ def decoderows(allrows): """ 从读取到的excel二维列表中解析出阻抗值列表 :param allrows: :return rowhead,rowcontent: """ colname=[cell.value for cell in allrows[0][1:]] rowhead=[] rowcontent=[] for onerow in allrows[1:]: rowhead.append(onerow[0]) rowcontent.append(onerow[1:]) return rowhead,rowcontent
2.75
3
tests/test_categories_api.py
lv10/bestbuyapi
10
12789500
<gh_stars>1-10 import json from bestbuyapi import BASE_URL, BestBuyAPI api_name = "categories" def test_build_url(bbapi): sample_url = f"{BASE_URL}{api_name}(sku=43900)" payload = {"query": "sku=43900", "params": {"format": "json"}} url, thePayload = bbapi.category._build_url(payload) assert sample_url == url, "Sample url is different built url" assert thePayload["format"] == "json", "Response format isn't JSON" assert thePayload.get("apiKey") is not None, "Response doesn't have API Key" def test_search_category_by_id(bbapi): cat_id = "cat00000" query = f"id={cat_id}" resp = bbapi.category.search(query=query, show="id", format="json") assert resp["categories"][0]["id"] == cat_id, "Returned category id is different" def test_search_category_by_name(bbapi): cat_name = "Sony" query = f"name={cat_name}" resp = bbapi.category.search(query=query, format="json") assert ( resp["categories"][0]["name"] == cat_name ), "Response category name is different"
2.765625
3
wildlifecompliance/migrations/0255_inspection_inspection_type.py
preranaandure/wildlifecompliance
1
12789501
<reponame>preranaandure/wildlifecompliance<filename>wildlifecompliance/migrations/0255_inspection_inspection_type.py # -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2019-07-17 02:20 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wildlifecompliance', '0254_auto_20190716_1506'), ] operations = [ migrations.AddField( model_name='inspection', name='inspection_type', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='inspection_type', to='wildlifecompliance.InspectionType'), ), ]
1.203125
1
indico_chat_bot/bot.py
NRodriguezcuellar/indico-chat-bot
2
12789502
import atexit import hashlib import hmac import re import os import sys import time from datetime import datetime, timedelta import click import requests from pytz import timezone, utc from urllib.parse import urlencode, urljoin from . import notifiers from .util import read_config from .storage import Storage from.exceptions import InvalidTimeDeltaFormat, InvalidTime, UnknownNotifier def _info(message): print(message) sys.stdout.flush() def _parse_time_delta(time_delta): """ Parse string and return a timedelta. Accepted formats: * days in the future/past: '[+/-]DdHHhMMm' """ m = re.match(r'^([+-])?(?:(\d{1,3})d)?(?:(\d{1,2})h)?(?:(\d{1,2})m)?$', time_delta) if m: mod = -1 if m.group(1) == '-' else 1 atoms = list(0 if a is None else int(a) * mod for a in m.groups()[1:]) if atoms[1] > 23 or atoms[2] > 59: raise InvalidTime() return timedelta(days=atoms[0], hours=atoms[1], minutes=atoms[2]) else: raise InvalidTimeDeltaFormat(time_delta) def _dt(dt_dict): dt = datetime.combine(datetime.strptime(dt_dict['date'], '%Y-%m-%d'), datetime.strptime(dt_dict['time'], '%H:%M:%S').time()) return timezone(dt_dict['tz']).localize(dt) def _is_fetching_past_events(bot): return bot['timedelta'].startswith('-') def notify(event, bot, channels): for channel_id in bot['channels']: channel = channels[channel_id] data = { 'title': event['title'], 'url': event['url'], 'start_time': event['startDate']['time'][:5], 'start_date': event['startDate']['date'], 'start_tz': event['startDate']['tz'], 'room': event['room'] if event['room'] else 'no room' } text = channel['text'].format(**data) channel_type = channel.get('type') if channel_type not in notifiers.ALL_NOTIFIERS: raise UnknownNotifier(channel_type) getattr(notifiers, channel_type).notify(bot, channel, text) def check_upcoming(config, storage, verbose, debug): now = datetime.now(utc) bots, channels = config['bots'], config['channels'] for bot_id, bot in bots.items(): url_path = 'export/categ/{}.json'.format('-'.join(bot['categories'])) time_delta = _parse_time_delta(bot['timedelta']) params = { 'from': 'now', 'to': bot['timedelta'], 'limit': '100' } if debug: verbose = True params['nc'] = 'yes' if _is_fetching_past_events(bot): from_date = now + time_delta params['from'] = (from_date - timedelta(hours=1)).strftime("%Y-%m-%dT%H:%M") params['to'] = from_date.strftime("%Y-%m-%dT%H:%M") params['tz'] = 'UTC' if config['api_key']: params['apikey'] = config['api_key'] if config['secret']: params['timestamp'] = str(int(time.time())) items = sorted(params.items(), key=lambda x: x[0].lower()) param_url = '/{}?{}'.format(url_path, urlencode(items)).encode('utf-8') params['signature'] = hmac.new(config['secret'].encode('utf-8'), param_url, hashlib.sha1).hexdigest() qstring = urlencode(params) url = '{}?{}'.format(urljoin(config['server_url'], url_path), qstring) if verbose: _info('[d] URL: {}'.format(url)) req = requests.get(url, verify=(not debug)) results = req.json()['results'] if verbose: _info('[i] {} events found'.format(len(results))) for event in results: evt_id = event['id'] start_dt = _dt(event['startDate']) event_time_delta_minutes = (start_dt - now).total_seconds() / 60 bot_time_delta_minutes = time_delta.total_seconds() / 60 time_delta_satisfied = 0 < event_time_delta_minutes <= bot_time_delta_minutes if (_is_fetching_past_events(bot) or time_delta_satisfied) and not storage.has(evt_id, bot_id): notify(event, bot, channels) if verbose: _info('[>] Notified {} about {}'.format(bot['channels'], event['id'])) storage.add(evt_id, bot_id) @click.group() def cli(): pass def _save_storage(storage): print(f"Saving storage... ") storage.save() print("Done!") @cli.command() @click.argument('config_file', type=click.Path(exists=True)) @click.option('--verbose', default=False, is_flag=True) @click.option('--debug', default=False, is_flag=True) def run(config_file, verbose, debug): config = read_config(config_file) storage = Storage.get_instance(config['storage_path']) atexit.register(lambda: _save_storage(storage)) env_debug = os.environ.get('DEBUG') if env_debug: debug = env_debug == '1' while True: if verbose: _info('[i] Checking upcoming events') check_upcoming(config, storage, verbose, debug) time.sleep(config['polling_time']) if __name__ == '__main__': cli()
2.421875
2
identity/ecrfs/setup/projects/dream.py
LCBRU/identity
0
12789503
from identity.ecrfs.setup.standard import SEX_MAP_1M2F3T_SEX from identity.setup.participant_identifier_types import ParticipantIdentifierTypeName from identity.setup.redcap_instances import REDCapInstanceDetail from identity.setup.studies import StudyName from identity.ecrfs.setup import crfs, RedCapEcrfDefinition crfs.extend([ RedCapEcrfDefinition({ 'crfs': [ { 'instance': REDCapInstanceDetail.UHL_LIVE, 'study': StudyName.DREAM, 'projects': [8, 22], }, { 'instance': REDCapInstanceDetail.UHL_HSCN, 'study': StudyName.DREAM, 'projects': [20, 21, 24], }, ], 'recruitment_date_column_name': 'date_enrolled', **SEX_MAP_1M2F3T_SEX, 'withdrawn_from_study_column_name': 'reason_for_participant_rem', 'withdrawn_from_study_values': ['6'], 'excluded_from_analysis_column_name': 'inc_in_eos_analysis', 'excluded_from_analysis_values': ['<isnull>', '0'], 'identity_map': { ParticipantIdentifierTypeName.DREAM_ID: 'record', } })])
2.015625
2
CarRegistration/__init__.py
infiniteloopltd/PyCarRegistrationAPI
0
12789504
#!/usr/bin/env python # Copyright 2012 Locu <<EMAIL>> <<EMAIL>> from api import *
1.015625
1
src/product/urls.py
aqifcse/django-coding-task
0
12789505
from django.urls import path from django.views.generic import TemplateView from product.views.product import CreateProductView from product.views.variant import VariantView, VariantCreateView, VariantEditView app_name = "product" urlpatterns = [ # Variants URLs path('variants/', VariantView.as_view(), name='variants'), path('variant/create', VariantCreateView.as_view(), name='create.variant'), path('variant/<int:id>/edit', VariantEditView.as_view(), name='update.variant'), # Products URLs path('create/', CreateProductView.as_view(), name='create.product'), path('list/', TemplateView.as_view(template_name='products/list.html', extra_context={ 'product': True }), name='list.product'), ]
1.828125
2
src/graph_gui/animations/bfs_animation.py
3ddelano/graph-visualizer-python
0
12789506
""" File: bfs_animation.py Author: <NAME> Repo: https://github.com/3ddelano/graph-visualizer-python License: MIT """ from ..constants import ( CURRENT_EDGE_COLOR, CURRENT_NODE_COLOR, SEEN_EDGE_COLOR, SEEN_NODE_COLOR, START_NODE_COLOR, ) from ..interfaces.animation_interface import AnimationInterface class BFSAnimation(AnimationInterface): def __init__(self, graph): self.graph = graph self.start_node = None self.queue = [] self.visited = [] # used in the algorithm and for drawing the visited nodes self.edges = [] self.prev_nodes = [] def set_start_node(self, node): self.start_node = node self.queue = [node] def is_ended(self): return len(self.queue) == 0 def one_step(self): # One step in the BFS algorithm if self.start_node is None: return if len(self.queue) > 0: node = self.queue.pop(0) self.visited.append(node) # Get the path from startnode to node for visited_node in self.visited: edge = self.graph.get_edge_between_nodes(visited_node, node) if edge: self.edges.append(edge) self.prev_nodes.append(node) break for adj_node in self.graph.get_adjacent_nodes(node): if not adj_node in self.visited: self.queue.append(adj_node) self.visited.append(adj_node) else: # BFS Ended self.start_node = None def get_drawn_nodes(self): ret = [] if self.start_node: ret.append({"node": self.start_node, "color": START_NODE_COLOR}) length = len(self.prev_nodes) if length > 1: for i in range(length - 1): ret.append({"node": self.prev_nodes[i], "color": SEEN_NODE_COLOR}) if length > 0: ret.append({"node": self.prev_nodes[-1], "color": CURRENT_NODE_COLOR}) return ret def get_drawn_edges(self): ret = [] length = len(self.edges) if length > 1: for i in range(length - 1): ret.append({"edge": self.edges[i], "color": SEEN_EDGE_COLOR}) if length > 0: ret.append({"edge": self.edges[-1], "color": CURRENT_EDGE_COLOR}) return ret def get_result_string(self): ret = [] queue = [self.start_node] visited = [] while len(queue) > 0: node = queue.pop(0) visited.append(node.id) ret.append(node.id) for adj_node in self.graph.get_adjacent_nodes(node): if not adj_node.id in visited: queue.append(adj_node) visited.append(adj_node.id) result_str = " -> ".join([str(i) for i in ret]) print("BFS result:" + result_str) return result_str
2.984375
3
pyxtal/miscellaneous/bugs/bug.py
ubikpt/PyXtal
127
12789507
from pyxtal import pyxtal from ase.io import read from ase.spacegroup.symmetrize import prep_symmetry from spglib import get_symmetry_dataset #ans1 = get_symmetry_dataset(s, symprec=1e-2) #print(ans1) s = pyxtal() s.from_seed('bug.vasp', tol=1e-2) print(s) #s1=s.subgroup(eps=0.1, group_type='t+k', max_cell=4) #for a in s1: # print(a) #s1=s.subgroup(eps=0.1, group_type='k', max_cell=4) #for a in s1: # print(a) #permutation = {"C":"Si", "Si":"C"} #for i in range(100): # struc = s.subgroup_once(0.01, None, permutation, max_cell=1) # print(struc.group.number, struc.formula) for i in range(100): struc = s.subgroup_once(0.2, None, None, 't+k', max_cell=2) print(struc.group.number, struc.formula) #for i in range(1000): # struc = s.subgroup_with_substitution(permutation, once=True, max_cell=4) # print(struc)
2.328125
2
app/shared_code/queries.py
KubaTaba1uga/spam_recycler
2
12789508
import logging from mailboxes.models import MailboxModel, MailboxGuestModel from reports.models import ReportModel, MessageModel, MessageEvaluationModel def get_user_guest_mailboxes(user): """ Returns guest mailboxes of a user. """ return (guest_mailbox.mailbox for guest_mailbox in MailboxGuestModel.objects.filter(guest=user).all()) def get_user_owner_mailboxes_query(user): return MailboxModel.objects.filter(owner=user).all() def get_user_owner_mailboxes(user): """ Return owned mailboxes of a user. """ return (owned_mailbox for owned_mailbox in get_user_owner_mailboxes_query(user)) def get_user_owner_mailboxes_tuples(user): """ Return owned mailboxes of a user as tuple """ return ((owned_mailbox.id, owned_mailbox.email_address) for owned_mailbox in get_user_owner_mailboxes_query(user)) def get_mailbox_query(mailbox_id): return MailboxModel.objects.filter(pk=mailbox_id).first() def get_mailbox_owner(mailbox_id): """ Return owner of a mailbox or None if mailbox does not exist """ mailbox = get_mailbox_query(mailbox_id) if mailbox: return mailbox.owner def get_mailbox_guests_query(mailbox_id): return MailboxGuestModel.objects.filter(mailbox_id=mailbox_id).all() def get_mailbox_guests(mailbox_id): """ Return all guests of mailbox with provided id """ return (guest_mailbox.guest for guest_mailbox in get_mailbox_guests_query(mailbox_id)) def get_guest_mailbox(mailbox_id): """ Return all guest mailboxes of mailbox with provided id """ return (guest_mailbox for guest_mailbox in get_mailbox_guests_query(mailbox_id)) def get_guest(guest_id): """ Return all guest mailboxes of mailbox with provided id """ return MailboxGuestModel.objects.filter(pk=guest_id).first() def get_user_owner_reports(user): """ Return all reports of user owned mailboxes """ for mailbox in get_user_owner_mailboxes(user): for report in mailbox.report.all(): yield report def get_user_guest_reports(user): """ Return all reports of user guest mailboxes """ for mailbox in get_user_guest_mailboxes(user): for report in mailbox.report.all(): yield report def get_mailbox_by_owner(email_address, user): return MailboxModel.objects.filter(email_address=email_address, owner=user).first() def create_report(name, mailbox_id, start_at, end_at): return ReportModel.objects.create( name=name, mailbox_id=mailbox_id, start_at=start_at, end_at=end_at, messages_counter=0) def create_message(subject, sender, to_recipients, received_at, body, orginal_message, folder, report_id): return MessageModel.objects.create( subject=subject, sender=sender, to_recipients=to_recipients, received_at=received_at, body=body, folder=folder, report_id=report_id, orginal_message=orginal_message) def get_report_by_mailbox_and_name(name, mailbox): return ReportModel.objects.filter(name=name, mailbox=mailbox).first() def get_report_messages_by_id(report_id): return MessageModel.objects.filter(report_id=report_id).all() def get_report_messages_evaluations_by_id_query(report_id): return MessageEvaluationModel.objects.filter(message__report_id=report_id) def get_report_details_template_data(report_id): """ Select required fields to to avoid long template rendering time """ return get_report_messages_evaluations_by_id_query( report_id).values('spam_score', 'pk', 'message__pk', 'message__sender', 'message__subject', 'message__received_at', 'message__folder').all() def count_messages_in_report(report): return MessageModel.objects.filter( report=report).count() def count_messages_evaluations_in_report(report): return MessageEvaluationModel.objects.filter( message__report=report).count() def get_report_by_id_and_owner(report_id, user_id): return ReportModel.objects.filter(pk=report_id, mailbox__owner_id=user_id).first() def get_report_by_id(report_id): return ReportModel.objects.filter(pk=report_id).first() def get_message_by_id(message_id): return MessageModel.objects.filter(pk=message_id).first() def get_message_evaluation_by_id(message_evaluation_id): return MessageEvaluationModel.objects.filter(pk=message_evaluation_id).first() def validate_report_owner(report_id, user_id): return get_report_by_id_and_owner(report_id, user_id) def validate_report_guest_or_owner(report_id, user_id): return get_report_by_id_and_owner(report_id, user_id) def create_message_evaluation(spam_score, spam_description, message_id): return MessageEvaluationModel.objects.create( spam_score=spam_score, spam_description=spam_description, message_id=message_id)
2.421875
2
Code(Temp Identity)/Extra Code for testing cases/Barcode.py
ayushcv/TemperatureIdentity
2
12789509
import cv2 import numpy as np from pyzbar.pyzbar import decode #This is the barcode testing phase. This allowed me to create the validation of the accounts. img = cv2.imread('/home/pi/Resources12/frame (1).png') cap = cv2.VideoCapture(0) cap.set(3, 640) cap.set(4, 480) with open('/home.pi/Resources12\myDataFile.text') as f: myDataList = f.read().splitlines() while True: success, img = cap.read() for barcode in decode(img): myData = barcode.data.decode('utf-8') print(myData) if myData in myDataList: myOutput = 'Authorized' myColor = (0, 255, 0) else: myOutput = 'Un-Authorized' myColor = (0, 0, 255) pts = np.array([barcode.polygon], np.int32) pts = pts.reshape((-1, 1, 2)) cv2.polylines(img, [pts], True, myColor, 5) pts2 = barcode.rect cv2.putText(img, myOutput, (pts2[0], pts2[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.9, myColor, 2) cv2.imshow('Result', img) cv2.waitKey(1)
2.921875
3
config.py
tomoyan/streamlit-main
0
12789510
<gh_stars>0 import streamlit as st import random from beem import Steem from beem.nodelist import NodeList from beem.instance import set_shared_blockchain_instance # Streamlit app settings def app_config(): st.set_page_config( page_title='Steemit Club', page_icon="🐟", initial_sidebar_state="auto", layout="centered", menu_items={ 'Report a bug': "https://tinyurl.com/steemit-tomoyan", 'About': 'Steemit club tag power up check by @tomoyan.' } ) # Set up steem node def setup_steem(): # Setup Steem nodes nodelist = NodeList() nodelist.update_nodes() # nodes = nodelist.get_steem_nodes() nodes = [ 'https://steemd.steemworld.org', 'https://api.steemzzang.com', 'https://api.justyy.com', 'https://api.steemitdev.com', 'https://steem.justyy.workers.dev', 'https://api.steem.fans', 'https://api.steemit.com', 'https://api.steem.buzz', 'https://steem.61bts.com', # 'https://cn.steems.top', ] random.shuffle(nodes) STEEM = Steem(node=nodes) set_shared_blockchain_instance(STEEM) return STEEM
2.1875
2
tests/test_reanimation.py
aybugealtay/expert-meme
0
12789511
import unittest from expert_meme import reanimate class TestReanimation(unittest.TestCase): def test_reanimate(self): """Tests reanimation works as planned, with no unintended consequences, such as evil monster barnacles""" x = reanimate.Reanimator('Chet') self.assertFalse(x.alive) x.reanimate() self.assertTrue(x.alive) def test_rereanimate_failure(self): """Tests that reanimated objects can't be reanimated more""" x = reanimate.Reanimator('Chet') x.reanimate() with self.assertRaises(ValueError): x.reanimate()
3.203125
3
text-to-speech.py
mshaheerz/text-to-speech
1
12789512
import subprocess def execute_unix(inputcommand): p = subprocess.Popen(inputcommand, stdout=subprocess.PIPE, shell=True) (output, err) = p.communicate() return output a = input("enter the text :") # create wav file # w = 'espeak -w temp.wav "%s" 2>>/dev/null' % a # execute_unix(w) # tts using espeak c = 'espeak -ven+f3 -k6 -s150 --punct="<characters>" "%s" 3>>/dev/null' % a execute_unix(c) #trying to google tts using termux........ #just try #by shaheerez
2.9375
3
figures/pipeline/site_monthly_metrics.py
Groove-eLearning/figures
43
12789513
"""Populate Figures site monthly metrics data """ from __future__ import absolute_import from datetime import datetime from django.db import connection from django.db.models import IntegerField from django.utils.timezone import utc from dateutil.relativedelta import relativedelta from figures.compat import RELEASE_LINE from figures.models import SiteMonthlyMetrics from figures.sites import get_student_modules_for_site def _get_fill_month_raw_sql_for_month(site_ids, month_for): """Return a string for the raw SQL statement to get distinct student_id counts. """ # this is just a separate function so it can be patched in test to acccommodate sqlite return """\ SELECT COUNT(DISTINCT student_id) from courseware_studentmodule where id in {} and MONTH(modified) = {} and YEAR(modified) = {} """.format(site_ids, month_for.month, month_for.year) def fill_month(site, month_for, student_modules=None, overwrite=False, use_raw=False): """Fill a month's site monthly metrics for the specified site """ if not student_modules: student_modules = get_student_modules_for_site(site) if student_modules: if not use_raw: month_sm = student_modules.filter(modified__year=month_for.year, modified__month=month_for.month) mau_count = month_sm.values_list('student_id', flat=True).distinct().count() else: if RELEASE_LINE == 'ginkgo': site_ids = tuple( [int(sid) for sid in student_modules.values_list('id', flat=True).distinct()] ) else: # make sure we get integers and not longints from db from django.db.models.functions import Cast site_ids = tuple( student_modules.annotate( id_as_int=Cast('id', IntegerField()) ).values_list('id_as_int', flat=True).distinct() ) statement = _get_fill_month_raw_sql_for_month(site_ids, month_for) with connection.cursor() as cursor: cursor.execute(statement) row = cursor.fetchone() mau_count = row[0] else: mau_count = 0 obj, created = SiteMonthlyMetrics.add_month(site=site, year=month_for.year, month=month_for.month, active_user_count=mau_count, overwrite=overwrite) return obj, created def fill_last_month(site, overwrite=False): """Convenience function to fill previous month's site monthly metrics """ # Maybe we want to make 'last_month' a 'figures.helpers' method last_month = datetime.utcnow().replace(tzinfo=utc) - relativedelta(months=1) return fill_month(site=site, month_for=last_month, overwrite=overwrite)
2.421875
2
RPGBattle/battle.py
wdmwilcox/RPGBattle
0
12789514
<reponame>wdmwilcox/RPGBattle from character import Gnome from time import sleep class Battle(object): def __init__(self, player_level): self.player_level = player_level self.battle_over = False self.enemies = [Gnome(1)] self.loot = {} def generate_enemies(self): pass def display_information(self): pass def display_enemy_dialogue(self): pass def add_loot(self,loot): pass def calculate_outcome(self): return "this is the outcome" pass def get_enemy_turn(self, player): for enemy in self.enemies: enemy.play_turn(self, player) sleep(1) def check_battle_over(self): for enemy in self.enemies: if enemy.stats['health'] > 0: return False return True
2.515625
3
web-app/app.py
radekv23/data-representation-project
0
12789515
from flask import Flask, request, render_template, redirect, jsonify, flash, session from flask.config import ConfigAttribute from flask.helpers import url_for import requests from functools import wraps import json import base64 from io import BytesIO from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import matplotlib.pyplot as plt import seaborn as sns import pandas as pd app = Flask(__name__) # Check if user logged in def is_logged_in(f): @wraps(f) def wrap(*args, **kwargs): if 'logged_in' in session: return f(*args, **kwargs) else: flash('Unauthorized, Please login first!', 'danger') return redirect(url_for('sign_in')) return wrap @app.route('/sign-in') @app.route('/', methods=['GET', 'POST']) def sign_in(): if request.method == "POST": user_data = { "email": request.form['email'], "password": request.form['password'] } response = requests.get("http://127.0.0.1:5000/authenticate", json=user_data) # Status code 201 means successfully created if response.status_code == 200: session['logged_in'] = True session['user_id'] = response.json()['id'] session['username'] = response.json()['username'] return jsonify({'success': 'Login successful! Redirecting...'}) elif response.status_code == 401: # 401 means unauthorized return jsonify({'error': response.json()['error_message']}) return render_template('sign-in.html') @app.route('/register', methods=['GET', 'POST']) def register(): if request.method == "POST": user_data = { "username": request.form['username'], "email": request.form['email'], "password": request.form['password'] } response = requests.post("http://127.0.0.1:5000/authenticate", json=user_data) # Status code 201 means successfully created if response.status_code == 201: return jsonify({'success': 'Registration Successful. You can now Log in'}) elif response.status_code == 403: # 403 means forbidden return jsonify({'error': response.json()['error_message']}) return render_template('register.html') @app.route('/sign-out', methods=['POST']) @is_logged_in def sign_out(): if request.method == "POST": # clear all the session variables session.clear() return redirect(url_for('sign_in')) @app.route('/dashboard') @is_logged_in def index(): # Send a get request to retrieve categories categories_response = requests.get("http://127.0.0.1:5000/categories") # Get the JSON data categories = categories_response.json() user_id = session['user_id'] # Send a get request to retrieve all expenses for a user expenses_response = requests.get(f"http://127.0.0.1:5000/expenses/{user_id}") # Get the JSON data expenses = expenses_response.json() plot = create_pie_plot(categories, expenses) return render_template('index.html', categories=categories, expenses=expenses, plot=plot) @app.route('/create', methods=['POST']) @is_logged_in def create(): user_id = 1 expense_data = { 'expense_name': request.form['expense_name'], 'amount': request.form['amount'], 'expense_date': request.form['expense_date'], 'note': request.form['note'], 'category_id': request.form['category'], 'user_id': session['user_id'] } # POST the data to api for storing in the database response = requests.post(f"http://127.0.0.1:5000/expenses/{user_id}", json=expense_data) if response.status_code == 201: return jsonify({'success': 'New expense added successfully!'}) else: return jsonify({'error': 'There was an error creating new expense.'}) @app.route('/delete', methods=["POST"]) @is_logged_in def delete(): if request.method == 'POST': delete_response = requests.delete(f"http://127.0.0.1:5000/expense/{request.form['expense_id']}") if delete_response.status_code == 204: flash('Expense deleted successfully', 'success') else: flash('There was an error performing the delete', 'danger') return redirect(url_for('index')) @app.route('/update/<expense_id>', methods=['GET', 'POST']) @is_logged_in def update(expense_id): response = requests.get(f"http://127.0.0.1:5000/expense/{expense_id}") expense = response.json() # Send a get request to retrieve categories categories_response = requests.get("http://127.0.0.1:5000/categories") # Get the JSON data categories = categories_response.json() if request.method == "POST": expense_data = { 'expense_name': request.form['expense_name'], 'amount': request.form['amount'], 'expense_date': request.form['expense_date'], 'note': request.form['note'], 'category_id': request.form['category'], } response = requests.put(f"http://127.0.0.1:5000/expense/{expense_id}", json=expense_data) if response.status_code == 201: return jsonify({'success': 'Expense Updated successfully!'}) else: return jsonify({'error': 'There was an error performing the update'}) return render_template('update.html', expense=expense, categories=categories) def json_to_df(categories, expenses): for expense in expenses: expense['category'] = categories[expense['category_id']-1]['category_name'] expenses_json = json.dumps(expenses) df = pd.read_json(expenses_json) # Convert json to dataframe return df.sort_values(by=['category_id']) def create_pie_plot(categories, expenses): df = json_to_df(categories, expenses) # Generate the figure **without using pyplot**. fig,ax=plt.subplots(figsize=(6,6)) ax=sns.set(style="darkgrid") #define data data = list(df.groupby('category_id').sum()['amount'].values) # Get the total amount per category labels = list(df.category.unique()) # Get categories print(data) print(labels) #define Seaborn color palette to use colors = sns.color_palette('husl')[0:5] #create pie chart plt.pie(data, labels = labels, colors = colors, autopct='%.0f%%') plt.title('Amount spent per category') canvas=FigureCanvas(fig) # Save it to a temporary buffer. buf = BytesIO() fig.savefig(buf, format="png") buf.seek(0) # Embed the result in the html output. data = base64.b64encode(buf.getbuffer()).decode("ascii") src = f'data:image/png;base64,{data}' return src if __name__ == '__main__': app.secret_key = '81d43f0a7f63babc337d0a529f91372f' app.run(debug=True, port=80)
2.90625
3
procsim/core/exceptions.py
stcorp/procsim
1
12789516
<reponame>stcorp/procsim ''' Copyright (C) 2021 S[&]T, The Netherlands. Exceptions ''' from typing import Any class ProcsimException(Exception): ''' Base for all procsim exceptions ''' pass class TerminateError(ProcsimException): ''' Program terminated externally (CTRL-C or SIGTERM) ''' pass class ScenarioError(ProcsimException): ''' Error in scenario configuration ''' pass class GeneratorError(ProcsimException): ''' Error in generator ''' pass class ParseError(ProcsimException): ''' Error parsing XML ''' def __init__(self, value: Any, message: str = 'Error parsing XML. Received invalid value') -> None: super().__init__(value) print(message, value)
2.328125
2
interpreter/interpreter/interpreter.py
Gu1nness/AsmInterpreter
1
12789517
<reponame>Gu1nness/AsmInterpreter # -*- coding:utf8 -*- from queue import Queue from copy import deepcopy from .memory import * from .number import Number from ..lexical_analysis.lexer import Lexer from ..lexical_analysis.token_type import * from ..syntax_analysis.parser import Parser from ..syntax_analysis.tree import * from ..semantic_analysis.analyzer import SemanticAnalyzer from ..utils.utils import MessageColor import sys AsmQueue = Queue() class EndOfExecution(BaseException): pass class Interpreter(NodeVisitor): def __init__(self, break_points, event): self.memory = Memory() self.break_points = break_points self.cmp_reg = 0 self.frame = None self.jmpd = False self.can_run = event self.can_run.set() def preload_functions(self, tree): for child in tree.children: frame = FunctionFrame(child) self.memory.functions[child.name.value] = frame self.memory.ranges[frame.boundaries] = child.name self.memory._create_frames() if not self.memory._check(self.break_points): sys.stderr.write(str(["0x%08x" % key for key in self.memory.frames.keys()]) + '\n') res = ["0x%08x" % break_point for break_point in self.break_points if not break_point in self.memory.frames.keys()] sys.stderr.write(str(res) + "\n") sys.stderr.flush() raise Exception("Breakpoints are not all in the frames") def visit_Register(self, node): reg = self.memory.registers[node.value] return Number(node.value[0], reg, register=node.value) def visit_Frame(self, node): self.visit(node.instr) def visit_UnOp(self, node): node.operand.pointer = True if node.op.type == NOT_OP: self.memory.inot(self.visit(node.operand)) if node.op.type == NEG_OP: self.memory.ineg(self.visit(node.operand)) if node.op.type == DEC_OP: value = self.visit(node.operand) self.memory.idec(value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == INC_OP: value = self.visit(node.operand) self.memory.iinc(value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 def visit_BinOp(self, node): node.right.pointer = False node.left.pointer = True if node.op.type in [ADD_OP, ADDL_OP]: value = self.visit(node.left).value self.memory.iadd(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == LEA_OP: node.right.pointer = False node.left.pointer = False addr = self.visit(node.right) value = self.visit(node.left).value self.memory[addr] = self.visit(node.left).value if node.op.type == MUL_OP: value = self.visit(node.left).value self.memory.imul(self.visit(node.right), value) if node.op.type == SUB_OP: value = self.visit(node.left).value self.memory.isub(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == AND_OP: value = self.visit(node.left).value self.memory.iand(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == XOR_OP: value = self.visit(node.left).value self.memory.ixor(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == SHL_OP: value = self.visit(node.left).value self.memory.ishl(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == SHR_OP: value = self.visit(node.left).value self.memory.ishr(self.visit(node.right), value) if value == 0: self.cmp_reg = 0 else: self.cmp_reg = 1 if node.op.type == TEST: right = self.visit(node.right).value left = self.visit(node.left).value self.cmp_reg = int(right & left) def visit_TernOp(self, node): node.right.pointer = False node.middle.pointer = True node.left.pointer = True if node.op.type in [MUL_OP]: self.memory.mul(self.visit(node.right), self.visit(node.left).value, self.visit(node.middle).value, ) def visit_XchgOp(self, node): node.right.pointer = False node.left.pointer = True left = self.visit(node.right) right = self.visit(node.left) if left.register: self.memory.registers[left.register] = right if left.register.startswith('e'): self.memory.registers['r' + left.register[1:]] = right else: self.stack[right.value] = left if right.register: self.memory.registers[right.register] = left if right.register.startswith('e'): self.memory.registers['r' + right.register[1:]] = left else: self.stack[right.value] = left def visit_MovOp(self, node): node.right.pointer = False node.left.pointer = True addr = self.visit(node.right) print("====") print(node.right) print(addr) value = self.visit(node.left).value print(value) self.memory[addr] = value def visit_StackOp(self, node): value = self.visit(node.expr) if node.op.type == PUSH: self.memory.push(value, length=1) if node.op.type == PUSHQ: self.memory.push(value, length=2) if node.op.type == POP: self.memory.pop(length=1) if node.op.type == POPQ: self.memory.pop(length=2) def visit_JmpStmt(self, node): addr = int(node.jmpaddr.value, 16) frame = self.memory.frames[addr] if node.op.type == JG and self.cmp_reg == 2: self.jmpd = True self.frame = frame return if node.op.type == JGE and self.cmp_reg >= 1: self.jmpd = True self.frame = frame return if node.op.type == JE and self.cmp_reg == 0: self.jmpd = True self.frame = frame return if node.op.type == JNE and self.cmp_reg != 0: self.jmpd = True self.frame = frame return if node.op.type == JLE and self.cmp_reg <= -1: self.jmpd = True self.frame = frame return if node.op.type == JL and self.cmp_reg == -2: self.jmpd = True self.frame = frame return if node.op.type == JMPQ: self.jmpd = True self.frame = frame return if node.op.type == JMP: self.jmpd = True self.frame = frame return def visit_CmpOp(self, node): node.right.pointer = False node.left.pointer = True left = self.visit(node.left) right = self.visit(node.right) self.cmp_reg = Number.__cmp__(right, left) def visit_CallQOp(self, node): addr = self.call_addr for (start, end) in self.memory.ranges.keys(): if start <= addr and addr <= end: fct_frame = self.memory.ranges[(start,end)] break self.visit(fct_frame) def visit_RetStmt(self, node): ret_addr = self.memory.registers['rbp'] if ret_addr == 0: raise EndOfExecution for (start, end) in self.memory.ranges.keys(): if start <= addr and addr <= end: fct_frame = self.memory.ranges[(start,end)] break return self.visit(fct_frame, start=ret_addr) def visit_NullOp(self, node): return def visit_AddrExpression(self, node): return Number('l', node.value) def visit_TernaryAddrExpression(self, node): if node.reg_1: return self.visit(node.reg_1) + self.visit(node.offset) * self.visit(node.reg_2) else: return self.visit(node.offset) * self.visit(node.reg_2) def visit_CompoundAddrExpression(self, node): if node.token.type == NUMBER: if node.pointer: #print(node.offset) addr = self.visit(node.offset) + self.visit(node.register) res = self.memory.stack[self.visit(node.offset) + self.visit(node.register)] return Number(node.register.value[0], res) else: return self.visit(node.offset) + self.visit(node.register) if node.token.type == ASTERISK: return self.memory.stack[self.visit(node.register)] def interpret(self, tree): self.preload_functions(tree) node = self.memory['main'] self.frame = self.memory.frames[node._start] try: while True: self.can_run.wait() self.visit(self.frame) if self.frame.prog_counter in self.break_points: AsmQueue.put((self.frame.prog_counter, deepcopy(self.memory))) self.can_run.clear() if self.jmpd: self.jmpd = False else: index = self.memory.prog_counters.index(self.frame.prog_counter) try: self.frame = self.memory.frames[self.memory.prog_counters[index + 1]] except IndexError: raise EndOfExecution except EndOfExecution as _: return self.memory.registers['rax'] @staticmethod def run(program): try: lexer = Lexer(program) parser = Parser(lexer) tree = parser.parse() SemanticAnalyzer.analyze(tree) status = Interpreter().interpret(tree) except Exception as message: print("{}[{}] {} {}".format( MessageColor.FAIL, type(message).__name__, message, MessageColor.ENDC )) status = -1 print() print(MessageColor.OKBLUE + "Process terminated with status {}".format(status) + MessageColor.ENDC)
2.28125
2
exercicios/ex001.py
OtavioMalta/PythonExercicios
1
12789518
<reponame>OtavioMalta/PythonExercicios n = int(input('digite um numero')) s = n + 1 a = n - 1 d = n*2 t = n*3 r =n**(1/2) print('o numero sucessor de {} é {} e o antecessor é {}'.format(n, s, a)) print('o dobro de {} é {} o triplo é {} e a raiz quadrada {}'.format(n, d, t, r)) print('a tabuada de {} é:'.format(n),n*1,n*2,n*3,n*4,n*5,n*6,n*7,n*8,n*9,n*10) n1 = int(input('digite a primeira nota')) n2 = int(input('digite a segunda nota')) m = (n1 + n2)/2 print(" a media do aluno é de {}".format(m)) mts = int(input('digite um tamanho em metros')) cm = mts * 100 mm = cm*10 print('esse numero em cm é{} e em milimetros é {}'.format(cm, mm)) rs = int(input('quantos reais vc tem?')) dl = rs / 3.27 print('no totaal vc tem {} dolares'.format(dl)) al=int(input('altura da parede')) lar=int(input('largura da parede')) ar=al*lar tin=ar/2 print('a area da parede é de {} metros quadrados, por isso precisará de {} litros de tinta'.format(ar,tin)) pr=float(input('digite um preço')) dc= pr - (pr*5/100) print('o preço com o desconto fica {}'.format(dc)) sal=float(input('quanto ganha o funcionario?')) aum= sal + (sal*15/100) print('o funcinario, com um aumento de 15%, receberá:R${}'.format(aum)) temp=float(input("qual a temperatura em Celsius")) tmp= temp *1.8 + 32 print('a temperatura me fahrenheit é de {}'.format(tmp)) dia=int(input('quantos dias o carro foi alugado?')) km=float(input('quantos km foram percorridos?')) tot = (dia*60) + (0.15*km) print('o total a ser pago é de {}'.format(tot))
4.1875
4
deui/html/view/body_element.py
urushiyama/DeUI
1
12789519
from .element import Element class Body(Element): """ Represents content body. """ def __str__(self): return "body"
2.703125
3
freetrade/auth.py
DainisGorbunovs/freetrade
32
12789520
import json import logging import os import uuid from collections import OrderedDict from datetime import datetime from typing import Callable import jwt import requests from freetrade import Credentials logger = logging.getLogger(__name__) class Auth: def __init__(self, credentials: Credentials, email: str, useragent: str = None, session_id: str = None, otp_parser: Callable = None): self.credentials = credentials self.custom_token = None self.id_token = None self.refresh_token = None self.host = 'https://' + self.credentials.get_ft_auth_host() self.email = email self.useragent = useragent if useragent else 'Freetrade/1.0.4756-4756 Dalvik/2.1.0 ' \ '(Linux; U; Android 9; SM-G965U Build/PPR1.180610.011)' self.android_api_key = self.credentials.get_android_verification_api_key() self.otp_parser = otp_parser if otp_parser is None: self.otp_parser = lambda: input('What is the OTP (one time password) in the Magic link in the email? ') if session_id is None: session_id = str(uuid.uuid4()) self.headers = OrderedDict([ ('session_id', session_id), ('request_id', ''), ('User-Agent', self.useragent), ('Content-Type', 'application/x-www-form-urlencoded'), ('Content-Length', ''), ('Host', self.credentials.get_ft_auth_host()), ('Connection', 'close'), ('Accept-Encoding', 'gzip, deflate') ]) self.authenticate() def get_request_header(self) -> OrderedDict: self.headers['request_id'] = str(uuid.uuid4()) return self.headers def login_request_otp(self) -> requests.Response: payload = {'email': self.email} response = requests.post(self.host + '/start', data=payload, headers=self.get_request_header()) return response def login_with_otp(self, one_time_password: str) -> requests.Response: payload = {'email': self.email, 'otp': one_time_password} response = requests.post(self.host + '/login', data=payload, headers=self.get_request_header()) content = response.json() self.custom_token = content['access_token'] return response def authenticate(self, session_file: str = None): # default local user configs key_paths_list = [ 'ft-session.json', os.path.expanduser("~") + '/.config/freetrade/ft-session.json', ] # if session_file is given, prioritise by reading from it first if session_file is not None: key_paths_list.insert(0, session_file) # check which files are readable and contain the session session = None for path in key_paths_list: # if there are issues reading file, ignore them # and just relogin again try: if os.path.isfile(path): with open(path, 'rb') as f: session = json.load(f) self.refresh_token = session['refresh_token'] self.headers['session_id'] = session['session_id'] self.refresh_id_token() break except Exception as e: logger.error('Error reading session file: {} - {}.'.format(type(e).__name__, str(e))) session = None # if none of the files were successful, login again if session is None: self.login_request_otp() otp = self.otp_parser() # get a Custom Token for authenticating Firebase client SDKs # valid for 1 hour self.login_with_otp(otp) # get a refresh token (valid 1 year) and ID token (valid 1 hour) self.get_firebase_tokens() # save the new session with open(key_paths_list[0], 'w') as f: data = { 'refresh_token': self.refresh_token, 'session_id': self.headers['session_id'] } json.dump(data, f) def get_firebase_tokens(self): # if does not work, need new session token (relogin via authenticate) # exchange custom token -> a refresh and ID tokens # https://firebase.google.com/docs/reference/rest/auth url = 'https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyCustomToken?key='\ + self.android_api_key res = requests.post(url, json={ 'token': self.custom_token, 'returnSecureToken': True }) tokens = res.json() self.refresh_token = tokens['refreshToken'] self.id_token = tokens['idToken'] def refresh_id_token(self): # exchange refresh token -> newer refresh and ID token url = 'https://securetoken.googleapis.com/v1/token?key=' + self.android_api_key res = requests.post(url, data={ 'grant_type': 'refresh_token', 'refresh_token': self.refresh_token }) tokens = res.json() self.refresh_token = tokens['refresh_token'] self.id_token = tokens['id_token'] self.headers['Authorization'] = self.get_auth_bearer() self.headers.move_to_end('Authorization', last=False) def get_auth_bearer(self): return 'Bearer ' + self.id_token def keep_id_token_valid(self): decoded = jwt.decode(self.id_token, verify=False) delta_time_valid = datetime.utcfromtimestamp(decoded['exp']) - datetime.utcnow() # if less than 60 seconds left, refresh ID token if delta_time_valid.total_seconds() < 60: self.refresh_id_token()
2.484375
2
src/rascore/util/functions/col.py
mitch-parker/rascore
7
12789521
<reponame>mitch-parker/rascore # -*- coding: utf-8 -*- """ Copyright 2022 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ y32_col = "Y32" y71_col = "Y71" sw1_col = "SW1" sw2_col = "SW2" id_col = "id" core_path_col = "core_path" rcsb_path_col = "rcsb_path" renum_path_col = "renum_path" rcsb_assembly_path_col = "rcsb_assembly_path" renum_assembly_path_col = "renum_assembly_path" sifts_path_col = "sifts_path" edia_path_col = "edia_path" interf_path_col = "interface_path" pocket_path_col = "pocket_path" modelid_col = "modelid" chainid_col = "chainid" resid_col = "resid" resname_col = "resname" atomid_col = "atomid" pdb_id_col = "pdb_id" pdb_code_col = "pdb_code" swiss_id_col = "swiss_id" uniprot_id_col = "uniprot_id" pfam_col = "pfam" prot_col = "prot_name" method_col = "method" resolution_col = "resolution" r_factor_col = "r_factor" seq_col = "sequence" len_col = "length" range_col = "range" date_col = "deposit_data" pmid_col = "pmid" len_a_col = "length_a" len_b_col = "length_b" len_c_col = "length_c" ang_a_col = "angle_alpha" ang_b_col = "angle_beat" ang_g_col = "angle_gamma" space_col = "space_group" cf_col = "crystal_form" mut_status_col = "mutation_status" mut_pos_col = "mutation_position" interf_id_col = "interface_id" interf_col = "interface" interf_area_col = "interface_area" cb_cont_col = "cb_contacts" atomid_cont_col = "atomid_contacts" total_cb_cont_col = "total_cb_contacts" total_atomid_cont_col = "total_atomid_contacts" interf_cont_col = "interface_contacts" cb_dist_col = "cb_distance" iso_col = "isologous" pocket_id_col = "pocket_id" pocket_col = "pocket" pocket_site_col = "pocket_site" pocket_volume_col = "pocket_volume" pocket_score_col = "pocket_score" pocket_status_col = "pocket_status" pocket_type_col = "pocket_type" pocket_cont_col = "pocket_contacts" bio_lig_col = "biological_ligand" ion_lig_col = "ion_ligand" pharm_lig_col = "pharmacological_ligand" chem_lig_col = "chemical_ligand" mod_lig_col = "modification_ligand" mem_lig_col = "membrane_ligand" pocket_lig_col = "pocket_ligand" gene_class_col = "gene_class" nuc_class_col = "nucleotide_class" mut_class_col = "mutation_class" pharm_class_col = "pharmacological_class" match_class_col = "match_class" prot_class_col = "protein_class" interf_class_col = "interface_class" pocket_class_col = "pocket_class" bound_lig_col = "bound_ligand" bound_prot_col = "bound_protein" bound_prot_swiss_id_col = "bound_protein_swiss_id" bound_lig_cont_col = 'bound_ligand_contacts' bound_prot_cont_col = 'bound_protein_contacts' pharm_lig_site_col = "pharmacological_ligand_site" pharm_lig_match_col = "pharmarmacological_ligand_match" pharm_lig_smiles_col = "pharmacological_ligand_smiles" bound_prot_pfam_col = "bound_protein_pfam" bound_prot_site_col = "bound_protein_site" bound_prot_chainid_col = "bound_protein_chainid" bound_interf_chainid_col = "bound_interf_chainid" edia_col = "edia_score" b_factor_col = "b_factor" phi_col = "phi" psi_col = "psi" omega_col = "omega" chi1_col = "chi1" altchi1_col = "altchi1" chi2_col = "chi2" altchi2_col = "altchi2" chi3_col = "chi3" chi4_col = "chi4" chi5_col = "chi5" complete_col = "complete" rama_col = "rama" rotamer_col = "rotamer" bb_resid_col = "bb_resid" sc_resid_col = "sc_resid" bb_seq_col = "bb_seq" sc_seq_col = "sc_seq" bb_len_col = "bb_length" sc_len_col = "sc_length" cluster_col = "cluster" nn_dist_col = "nn_dist" constr_dist_col = "constraint_distance" nn_cutoff_col = "nn_cutoff" constr_cutoff_col = "constraint_cutoff" total_col = "total" total_chain_col = "total_chain" total_entry_col = "total_entry" total_cf_col = "total_cf" loop_col = "loop" silh_col = "silhouette_score" simi_col = "similarity_score" total_complete_col = "total_complete" cluster_count_col = "cluster_count" total_cluster_pre_col = "total_cluster_pre" total_noise_pre_col = "total_noise_pre" total_pruned_nn_col = "total_pruned_nn" total_pruned_constr_col = "total_pruned_constr" total_classified_nn_col = "total_classified_nn" total_classified_constr_col = "total_classified_constr" total_cluster_post_col = "total_cluster_post" total_noise_post_col = "total_noise_post" select_col = "select" rep_col = "representative" common_col = "common" entropy_col = "entropy" occup_col = "occupancy" mean_col = "mean" max_col = "max" vect_1_col = "vector_1" vect_2_col = "vector_2" atom_dist_col = "atom_dist" hb_status_col = "hydrogen_bond" hb_angle_1_col = "hb_angle_1" hb_angle_2_col = "hb_angle_2" wmhb_angle_col = "wmhb_angle" outlier_col = "outlier" bond_col = "bond" angle_col = "angle" dih_col = "dihedral" rmsd_col = "rmsd" index_col = "index" p_col = "p_val" correct_p_col = "corrected_p_val" corr_col = "correlation" a_col = "a_val" b_col = "b_val" c_col = "c_val" d_col = "d_val" risk_ratio_col = "risk_ratio" low_ci_col = "lower_ci" up_ci_col = "upper_ci" sig_col = "significance" bb_col_lst = [phi_col, psi_col, omega_col] sc_col_lst = [ chi1_col, chi2_col, altchi1_col, altchi2_col, chi3_col, chi4_col, chi5_col, ] dih_col_lst = bb_col_lst + sc_col_lst reformat_col_lst = dih_col_lst dist_col_lst = [ nn_dist_col, constr_dist_col, vect_1_col, vect_2_col, atom_dist_col, hb_angle_1_col, hb_angle_2_col, wmhb_angle_col, outlier_col, ] sum_col_lst = [common_col, entropy_col, occup_col] data_col_lst = reformat_col_lst + dist_col_lst + sum_col_lst class_col_lst = [ gene_class_col, nuc_class_col, mut_class_col, pharm_class_col, match_class_col, prot_class_col, interf_class_col, pocket_class_col, ] path_col_lst = [ core_path_col, rcsb_path_col, renum_path_col, rcsb_assembly_path_col, renum_assembly_path_col, sifts_path_col, edia_path_col, interf_path_col, pocket_path_col, ] count_col_dict = { pdb_id_col: total_chain_col, pdb_code_col: total_entry_col, cf_col: total_cf_col, } order_col_lst = [ id_col, pdb_id_col, pdb_code_col, modelid_col, chainid_col, sw1_col, sw2_col, y32_col, y71_col, cf_col, cluster_col, total_col, total_chain_col, total_entry_col, total_cf_col, rep_col, rama_col, rotamer_col, nn_dist_col, constr_dist_col, interf_id_col, interf_col, pocket_id_col, pocket_col, prot_col, swiss_id_col, uniprot_id_col, pfam_col, mut_status_col, mut_pos_col, gene_class_col, nuc_class_col, mut_class_col, pharm_class_col, match_class_col, prot_class_col, interf_class_col, pocket_class_col, loop_col, silh_col, simi_col, total_complete_col, cluster_count_col, total_cluster_pre_col, total_noise_pre_col, total_pruned_nn_col, total_pruned_constr_col, total_classified_nn_col, total_classified_constr_col, total_cluster_post_col, total_noise_post_col, select_col, nn_cutoff_col, constr_cutoff_col, space_col, len_col, range_col, date_col, pmid_col, index_col, p_col, correct_p_col, corr_col, risk_ratio_col, low_ci_col, up_ci_col, a_col, b_col, c_col, d_col, resid_col, resname_col, atomid_col, interf_area_col, cb_cont_col, atomid_cont_col, total_cb_cont_col, total_atomid_cont_col, interf_cont_col, cb_dist_col, iso_col, pocket_site_col, pocket_volume_col, pocket_score_col, pocket_status_col, pocket_type_col, pocket_cont_col, phi_col, psi_col, omega_col, chi1_col, chi2_col, altchi1_col, altchi2_col, chi3_col, chi4_col, chi5_col, edia_col, b_factor_col, vect_1_col, vect_2_col, atom_dist_col, hb_status_col, hb_angle_1_col, hb_angle_2_col, wmhb_angle_col, outlier_col, bond_col, angle_col, rmsd_col, common_col, entropy_col, occup_col, bound_lig_col, bound_prot_col, bound_lig_cont_col, bound_prot_cont_col, bound_prot_swiss_id_col, pharm_lig_site_col, pharm_lig_match_col, pharm_lig_smiles_col, bound_prot_pfam_col, bound_prot_site_col, bound_prot_chainid_col, bound_interf_chainid_col, bio_lig_col, ion_lig_col, pharm_lig_col, chem_lig_col, mod_lig_col, mem_lig_col, pocket_lig_col, method_col, resolution_col, r_factor_col, seq_col, bb_resid_col, bb_seq_col, bb_len_col, sc_resid_col, sc_seq_col, sc_len_col, complete_col, len_a_col, len_b_col, len_c_col, ang_a_col, ang_b_col, ang_g_col, core_path_col, rcsb_path_col, renum_path_col, rcsb_assembly_path_col, renum_assembly_path_col, sifts_path_col, edia_path_col, interf_path_col, pocket_path_col, ] rename_col_dict = { id_col: "ID", pdb_id_col: "PDB ID", pdb_code_col: "PDB Code", modelid_col: "Model", chainid_col: "Chain", sw1_col: "SW1 Conformation", sw2_col: "SW2 Conformation", y32_col: "Y32 Position", y71_col: "Y71 Position", hb_status_col:"H-Bond Substate", gene_class_col: "RAS Isoform", mut_status_col: "Mutation Status", nuc_class_col: "Nucleotide State", prot_class_col: "Bound Protein", pocket_class_col: "Inhibitor Site", match_class_col: "Inhibitor Chemistry", interf_class_col: "Homodimer Status", bound_prot_col: "Bound Protein Name", bound_prot_swiss_id_col: "Bound Protein SwissProt ID", bound_prot_chainid_col: "Bound Protein Chain", bio_lig_col: "Nucleotide", ion_lig_col: "Ion", pharm_lig_col: "Inhibitor", chem_lig_col: "Chemical", mod_lig_col: "Modification", mem_lig_col: "Membrane", pocket_lig_col: "Pocket", space_col: "Space Group", method_col: "Experiment Method", resolution_col: "Resolution", r_factor_col: "R-Factor", date_col: "Deposit Date", pocket_score_col: "Druggability Scores", pocket_volume_col: "Pocket Volume" } def get_dist_col(x_resid, y_resid, x_atomid=None, y_atomid=None, ext=None): if ext is None: ext = atom_dist_col dist_col = str(x_resid) if str(x_atomid) != "None": dist_col += f"({x_atomid})" dist_col += ":" dist_col += str(y_resid) if str(y_atomid) != "None": dist_col += f"({y_atomid})" if ext is not None: dist_col += f"_{ext}" return dist_col
1.1875
1
src/functions.py
datapartnership/HospitalAccessibility
3
12789522
import requests, json, os, pickle import networkx as nx import GOSTnets as gn import matplotlib.pyplot as plt from matplotlib import gridspec from time import sleep import pandas as pd import geopandas as gpd import rasterio from rasterio.windows import Window from rasterio.plot import * from rasterio.mask import * import numpy as np from shapely.geometry import Point from shapely.geometry import box import contextily as ctx import osmnx as ox from fiona.crs import from_epsg import pycrs import geoviews as gv import hvplot.pandas import random from utility import * from raster_ops import * from mapbox import * def get_origins(places, population_file, window_size = 50, use_pickle = False, do_pickle_result = True, pickle_region_name = ""): """ Function extracts origins points from raster population map-based origin data places - string of region of interest, or a dataframe of administrate boundary polygon population_file - raster file window_size - final size of each population grid that is wanted """ # Immediately return pickled data if requested if use_pickle == True: with open (f"../data/interim/origins_{pickle_region_name}.pickle", "rb") as handle: origins = pickle.load(handle) print(f"Origins:{origins.shape};") return origins #Scan the raster map with big windows origins=pd.DataFrame() window=window_size * 2 with rasterio.open(population_file) as src: for left_x in np.arange(0,src.width,window): for top_y in np.arange(0,src.height,window): out=get_pop(population_file,left_x,top_y,window,plot=False) if out != {}: origins=origins.append([out]) print("%i/%i\r"%(left_x,src.width),end="") #Do a splitting pass. Run this cell several times (we run four times), # until you have a balance of small window and not too big rois #run this cell as many times as you want to split the windows #for i in range(0,4): #for pass_num in range(0,split_passes): # Split pass start regions_need_splitting = origins[origins['split'] == True] print(f"{len(regions_need_splitting)} regions need splitting") olen=len(origins) for i in np.arange(olen): print("%i/%i\r"%(i+1,olen),end="") if origins.iloc[i,origins.columns.get_loc('split')] == True: origins.iloc[i,origins.columns.get_loc('split')]='done' s = split(population_file,origins.iloc[i]) origins=origins.append(s,sort=False) print("done.") print("We now have %i regions of min size %i, %i will be split in next round"%\ (len(origins),origins['window'].min(),len(origins[origins['split']==True]))) origins=origins[origins['tot_pop']>0] origins=origins[origins['split']!='done'] print("We have %i regions of size %i, %i with population >0"% (len(origins),min(origins['window']),len(origins[origins['tot_pop']>0]))) # Split pass end # Set the geometry of the generated polygons as points - that are grid centroids. origins=gpd.GeoDataFrame(origins, crs='epsg:4326', geometry=[Point(xy) for xy in zip(origins['center_lon'], origins['center_lat'])] ) # Create a separate geometry column that contains the grid geometry origins['geo_grid']=origins.apply( lambda r: box(r.left_lon, r.bottom_lat, r.right_lon, r.top_lat, ccw=False), axis=1 ) col_to_keep = origins.columns # Filter Origins with administrative boundary if (isinstance(places,pd.DataFrame)==True): bounds = places else: bounds = ox.boundaries.gdf_from_places(places) # Don't clip to full bounds, just bbox. That's why this is commented tr_origins = gpd.sjoin(origins, bounds, how="inner", op="intersects") tr_origins = tr_origins[col_to_keep].reset_index(drop=True) #Outputting Origins print(f"All origins:{origins.shape}; Relevant Origins:{tr_origins.shape}") # Pickle generated origins if requested if do_pickle_result == True: with open ("../data/interim/origins_{pickle_region_name}.pickle", "wb") as handle: pickle.dump(tr_origins, handle, protocol=pickle.HIGHEST_PROTOCOL) print("Pickled origins") return(tr_origins) def origins_snap_osm(origins, net_pickle_path): """ Function snaps origins to nearest road based on road network origins - dataframe of population origin points net_pickle_path - road network """ print("Reading pickle") G = nx.read_gpickle(net_pickle_path) print("Snapping Origins") origins = gn.pandana_snap_c(G, point_gdf = origins, source_crs = 'epsg:4326', target_crs = 'epsg:4326', add_dist_to_node_col = True, time_it = True) origins = origins.drop(['x', 'y'], axis=1) print("Converting NNs to Points") def get_geo_from_node(NN): node = G.nodes[NN] return gpd.points_from_xy([node['x']], [node['y']])[0] origins['center_geom'] = origins['geometry'].copy() origins['geometry'] = origins['NN'].apply(get_geo_from_node) origins['geometry'] = origins['geometry'].set_crs('epsg:4326') return origins def get_destinations(places, tags): """ Function extract POI data from OSM places - string of region of interest, or a dataframe of administrate boundary polygon tags - amenity tags for destinations, must be queryable in OSM """ #For places innputs tht are a data frame if isinstance(places, pd.DataFrame)==True : bounds = places.reset_index(drop=True) boundaries=bounds.loc[0]['geometry'] df = ox.pois_from_polygon(boundaries, tags) #For places inputs that are a string else: destinations_list = [] for p in places: destinations_list.append(ox.pois_from_place(p, tags)) df = pd.concat(destinations_list) #Formatting dataframe df = gpd.GeoDataFrame(df[["osmid", "amenity", "name", "source"]], geometry=df['geometry']) df = df.set_crs("EPSG:4326") # Convert Polygons to centroid df.loc[df.geometry.geom_type != 'Point', "geometry"] = df.loc[df.geometry.geom_type != 'Point', "geometry"].centroid #Making sure we have no Amenitities of None Type df = df.loc[df.amenity.isin(tags['amenity']), :].reset_index(drop=True).copy() return df def n_closest_geodetic(origins, destinations, n_keep): """ Function takes in origins and destinations and outputs a new destination list with n_keep amount of closest destinations to each origin. This helps make fewer calls from Mapbox origins - data frane destinations - data frane n_keep = int number of nearby destinations you would like to keep """ destinations = destinations.to_crs("EPSG:4326") origins = origins.to_crs("EPSG:4326") dest_list = [] for i in origins.index: origin = origins.loc[i, :] dest_o = destinations.copy() dest_o['distance_to_or'] = dest_o.distance(origin.geometry) dest_o['o_index'] = i dest_o = dest_o.sort_values(by='distance_to_or', axis=0, ascending=True).head(n_keep) dest_list.append(dest_o) return pd.concat(dest_list).reset_index(drop=True) def biplot(origins,destinations, mode, t_max,xlim=False): """ Function plos a map and an histogram for the places beyong t_max hours from closest hospital. oorigins - data frame with travel time and distance data and population data destinations - data frame mode - string of travel mode t_max - travel time threshold in hours x_lim - x axis limit for histogram """ o = origins.copy() h = destinations.copy() #o_above = o[(o['t_'+o_type]>t_max) & (o['so_'+o_type]<so_max)] o_above = o[(o['hrs_to_hosp_or_clinic']>t_max)] variable="tot_pop" vmin,vmax=0,10000 fig = plt.figure(figsize=(12, 6)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) ax1=plt.subplot(gs[0]) ax1.axis("off") sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm.set_array([]) fig.colorbar(sm) o_above['geometry'] = o_above['geo_grid'] o_above.to_crs('epsg:3857').plot(column=variable, cmap='Reds', linewidth=0.8, ax=ax1,edgecolor='0.8') h.to_crs('epsg:3857').plot( alpha=0.8,color='blue',marker=".",markersize=8,ax=ax1) ctx.add_basemap(ax1) ax1.set_title("(Red) population beyond %i h from hospital (Blue)"%t_max) ax1.set_axis_off() ax2=plt.subplot(gs[1]) o['hrs_to_hosp_or_clinic'].plot.hist(alpha=0.5,bins=1000,cumulative=True,density=False,log=False,logx=False,weights=o['tot_pop']) if len(xlim)>0: plt.xlim(xlim) ax2.ticklabel_format(style='sci') ax2.axvline(t_max,color="red") ax2.set_ylabel('People [10s Million]') ax2.set_xlabel('Distance to closest hospital or clinic:'+' [h]') modestring="%i people (%.2f%%) > %i h "+ mode+ " hospital" ax2.set_title(modestring%\ (o_above['tot_pop'].sum(),o_above['tot_pop'].sum()/o['tot_pop'].sum()*100,t_max)) #plt.tight_layout() plt.show();
2.734375
3
instackup/sql_tools.py
Lavedonio/alexandria
0
12789523
<gh_stars>0 import os import logging import sqlite3 import psycopg2 import mysql.connector import pandas as pd from .general_tools import fetch_credentials # Logging Configuration logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) formatter = logging.Formatter("%(asctime)s:%(name)s:%(levelname)s: %(message)s") LOG_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'logs') os.makedirs(LOG_DIR, exist_ok=True) file_handler = logging.FileHandler(os.path.join(LOG_DIR, "sql_tools.log")) file_handler.setFormatter(formatter) logger.addHandler(file_handler) class SQLTool(object): """Base class for the different types of SQL databases.""" def __init__(self, sql_type, filename=None, connection='default'): if sql_type == "SQLite": sql_credentials = {} if filename is None: filename = ':memory:' else: # Getting credentials sql_credentials = fetch_credentials(service_name=sql_type, connection=connection) self.sql_type = sql_type # SQLite self.filename = filename # PostgreSQL and others self.connection_parameters = sql_credentials # Attibutes ready to be set in connection self.connection = None self.cursor = None def connect(self, fail_silently=False): """Create the connection using the __init__ attributes. If fail_silently parameter is set to True, any errors will be surpressed and not stop the code execution. """ try: if self.sql_type == "SQLite": conn = sqlite3.connect(self.filename) elif self.sql_type == "MySQL": conn = mysql.connector.connect(**self.connection_parameters) else: # PostgreSQL conn = psycopg2.connect(**self.connection_parameters) logger.info("Connected!") except (sqlite3.Error, psycopg2.Error, mysql.connector.Error) as e: print('Failed to open database connection.') logger.exception('Failed to open database connection.') if not fail_silently: raise e else: logger.error("ATENTION: Failing Silently") else: self.connection = conn self.cursor = self.connection.cursor() return self def commit(self): """Commit any pending transaction to the database.""" self.connection.commit() logger.info("Transaction commited.") def rollback(self): """Roll back to the start of any pending transaction.""" self.connection.rollback() logger.info("Roll back current transaction.") def execute_sql(self, command, fail_silently=False): """Execute a SQL command (CREATE, UPDATE and DROP). If fail_silently parameter is set to True, any errors will be surpressed and not stop the code execution. """ try: self.cursor.execute(command) logger.debug(f"Command Executed: {command}") except (sqlite3.Error, psycopg2.Error, mysql.connector.Error) as e: logger.exception("Error running command!") if not fail_silently: raise e else: logger.error("ATENTION: Failing Silently") def query(self, sql_query, fetch_through_pandas=True, fail_silently=False): """Run a query and return the results. fetch_through_pandas parameter tells if the query should be parsed by the cursor or pandas. If fail_silently parameter is set to True, any errors will be surpressed and not stop the code execution. Returns either a DataFrame (if fetch_through_pandas parameter is set to True) or a list of tuples, each representing a row, with their position in the same order as in the columns of the SELECT statement in the sql_query parameter. """ # Eliminating SQL table quotes that can't be handled by PostgreSQL sql_query = sql_query.replace("`", "") if fetch_through_pandas: try: result = pd.read_sql_query(sql_query, self.connection) except (sqlite3.Error, psycopg2.Error, mysql.connector.Error, pd.io.sql.DatabaseError) as e: logger.exception("Error running query!") result = None if not fail_silently: raise e else: logger.error("ATENTION: Failing Silently") else: try: self.cursor.execute(sql_query) logger.debug(f"Query Executed: {sql_query}") result = self.cursor.fetchall() except (sqlite3.Error, psycopg2.Error, mysql.connector.Error) as e: logger.exception("Error running query!") result = None if not fail_silently: raise e else: logger.error("ATENTION: Failing Silently") return result def close_connection(self): """Closes Connection with the database""" self.connection.close() logger.info("Connection closed.") # __enter__ and __exit__ functions for with statement. # With statement docs: https://docs.python.org/2.5/whatsnew/pep-343.html def __enter__(self): return self.connect() def __exit__(self, type, value, traceback): if traceback is None: # No exception, so commit self.commit() else: # Exception occurred, so rollback. self.rollback() self.close_connection() class SQLiteTool(SQLTool): """This class handle most of the interaction needed with SQLite3 databases, so the base code becomes more readable and straightforward.""" def __init__(self, filename=None): super().__init__("SQLite", filename=filename) def describe_table(self, table, fetch_through_pandas=True, fail_silently=False): """Special query that returns all metadata from a specific table""" sql_query = f"""SELECT name FROM sqlite_master WHERE type='{table}';""" return self.query(sql_query, fetch_through_pandas=fetch_through_pandas, fail_silently=fail_silently) class MySQLTool(SQLTool): """This class handle most of the interaction needed with MySQL databases, so the base code becomes more readable and straightforward.""" def __init__(self, connection='default'): super().__init__("MySQL", connection=connection) def describe_table(self, table, fetch_through_pandas=True, fail_silently=False): """Returns all metadata from a specific table""" sql_query = f"DESCRIBE {table}" return self.query(sql_query, fetch_through_pandas=fetch_through_pandas, fail_silently=fail_silently) class PostgreSQLTool(SQLTool): """This class handle most of the interaction needed with PostgreSQL databases, so the base code becomes more readable and straightforward.""" def __init__(self, connection='default'): super().__init__("PostgreSQL", connection=connection) def describe_table(self, table, schema="public", fetch_through_pandas=True, fail_silently=False): """Special query that returns all metadata from a specific table""" sql_query = f"""SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE table_schema='{schema}' AND table_name='{table}'""" return self.query(sql_query, fetch_through_pandas=fetch_through_pandas, fail_silently=fail_silently) def get_all_db_info(self, get_json_info=True, fetch_through_pandas=True, fail_silently=False): """Gets all Database info, using a INFORMATION_SCHEMA query. Ignore table pg_stat_statements and tables inside schemas pg_catalog and information_schema. If get_json_info parameter is True, it adds 2 columns with the data types from each key inside json and jsonb columns. fetch_through_pandas and fail_silently parameters are passed directly to the query method if get_json_info parameter is set to False; if it's not, these 2 parameters are passed as their default values. Returns a DataFrame if either get_json_info or fetch_through_pandas parameters are set to True; otherwise returns a list of tuples, each representing a row, with their position in the same order as in the columns of the INFORMATION_SCHEMA.COLUMNS table. """ sql_query = """SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE table_name != 'pg_stat_statements' AND table_schema NOT IN ('pg_catalog', 'information_schema')""" if not get_json_info: return self.query(sql_query, fetch_through_pandas=fetch_through_pandas, fail_silently=fail_silently) else: df = self.query(sql_query, fetch_through_pandas=True, fail_silently=False) # Adding 2 new empty columns for the JSON data num_rows, _ = df.shape col_add_position = df.columns.get_loc("data_type") df.insert(col_add_position + 1, 'json_key', pd.Series(["" for i in range(num_rows)], index=df.index)) df.insert(col_add_position + 2, 'json_value_type', pd.Series(["" for i in range(num_rows)], index=df.index)) # Filtering only json and jsonb types for further info lookup df_json = df[df['data_type'].isin(['jsonb', 'json'])] # Creating a empty dictionary list that will be later converted to a DataFrame and # joined with the base information_schema query. It's done that way to improve efficiency json_types_dict = {} for index in df_json.columns.values.tolist(): json_types_dict[index] = [] # Base query for JSON keys and value data type lookup json_query = """ SELECT json_data.key, {json}_typeof(json_data.value) AS json_value_data_type, COUNT(*) FROM {schema}.{table}, {json}_each({table}.{column}) AS json_data GROUP BY 1, 2 ORDER BY 1, 2; """ # Run the base query for each column with json or jsonb data types # and add the results to the json_types_dict. for index, row in df_json.iterrows(): df_query_results = self.query(json_query.format( schema=row['table_schema'], table=row['table_name'], column=row['column_name'], json=row['data_type'], ), fetch_through_pandas=True, fail_silently=False) for _, query_row in df_query_results.iterrows(): for col in json_types_dict.keys(): if col not in ['json_key', 'json_value_type']: json_types_dict[col].append(row[col]) json_types_dict['json_key'].append(query_row['key']) json_types_dict['json_value_type'].append(query_row['json_value_data_type']) # Converting the results to DataFrame, joining and sorting them before returning the result new_df = pd.concat([df, pd.DataFrame(json_types_dict)], ignore_index=True) return new_df.sort_values(by=['table_catalog', 'table_schema', 'table_name', 'column_name', 'data_type', 'json_key', 'json_value_type'], ignore_index=True)
2.703125
3
tests/test_1_os.py
malte70/OSDetect
3
12789524
import os import OSDetect def test_get_os(): OS = OSDetect.info.getOS() TRAVIS_OS_NAME = os.getenv("TRAVIS_OS_NAME") if TRAVIS_OS_NAME is None: assert isinstance(OS, str) elif TRAVIS_OS_NAME == "linux": assert OS.lower() == TRAVIS_OS_NAME.lower()
2.734375
3
src/common/services/domain.py
kei49/parse-web-python
0
12789525
from sqlalchemy import select from db.models import Domain, DomainModel from db.database import get_session def create_domain(domain_str): session = get_session() with session.begin(): domain = Domain(domain=domain_str) session.add(domain) return DomainModel.from_orm(domain) def read_all_domains(): session = get_session() with session.begin(): statement = select(Domain) domains = [DomainModel.from_orm(domain) for domain in session.execute( statement).scalars().all()] return domains
2.921875
3
src/kss/customer.py
yuriel-v/ks-shopification
0
12789526
<reponame>yuriel-v/ks-shopification """ Data structure for a particular customer Fields: - number: int - uid: int - name: str - email: str - reward_title: str - backing_minimum: float - reward_id: int - bonus_support: float - pledge_amount: float - pledged_at: str (could be a datetime) - rewards_sent: str - pledged_status: str - notes: str - billing_state: str - billing_country: str - survey_response: str (could be a datetime) - addons: str - backer_number: str - order_notes: str - comments_suggestions: str - items_ordered: dict > 0: int > 1: int > 2: int > 3: int - shipping_details: dict > country: str > amount: float > name: str > address1: str > address2: str > city: str > state: str > postal_code: str > country_name: str > country_code: str > phone_number: str > delivery_notes: str for items_ordered, each key refers to an index of this list of items: [ 'Mew Ichigo Inspired Cosmetic Bag', 'Serenity Crossbody Bag', 'Sakura Top Handle Bag', 'Madoka Top Handle Satchel Bag', # Additional items 'Pink Trio (Set of 3)', 'Magical Girl Full Set' ] """ import re from typing import Union class Customer: def __init__(self, raw_data=[]): self.__data = {'shipping_details': dict(), 'items_ordered': dict()} self.__items = ( 'Mew Ichigo Inspired Cosmetic Bag', 'Serenity Crossbody Bag', 'Sakura Top Handle Bag', 'Madoka Top Handle Satchel Bag', 'Pink Trio (Set of 3)', 'Magical Girl Full Set' ) # prices in usd! self.__prices = { 'early_bird': (32.0, 58.0, 64.0, 70.0, 165.0, 220.0), 'normal': (35.0, 61.0, 68.0, 72.0, 171.0, 228.0) } self.__params = ( 'number', 'uid', 'name', 'email', 'country', 'amount', 'reward_title', 'backing_minimum', 'reward_id', 'bonus_support', 'pledge_amount', 'pledged_at', 'rewards_sent', 'pledged_status', 'notes', 'billing_state', 'billing_country', 0, 1, 2, 3, 'survey_response', 'name', 'address1', 'address2', 'city', 'state', 'postal_code', 'country_name', 'country_code', 'phone_number', 'delivery_notes', 'addons', 'backer_number', 'order_notes', 'comments_suggestions' ) if len(raw_data) >= 36: self.parse_data(raw_data) def parse_data(self, raw_data): for i in range(0, len(self.__params)): if i in (4, 5) or i in range(22, 32): self.__data['shipping_details'][self.__params[i]] = raw_data[i] elif i in range(17, 21): self.__data['items_ordered'][self.__params[i]] = raw_data[i] else: self.__data[self.__params[i]] = raw_data[i] self.__moneify() @property def data(self) -> dict[str, Union[str, dict]]: return self.__data # if attr1.lower() in ('shipping_details', 'items_ordered'): # try: # if attr2 is None: # result = self.__data[attr1.lower()] # else: # result = self.__data[attr1.lower()][attr2.lower() if isinstance(attr2, str) else attr2] # except KeyError: # result = None # else: # try: # result = self.__data[attr1.lower()] # except KeyError: # result = None # return result @property def line_info(self): key = 'early_bird' if 'early bird' in self.data['reward_title'].lower() else 'normal' pkgs = ('ichigo', 'serenity', 'sakura', 'madoka', 'pink trio', 'full set') pkg = None for item in range(len(pkgs)): if pkgs[item] in self.data['reward_title'].lower(): pkg = item break return {self.__items[pkg]: self.__prices[key][pkg]} @staticmethod def __money(moneystring): if moneystring is None: return None else: substr = re.search(r'[^" "]*$', moneystring) return float(substr.group(0)) if bool(substr) else None def __moneify(self): self.__data['shipping_details']['amount'] = self.__money(self.__data['shipping_details']['amount']) for param in ('backing_minimum', 'bonus_support', 'pledge_amount'): self.__data[param] = self.__money(self.__data[param]) def __str__(self): resultant = '' for item in self.__params: try: resultant += f"- {str(item).replace('_', ' ').capitalize()}: {str(self.__data[item])}\n" except KeyError: continue resultant += "- Items ordered:\n" for i in range(0, 4): resultant += f" > {self.__items[i]}: {str(self.__data['items_ordered'][i])}\n" resultant += "- Shipping details:\n" for key, val in self.__data['shipping_details'].items(): resultant += f" > {str(key).replace('_', ' ').capitalize()}: {str(val)}\n" return resultant
2.9375
3
tests/testfile_bridge_the_gap.py
augmentedfabricationlab/bridge_the_gap
0
12789527
from __future__ import division from __future__ import absolute_import from __future__ import print_function from compas.geometry import Point, Frame, Vector from bridge_the_gap.assembly import BridgeAssembly from bridge_the_gap.assembly import BridgeElement my_assembly = BridgeAssembly() myFrameSet = [ Frame(Point(13.009, 0.634, 0.000), Vector(0.987, -0.160, -0.000), Vector(-0.160, -0.987, 0.000)), Frame(Point(11.957, 0.629, 4.000), Vector(0.987, 0.161, 0.000), Vector(0.161, -0.987, 0.000)), Frame(Point(11.672, 0.175, 0.000), Vector(0.991, 0.132, 0.000), Vector(0.132, -0.991, 0.000)), Frame(Point(13.295, 0.183, 0.000), Vector(0.992, -0.127, -0.000), Vector(-0.127, -0.992, 0.000)), Frame(Point(13.766, 0.469, 0.000), Vector(0.966, -0.260, -0.000), Vector(-0.260, -0.966, 0.000)), Frame(Point(11.186, 0.462, 0.000), Vector(0.965, 0.261, 0.000), Vector(0.261, -0.965, 0.000)), Frame(Point(10.850, 0.067, 0.000), Vector(0.992, 0.128, 0.000), Vector(0.128, -0.992, 0.000)), Frame(Point(14.077, 0.084, 0.000), Vector(0.992, -0.124, -0.000), Vector(-0.124, -0.992, 0.000)), Frame(Point(14.565, 0.217, 0.000), Vector(0.941, -0.338, -0.000), Vector(-0.338, -0.941, 0.000)), Frame(Point(10.416, 0.222, 0.000), Vector(0.943, 0.332, 0.000), Vector(0.332, -0.943, 0.000)), Frame(Point(10.243, -0.008, 0.000), Vector(0.993, 0.115, 0.000), Vector(0.115, -0.993, 0.000)), Frame(Point(14.718, 0.004, 0.000), Vector(0.992, -0.126, -0.000), Vector(-0.126, -0.992, 0.000)), Frame(Point(12.498, 0.693, 0.000), Vector(1.000, 0.000, 0.000), Vector(0.000, -1.000, 0.000)), Frame(Point(10.655, 0.191, 0.000), Vector(0.666, 0.746, 0.000), Vector(0.746, -0.666, 0.000)), Frame(Point(11.382, 0.339, 0.000), Vector(0.633, 0.774, 0.000), Vector(0.774, -0.633, 0.000)), Frame(Point(12.247, 0.465, 0.000), Vector(0.403, 0.915, 0.000), Vector(0.915, -0.403, 0.000)), Frame(Point(12.751, 0.466, 0.000), Vector(0.409, -0.912, -0.000), Vector(-0.912, -0.409, 0.000)), Frame(Point(13.553, 0.351, 0.000), Vector(0.634, -0.773, -0.000), Vector(-0.773, -0.634, 0.000)), Frame(Point(14.290, 0.202, 0.000), Vector(0.621, -0.784, -0.000), Vector(-0.784, -0.621, 0.000)), Frame(Point(12.500, 0.239, 0.000), Vector(1.000, 0.002, -0.000), Vector(0.002, -1.000, 0.000)), Frame(Point(10.004, 0.023, 0.000), Vector(0.344, 0.939, -0.000), Vector(0.939, -0.344, 0.000)), Frame(Point(14.994, 0.019, 0.000), Vector(0.437, -0.899, -0.000), Vector(-0.899, -0.437, 0.000)), Frame(Point(14.692, 0.057, 0.000), Vector(0.998, 0.056, 0.000), Vector(0.056, -0.998, 0.000)), Frame(Point(13.950, 0.244, 0.000), Vector(0.875, 0.483, 0.000), Vector(0.483, -0.875, 0.000)), Frame(Point(13.110, 0.408, 0.000), Vector(0.838, 0.546, 0.000), Vector(0.546, -0.838, 0.000)), Frame(Point(10.265, 0.054, 0.000), Vector(0.992, -0.130, -0.000), Vector(-0.130, -0.992, 0.000)), Frame(Point(11.001, 0.235, 0.000), Vector(0.845, -0.535, -0.000), Vector(-0.535, -0.845, 0.000)), Frame(Point(11.857, 0.402, 0.000), Vector(0.871, -0.492, -0.000), Vector(-0.492, -0.871, 0.000)) ] lengths = [0.72888612132232555, 0.79012319808336817, 0.95922231574812022, 0.89226783409583033, 0.82289075249600907, 0.789766110625581, 0.69778136937749724, 0.68436229107796309, 0.85475878513586756, 0.82558731651669848, 0.52654551668359806, 0.60831582360268277, 0.30194229954981111, 0.4516400184602582, 0.5862299187450738, 0.49647652761125388, 0.49639133374753358, 0.58120093519414162, 0.40792440981993494, 0.70502681708793857, 0.13115222717909872, 0.1195717848785053, 0.55203112300537804, 0.48645499694101429, 0.6161305979839532, 0.48204989073413501, 0.46314232034724573, 0.6657938136277054] fram1 = Frame(Point(0,0,0), Vector(-1,0,0), Vector(0,1,0)) fram2 = Frame(Point(2,0,0), Vector(-1,0,0), Vector(0,1,0)) fram3 = Frame(Point(4,0,0), Vector(-1,0,0), Vector(0,1,0)) """ my_assembly.add_element(BridgeElement(myFrameSet[0], Board_Length = 2.0, Endpoints = [Point(0,0,0),Point(1,0,0)])) my_assembly.add_element(BridgeElement(myFrameSet[0], Board_Length = 2.0, Endpoints = [Point(1,0,0),Point(2,0,0)])) my_assembly.add_element(BridgeElement(myFrameSet[1], Board_Length = 2.0, Endpoints = [Point(2,0,0),Point(2,2,0)])) """ my_assembly.add_element(BridgeElement(fram1, Board_Length = 2, Endpoints = [Point(-1,0,0),Point(1,0,0)])) my_assembly.add_element(BridgeElement(fram2, Board_Length = 2, Endpoints = [Point(1,0,0),Point(3,0,0)])) my_assembly.add_element(BridgeElement(fram3, Board_Length = 2, Endpoints = [Point(3,0,0),Point(5,0,0)])) #my_assembly.prepare_robot_assembly(model_scale=1000, safety_distance=0.4, pickup_baseframe=myFrame) print(my_assembly.create_assembly_sequence()) my_assembly.create_network() my_assembly.visualize_network() print("hello")
1.742188
2
Bits/lengths.py
vit-shreyansh-kumar/DailyWorkAtHome
0
12789528
<reponame>vit-shreyansh-kumar/DailyWorkAtHome __about__ = """ Bit Lengths """ l = int(1).bit_length() print("BIT LENGTH:", l)
1.789063
2
wdhtools/view_tools.py
VPrincekin/wdhtools
0
12789529
#!/usr/bin/env python # coding: utf-8 # @Author: dehong # @Date: 2020-06-09 # @Time: 18:05 # @Name: view_tools import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from featexp import get_univariate_plots, get_trend_stats def histogram_plot(data, feature): """ 利用直方图查看特征数据的具体分布情况(常用来查看目标变量是否符合正态分布) :param data: DataFrame | 数据集 :param feature: string | 特征 :return: """ sns.distplot(data[feature], kde=False, color='r') def feature_analysis(data, label, features, bins=10): """ 特征与目标相关性分析 :param data: DataFrame | 数据集 :param label: string | 标签f :param features: list | 特征列表 :param bins: int | 分组数目, 默认10 :return: null """ get_univariate_plots(data=data, target_col=label, features_list=features, bins=bins) def noise_feature_find(train, test, label, features, bins=10, corr=None): """ 噪声特征的分析与判断 :param train: DataFrame | 训练集 :param test: DataFrame | 测试集 :param label: string | 标签 :param features: list | 特征列表 :param bins: int | 分组数目 :param corr: float | 选择趋势相关度低于 corr 的特征为噪音特征,默认为 None :return: noise_feature_list 噪音特征列表 """ get_univariate_plots(data=train, target_col=label, data_test=test, features_list=features, bins=bins) if corr is None: return None else: stats = get_trend_stats(data=train, target_col=label, data_test=test) noise_feature_list = list(stats[stats.Trend_correlation < corr].Feature) return noise_feature_list def scatter_plot(data, label, feature): """ 利用散点图分析变量间的关系(常用来发现某些离散点) :param data: DataFrame | 数据集 :param label: string | 标签 :param feature: string | 特征 :return: """ data.plot.scatter(x=feature, y=label, ylim=(0, 1),color='m') plt.show() def matrix_plot(data, features): """ 利用 seaborn 对多个特征的散点图、直方图进行整合,得到各个特征两两组合形成的图矩阵(用来查看特征之间的相关性) :param data: DataFrame | 数据集 :param features: list | 特征列表 :return: """ var_set = features sns.set(font_scale=1.25) # 设置坐标轴的字体大小 sns.pairplot(data[var_set]) # 可在kind和diag_kind参数下设置不同的显示类型,此处分别为散点图和直方图,还可以设置每个图内的不同类型的显示 plt.show() def heat_plot(data): """ 利用热力图对各个特征间的关系进行分析 :param data: DataFrame | 数据集 :return: """ corr = data.corr() f, axis = plt.subplots(figsize=(14, 12)) sns.heatmap(corr, vmax=0.8, square=True, ax=axis) plt.show() def top_k(data, label, top=10): """ 选取与目标变量相关系数最高的K个特征,找出那些相互关联性较强的特征 :param data: DataFrame | 数据集 :param label: string | 标签 :param top: int | 选择最高的K个特征,默认值为10 :return: """ corr = data.corr() k = top top10_attr = corr.nlargest(k, label).index top10_mat = corr.loc[top10_attr, top10_attr] plt.subplots(figsize=(14, 10)) sns.set(font_scale=1.25) sns.heatmap(top10_mat, annot=True, annot_kws={"size": 12}, square=True) plt.show() def spearman(data, label, features): """ 采用“斯皮尔曼等级相关”来计算变量与标签的相关性 :param data: DataFrame | 数据集 :param label: string | 标签 :param features: list | 特征列表 :return: """ spr = pd.DataFrame() spr['feature'] = features spr['corr'] = [data[f].corr(data[label], 'spearman') for f in features] spr = spr.sort_values('corr') plt.figure(figsize=(6, 0.25 * len(features))) sns.barplot(data=spr, y='feature', x='corr', orient='h') def correlation_heatmap(data): _, ax = plt.subplots(figsize=(14, 12)) colormap = sns.diverging_palette(220, 10, as_cmap=True) _ = sns.heatmap( data.corr(), cmap=colormap, square=True, cbar_kws={'shrink': .9}, ax=ax, annot=True, linewidths=0.1, vmax=1.0, linecolor='white', annot_kws={'fontsize': 12} ) plt.title('Pearson Correlation of Features', y=1.05, size=15) plt.show()
2.5625
3
cs251tk/toolkit/__main__.py
renovate-tests/cs251-toolkit
0
12789530
<gh_stars>0 import datetime import functools import sys from concurrent.futures import ProcessPoolExecutor, as_completed from threading import Thread from os import makedirs, getcwd import os.path import logging from ..common import chdir, run from ..specs import load_all_specs, check_dependencies from .find_update import update_available from .process_student import process_student from .args import process_args, compute_stogit_url from .progress_bar import progress_bar from .save_recordings import save_recordings, gist_recordings from .tabulate import tabulate from webapp import server def make_progress_bar(students, no_progress=False): if no_progress: return lambda _: None size = len(students) remaining = set(students) invocation_count = 0 def increment(username): nonlocal remaining nonlocal invocation_count remaining.remove(username) invocation_count += 1 msg = ', '.join(sorted(remaining)) progress_bar(size, invocation_count, message=msg) msg = ', '.join(sorted(remaining)) progress_bar(size, invocation_count, message=msg) return increment def run_server(basedir): server.exe_name = '"{}/server/server_file"'.format(basedir) server.run_server() return def main(): basedir = getcwd() args, usernames, assignments, stogit_url = process_args() clean = args['clean'] date = args['date'] debug = args['debug'] gist = args['gist'] highlight_partials = args['highlight_partials'] interact = args['interact'] no_check = args['no_check'] no_update = args['no_update'] no_progress = args['no_progress'] quiet = args['quiet'] skip_update_check = args['skip_update_check'] sort_by = args['sort_by'] workers = args['workers'] web = args['web'] if debug or interact or web: workers = 1 current_version, new_version = update_available(skip_update_check=skip_update_check) if new_version: print(('v{} is available: you have v{}. ' 'Try "pip3 install --no-cache --user --upgrade cs251tk" ' 'to update.').format(new_version, current_version), file=sys.stderr) if date: logging.debug('Checking out {}'.format(date)) if not os.path.exists("data"): print('data directory not found', file=sys.stderr) download = input("Download specs? (Y/N)") if download and download.lower()[0] == "y": repo = input("Which class? (SD/HD)") if repo and repo.lower()[0] == 's': with chdir(basedir): run(['git', 'clone', 'https://github.com/StoDevX/cs251-specs.git', 'data']) if not args['stogit']: stogit_url = compute_stogit_url(course="sd", stogit=None, _now=datetime.date.today()) elif repo and repo.lower()[0] == "h": with chdir(basedir): run(['git', 'clone', 'https://github.com/StoDevX/cs241-specs.git', 'data']) if not args['stogit']: stogit_url = compute_stogit_url(course="hd", stogit=None, _now=datetime.date.today()) else: print("Class not recognized", file=sys.stderr) sys.exit(1) else: sys.exit(1) specs = load_all_specs(basedir=os.path.join(basedir, 'data'), skip_update_check=skip_update_check) if not specs: print('no specs loaded!') sys.exit(1) for spec_to_use in assignments: check_dependencies(specs[spec_to_use]) results = [] records = [] makedirs('./students', exist_ok=True) with chdir('./students'): single = functools.partial( process_student, assignments=assignments, basedir=basedir, clean=clean, date=date, debug=debug, interact=interact, no_check=no_check, no_update=no_update, specs=specs, stogit_url=stogit_url ) if workers > 1: print_progress = make_progress_bar(usernames, no_progress=no_progress) with ProcessPoolExecutor(max_workers=workers) as pool: futures = [pool.submit(single, name) for name in usernames] for future in as_completed(futures): result, recording = future.result() print_progress(result['username']) results.append(result) records.extend(recording) elif web: Thread(target=run_server, args=(basedir,), daemon=True).start() for student in usernames: print("\nStudent: {}".format(student)) result, recording = single(student) results.append(result) records.extend(recording) else: for student in usernames: logging.debug('Processing {}'.format(student)) result, recording = single(student) results.append(result) records.extend(recording) if not quiet: table = tabulate(results, sort_by=sort_by, highlight_partials=highlight_partials) print('\n' + table) if gist: table = tabulate(results, sort_by=sort_by, highlight_partials=highlight_partials) gist_recordings(records, table, debug=debug) else: save_recordings(records, debug=debug)
1.992188
2
StatRethinking/_build/jupyter_execute/chapter13-ModelsWithMemory.py
xishansnow/StatRethinking
0
12789531
<filename>StatRethinking/_build/jupyter_execute/chapter13-ModelsWithMemory.py<gh_stars>0 #!/usr/bin/env python # coding: utf-8 # # 第 13 章 分层模型
1.289063
1
keyword_extraction/keywords_TR.py
luciabura/study-helper
2
12789532
""" Keyphrase extraction implementation based on the guidelines given in the paper on TextRank by Mihalcea et al This is """ import networkx as nx import operator import text_processing.preprocessing as preprocess from utilities.read_write import read_file WINDOW_SIZE = 2 INCLUDE_GRAPH_POS = ['NN', 'JJ', 'NNP', 'NNS'] def get_keyword_combinations(original_sequence, scores): keywords = list(scores.keys()) keyphrases = {} j = 0 for i, _ in enumerate(original_sequence): if i < j: continue if original_sequence[i] in keywords: keyphrase_components = [] keyphrase_length = 0 avg_score = 0 for word in original_sequence[i:i + 3]: if word in keywords: keyphrase_components.append(word) avg_score += scores[word] keyphrase_length += 1 else: break # avg_score = avg_score / float(keyphrase_length) keyphrase = ' '.join(keyphrase_components) keyphrases[keyphrase] = avg_score j = i + len(keyphrase_components) return keyphrases def sort_scores(scores): sorted_scores = sorted(list(scores.items()), key=operator.itemgetter(1), reverse=True) return sorted_scores def get_starting_scores(words): scores = {word: 1 for word in words} return scores def add_graph_edges(graph, word_sequence): """ Adds edge between all words in word sequence that are within WINDOW_SIZE of each other. I.e if within WINDOW_SIZE the two words co-occur """ # Assume undirected graph for beginning for i in range(0, len(word_sequence) - WINDOW_SIZE - 1): for j in range(i + 1, i + WINDOW_SIZE + 1): w1 = word_sequence[i] w2 = word_sequence[j] if graph.has_node(w1) and graph.has_node(w2) and w1 != w2: graph.add_edge(w1, w2, weight=1) def build_graph(chosen_words): """ Using a list of words that have been filtered to match the criteria, we initially build an undirected graph to run our algorithm on. :param chosen_words: :return: Undirected graph, based on the networkx library implementation """ graph = nx.Graph() graph.add_nodes_from(chosen_words) return graph def get_graph_tokens(tokens): graph_tokens = [token for token in tokens if token.tag_ in INCLUDE_GRAPH_POS and len(token.text) > 2] return graph_tokens def get_keywords(text): tokens = preprocess.clean_to_doc(text) original_sequence = [token.text.lower() for token in tokens] graph_tokens = get_graph_tokens(tokens) graph_words = [token.text.lower() for token in graph_tokens] # print(sorted(list(set(graph_words)))) # Choose to display/return only a third in length keyword_count = int(len(graph_words)/3) graph = build_graph(graph_words) add_graph_edges(graph, original_sequence) # graph.remove_nodes_from(nx.isolates(graph)) # # graph.graph['node']= {'shape': 'plaintext'} # a = drawing.nx_agraph.to_agraph(graph) # a.layout('dot') # a.draw("graph_2.png") # nx.draw_random(graph) # plt.savefig("graph.png") pagerank_scores = nx.pagerank(graph, alpha=0.85, tol=0.0001) keyphrases = get_keyword_combinations(original_sequence, pagerank_scores) keyphrases = [keyphrase for keyphrase, _ in sort_scores(keyphrases)] # print(len(graph_words)) return keyphrases[0:keyword_count] if __name__ == '__main__': FILE_PATH = input('Enter the absolute path of ' 'the file you want to extract the keywords from: \n') FILE_TEXT = read_file(FILE_PATH) print(get_keywords(FILE_TEXT))
3.328125
3
server/zmq_server_pirate.py
merlinran/acorn-precision-farming-rover
143
12789533
<gh_stars>100-1000 """ ********************************************************************* This file is part of: The Acorn Project https://wwww.twistedfields.com/research ********************************************************************* Copyright (c) 2019-2021 <NAME>, Twisted Fields LLC Copyright (c) 2021 The Acorn Project contributors (cf. AUTHORS.md). Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ********************************************************************* """ # Modified from example file # Paranoid Pirate Worker by <NAME> <dln(at)eintr(dot)org> from random import randint import time import zmq import redis import zmq_server # keep the two imported to keep pickle working # TODO: avoid this by moving the class defs to a separate module. from master_process import Robot, RobotCommand REDIS_PORT = 6379 HEARTBEAT_LIVENESS = 3 HEARTBEAT_INTERVAL = 1 INTERVAL_INIT = 1 INTERVAL_MAX = 32 # Paranoid Pirate Protocol constants PPP_READY = b"\x01" # Signals worker is ready PPP_HEARTBEAT = b"\x02" # Signals worker heartbeat def worker_socket(context, poller): """Helper function that returns a new configured socket connected to the Paranoid Pirate queue""" worker = context.socket(zmq.DEALER) # DEALER identity = b"%04X-%04X" % (randint(0, 0x10000), randint(0, 0x10000)) worker.setsockopt(zmq.IDENTITY, identity) poller.register(worker, zmq.POLLIN) worker.connect("tcp://localhost:5569") worker.send(PPP_READY) return worker def main(): r = redis.Redis(host='localhost', port=REDIS_PORT) context = zmq.Context(1) poller = zmq.Poller() liveness = HEARTBEAT_LIVENESS interval = INTERVAL_INIT heartbeat_at = time.time() + HEARTBEAT_INTERVAL worker = worker_socket(context, poller) cycles = 0 while True: socks = dict(poller.poll(HEARTBEAT_INTERVAL * 1000)) # Handle worker activity on backend if socks.get(worker) == zmq.POLLIN: # Get message # - 3-part envelope + content -> request # - 1-part HEARTBEAT -> heartbeat frames = worker.recv_multipart() if not frames: break # Interrupted if len(frames) >= 5: cycles += 1 print("I: Normal reply") # print(len(frames)) # print(frames) ident, zero_frame, idx, command, key, msg = frames return_command, reply = zmq_server.handle_command(r, command, key, msg) worker.send_multipart([ident, zero_frame, idx, return_command, reply]) # worker.send_multipart(frames) liveness = HEARTBEAT_LIVENESS elif len(frames) == 1 and frames[0] == PPP_HEARTBEAT: print("I: Queue heartbeat") liveness = HEARTBEAT_LIVENESS else: print("E: Invalid message: %s" % frames) interval = INTERVAL_INIT else: liveness -= 1 if liveness == 0: print("W: Heartbeat failure, can't reach queue") print("W: Reconnecting in %0.2fs..." % interval) time.sleep(interval) if interval < INTERVAL_MAX: interval *= 2 poller.unregister(worker) worker.setsockopt(zmq.LINGER, 0) worker.close() worker = worker_socket(context, poller) liveness = HEARTBEAT_LIVENESS if time.time() > heartbeat_at: heartbeat_at = time.time() + HEARTBEAT_INTERVAL print("I: Worker heartbeat") worker.send(PPP_HEARTBEAT) if __name__ == "__main__": main()
1.984375
2
simulateur/Troncon.py
Passaudage/PLD
0
12789534
<reponame>Passaudage/PLD import Coordonnees import Feu import Voie import Vehicule import random class Troncon: const_largeur_voie = 350 # centimètres def __init__(self, intersection_tete, intersection_queue, coordonnees_debut, coordonnees_fin, directions_sens_1, directions_sens_2): #sens1 : gauche vers droite, bas vers haut self.intersection_tete = intersection_tete #en haut ou à droite self.intersection_queue = intersection_queue #en bas ou à gauche self.coordonnees_debut = coordonnees_debut self.coordonnees_fin = coordonnees_fin self.longueur = abs((self.coordonnees_fin-coordonnees_debut)) self.trajectoire = (self.coordonnees_fin-coordonnees_debut).normaliser() self.directions_sens1 = directions_sens_1 self.directions_sens2 = directions_sens_2 self.voies_sens1 = [] self.voies_sens2 = [] self.dir_voies_sens1 = {"G": [], "TD": [], "D": []} self.dir_voies_sens2 = {"G": [], "TD": [], "D": []} self.feux_sens1 = {} self.feux_sens2 = {} tete_presente = queue_presente = True if(self.intersection_queue==None): queue_presente = False elif(self.intersection_tete==None): tete_presente = False if(coordonnees_debut.x == coordonnees_fin.x): if tete_presente: self.intersection_tete.branche_troncon(self, "B") if queue_presente: self.intersection_queue.branche_troncon(self, "H") elif(coordonnees_fin.y == coordonnees_debut.y): if tete_presente: self.intersection_tete.branche_troncon(self, "G") if queue_presente: self.intersection_queue.branche_troncon(self, "D") def ajouter_generateur(self, sens, generateur): if(sens=="sens2"): self.feux_sens1['D'] = generateur self.feux_sens1['G'] = generateur self.feux_sens1['TD'] = generateur generateur.ajoute_voie_entrante(self.voies_sens1) generateur.ajoute_voie_sortante(self.voies_sens2) else: self.feux_sens2['D'] = generateur self.feux_sens2['G'] = generateur self.feux_sens2['TD'] = generateur generateur.ajoute_voie_entrante(self.voies_sens2) generateur.ajoute_voie_sortante(self.voies_sens1) def ajouter_feux(self, sens, direction, feu): print(str(sens)) if(sens=="sens1"): self.feux_sens1[direction] = feu else: self.feux_sens2[direction] = feu def afficher_feux(self): for direction in self.feux_sens1.keys(): print("feu sens 1 dans la direction suivante : " + direction + " est " + str(self.feux_sens1.get(direction).est_passant())) for direction in self.feux_sens2.keys(): print("feu sens 2 dans la direction suivante : " + direction + " est " + str( self.feux_sens2.get(direction).est_passant())) # on crée les voies de l'intérieur vers l'extérieur dans les deux sens, l'utilisateur fera donc attention aux directions qu'il passe en paramètre (gauche d'abord) def creer_voie(self, directions, sens, vitesse_max): coordonnees_debut = None coordonnees_fin = None if (sens == "sens1") : if (self.coordonnees_debut.x == self.coordonnees_fin.x) : coordonnees_debut = Coordonnees.Coordonnees(self.coordonnees_debut.x + ((len(self.voies_sens1)) + 0.5)*self.const_largeur_voie, self.coordonnees_debut.y ) coordonnees_fin = Coordonnees.Coordonnees(self.coordonnees_debut.x + (len(self.voies_sens1) + 0.5)*self.const_largeur_voie, self.coordonnees_fin.y ) if (self.coordonnees_debut.y == self.coordonnees_fin.y): coordonnees_debut = Coordonnees.Coordonnees(self.coordonnees_debut.x,self.coordonnees_debut.y - (len(self.voies_sens1) + 0.5)*self.const_largeur_voie) coordonnees_fin = Coordonnees.Coordonnees(self.coordonnees_fin.x ,self.coordonnees_fin.y - (len(self.voies_sens1) + 0.5)*self.const_largeur_voie) v = Voie.Voie(self, coordonnees_debut, coordonnees_fin, directions, vitesse_max, sens) self.voies_sens1.append(v) for direction in directions: self.dir_voies_sens1[direction] = [self.dir_voies_sens1.get(direction)] + [v] if (sens == "sens2"): if (self.coordonnees_debut.x == self.coordonnees_fin.x): coordonnees_debut = Coordonnees.Coordonnees(self.coordonnees_fin.x - (len(self.voies_sens2) + 0.5)*self.const_largeur_voie, self.coordonnees_fin.y) coordonnees_fin = Coordonnees.Coordonnees(self.coordonnees_debut.x - (len(self.voies_sens2) + 0.5)*self.const_largeur_voie, self.coordonnees_debut.y) if (self.coordonnees_debut.y == self.coordonnees_fin.y): coordonnees_debut = Coordonnees.Coordonnees(self.coordonnees_fin.x, self.coordonnees_fin.y + (len(self.voies_sens2) + 0.5)*self.const_largeur_voie) coordonnees_fin = Coordonnees.Coordonnees(self.coordonnees_debut.x, self.coordonnees_debut.y + (len(self.voies_sens2) + 0.5)*self.const_largeur_voie) v = Voie.Voie(self, coordonnees_debut, coordonnees_fin, directions, vitesse_max, sens) self.voies_sens2.append(v) for direction in directions: self.dir_voies_sens2[direction] = [self.dir_voies_sens2.get(direction)] + [v] def donner_voies_intersections(self): """ donne les voies possédées aux intersections limitrophes # @author : marcus """ if(self.intersection_tete is not None): self.intersection_tete.entrantes += self.voies_sens1 self.intersection_tete.sortantes += self.voies_sens2 if(self.intersection_queue is not None): self.intersection_queue.entrantes += self.voies_sens2 self.intersection_queue.sortantes += self.voies_sens1 # end creer voie #trouver voie avec bonne direction def trouver_voie_direction(self, direction, sens): voies_possibles = [] if(sens == "sens1") : for voie in self.voies_sens1: if(voie.direction_possible(direction)): voies_possibles.append(voie) if(sens == "sens2") : for voie in self.voies_sens2: if(voie.direction_possible(direction)): voies_possibles.append(voie) return voies_possibles #Donne la prochaine voie sur laquelle il faut aller pour atteindre voie_arrivee à terme def donner_etape_changement(self, voie_depart, voie_arrivee): if(voie_depart in self.voies_sens1): liste = self.voies_sens1 elif(voie_depart in self.voies_sens2): liste = self.voies_sens2 ecart = liste.index(voie_arrivee) - liste.index(voie_depart) if(abs(ecart) > 1): sens = (int)(ecart/abs(ecart)) return liste[liste.index(voie_depart)+sens] return voie_arrivee #A l'arrivee sur le troncon, donne prochaine direction selon les probas def donner_prochaine_direction(self, voie): if(voie in self.voies_sens1): directions = self.directions_sens1 elif(voie in self.voies_sens2): directions = self.directions_sens2 rand = random.randint(1,10) if(rand <= directions["G"]*10): return "G" elif(rand <= (directions["G"]+directions["TD"])*10): return "TD" else: return "D" def est_passant(self, direction, sens): #~ print("sens :"+str(sens)) #~ print("direction : "+str(direction)) if(sens == "sens1") : #~ print(self.feux_sens1) return self.feux_sens1[direction].est_passant() if (sens == "sens2"): #~ print(self.feux_sens2) return self.feux_sens2[direction].est_passant() def get_intersection(self, voie): if(voie in self.voies_sens1): return self.intersection_tete else : return self.intersection_queue def get_proba_situation_voie(self, voie, directions): if (voie.sens == "sens1"): dico_voies = self.dir_voies_sens1 intersection = self.intersection_tete else: dico_voies = self.dir_voies_sens2 intersection = self.intersection_queue proba = 0 for direction in directions: proba += intersection.get_proba(self, direction)/len(dico_voies.get(direction)) return proba def largeur(self): return (len(self.voies_sens1) + len(self.voies_sens2))*self.const_largeur_voie """ ainsi toujours poussé vers de nouveaux rivages dans la nuit éternelle emporté sans retour ne pourrons nous jamais sur l'océan des ages jetez l'ancre un seul jour ? AdL """
2.5625
3
user_input_handling_functions.py
ShawnJSavoie2/ToBeRedoneOrDiscarded
0
12789535
# IDLE (Python 3.8.0) # user-input-handling functions def user_input_handling_function_first(): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] while good_to_go == 'no': if ' ' in user_input: print('The sequence of characters contains one or more spaces.') errors.append('yes') if ',' in user_input: print('The sequence of characters contains one or more commas.') errors.append('yes') if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_second(dictionary): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] lict = [] while good_to_go == 'no': for key in dictionary: lict.append(key): for element in user_input: if element not in lict print('The form can only contain a combination of the characters that represent the lists of characters.') errors.append('yes') break if len(user_input) < 2: print('The form is too short. It can\'t be less than two-characters long.') errors.append('yes') if len(user_input) > 8: print('The form is too long. It can\'t be more than eight-characters long.') errors.append('yes') if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_third(): # yes_or_no print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] yes_or_no = ['yes', 'no'] while good_to_go == 'no': if user_input not in yes_or_no: print('You have to answer yes or no.') errors.append('yes') if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_fourth(dictionary): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] while good_to_go == 'no': if user_input not in dictionary: print('The form you entered does not match one of the forms in your termal_dictionary. Each form in your') print('termal_dictionary is a name (key) that has an associated definition (value) that is a list of terms') print('that all have the same form as the name (key).') errors.append('yes') if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_fifth(): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.'] while good_to_go == 'no': for i in user_input: if i not in digits: print('The number must consist of digits. For example: 1, 12, 123.1 or 1234.1.') errors.append('yes') break if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_sixth(): ''' float checker ''' print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '.'] while good_to_go == 'no': for_loop_broken = 'yes' while for_loop_broken == 'yes': for i in user_input: if i not in digits: for_loop_broken = 'yes' print('The number must consist of digits. For example: 1, 12, 123.1 or 1234.1') print() user_input = input('Re-enter: ') print() break else: for_loop_broken = 'no' if float(user_input) <= 0: print('The velocity can\'t be less than or equal to 0 m/s.') errors.append('yes') if float(user_input) > 38_573_389.830_824_5: print('The velocity can\'t be greater than 38,573,389.830 824 5 m/s.') errors.append('yes') if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] for_loop_broken = 'yes' else: good_to_go = 'yes' return float(user_input) def user_input_handling_function_seventh(): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] unacceptable_characters = ['<', '>', '?', ':', '"', '|', '-', '/', '\ '] while good_to_go == 'no': if '.txt' not in user_input: user_input = user_input + '.txt' for i in user_input: if i == ' ': # <-- fix this. i = '_' elif i in unacceptable_characters: print('The file name can not contain any of the following characters: <, >, ?, :, ", |, -, /, \ ') errors.append('yes') break if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input def user_input_handling_function_eighth(): print() user_input = input('Enter: ') print() good_to_go = 'no' errors = [] digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-'] while good_to_go == 'no': if user_input == 'None': user_input = None return user_input else: for inner in user_input: if inner not in digits: print('The number must be an integer that consists of digits. For example: 1, -2, etc.') errors.append('yes') break if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return int(user_input) def user_input_handling_function_ninth(): ''' parser ''' print() user_input = input('Enter: ') print() term = '' lict = [] for element in user_input: if element != ' ': term = term + element else: lict.append(term) term = '' lict.append(term) # because term might not be empty.... return lict def user_input_handling_function_tenth(dictionary): ''' dictionary checker ''' user_input = parser() good_to_go = 'no' errors = [] while good_to_go == 'no': string = '' lict = [] for element in user_input: string = string + element for key in dictionary: for element in dictionary[key]: lict.append(element) for element in string: if element not in lict: print('One of your unwanted characters or combination of characters does not match the characters you') print('entered earlier.') errors.append('yes') break if 'yes' in errors: print() user_input = input('Re-enter: ') print() good_to_go = 'no' errors = [] else: good_to_go = 'yes' return user_input
4.03125
4
woodwork/__init__.py
willsmithorg/woodwork
81
12789536
<filename>woodwork/__init__.py # flake8: noqa import pkg_resources from .config import config from .type_sys import type_system from .type_sys.utils import list_logical_types, list_semantic_tags from .utils import concat_columns, read_file from .version import __version__ import woodwork.column_accessor import woodwork.demo import woodwork.table_accessor from woodwork.accessor_utils import ( get_invalid_schema_message, init_series, is_schema_valid, ) # Call functions registered by other libraries when woodwork is imported for entry_point in pkg_resources.iter_entry_points( "alteryx_open_src_initialize" ): # pragma: no cover try: method = entry_point.load() if callable(method): method("woodwork") except Exception: pass
1.828125
2
stock_correlation/anomaly.py
looselyconnected/fastai
0
12789537
import numpy as np import pandas as pd def get_anomaly_score(data, test_window, control_window): # Given a pd Series, return the anomaly score series. # The data given should be sorted in the time order. test_mean = data.rolling(test_window).mean() control_data = test_mean.rolling(control_window) return (test_mean - control_data.mean()) / control_data.std()
3.15625
3
dhub/dhub.py
datahub-projects/dhub
0
12789538
<gh_stars>0 #!/usr/bin/env python3 import os, sys, argparse, json, time, datetime, subprocess from dateutil.parser import parse as parsedate from blessings import Terminal # #the BDOL does not admire scripts which are also importable modules #well frack him # #so absolute imports work in script mode, we need to import from the parent folder opath = os.path.abspath(".") abspath = os.path.abspath(__file__) abspath = abspath[:abspath.rfind('/') + 1] os.chdir(abspath) abspath = os.path.abspath("..") sys.path.insert(0, abspath) from dhub import get_pip from dhub.mod_sync import sync, mod from dhub.runrun import git_status, get_author, get_username, get_branch, get_repo, run, runner HOME_USER = "/home/ubuntu/" os.chdir(opath) bless_term = Terminal() def _print_green(s, **kw): print (bless_term.green(s), **kw) def _print_purple(s, **kw): print (bless_term.magenta(s), **kw) parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers(help='followed by --help for command-specific options') reqs_args = subparsers.add_parser('reqs') reqs_args.add_argument("--package") reqs_args.add_argument("--importname") reqs_args.add_argument("--file") reqs_args.add_argument("--date", default="3000-1-1") reqs_args.add_argument("--unstable", action="store_true") reqs_args.add_argument("--debug", action="store_true") sync_args = subparsers.add_parser('sync') sync_args.add_argument("--debug", action="store_true") # sync_args.add_argument("--insist") mod_args = subparsers.add_parser('mod') mod_args.add_argument("--message") mod_args.add_argument("--debug", action="store_true") mod_args.add_argument("--insist", action="store_true") proc_args = subparsers.add_parser('process') proc_args.add_argument("--ssh") proc_args.add_argument("--name") proc_args.add_argument("--port") proc_args.add_argument("--source") proc_args.add_argument("--sync") proc_args.add_argument("--command", default="python entrypoint.py") proc_args.add_argument("--git") #=path to proj or . proc_args.add_argument("--wake") #instance ID proc_args.add_argument("--dumb", action="store_true") proc_args.add_argument("--debug", action="store_true") args = parser.parse_args() def wake_up(inst): if inst: cmd = ("aws ec2 start-instances --instance-ids %s" % inst).split() cmd2 = ("aws ec2 describe-instance-status --include-all-instances --instance-ids %s" % inst).split() _print_purple(' '.join(cmd)) out, ok = run(cmd) print (out) print ("Waiting for %s to arise" % inst) while True: out, ok = run(cmd2) j = json.loads(out) print ("AWAIT:", j['InstanceStatuses'][0]['InstanceId']==inst, j['InstanceStatuses'][0]['InstanceState']['Name']=='running') if j['InstanceStatuses'][0]['InstanceId']==inst and j['InstanceStatuses'][0]['InstanceState']['Name']=='running': break time.sleep(5) time.sleep(20) print ("Instance %s is up & running" % inst) #FIXME should be done solely on remote def go_to_sleep(inst): cmd = "aws ec2 stop-instances --instance-ids %s" % inst _print_purple(cmd) sys.stdout.flush() os.system(cmd) def subdo(sub, s, expect=None, show=True): _print_green("\n-~> %s" % s.rstrip()) done = False ret = "" first = True while not done: out, done = sub.interact(s, expect) if done: if show: print(out, end='') elif out: if first: first = False #first response==shi-tty echo else: if show: print (out, end='') ret += out s = None return ret def sync_to(base, paths, ssh): if not ssh: ssh = "localhost" for p in paths.strip().split(','): cmd = "rsync -vrltzu ./{1} {2}:{0}/".format(base, p, ssh) _print_purple("RSYNC_TO: " + cmd) os.system(cmd) def sync_from(base, paths, ssh): if not ssh: ssh = "localhost" for p in paths.strip().split(','): cmd = "rsync -vrltzu {2}:{0}/{1} ./".format(base, p, ssh) _print_purple("RSYNC_FROM: " + cmd) os.system(cmd) command=None if len(sys.argv)>1: command=sys.argv[1] #really? is this the only way? if command=="reqs": b4 = parsedate(args.date) # print ("REQS", args, b4) if args.package: version, date = get_pip.get_latest(args.package, b4, not args.unstable, args.debug) if not version: print ("# ERROR: package not found: {0}".format(args.package)) exit() 0/0 print("{0: <40} #released {1}".format("{0}=={1}".format(args.package, version), date.ctime())) elif args.file: f=open(args.file) for pkg in f.readlines(): pkg=pkg.strip() if not pkg: continue if pkg[0]=='#': continue if pkg[0]=='-': print ("Skipping", pkg) continue pkg=pkg.split("==")[0] version, date = get_pip.get_latest(pkg, b4, not args.unstable, args.debug) if not version: continue print("{0: <40} #released {1}".format("{0}=={1}".format(pkg, version), date.ctime())) elif args.importname: print ("Coming soon: cv2 implies openCV") else: print ("Coming soon: use pipreqs to create requirements list from scratch") elif command=="mod": if get_author() != get_username() and not args.insist: _print_green("Different author --insist if you are sure") # print (get_author(), get_username()) else: if get_branch()=="master" and not args.insist: _print_green("This operation will rebase the master branch --insist if you are sure") else: _print_green("Rewriting tip (most recent) commit & pushing to remote") mod(message=args.message, show=args.debug, debug=args.debug) elif command=="sync": _print_green("Synchronizing local git repository and working tree to remote/origin") sync(show=args.debug, debug=args.debug) elif command=="process": url = args.ssh # # alias # if url: if args.name: fn = "{0}/.dhub/names/{1}".format(os.path.expanduser("~"), args.name) f = open(fn, 'w') #FIXME create folders f.write(url) f.close() fn = "{0}/.dhub/names/{1}".format(os.path.expanduser("~"), url) if os.path.exists(fn): f = open(fn) url = f.read().strip() f.close() sshopts = '-tt -4 -o ConnectTimeout=10 -o BatchMode=yes -o ServerAliveInterval=60' if args.port: sshopts += ' -p {0}'.format(args.port) shell = "ssh {0} {1}".format(sshopts, url) else: shell = "ssh -tt -4 localhost" # print ("SHELL COMMAND:", shell) if args.source: f = open(args.source) wake_up(args.wake) sub = runner(shell) out, err = sub.first() print(out, end='') if not err: for row in f.readlines(): row = row.rstrip() print (row, end='') out = sub.interact(row) print (out, end='') f.close() elif args.dumb: wake_up(args.wake) sub = runner(shell) out, err = sub.first() if err: print(out, end='') else: while True: rows = out.split("\n") for row in rows[:-1]: print (row) for row in rows[-1:]: print ("DUMB:", row, end='') inp = input('') if inp=='exit': break out = sub.interact(inp) sub.exit() elif args.git: sub = None for i in range(1): #allows break repo = get_repo() if not repo: print ("Not a git repository") break proj = repo[repo.rfind('/')+1:] #FIXME make me smarter -- multi-folder project if args.git == '.': if not args.ssh: print ("You probably don't want to remove your local checkout") break else: proj = args.git branch = get_branch() home = os.path.expanduser('~') wake_up(args.wake) for tri in range(3): sub = runner(shell) _print_purple (shell) out, err = sub.first() if not err: break print(out, end='') print ("failed connection on attempt %d of 3" % (tri+1)) if err: break print ("Connection successful") subdo(sub, "rm -fr %s" % proj) out = subdo(sub, "git clone --single-branch --branch %s %s %s" % (branch, repo, proj), expect=["yes/no", "repository exists"]) if "yes/no" in out: print ("\n\nDHUB: Must establish the legitimacy of the git repository's public key.") print("Log in to the remote server and try 'git fetch' to establish the key in known_hosts.") break if "repository exists" in out: print ("\n\nDHUB: Need to set up server's git public key for this repository.") print("Alternatively, use read-only publicly accessible repo.") break subdo(sub, "cd %s" % proj) if "fatal" in out: break print () if args.sync: sync_to(proj, args.sync, args.ssh) print ("Checking for Dockerfile") out = subdo(sub, """python3 -uc 'import os; print(os.path.exists("Dockerfile"))'""", show=False) if "False" in out: print ("No docker file found; setting up virtualenv") subdo(sub, "virtualenv -p python3 venv") subdo(sub, "source ./venv/bin/activate") out = subdo(sub, "pip install -r requirements.txt") if out.find('ERROR')>=0: print ("quitting on error", end='') break subdo(sub, args.command) else: print("Dockerfile found; building docker image") subdo(sub, "docker build . -t %s" % proj) if args.sync: # # out, pr = sub.interact("""python3 -c 'import os; print(os.path.abspath("%s"))'""" % args.sync) # out = subdo(sub, """python3 -uc 'import os; print(os.path.abspath("%s"))'""" % args.sync, show=False) # # print ("\n\n\nRET:==>%s<==\n\n\n"%out.replace("\r","]")) # abs = out.strip().split("\n")[-2].strip() # print ("==>%s"%abs.replace("\r","]")) subdo(sub, "docker run --rm -it -v {0}{2}/{1}:{0}{1} {2}".format(HOME_USER, args.sync, proj)) else: subdo(sub, "docker run --rm -it %s" % proj) if args.sync: print() sync_from(proj, args.sync, args.ssh) if sub: sub.exit() if args.wake: go_to_sleep(args.wake) else: subprocess.call(shell.replace("-T", '').split()) print ("\nExit dhub") else: parser.print_help()
2.203125
2
Assignments/HW3_NFA/problem1.py
Ursinus-CS373-F2021/CoursePage
0
12789539
<filename>Assignments/HW3_NFA/problem1.py import numpy as np import random num_examples = 10 to_print = True for seed in [0]: np.random.seed(seed) n_accept = 0 results = [] if to_print: print("<table style=\"width:200px;\"><tr><td>Input</td><td>Result</td></tr>") for i in range(num_examples): randlen = np.random.randint(1, 11) bstr = "" for k in range(randlen): bstr += np.random.choice(["a", "b", "c"]) res = "Reject" if "ab" in bstr or "bc" in bstr: res = "Accept" n_accept += 1 if to_print: print("<tr><td>", bstr, "</td><td>", res, "</td></tr>") else: print(bstr, end=' ') if to_print: print("</table>")
3.625
4
sprites/__init__.py
ghandic/FinalSpace
0
12789540
from .earth import Earth from .enemy import Enemy from .player import Player from .explosion import Explosion
1.179688
1
controller/Base_controller.py
jvpersuhn/APIRest
0
12789541
<reponame>jvpersuhn/APIRest from flask_restful import Resource from flask import request,json from dao.Base_dao import BaseDao class BaseController(Resource): def __init__(self, model): self.db = BaseDao(model) def get(self, id=None): if id: return self.db.select_by_id(id) return self.db.select_all() def delete(self, id): return self.db.delete(id) def post(self, model): return self.db.insert(model) def put(self, model): return self.db.update(model) def getDados(self): kwargs = {} for chave, valor in request.json.items(): kwargs[chave] = valor return kwargs
2.65625
3
giter8.py
ochinchina/PyGiter8
0
12789542
#!/usr/bin/python import os import os.path import random import re import requests import shutil import sys import xml.etree.ElementTree as ET class TempField: """ the template field in the giter8 """ def __init__( self, fields_value ): self._format_methods = { 'upper': self._upper, 'lower': self._lower, 'cap': self._capitalize, 'decap': self._decapitalize, 'start': self._startCase, 'word': self._word, 'Camel': self._upperCamel, 'camel': self._lowerCamel, 'hypen': self._hyphen, 'norm': self._normalize, 'snake': self._snake, 'packaged': self._packaged, 'random': self._random } self._fields_value = fields_value self.WORD_LETTERS = map(lambda c: chr(c), range(ord('a'), ord('z'))) self.WORD_LETTERS.extend( map(lambda c: chr(c), range(ord('A'), ord('Z'))) ) self.WORD_LETTERS.extend( map(lambda c: chr(c), range(ord('0'), ord('9'))) ) self.WORD_LETTERS.extend( [' ', '\t', '\n', '\r', '\f', '\v', '\b'] ) def format( self, field_with_format ): #check if it is the format:$name;format="Camel"$ tmp = field_with_format.split(";") if len(tmp) == 2 and tmp[1].startswith( "format="): formats = tmp[1][len("format=")+1:-1].split(',') value = self._fields_value[ tmp[0] ] for f in formats: value = self._format_with_name( value, f ) return value else: #check if it is in format: $organization__packaged$ pos = field_with_format.rfind("__") if pos != -1: value = self._fields_value[ field_with_format[0:pos] ] f = field_with_format[pos+2:] return self._format_with_name( value, f ) #no format info, return the value return self._fields_value[field_with_format] def _format_with_name( self, value, format_name): if format_name in self._format_methods: return self._format_methods[format_name](value) else: return value def _upper( self, value ): return value.upper() def _lower( self, value ): return value.lower() def _capitalize( self, value ): return "%s%s"%(value[0].upper(), value[1:]) def _decapitalize( self, value ): return "%s%s" %(value[0].lower(), value[1:]) def _startCase( self, value ): words = map( lambda w: self._capitalize(w), value.split() ) return "".join(words) def _word(self,value): return "".join( map( lambda c: c if c in self.WORD_LETTERS else '', value ) ) def _upperCamel( self, value ): return self._word( self._startCase( value ) ) def _lowerCamel( self, value ): return self._word( self._startCase( self._decapitalize( value ) ) ) def _hyphen( self, value ): return "".join( map( lambda c: '-' if c.isspace() else c, value ) ) def _normalize( self, value ): return self._lower( self._hyphen( value ) ) def _snake( self, value ): return "".join( map( lambda c: '_' if c.isspace() or c =='.' else c, value ) ) def _packaged(self, value): return "".join( map( lambda c: '/' if c == '.' else c, value ) ) def _random( self, value ): random_str = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) return "%s%s" %(value, random_str) class Properties: def __init__( self, fileName ): self._fileName = fileName self._props = {} self._propOrder = [] self._load() self._temp_fields = TempField( self._props ) def change_prop_with_prompt( self ): """ change property value with prompt """ for prop in self._propOrder: value = self._props[prop] maven_prop = self._parse_as_maven_prop( value ) if maven_prop is not None: value = get_version_from_maven( maven_prop[0], maven_prop[1], maven_prop[2] ) else: value = self.replace_fields( self._props[prop] ) self._props[prop] = value value = raw_input( "%s(%s):" % (prop,value) ).strip() if len( value ) > 0: self._props[prop] = value def _parse_as_maven_prop( self, value ): """ first check if the value is in format:maven(groupId, artifactId ) or maven( groupId, artifactId, stable). If it is in one of above, a tuple with three elements are returned Args: value: the value to check Return: None if the format not match maven(groupId, artifactId ) or maven( groupId, artifactId, stable) tuple with three elements (groupId, artifactId, stable). stable is a boolean: true indicates a stable release, false indicates any latest release """ # check if the value is in format: maven(groupId, artifactId ) or maven( groupId, artifactId, stable) if not value.startswith( "maven" ): return None value = value[len("maven"):].strip() if not value.startswith( "(" ) or not value.endswith( ")" ): return None value = value[1:-1] value = value.split(",") # strip the split word and discard the empty words value = map( lambda x: x.strip(), value ) value = filter( lambda x: len( x ) > 0, value ) if len(value) == 2 or len(value) == 3: return (value[0], value[1], False if len( value ) == 2 else value[2] == 'stable' ) else: return None def _load( self ): with open( self._fileName ) as fp: for line in fp: line = line.strip() if len( line ) <= 0 or line[0] == '#': continue pos = line.find('=') if pos != -1: prop = line[0:pos].strip() value = line[pos+1:].strip() self._props[prop] = value self._propOrder.append( prop ) def get_field( self, name ): """ get the value of a field """ return self.replace_fields( "" if name not in self._props else self._props[name]) def get_file_name_with_template( self, file_name_template): PACKAGE_VAR = '$package$' start_pos = 0 package_pos = file_name_template.find( PACKAGE_VAR, start_pos ) result = "" while package_pos != -1: result = "%s%s%s" % (result, file_name_template[start_pos:package_pos], self.get_field( "package" ).replace('.', '/') ) start_pos = package_pos + len( PACKAGE_VAR ) package_pos = file_name_template.find( PACKAGE_VAR, start_pos ) return self.replace_fields("%s%s" % (result, file_name_template[start_pos:])) def replace_fields(self, value ): """ find all fields( between two "$") and replace the fields with the values in this properties Args: value: a value possible includes the fields Returns: all the fields replaced by the value in this properties """ # find the start flag '$' start = 0 result = "" cond_express_start_pos = -1 cond_express_level = 0 while True: field_info = self._find_field( value, start ) if field_info is None: return "%s%s" % ( result, value[start:] ) else: (field_start_pos, field_end_pos, field_name ) = field_info if self._is_start_cond_expression( field_name ): cond_express_level += 1 cond_express_start_pos = start elif self._is_end_cond_expression( field_name ): cond_express_level -= 1 if cond_express_level == 0: result = "%s%s" % (result, self._replace_fields_with_condition( value[cond_express_start_pos: field_end_pos + 1 ] ) ) cond_express_start_pos = -1 elif cond_express_start_pos == -1: result = "%s%s" % (result, value[start:field_start_pos]) result = "%s%s" % (result, self._temp_fields.format(field_name) ) start = field_end_pos + 1 def _find_field( self, value, start_pos ): """ find a field start and end with flag '$' Args: value: the value may contains field start&end with flag '$' start_pos: the start search position Returns: None if no field in the value a tuple with three elements (field_start_pos, field_end_pos, field_name) if a field is found """ field_start_pos = value.find( '$', start_pos ) if field_start_pos == -1: return None field_end_pos = value.find( '$', field_start_pos + 1 ) if field_end_pos == -1: return None return (field_start_pos, field_end_pos, value[field_start_pos + 1: field_end_pos] ) def _is_start_cond_expression( self, value ): """ check if a conditional express is started. A start conditional express is start like: if(var.truthy) Args: the value to be checked Return: True if the value is started like: if(var.truthy) """ cond_exp = self._parse_cond_expression( value ) return cond_exp is not None and cond_exp[0] == 'if' def _parse_cond_expression( self, value ): if value.startswith( "if" ) or value.startswith( "elseif" ): start = value.find( '(' ) end = value.find( ')' ) if start != -1 and end != -1: return ( "if" if value.startswith( "if" ) else "elseif", value[start+1:end].strip() ) elif value.startswith( "else" ): return ("else", "unused") elif value.startswith( "endif" ): return ("endif", "unused") return None def _is_end_cond_expression( self, value ): """ check if the value is conditional end flag: endif Args: the value to be checked Return: true if the value is "endif" string """ return value == "endif" def _replace_fields_with_condition( self, value ): start = 0 cond_exp = ConditionalExpression( self ) statement = "" while True: field_info = self._find_field( value, start ) if field_info is None: break (field_start_pos, field_end_pos, field_name) = field_info cond_exp_info = self._parse_cond_expression( field_name ) if cond_exp_info is None: statement = "%s%s" % (statement, value[start:field_end_pos+1] ) else: statement = "%s%s" % (statement, value[start:field_start_pos ] ) if len(statement) > 0: cond_exp.add_statement( statement ) statement = "" if cond_exp_info[0] == 'if': cond_exp.if_exp( cond_exp_info[1] ) elif cond_exp_info[0] == 'elseif': cond_exp.elif_exp( cond_exp_info[1] ) elif cond_exp_info[0] == 'else': cond_exp.else_exp() elif cond_exp_info[0] == 'endif': return cond_exp.evaluate() start = field_info[1] + 1 return value class ConditionalExpression: def __init__( self, props ): self._if_exp = None self._if_statements = [] self._elif_exps = [] self._elif_statements=[] self._else_statements=[] self._props = props self._cur_statements = None def add_statement( self, statement ): if self._cur_statements is not None: self._cur_statements.append( statement ) def if_exp( self, expression ): self._if_exp = expression self._cur_statements = self._if_statements def elif_exp( self, expression ): self._elif_exps.append( expression ) self._cur_statements = self._elif_statements def else_exp( self ): self._cur_statements = self._else_statements def evaluate( self ): if self._is_true( self._if_exp ): return self._props.replace_fields( "".join( self._if_statements ) ) index = 0 for elif_exp in self._elif_exps: if self._is_true( elif_exp ): return self._props.replace_fields(self._elif_statements[index]) index += 1 return self._props.replace_fields( "".join( self._else_statements ) ) def _is_true( self, value ): return value.endswith( '.truthy' ) and self._props.get_field(value[:-1*len('.truthy')]) in ['y', 'yes', 'true'] def get_version_from_maven( groupId, artifactId, stable = False ): r = requests.get( "http://repo1.maven.org/maven2/%s/%s/maven-metadata.xml" % ( groupId.replace('.', '/'), artifactId) ) if r.status_code >= 200 and r.status_code < 300: root = ET.fromstring( r.text ) versioning = root.find('versioning') if stable: return versioning.find( 'release' ).text else: return versioning.find( 'latest' ).text return "" def list_files( root_dir ): result = [] if os.path.isdir( root_dir ): files = os.listdir(root_dir) for f in files: full_name = os.path.join( root_dir, f ) if os.path.isdir( full_name ): result.extend( list_files( full_name ) ) else: result.append( full_name ) else: result.append( root_dir ) return result def get_project_file_name( template_root_dir, project_name, file_name ): temp_root_dirs = filter( lambda x: len( x ) > 0, template_root_dir.split( os.sep ) ) file_names = filter( lambda x: len( x ) > 0, file_name.split( os.sep ) ) if len( file_names ) > len( temp_root_dirs ) and file_names[0:len( temp_root_dirs)] == temp_root_dirs: t = [project_name] t.extend( file_names[len( temp_root_dirs):] ) return os.path.join( *t ) else: return file_name def create_dir_of( file_name ): dir_name = os.path.dirname( file_name ) if not os.path.exists( dir_name ): os.makedirs( dir_name ) def write_file( file_name, content ): with open( file_name, "wt" ) as fp: fp.write( content ) def is_text_file( fileName ): TEXT_SUFFIX = [".java", ".scala", ".sbt", ".properties", ".txt", ".text", ".htm", ".html"] for suffix in TEXT_SUFFIX: if fileName.endswith( suffix ): return True return False def is_verbatim_file( fileName, verbatims ): verbatims = verbatims if type(verbatims) is list else [verbatims] for pattern in verbatims: pattern = pattern.replace('.', '\\.' ) pattern = pattern.replace( '*', '.*' ) if re.match( pattern, fileName): return True return False def clone_template( git_url ): tmp = git_url.split( "/" ) if len( tmp ) == 2: git_url = "https://github.com/%s" % git_url if not git_url.endswith( ".git" ): git_url = "%s.git" % git_url os.system( "git clone %s" % git_url ) return git_url.split("/")[-1][0:-4] def main( g8_temp_root ): if g8_temp_root.endswith( ".git" ) or g8_temp_root.endswith(".g8"): g8_temp_root = clone_template( g8_temp_root ) root_dir = os.path.join( g8_temp_root, 'src/main/g8') files = list_files(root_dir) props = Properties( os.path.join( root_dir, 'default.properties') ) project = raw_input( "Your project:" ).strip() props.change_prop_with_prompt() verbatims = props.get_field( 'verbatim' ).strip().split() for fileName in files: realFileName = props.get_file_name_with_template( fileName ) dest_file = get_project_file_name( root_dir, project, realFileName ) create_dir_of( dest_file ) if not is_verbatim_file( fileName, verbatims ): with open(fileName) as fp: content = fp.read() content = props.replace_fields( content ) write_file( dest_file, content ) else: shutil.copyfile( fileName, dest_file ) if __name__ == "__main__": if len( sys.argv ) < 2: print( "Usage: giter8.py <giter8_template_directory>") sys.exit(1) else: main( sys.argv[1] )
2.703125
3
FHEM/bindings/python/fhempy/lib/meross/meross_device.py
dominikkarall/fhempy
16
12789543
<reponame>dominikkarall/fhempy import asyncio from fhempy.lib.generic import FhemModule from fhempy.lib import fhem, fhem_pythonbinding from meross_iot.model.enums import OnlineStatus, Namespace class meross_device: def __init__(self, logger, fhemdevice: FhemModule): self.logger = logger self.fhemdev = fhemdevice self.hash = fhemdevice.hash async def Define(self, hash, args, argsh): self._setupdev_name = args[3] self._deviceid = args[4] self._device = None self.hash["DEVICEID"] = self._deviceid self._setupdev = None await fhem.readingsSingleUpdate(self.hash, "state", "ready", 1) self.fhemdev.create_async_task(self._init_device()) async def _get_set_commands(self): set_conf = {} set_conf["on"] = {} set_conf["off"] = {} self.fhemdev.set_set_config(set_conf) async def set_on(self, hash, params): await self._device.async_turn_on() async def set_off(self, hash, params): await self._device.async_turn_off() async def _init_device(self): try: await self._connect_to_setup_device() await self._setup_device() await self._get_set_commands() await self.update_readings() except Exception as ex: self.logger.exception(ex) async def _connect_to_setup_device(self): while self._setupdev is None or self._setupdev.ready is False: await asyncio.sleep(1) self._setupdev = fhem_pythonbinding.getFhemPyDeviceByName( self._setupdev_name ) if self._setupdev: self._setupdev = self._setupdev.meross_device async def _async_push_notification_received( self, namespace: Namespace, data: dict, device_internal_id: str ): update_state = False full_update = False if namespace == Namespace.CONTROL_UNBIND: self.logger.warning( f"Received unbind event. Removing device {self._device.name} from FHEM" ) await self.platform.async_remove_entity(self.entity_id) elif namespace == Namespace.SYSTEM_ONLINE: self.logger.warning(f"Device {self._device.name} reported online event.") online = OnlineStatus(int(data.get("online").get("status"))) update_state = True full_update = online == OnlineStatus.ONLINE elif namespace == Namespace.HUB_ONLINE: self.logger.warning( f"Device {self._device.name} reported (HUB) online event." ) online = OnlineStatus(int(data.get("status"))) update_state = True full_update = online == OnlineStatus.ONLINE else: update_state = True full_update = False if full_update: await self._device.async_update() if update_state: await self.update_readings() async def _setup_device(self): self._device = self._setupdev.get_device_by_id(self._deviceid) if self._device is not None: await self._device.async_update() self._device.register_push_notification_handler_coroutine( self._async_push_notification_received ) async def update_readings(self): await fhem.readingsBeginUpdate(self.hash) await fhem.readingsBulkUpdateIfChanged(self.hash, "uuid", self._device.uuid) await fhem.readingsBulkUpdateIfChanged(self.hash, "name", self._device.name) await fhem.readingsBulkUpdateIfChanged( self.hash, "firmware_version", self._device.firmware_version ) await fhem.readingsBulkUpdateIfChanged( self.hash, "hardware_version", self._device.hardware_version ) await fhem.readingsBulkUpdateIfChanged( self.hash, "internal_id", self._device.internal_id ) await fhem.readingsBulkUpdateIfChanged( self.hash, "mqtt_host", self._device.mqtt_host ) await fhem.readingsBulkUpdateIfChanged( self.hash, "mqtt_port", self._device.mqtt_port ) await fhem.readingsBulkUpdateIfChanged(self.hash, "type", self._device.type) await fhem.readingsBulkUpdateIfChanged( self.hash, "online_status", self._device.online_status.name ) onoff = "off" if self._device.is_on(): onoff = "on" await fhem.readingsBulkUpdateIfChanged(self.hash, "state", onoff) await fhem.readingsEndUpdate(self.hash, 1)
2.1875
2
src/commander/commands.py
anudeep22003/simple-langauge-pipeline
1
12789544
<reponame>anudeep22003/simple-langauge-pipeline<gh_stars>1-10 #### Python Package Imports #### import sys, os from termcolor import colored, cprint from collections import defaultdict #### Manual Import #### from abstract_factory import Command, CommandHandler sys.path.append(os.path.join(os.getcwd(),'src','interfacers')) from neo4j_interfacer import Neo4jInterfacer class TagCommand(Command): def orchestrate(self): self.take_user_input() pass def take_user_input(self): print("You are in the tagging experience!") while True: print("Do you want to continue?") user_input = input('--> ') if user_input == 'e': print("exiting") break class QuitCommand(Command): def orchestrate(self): print("Exiting now....") sys.exit() class KeywordCleanerCommand(Command): def __init__(self, local_command_handler: CommandHandler, neointerface = Neo4jInterfacer) -> None: self.neo = neointerface() self.selection_set = list() self.handler = local_command_handler() self.adventure_history = list() self.parse_complete_dict = defaultdict(list) self.current_parse_accepted_dict = defaultdict(list) self.delete_complete_dict = defaultdict(list) pass def orchestrate(self): while True: user_adventure_choice = self.handler.initialize_game() if not user_adventure_choice: self.orchestrate() elif user_adventure_choice == 'quit': break else: self.adventure_history.append(user_adventure_choice) current_adventure = self.adventure_history[-1] # using default dict and making sure that entries for each adventure type are initialized self.create_dict_entries(current_adventure) list_to_process = self.start_subgame(current_adventure) if list_to_process is None: break else: self.user_input_iterator(list_to_process, current_adventure) def create_dict_entries(self, adventure: str): self.parse_complete_dict[adventure] self.current_parse_accepted_dict[adventure] self.delete_complete_dict[adventure] def option_string(self): return """Your options are: \t ↵ (keep)\t r: (r)emove\tce: (c)omplete & (e)xit \taq: (a)bort and (q)uit""" def start_subgame(self, user_adventure): cprint("--> How many do you want to get through today\t",color='red') print("exit by pressing q: to (q)uit") user_input = input("Enter your choice\t--> ") if user_input == 'q': return None else: input_size = int(user_input) continue_index = len(self.parse_complete_dict[user_adventure]) - len(self.delete_complete_dict[user_adventure]) last_index = int(input_size) + continue_index cprint(f"Ok, we will start from #{continue_index} and go till #{last_index}", color='red') cprint(self.option_string(),color='yellow', on_color='on_grey') # each item of the list is a dict with keys: `word` and `count` return self.list_nodes(last_index,adventure=user_adventure)[continue_index:last_index] def delete_selection(self, current_adventure): if len(self.selection_set) == 0: self.cleanup_selection(current_adventure) else: cprint(f"You are about to delete the following nodes: \n>>type: [{current_adventure}] \t >> [{self.selection_set}]\t") user_confirmation = input("> Press y to continue with deletion, or ANY other key to exit ") if user_confirmation.lower() == 'y': q = f"""MATCH (k:Keyword:{current_adventure}) WHERE k.word IN {self.selection_set} DETACH DELETE k """ self.neo.cypher_write_query_runner(q) print(f"removed following words and added to log: \n>> [{self.selection_set}]") self.delete_complete_dict[current_adventure].extend(self.selection_set) self.cleanup_selection(current_adventure) else: self.abort_without_delete(current_adventure) def cleanup_selection(self, adventure): cprint(("selection list",self.selection_set), color='green') self.selection_set.clear() self.parse_complete_dict[adventure].extend(self.current_parse_accepted_dict[adventure]) cprint((f"parse complete list for {adventure}",self.parse_complete_dict[adventure]), color='green') cprint((f"parse accepted list for {adventure}",self.current_parse_accepted_dict[adventure]), color='green') self.current_parse_accepted_dict[adventure].clear() cprint("Cleaned up the current selection for the next round....", color='green') def add_to_selection(self, word): self.selection_set.append(word) def abort_without_delete(self, current_adventure: str): print("Aborting without deleting anything...") self.cleanup_selection(current_adventure) print("Taking you to the start of the subgame.....") self.orchestrate() def user_input_iterator(self, entries: list, current_adventure: str): while True: for entry in entries: print(f"({entry['word']}, #{entry['count']})", end='\t') user_input = input("---> ") if user_input == "": self.current_parse_accepted_dict[current_adventure].append(entry['word']) pass elif user_input == 'r': # add to the selector self.add_to_selection(entry['word']) elif user_input == 'ce': # complete the deletion of selection pass elif user_input == 'aq': self.abort_without_delete(current_adventure) else: print("Invalid option selected. Your options are:\n") print(self.option_string()) self.delete_selection(current_adventure) break def list_nodes(self, size: int, adventure: str): # list nodes by their count # contruct a query # run query # display data to user return self.query_runner(self.query_constructor(size, adventure)) def query_constructor(self, size: int, adventure:str): return f"""Match (k:Keyword:{adventure})-[r]-(m) Return k.word as word, count(r) as count Order by count DESC LIMIT {int(size)} """ def query_runner(self, cypher_query): return self.neo.cypher_read_query_runner(cypher_query)
2.328125
2
maillogger/exceptions.py
Natureshadow/maillogger
2
12789545
<gh_stars>1-10 class MailloggerError(Exception): """Maillogger base exception class""" class NotFoundFileError(MailloggerError): """Raised when a target file to load can not be found""" msg = 'Could not find "{filepath}"' def __init__(self, filepath: str) -> None: super().__init__(self.msg.format(filepath=filepath)) class UnsupportedDataFormatError(MailloggerError): """Raised when an unsupported data format is specified""" msg = 'Data format "{fmt}" is not supported' def __init__(self, fmt: str) -> None: super().__init__(self.msg.format(fmt=fmt))
2.890625
3
swiftly/filelikeiter.py
haydendigital/swiftly
23
12789546
""" Wraps an iterable to behave as a file-like object. Copyright (c) 2010-2012 OpenStack Foundation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class FileLikeIter(object): """ Wraps an iterable to behave as a file-like object. Taken from work I did for OpenStack Swift swift.common.utils.FileLikeIter, Copyright (c) 2010-2012 OpenStack Foundation. """ def __init__(self, iterable, limit=None): self.iterator = iter(iterable) self.limit = limit self.left = limit self.buf = None self.closed = False def __iter__(self): return self def __next__(self): """ x.__next__() -> the next value, or raise StopIteration """ if self.closed: raise ValueError('I/O operation on closed file') if self.buf: rv = self.buf self.buf = None return rv else: return next(self.iterator) def reset_limit(self): """ Resets the limit. """ self.left = self.limit def read(self, size=-1): """ read([size]) -> read at most size bytes, returned as a string. If the size argument is negative or omitted, read until EOF is reached. Notice that when in non-blocking mode, less data than what was requested may be returned, even if no size parameter was given. """ if self.left is not None: size = min(size, self.left) if self.closed: raise ValueError('I/O operation on closed file') if size < 0: return ''.join(self) elif not size: chunk = '' elif self.buf: chunk = self.buf self.buf = None else: try: chunk = next(self.iterator) except StopIteration: return '' if len(chunk) > size: self.buf = chunk[size:] chunk = chunk[:size] if self.left is not None: self.left -= len(chunk) return chunk def readline(self, size=-1): """ readline([size]) -> next line from the file, as a string. Retain newline. A non-negative size argument limits the maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at EOF. """ if self.closed: raise ValueError('I/O operation on closed file') data = '' while '\n' not in data and (size < 0 or len(data) < size): if size < 0: chunk = self.read(1024) else: chunk = self.read(size - len(data)) if not chunk: break data += chunk if '\n' in data: data, sep, rest = data.partition('\n') data += sep if self.buf: self.buf = rest + self.buf else: self.buf = rest return data def readlines(self, sizehint=-1): """ readlines([size]) -> list of strings, each a line from the file. Call readline() repeatedly and return a list of the lines so read. The optional size argument, if given, is an approximate bound on the total number of bytes in the lines returned. """ if self.closed: raise ValueError('I/O operation on closed file') lines = [] while True: line = self.readline(sizehint) if not line: break lines.append(line) if sizehint >= 0: sizehint -= len(line) if sizehint <= 0: break return lines def is_empty(self): """ Check whether the "file" is empty reading the single byte. """ something = self.read(1) if something: if self.buf: self.buf = something + self.buf else: self.buf = something return False else: return True def close(self): """ close() -> None or (perhaps) an integer. Close the file. Sets data attribute .closed to True. A closed file cannot be used for further I/O operations. close() may be called more than once without error. Some kinds of file objects (for example, opened by popen()) may return an exit status upon closing. """ self.iterator = None self.closed = True
3.28125
3
DQNs/memory_module.py
abr-98/Reinforcement-Learning
0
12789547
<reponame>abr-98/Reinforcement-Learning import random import numpy as np from collections import namedtuple,deque class replayBuffer: transition=namedtuple('Transition',['s','a','r','s_','nd']) def __init__(self,capacity): self.capacity=capacity self.memory=deque([],maxlen=self.capacity) def push(self,s,a,r,s_,nd): tr=replayBuffer.transition(np.float32(s),a,r,np.float32(s_),nd) self.memory.append(tr) def sample(self,batch_size): tr_batch=random.choices(self.memory,k=batch_size) s=[];a=[];r=[];s_=[];nd=[] for tr in tr_batch: s.append(tr.s);a.append(tr.a);r.append(tr.r),s_.append(tr.s_),nd.append(tr.nd) return np.array(s),np.array(a),np.array(r),np.array(s_),np.uint8(nd)
2.953125
3
mix_label_1.py
hififi/hello-VAD
1
12789548
# -*- coding: utf-8 -*- """ Created on Thu Aug 31 09:24:17 2017 @author: gao 得到语音和噪声的混合数据 以.pkl的形式存放在mix_data中 """ import librosa as lr import numpy as np import os import pickle import matplotlib.pyplot as plt from ams_extract import ams_extractor resample_rate=16000 nfft = 512 offset = int(nfft/2) def genAndSave_trainData(speech_fileName):#给纯净语音打标签 s, fs = lr.load(speech_fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k s = np.array(s) s_tf = lr.core.stft(s, n_fft=nfft, hop_length=offset) s_db = lr.core.amplitude_to_db(np.abs(s_tf)) #s_angle = np.angle(s_tf) x_label = np.ones(s_db.shape[1]) # initialize x_label to all one xmean = s_db.mean(axis=0) for i in range(s_db.shape[1]): if xmean[i] < -40: x_label[i] = 0 #xstd = np.std(s_db, axis =0) #x_data = (s_db-xmean)/(xstd+1e-10) # normalize train data to zero mean and unit std return x_label#,x_data,s_angle,xmean,xstd ''' #label&data图形显示 plt.subplot(211) plt.plot(xmean) plt.subplot(212) plt.plot(x_label) plt.show() ''' def gen_vadWav(x_data,x_label,s_angle,xmean,xstd):#标记处理后的波形显示函数 for i in range(x_data.shape[1]): x_data[:,i] = x_data[:,i] * xstd[i] + xmean[i] # 逆归一化处理 speech_amp = lr.core.db_to_amplitude(x_data) for i in range(len(x_label)): if x_label[i]==0: speech_amp[:,i]=1#是data的地方就都保留 不是的地方全都置成0 speech_tf = speech_amp * np.exp(s_angle*1j) speech = lr.core.istft(speech_tf, hop_length = offset)#加入角度信息傅里叶反变换得到图谱 return speech def Read_wav(fileName):#定义的不好 未使用 s, fs = lr.load(fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k s = np.array(s) s_tf = lr.core.stft(s, n_fft=nfft, hop_length=offset)#对数据进行快速傅里叶变化 s_db = lr.core.amplitude_to_db(np.abs(s_tf))#幅值转化为dB s_angle = np.angle(s_tf)#记录傅里叶变换后的角度 xmean = s_db.mean(axis=0)#求傅里叶变化后的均值 xstd = np.std(s_db, axis =0) #标准差 x_data = (s_db-xmean)/(xstd+1e-10) # normalize train data to zero mean and unit std return x_data,s_angle def MFCC(y,sr):#提取20D的MFCC return lr.feature.mfcc(y=y,n_fft=nfft,hop_length=offset,n_mfcc=20) def Pitch(y,sr): pitches, magnitudes = lr.core.pitch.piptrack(y=y,n_fft=nfft,hop_length=offset) # Select out pitches with high energy pitches = pitches[magnitudes > np.median(magnitudes)] return lr.core.pitch_tuning(pitches) def Mix_wav(speechName,noiseName,mix_snr=5,train=True):#对数据加一个5db的噪声 s,fs=lr.load(speechName,sr=None) n,fsn=lr.load(noiseName,sr=None) s=lr.resample(s,fs,resample_rate) n=lr.resample(n,fsn,resample_rate) s=np.array(s) n=np.array(n) len_s=len(s) len_n=len(n) if len_s<=len_n: n=n[0:len_s] else: n_extend_num=int(len_s/len_n)+1 n=n.repeat(n_extend_num) n=n[0:len_s] alpha=np.sqrt((s**2).sum()/((n**2).sum()*10**(mix_snr/10))) mix=s+alpha*n mix_tf=lr.core.stft(mix,n_fft=nfft,hop_length=offset) mix_db=lr.core.amplitude_to_db(np.abs(mix_tf)) mfcc=MFCC(mix,sr=fs) pitch=Pitch(mix,sr=fs) ams=ams_extractor(mix,sr=fs,win_len=nfft,shift_len=offset,order=1) if train==True: return mix_db, mfcc, pitch,ams#mix_db else: mix_angle=np.angle(mix_tf) return mix_db,mix_angle def I_Mix_wav(mix_db,mix_angle):# 加性噪声语音波形逆变换 mix_amp=lr.core.db_to_amplitude(mix_db) mix_tf=mix_amp*np.exp(mix_angle*1j) mix=lr.core.istft(mix_tf,hop_length=offset) return mix def label_save(mix_data,mix_label,fn):#fn为文件要存储的位置 dic_data={'mix_data':mix_data, 'mix_label':mix_label} #将数据存入字典中 with open(fn,'wb') as f: pickle.dump(dic_data,f) def _create_zero_indexes(speech_fileName):#过零率 s, fs = lr.load(speech_fileName, sr=None) s = lr.resample(s, fs, resample_rate) # resample to 16k zero_indexes=[] zero_crossings=lr.zero_crossings(s) zero_index=np.nonzero(zero_crossings)[0] zero_indexes.append(zero_index) #得到加噪的语音信号 filepath="C:/Users/gao/vad/863_IBM_test/"#添加路径1 #filepath="D:/863语音数据/863_data/863_IBM_train1/"#添加路径2 dirname=os.listdir(filepath)#获取全部文件 filepath1="C:/Users/gao/vad/noise/" dirnoise=os.listdir(filepath1) for i in range(0,len(dirname)): for j in range(0,len(dirnoise)): noise_fileName=filepath1+dirnoise[j] #print(noise_fileName)#读取噪声音频 speech_fileName=filepath+dirname[i] #print(speech_fileName)#读取原始数据 mix_label=genAndSave_trainData(speech_fileName)#用原始音频得到数据的标签 #plt.plot(mix_label) #plt.show() #得到5dB下的混合音频 #mix_db,mix_angle=Mix_wav(speech_fileName,noise_fileName,mix_snr=5,train=False) mix_db, mfcc, pitch,ams=Mix_wav(speech_fileName,noise_fileName,mix_snr=0,train=True) #print(mix_tf.shape,mfcc.shape,pitch.shape,ams.shape) mix=np.row_stack((mix_db,mfcc,ams)) #print(mix.shape) #mixdata的归一化 mixmean= mix.mean(axis=0)#求出均值 mixstd = np.std(mix, axis =0) #求出标准差 mix_data= (mix-mixmean)/(mixstd+1e-10) #归一化后的数据 print(mix_data.shape) print(mix_label) #a=label_save(mix_data,mix_label,'C:/Users/gao/vad/test_data/0dB/factory_test/'+dirname[i].strip('.WAV')+dirnoise[j].strip('.wav')+'0'+'.pkl') """ x=I_Mix_wav(mix_db,mix_angle) lr.output.write_wav('C:/Users/gao/vad/test_data/'+dirname[i].strip('.WAV')+'__5'+dirnoise[j], x, resample_rate) #显示加性噪声语音 plt.plot(x) plt.show() """
2.109375
2
Task/Zebra-puzzle/Python/zebra-puzzle-2.py
djgoku/RosettaCodeData
0
12789549
from itertools import permutations import psyco psyco.full() class Number:elems= "One Two Three Four Five".split() class Color: elems= "Red Green Blue White Yellow".split() class Drink: elems= "Milk Coffee Water Beer Tea".split() class Smoke: elems= "PallMall Dunhill Blend BlueMaster Prince".split() class Pet: elems= "Dog Cat Zebra Horse Bird".split() class Nation:elems= "British Swedish Danish Norvegian German".split() for c in (Number, Color, Drink, Smoke, Pet, Nation): for i, e in enumerate(c.elems): exec "%s.%s = %d" % (c.__name__, e, i) def is_possible(number, color, drink, smoke, pet): if number and number[Nation.Norvegian] != Number.One: return False if color and color[Nation.British] != Color.Red: return False if drink and drink[Nation.Danish] != Drink.Tea: return False if smoke and smoke[Nation.German] != Smoke.Prince: return False if pet and pet[Nation.Swedish] != Pet.Dog: return False if not number or not color or not drink or not smoke or not pet: return True for i in xrange(5): if color[i] == Color.Green and drink[i] != Drink.Coffee: return False if smoke[i] == Smoke.PallMall and pet[i] != Pet.Bird: return False if color[i] == Color.Yellow and smoke[i] != Smoke.Dunhill: return False if number[i] == Number.Three and drink[i] != Drink.Milk: return False if smoke[i] == Smoke.BlueMaster and drink[i] != Drink.Beer: return False if color[i] == Color.Blue and number[i] != Number.Two: return False for j in xrange(5): if (color[i] == Color.Green and color[j] == Color.White and number[j] - number[i] != 1): return False diff = abs(number[i] - number[j]) if smoke[i] == Smoke.Blend and pet[j] == Pet.Cat and diff != 1: return False if pet[i]==Pet.Horse and smoke[j]==Smoke.Dunhill and diff != 1: return False if smoke[i]==Smoke.Blend and drink[j]==Drink.Water and diff!=1: return False return True def show_row(t, data): print "%6s: %12s%12s%12s%12s%12s" % ( t.__name__, t.elems[data[0]], t.elems[data[1]], t.elems[data[2]], t.elems[data[3]], t.elems[data[4]]) def main(): perms = list(permutations(range(5))) for number in perms: if is_possible(number, None, None, None, None): for color in perms: if is_possible(number, color, None, None, None): for drink in perms: if is_possible(number, color, drink, None, None): for smoke in perms: if is_possible(number, color, drink, smoke, None): for pet in perms: if is_possible(number, color, drink, smoke, pet): print "Found a solution:" show_row(Nation, range(5)) show_row(Number, number) show_row(Color, color) show_row(Drink, drink) show_row(Smoke, smoke) show_row(Pet, pet) print main()
3.28125
3
Python/Books/Learning-Programming-with-Python.Tamim-Shahriar-Subeen/chapter-008/ph-8.11-uppercase-lowercase-capitalize.py
shihab4t/Books-Code
0
12789550
s1 = "Bangladesh" s_up = s1.upper() print(s_up) s_lo = s1.lower() print(s_lo) s_cap = s1.capitalize() print(s_cap)
3.6875
4