max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
lira/ui.py
stsewd/pylearn
1
12792851
from prompt_toolkit.application import Application from prompt_toolkit.formatted_text import merge_formatted_text, to_formatted_text from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.layout.containers import HSplit, VSplit, Window from prompt_toolkit.layout.layout import Layout from prompt_toolkit.widgets import Label, TextArea from lira.app import LiraApp from lira.book import Book def get_key_bindings(): keys = KeyBindings() @keys.add("c-c") @keys.add("c-q") def _(event): """Pressing Ctrl-Q or Ctrl-C will exit the user interface.""" event.app.exit() return keys themes = { "default": { "Text": "#fff", "Strong": "#fff bold", "Emphasis": "#fff italic", "Literal": "#fff", "Paragraph": "#fff", "CodeBlock": "#fff", "Prompt": "#fff", "TestBlock": "#fff", "Section": "#fff", "Separator": "#00ff00", } } styles = themes["default"] sections = { "menu": TextArea( height=40, width=25, style=styles["Text"], text="Python-Tutorial\n" ), "status": TextArea( height=3, prompt=">>> ", style=styles["Text"], multiline=False, wrap_lines=False, ), "text": TextArea(height=10, width=40, style=styles["Text"], text="text"), "prompt": TextArea(height=10, width=40, style=styles["Text"], text="prompt"), "vseparator": Window(height=0, width=1, char="|", style=styles["Separator"]), "hseparator": Window(height=1, char="-", style=styles["Separator"]), } class TerminalUI: def __init__(self, path): self.theme = "default" sections_list = [] for section in ["text", "prompt"]: sections_list.append(sections[section]) book = Book(root=path) book.parse() chapters = book.chapters[1] chapters.parse() contents = chapters.contents[0] render = self.get_label(contents) label = Label(merge_formatted_text(render)) self.container = HSplit( [ VSplit( [ sections["menu"], sections["vseparator"], HSplit([label, sections["prompt"]]), ] ), sections["hseparator"], sections["status"], ] ) def get_label(self, contents): render = [] for node in contents.children: if node.is_terminal: text = node.text() style = node.tagname render.append(to_formatted_text(text, styles[style])) else: render.extend(self.get_label(node)) render.append(to_formatted_text("\n", "")) return render def run(self): lira = LiraApp() lira.setup() self.app = Application( layout=Layout(self.container), key_bindings=get_key_bindings(), mouse_support=True, full_screen=True, ) self.app.run()
2.828125
3
fred/conf.py
TUDelft-DataDrivenControl/FRED
0
12792852
import yaml import numpy as np import logging logger = logging.getLogger("cm.conf") class ControlModelParameters: """ Load parameters from .yaml file. """ def __init__(self): self._config = None self.wind_farm = None self.turbine = None self.simulation = None self.flow = None self.ssc = None self.mode = None def load(self, file): logger.info("Loading configuration from: {}".format(file)) self._load_configuration_from_yaml(file) try: self._assign_configuration() except KeyError as ke: message = "Missing definition in config file, did not find {}".format(ke) logger.error(message, exc_info=1) raise KeyError("Missing definition in config file, did not find {}".format(ke)) logger.info("Loaded configuration.") def _load_configuration_from_yaml(self, file): stream = open(file, "r") self._config = yaml.load(stream=stream, Loader=yaml.SafeLoader) def print(self): print(yaml.dump(self._config)) def _assign_configuration(self): self.mode = self._config["mode"] if self.mode == "simulation": self.wind_farm = self.WindFarm(self._config["wind_farm"]) self.turbine = self.Turbine(self._config["turbine"]) self.simulation = self.Simulation(self._config["simulation"]) self.flow = self.Flow(self._config["flow"]) if self.mode == "supercontroller": self.ssc = self.SSC(self._config["ssc"]) self.turbine = self.Turbine(self._config["turbine"]) # if self.ssc.type == "gradient_step": self.wind_farm = self.WindFarm(self._config["wind_farm"]) self.simulation = self.Simulation(self._config["simulation"]) self.flow = self.Flow(self._config["flow"]) # else: # self.simulation = self.Simulation(self._config["simulation"]) if "estimator" in self._config.keys(): self.estimator = self.Estimator(self._config["estimator"]) class WindFarm: def __init__(self, config_dict): self.size = config_dict["size"] self.cells = config_dict["cells"] self.positions = config_dict["positions"] self.yaw_angles = np.deg2rad(config_dict["yaw_angles"]) # self.yaw_angles = [np.array(x) for x in self.yaw_angles] self.do_refine_turbines = config_dict["do_refine_turbines"] if self.do_refine_turbines: self.refine_radius = config_dict["refine_radius"] else: self.refine_radius = None self.controller = self.FarmController(config_dict["farm_controller"]) class FarmController: def __init__(self, config_dict): self.control_discretisation = config_dict["control_discretisation"] self.controls = config_dict["controls"] self.with_external_controller = False for control in self.controls.values(): if control['type'] == 'external': self.with_external_controller = True self.external_controls = config_dict["external_controller"]["controls"] self.port = config_dict["external_controller"]["port"] break # todo: refine control settings class Turbine: """ Turbine configuration class """ def __init__(self,config_dict): self.axial_induction = config_dict["axial_induction"] self.diameter = config_dict["diameter"] self.radius = self.diameter / 2 self.thickness = config_dict["thickness"] self.hub_height = config_dict["hub_height"] self.kernel = config_dict["kernel"] self.force_scale_axial = config_dict.get("force_scale_axial",1.) self.force_scale_transverse = config_dict.get("force_scale_transverse",1.) self.power_scale = config_dict.get("power_scale",1.) self.yaw_rate_limit = config_dict.get("yaw_rate_limit",-1) self.coefficients = config_dict.get("coefficients", "induction") self.pitch = config_dict.get("pitch", 0.) self.torque = config_dict.get("torque", 0.) class Simulation: def __init__(self, config_dict): self.is_dynamic = config_dict["is_dynamic"] # if not self.is_dynamic: # raise NotImplementedError("Steady flow currently not implemented") if self.is_dynamic: self.total_time = config_dict["total_time"] self.time_step = config_dict["time_step"] self.write_time_step = config_dict["write_time_step"] self.name = config_dict["name"] self.save_logs = config_dict["save_logs"] self.dimensions = config_dict["dimensions"] self.probes = config_dict.get("probes",[]) class Flow: def __init__(self, config_dict): self.kinematic_viscosity = config_dict["kinematic_viscosity"] self.tuning_viscosity = config_dict["tuning_viscosity"] self.density = config_dict["density"] self.mixing_length = config_dict["mixing_length"] self.wake_mixing_length = config_dict["wake_mixing_length"] self.wake_mixing_width = config_dict["wake_mixing_width"] self.wake_mixing_offset = config_dict["wake_mixing_offset"] self.wake_mixing_ml_max = config_dict["wake_mixing_ml_max"] self.continuity_correction = config_dict["continuity_correction"] self.type = config_dict["type"] if self.type == "steady": self.inflow_velocity = config_dict["inflow_velocity"] elif self.type == "series": self.inflow_velocity_series = np.array(config_dict["inflow_velocity_series"]) self.inflow_velocity = self.inflow_velocity_series[0, 1:3] self.finite_element = config_dict.get("finite_element","TH") class SSC: def __init__(self, config_dict): self.port = config_dict["port"] self.controls = config_dict["controls"] self.external_controls = config_dict["external_controls"] self.external_measurements = config_dict["external_measurements"] self.control_discretisation = config_dict["control_discretisation"] self.prediction_horizon = config_dict["prediction_horizon"] self.control_horizon = config_dict["control_horizon"] self.transient_time = config_dict.get("transient_time",-1) # self.objective = config_dict["objective"] # if self.objective == "tracking": # self.power_reference = np.array(config_dict["power_reference"]) # self.power_reference[:, 1] *= 1e6 # # if self.mode == "pitch_torque": # # raise NotImplementedError("gradient step pitch torque control not implemented.") self.plant = config_dict.get("plant", "cm") if self.plant == "sowfa": self.sowfa_time_step = config_dict["sowfa_time_step"] class Estimator: def __init__(self, config_dict): try: self.source = config_dict["source"] except KeyError as ke: logger.error("Only SOWFA as data source implemented") self.estimation_type = config_dict["type"] self.assimilation_window = config_dict["assimilation_window"] self.forward_step = config_dict.get("forward_step", 1) self.transient_period = config_dict.get("transient_period", -1) self.prediction_period = config_dict.get("prediction_period", 0) self.cost_function_weights = config_dict["cost_function_weights"] self.data = config_dict["data"] par = ControlModelParameters() wind_farm = par.wind_farm turbine = par.turbine flow = par.flow simulation = par.simulation with_adjoint = True if __name__ == '__main__': par = ControlModelParameters() par.load("../config/test_config.yaml") # par.print() # par.turbine.print()
2.640625
3
knlp/information_extract/keywords_extraction/textrank_keyword.py
ERICMIAO0817/knlp
19
12792853
# !/usr/bin/python # -*- coding:UTF-8 -*- # -----------------------------------------------------------------------# # File Name: textrank_keyword # Author: <NAME> # Mail: <EMAIL> # Created Time: 2021-09-04 # Description: # -----------------------------------------------------------------------# import networkx as nx import numpy as np from knlp.common.constant import sentence_delimiters, allow_speech_tags from knlp.information_extract.keywords_extraction.textrank import TextRank from knlp.utils.util import get_default_stop_words_file, AttrDict class TextRank4Keyword(TextRank): """ 这个函数实现了利用Text rank算法来实现关键词提取的功能。 基础的思路就是先分词,然后计算每个词语的权重,最后按照顺序排列,得到重要性 暂时不考虑英文的需求 介绍请见 https://www.jiqizhixin.com/articles/2018-12-28-18 ref https://github.com/letiantian/TextRank4ZH/blob/master/textrank4zh/ """ def __init__(self, stop_words_file=get_default_stop_words_file(), private_vocab=None, allow_speech_tags=allow_speech_tags, delimiters="|".join(sentence_delimiters)): """ Args: stop_words_file: 停用词的文件路径 label_set: allow_speech_tags: 要保留的词性 delimiters: 默认值是`?!;?!。;…\n`,用来将文本拆分为句子。 """ super().__init__(stop_words_file=stop_words_file, private_vocab=private_vocab, allow_speech_tags=allow_speech_tags, delimiters=delimiters) def get_keywords(self, num=6, window=2, word_min_len=1, page_rank_config={'alpha': 0.85, }): """ 获取最重要的num个长度大于等于word_min_len的关键词。 Args: num: window: word_min_len: page_rank_config: Returns: 关键词列表。AttriDict {} """ # 获取按照text rank的方式得到的关键词,并排序 keywords = self.sort_words(self._vertex_source, self._edge_source, window=window, page_rank_config=page_rank_config) result = [] count = 0 for item in keywords: if count >= num: break if len(item.word) >= word_min_len: result.append(item) count += 1 return result def get_keyphrases(self, keywords_num=12, min_occur_num=2): """ 获取关键短语。 获取 keywords_num 个关键词构造的可能出现的短语,要求这个短语在原文本中至少出现的次数为min_occur_num。 使用有限的keywords_num 个关键词来构造短语 Args: keywords_num: 关键词的个数 min_occur_num: 最少出现次数 Returns: 关键短语的列表。 """ keywords_set = set([item.word for item in self.get_keywords(num=keywords_num, word_min_len=1)]) keyphrases = set() for sentence in self.words_no_filter: one = [] for word in sentence: if word in keywords_set: one.append(word) else: if len(one) > 1: keyphrases.add(''.join(one)) # concat在一起 if len(one) == 0: continue else: one = [] # 兜底 if len(one) > 1: keyphrases.add(''.join(one)) return [phrase for phrase in keyphrases if self.text.count(phrase) >= min_occur_num or phrase in self.label_set] @staticmethod def sort_words(vertex_source, edge_source, window=2, page_rank_config=None): """ 将单词按关键程度从大到小排序 Args: vertex_source: 二维列表,子列表代表句子,子列表的元素是单词,这些单词用来构造pagerank中的节点 edge_source: 二维列表,子列表代表句子,子列表的元素是单词,根据单词位置关系构造pagerank中的边 window: 一个句子中相邻的window个单词,两两之间认为有边 page_rank_config: pagerank的设置 Returns: """ page_rank_config = {'alpha': 0.85, } if not page_rank_config else page_rank_config sorted_words = [] word_index = {} index_word = {} _vertex_source = vertex_source _edge_source = edge_source words_number = 0 for word_list in _vertex_source: for word in word_list: if word not in word_index: word_index[word] = words_number index_word[words_number] = word # MAP WORD TO AN INDEX words_number += 1 graph = np.zeros((words_number, words_number)) # words_number X words_number MATRIX def combine(word_list, window=2): """ 构造在window下的单词组合,用来构造单词之间的边。 Args: word_list: list of str, 由单词组成的列表。 window: int, 窗口大小。 Returns: """ if window < 2: window = 2 for x in range(1, window): if x >= len(word_list): break word_list2 = word_list[x:] res = zip(word_list, word_list2) for r in res: yield r for word_list in _edge_source: for w1, w2 in combine(word_list, window): if w1 in word_index and w2 in word_index: index1 = word_index[w1] index2 = word_index[w2] # 有链接的位置 = 1。0 graph[index1][index2] = 1.0 graph[index2][index1] = 1.0 nx_graph = nx.from_numpy_matrix(graph) scores = nx.pagerank(nx_graph, **page_rank_config) # this is a dict DIRECTLY GET THE SCORE FOR ALL THIS MATRIX sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True) for index, score in sorted_scores: item = AttrDict(word=index_word[index], weight=score) sorted_words.append(item) return sorted_words if __name__ == '__main__': text = "测试分词的结果是否符合预期" window = 5 num = 20 word_min_len = 2 need_key_phrase = True tr4w = TextRank4Keyword() tr4w.analyze(text=text, lower=True) output = {"key_words": [], "key_phrase": []} res_keywords = tr4w.get_keywords(num=num, word_min_len=word_min_len, window=window) for item in res_keywords: kw_count = tr4w.text.count(item.word) output["key_words"].append([item.word, item.weight, kw_count]) if need_key_phrase: for phrase in tr4w.get_keyphrases(keywords_num=10, min_occur_num=2): output['key_phrase'].append(phrase) print(output)
2.671875
3
comprehend_groundtruth_integration/src/comprehend_customer_scripts/GroundTruth/DocumentClassifier/groundtruth_format_conversion_handler.py
rpivo/amazon-comprehend-examples
16
12792854
<reponame>rpivo/amazon-comprehend-examples import json import argparse from urllib.parse import urlparse from groundtruth_to_comprehend_clr_format_converter import GroundTruthToComprehendCLRFormatConverter class GroundTruthToCLRFormatConversionHandler: def __init__(self): self.convert_object = GroundTruthToComprehendCLRFormatConverter() self.dataset_filename = "" def validate_s3_input(self, args): dataset_output_S3Uri = args.dataset_output_S3Uri dataset_url = urlparse(dataset_output_S3Uri) dataset_scheme = dataset_url.scheme self.dataset_filename = dataset_url.path.split("/")[-1] print(self.dataset_filename) if dataset_scheme != "s3" or self.dataset_filename.split(".")[-1] != "csv": raise Exception("Either of the output S3 lo cation provided is incorrect!") def read_write_multiclass_dataset(self): with open('output.manifest', 'r', encoding='utf-8') as groundtruth_output_file, \ open(self.dataset_filename, 'a', encoding='utf8') as multiclass_dataset: for index, jsonLine in enumerate(groundtruth_output_file): class_name, source = self.convert_object.convert_to_multiclass_dataset(index, jsonLine) source = json.dumps(source).strip('"') multiclass_dataset.write(class_name + ',"' + source + '"') multiclass_dataset.write("\n") def read_write_multilabel_dataset(self, label_delimiter): with open('output.manifest', 'r', encoding='utf-8') as groundtruth_output_file, \ open(self.dataset_filename, 'a', encoding='utf8') as multilabel_dataset: for index, jsonLine in enumerate(groundtruth_output_file): labels, source = self.convert_object.convert_to_multilabel_dataset(index, jsonLine, label_delimiter) source = json.dumps(source).strip('"') multilabel_dataset.write(labels + ',"' + source + '"') multilabel_dataset.write("\n") def main(): parser = argparse.ArgumentParser(description="Parsing the output S3Uri") parser.add_argument('mode') parser.add_argument('dataset_output_S3Uri') parser.add_argument('label_delimiter') args = parser.parse_args() handler = GroundTruthToCLRFormatConversionHandler() handler.validate_s3_input(args) if args.mode == "MULTI_CLASS": handler.read_write_multiclass_dataset() elif args.mode == "MULTI_LABEL": handler.read_write_multilabel_dataset(args.label_delimiter) else: raise Exception("The value provided for mode is invalid. Valid values are MUTLI_CLASS|MULTI_LABEL") if __name__ == "__main__": main()
3.15625
3
0001.Two Sum/solution.py
zhlinh/leetcode
0
12792855
<filename>0001.Two Sum/solution.py #!/usr/bin/env python # -*- coding: utf-8 -*- ''' ***************************************** Author: zhlinh Email: <EMAIL> Version: 0.0.1 Created Time: 2016-01-04 Last_modify: 2016-09-02 ****************************************** ''' ''' Given an array of integers, return indices of the two numbers such that they add up to a specific target. You may assume that each input would have exactly one solution. Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. UPDATE (2016/2/13): The return format had been changed to zero-based indices. Please read the above updated description carefully. ''' class Solution(object): def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ d = {} for i, v in enumerate(nums): if target-v in d: return [d[target-v], i] d[v] = i
3.90625
4
core/management/commands/constants.py
daichi-yoshikawa/django-boilerplate
4
12792856
<reponame>daichi-yoshikawa/django-boilerplate<filename>core/management/commands/constants.py<gh_stars>1-10 from api.common import constants N_USERS = 11 N_TENANTS = 5 ADMIN = constants.TENANT_USER_ROLE_TYPE.ADMIN.value GENERAL = constants.TENANT_USER_ROLE_TYPE.GENERAL.value TENANT_USERS = { 1: (1, 1, ADMIN), # tenant_user_id: user_id, tenant_id, role_type 2: (1, 2, GENERAL), 4: (3, 1, GENERAL), 3: (2, 2, ADMIN), 5: (3, 3, ADMIN), 6: (4, 1, ADMIN), 7: (5, 2, GENERAL), 8: (6, 3, GENERAL), 9: (7, 1, GENERAL), 10: (8, 2, GENERAL), 11: (9, 3, GENERAL), 12: (10, 1, GENERAL), }
1.6875
2
pendulum_environment.py
Gjain234/AdaptiveQLearning
1
12792857
<reponame>Gjain234/AdaptiveQLearning import gym import numpy as np from agents import pendulum_agent from eNet_Agent import eNet from eNet_Agent import eNet_Discount from eNet_Agent import eNetPendulum from src import environment from src import experiment from src import agent import pickle ''' Defining parameters to be used in the experiment''' epLen = 200 nEps = 2000 numIters = 50 env = environment.make_pendulumEnvironment(epLen, False) ##### PARAMETER TUNING FOR AMBULANCE ENVIRONMENT scaling_list = [0.04, 0.035, 0.045] # scaling_list = [5, 0.6] #scaling_list = [0.04, 0.5] epsilon_list = [0.1] # scaling_list = [0.5, .01] # alpha = 1 # scaling_list = [1, .4] # alpha = 0 # scaling_list = [0.5, 0.01] # alpha = 0.25 max_reward_adapt = 0 max_reward_e_net = 0 opt_adapt_scaling = 0.01 opt_e_net_scaling = 0.01 count = 0 # TRYING OUT EACH SCALING FACTOR FOR OPTIMAL ONE for scaling in scaling_list: for epsilon in epsilon_list: experiment_dict = {'seed': 1, 'epFreq' : 1, 'targetPath': './tmp.csv', 'deBug' : False, 'nEps': nEps, 'recFreq' : 10, 'numIters' : numIters} # # RUNNING EXPERIMENT FOR ADAPTIVE ALGORITHM agent_list_adap = [] for _ in range(numIters): agent_list_adap.append(pendulum_agent.PendulumAgent(epLen, nEps, scaling, 0.995)) exp = experiment.Experiment(env, agent_list_adap, experiment_dict) adap_fig = exp.run() dt_adapt_data = exp.save_data() if (dt_adapt_data.groupby(['episode']).mean().tail(1))['epReward'].iloc[0] > max_reward_adapt: max_reward_adapt = (dt_adapt_data.groupby(['episode']).mean().tail(1))['epReward'].iloc[0] opt_adapt_scaling = scaling dt_adapt = dt_adapt_data opt_adapt_agent_list = agent_list_adap del agent_list_adap del dt_adapt_data # RUNNING EXPERIMENT FOR EPSILON NET ALGORITHM # action_net = np.arange(start=0, stop=1, step=epsilon) # state_net = np.arange(start=0, stop=1, step=epsilon) # # agent_list = [] # for _ in range(numIters): # agent_list.append(eNet_Discount(action_net, state_net, 0.99, scaling, (3,1))) # # exp = experiment.Experiment(env, agent_list, experiment_dict, save=True) # exp.run() # dt_net_data = exp.save_data() # # curr_reward = (dt_net_data.groupby(['episode']).mean().tail(1))['epReward'].iloc[0] # if curr_reward > max_reward_e_net: # max_reward_e_net = curr_reward # opt_e_net_scaling = scaling # opt_epsilon_scaling = epsilon # dt_net = dt_net_data # # del agent_list # del dt_net_data #print(opt_adapt_scaling) #print(opt_epsilon_scaling) #print(opt_e_net_scaling) # SAVING DATA TO CSV #dt_adapt.to_csv('pendulum_adapt.csv') #dt_net.to_csv('pendulum_net_1.csv')
2.53125
3
centinel/unit_test/test_http.py
mikiec84/centinel
29
12792858
import pytest import os from ..primitives import http class TestHTTPMethods: def test_url_not_exist(self): """ test if _get_http_request(args...) returns failure for an invalid url. """ file_name = "data/invalid_hosts.txt" fd = open(file_name, 'r') for line in fd: line = line.rstrip('\n') res = http._get_http_request(line) assert res is not None assert 'failure' in res['response'].keys() fd.close() def test_url_exist(self): """ test if _get_http_request(args..) returns valid contents from a valid url. """ file_name = "data/valid_hosts.txt" fd = open(file_name, 'r') for line in fd: line = line.rstrip('\n') res = http._get_http_request(line) assert res is not None assert 'failure' not in res['response'].keys() fd.close() def test_batch_url_invalid_hosts(self): """ test _get_http_request(arg...) primitive when a list of invaid domain name is passed to get_requests_batch(args...). """ invalid_hosts_file_name = "data/invalid_hosts.txt" fd = open(invalid_hosts_file_name, 'r') lines = [line.rstrip('\n') for line in fd] results = http.get_requests_batch(lines) assert results is not None # assert failure for inValid Hosts for key, result in results.items(): assert result is not None assert 'failure' in result['response'].keys() fd.close() def test_batch_url_valid_hosts(self): """ test _get_http_request(arg...) primitive when a list of valid domain name is passed to get_requests_batch(args...). """ valid_hosts_file_name = "data/valid_hosts.txt" fd = open(valid_hosts_file_name, 'r') lines = [line.rstrip('\n') for line in fd] results = http.get_requests_batch(lines) assert results is not None # assert no failure for valid hosts for key,result in results.items(): assert result is not None assert 'failure' not in result['response'].keys() fd.close() def test_batch_url_thread_error(self): """ test if thread takes long time to finish TODO: choose url that gives thread error """ #file_name = "data/input_file.txt" #fd = open(file_name, 'r') #lines = [line.rstrip('\n') for line in fd] #result = http.get_requests_batch(lines) #assert result is not None #assert 'error' in result #assert result['error'] is "Threads took too long to finish." #fd.close()
2.9375
3
demo_video.py
lippman1125/pytorch_FAN
58
12792859
<reponame>lippman1125/pytorch_FAN import torch import torchvision.transforms as transforms import numpy as np import cv2 import copy import sys from utils.imutils import * from utils.transforms import * from datasets import W300LP, VW300, AFLW2000, LS3DW import models from models.fan_model import FAN from utils.evaluation import get_preds, final_preds from faceboxes import face_detector_init, detect CHECKPOINT_PATH = "./checkpoint/fan3d_wo_norm_att/model_best.pth.tar" # flag of saving pics to gen gif SAVE = False SAVE_DIR = "./save_pics" if len(sys.argv) < 2: print("please specify run model...") exit(0) model_names = sorted( name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) print(model_names) model = FAN(2) if sys.argv[1] == "cpu": model_dict = model.state_dict() checkpoint = torch.load(CHECKPOINT_PATH, map_location=lambda storage, loc: storage)['state_dict'] for k in checkpoint.keys(): model_dict[k.replace('module.', '')] = checkpoint[k] model.load_state_dict(model_dict) else: model = torch.nn.DataParallel(model).cuda() checkpoint = torch.load(CHECKPOINT_PATH) model.load_state_dict(checkpoint['state_dict']) model.eval() proto = "faceboxes_deploy.prototxt" mdl = "faceboxes_iter_120000.caffemodel" face_detector = face_detector_init(proto, mdl) if SAVE == True: if not os.path.exists(SAVE_DIR): os.mkdir(SAVE_DIR) count = 0 reference_scale = 200 cap = cv2.VideoCapture(0) while True: _, img_ori = cap.read() # rects = face_detector(img_ori, 1) rects = detect(img_ori, face_detector) if len(rects) == 0: continue print(rects) for rect in rects: d = [rect.left() - 10, rect.top() - 10, rect.right() + 10, rect.bottom() + 10] # d = [rect.left() , rect.top() , rect.right() , rect.bottom()] center = torch.FloatTensor([d[2] - (d[2] - d[0]) / 2.0, d[3] - (d[3] - d[1]) / 2.0]) # center[1] = center[1] + (d[3] - d[1]) * 0.12 hw = max(d[2] - d[0], d[3] - d[1]) scale = float(hw / reference_scale) # print(scale) img_chn = copy.deepcopy(img_ori[:,:,::-1]) img_trans = np.transpose(img_chn, (2,0,1)) inp = crop(img_trans, center, scale) inp.unsqueeze_(0) output = model(inp) if sys.argv[1] == "cpu": score_map = output[-1].data else: score_map = output[-1].data.cpu() pts_img = final_preds(score_map, [center], [scale], [64, 64]) # print(pts_img) pts_img = np.squeeze(pts_img.numpy()) # print(pts_img) for i in range(pts_img.shape[0]): pts = pts_img[i] cv2.circle(img_ori, (pts[0], pts[1]), 2, (0, 255, 0), -1, 2) cv2.rectangle(img_ori, (d[0], d[1]), (d[2], d[3]), (255, 255, 255)) cv2.imshow("landmark", img_ori) if SAVE == True: cv2.imwrite(os.path.join(SAVE_DIR, "image_{}.jpg".format(count)), img_ori) cv2.waitKey(1) count += 1
2
2
krobot/captcha.py
rbardenet/krobot
1
12792860
import os,sys from PIL import Image import numpy LETTER_NB = 5 LETTER_SPACE = 1 LETTER_SIZE = 8 LETTER_LEFT = 10 LETTER_RIGHT = 16 class CaptchaReader(object): """docstring for CaptchaReader""" def __init__(self, folderDico): super(CaptchaReader, self).__init__() self.folderDico = folderDico + "/" def read(self, filename): # Extract symbol from targetted captcha symb_extractor = captchaSymbolExtractor() listSymb = symb_extractor.extractSymbol(filename) cap_string = "" nb_unread = 0 for symb in listSymb: succes = False for f in os.listdir(self.folderDico): if f.endswith(".png"): pil_image = Image.open(self.folderDico + f) dic_symb = numpy.array(pil_image) if self.compare(symb, dic_symb): succes = True if f[0].isdigit(): cap_string += f[0] else: cap_string += f[3] break if not succes: # If you go there, then the symbol has not been read Image.fromarray(symb).save("error/symb" + str(nb_unread) + ".png") nb_unread += 1 #return the string return cap_string def compare(self, symb_np, im_dic): #print symb_np return numpy.array_equal(symb_np, im_dic/255) class captchaSymbolExtractor(object): """docstring for captchaSymbolExtractor""" def __init__(self): super(captchaSymbolExtractor, self).__init__() def extractSymbol(self, filename): # mat_pix is a numpy array mat_pix = self.openImage(filename) list_im = [] for i in range(5): left = LETTER_LEFT + i * (LETTER_SIZE + LETTER_SPACE) right = LETTER_LEFT + (i + 1) * (LETTER_SIZE + LETTER_SPACE) - 1 symb = mat_pix[6:19, left:right] list_im.append(symb) im = Image.fromarray(symb*255) im = im.convert('1') return list_im def openImage(self, filename): pil_image = Image.open(filename) return numpy.array(pil_image)
2.765625
3
Assignment_1/git/CSL622/rankingNodes.py
atlkdr/Social_Networks
0
12792861
<filename>Assignment_1/git/CSL622/rankingNodes.py """ @author: <NAME>, <NAME>, <NAME> """ import networkx as netx import matplotlib.pyplot as plt #find adjacent_nodes def adj_nodes(G): list_nodes_info = [] node_mapped = [] i = 0 for u in G.nodes(): list_nodes_info.append([]) list_adjNodes = [] count = 0 for v in G.nodes(): if G.has_edge(u,v)==True: count = count+1 list_adjNodes.append(int(v)) list_nodes_info[i].append(int(u)) list_nodes_info[i].append(count) list_nodes_info[i].append(list_adjNodes) node_mapped.insert(i,int(u)) i = i+1 return(list_nodes_info,node_mapped) #returns the page ranking factor def page_rank(G,list_nodes_info,node_mapped): initial_pageRank = [] processed_pageRank = [] for i in range(len(list_nodes_info)): initial_pageRank.insert(i,1/len(list_nodes_info)) while(len(set(initial_pageRank))!=len(initial_pageRank)): for i in range(len(list_nodes_info)): cumPR = 0 for j in range(len(list_nodes_info[i][2])): node_index = node_mapped.index(list_nodes_info[i][2][j]) cumPR = cumPR + (initial_pageRank[node_index]/list_nodes_info[node_index][1]) processed_pageRank.insert(i,cumPR) initial_pageRank = processed_pageRank return(initial_pageRank) #sorts the page fanking factors and then assign ranking to each nodes base on its importance def ranking_assign(G,pageRank_factor,list_nodes_info): nodes_with_ranks = [] for i in range(len(G.nodes())): nodes_with_ranks.insert(i,[pageRank_factor[i],list_nodes_info[i][0]]) nodes_with_ranks.sort(reverse=True) ranking = [] for i in (range(len(G.nodes()))): ranking.append([i+1,list_nodes_info[i][0]]) return(ranking) G = netx.read_edgelist(r"pagerank.txt",create_using=netx.DiGraph()) netx.draw_spring(G,with_labels=1,node_size=200,font_size=12) plt.show() list_nodes_info,node_mapped = adj_nodes(G) pageRank_factor = page_rank(G,list_nodes_info,node_mapped) rank = ranking_assign(G,pageRank_factor,list_nodes_info) #prints the nodes along with ranking for i in range(len(G.nodes())): print("Node: " + str(rank[i][0]) + " \tRank: " + str(rank[i][1]))
3.109375
3
tests/test_wificontrol.py
TopperBG/pywificontrol
115
12792862
<filename>tests/test_wificontrol.py # Written by <NAME> and <NAME> <<EMAIL>> # # Copyright (c) 2016, Emlid Limited # All rights reserved. # # Redistribution and use in source and binary forms, # with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import mock from wificontrol import WiFiControl @pytest.fixture def ssid(): network = { 'ssid': 'Test' } return network class FakeWiFiControl(WiFiControl): def __init__(self): self.wifi = mock.MagicMock() self.wpasupplicant = mock.MagicMock() self.hotspot = mock.MagicMock() class TestWiFiControl: def setup_method(self): self.manager = FakeWiFiControl() def test_host_mode(self): self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.start_host_mode() assert self.manager.wpasupplicant.stop.call_count == 1 assert self.manager.hotspot.started.call_count == 1 assert self.manager.hotspot.start.call_count == 1 def test_client_mode(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.start_client_mode() assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 def test_wifi_turn_on(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.turn_on_wifi() assert self.manager.wifi.unblock.call_count == 1 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 self.manager.wpasupplicant.started.return_value = True assert self.manager.get_wifi_turned_on() is True def test_wifi_turn_off(self): self.manager.wpasupplicant.started = mock.Mock(return_value=True) self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.turn_off_wifi() assert self.manager.wifi.block.call_count == 1 assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.stop.call_count == 1 self.manager.wpasupplicant.started.return_value = False assert self.manager.get_wifi_turned_on() is False def test_wifi_turn_on_if_wifi_is_on(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.turn_on_wifi() assert self.manager.wifi.unblock.call_count == 0 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.hotspot.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 0 assert self.manager.hotspot.start.call_count == 0 def test_network_add(self, ssid): self.manager.add_network(ssid) assert self.manager.wpasupplicant.add_network.is_called_once_with(ssid) def test_network_remove(self, ssid): self.manager.remove_network(ssid) assert self.manager.wpasupplicant.remove_network.is_called_once_with(ssid) def test_status_get(self, ssid): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=True) state, status = self.manager.get_status() assert state == self.manager.HOST_STATE assert status is None self.manager.wpasupplicant.started.return_value = True self.manager.hotspot.started.return_value = False self.manager.wpasupplicant.get_status = mock.Mock(return_value=ssid) state, status = self.manager.get_status() assert state == self.manager.WPA_STATE assert status == ssid def test_start_connection(self, ssid): def start_connecting(*args): self.manager.hotspot.started.return_value = False self.manager.revert_on_connect_failure(result=None) self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.wpasupplicant.start_connecting.side_effect = start_connecting self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.start_connecting(ssid) assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 args = (ssid, self.manager.revert_on_connect_failure, None, 10) assert self.manager.wpasupplicant.start_connecting.is_called_once_with(args) assert self.manager.hotspot.started.call_count == 1 assert self.manager.wpasupplicant.stop.call_count == 1 assert self.manager.hotspot.start.call_count == 1 def test_reconnection(self, ssid): def start_connecting(result, callback, args, timeout): self.manager.hotspot.started.return_value = False if args: callback({}, *args) else: callback(result) self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.wpasupplicant.start_connecting.side_effect = start_connecting self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.start_connecting(ssid, callback=self.manager.reconnect, args=(ssid,)) assert self.manager.wpasupplicant.start_connecting.call_count == 2 def test_supplicant_functions(self): self.manager.scan() assert self.manager.wpasupplicant.scan.call_count == 1 self.manager.get_scan_results() assert self.manager.wpasupplicant.get_scan_results.call_count == 1 self.manager.get_added_networks() assert self.manager.wpasupplicant.get_added_networks.call_count == 1 self.manager.get_ip() assert self.manager.wifi.get_device_ip.call_count == 1 self.manager.stop_connecting() assert self.manager.wpasupplicant.stop_connecting.call_count == 1 self.manager.disconnect() assert self.manager.wpasupplicant.disconnect.call_count == 1 self.manager.get_device_name() assert self.manager.hotspot.get_host_name.call_count == 1 self.manager.get_hostap_name() assert self.manager.hotspot.get_hostap_name.call_count == 1 name = 'test' self.manager.set_device_names(name) assert self.manager.wpasupplicant.set_p2p_name.call_count == 1 assert self.manager.wpasupplicant.set_p2p_name.is_called_once_with(name) assert self.manager.hotspot.set_hostap_name.call_count == 1 assert self.manager.hotspot.set_hostap_name.is_called_once_with(name) assert self.manager.hotspot.set_host_name.call_count == 1 assert self.manager.hotspot.set_host_name.is_called_once_with(name) assert self.manager.wifi.restart_dns.call_count == 1 self.manager.set_hostap_password(name) assert self.manager.hotspot.set_hostap_password.is_called_once_with(name) def test_verify_names(self): name = 'test' mac_addr = '11:22:33:44:55:66' self.manager.hotspot.get_host_name.return_value = name self.manager.wpasupplicant.get_p2p_name.return_value = name self.manager.hotspot.get_hostap_name.return_value = "{}{}".format(name, mac_addr[-6:]) self.manager.hotspot.get_device_mac.return_value = mac_addr[-6:] assert self.manager.verify_hostap_name(name) assert self.manager.verify_device_names(name) assert self.manager.hotspot.get_host_name.call_count == 1 assert self.manager.wpasupplicant.get_p2p_name.call_count == 1
1.84375
2
app/main/doc.py
hezmondo/lulu
0
12792863
<reponame>hezmondo/lulu import imghdr import os import re from bs4 import BeautifulSoup from datetime import datetime, timedelta from xhtml2pdf import pisa from app import db from flask import current_app, flash, request from werkzeug.utils import secure_filename from app.main.common import Attachment, mget_filestore_dir, mget_tempfile_dir, mupdate_filename_suffix from app.models import DigFile, DigStore, DocFile, DocStore, FileStore, Rent from app.dao.doc import dig_filename_already_exists, dig_store_filename_already_exists, filename_already_exists, \ get_docfile_combo_meta, get_docfiles_combo, get_docfile_row, get_docfiles, get_digfile_object, \ get_digfile_row, get_docfiles_text, get_file_store_row, post_docfile, upload_docfile, \ get_digfiles_for_rent, get_docfile_object, get_docfile_objects, get_file_store_files_for_rent from app.dao.payrequest import get_pr_history_row, get_pr_history from app.dao.rent import get_rentcode from base64 import b64encode def madd_digfile_properties(digfile, doc_form_data): digfile.rent_id = doc_form_data.get('rent_id') digfile.summary = doc_form_data.get('summary') return digfile def madd_docfile_properties(docfile, doc_form_data, is_draft=False): docfile.rent_id = doc_form_data.get('rent_id') docfile.summary = doc_form_data.get('summary') if not is_draft else 'draft-doc: ' + request.form.get( 'summary')[0:75] docfile.doc_text = doc_form_data.get('doc_text') docfile.combined = doc_form_data.get('combined') return docfile def allowed_filetypes(): return ['.pdf', '.doc', '.docx', '.ods', '.odt', '.jpg', '.png', '.gif'] def append_file_form_time_data(docfile, doc_form_data): doc_time = docfile.time_date.time() time_date = doc_form_data.get('doc_date') + \ timedelta(hours=doc_time.hour, minutes=doc_time.minute, seconds=doc_time.second) docfile.time_date = time_date return docfile def append_digfile_form_data(digfile): dig_form_data = collect_dig_form_data() digfile = append_file_form_time_data(digfile, dig_form_data) return madd_digfile_properties(digfile, dig_form_data) def append_docfile_form_data(docfile, is_draft=False): doc_form_data = collect_doc_form_data() docfile = append_file_form_time_data(docfile, doc_form_data) return madd_docfile_properties(docfile, doc_form_data, is_draft) def append_filestore_form_data(filestore): filestore_form_data = collect_dig_form_data() filestore = append_file_form_time_data(filestore, filestore_form_data) filestore.rent_id = filestore_form_data.get('rent_id') return filestore def create_attachment_as_temp(uploaded_file): filename = secure_filename(uploaded_file.filename).lower() uploaded_file.save(os.path.join(mget_tempfile_dir(), filename)) return Attachment(filename, os.path.join(mget_tempfile_dir(), filename), uploaded_file.content_type) def create_attachment_save_to_dig(rent_id, file): filename = secure_filename(file.filename).lower() filepath = os.path.join(mget_tempfile_dir(), filename or 'attachment_new.pdf') dig_id, notice = mpost_upload(rent_id, file) dig_row = get_digfile_row(dig_id) with open(filepath, 'wb') as file: file.write(dig_row.dig_data) return Attachment(dig_row.summary, filepath, 'application/pdf') def create_attachment_save_to_store(rent_id, file): file_id, notice = mupload_to_file_store(rent_id, file) file_store_file = get_file_store_row(file_id) filepath = os.path.join(mget_filestore_dir(), file_store_file.summary) return Attachment(file_store_file.summary, filepath, 'application/pdf') def collect_email_form(): attachment_1 = {'attach_id': request.form.get('attachment_1_id', 0, type=int), 'attach_name': request.form.get('attachment_1_name', '', type=str), 'attach_type': request.form.get('attachment_1_type', '', type=str)} attachment_2 = {'attach_id': request.form.get('attachment_2_id', 0, type=int), 'attach_name': request.form.get('attachment_2_name', '', type=str), 'attach_type': request.form.get('attachment_2_type', '', type=str)} attachment_3 = {'attach_id': request.form.get('attachment_3_id', 0, type=int), 'attach_name': request.form.get('attachment_3_name', '', type=str), 'attach_type': request.form.get('attachment_3_type', '', type=str)} attachment_4 = {'attach_id': request.form.get('attachment_4_id', 0, type=int), 'attach_name': request.form.get('attachment_4_name', '', type=str), 'attach_type': request.form.get('attachment_4_type', '', type=str)} attachment_5 = {'attach_id': request.form.get('attachment_5_id', 0, type=int), 'attach_name': request.form.get('attachment_5_name', '', type=str), 'attach_type': request.form.get('attachment_5_type', '', type=str)} attachment_details = [attachment_1, attachment_2, attachment_3, attachment_4, attachment_5] fdict = {'file_list': [request.files.get('uploadfile_1'), request.files.get('uploadfile_2'), request.files.get('uploadfile_3'), request.files.get('uploadfile_4'), request.files.get('uploadfile_5')], 'doc_id': request.form.get('doc_id', 0, int), 'recipients': request.form.get('email_to'), 'save_dig_tog': request.form.get('save_dig_tog'), 'subject': request.form.get('email_subject')} return attachment_details, fdict def collect_email_form_data(rent_id, is_draft=False): attachment_details, fdict = collect_email_form() attachments = [] file_list = fdict.get('file_list') file_list = [file for file in file_list if file.filename] if file_list: if request.form.get('location_db'): for file in file_list: attachment = create_attachment_save_to_dig(rent_id, file) attachments.append(attachment) elif request.form.get('location_folder'): for file in file_list: if file.filename: attachment = create_attachment_save_to_store(rent_id, file) attachments.append(attachment) else: for file in file_list: if file.filename: attachment = create_attachment_as_temp(file) attachments.append(attachment) loop = 1 for attachment in attachment_details: if attachment.get('attach_id') > 0: attachments.append(mget_attachment(attachment.get('attach_id'), attachment.get('attach_name'), attachment.get('attach_type'), 'attachment_' + str(loop))) loop = loop + 1 doc_id = fdict.get('doc_id') docfile = create_docfile(is_draft) if not doc_id else update_docfile(doc_id, is_draft) appmail = current_app.extensions['mail'] recipients = fdict.get('recipients') subject = fdict.get('subject') return appmail, docfile, recipients, subject, attachments def convert_html_to_pdf(source_html, output_filename): # open output file for writing (truncated binary) result_file = open(os.path.join(mget_tempfile_dir(), output_filename), "w+b") # convert HTML to PDF pisa_status = pisa.CreatePDF( source_html, # the HTML to convert dest=result_file) # file handle to receive result # close output file result_file.close() # close output file # return False on success and True on errors return pisa_status.err def collect_dig_form_data(): rent_id = int(request.form.get('rent_id')) doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') summary = request.form.get('summary')[0:89] return {'rent_id': rent_id, 'doc_date': doc_date, 'summary': summary} def collect_doc_form_data(): rent_id = int(request.form.get('rent_id')) doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') doc_text = request.form.get('xinput').replace("£", "&pound;") summary = request.form.get('summary')[0:89] combined = True if request.form.get('doc_combo_true') else False return {'rent_id': rent_id, 'doc_date': doc_date, 'doc_text': doc_text, 'summary': summary, 'combined': combined} def create_draft_email_docfile(doc_text, rent_id, summary): time_date = datetime.now() summary = 'draft-doc: ' + summary docfile = post_docfile(time_date, doc_text, rent_id, summary) return docfile.id def create_docfile(is_draft=False): doc_form_data = collect_doc_form_data() docfile = DocFile() time_now = datetime.now().time() time_date = doc_form_data.get('doc_date') + \ timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) docfile.time_date = time_date docfile = madd_docfile_properties(docfile, doc_form_data, is_draft) return docfile # def digfile_object_create(dig_id): # # TODO: Refactor # doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') # if dig_id == 0: # digfile = DigStore() # time_now = datetime.now().time() # time_date = doc_date + timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) # else: # digfile = get_digfile_object(dig_id) # doc_time = digfile.time_date.time() # time_date = doc_date + timedelta(hours=doc_time.hour, minutes=doc_time.minute, seconds=doc_time.second) # digfile.object_id = request.form.get('object_id') # digfile.object_type_id = request.form.get('object_type_id') # digfile.time_date = time_date # digfile.summary = request.form.get('summary') # return digfile # def mget_file_time_date(file_date, file=None): # time = file.time_date.time() if file else datetime.now().time() # time_date = file_date + timedelta(hours=time.hour, minutes=time.minute, seconds=time.second) # return time_date def docfile_object_create(doc_id, doc_dig): # TODO: Refactor doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') if doc_id == 0: docfile = DocStore() if doc_dig == 'doc' else DigStore time_now = datetime.now().time() time_date = doc_date + timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) else: docfile = get_docfile_object(doc_id) if doc_dig == 'doc' else get_digfile_object(doc_id) doc_time = docfile.time_date.time() time_date = doc_date + timedelta(hours=doc_time.hour, minutes=doc_time.minute, seconds=doc_time.second) docfile.object_id = request.form.get('object_id') docfile.object_type_id = request.form.get('object_type_id') docfile.time_date = time_date if doc_dig == 'doc': docfile.doc_text = request.form.get('xinput').replace("£", "&pound;") docfile.summary = request.form.get('summary') return docfile def mget_attachment(attach_id, attach_name, attach_type, filename, mime_type='application/pdf'): filepath = os.path.join(mget_tempfile_dir(), filename) if attach_type == 'doc': attach_doc = get_docfile_row(attach_id) convert_html_to_pdf(attach_doc.doc_text, filename) elif attach_type == 'dig': attach_dig = get_digfile_row(attach_id) with open(filepath, 'wb') as file: file.write(attach_dig.dig_data) elif attach_type == 'pr': attach_doc = get_pr_history_row(attach_id) convert_html_to_pdf(attach_doc.block, filename) else: filepath = os.path.join(mget_filestore_dir(), attach_name) return Attachment(attach_name, filepath, mime_type) def mget_attachment_form(): attachments = [] attachment_1 = request.form.get('attachment_1', '', type=str) if attachment_1: attachment_1 = attachment_1.split('$') attachment_1 = {'attach_id': attachment_1[0], 'attach_type': attachment_1[1], 'attach_name': attachment_1[2]} attachments.append(attachment_1) attachment_2 = request.form.get('attachment_2', '', type=str) if attachment_2: attachment_2 = attachment_2.split('$') attachment_2 = {'attach_id': attachment_2[0], 'attach_type': attachment_2[1], 'attach_name': attachment_2[2]} attachments.append(attachment_2) attachment_3 = request.form.get('attachment_3', '', type=str) if attachment_3: attachment_3 = attachment_3.split('$') attachment_3 = {'attach_id': attachment_3[0], 'attach_type': attachment_3[1], 'attach_name': attachment_3[2]} attachments.append(attachment_3) attachment_4 = request.form.get('attachment_4', '', type=str) if attachment_4: attachment_4 = attachment_4.split('$') attachment_4 = {'attach_id': attachment_4[0], 'attach_type': attachment_4[1], 'attach_name': attachment_4[2]} attachments.append(attachment_4) attachment_5 = request.form.get('attachment_5', '', type=str) if attachment_5: attachment_5 = attachment_5.split('$') attachment_5 = {'attach_id': attachment_5[0], 'attach_type': attachment_5[1], 'attach_name': attachment_5[2]} attachments.append(attachment_5) return attachments def mget_docfile(doc_dig, doc_id): if doc_dig == "doc": docfile = get_docfile_row(doc_id) if docfile.summary[-3:] == " in" or " in " in docfile.summary: docfile.doc_type = "in" elif docfile.summary[-4:] == " out" or " out " in docfile.summary: docfile.doc_type = "out" else: docfile.doc_type = "info" elif doc_dig == 'dig': docfile = get_digfile_row(doc_id) if any(x in docfile.summary for x in ['.png', '.jpg', '.jpeg', '.bmp']): docfile.image = b64encode(docfile.dig_data).decode("utf-8") elif '.pdf' in docfile.summary: docfile.pdf = b64encode(docfile.dig_data).decode("utf-8") else: docfile = get_file_store_row(doc_id) docfile.ext = os.path.splitext(docfile.summary)[1] return docfile def mget_new_docfile(rent_id): docfile = DocFile() docfile.id = 0 docfile.time_date = datetime.now() docfile.rent_id = int(rent_id) docfile.summary = "email in" docfile.doc_type = "in" docfile.doc_text = "" docfile.combined = True return docfile def mget_docfile_combo_meta(rent_id): docfile = get_docfile_combo_meta(rent_id) if docfile: docfile.doc_dig = 'thread' docfile.summary = 'combined doc thread' return docfile def mget_docfiles_combo(rent_id): docfiles = get_docfiles_combo(rent_id) for docfile in docfiles: if "in" in docfile.summary.split(): docfile.in_out = 'in' else: docfile.in_out = 'out' return docfiles def mget_docfiles(rent_id, action=''): digfile_filter = [] # # filter out draft docs # docfile_filter = [(DocFile.summary.notlike('%draft-doc: %'))] docfile_filter = [] file_store_filter = [] fdict = {'dfountin': 'all'} if request.method == "POST": fdict = mget_fdict(action) if fdict.get('rentcode'): digfile_filter.append(Rent.rentcode.ilike('%{}%'.format(fdict.get('rentcode')))) docfile_filter.append(Rent.rentcode.ilike('%{}%'.format(fdict.get('rentcode')))) file_store_filter.append(Rent.rentcode.ilike('%{}%'.format(fdict.get('rentcode')))) if fdict.get('summary'): digfile_filter.append(DigFile.summary.ilike('%{}%'.format(fdict.get('summary')))) docfile_filter.append(DocFile.summary.ilike('%{}%'.format(fdict.get('summary')))) file_store_filter.append(FileStore.summary.ilike('%{}%'.format(fdict.get('summary')))) if fdict.get('doc_text'): docfile_filter.append(DocFile.doc_text.ilike('%{}%'.format(fdict.get('doc_text')))) elif action == 'attach' or rent_id > 0: digfile_filter.append(DigFile.rent_id == rent_id) docfile_filter.append(DocFile.rent_id == rent_id) file_store_filter.append(FileStore.rent_id == rent_id) docfiles, digfiles, file_store_files = get_docfiles(docfile_filter, digfile_filter, file_store_filter) for docfile in docfiles: docfile.doc_dig = 'doc' for digfile in digfiles: digfile.doc_dig = 'dig' for file in file_store_files: file.doc_dig = 'file' files = docfiles + digfiles + file_store_files results = sorted(files, key=lambda r: r.time_date, reverse=True) return results, fdict def mget_doc_and_digfiles(rent_id): docfiles = get_docfiles_text(rent_id) digfiles = get_digfiles_for_rent(rent_id) file_store_files = get_file_store_files_for_rent(rent_id) digfiles, file_store_files = mget_dig_and_file_store_data(digfiles,file_store_files) files = docfiles + digfiles + file_store_files results = sorted(files, key=lambda r: r.time_date, reverse=True) return results def mget_dig_and_file_store_data(digfiles, file_store_files): for digfile in digfiles: if any(x in digfile.summary for x in ['.png', '.jpg', '.jpeg', '.bmp']): digfile.image = b64encode(digfile.dig_data).decode("utf-8") elif '.pdf' in digfile.summary: digfile.pdf = b64encode(digfile.dig_data).decode("utf-8") for file_store_file in file_store_files: file_store_file.ext = os.path.splitext(file_store_file.summary)[1] return digfiles, file_store_files def mget_digfile_object(doc_object_id): # TODO: refactor same code as rent digfile getter digfile = get_digfile_object(doc_object_id) if any(x in digfile.summary for x in ['.png', '.jpg', '.jpeg', '.bmp']): digfile.image = b64encode(digfile.dig_data).decode("utf-8") elif '.pdf' in digfile.summary: digfile.pdf = b64encode(digfile.dig_data).decode("utf-8") return digfile def mget_docfile_object(doc_object_id): return get_docfile_object(doc_object_id) def mget_docfile_objects(object_id, object_type_id): return get_docfile_objects(object_id, object_type_id) def mget_fdict(action=''): fdict = {'rentcode': request.form.get("rentcode") or "", 'summary': request.form.get("summary") or "", 'doc_text': request.form.get("doc_text") or ""} if action == 'attach': for i in range(1, 6): name = 'attachment_' + str(i) fdict[name] = request.form.get(name) or '' return fdict def mget_new_docfile_object(object_id, object_type_id): docfile = DocStore() docfile.time_date = datetime.now() docfile.object_type_id = object_type_id docfile.doc_text = 'Write or paste your document here...' docfile.object_id = object_id return docfile def insert_prs_for_rent(docfiles, rent_id): pay_requests = get_pr_history(rent_id) for pay_request in pay_requests: pay_request.time_date = pay_request.time_date pay_request.typedoc = 2 pay_request.doc_dig = 'pr' files = docfiles + pay_requests return sorted(files, key=lambda r: r.time_date, reverse=True) def mpost_docfile(doc_id, doc_dig): if doc_id == 0: docfile = create_docfile() elif doc_dig == 'doc': docfile = update_docfile(doc_id) elif doc_dig == 'dig': docfile = update_digfile(doc_id) else: docfile = update_filestore(doc_id) upload_docfile(docfile) return docfile.rent_id # def mpost_digfile_object(dig_id): # # TODO: Refactor # digfile = digfile_object_create(dig_id) # upload_docfile(digfile) # # return docfile.object_id, docfile.object_type_id def mpost_docfile_object(doc_id, doc_dig): # TODO: Refactor docfile = docfile_object_create(doc_id, doc_dig) upload_docfile(docfile) return docfile.object_id, docfile.object_type_id def mpost_upload(rent_id, uploaded_file): # TODO: Refactor # new digital file uses upload function # rentcode = request.form.get("rentcode") doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') time_now = datetime.now().time() time_date = doc_date + timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) filename = secure_filename(uploaded_file.filename).lower() if filename != '': notice = '' file_ext = os.path.splitext(filename)[1] if file_ext not in allowed_filetypes(): return None, "Invalid file suffix" elif file_ext in ['.bmp', '.jpeg', '.jpg', '.png', '.gif'] and file_ext != validate_image(uploaded_file.stream): return None, "Invalid image" while dig_filename_already_exists(filename, rent_id): filename = mupdate_filename_suffix(filename) notice = 'File already exists. The new file has been renamed to ' + filename + '. ' digfile = DigFile() digfile.time_date = time_date digfile.summary = filename digfile.dig_data = uploaded_file.read() digfile.rent_id = rent_id db.session.add(digfile) db.session.flush() dig_id = digfile.id db.session.commit() notice = notice + 'File saved successfully!' return dig_id, notice # else: # flash('No filename!') # return redirect(request.url) def mpost_object_upload(object_id, object_type_id, uploaded_file): doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') time_now = datetime.now().time() time_date = doc_date + timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) filename = secure_filename(uploaded_file.filename).lower() if filename != '': notice = '' file_ext = os.path.splitext(filename)[1] if file_ext not in allowed_filetypes(): return None, "Invalid file suffix" elif file_ext in ['.bmp', '.jpeg', '.jpg', '.png', '.gif'] and file_ext != validate_image(uploaded_file.stream): return None, "Invalid image" while dig_store_filename_already_exists(filename, object_id, object_type_id): filename = mupdate_filename_suffix(filename) notice = 'File already exists. The new file has been renamed to ' + filename + '. ' digfile = DigStore() digfile.time_date = time_date digfile.summary = filename digfile.dig_data = uploaded_file.read() digfile.object_id = object_id digfile.object_type_id = object_type_id db.session.add(digfile) db.session.flush() dig_id = digfile.id db.session.commit() notice = notice + 'File saved successfully!' return dig_id, notice def prepare_draft_for_edit(docfile): docfile.time_date = datetime.now() docfile.summary = reset_draft_email_summary(docfile.summary) soup = BeautifulSoup(docfile.doc_text, 'html.parser') subject = str(soup.find(id='email_subject_span').text) email_to = soup.find(id='email_to_span') email_to = email_to.string docfile.doc_text = str(soup) return email_to, re.sub('\n', '', subject), docfile.summary def rename_filestore_file(filestore, old_filename, new_filename): src = os.path.join(mget_filestore_dir(), old_filename) dst = os.path.join(mget_filestore_dir(), new_filename) try: os.rename(src, dst) filestore.summary = new_filename except Exception as ex: flash(f'Cannot rename file. Error: {str(ex)}', 'error') filestore.summary = old_filename return filestore def reset_draft_email_summary(summary): summary = summary.replace('draft-doc: ', '') summary = ' '.join([item for item in summary.split() if '@' not in item]) if summary[-3:] == ' to': summary = summary[0:-3] return summary def update_docfile(doc_id, is_draft=False): docfile = get_docfile_row(doc_id) docfile = append_docfile_form_data(docfile, is_draft) return docfile def update_digfile(doc_id): digfile = get_digfile_row(doc_id) digfile = append_digfile_form_data(digfile) return digfile def update_filestore(doc_id): notice = '' filestore = get_file_store_row(doc_id) old_filename = filestore.summary new_filename = request.form.get('summary')[0:89] filestore = append_filestore_form_data(filestore) if new_filename != old_filename: while filename_already_exists(new_filename): new_filename = mupdate_filename_suffix(new_filename) notice = 'File already exists. The new file has been renamed to ' + new_filename + '. ' if notice: flash(notice, 'message') filestore = rename_filestore_file(filestore, old_filename, new_filename) return filestore def mupload_docfile_with_attach_info(attachments, docfile): attachment_div = "<div id='attachments' style='font-size:10.5pt;'>Attachment(s):" for attachment in attachments: attachment_div = attachment_div + ' ' + attachment.file_name attachment_div = attachment_div + "</div><br>" html = attachment_div + docfile.doc_text docfile.doc_text = html upload_docfile(docfile) def mupload_to_file_store(rent_id, uploaded_file): notice = '' doc_date = datetime.strptime(request.form.get('time_date'), '%Y-%m-%d') time_now = datetime.now().time() time_date = doc_date + timedelta(hours=time_now.hour, minutes=time_now.minute, seconds=time_now.second) filename = get_rentcode(rent_id) + '-' + secure_filename(uploaded_file.filename).lower() while filename_already_exists(filename): filename = mupdate_filename_suffix(filename) notice = 'File already exists. The new file has been renamed to ' + filename + '. ' uploaded_file.save(os.path.join(mget_filestore_dir(), filename)) file_store = FileStore() file_store.time_date = time_date file_store.summary = filename file_store.rent_id = rent_id db.session.add(file_store) db.session.flush() file_id = file_store.id db.session.commit() notice = notice + 'File saved successfully!' return file_id, notice def validate_image(stream): header = stream.read(512) stream.seek(0) format = imghdr.what(None, header) if not format: return None return '.' + (format if format != 'jpeg' else 'jpg')
1.851563
2
test/test_io.py
BioroboticsLab/deeppipeline
4
12792864
from pipeline.io import unique_id, video_generator def test_video_generator_2015(bees_video, filelists_path): gen = video_generator(bees_video, ts_format="2015", path_filelists=filelists_path) results = list(gen) assert len(results) == 3 prev_ts = 0.0 for _, _, ts in results: assert ts > prev_ts prev_ts = ts def test_video_generator_2016(bees_video_2016): gen = video_generator(bees_video_2016, ts_format="2016", path_filelists=None) results = list(gen) assert len(results) == 4 prev_ts = 0.0 for _, _, ts in results: assert ts > prev_ts prev_ts = ts def test_unique_id(): first_id = unique_id() second_id = unique_id() assert first_id.bit_length() == 64 assert second_id.bit_length() == 64 assert first_id != second_id
2.1875
2
tests/test_encoding_validators/test_are_sources_in_utf.py
SerejkaSJ/fiasko_bro
25
12792865
<gh_stars>10-100 from fiasko_bro import defaults from fiasko_bro.pre_validation_checks import file_not_in_utf8 def test_file_not_in_utf8_fail(encoding_repo_path): directories_to_skip = defaults.VALIDATION_PARAMETERS['directories_to_skip'] output = file_not_in_utf8(encoding_repo_path, directories_to_skip) assert isinstance(output, str) def test_file_not_in_utf8_ok(general_repo_path): directories_to_skip = defaults.VALIDATION_PARAMETERS['directories_to_skip'] output = file_not_in_utf8(general_repo_path, directories_to_skip) assert output is None def test_file_not_in_utf8_uses_whitelist(encoding_repo_path): directories_to_skip = ['win1251'] output = file_not_in_utf8(encoding_repo_path, directories_to_skip) assert output is None
2.234375
2
tests/test_ds_simple_db/test_serializers/test_table_serializer.py
dmitryshurov/simple_data_storage_library
0
12792866
<filename>tests/test_ds_simple_db/test_serializers/test_table_serializer.py from unittest import TestCase from ds_simple_db.core.entry import Entry from ds_simple_db.serializers.table_serializer import TableSerializer class TestTableSerializer(TestCase): def test_entries_to_string_empty_entries_returns_empty_string(self): entries = [] self.assertEqual( '', TableSerializer().entries_to_string(entries) ) def test_row_separator(self): self.assertEqual( '+-----+-----+\n', TableSerializer(row_width=5)._get_row_separator(num_cols=2) ) self.assertEqual( '+---+\n', TableSerializer(row_width=3)._get_row_separator(num_cols=1) ) def test_get_row_content(self): values = ['col', 'value', 'col3'] self.assertEqual( '| col |value|col3 |\n', TableSerializer(row_width=5)._get_row_content(values) ) self.assertEqual( '|col|val|col|\n', TableSerializer(row_width=3)._get_row_content(values) ) def test_get_header(self): cols = ['col', 'value', 'col3'] self.assertEqual( '+-----+-----+-----+\n| col |value|col3 |\n+-----+-----+-----+\n', TableSerializer(row_width=5)._get_header(cols) ) def test_get_row(self): cols = ['col', 'value', 'col3'] self.assertEqual( '| col |value|col3 |\n+-----+-----+-----+\n', TableSerializer(row_width=5)._get_row(cols) ) def test_entries_to_string(self): entries = [ Entry(data=dict(col='val', value='field', col3='val3')), ] self.assertEqual( '+-----+-----+-----+\n| col |value|col3 |\n+-----+-----+-----+\n| val |field|val3 |\n+-----+-----+-----+\n', TableSerializer(row_width=5).entries_to_string(entries) )
2.75
3
src/gui/combobox.py
Epihaius/panda3dstudio
63
12792867
<filename>src/gui/combobox.py<gh_stars>10-100 from .base import * from .button import Button from .menu import Menu class ComboBox(Button): _ref_node = NodePath("combobox_ref_node") def __init__(self, parent, field_width, gfx_ids, text="", icon_id="", tooltip_text=""): Button.__init__(self, parent, gfx_ids, tooltip_text=tooltip_text) self.widget_type = "combobox" self.command = self.__show_menu self._field_width = field_width self._field_text = text self._field_text_in_tooltip = True self._items = {} self._item_ids = [] self._item_texts = {} self._persistent_items = [] self._selected_item_id = None self._selection_handlers = {} self._is_field_active = False self._field_back_img = None self._field_tint = Skin.colors["combobox_field_tint_default"] self._input_field = None if text: skin_text = Skin.text["combobox"] font = skin_text["font"] color = skin_text["color"] self._field_label = font.create_image(text, color) else: self._field_label = None if icon_id: x, y, w, h = Skin.atlas.regions[icon_id] img = PNMImage(w, h, 4) img.copy_sub_image(Skin.atlas.image, 0, 0, x, y, w, h) self._combo_icon = img self._combo_icon_disabled = icon_disabled = PNMImage(img) icon_disabled.make_grayscale() icon_disabled -= LColorf(0., 0., 0., .25) icon_disabled.make_rgb() else: self._combo_icon = self._combo_icon_disabled = None self._popup_menu = Menu(on_hide=self.__on_hide) l, r, b, t = self.inner_borders w, h = self.min_size w = field_width + l + r size = (w, h) self.set_size(size, is_min=True) def destroy(self): Button.destroy(self) sel_item_id = self._selected_item_id if sel_item_id is not None and sel_item_id not in self._persistent_items: self._items[self._selected_item_id].destroy() self._input_field = None self._items.clear() self._selection_handlers.clear() self._popup_menu.destroy() self._popup_menu = None def __on_hide(self): if self.active: self.active = False self.on_leave(force=True) def __show_menu(self): if not self._popup_menu.items: return self.active = True x, y = self.get_pos(ref_node=self._ref_node) offset_x, offset_y = self.get_menu_offset("bottom") pos = (x + offset_x, y + offset_y) offset_x, offset_y = self.get_menu_offset("top") w, h = self._popup_menu.get_size() alt_pos = (x + offset_x, y + offset_y - h) self._popup_menu.show(pos, alt_pos) def __on_select(self, item_id): if self._selected_item_id == item_id: return update = False if self._selected_item_id is not None and self._selected_item_id not in self._persistent_items: index = self._item_ids.index(self._selected_item_id) selected_item = self._items[self._selected_item_id] self._popup_menu.add_item(selected_item, index) update = True self._selected_item_id = item_id self.set_text(self._item_texts[item_id]) if self._selected_item_id not in self._persistent_items: self._popup_menu.remove(self._selected_item_id) update = True if update: self._popup_menu.update() def set_size(self, size, includes_borders=True, is_min=False): width, height = Button.set_size(self, size, includes_borders, is_min) if self._input_field: l, r, b, t = self.inner_borders w = width - l - r h = height - b - t size = (w, h) self._input_field.set_size(size, includes_borders, is_min) return width, height def has_icon(self): return self._combo_icon is not None def set_field_back_image(self, image): self._field_back_img = image def __get_image(self, state=None, draw_field=True): width, height = self.get_size() image = PNMImage(width, height, 4) if draw_field: field_back_img = self._field_back_img * self._field_tint if self._field_label: x, y = self.get_field_label_offset() field_back_img.blend_sub_image(self._field_label, x, y, 0, 0) x, y = self.get_field_offset() image.blend_sub_image(field_back_img, x, y, 0, 0) img = Button.get_image(self, state, composed=False) image.blend_sub_image(img, 0, 0, 0, 0) if self._combo_icon: x, y = self.get_icon_offset() image.blend_sub_image(self._combo_icon, x, y, 0, 0) return image def get_image(self, state=None, composed=False): field = self._input_field if not field or field.is_hidden(check_ancestors=False): return self.__get_image(state) width, height = self.get_size() image = PNMImage(width, height, 4) field_img = field.get_image() if field_img: x, y = self.get_field_offset() image.copy_sub_image(field_img, x, y, 0, 0) img = self.__get_image(state, draw_field=False) image.blend_sub_image(img, 0, 0, 0, 0) return image def add_item(self, item_id, item_text, item_command=None, index=None, persistent=False, update=False, select_initial=True): item = self._popup_menu.add(item_id, item_text, item_command, index=index) self._items[item_id] = item self._selection_handlers[item_id] = lambda: self.__on_select(item_id) if index is None: self._item_ids.append(item_id) else: self._item_ids.insert(index, item_id) self._item_texts[item_id] = item_text if persistent: self._persistent_items.append(item_id) if select_initial and len(self._items) == 1: if not persistent: self._popup_menu.remove(item_id) self._selected_item_id = item_id self.set_text(item_text) if update: self._popup_menu.update() def remove_item(self, item_id): if item_id not in self._item_ids: return item = self._items[item_id] del self._items[item_id] del self._item_texts[item_id] del self._selection_handlers[item_id] index = self._item_ids.index(item_id) size = len(self._item_ids) self._item_ids.remove(item_id) if item_id in self._persistent_items or self._selected_item_id != item_id: self._popup_menu.remove(item_id, update=True, destroy=True) else: item.destroy() if self._selected_item_id == item_id: self._selected_item_id = None if index == size - 1: index -= 1 if index >= 0: self.select_item(self._item_ids[index]) else: self.set_text("") if item_id in self._persistent_items: self._persistent_items.remove(item_id) def update_popup_menu(self): self._popup_menu.update() def create_popup_menu(self): return Menu(on_hide=self.__on_hide) def set_popup_menu(self, menu): self._popup_menu = menu def get_popup_menu(self): return self._popup_menu def clear(self): self._popup_menu.destroy() self._popup_menu = Menu(on_hide=self.__on_hide) self._items = {} self._item_ids = [] self._item_texts = {} self._persistent_items = [] self._selected_item_id = None self._selection_handlers = {} self.set_text("") def __card_update_task(self): if self.is_hidden(): return image = self.get_image(composed=False) if not image: return parent = self.parent if not parent: return x, y = self.get_pos() w, h = self.get_size() img = PNMImage(w, h, 4) parent_img = parent.get_image(composed=False) if parent_img: img.copy_sub_image(parent_img, 0, 0, x, y, w, h) img.blend_sub_image(image, 0, 0, 0, 0) self.card.copy_sub_image(self, img, w, h) def __update_card_image(self): task = self.__card_update_task if self.is_card_update_delayed(): task_id = "update_card_image" PendingTasks.add(task, task_id, sort=1, id_prefix=self.widget_id, batch_id="widget_card_update") else: task() def set_field_tint(self, tint=None): new_tint = tint if tint else Skin.colors["combobox_field_tint_default"] if self._field_tint == new_tint: return False self._field_tint = new_tint self.__update_card_image() return True def select_none(self): if self._selected_item_id is not None and self._selected_item_id not in self._persistent_items: index = self._item_ids.index(self._selected_item_id) selected_item = self._items[self._selected_item_id] self._popup_menu.add_item(selected_item, index, update=True) self._selected_item_id = None self.set_text("") def select_item(self, item_id): if item_id not in self._item_ids: return self._selection_handlers[item_id]() def get_selected_item(self): return self._selected_item_id def get_item_ids(self): return self._item_ids def allow_field_text_in_tooltip(self, allow=True): self._field_text_in_tooltip = allow def set_text(self, text): if self._field_text == text: return False self._field_text = text if self._field_text_in_tooltip and self.tooltip_text: self.override_tooltip_text(self.tooltip_text + (": " + text if text else "")) if text: skin_text = Skin.text["combobox"] font = skin_text["font"] color = skin_text["color"] self._field_label = font.create_image(text, color) else: self._field_label = None self.__update_card_image() return True def get_text(self): return self._field_text def set_item_text(self, item_id, text): if item_id not in self._item_ids: return self._item_texts[item_id] = text if item_id in self._persistent_items or self._selected_item_id != item_id: self._popup_menu.set_item_text(item_id, text, update=True) else: item = self._items[self._selected_item_id] item.set_text(text) if self._selected_item_id == item_id: self.set_text(text) def get_item_text(self, item_id): if item_id not in self._item_ids: return return self._item_texts[item_id] def set_item_index(self, item_id, index): if item_id not in self._item_ids: return self._item_ids.remove(item_id) self._item_ids.insert(index, item_id) item = self._items[item_id] if item_id in self._persistent_items or self._selected_item_id != item_id: self._popup_menu.remove(item_id) self._popup_menu.add_item(item, index, update=True) @property def input_field(self): return self._input_field @input_field.setter def input_field(self, input_field): self._input_field = input_field if not self.sizer: sizer = Sizer("horizontal") sizer.default_size = self.min_size self.sizer = sizer self.sizer.add(input_field) def show_input_field(self, show=True): field = self._input_field if not field or field.is_hidden() != show: return False r = field.show() if show else field.hide() self.__update_card_image() return r def is_input_field_hidden(self): field = self._input_field if not field or field.is_hidden(): return True return False
2.546875
3
model/contact.py
OlegM8/python_training
0
12792868
from sys import maxsize class Contact: def __init__(self, f_name=None, l_name=None, company=None, id=None, info=None, phone=None): self.f_name = f_name self.l_name = l_name self.company = company self.id = id self.info = info self.phone = phone def __repr__(self): return "%s:%s;%s;%s" % (self.id, self.info, self.f_name, self.company) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.info == other.info def id_or_max(self): if self.id: return int(self.id) else: return maxsize
3.390625
3
assistive_gym/__main__.py
RCHI-Lab/bodies-uncovered
3
12792869
import argparse from .env_viewer import viewer from .envs.bm_config import BM_Config if __name__ == "__main__": parser = argparse.ArgumentParser(description='Assistive Gym Environment Viewer') parser.add_argument('--env', default='ScratchItchJaco-v1', help='Environment to test (default: ScratchItchJaco-v1)') bm_config = BM_Config() parser = bm_config.add_bm_args(parser) args = parser.parse_args() bm_config.change_bm_config(args) viewer(args.env)
2
2
src_python/user/user.py
vasisouv/twitter-api-tutorial
2
12792870
import tweepy import json import pymongo #from src_python import utilities # Initialize the API consumer keys and access tokens consumer_key = "LukFsjKDofVcCdiKsCnxiLx2V" consumer_secret = "<KEY>" access_token = "<KEY>" access_token_secret = "<KEY>" # Authenticate tweepy using the keys auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True, compression=True) def get_user(user_id): print("Searching full information for user with id " + str(user_id)) try: user_json = api.get_user(user_id) except tweepy.TweepError as tweep_error: print("Error with code : " + str(tweep_error.response.text)) return 0 return user_json def get_user_tweets(user_id): timeline = [] progress = 0 statuses = [] for status in tweepy.Cursor(api.user_timeline, id=user_id).items(): timeline.append(status) progress+=1 print("Fetched "+str(progress)+" out of all timeline items") return statuses def get_user_network(user_id): print("Searching network for user with id " + str(user_id)) followers = [] friends = [] max_followers = 100000 max_friends = 100000 try: for page in tweepy.Cursor(api.followers_ids, id=user_id).pages(): followers.extend(page) if len(followers) >= max_followers: break print("Followers so far : " + str(len(followers))) print("finished followers") for page in tweepy.Cursor(api.friends_ids, id=user_id).pages(): friends.extend(page) if len(friends) >= max_friends: break print("Friends so far : " + str(len(friends))) print("finished friends") except tweepy.TweepError as tweep_error: print("Error with code : " + str(tweep_error.response.text)) return 0 print("User with ID: " + user_id + " has " + str(len(followers)) + " followers and " + str(len(friends)) + " friends") custom_object = { "id": user_id, "followers": followers, "friends": friends } return custom_object if __name__ == '__main__': # Aristotle University's Twitter user ID user_id = "234343780" # <NAME>'s user_id #user_id = "50374439" ### Get the entire timeline of tweets and retweets of a user ### statuses = get_user_tweets(user_id) for status in statuses: print (status._json["text"]) #### Get full information about the user ### # user_json = get_user(user_id) # Access all the information using .*field* # https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object # screen_name = str(user_json.screen_name) # followers_count = str(user_json.followers_count) # friends_count = str(user_json.friends_count) # # print ("This user has the screen name: "+screen_name) # print ("This user has "+followers_count+" followers") # print ("This user has "+friends_count+" friends") #### Get the network (friends, followers) of the user ### # network = get_user_network(user_id) # print(network["friends"]) # print(network["followers"])
2.984375
3
ixl_learning_3.py
EternalTitan/ICPC-Practise
1
12792871
<reponame>EternalTitan/ICPC-Practise def countX(steps): RC_MAXIMUM = 1000000 edge_r = edge_c = RC_MAXIMUM for each_step in steps: r, c = map(int, each_step.split()) if r < edge_r: edge_r = r if c < edge_c: edge_c = c return edge_r * edge_c
2.375
2
Experiment1/phy1021/thermology.py
wzk1015/PhysicsExperiment
2
12792872
import xlrd # from xlutils.copy import copy as xlscopy import shutil import os from numpy import sqrt, abs import sys sys.path.append('../..') # 如果最终要从main.py调用,则删掉这句 from GeneralMethod.PyCalcLib import Fitting from GeneralMethod.PyCalcLib import Method from reportwriter.ReportWriter import ReportWriter class thermology: report_data_keys = [ '1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20', '21','22','23','24','25','26','27','28','29', '101','102','103','104','105','106','107','108','109','110','111','112','113','114','115','116','117', '118','119','120','121','122','123','124','125','126','127','128','129', 'L','K','J', 'Ua','UJ' ] PREVIEW_FILENAME = "Preview.pdf" DATA_SHEET_FILENAME = "data.xlsx" REPORT_TEMPLATE_FILENAME = "thermology_empty.docx" REPORT_OUTPUT_FILENAME = "thermology_out.docx" def __init__(self): self.data = {} # 存放实验中的各个物理量 self.uncertainty = {} # 存放物理量的不确定度 self.report_data = {} # 存放需要填入实验报告的 print("1021 测量水的溶解热+焦耳热功当量\n1. 实验预习\n2. 数据处理") while True: try: oper = input("请选择: ").strip() except EOFError: sys.exit(0) if oper != '1' and oper != '2': print("输入内容非法!请输入一个数字1或2") else: break if oper == '1': print("现在开始实验预习") print("正在打开预习报告......") os.startfile(self.PREVIEW_FILENAME) elif oper == '2': print("现在开始数据处理") print("即将打开数据输入文件......") # 打开数据输入文件 os.startfile(self.DATA_SHEET_FILENAME) input("输入数据完成后请保存并关闭excel文件,然后按回车键继续") # 从excel中读取数据 self.input_data("./"+self.DATA_SHEET_FILENAME) # './' is necessary when running this file, but should be removed if run main.py print("数据读入完毕,处理中......") # 计算物理量 self.calc_data1() self.calc_data2() # 计算不确定度 self.calc_uncertainty() print("正在生成实验报告......") # 生成实验报告 self.fill_report() print("实验报告生成完毕,正在打开......") os.startfile(self.REPORT_OUTPUT_FILENAME) print("Done!") ''' 从excel表格中读取数据 @param filename: 输入excel的文件名 @return none ''' def input_data(self, filename): ws = xlrd.open_workbook(filename).sheet_by_name('thermology1') # 从excel中读取数据 list_time = [] list_resistance = [] list_temperature = [] list_weight = [] for row in [1, 4, 7]: for col in range(1, 8): list_time.append(float(ws.cell_value(row, col))) #时间 self.data['list_time'] = list_time for row in [2, 5, 8]: for col in range(1, 8): list_resistance.append(float(ws.cell_value(row, col))) #电阻值 self.data['list_resistance'] = list_resistance for row in [3, 6, 9]: for col in range(1, 8): list_temperature.append(float(ws.cell_value(row, col))) #温度 self.data['list_temperature'] = list_temperature col = 1 for row in range(10, 14): list_weight.append(float(ws.cell_value(row,col))) #几种质量 self.data['list_weight'] = list_weight row = 14 temp_ice = float(ws.cell_value(row, col)) #冰温度 self.data['temp_ice'] = temp_ice row = 15 temp_env = float(ws.cell_value(row, col)) #环境温度 self.data['temp_env'] = temp_env ws = xlrd.open_workbook(filename).sheet_by_name('thermology2') list_time2 = [] list_resistance2 = [] list_temperature2 = [] for row in [1, 4, 7, 10]: for col in range(1, 9): if isinstance(ws.cell_value(row, col), str): continue else: list_time2.append(float(ws.cell_value(row, col))) self.data['list_time2'] = list_time2 for row in [2, 5, 8, 11]: for col in range(1, 9): if isinstance(ws.cell_value(row, col), str): continue else: list_resistance2.append(float(ws.cell_value(row, col))) self.data['list_resistance2'] = list_resistance2 for row in [3, 6, 9, 12]: for col in range(1, 9): if isinstance(ws.cell_value(row, col), str): continue else: list_temperature2.append(float(ws.cell_value(row, col))) self.data['list_temperature2'] = list_temperature2 col = 1 row = 13 temp_env2 = float(ws.cell_value(row, col)) self.data['temp_env2'] = temp_env2 row = 14 voltage_begin = float(ws.cell_value(row, col)) self.data['voltage_begin'] = voltage_begin row = 15 voltage_end = float(ws.cell_value(row, col)) self.data['voltage_end'] = voltage_end row = 16 resitence = float(ws.cell_value(row, col)) self.data['resitence'] = resitence self.data['c1'] = 0.389e3 self.data['c2'] = 0.389e3 self.data['c0'] = 4.18e3 self.data['ci'] = 1.80e3 def calc_data1(self): list_weight = self.data['list_weight'] list_time1 = self.data['list_time'] list_temperature1 = self.data['list_temperature'] temp_ice = self.data['temp_ice'] temp_env = self.data['temp_env'] c1 = self.data['c1'] c2 = self.data['c2'] c0 = self.data['c0'] ci = self.data['ci'] m_water = list_weight[1] - list_weight[0] m_ice = list_weight[2] - list_weight[1] list_graph = Fitting.linear(list_time1, list_temperature1, show_plot=False) self.data['list_graph'] = list_graph temp_begin = list_graph[0] * list_time1[0] + list_graph[1] temp_end = list_graph[0] * list_time1[(len(list_time1)-1)] + list_graph[1] self.data['temp_begin'] = temp_begin self.data['temp_end'] = temp_end self.data['m_water'] = m_water self.data['m_ice'] = m_ice ''' print(temp_begin) print('\n',temp_end) print('\n',m_water) print('\n',m_ice) print('!1!\n',c0*m_water*0.001+c1*list_weight[3]*0.001+c2*(list_weight[0]-list_weight[3])*0.001) print('\n!2!\n',temp_begin-temp_end) print('\n!3!\n',c0*temp_end) print('\n!4!\n',ci*temp_ice) ''' L = 1/(m_ice*0.001) * (c0*m_water*0.001+c1*list_weight[3]*0.001+c2*(list_weight[0]-list_weight[3])*0.001) * (temp_begin-temp_end)- c0*temp_end + ci*temp_ice K = c0 * m_water*0.001 * (list_temperature1[15]-list_temperature1[8]) / ((list_time1[15]-list_time1[8])*(list_temperature1[15]-temp_env)) self.data['L'] = L self.data['K'] = K def calc_data2(self): c1 = self.data['c1'] c0 = self.data['c0'] list_temperature2 = self.data['list_temperature2'] list_weight = self.data['list_weight'] temp_env2 = self.data['temp_env2'] list_time2 = self.data['list_time2'] voltage_begin = self.data['voltage_begin'] voltage_end = self.data['voltage_end'] resitence = self.data['resitence'] m_water = list_weight[1] - list_weight[0] list_x = [] list_y = [] for i in range(len(list_temperature2)): if i==len(list_temperature2)-1: break list_x.append((list_temperature2[i]+list_temperature2[i+1])/2-temp_env2) for i in range(len(list_temperature2)): if i == len(list_temperature2)-1: break list_y.append((list_temperature2[i+1]-list_temperature2[i])/((list_time2[i+1]-list_time2[i])*60)) self.data['list_x'] = list_x self.data['list_y'] = list_y list_graph2 = Fitting.linear(list_x, list_y, show_plot=False) self.data['list_graph2'] = list_graph2 J = ((voltage_begin+voltage_end)/2)**2/(list_graph2[1]*resitence*(c0*m_water*0.001+c1*list_weight[3]*0.001+64.38)) self.data['J'] = J ''' print('b',list_graph2[0]) print('\n a',list_graph2[1]) print('\n r',list_graph2[2]) ''' def calc_uncertainty(self): list_a = [] list_x = self.data['list_x'] list_y = self.data['list_y'] list_graph2 = self.data['list_graph2'] voltage_begin = self.data['voltage_begin'] voltage_end = self.data['voltage_end'] resitence = self.data['resitence'] c1 = self.data['c1'] c0 = self.data['c0'] list_weight = self.data['list_weight'] m_water = list_weight[1] - list_weight[0] for i in range(len(list_x)): list_a.append(list_y[i]-list_graph2[1]*list_x[i]) self.data['list_a'] = list_a Ua = Method.a_uncertainty(self.data['list_a']) self.data['Ua'] = Ua UJ = abs(((voltage_begin+voltage_end)/2)**2/(Ua*resitence*(c0*m_water*0.001+c1*list_weight[3]*0.001 + 64.38))) self.data['UJ'] = UJ def fill_report(self): # 表格:xy for i, x_i in enumerate(self.data['list_x']): self.report_data[str(i + 1)] = "%.5f" % (x_i) for i, y_i in enumerate(self.data['list_y']): self.report_data[str(i + 101)] = "%.5f" % (y_i) # 最终结果 self.report_data['L'] = self.data['L'] self.report_data['K'] = self.data['K'] self.report_data['J'] = self.data['J'] self.report_data['Ua'] = self.data['Ua'] self.report_data['UJ'] = self.data['UJ'] RW = ReportWriter() RW.load_replace_kw(self.report_data) RW.fill_report(self.REPORT_TEMPLATE_FILENAME, self.REPORT_OUTPUT_FILENAME) if __name__ == '__main__': mc = thermology()
2.421875
2
wagtaildocs_previews/tests/urls.py
mikiec84/wagtail-filepreviews
22
12792873
<gh_stars>10-100 from __future__ import absolute_import, unicode_literals from django.conf.urls import include, url from wagtail.admin import urls as wagtailadmin_urls from wagtail.core import urls as wagtail_urls from wagtaildocs_previews import urls as wagtaildocs_urls urlpatterns = [ url(r'^admin/', include(wagtailadmin_urls)), url(r'^documents/', include(wagtaildocs_urls)), url(r'', include(wagtail_urls)), ]
1.320313
1
chat/filters.py
jbbqqf/okapi
0
12792874
# -*- coding: utf-8 -*- from django_filters import (FilterSet, CharFilter, DateTimeFilter, NumberFilter, BooleanFilter) from guardian.shortcuts import get_objects_for_user from rest_framework import filters from chat.models import Post, Channel def get_readable_channel_ids(user): """ Return a list of channel ids on which user given in parameter has at least read_channel permission. It also includes public channels, where anyone can read/write on. Channel ids are unique. """ readable_channels = get_objects_for_user(user, 'chat.read_channel', use_groups=True) readable_ids = [c.id for c in readable_channels] public_channels = Channel.objects.filter(public=True) for public_channel in public_channels: readable_ids.append(public_channel.id) unique_readable_ids = set(readable_ids) return unique_readable_ids class ReadableChannelFilter(filters.BaseFilterBackend): """ All users cannot see what they want. They are restricted to see only channels on which they have at least read_channel permission. """ def filter_queryset(self, request, queryset, view): readable_channel_ids = get_readable_channel_ids(request.user) return queryset.filter(id__in=readable_channel_ids) class ChannelFilter(FilterSet): name = CharFilter(name='name', lookup_type='icontains', label='name contain filter') public = BooleanFilter(name='public', label='is public ?') ca_label = 'filter channels created after or on provided date / time' created_after = DateTimeFilter(name='date', lookup_type='gte', label=ca_label) cb_label = 'filter channels created before or on provided date / time' created_before = DateTimeFilter(name='date', lookup_type='lte', label=ca_label) class Meta: model = Channel fields = ('name', 'public', 'created_after', 'created_before',) class ReadablePostFilter(filters.BaseFilterBackend): """ Since channels have permissions, posts posted in a channel are not visible for anyone. This filter makes sure only posts a user can read will be returned. """ def filter_queryset(self, request, queryset, view): readable_channel_ids = get_readable_channel_ids(request.user) return queryset.filter(channel__in=readable_channel_ids) class PostFilter(FilterSet): author = CharFilter(name='author', lookup_type='icontains', label='author contain filter') type = CharFilter(name='type', label='filter on letter value') content = CharFilter(name='type', lookup_type='icontains', label='content contain filter') channel = NumberFilter(name='channel', label='filters posts sent on provided channel') afterid = NumberFilter(name='id', lookup_type='gt', label='filter posts posted after given post id') dflabel = 'filter posts posted after or on provided date / time' datefrom = DateTimeFilter(name='date', lookup_type='gte', label=dflabel) dtlabel = 'filter posts posted before or on provided date / time' dateto = DateTimeFilter(name='date', lookup_type='lte', label=dtlabel) content = CharFilter(name='content', lookup_type='icontains', label='content contain filter') class Meta: model = Post fields = ('author', 'type', 'content', 'datefrom', 'dateto',)
2.25
2
onetrack/TrackingData.py
murnanedaniel/OneTrack
1
12792875
<filename>onetrack/TrackingData.py # import all import os import sys import logging import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from scipy import sparse as sps from tqdm import tqdm from tqdm.contrib.concurrent import process_map import networkx as nx from functools import partial from .tracking_utils import * from .plotting_utils import * def load_single_pytorch_file(file): """ Loads a single Pytorch Geometric file """ return torch.load(file, map_location="cpu") def build_single_candidates(instance, building_method, sanity_check, **kwargs): instance.build_candidates(building_method, sanity_check, **kwargs) return instance def evaluate_single_candidates(instance, evaluation_method, **kwargs): instance.evaluate_candidates(**kwargs) return instance class TrackingData(): """ A class that holds a list of Events, specifically for the tracking pipeline. An Event contains a Graph and an EventTruth object. """ def __init__(self, files): self.files = files self.event_data = None self.events = None self.evaluation = None logging.info("Loading files") self.__load_files() assert self.event_data is not None # Test if files are loaded logging.info("Building events") self.__build_events() assert self.events is not None # Test if events are built def __len__(self): return len(self.events) def __getitem__(self, idx): event = self.events[idx] return event def __load_files(self): """ Loads files based on type """ file_type = self.__get_file_type() if file_type == "pytorch_geometric": self.event_data = self.__load_pytorch_files() else: raise ValueError("Unknown file type") def __build_events(self): """ Builds Event objects from event data """ # self.events = [] # for data in tqdm(self.event_data): # self.events.append(Event(data)) self.events = process_map(Event, self.event_data)#, max_workers=1) def __get_file_type(self): """ Determine type of file """ try: sample = torch.load(self.files[0], map_location="cpu") if str(type(sample)) == "<class 'torch_geometric.data.data.Data'>": return "pytorch_geometric" else: raise ValueError("Unknown file type, this is not a Pytorch Geometric file") except: raise ValueError("Unknown file type, there are still more file types to be added!") def __load_pytorch_files(self): """ Loads all Pytorch geometric files in file list """ # data = [] # for file in tqdm(self.files): # data.append(torch.load(file, map_location="cpu")) data = process_map(load_single_pytorch_file, self.files)#, max_workers=1) return data def build_candidates(self, building_method="CC", sanity_check=False, **kwargs): """ Builds track candidates from events """ logging.info(f"Building candidates with sanity check: {sanity_check}") build_single_candidates_partial = partial(build_single_candidates, building_method=building_method, sanity_check=sanity_check, **kwargs) self.events = process_map(build_single_candidates_partial, self.events, max_workers=8) # for event in tqdm(self.events): # event.build_candidates(building_method, sanity_check, **kwargs) def evaluate_candidates(self, evaluation_method="matching", **kwargs): """ Evaluates track candidates from events """ logging.info("Evaluating candidates") evaluate_single_candidates_partial = partial(evaluate_single_candidates, evaluation_method=evaluation_method, **kwargs) self.events = process_map(evaluate_single_candidates_partial, self.events, max_workers=8) # for event in tqdm(self.events): # event.evaluate_candidates(evaluation_method, **kwargs) # TODO: Tidy this up! n_true_tracks, n_reco_tracks, n_matched_particles, n_matched_tracks, n_duplicated_tracks, n_single_matched_particles = 0, 0, 0, 0, 0, 0 for event in self.events: n_true_tracks += event.candidates.evaluation["n_true_tracks"] n_reco_tracks += event.candidates.evaluation["n_reco_tracks"] n_matched_particles += event.candidates.evaluation["n_matched_particles"] n_single_matched_particles += event.candidates.evaluation["n_single_matched_particles"] n_matched_tracks += event.candidates.evaluation["n_matched_tracks"] n_duplicated_tracks += event.candidates.evaluation["n_duplicated_tracks"] building_method = event.candidates.building_method self.evaluation = { "building_method": building_method, "evaluation_method": evaluation_method, "eff": n_matched_particles / n_true_tracks, "single_eff": n_single_matched_particles / n_true_tracks, "fr": 1 - (n_matched_tracks / n_reco_tracks), "dup": n_duplicated_tracks / n_reco_tracks, } print(self.evaluation) print(f"n_true_tracks: {n_true_tracks}, n_reco_tracks: {n_reco_tracks}, n_matched_particles: {n_matched_particles}, n_matched_tracks: {n_matched_tracks}, n_duplicated_tracks: {n_duplicated_tracks}") def plot_evaluation(self, metric="eff", observable="eta", **kwargs): """ Plots evaluation of candidates """ if self.evaluation is None: raise ValueError("No evaluation available") if self.evaluation["evaluation_method"] == "matching": self.__plot_matching_evaluation(metric, observable, **kwargs) else: raise NotImplementedError("Plotting not implemented yet for that method") def __plot_matching_evaluation(self, metric="eff", observable="eta", **kwargs): """ Plots matching evaluation of candidates """ all_particles = pd.concat([event.candidates.evaluation["particles"].merge(event.event_truth.particles, on="particle_id", how="inner") for event in self.events]) plot_observable_performance(all_particles) class Event(): """ An Event contains a Graph and an EventTruth object. It represents a unit of particle physics data. """ def __init__(self, data): self.graph = None self.event_truth = None self.candidates = None self.data = self.__process_data(data) def __process_data(self, data): """ Processes data to be used in the pipeline """ if str(type(data)) == "<class 'torch_geometric.data.data.Data'>": self.graph = Graph(data_dict = data.to_dict()) self.event_truth = EventTruth(event_file = data.event_file) else: raise ValueError("Unknown data type") # Define representation def __repr__(self): return f"Event(graph=({len(self.graph.hits['x'])} hits, {self.graph.edges['edge_index'].shape[1]} edges), event_truth=({len(self.event_truth)} particles), candidates=({len(self.candidates)} candidates))" def build_candidates(self, building_method="CC", sanity_check=False, **kwargs): """ Builds track candidates from event """ self.candidates = self.graph.build_candidates(building_method, sanity_check, **kwargs) def evaluate_candidates(self, method="matching", **kwargs): """ Evaluates track candidates from event """ self.candidates.evaluate(method, self.event_truth, **kwargs) class Graph(): def __init__(self, data_dict): self.hits = None self.edges = None self.graph_data = None assert type(data_dict) == dict, "Data must be a dictionary" self.__process_data(data_dict) # Test if data is loaded assert self.hits is not None assert self.edges is not None assert self.graph_data is not None # Define representation def __repr__(self): return f"Graph(hits={self.hits}, edges={self.edges}, graph_data={self.graph_data})" def __len__(self): return len(self.hits["x"]) def __process_data(self, data): """ Processes data to be used in the pipeline """ if type(data) == dict: self.__get_hit_data(data) self.__get_edge_data(data) self.__get_graph_data(data) else: raise ValueError("Unknown data type") def __get_hit_data(self, data): """ Returns hit data """ self.hits = {} assert "x" in data.keys(), "At least need a feature called x, otherwise define default node feature in config" # Check if x is in data for key in data.keys(): if len(data[key]) == len(data["x"]): self.hits[key] = data[key] def __get_edge_data(self, data): """ Returns edge data """ self.edges = {} assert "edge_index" in data.keys(), "At least need a feature called edge_index, otherwise define default edge feature in config" # Check if edge_index is in data for key in data.keys(): if ( len(data[key].shape) > 1 and data[key].shape[1] == data["edge_index"].shape[1] or len(data[key].shape) == 1 and data[key].shape[0] == data["edge_index"].shape[1] ): self.edges[key] = data[key] def __get_graph_data(self, data): """ Returns graph data """ self.graph_data = {k: data[k] for k in data.keys() - (self.hits.keys() & self.edges.keys())} def build_candidates(self, building_method="CC", sanity_check=False, **kwargs): """ Builds track candidates from graph """ if building_method == "CC": candidates = self.__get_connected_components(sanity_check, **kwargs) elif building_method == "AP": candidates = self.__get_all_paths(sanity_check, **kwargs) elif building_method == "KF": candidates = self.__get_kf_candidates(**kwargs) else: raise ValueError("Unknown building method") return candidates def __get_connected_components(self, sanity_check=False, score_cut=0.5, **kwargs): """ Builds connected components from graph """ if sanity_check: edge_mask = self.edges["y"].bool() else: edge_mask = self.edges["scores"] > score_cut row, col = self.edges["edge_index"][:, edge_mask] edge_attr = np.ones(row.size(0)) N = self.hits["x"].size(0) sparse_edges = sps.coo_matrix((edge_attr, (row.numpy(), col.numpy())), (N, N)) num_candidates, candidate_labels = sps.csgraph.connected_components(sparse_edges, directed=False, return_labels=True) candidates = Candidates(self.hits["hid"], candidate_labels, building_method="CC") return candidates def __get_kf_candidates(self, **kwargs): """ Builds KF candidates from graph """ raise NotImplementedError("KF candidates not implemented yet") def __get_all_paths(self, sanity_check=False, score_cut=0.5, **kwargs): """ Returns all paths from graph """ if sanity_check: edge_mask = self.edges["y"].bool() else: edge_mask = self.edges["scores"] > score_cut # Order edges by increasing R r, phi, z = self.hits["x"].T R = np.sqrt(r**2 + z**2) # in_edges are the nodes towards the inner of the detector, out_edges are the nodes towards the outer in_edges, out_edges = self.edges["edge_index"][:, edge_mask] # Ensure edges are numpy arrays if (type(in_edges) != np.ndarray) or (type(out_edges) != np.ndarray): in_edges = in_edges.numpy() out_edges = out_edges.numpy() # Sort edges by increasing R wrong_direction_mask = R[in_edges] > R[out_edges] in_edges[wrong_direction_mask], out_edges[wrong_direction_mask] = out_edges[wrong_direction_mask], in_edges[wrong_direction_mask] starting_nodes = np.unique(in_edges[~np.isin(in_edges, out_edges)]) ending_nodes = np.unique(out_edges[~np.isin(out_edges, in_edges)]) # Build graph G = nx.DiGraph() G.add_edges_from(np.stack([in_edges, out_edges]).T) all_paths = nx.shortest_path(G) all_paths = {path: all_paths[path] for path in all_paths.keys() if path in starting_nodes} valid_paths = [all_paths[start_key][end_key] for start_key in all_paths.keys() for end_key in all_paths[start_key].keys() if (start_key != end_key and end_key in ending_nodes)] hit_list = np.array(list(itertools.chain.from_iterable(valid_paths))) track_label_list = np.repeat(np.arange(len(valid_paths)), [len(path) for path in valid_paths]) candidates = Candidates(hit_list, track_label_list, building_method="AP") # TODO: CHECK THAT HIT ID IS USED CORRECTLY!! return candidates class EventTruth(): def __init__(self, event_file): self.particles = None self.hit_truth = None assert type(event_file) == str or type(event_file) == np.str_, "Event file must be a string" self.__process_data(event_file) # Test data loaded properly assert self.particles is not None assert self.hit_truth is not None # Define representation def __repr__(self): return f"EventTruth(particles={self.particles}, hit_truth={self.hit_truth})" def __len__(self): return len(self.particles) def __process_data(self, event_file): """ Processes data to be used in the pipeline """ self.__get_particle_data(event_file) self.__get_hit_truth_data(event_file) def __get_particle_data(self, event_file): """ Returns particle data """ try: particle_filename = event_file + "-particles.csv" self.particles = pd.read_csv(particle_filename) except: raise ValueError("Could not find particles file") def __get_hit_truth_data(self, event_file): """ Returns hit truth data """ try: hit_truth_filename = event_file + "-truth.csv" self.hit_truth = pd.read_csv(hit_truth_filename) self.hit_truth = self.__process_hit_truth(self.hit_truth) except: raise ValueError("Could not find hit truth file") def __process_hit_truth(self, hit_truth): """ Processes hit truth data """ hit_truth.drop_duplicates(subset=["hit_id"], inplace=True) return hit_truth class Candidates(): def __init__(self, hit_ids, track_ids, building_method, **kwargs): self.hit_ids = hit_ids self.track_ids = track_ids self.building_method = building_method self.evaluation = None def __repr__(self): return f"{self.__len__()} Candidates(hit_ids={self.hit_ids}, track_ids={self.track_ids})" def __len__(self): return len(np.unique(self.track_ids)) def get_df(self): """ Returns dataframe of candidates """ df = pd.DataFrame({"hit_id": self.hit_ids, "track_id": self.track_ids}) return df def evaluate(self, method, event_truth, **kwargs): """ Returns evaluation of candidates """ if method == "matching": self.evaluation = self.__matching_reconstruction(event_truth.particles, event_truth.hit_truth, **kwargs) elif method == "iou": self.evaluation = self.__iou_reconstruction(**kwargs) else: raise ValueError("Unknown method") def __matching_reconstruction(self, particles, hit_truth, **kwargs): """ Evaluates track candidates from event with matching criteria. Criteria given by ratios of common hits in candidates ("reconstructed") and particles ("truth") """ particles, candidates = match_reco_tracks(self.get_df(), hit_truth, particles, build_method = self.building_method, **kwargs) (n_true_tracks, n_reco_tracks, n_matched_particles, n_single_matched_particles, n_matched_tracks, n_duplicated_tracks, n_matched_tracks_poi) = get_statistics(particles, candidates) evaluation = { "evaluation_method": "matching", "particles": particles, "candidates": candidates, "eff": n_matched_particles / n_true_tracks, "fr": 1 - (n_matched_tracks / n_reco_tracks), "dup": n_duplicated_tracks / n_reco_tracks, "n_true_tracks": n_true_tracks, "n_reco_tracks": n_reco_tracks, "n_matched_particles": n_matched_particles, "n_single_matched_particles": n_single_matched_particles, "n_matched_tracks": n_matched_tracks, "n_duplicated_tracks": n_duplicated_tracks, "n_matched_tracks_poi": n_matched_tracks_poi } return evaluation def __iou_reconstruction(self, **kwargs): """ Evaluates track candidates from event with Intersection over Union (IoU) """ raise NotImplementedError("IOU reconstruction not implemented yet")
2.4375
2
todo_api/services/todo_service.py
acuencadev/distributed-todo-api
0
12792876
import uuid from typing import List, Optional from todo_api.extensions import db from todo_api.models import Todo def create_todo(text: str, user_id: int) -> Todo: todo = Todo(public_id=uuid.uuid4(), text=text, user_id=user_id) db.session.add(todo) db.session.commit() return todo def get_all_todos() -> List[Todo]: return Todo.query.all() def get_todo_by_public_id(public_id: str) -> Optional[Todo]: todo = Todo.query.filter_by(public_id=public_id).first() return todo def update_todo(public_id: str, text: str, completed: bool) -> Optional[Todo]: todo = Todo.query.filter_by(public_id=public_id).first() if not todo: return None todo.text = text todo.completed = completed db.session.commit() return todo def complete_todo(public_id: str) -> Optional[Todo]: todo = Todo.query.filter_by(public_id=public_id).first() if not todo: return None todo.completed = True db.session.commit() return todo def delete_todo(public_id: str) -> bool: todo = Todo.query.filter_by(public_id=public_id).first() if not todo: return False db.session.delete(todo) db.session.commit() return True def delete_all_todos() -> int: todos_deleted = Todo.query.delete() db.session.commit() return todos_deleted
2.390625
2
simpleml/pipelines/__init__.py
ptoman/SimpleML
15
12792877
<reponame>ptoman/SimpleML ''' Import modules to register class names in global registry Define convenience classes composed of different mixins ''' __author__ = '<NAME>' from .base_pipeline import Pipeline, AbstractPipeline, DatasetSequence, TransformedSequence from .validation_split_mixins import Split, SplitContainer, NoSplitMixin, RandomSplitMixin,\ ChronologicalSplitMixin, ExplicitSplitMixin # Mixin implementations for convenience class NoSplitPipeline(Pipeline, NoSplitMixin): pass class ExplicitSplitPipeline(Pipeline, ExplicitSplitMixin): pass class RandomSplitPipeline(RandomSplitMixin, Pipeline): # Needs to be used as base class because of MRO initialization pass class ChronologicalSplitPipeline(ChronologicalSplitMixin, Pipeline): # Needs to be used as base class because of MRO initialization pass
1.976563
2
serie3/matrix.py
Koopakiller/Edu-NLA
0
12792878
# Authors: <NAME> (lambertt) and <NAME> (odafaluy) import numpy import scipy import scipy.linalg import plot class Matrix: """ Provides Methods for operations with an hilbert- or a special triangular matrix. """ def __init__(self, mtype, dim, dtype): """ Initializes the class instance. :param mtype: The matrix type ("hilbert" or "saite" for triangular) :param dim: The dimension. Must be > 0. :param dtype: The type to use. Can be "float16", "float32" or "flaot64" """ if mtype not in ["saite", "hilbert"]: raise Exception("Unknown mtype. Allowed are 'hilbert' and 'saite'.") self.mtype = mtype if dim <= 0: raise Exception("dim must be > 0") self.dim = dim if dtype not in ["float16", "float32", "float64"]: raise Exception("Unknown dtype. Allowed are 'float16', 'float32' and 'float64'.") self.dtype = dtype self.dtype_constructor = None self.matrix = None self.inv = None self.l = None self.u = None self.create_matrix_and_inv() def create_matrix_and_inv(self): """ Calculates the matrix from the values given to the constructor and its inverse. :return: Nothing. """ arr = [] if self.mtype == "saite": for row in xrange(0, self.dim): arr.append([]) for col in xrange(0, self.dim): if row == col: arr[row].append(2) elif row - 1 == col or col - 1 == row: arr[row].append(-1) else: arr[row].append(0) if self.mtype == "hilbert": arr = scipy.linalg.hilbert(self.dim).tolist() self.matrix = numpy.array(arr, dtype=self.dtype) self.inv = scipy.linalg.inv(self.matrix) def condition(self): """ Calculates the condition of the matrix. :return: The condition of the matrix. """ return numpy.linalg.norm(self.matrix, ord=numpy.inf) * numpy.linalg.norm(self.inv, ord=numpy.inf) def lu(self): """ Splits the matrix into l (left lower) and u (right upper) matrices. (Matrix A = LU) :return: A Tuple l,u of matrices """ if self.l is None or self.u is None: self.l, self.u = scipy.linalg.lu(self.matrix, permute_l=True) return self.l, self.u def solve(self, b): """ Solves the equation Ax=b for x and the matrix A. :param b: The vector b to solve the Matrix for. :return: The vector x from Ax=b. """ l, u = self.lu() x = scipy.linalg.solve_triangular(l, b, lower=True) x = scipy.linalg.solve_triangular(u, x, lower=False) return x def main_31b(mtypes, dims, dtypes): """ Executes experiments as described in 3.1B. :param mtypes: The mtype-values to use. :param dims: The dimensions to use. :param dtypes: The dtype-values to use. :return: Nothing. """ for mtype in mtypes: for dim in dims: for dtype in dtypes: print("") print("Experiment for mtype={0}, dim={1}, dtype={2}".format(mtype, dim, dtype)) identity = numpy.identity(dim, dtype) matrix = Matrix(mtype, dim, dtype) m = identity - (numpy.dot(matrix.matrix, matrix.inv)) try: m_inv = scipy.linalg.inv(m) except (numpy.linalg.linalg.LinAlgError, ValueError) as ex: print("Cannot calculate inverse of M: " + ex.message) continue condition = numpy.linalg.norm(m, ord=numpy.inf) * numpy.linalg.norm(m_inv, ord=numpy.inf) print("cond(M) = {1} || I - M M^(-1) || = {0}".format(condition, matrix.condition())) def main_32b_saite(n): plot.plot(n) def main_32b_hilbert(i_max, dtype, n): """ Executes experiments as described in 3.2B B. (Hilbert) :param i_max: The maximum i to use :param dtype: the data-type to use (float16, float32 or float64) :param n: The dimension to use. :return: Nothing. """ matrix = Matrix("hilbert", n, dtype) print("Hilbert Matrix with n={0} and type {1}".format(n, dtype)) result = numpy.identity(n, dtype=dtype) for i in xrange(1, i_max + 1): result = numpy.dot(result, matrix.matrix) print("i = {0}, x^{0} = ".format(i)) print(result) def main_32b(dtypes, n_iterable, i_iterable): """ Executes experiments as described in 3.2B :param dtypes: the data-type to use (float16, float32 or float64) :param n_iterable: The n-values to use. :param i_iterable: The i-values to use. (if i>n it will be ignored). :return: Nothing. """ for dtype in dtypes: for n in n_iterable: for i_max in i_iterable: if i_max > n: continue main_32b_hilbert(i_max, dtype, n) def main(experiment, mtypes=None, dims=None, dtypes=None, n_iterable=None, i_iterable=None): """ Executes experiments as described. See start.py for more information. :return: Nothing. """ if experiment == "3.1B": main_31b(mtypes, dims, dtypes) elif experiment == "3.2B - A": for n in n_iterable: main_32b_saite(n) elif experiment == "3.2B - B": main_32b(dtypes, n_iterable, i_iterable) else: print("Unknown experiment")
3.265625
3
examples/quadtree/quadtree_demo_insert.py
joshuaskelly/Toast
0
12792879
import pygame import random from toast.quadtree import QuadTree from toast.scene_graph import GameObject, Scene from toast.camera import Camera from toast.event_manager import EventManager from examples.demo_game import DemoGame class QuadTreeVisualizer(GameObject): def __init__(self, quadtree): super(QuadTreeVisualizer, self).__init__() self.quadtree = quadtree def render(self, surface, offset=(0,0)): self.render_quadtree(surface, self.quadtree) def render_quadtree(self, surface, quadtree): pygame.draw.rect(surface, (255,0,0), quadtree.quadrant, 1) if quadtree.northwest_tree is not None: self.render_quadtree(surface, quadtree.northwest_tree) if quadtree.northeast_tree is not None: self.render_quadtree(surface, quadtree.northeast_tree) if quadtree.southwest_tree is not None: self.render_quadtree(surface, quadtree.southwest_tree) if quadtree.southeast_tree is not None: self.render_quadtree(surface, quadtree.southeast_tree) if quadtree.bucket is not []: for item in quadtree.bucket: item.render(surface) class RectComponent(GameObject): def __init__(self, left, top, width, height): super(RectComponent, self).__init__() self.left = left self.top = top self.width = width self.height = height def __getitem__(self, index): if index == 0: return self.left if index == 1: return self.top if index == 2: return self.width if index == 3: return self.height def render(self, surface, offset=(0,0)): rect = self.left, self.top, self.width, self.height pygame.draw.rect(surface, (255,255,255), rect, 1) class NewScene(Scene): def __init__(self): super(NewScene, self).__init__() EventManager.subscribe(self, 'onMouseDown') Camera.current_camera.viewport = 512, 512 Camera.current_camera.position = 256, 256 w = h = 2**9 region = (0,0,w,h) self.quadtree = QuadTree([], region) self.add(QuadTreeVisualizer(self.quadtree)) def onMouseDown(self, event): if event.button is 1: p = DemoGame.camera_to_world(event.pos) d = 2 ** random.randint(1,5) self.quadtree.insert(RectComponent(p[0], p[1], d, d)) game = DemoGame((512, 512), NewScene) game.run()
2.578125
3
migrations/versions/c1ca0249cb60_update_tiles_v0.1.0.py
mzaglia/bdc-db
0
12792880
"""empty message Revision ID: c1ca0249cb60 Revises: 0b986a10b559 Create Date: 2020-01-07 08:36:09.067866 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'c1ca0249cb60' down_revision = '0b986a10b559' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('tiles', sa.Column('max_y', sa.Float(), nullable=True)) op.add_column('tiles', sa.Column('min_x', sa.Float(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('tiles', 'min_x') op.drop_column('tiles', 'max_y') # ### end Alembic commands ###
1.34375
1
test/language/expressions/python/FullConstTypeTest.py
dkBrazz/zserio
86
12792881
import unittest from testutils import getZserioApi class FullConstTypeTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.api = getZserioApi(__file__, "expressions.zs").full_const_type def testBitSizeOfWithOptional(self): fullConstTypeExpression = self.api.FullConstTypeExpression(self.FULL_VALID_VALUE, self.FULL_ADDITIONAL_VALUE) self.assertEqual(self.FULL_CONST_TYPE_EXPRESSION_BIT_SIZE_WITH_OPTIONAL, fullConstTypeExpression.bitsizeof()) def testBitSizeOfWithoutOptional(self): fullConstTypeExpression = self.api.FullConstTypeExpression() fullConstTypeExpression.value = self.FULL_INVALID_VALUE self.assertEqual(self.FULL_CONST_TYPE_EXPRESSION_BIT_SIZE_WITHOUT_OPTIONAL, fullConstTypeExpression.bitsizeof()) FULL_CONST_TYPE_EXPRESSION_BIT_SIZE_WITH_OPTIONAL = 10 FULL_CONST_TYPE_EXPRESSION_BIT_SIZE_WITHOUT_OPTIONAL = 7 FULL_VALID_VALUE = 0x01 FULL_INVALID_VALUE = 0x00 FULL_ADDITIONAL_VALUE = 0x03
2.546875
3
api/src/opentrons/config/gripper_config.py
Opentrons/protocol_framework
0
12792882
from __future__ import annotations from dataclasses import dataclass import logging from typing import Tuple, Optional from typing_extensions import Literal log = logging.getLogger(__name__) GripperName = Literal["gripper"] GripperModel = Literal["gripper_v1"] DEFAULT_GRIPPER_CALIBRATION_OFFSET = [0.0, 0.0, 0.0] @dataclass(frozen=True) class GripperConfig: gripper_offset: Tuple[float, float, float] gripper_current: float display_name: str name: GripperName max_travel: float home_position: float steps_per_mm: float idle_current: float model: GripperModel DUMMY_GRIPPER_CONFIG = GripperConfig( gripper_offset=(0.0, 0.0, 0.0), gripper_current=1.0, display_name="dummy_gripper", name="gripper", max_travel=50.0, home_position=0.0, steps_per_mm=480.0, idle_current=0.2, model="gripper_v1", ) def load( gripper_model: Optional[int] = None, gripper_id: Optional[int] = None ) -> GripperConfig: return DUMMY_GRIPPER_CONFIG # TODO: load actual gripper config
2.484375
2
importer/management/commands/delete_categories.py
dragon-dxw/nhs-ei.website
0
12792883
<gh_stars>0 import sys from django.core.management.base import BaseCommand from cms.categories.models import Category from cms.posts.models import Post from cms.blogs.models import Blog class Command(BaseCommand): help = "Deletes categories (bulk action)" def handle(self, *args, **options): """remove categories first""" posts = Post.objects.all() blogs = Blog.objects.all() if posts or blogs: sys.stdout.write( "⚠️ Please delete posts and blogs before running this commend\n" ) sys.exit() categories = Category.objects.all() if not categories.count(): sys.stdout.write("✅ Categories is empty\n") else: categories_length = len(categories) sys.stdout.write("Categories to delete: {}\n".format(categories_length)) for category in categories: sys.stdout.write("-") category.delete() categories_length -= 1 sys.stdout.write("\n✅ Complete\n")
2.1875
2
application/pages/dialog_template/__init__.py
slamer59/awesome-panel
0
12792884
<filename>application/pages/dialog_template/__init__.py """Provides a servable view of a Panel application with a dialog""" from .app import view
1.382813
1
app/visualization.py
mateuszbaranczyk/portfolio
0
12792885
import matplotlib.pyplot as plt import pandas as pd from app.requester import ExchangeRateRequester class Grapher: def __init__(self) -> None: self.exchange_rate_requester = ExchangeRateRequester() def _create_historical_rates_df(self, transactions) -> pd.DataFrame: assert transactions, "There are no transactions" first_transaction = transactions[0].date historical_rates_date = self.exchange_rate_requester.get_historical_bids(first_transaction) historical_rates_df = pd.DataFrame(list(historical_rates_date.items()), columns=["date", "rate"]) return historical_rates_df @staticmethod def run_calculations(operations_df: pd.DataFrame) -> pd.DataFrame: operations_df["transaction[+/-]"] = operations_df["transaction[+/-]"].fillna(0) operations_df["portfolio_value"] = operations_df["transaction[+/-]"].cumsum() operations_df["transaction_rate"] = operations_df["transaction_rate"].fillna(method="backfill") operations_df["value_pln_temp"] = operations_df["portfolio_value"] * operations_df["rate"] operations_df["value_pln_after_transaction"] = ( operations_df["portfolio_value"] * operations_df["transaction_rate"] ) operations_df["profit"] = ( operations_df["value_pln_temp"] / operations_df["value_pln_after_transaction"] - 1 ) * 100 return operations_df def _create_operations_df(self, transactions: list) -> pd.DataFrame: assert transactions, "There are no transactions" operations_df = self._create_historical_rates_df(transactions) transactions_df = pd.DataFrame(transactions, columns=["date", "transaction[+/-]", "transaction_rate"]) operations_df = pd.merge(operations_df, transactions_df, on="date", how="outer") calculated_operations_df = self.run_calculations(operations_df) return calculated_operations_df def plot_historical_rates(self, historical_rates: pd.DataFrame) -> None: historical_rates.plot(x="date", y="rate") plt.grid() plt.xlabel("date") plt.xticks(rotation=45) plt.ylabel("rate") plt.title("Historical rates [PLN]") plt.tight_layout() plt.show() def plot_portfolio_value_pln(self, operations: pd.DataFrame) -> None: operations.plot(x="date", y="value_pln_temp") plt.grid() plt.xlabel("date") plt.xticks(rotation=55) plt.ylabel("value") plt.title("Historical portfolio value [PLN]") plt.tight_layout() plt.show() def plot_profit(self, operations: pd.DataFrame) -> None: operations.plot(x="date", y="profit") plt.grid() plt.xlabel("date") plt.xticks(rotation=45) plt.ylabel("profit") plt.title("Historical portfolio profit [%]") plt.tight_layout() plt.show()
2.828125
3
biorxiv/biorxiv_extractor.py
danich1/annorxiver
4
12792886
<reponame>danich1/annorxiver import os from pathlib import Path import re import subprocess import tqdm import pandas as pd files = ( list(Path("Back_Content").rglob("*.meca")) + list(Path("Current_Content").rglob("*.meca")) ) doc_file_hash_mapper = [] already_seen = set() for file_name in tqdm.tqdm(files): doc_hash = file_name.name result = ( subprocess.Popen( f"unzip -l {file_name}", shell=True, stdout=subprocess.PIPE ) .communicate() ) match = re.search(r'content/([\d]+)\.xml', str(result[0])) content_file_name = match.group(1) version = 1 updated_file_name = f"{content_file_name}_v{version}" while updated_file_name in already_seen: version += 1 updated_file_name = f"{content_file_name}_v{version}" already_seen.add(updated_file_name) if match is None: print(f"{file_name} did not match the file pattern [\d]+") continue doc_file_hash_mapper.append( { "hash": str(file_name), "doc_number": f"{updated_file_name}.xml" } ) result = ( subprocess .Popen( f"unzip -jo {file_name} content/{content_file_name}.xml -d biorxiv_articles/.", shell=True, stdout=subprocess.PIPE ) .communicate() ) rename_result = ( subprocess .Popen( f"mv biorxiv_articles/{content_file_name}.xml biorxiv_articles/{updated_file_name}.xml", shell=True, stdout=subprocess.PIPE ) .communicate() ) ( pd.DataFrame .from_records(doc_file_hash_mapper) .to_csv("biorxiv_doc_hash_mapper.tsv", sep="\t", index=False) )
2.28125
2
tantrum/workflows/__init__.py
lifehackjim/tantrum
3
12792887
# -*- coding: utf-8 -*- """Workflow encapsulation package for performing actions using the Tanium API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import datetime import json import time from collections import OrderedDict from . import exceptions from .. import utils from .. import results class Workflow(object): def __init__(self, adapter, obj, lvl="info", result=None): """Constructor. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. obj (:obj:`tantrum.api_models.ApiModel`): API Object to use for this workflow. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". result (:obj:`tantrum.results.Result`, optional): Result object that ``obj`` was generated from. Defaults to: None. """ self._lvl = lvl self.log = utils.logs.get_obj_log(obj=self, lvl=lvl) self.obj = obj self.adapter = adapter self._result = result self._last_result = result def __repr__(self): """Show object info. Returns: (:obj:`str`) """ return self.__str__() @property def api_objects(self): return self.adapter.api_objects class Clients(Workflow): def __str__(self): """Show object info. Returns: (:obj:`str`) """ ctmpl = "{c.__module__}.{c.__name__}".format bits = ["count={}".format(len(self.obj))] bits = "({})".format(", ".join(bits)) cls = ctmpl(c=self.__class__) return "{cls}{bits}".format(cls=cls, bits=bits) @staticmethod def build_last_reg_filter( adapter, last_reg=300, operator="greaterequal", not_flag=False, filters=None ): """Build a set of filters to be used in :meth:`Clients.get_all. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. last_reg (:obj:`int`, optional): Only return clients that have registered in N number of seconds. Defaults to: 300. operator (:obj:`str`, optional): Defines how the last_registered attribute of each client status is compared against the value in last_reg. Must be one of :data:`OPERATOR_MAP`. Defaults to: "greaterequal". not_flag (:obj:`int`, optional): If True have the API return all rows that do not match the operator. Defaults to: 1000. filters (:obj:`object`, optional): If a CacheFilterList object is supplied, the last_registration filter generated by this method will be appended to it. If this is None, a new CacheFilterList will be created with the last_registration filter being the only item in it. Defaults to: None. Returns: :obj:`Clients` """ op_dict = get_operator_map(operator) now_dt = datetime.datetime.utcnow() ago_td = datetime.timedelta(seconds=-(int(last_reg))) ago_dt = now_dt + ago_td ago_str = ago_dt.strftime(adapter.api_objects.module_dt) cfilter = adapter.api_objects.CacheFilter( field="last_registration", type="Date", operator=op_dict["op"], not_flag=not_flag, value=ago_str, ) filters = filters or adapter.api_objects.CacheFilterList() filters.append(cfilter) return filters @classmethod def get_all_iter( cls, adapter, filters=None, sort_fields="last_registration", page_size=1000, max_page_count=0, cache_expiration=600, sleep=2, lvl="info", **kwargs ): """Get all Clients as an iterator. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. filters (:obj:`object`, optional): Tantrum CacheFilterList returned from :meth:`Clients.build_last_reg_filter`. Defaults to: None. sort_fields (:obj:`str`, optional): Attribute of a ClientStatus object to have API sort the return on. Defaults to: "last_registration". page_size (:obj:`int`, optional): Get N number of clients at a time from the API. If 0, disables paging and gets all clients in one call. Defaults to: 1000. max_page_count (:obj:`int`, optional): Only fetch up to this many pages. If 0, get all pages. Defaults to: 0. cache_expiration (:obj:`int`, optional): When page_size is not 0, have the API keep the cache of clients for this many seconds before expiring the cache. Defaults to: 600. sleep (:obj:`int`, optional): Wait N seconds between fetching each page. Defaults to: 2. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get`. Yields: :obj:`tantrum.api_objects.ApiObjects`: ClientStatus API object """ log = utils.logs.get_obj_log(obj=cls, lvl=lvl) get_args = {} get_args.update(kwargs) get_args["cache_sort_fields"] = sort_fields get_args["obj"] = adapter.api_objects.ClientStatus() row_start = 0 row_count = page_size if filters is not None: get_args["cache_filters"] = filters if page_size: get_args["row_start"] = row_start get_args["row_count"] = row_count get_args["cache_expiration"] = cache_expiration result = adapter.cmd_get(**get_args) result_obj = result() received_rows = len(result_obj) result_cache = getattr(result_obj, "cache_info", None) total_rows = getattr(result_cache, "filtered_row_count", 0) cache_id = getattr(result_cache, "cache_id", None) get_args["cache_id"] = cache_id page_count = 1 m = "Received initial page length={len}, cache_info={cache!r}" m = m.format(len=received_rows, cache=result_cache) log.info(m) for obj in result_obj: yield obj if page_size: paging_get_args = {k: v for k, v in get_args.items()} while True: if max_page_count and page_count >= max_page_count: m = "Reached max page count {c}, considering all clients fetched" m = m.format(c=max_page_count) log.info(m) break if received_rows >= total_rows: m = "Reached total rows count {c}, considering all clients fetched" m = m.format(c=total_rows) log.info(m) break page_count += 1 row_start += row_count paging_get_args["row_start"] = row_start paging_result = adapter.cmd_get(**paging_get_args) log.debug(result.pretty_bodies()) paging_result_obj = paging_result() page_rows = len(paging_result_obj) received_rows += page_rows m = [ "Received page_rows={page_rows}", "received_rows={received_rows}", "total_rows={total_rows}", ] m = ", ".join(m) m = m.format( page_rows=page_rows, received_rows=received_rows, total_rows=total_rows, ) log.info(m) for obj in paging_result_obj: yield obj time.sleep(sleep) @classmethod def get_all(cls, adapter, **kwargs): """Get all Clients. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. **kwargs: rest of kwargs: Passed to :meth:`Clients.get_all_iter`. Returns: :obj:`tantrum.api_objects.ApiObjects`: SystemStatusList API object """ obj = adapter.api_objects.SystemStatusList() for client_obj in cls.get_all_iter(adapter=adapter, **kwargs): obj.append(client_obj) return obj class Sensor(Workflow): def __str__(self): """Show object info. Returns: (:obj:`str`) """ ctmpl = "{c.__module__}.{c.__name__}".format bits = [ "name={!r}".format(self.obj.name), "filter={}".format(", ".join(self.filter_vals)), ] if self.params_defined or self.param_values: bits += [ "params_defined={}".format(list(self.params_defined.keys())), "param_values={}".format(list(self.param_values.items())), ] bits = "({})".format(", ".join(bits)) cls = ctmpl(c=self.__class__) return "{cls}{bits}".format(cls=cls, bits=bits) @classmethod def get_by_name(cls, adapter, name, lvl="info"): """Get a sensor object by name. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. name (:obj:`str`): Name of sensor to fetch. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". Returns: :obj:`Sensor` """ result = adapter.cmd_get(obj=adapter.api_objects.Sensor(name=name)) return cls(adapter=adapter, obj=result(), lvl=lvl, result=result) @classmethod def get_by_id(cls, adapter, id, lvl="info"): """Get a sensor object by id. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. id (:obj:`int`): id of sensor to fetch. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". Returns: :obj:`Sensor` """ result = adapter.cmd_get(obj=adapter.api_objects.Sensor(id=id)) return cls(adapter=adapter, obj=result(), lvl=lvl, result=result) @property def params_defined(self): """Get the parameter definitions for this sensor. Notes: Will try to resolve a default value and store it in "derived_default" key for each parameter definition returned. Returns: :obj:`collections.OrderedDict` """ param_defs = json.loads(self.obj.parameter_definition or "{}") params = param_defs.get("parameters", []) for p in params: pdef = p.get("defaultValue", "") pval = p.get("value", "") pvals = p.get("values", []) if pdef not in ["", None]: derived_default = pdef elif pval not in ["", None]: derived_default = pval elif pvals: derived_default = pvals[0] else: derived_default = "" p["derived_default"] = derived_default return OrderedDict((p["key"], p) for p in params) @property def param_values(self): """Get all of the parameter key and values. Returns: :obj:`OrderedDict` """ ret = OrderedDict() for k in self.params_defined: ret[k] = "" for p in self.params: ret[p.key] = p.value return ret @property def params(self): """Get the parameters that are set for this sensor. Returns: :obj:`tantrum.api_objects.ApiObjects`: ParameterList API object """ if not hasattr(self, "_params"): self._params = self.api_objects.ParameterList() return self._params def set_parameter( self, key, value="", derive_default=True, delim="||", allow_undefined=True ): """Set a parameters value for this sensor. Args: key (:obj:`str`): Key name of parameter to set. value (:obj:`str`, optional): Value of parameter to set. Defaults to: "". derive_default (:obj:`bool`, optional): Get default value from parameter definition if value is "". Defaults to: True. delim (:obj:`str`, optional): String to put before and after parameter key name when sending to API. Defaults to: "||". allow_undefined (:obj:`bool`, optional): Allow parameter keys that are not in the parameters definition for this sensor to be set. Throws exception if False and key not in :attr:`Sensor.param_keys`. Defaults to: True. """ param_def = self.params_defined.get(key, None) if param_def is None: m = "Parameter key {o!r} is not one of the defined parameters {ov}" m = m.format(o=key, ov=list(self.params_defined.keys())) if allow_undefined: self.log.info(m) else: raise exceptions.ModuleError(m) elif derive_default and value == "": value = param_def.get("derived_default", "") key_delim = "{d}{key}{d}".format(d=delim, key=key) param = self.api_objects.Parameter(key=key_delim, value=value) self.params.append(param) @property def filter(self): """Get the filter for this sensor. Returns: :obj:`tantrum.api_objects.ApiObjects`: Filter API object """ if not hasattr(self, "_filter"): self._filter = self.api_objects.Filter() self._filter.sensor = self.api_objects.Sensor() self._filter.sensor.hash = self.obj.hash return self._filter @property def filter_vals(self): """Get the key value pairs of the filter for this sensor. Returns: :obj:`list` of :obj:`str` """ if any([self.filter.value, self.filter.operator]): keys = [ "operator", "value", "ignore_case_flag", "not_flag", "all_values_flag", "max_age_seconds", "value_type", ] vals = ["{}: {!r}".format(k, getattr(self.filter, k)) for k in keys] else: vals = [] return vals def set_filter( self, value, operator="regex", ignore_case_flag=True, not_flag=False, all_values_flag=False, max_age_seconds=0, type=None, ): """Set a filter for this sensor to be used in a question. Args: value (:obj:`str`): Filter sensor rows returned on this value. operator (:obj:`str`, optional): Operator to use for filter_value. Must be one of :data:`OPERATOR_MAP`. Defaults to: "regex". ignore_case_flag (:obj:`bool`, optional): Ignore case when filtering on value. Defaults to: True. not_flag (:obj:`bool`, optional): If set, negate the match. Defaults to: False. max_age_seconds (:obj:`int`, optional): How old a sensor result can be before we consider it invalid. 0 means to use the max age property of the sensor. Defaults to: 0. all_values_flag (:obj:`bool`, optional): Have filter match all values instead of any value. Defaults to: False. type (:obj:`str`, optional): Have filter consider the value type as this. Must be one of :data:`TYPE_MAP` Defaults to: None. """ op_dict = get_operator_map(operator) if type: get_type_map(type) self.filter.value = op_dict["tmpl"].format(value=value) self.filter.operator = op_dict["op"] self.filter.ignore_case_flag = ignore_case_flag self.filter.not_flag = not_flag self.filter.all_values_flag = all_values_flag self.filter.max_age_seconds = max_age_seconds self.filter.value_type = type def build_select(self, set_param_defaults=True, allow_empty_params=False): select = self.api_objects.Select() select.filter = self.filter select.sensor = self.api_objects.Sensor() for key in self.params_defined: if key not in self.param_values and set_param_defaults: self.set_parameter(key=key, derive_default=True) for param in self.params: if param.value in ["", None] and not allow_empty_params: m = "Parameter {p.key!r} value {p.value!r} is empty, definition: {d}" m = m.format(p=param, d=self.params_defined.get(key, None)) raise exceptions.ModuleError(m) if self.params: select.sensor.parameters = self.params select.sensor.source_id = self.obj.id select.filter.sensor.id = self.obj.id else: select.sensor.hash = self.obj.hash select.WORKFLOW = self return select class Question(Workflow): def __str__(self): """Show object info. Returns: (:obj:`str`) """ ctmpl = "{c.__module__}.{c.__name__}".format atmpl = "{k}='{v}'".format attrs = ["id", "query_text"] bits = [atmpl(k=attr, v=getattr(self.obj, attr, None)) for attr in attrs] bits += [atmpl(k=k, v=v) for k, v in self.expiration.items()] bits = "(\n {},\n)".format(",\n ".join(bits)) cls = ctmpl(c=self.__class__) return "{cls}{bits}".format(cls=cls, bits=bits) @classmethod def new(cls, adapter, lvl="info"): """Create a new Question workflow. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". Returns: :obj:`Question` """ return cls(obj=adapter.api_objects.Question(), adapter=adapter, lvl=lvl) @classmethod def get_by_id(cls, adapter, id, lvl="info"): """Get a question object by id. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. id (:obj:`int`): id of question to fetch. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". Returns: :obj:`Question` """ result = adapter.cmd_get(obj=adapter.api_objects.Question(id=id)) return cls(adapter=adapter, obj=result(), lvl=lvl, result=result) def _check_id(self): """Check that question has been asked by seeing if self.obj.id is set.""" if not self.obj.id: m = "No id issued yet, ask the question!" raise exceptions.ModuleError(m) @property def expiration(self): """Get expiration details for this question. Returns: :obj:`dict` """ now_dt = datetime.datetime.utcnow() now_td = datetime.timedelta() ret = { "expiration": now_dt, "expire_in": now_td, "expire_ago": now_td, "expired": True, } if self.obj.expiration: ex_dt = self.api_objects.module_dt_format(self.obj.expiration) is_ex = now_dt >= ex_dt ret["expiration"] = ex_dt ret["expired"] = is_ex if is_ex: ret["expire_ago"] = now_dt - ex_dt else: ret["expire_in"] = ex_dt - now_dt return ret def refetch(self): """Re-fetch this question.""" self._check_id() result = self.adapter.cmd_get(obj=self.obj) self._last_result = result self.obj = result() def ask(self, **kwargs): """Ask the question. Args: lvl (:obj:`str`, optional): Logging level. Defaults to: "info". **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_add`. Notes: If question has already been asked (id is set), we wipe out attrs: ["id", "context_group", "management_rights_group"], then add it. """ if self.obj.id: wipe_attrs = ["id", "context_group", "management_rights_group"] for attr in wipe_attrs: setattr(self.obj, attr, None) result = self.adapter.cmd_add(obj=self.obj, **kwargs) self._last_result = result self.obj = result() self.refetch() def add_left_sensor( self, sensor, set_param_defaults=True, allow_empty_params=False ): """Add a sensor to the left hand side of the question. Args: sensor (:obj:`Sensor`): Sensor workflow object. set_param_defaults (:obj:`bool`, optional): If sensor has parameters defined, and no value is set, try to derive the default value from each parameters definition. Defaults to: True. allow_empty_params (:obj:`bool`, optional): If sensor has parameters defined, and the value is not set, "", or None, throw an exception. Defaults to: True. """ select = sensor.build_select( set_param_defaults=set_param_defaults, allow_empty_params=allow_empty_params ) if not getattr(self.obj, "selects", None): self.obj.selects = self.api_objects.SelectList() self.obj.selects.append(select) def answers_get_info(self, **kwargs): """Return the ResultInfo for this question. Args: **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_info`. Returns: :obj:`tantrum.api_models.ApiModel`: ResultInfoList API Object """ self._check_id() cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj result = self.adapter.cmd_get_result_info(**cmd_args) self._last_result = result infos = result() self._last_infos = infos m = "Received answers info: {infos}" m = m.format(infos=infos.serialize()) self.log.debug(m) self.log.debug(format(self)) return infos def answers_poll( self, poll_pct=99, poll_secs=0, poll_total=0, poll_sleep=5, max_poll_count=0, **kwargs ): """Poll for answers from clients for this question. Args: poll_sleep (:obj:`int`, optional): Check for answers every N seconds. Defaults to: 5. poll_pct (:obj:`int`, optional): Wait until the percentage of clients total is N percent. Defaults to: 99. poll_secs (:obj:`int`, optional): If not 0, wait until N seconds for pct of clients total instead of until question expiration. Defaults to: 0. poll_total (:obj:`int`, optional): If not 0, wait until N clients have total instead of ``estimated_total`` of clients from API. Defaults to: 0. max_poll_count (:obj:`int`, optional): If not 0, only poll N times. Defaults to: 0. **kwargs: rest of kwargs: Passed to :meth:`answers_get_info`. Returns: :obj:`object`: ResultInfoList API object """ # TODO: Add wait till error_count / no_results_count == 0 self._check_id() cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj start = datetime.datetime.utcnow() if poll_secs: stop_dt = start + datetime.timedelta(seconds=poll_secs) else: stop_dt = self.expiration["expiration"] m = "Start polling loop for answers until for {o} until {stop_dt}" m = m.format(o=self, stop_dt=stop_dt) self.log.debug(m) infos = self.answers_get_info(**kwargs) info = infos[0] est_total = info.estimated_total poll_total = est_total if poll_total and poll_total <= est_total: this_total = poll_total now_pct = utils.tools.calc_percent(part=info.mr_passed, whole=this_total) poll_count = 0 while True: poll_count += 1 m = "New polling loop #{c} for {o}" m = m.format(c=poll_count, o=self) self.log.debug(m) if now_pct >= poll_pct: m = "Reached {now_pct} out of {pct}, considering all answers in" m = m.format(now_pct=PCT_FMT(now_pct), pct=PCT_FMT(poll_pct)) self.log.info(m) break if datetime.datetime.utcnow() >= stop_dt: m = "Reached stop_dt {stop_dt}, considering all answers in" m = m.format(stop_dt=stop_dt) self.log.info(m) break if self.expiration["expired"]: m = "Reached expiration {expiration}, considering all answers in" m = m.format(expiration=self.expiration) self.log.info(m) break if max_poll_count and poll_count >= max_poll_count: m = "Reached max poll count {c}, considering all answers in" m = m.format(c=max_poll_count) self.log.info(m) break infos = self.answers_get_info(**kwargs) info = infos[0] now_pct = utils.tools.calc_percent(part=info.mr_passed, whole=this_total) m = [ "Answers in {now_pct} out of {pct}", "{info.mr_passed} out of {this_total}", "estimated_total: {info.estimated_total}", "poll count: {c}", ] m = ", ".join(m) m = m.format( now_pct=PCT_FMT(now_pct), pct=PCT_FMT(poll_pct), info=info, this_total=this_total, c=poll_count, ) self.log.info(m) time.sleep(poll_sleep) end = datetime.datetime.utcnow() elapsed = end - start m = [ "Finished polling in: {dt}", "clients answered: {info.mr_passed}", "estimated clients: {info.estimated_total}", "rows in answers: {info.row_count}", "poll count: {c}", ] m = ", ".join(m) m = m.format(dt=elapsed, info=info, c=poll_count) self.log.info(m) return infos def answers_get_data(self, hashes=False, **kwargs): """Get the answers for this question. Args: hashes (:obj:`bool`, optional): Have the API include the hashes of rows values. Defaults to: False. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_data`. Notes: This will not use any paging, which means ALL answers will be returned in one API response. For large data sets of answers, this is unwise. Returns: :obj:`tantrum.api_models.ApiModel`: ResultDataList API Object """ self._check_id() start = datetime.datetime.utcnow() cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj cmd_args["include_hashes_flag"] = hashes result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = result end = datetime.datetime.utcnow() elapsed = end - start m = "Finished getting answers in {dt}" m = m.format(dt=elapsed) self.log.info(m) datas = result() self._last_datas = datas return datas def answers_get_data_paged( self, page_size=1000, max_page_count=0, max_row_count=0, cache_expiration=900, hashes=False, sleep=5, **kwargs ): """Get the answers for this question one page at a time. Args: page_size (:obj:`int`, optional): Size of each page to fetch at a time. Defaults to: 1000. max_page_count (:obj:`int`, optional): Only fetch up to this many pages. If 0, get all pages. Defaults to: 0. max_row_count (:obj:`int`, optional): Only fetch up to this many rows. Defaults to: 0. cache_expiration (:obj:`int`, optional): Have the API keep the cache_id that is created on initial get answers page alive for N seconds. Defaults to: 900. hashes (:obj:`bool`, optional): Have the API include the hashes of rows values Defaults to: False. sleep (:obj:`int`, optional): Wait N seconds between fetching each page. Defaults to: 5. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_data`. Notes: If max_page_count and max_row_count are 0, fetch pages until a page returns no answers or the expected row count is hit. Returns: :obj:`tantrum.api_models.ApiModel`: ResultDataList API Object """ self._check_id() start = datetime.datetime.utcnow() row_start = 0 cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj cmd_args["row_start"] = row_start cmd_args["row_count"] = page_size cmd_args["cache_expiration"] = cache_expiration cmd_args["include_hashes_flag"] = hashes result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = result datas = result() self._last_datas = datas data = datas[0] cmd_args["cache_id"] = data.cache_id cmd_args["row_start"] += page_size m = [ "Received initial answers: {d.rows}", "expected row_count: {d.row_count}", "estimated total clients: {d.estimated_total}", ] m = ", ".join(m) m = m.format(d=data) self.log.info(m) all_rows = data.rows page_count = 1 page_rows = all_rows while True: if len(all_rows or []) >= data.row_count: m = "Received expected row_count {c}, considering all answers received" m = m.format(c=data.row_count) self.log.info(m) break if not page_rows: m = "Received a page with no answers, considering all answers received" self.log.info(m) break if max_page_count and page_count >= max_page_count: m = "Reached max page count {c}, considering all answers in" m = m.format(c=max_page_count) self.log.info(m) break if max_row_count and len(all_rows or []) >= max_row_count: m = "Hit max pages of {max_row_count}, considering all answers received" m = m.format(max_row_count=max_row_count) self.log.info(m) page_count += 1 page_result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = page_result # this should catch errors where API returns result data as None sometimes # need to refetch data for N retries if that happens page_datas = page_result() self._last_datas = page_datas page_data = page_datas[0] page_rows = page_data.rows m = "Received page #{c} answers: {rows}" m = m.format(c=page_count, rows=len(page_rows or [])) self.log.info(m) all_rows += page_rows cmd_args["row_start"] += page_size time.sleep(sleep) end = datetime.datetime.utcnow() elapsed = end - start m = "Finished getting {rows} answers in {dt}" m = m.format(rows=len(all_rows or []), dt=elapsed) self.log.info(m) return datas def answers_sse_start_xml(self, hashes=False, **kwargs): """Start up a server side export for XML format and get an export_id. Args: hashes (:obj:`bool`, optional): Have the API include the hashes of rows values Defaults to: False. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_data`. Returns: :obj:`str`: """ cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj cmd_args["export_flag"] = True cmd_args["export_format"] = 1 cmd_args["include_hashes_flag"] = hashes result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = result m = ["Received Server Side Export start response for XML format", "code={c}"] m = ", ".join(m) m = m.format(c=result.status_code) self.log.debug(m) export_id = result.object_obj["export_id"] m = ["Started Server Side for XML format", "export_id={e!r}"] m = ", ".join(m) m = m.format(e=export_id) self.log.info(m) return export_id def answers_sse_start_csv( self, flatten=False, headers=True, hashes=False, **kwargs ): """Start up a server side export for CSV format and get an export_id. Args: flatten (:obj:`bool`, optional): Flatten CSV rows if possible (single line in each cell) Defaults to: False. headers (:obj:`bool`, optional): Include column headers. Defaults to: True. hashes (:obj:`bool`, optional): Have the API include the hashes of rows values Defaults to: False. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_data`. Returns: :obj:`str`: """ cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj cmd_args["export_flag"] = True cmd_args["export_format"] = 3 if flatten else 0 cmd_args["export_hide_csv_header_flag"] = False if headers else True cmd_args["include_hashes_flag"] = hashes result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = result m = ["Received Server Side Export start response for CSV format", "code={c}"] m = ", ".join(m) m = m.format(c=result.status_code) self.log.debug(m) export_id = result.object_obj["export_id"] m = ["Started Server Side for CSV format", "export_id={e!r}"] m = ", ".join(m) m = m.format(e=export_id) self.log.info(m) return export_id def answers_sse_start_cef(self, leading="", trailing="", **kwargs): """Start up a server side export for CEF format and get an export_id. Args: leading (:obj:`str`, optional): Prepend this text to each line. Defaults to: "". trailing (:obj:`str`, optional): Append this text to each line. Defaults to: "". **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_get_result_data`. Returns: :obj:`str`: """ cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = self.obj cmd_args["export_flag"] = True cmd_args["export_format"] = 2 if leading: cmd_args["export_leading_text"] = leading if trailing: cmd_args["export_trailing_text"] = trailing result = self.adapter.cmd_get_result_data(**cmd_args) self._last_result = result m = ["Received Server Side Export start response for CEF format", "code={c}"] m = ", ".join(m) m = m.format(c=result.status_code) self.log.debug(m) export_id = result.object_obj["export_id"] m = ["Started Server Side for CEF format", "export_id={e!r}"] m = ", ".join(m) m = m.format(e=export_id) self.log.info(m) return export_id def answers_sse_get_status(self, export_id, **kwargs): """Get the status for this questions server side export. Args: export_id (:obj:`str`): An export id returned from :meth:`sse_start`. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapters.ApiClient`. Returns: :obj:`dict`: """ client_args = {} client_args.update(kwargs) client_args["method"] = "get" client_args["path"] = "export/{export_id}.status".format(export_id=export_id) client_args["data"] = "" r = self.adapter.api_client(**client_args) status_split = [x.strip().lower() for x in r.text.split(".") if x.strip()] status = dict(zip(["status", "progress"], status_split)) status["export_id"] = export_id m = [ "Received SSE status response: path={r.request.url!r}", "code={r.status_code}", "status={status}", ] m = ", ".join(m) m = m.format(r=r, status=status) self.log.debug(m) return status def answers_sse_poll(self, export_id, poll_sleep=5, max_poll_count=0, **kwargs): """Poll a server side export for completion. Args: export_id (:obj:`str`): An export id returned from :meth:`answers_sse_start_xml` or :meth:`answers_sse_start_csv` or :meth:`answers_sse_start_cef`. poll_sleep (:obj:`int`, optional): Check for answers every N seconds. Defaults to: 5. max_poll_count (:obj:`int`, optional): If not 0, only poll N times. Defaults to: 0. **kwargs: rest of kwargs: Passed to :meth:`answers_sse_get_status`. Returns: :obj:`str`: """ self._check_id() start = datetime.datetime.utcnow() poll_count = 0 sse_args = {} sse_args.update(kwargs) sse_args["export_id"] = export_id status = self.answers_sse_get_status(**sse_args) while True: poll_count += 1 if max_poll_count and poll_count >= max_poll_count: m = [ "Server Side Export completed", "reached max poll count {c}", "status {status}", ] m = ", ".join(m) m = m.format(c=max_poll_count, status=status) self.log.info(m) break if status["status"] == "completed": m = "Server Side Export completed: {status}" m = m.format(status=status) self.log.info(m) break if status["status"] == "failed": m = "Server Side Export failed: {status}" m = m.format(status=status) raise exceptions.ModuleError(m) time.sleep(poll_sleep) status = self.answers_sse_get_status(**sse_args) end = datetime.datetime.utcnow() elapsed = end - start m = "Finished polling for Server Side Export in {dt}, {status}" m = m.format(dt=elapsed, status=status) self.log.info(m) return status def answers_sse_get_data( self, export_id, return_dict=False, return_obj=True, **kwargs ): """Get the answers for this question in XML format using server side export. Args: export_id (:obj:`str`): An export id returned from :meth:`sse_start`. return_dict (:obj:`bool`, optional): If export_id is an XML format, return a dictionary object. Defaults to: False. return_obj (:obj:`bool`, optional): If export_id is XML format, return a ResultSet object. Defaults to: True. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapters.ApiClient`. Notes: If export_id is not XML format or return_dict and return_obj False, return the raw text as is. Returns: :obj:`tantrum.api_models.ApiModel` or :obj:`dict` or :obj:`str`: If return_obj = True returns ResultSetList ApiModel object. If return_dict = True returns dict. Otherwise, return str. """ self._check_id() client_args = {} client_args.update(kwargs) client_args["method"] = "get" client_args["path"] = "export/{export_id}.gz".format(export_id=export_id) client_args["data"] = "" r = self.adapter.api_client(**client_args) m = ["Received SSE data response", "code: {r.status_code}", "export_id: {e!r}"] m = ", ".join(m) m = m.format(r=r, e=export_id) self.log.info(m) data = r.text if "xml" in export_id and (return_dict or return_obj): result = results.Soap( api_objects=self.api_objects, response_body=r.text, request_body=r.request.body, method=r.request.method, url=r.request.url, status_code=r.status_code, origin=r, lvl=self.log.level, ) data = "<{r}>{data}</{r}>".format(data=data, r="result_set") src = "SSE get data response" data = result.str_to_obj(text=data, src=src, try_int=False) if return_dict: return data data = self.api_objects.ResultSet(**data["result_set"]) data = self.api_objects.ResultSetList(*[data]) return data return data class ParsedQuestion(Workflow): def __str__(self): """Show object info. Returns: (:obj:`str`) """ ctmpl = "{c.__module__}.{c.__name__}".format bits = [ "parse matches: {c}".format(c=len(self.obj)), "has exact match: {em}".format(em=True if self.get_canonical else False), ] bits = "({})".format(", ".join(bits)) cls = ctmpl(c=self.__class__) return "{cls}{bits}".format(cls=cls, bits=bits) @property def get_canonical(self): """Return any parse result that is an exact match.""" for x in self.obj: if x.question.from_canonical_text: return x return None def map_select_params(self, pq): """Map parameters to sensors on the left hand side of the question.""" param_cls = self.api_objects.Parameter param_values = pq.parameter_values selects = pq.question.selects or [] for select in selects: if not param_values: m = "No more parameter values left to map" self.log.debug(m) return sensor = select.sensor if not sensor.parameter_definition: m = "No parameters defined on sensor {s}, going to next" m = m.format(s=sensor) self.log.debug(m) continue sensor.source_id = sensor.id sensor.id = None sensor.parameters = self.api_objects.ParameterList() params = json.loads(sensor.parameter_definition)["parameters"] for param in params: if not param_values: m = "No more parameter values left to map" self.log.debug(m) return key = "||{}||".format(param["key"]) value = param_values.pop(0) sensor.parameters.append(param_cls(key=key, value=value)) m = "Mapped parameter {k!r}='{v}' for {s}" m = m.format(k=key, v=value, s=sensor) self.log.debug(m) def map_group_params(self, pq, group): """Map parameters to filters on the right hand side of the question.""" param_cls = self.api_objects.Parameter group_sensors = pq.question_group_sensors param_values = pq.parameter_values if not group: m = "Empty group, not mapping group params" self.log.debug(m) return if not group_sensors: m = "No question group sensors defined, not mapping group params" self.log.debug(m) return for group_filter in group.filters or []: if not param_values: m = "No more parameter values left to map" self.log.debug(m) return m = "Now mapping parameters for group filter: {gf}" m = m.format(gf=group_filter) self.log.debug(m) sensor_id = group_filter.sensor.id sensor = [x for x in group_sensors if x.id == sensor_id][0] if not sensor.parameter_definition: m = "No parameters defined on sensor {s}, going to next" m = m.format(s=sensor) self.log.debug(m) continue sensor.source_id = sensor.id sensor.id = None sensor.parameters = self.api_objects.ParameterList() params = json.loads(sensor.parameter_definition)["parameters"] for param in params: if not param_values: m = "No more parameter values left to map" self.log.debug(m) return key = "||{}||".format(param["key"]) value = param_values.pop(0) sensor.parameters.append(param_cls(key=key, value=value)) m = "Mapped parameter {k!r}='{v}' for {s}" m = m.format(k=key, v=value, s=sensor) self.log.debug(m) group_filter.sensor = sensor for sub_group in group.sub_groups or []: self.map_group_params(pq, sub_group) @property def result_indexes(self): """Get the parse result indices in str form.""" pq_tmpl = " index: {idx}, result: {text!r}, params: {params}, exact: {exact}" pq_tmpl = pq_tmpl.format pq_list = [] for idx, pq in enumerate(self.obj): pq_txt = pq_tmpl( idx=idx, text=pq.question_text, params=list(pq.parameter_values or []), exact=bool(pq.question.from_canonical_text), ) pq_list.append(pq_txt) return "\n".join(pq_list) def pick(self, index=None, use_exact_match=True, use_first=False, **kwargs): """Pick a parse result and ask it. Args: index (:obj:`int`, optional): Index of parse result to ask. Defaults to: None. use_exact_match (:obj:`bool`, optional): If index is None and one of the parse results is an exact match, pick and ask it. Defaults to: True. use_first (:obj:`bool`, optional): If index is None and there is no exact match, pick the first parse result and ask it. **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_add_parsed_question`. Returns: :obj:`Question` """ if index: pq = self.obj[index] m = "Picking parsed question based on index {index}: {pq.question}" m = m.format(index=index, pq=pq) self.log.info(m) elif use_exact_match and self.get_canonical: pq = self.get_canonical m = "Picking parsed question based on exact match: {pq.question}" m = m.format(pq=pq) self.log.info(m) elif use_first: pq = self.obj[0] m = "Picking first matching parsed question: {pq.question}" m = m.format(pq=pq) self.log.info(m) else: err = [ "No index supplied", "no exact matching parsed result", "and use_first is False!", ] err = ", ".join(err) err = [err, "Supply an index of a parsed result:", self.result_indexes] err = "\n".join(err) raise exceptions.ModuleError(err) self.map_select_params(pq=pq) m = "Finished mapping parameters for selects, parameter values left: {pv!r}" m = m.format(pv=pq.parameter_values) self.log.debug(m) self.map_group_params(pq=pq, group=pq.question.group) m = "Finished mapping parameters for groups, parameter values left: {pv!r}" m = m.format(pv=pq.parameter_values) self.log.debug(m) cmd_args = {} cmd_args.update(kwargs) cmd_args["obj"] = pq result = self.adapter.cmd_add_parsed_question(**cmd_args) result_obj = result() workflow = Question( adapter=self.adapter, obj=result_obj, lvl=self.log.level, result=result ) m = "Added parsed question: {w}" m = m.format(w=workflow) self.log.info(m) workflow.refetch() return workflow @classmethod def parse(cls, adapter, text, lvl="info", **kwargs): """Get parse results of text from API. Args: adapter (:obj:`tantrum.adapters.Adapter`): Adapter to use for this workflow. text (:obj:`str`): Question text to parse. lvl (:obj:`str`, optional): Logging level. Defaults to: "info". **kwargs: rest of kwargs: Passed to :meth:`tantrum.adapter.Adapter.cmd_parse_question`. Returns: :obj:`ParsedQuestion` """ log = utils.logs.get_obj_log(obj=cls, lvl=lvl) cmd_args = {} cmd_args.update(kwargs) cmd_args["text"] = text result = adapter.cmd_parse_question(**cmd_args) result_obj = result() if result_obj is None: m = "No parse results returned for text: {t!r}" m = m.format(t=text) raise exceptions.ModuleError(m) any_canonical = any([x.question.from_canonical_text for x in result_obj]) m = "Received {n} parse results (any exact match: {ac})" m = m.format(n=len(result_obj), ac=any_canonical) log.info(m) return cls(adapter=adapter, obj=result_obj, lvl=lvl, result=result) OPERATOR_MAP = { "less": {"op": "Less", "tmpl": "{value}"}, "lessequal": {"op": "LessEqual", "tmpl": "{value}"}, "greater": {"op": "Greater", "tmpl": "{value}"}, "greaterequal": {"op": "GreaterEqual", "tmpl": "{value}"}, "equal": {"op": "Equal", "tmpl": "{value}"}, "regex": {"op": "RegexMatch", "tmpl": "{value}"}, "startswith": {"op": "RegexMatch", "tmpl": ".*{value}"}, "endswith": {"op": "RegexMatch", "tmpl": "{value}.*"}, "contains": {"op": "RegexMatch", "tmpl": ".*{value}.*"}, "hash": {"op": "HashMatch", "tmpl": "{value}"}, } TYPE_MAP = { "Hash": 0, # SENSOR_RESULT_TYPE_STRING "String": 1, # SENSOR_RESULT_TYPE_VERSION "Version": 2, # SENSOR_RESULT_TYPE_NUMERIC "NumericDecimal": 3, # SENSOR_RESULT_TYPE_DATE_BES "BESDate": 4, # SENSOR_RESULT_TYPE_IPADDRESS "IPAddress": 5, # SENSOR_RESULT_TYPE_DATE_WMI "WMIDate": 6, # e.g. "2 years, 3 months, 18 days, 4 hours, 22 minutes: # 'TimeDiff', and 3.67 seconds" or "4.2 hours" # (numeric + "Y|MO|W|D|H|M|S" units) "TimeDiff": 7, # e.g. 125MB or 23K or 34.2Gig (numeric + B|K|M|G|T units) "DataSize": 8, "NumericInteger": 9, "VariousDate": 10, "RegexMatch": 11, "LastOperatorType": 12, } PCT_FMT = "{0:.0f}%".format def get_operator_map(operator): """Validate operator against :data:`OPERATOR_MAP`.""" if operator in OPERATOR_MAP: return OPERATOR_MAP[operator] m = "Operator {o!r} is invalid, must be one of {vo}" m = m.format(o=operator, vo=list(OPERATOR_MAP.keys())) raise exceptions.ModuleError(m) def get_type_map(type): """Validate type against :data:`TYPE_MAP`.""" if type in TYPE_MAP: return TYPE_MAP[type] m = "Type {o!r} is invalid, must be one of {vo}" m = m.format(o=type, vo=list(TYPE_MAP.keys())) raise exceptions.ModuleError(m)
2.359375
2
vision/visualization.py
yihui-he2020/epipolar-transformers
360
12792888
import os.path, sys, re, cv2, glob, numpy as np import os.path as osp from tqdm import tqdm from IPython import embed import scipy import matplotlib.pyplot as plt from skimage.transform import resize from mpl_toolkits.mplot3d import Axes3D from sklearn.metrics import auc from matplotlib.patches import Circle import torch # from .ipv_vis import * from vision.triangulation import triangulate from vision.multiview import pix2coord, coord2pix from core import cfg from vision.multiview import de_normalize from vision.visualizer_human import draw_2d_pose from vision.visualizer_hand import plot_hand_3d class Cursor(object): def __init__(self, sample_ax, draw_ax): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata # update the line positions self.lx.set_ydata(y) self.ly.set_xdata(x) self.txt.set_text('x=%1.1f, y=%1.1f' % (x, y)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() self.sample_ax.imshow(ref_img) a, b, heatmap = heatmapat(x, y, weights[0]) im1= self.draw_ax[1].imshow(heatmap, cmap=cmap.hot) self.draw_ax[1].set_title("%f~%f" % (a, b)) a, b, heatmap = heatmapat(x, y, weights[1]) im2= self.draw_ax[2].imshow(heatmap, cmap=cmap.hot) self.draw_ax[2].set_title("%f~%f" % (a, b)) a, b, heatmap = heatmapat(x, y, weights[2]) im3= self.draw_ax[3].imshow(heatmap, cmap=cmap.hot) self.draw_ax[3].set_title("%f~%f" % (a, b)) # fig.colorbar(im2, ax=axs[0, 1]) circ = Circle((x, y),2,color='r') axs[0, 0].add_patch(circ) plt.show() class Cursor_for_epipolar_line(object): def __init__(self, sample_ax, draw_ax, sample_locs, H, W, axs, img2, outs): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") self.sample_locs = sample_locs self.H = H self.W = W self.axs = axs self.img2 = img2 self.outs = outs def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata self.lx.set_ydata(y) self.ly.set_xdata(x) # pr_cost_volume = self.depth[:, int(y), int(x)] # cost_volume_xs = np.arange(0, pr_cost_volume.shape[0]) # xx, yy = self.corr_pos_pred[int(y)][int(x)] self.txt.set_text('x=%1.1f, y=%1.1f' % (x, y)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() self.axs[1, 0].clear() self.axs[1, 0].imshow(self.img2) inty, intx = int(y+0.5), int(x+0.5) print(self.sample_locs[:, inty, intx]) _, _, _, debugsample_locs, intersections, mask, valid_intersections, start, vec = self.outs print(intx, inty) print('debugsample_locs', debugsample_locs[:, 0, inty, intx]) print('intersections', intersections.view(-1, 64, 64, 4, 2)[0, inty, intx]) print('mask', mask.view(-1, 64, 64, 4)[0, inty, intx]) print('valid_intersections', valid_intersections.view(-1, 64, 64, 2, 2)[0, inty, intx]) print('start', start.view(-1, 64, 64, 2)[0, inty, intx]) print('vec', vec.view(-1, 64, 64, 2)[0, inty, intx]) for i in range(64): # pos = self.sample_locs[i][int(y+0.5)][int(x+0.5)] pos = debugsample_locs[i, 0, inty, intx].cpu().numpy().copy() depos = de_normalize(pos, self.H, self.W) # circ = Circle((int(depos[0]), int(depos[1])),1,color='b', alpha=0.5) circ = Circle((depos[0], depos[1]), 1 , color='b', alpha=0.5) self.axs[1, 0].add_patch(circ) # circ = Circle((xx, yy),2,color='r') self.axs[1, 0].add_patch(circ) plt.show() class Cursor_for_corrspondence(object): def __init__(self, sample_ax, draw_ax, depth, corr_pos_pred, sample_locs, H, W): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") self.depth = depth self.corr_pos_pred = corr_pos_pred self.sample_locs = sample_locs self.H = H self.W = W def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata self.lx.set_ydata(y) self.ly.set_xdata(x) pr_cost_volume = self.depth[:, int(y), int(x)] cost_volume_xs = np.arange(0, pr_cost_volume.shape[0]) xx, yy = self.corr_pos_pred[int(y)][int(x)] self.txt.set_text('x=%1.1f, y=%1.1f depth=%.5f\nCorr xx=%d, yy=%d' % (x, y, np.max(pr_cost_volume), xx, yy)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() axs[1, 0].clear() axs[1, 0].imshow(img2) for i in range(64): pos = sample_locs[i][int(y)][int(x)] depos = de_normalize(pos, H, W) circ = Circle((int(depos[0]), int(depos[1])),1,color='b', alpha=0.5) axs[1, 0].add_patch(circ) circ = Circle((xx, yy),2,color='r') axs[1, 0].add_patch(circ) plt.show() def toimg(x): return x.squeeze().numpy().transpose([1,2,0]) def de_transform(img): img[..., 0, :, :] = img[..., 0, :, :] * 0.229 + 0.485 img[..., 1, :, :] = img[..., 1, :, :] * 0.224 + 0.456 img[..., 2, :, :] = img[..., 2, :, :] * 0.225 + 0.406 return img def draw_auc(predictions, pck, auc_path): max_threshold = 20 thresholds = np.linspace(0, max_threshold, num=20) pck = np.sum(pck, axis=0) auc_value = auc(thresholds, pck) / max_threshold print('AUC: ', auc_value) plt.plot(thresholds, pck, 'r') plt.axis([0, 20, 0, 1]) plt.savefig(auc_path) plt.show() def get_point_cloud(img1, img2, KRT1, KRT2, RT1, RT2, corr_pos, score): """ KRT: corr_pos: feat_h x feat_w x 2 score: sample_size x feat_h x feat_w """ y = np.arange(0, img1.shape[0]) # 128 x = np.arange(0, img1.shape[1]) # 84 grid_x, grid_y = np.meshgrid(x, y) grid_y = pix2coord(grid_y, cfg.BACKBONE.DOWNSAMPLE) grid_y = grid_y * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE grid_x = pix2coord(grid_x, cfg.BACKBONE.DOWNSAMPLE) grid_x = grid_x * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE # 2668 * 4076 grid_corr = pix2coord(corr_pos, cfg.BACKBONE.DOWNSAMPLE) grid_corr = grid_corr * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE grid = np.stack((grid_x, grid_y)) grid = grid.reshape(2, -1) grid_corr = grid_corr.reshape(-1, 2).transpose() from scipy.misc import imresize sample_size, fh, fw = score.shape resized_img2 = imresize(img2, (fh, fw)) max_score = np.max(score.reshape(sample_size, -1), axis=0).reshape(fh, fw) select_pos1 = max_score > 0.02 print('->', np.sum(select_pos1)) select_pos2 = np.sum(resized_img2, axis=2) > 20 print('->',np.sum(select_pos2)) select_pos3 = np.sum(corr_pos, axis=2) > -50 print('->',np.sum(select_pos2)) select_pos = np.logical_and(select_pos3, select_pos2).reshape(-1) # select_pos = select_pos3 print('-->',np.sum(select_pos)) select_pos = select_pos.reshape(-1) select_img_point = resized_img2.reshape(fh*fw, 3)[select_pos, :] print(select_pos.shape) print('total pos', sum(select_pos)) p3D = cv2.triangulatePoints(KRT2, KRT1, grid_corr[:,select_pos], grid[:,select_pos]) # p3D = cv2.triangulatePoints(KRT2, KRT1, grid_corr, grid) # depth = np.ones((fh, fw)) * np.min((KRT1@p3D)[2, :]) depth = np.ones((fh, fw)) * np.max((KRT1@p3D)[2, :]) cnt = 0 for i in range(fh): for j in range(fw): if not select_pos[i*fw+j]: continue p_homo = (KRT1 @ p3D[:, cnt]) p = p_homo / p_homo[2] depth[int(coord2pix(p[1], 32)), int(coord2pix(p[0], 32))] = p_homo[2] cnt += 1 p3D /= p3D[3] p3D = p3D[:3].squeeze() depth = (depth - depth.min()) / (depth.max() - depth.min()) + 1 depth = np.log(depth) depth = (depth - depth.min()) / (depth.max() - depth.min()) #######vis fig = plt.figure(1) ax1_1 = fig.add_subplot(331) ax1_1.imshow(img1) ax1_2 = fig.add_subplot(332) ax1_2.imshow(img2) w = corr_pos[:, :, 0] w = (w - w.min()) / (w.max() - w.min()) ax1_1 = fig.add_subplot(334) ax1_1.imshow(w) w = corr_pos[:, :, 1] w = (w - w.min()) / (w.max() - w.min()) ax1_1 = fig.add_subplot(335) ax1_1.imshow(w) # w1 = corr_pos[:, :, 0] # w1 = (w1 - w1.min()) / (w1.max() - w1.min()) # w2 = corr_pos[:, :, 1] # w2 = (w2 - w2.min()) / (w2.max() - w2.min()) # W = np.stack([w1, w2, np.ones(w2.shape)], axis=0) # ax2_1 = fig.add_subplot(336) # ax2_1.imshow(W.transpose(1,2,0)) ax1_1 = fig.add_subplot(336) ax1_1.imshow(depth) w = select_pos1.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(337) ax2_1.imshow(w) w = select_pos2.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(338) ax2_1.imshow(w) w = select_pos.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(339) ax2_1.imshow(w) ####### end vis # w = select_img_point[:, :10000].reshape(-1, 100, 100).transpose(1,2,0) # w = (w - w.min()) / (w.max() - w.min()) # ax2_1 = fig.add_subplot(326) # ax2_1.imshow(w) plt.show() return p3D, select_img_point def visualization(cfg): if cfg.VIS.POINTCLOUD and 'h36m' not in cfg.OUTPUT_DIR: output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) print(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) cnt = 0 # for inputs, pred in predictions: while True: inputs, pred = predictions[cnt] heatmap = inputs.get('heatmap') points2d = inputs.get('points-2d') KRT = inputs.get('KRT')[0] RT = inputs.get('RT')[0] image_path = inputs.get('img-path') print('image path:', image_path) img = resize(plt.imread(image_path), (128, 84, 3)) other_KRT = inputs.get('other_KRT')[0] other_RT = inputs.get('other_RT')[0] other_image_path = inputs.get('other_img_path')[0] print('other image path', other_image_path) other_img = resize(plt.imread(other_image_path), (128, 84, 3)) heatmap_pred = pred.get('heatmap_pred') score_pred = pred.get('score_pred') corr_pos_pred = pred.get('corr_pos') sim = pred.get('depth') import pdb; pdb.set_trace() # p3D, img_pt = get_point_cloud(img, other_img, KRT, other_KRT, RT, other_RT, corr_pos_pred, sim) output = { # 'p3D': p3D, # 'img_pt': img_pt, 'img1': img, 'img2' : other_img, 'img1_path': image_path, 'img2_path': other_image_path, 'RT' : RT, 'other_RT': other_RT, 'corr_pos_pred': corr_pos_pred, 'depth': sim, } if 'sample_locs' in pred: sample_locs = pred.get('sample_locs') output['sample_locs'] = sample_locs else: print('No sample_locs!!!!!') import pickle with open('baseline_' + "output_{:d}.pkl".format(cnt),"wb") as f: pickle.dump(output, f) print('saved! to ', 'baseline_' + "output_{:d}.pkl".format(cnt)) cnt += 1 # break # ipv_prepare(ipv) # ipv_draw_point_cloud(ipv, p3D, colors=img_pt, pt_size=1) # ipv.xyzlim(500) # ipv.show() if cfg.VIS.POINTCLOUD and 'h36m' in cfg.OUTPUT_DIR: output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST baseline = "baseline" in cfg.VIS.SAVE_PRED_NAME name = "_baseline" if baseline else "" predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions"+name+".pth")) print(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions"+name+".pth")) cnt = 0 # for inputs, pred in predictions: while True: inputs, pred = predictions[cnt] print('input keys:') print(inputs.keys()) print('pred keys:') print(pred.keys()) heatmap = inputs.get('heatmap') other_heatmap = inputs.get('other_heatmap') points2d = inputs.get('points-2d') KRT = inputs.get('KRT')[0] camera = inputs.get('camera') other_camera = inputs.get('other_camera') image_path = inputs.get('img-path')[0] print(image_path) # image_path = 'images.zip@' image_file = osp.join("datasets", 'h36m', 'images.zip@', 'images', image_path) # from utils import zipreader # data_numpy = zipreader.imread( # image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # img = data_numpy[:1000] # assert img.shape == (1000, 1000, 3), img.shape img = inputs.get('img') other_KRT = inputs.get('other_KRT')[0] # other_RT = inputs.get('other_RT')[0] other_image_path = inputs.get('other_img-path')[0] print('other image path', other_image_path) other_image_file = osp.join("datasets", 'h36m', 'images.zip@', 'images', other_image_path) other_img = inputs.get('other_img') heatmap_pred = pred.get('heatmap_pred') score_pred = pred.get('score_pred') corr_pos_pred = pred.get('corr_pos') sim = pred.get('depth') batch_locs = pred.get('batch_locs') # p3D, img_pt = get_point_cloud(img, other_img, KRT, other_KRT, RT, other_RT, corr_pos_pred, sim) output = { # 'p3D': p3D, # 'img_pt': img_pt, 'img1': img, 'img2' : other_img, 'img1_path': image_file, 'img2_path': other_image_file, # 'RT' : RT, # 'other_RT': other_RT, 'heatmap': heatmap, 'other_heatmap': other_heatmap, 'points-2d': points2d, 'corr_pos_pred': corr_pos_pred, 'depth': sim, 'heatmap_pred': heatmap_pred, 'batch_locs': batch_locs, 'camera': camera, 'other_camera': other_camera, } if 'sample_locs' in pred: sample_locs = pred.get('sample_locs') output['sample_locs'] = sample_locs else: print('No sample_locs!!!!!') import pickle with open(cfg.OUTPUT_DIR + "/visualizations/h36m/output{}_{:d}.pkl".format(name, cnt),"wb") as f: pickle.dump(output,f) print('saved!') cnt += 1 # depth = output['depth'] # corr_pos_pred = output['corr_pos_pred'] # sample_locs = output['sample_locs'] if cfg.EPIPOLAR.VIS: if 'h36m' in cfg.OUTPUT_DIR: from data.build import make_data_loader if cfg.VIS.MULTIVIEWH36M: data_loader = make_data_loader(cfg, is_train=True, force_shuffle=True) elif cfg.VIS.H36M: from data.datasets.joints_dataset import JointsDataset from data.datasets.multiview_h36m import MultiViewH36M data_loader = MultiViewH36M('datasets', 'validation', True) print(len(data_loader)) for i in tqdm(range(len(data_loader))): data_loader.__getitem__(i) data_loader = make_data_loader(cfg, is_train=False)[0] # data_loader = make_data_loader(cfg, is_train=True, force_shuffle=True) # data_loader = make_data_loader(cfg, is_train=False, force_shuffle=True)[0] # for idx, batchdata in enumerate(tqdm(data_loader)): if not cfg.VIS.MULTIVIEWH36M and not cfg.VIS.H36M: cpu = lambda x: x.cpu().numpy() if isinstance(x, torch.Tensor) else x from modeling.layers.epipolar import Epipolar imgmodel = Epipolar() debugmodel = Epipolar(debug=True) KRT0 = batchdata['KRT'].squeeze()[None, 0] KRT1 = batchdata['other_KRT'].squeeze()[None, 0] # batchdata['img']: 1 x 4 x 3 x 256 x 256 input_img = batchdata['img'].squeeze()[None, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4] input_other_img = batchdata['other_img'].squeeze()[None, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4] outs = debugmodel(input_img, input_other_img, KRT0, KRT1) H, W = input_img.shape[-2:] print(H, W) orig_img = de_transform(cpu(batchdata['img'].squeeze()[None, ...])[0][0]) orig_other_img = de_transform(cpu(batchdata['other_img'].squeeze()[None, ...])[0][0]) # outs = imgmodel(batchdata['heatmap'][:, 0], batchdata['heatmap'][:, 1], batchdata['KRT'][:, 0], batchdata['other_KRT'][:, 1]) out, sample_locs = imgmodel.imgforward_withdepth(input_img, input_other_img, KRT0, KRT1, outs[2][0]) if not cfg.VIS.CURSOR: # show_img = de_transform(cpu(batchdata['img'][:, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4])[0][0]) # show_other_img = de_transform(cpu(batchdata['other_img'][:, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4])[0][0]) fig = plt.figure(1) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax1.imshow(orig_img[::-1].transpose((1,2,0))) ax2.imshow(orig_other_img[::-1].transpose((1,2,0))) ax3.imshow(cpu(batchdata['heatmap'])[0][0].sum(0)) ax4.imshow(cpu(batchdata['other_heatmap'])[0][0].sum(0)) # ax5.imshow(cpu(outs[0])[0].sum(0)) print(out.shape) out_img = de_transform(cpu(out)[0, ::-1].transpose((1,2,0))) ax5.imshow(out_img) plt.show() else: print(sample_locs.shape) # 64 x 1 x H x W x 2 sample_locs = sample_locs[:, 0, :, :, :] # import pdb; pdb.set_trace() fig, axs = plt.subplots(2, 2) cus = Cursor_for_epipolar_line(axs[0,0], [axs[0,1], axs[1,0], axs[1,1]], sample_locs, H, W, axs, \ cpu(input_other_img)[0, :, :, :][::-1].transpose((1,2,0)), outs) axs[0, 0].imshow(cpu(input_img)[0, :, :, :][::-1].transpose((1,2,0))) # prob_im = axs[1, 1].imshow(max_score) fig.canvas.mpl_connect('button_press_event', cus.mouse_down) plt.show() return output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) pck = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "pck.pth")) if cfg.VIS.AUC: auc_path = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "auc.png") draw_auc(predictions, pck, auc_path) total = 0 for inputs, pred in predictions: heatmap = inputs.get('heatmap') points2d = inputs.get('points-2d') hand_side = inputs.get('hand-side') img = inputs.get('img') can_3dpoints = inputs.get('can-points-3d') normed_3d = inputs.get('normed-points-3d') target_global = inputs.get('points-3d') rot_mat = inputs.get('rotation') R_global = inputs.get('R') keypoint_scale = inputs.get('scale') visibility = inputs.get('visibility') unit = inputs.get('unit') image_path = inputs.get('img-path') can_pred = pred.get('can_pred') normed_pred = pred.get('normed_pred') heatmap_pred = pred.get('heatmap_pred') im = plt.imread(image_path) image = np.array(im, dtype=np.int) if cfg.DATASETS.TASK == 'keypoint': fig = plt.figure(1) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) #ax1.imshow(image) print(heatmap.min(), heatmap.max()) print(heatmap_pred.min(), heatmap_pred.max()) ax2.imshow(heatmap.sum(0).T) ax3.imshow(heatmap_pred.sum(0).T) else: total += 1 visibility = visibility.squeeze()[..., None] can_3dpoints = can_3dpoints * visibility can_pred = can_pred * visibility normed_3d = normed_3d * visibility normed_pred = normed_pred * visibility delta = normed_pred - normed_3d print(delta) print('L1 err = ', np.abs(delta).sum()) print('L2 err = ', ((delta**2).sum(-1)**0.5).mean()) fig = plt.figure(1) ax1_1 = fig.add_subplot(331) ax1_2 = fig.add_subplot(332) #ax1_3 = fig.add_subplot(333) #ax2 = fig.add_subplot(222) ax2_1 = fig.add_subplot(334, projection='3d') ax2_2 = fig.add_subplot(335, projection='3d') ax2_3 = fig.add_subplot(336, projection='3d') ax3_1 = fig.add_subplot(337, projection='3d') ax3_2 = fig.add_subplot(338, projection='3d') ax3_3 = fig.add_subplot(333, projection='3d') ax1_1.imshow(image) ax1_2.imshow(image) #ax1_3.imshow(image) #ax2.imshow(image) plot_hand_3d(can_3dpoints, visibility, ax2_1) ax2_1.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(can_pred, visibility, ax2_2) ax2_2.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(can_3dpoints, visibility, ax2_3) plot_hand_3d(can_pred, visibility, ax2_3) ax2_3.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view # ax3.set_xlim([-3, 3]) # ax3.set_ylim([-3, 3]) # ax3.set_zlim([-3, 3]) plot_hand_3d(normed_3d, visibility, ax3_1) ax3_1.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(normed_pred, visibility, ax3_2) ax3_2.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(normed_3d, visibility, ax3_3) plot_hand_3d(normed_pred, visibility, ax3_3) ax3_3.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view # ax3.set_xlim([-3, 3]) # ax3.set_ylim([-3, 3]) # ax3.set_zlim([-3, 3]) plt.show() print("show")
2.125
2
lib/python/treadmill_aws/cli/admin/cell/zk.py
Morgan-Stanley/treadmill-aws
6
12792889
<filename>lib/python/treadmill_aws/cli/admin/cell/zk.py<gh_stars>1-10 """Admin module to manage cell ZooKeeper servers. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import click from treadmill import admin from treadmill import context from treadmill import cli from treadmill import exc import treadmill_aws from treadmill_aws import awscontext from treadmill_aws import ec2client from treadmill_aws import hostmanager _LOGGER = logging.getLogger(__name__) def init(): """Admin Cell CLI module""" @click.group(name='zk') @click.option('--aws-region', required=False, envvar='AWS_REGION', callback=treadmill_aws.cli.handle_context_opt, is_eager=True, expose_value=False) @click.option('--aws-profile', required=False, envvar='AWS_PROFILE', callback=treadmill_aws.cli.handle_context_opt, is_eager=True, expose_value=False) @click.option('--ipa-certs', required=False, default='/etc/ipa/ca.crt', callback=treadmill_aws.cli.handle_context_opt, is_eager=True, expose_value=False) @click.option('--ipa-domain', required=False, envvar='IPA_DOMAIN', callback=treadmill_aws.cli.handle_context_opt, is_eager=True, expose_value=False) def zk_grp(): """Manage cell ZooKeeper servers.""" @click.option('--cell', required=True, envvar='TREADMILL_CELL') @click.option('--hostname', help='Hostname to create') @click.option('--instance-profile', help='EC2 instance profile') @click.option('--instance-type', help='EC2 instance type') @click.option('--subnet', help='Subnet') @click.option('--image', help='Image') @click.option('--disk', help='Disk size (G)') @zk_grp.command(name='create') def create_cmd(cell, hostname, instance_profile, instance_type, subnet, image, disk): """Create cell ZooKeeper server(s).""" ec2_conn = awscontext.GLOBAL.ec2 ipa_client = awscontext.GLOBAL.ipaclient admin_cell = admin.Cell(context.GLOBAL.ldap.conn) masters = admin_cell.get(cell, dirty=True)['masters'] if hostname: masters = [ master for master in masters if master['hostname'] == hostname ] if not masters: cli.bad_exit('%s not found in the cell config', hostname) for master in masters: try: ec2_instance = ec2client.get_instance( ec2_conn, hostnames=[master['hostname']] ) cli.out('%s EC2 instance already exists', master['hostname']) _LOGGER.debug(ec2_instance) except exc.NotFoundError: hostmanager.create_zk( ec2_conn=ec2_conn, ipa_client=ipa_client, master=master, subnet_id=subnet, instance_type=instance_type, instance_profile=instance_profile, image_id=image, disk=disk ) cli.out('Created: %s', master['hostname']) @click.option('--cell', required=True, envvar='TREADMILL_CELL') @click.option('--hostname', help='Hostname to rotate', required=True) @click.option('--instance-profile', help='EC2 instance profile') @click.option('--instance-type', help='EC2 instance type') @click.option('--subnet', help='Subnet') @click.option('--image', help='Image') @click.option('--disk', help='Disk size (G)') @zk_grp.command(name='rotate') def rotate_cmd(cell, hostname, instance_profile, instance_type, subnet, image, disk): """Rotate cell ZooKeeper server.""" ec2_conn = awscontext.GLOBAL.ec2 ipa_client = awscontext.GLOBAL.ipaclient admin_cell = admin.Cell(context.GLOBAL.ldap.conn) masters = admin_cell.get(cell, dirty=True)['masters'] try: master = next( master for master in masters if master['hostname'] == hostname ) except StopIteration: cli.bad_exit('%s not found in the cell config', hostname) try: ec2_instance = ec2client.get_instance( ec2_conn, hostnames=[hostname] ) _LOGGER.debug(ec2_instance) except exc.NotFoundError: cli.bad_exit('%s EC2 instance does not exist', hostname) hostmanager.delete_hosts(ec2_conn, ipa_client, [hostname]) cli.out('Deleted: %s', hostname) # Copy subnet, type and image from the old instance unless we override. hostmanager.create_zk( ec2_conn=ec2_conn, ipa_client=ipa_client, master=master, subnet_id=subnet or ec2_instance['SubnetId'], instance_type=instance_type or ec2_instance['InstanceType'], instance_profile=instance_profile, image_id=image or ec2_instance['ImageId'], disk=disk ) cli.out('Created: %s', hostname) del create_cmd del rotate_cmd return zk_grp
1.773438
2
vendors/pipelines.py
nl-hugo/grapy
2
12792890
<reponame>nl-hugo/grapy # -*- coding: utf-8 -*- import logging from vendors.exporters import RestApiExporter logger = logging.getLogger(__name__) class WineVendorsPipeline(object): def __init__(self, api_url, api_key, forbidden_names, accepted_volumes): # set api properties self.api_url = api_url self.api_key = api_key # set item validation properties self.forbidden_names = forbidden_names self.accepted_volumes = accepted_volumes @classmethod def from_crawler(cls, crawler): # get api settings from settings.py api_url = crawler.settings.get("DYNAMODB_ENDPOINT") api_key = crawler.settings.get("DYNAMODB_API_KEY") # get item validation settings from settings.py forbidden_names = crawler.settings.getlist("FORBIDDEN_NAMES") accepted_volumes = crawler.settings.getlist("ACCEPTED_VOLUMES") return cls(api_url, api_key, forbidden_names, accepted_volumes) def open_spider(self, spider): logger.info("Spider opened, open exporter") self.exporter = RestApiExporter(self.api_url, self.api_key) self.exporter.start_exporting() def close_spider(self, spider): logger.info("Spider closed, close exporter") self.exporter.finish_exporting() def process_item(self, item, spider): logger.info(f"Processing item {item}") item.validate(self.forbidden_names, self.accepted_volumes) self.exporter.export_item(item) return item
1.984375
2
PythonCode/src/MinDivLP.py
KoslickiLab/DiversityOptimization
0
12792891
<reponame>KoslickiLab/DiversityOptimization<filename>PythonCode/src/MinDivLP.py import numpy as np from .sparse_nnls import sparse_nnls from scipy.sparse import vstack def MinDivLP(A_k_small, A_k_large, y_small, y_large, const, q, thresh=0.01): """ MinDivLP A basic, regularized version of the MinDivLP algorithm. Call via: x_star = MinDivLP(A_k_small, A_k_large, y_small, y_large, lambda, q) Parameters are: A_k_small is the[m_small, N] - sized sensing matrix A_k_large is the[m_large, N] - sized sensing matrix y_small is the data vector of size[m_small, 1] y_large is the data vector of size[m_large, 1] lambda is the regularization paramater (larger values indicated better fit to constraints, at the cost potentially higher execution time and may lead to over - fitting if set too large. Typical value is 10000 or 1000 q is the parameter used in the MinDivLP algorithm. Must have 0 < q < 1, typically, q is set to something like q = 0.1 Returns: x_star: an [N, 1] vector """ B = A_k_large > 0 epsilon = 0.0001 denom = np.power(B.T @ y_large, 1 - q) + epsilon f = 1/denom x_star = sparse_nnls(vstack((f.T, const * A_k_small)), np.append(0, const * y_small)) x_star = x_star / sum(x_star) x_star[np.where(x_star < thresh)] = 0 # Set threshold return x_star
3.140625
3
pyblast/blast.py
tjomasc/pyblast
1
12792892
import subprocess import base64 import json import re import hashlib import tempfile import os from lxml import etree import pprint from math_tools import percentile def get_blast_databases(exe_loc, db_loc): """ Look for BLAST databases using in given path and return a list Args: exe_loc: Location (directory) of the BLAST executables. db_loc: Directory containing the BLAST DB. Returns: A dict containing lists of databases available. # Test it! >>> get_blast_databases('/Users/work/Projects/pyBlast/bin/', '/Users/work/Projects/pyBlast/db/') {'protein': [{'location': '/Users/work/Projects/pyBlast/db/yeast.aa', 'title': 'yeast.aa'}], 'nucleotide': [{'location': '/Users/work/Projects/pyBlast/db/yeast.nt', 'title': 'yeast.nt'}]} """ found = subprocess.check_output([exe_loc+'blastdbcmd', '-list', db_loc, '-list_outfmt', "'%f %p %t'"]) try: found = subprocess.check_output([exe_loc+'blastdbcmd', '-list', db_loc, '-list_outfmt', "'%f %p %t'"]) except: found = '' found = [entry.split(' ',2) for entry in re.split(r'\n', re.sub(r'\'', '', found)) if len(entry) > 1] databases = {} for f in found: if f[1].lower() not in databases: databases[f[1].lower()] = [] databases[f[1].lower()].append({'location': f[0], 'title': f[2]}) return databases def get_blast_database_from_title(exe_loc, db_loc, title): """ For a give title get the actual name of the database (it may differ from title) Args: exe_loc: Location (directory) of the BLAST executables. db_loc: Directory containing the BLAST DB. title: The title of the BLAST database to search for. Returns: The location of the BLAST database. """ database_list = get_blast_databases(exe_loc, db_loc) flat = [] for k,l in database_list.iteritems(): flat.extend(l) for d in flat: if title == d['title']: return d['location'] return False def get_sequence_from_database(exe_loc, db, seq_id): """ Extract a sequence from the given BLAST database and return it Args: exe_loc: Directory containing BLAST executables. db: The database to get sequence from. seq_id: The sequence ID of the sequence to get. Returns: The sequence if found else an empty string # Test: >>> get_sequence_from_database('/Users/work/Projects/pyBlast/bin/', '/Users/work/Projects/pyBlast/db/yeast.nt', 'gi|6226515|ref|NC_001224.1|') """ try: found = subprocess.check_output([exe_loc+'blastdbcmd', '-db', db, '-entry', seq_id]) except: found = '' return found def parse_extra_options(option_string, exclude=[]): """ Create an list of options filtering out excluded options Args: option_string: A string containing extra blast options. exclude: Options to exclude from the generated list. Returns: A list of options except those in exclude """ options = re.findall(r'((-\w+) ([\w\d\.]+)?)\s?', option_string) extras = [] for o in options: if o[1] not in exclude: extras.extend(o[1:]) return extras def run_blast(database, program, filestore, file_uuid, sequence, options): """ Perform a BLAST search on the given database using the given query Args: database: The database to search (full path). program: The program to use (e.g. BLASTN, TBLASTN, BLASTX). filestore: The directory to store the XML output. file_uuid: A unique identifier for the filename. sequence: The sequence to BLAST. options: Any extra options to pass to the BLAST executable. Returns: A tuple containing the stdout and stderr of the program. # Test: >>> seq = ">test\\nTTCATAATTAATTTTTTATATATATATTATATTATAATATTAATTTATATTATAAAAATAATATTTATTATTAAAATATT\\nTATTCTCCTTTCGGGGTTCCGGCTCCCGTGGCCGGGCCCCGGAATTATTAATTAATAATAAATTATTATTAATAATTATT\\n>test 2\\nAATGGTATTAGATTCAGTGAATTTGGTACAAGACGTCGTAGATCTCTGAAGGCTCAAGATCTAATTATGCAAGGAATCATGAAAGCTGTGAACGGTAACCCAGACAGAAACAAATCGCTATTATTAGGCACATCAAATATTTTATTTGCCAAGAAATATGGAGTCAAGCCAATCGGTACTGTGGCTCACGAGTGGGTTATGGGAGTCGCTTCTATTAGTGAAGATTATTTGCATGCCAATAAAAATGCAATGGATTGTTGGATCAATACTTTTGGTGCAAAAAATGCTGGTTTAGCATTAACGGATACTTTTGGAACTGATGACTTTTTAAAATCATTCCGTCCACCATATTCTGATGCTTACGTCGGTGTTAGACAAGATTCTGGAGACCCAGTTGAGTATACCAAAAAGATTTCCCACCATTACCATGACGTGTTGAAATTGCCTAAATTCTCGAAGATTATCTGTTATTCCGATTCTTTGAACGTCGAAAAGGCAATAACTTACTCCCATGCAGCTAAAGAGAATG" >>> blast('/Users/work/Projects/pyBlast/db/yeast.nt', '/Users/work/Projects/pyBlast/bin/blastn', '/Users/work/Projects/pyBlast/store/', seq, {u'-evalue': 10.0, u'-strand': u'both'}) >>> seq = ">test\\nTTC" >>> blast('/Users/work/Projects/pyBlast/db/yeast.nt', '/Users/work/Projects/pyBlast/bin/blastn', '/Users/work/Projects/pyBlast/store/', seq, {u'-evalue': 10.0, u'-strand': u'both'}) """ query = [program, '-db', database, '-outfmt', '5', '-query', '-', '-out', "{0}{1}.xml".format(filestore, file_uuid), '-max_target_seqs', '50'] exclude = [ '-db', '-query', '-out', '-subject', '-html', '-gilist', '-negative_gilist', '-entrez_query', '-remote', '-outfmt', '-num_threads', '-import_search_strategy', '-export_search_strategy', '-window_masker_db', '-index_name', '-use_index', ] extra = parse_extra_options(options, exclude) query.extend(extra) p = subprocess.Popen(query, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=-1) stdout, stderr = p.communicate(sequence) return (stdout, stderr) def poll(name): """ Check if the file <name> has been created, indicating BLAST has finished, and return results Args: name: The filename of the file that was created in a BLAST search. Returns: The file or False if it has not yet been created. """ try: with open(name) as results: if os.path.getsize(name) > 0: return results.read() raise IOError except IOError: return False def chunk_string(s, l=10): """ Split a string into chunks of a set length. Args: s: The string to chunk. l: The length of the chunks. Returns: A list containing the string chunks. """ return [s[i:i+l] for i in range(0,len(s),l)] def format_bases(bases): """ Generate HTML that colours the bases in a string. Args: bases: A string containing a genetic sequence. Returns: An HTML string. """ formatted = '' for b in bases: formatted += '<span class="base-{}">{}</span>'.format(b,b) return formatted def create_formatted_sequences(hsp): """ Take a sequence and format it for display. Args: hsp: A dict containing the sequence information. Returns: An HTML string of the formatted sequence. """ cl = 60 query = chunk_string(hsp['query_seq'], cl) match = chunk_string(hsp['midline'], cl) subject = chunk_string(hsp['hit_seq'], cl) output = "" for ln, line in enumerate(query): query_from = int(hsp['query_from']) if ln == 0 else int(hsp['query_from'])+(ln*cl) query_to = query_from+(cl-1) subject_from = int(hsp['hit_from']) if ln == 0 else int(hsp['hit_from'])+(ln*cl) subject_to = subject_from+(cl-1) qseq = format_bases(line) sseq = format_bases(subject[ln]) output += ''' <div class="row"> <pre class="col-xs-1 seq-col-sm">Query Subject </pre> <pre class="col-xs-1 seq-col-sm">{qsnum} {ssnum} </pre> <pre class="col-xs-7 seq-col-lg">{qseq} {match} {sseq} </pre> <pre class="col-xs-1 seq-col-sm">{qenum} {senum} </pre> </div> '''.format(qseq=qseq, match=match[ln], sseq=sseq, qsnum=str(query_from), qenum=query_to, ssnum=str(subject_from), senum=subject_to ) return output.rstrip() def process_blast_result(filecontents, cutoff=0.0001): """ Take a BLAST XML results file and process into a usable dict. Args: filecontents: The contents of a BLAST XML file. cutoff: The cutoff for which a sequence is considered relevant. Returns: A dict of the results. """ results = {'results':[], 'messages':[]} messages = [] b = etree.fromstring(filecontents) # Get BLAST details db_loc = b.xpath('string(BlastOutput_db/text())').split('/') results['details'] = { 'program': b.xpath('string(BlastOutput_program/text())'), 'version': b.xpath('string(BlastOutput_version/text())'), 'reference': b.xpath('string(BlastOutput_reference/text())'), 'db': db_loc[-1], 'query_id': b.xpath('string(BlastOutput_query-ID/text())'), 'query_def': b.xpath('string(BlastOutput_query-def/text())'), 'query_length': b.xpath('string(BlastOutput_query-len/text())'), 'params': {}, } for t in b.findall('BlastOutput_param/Parameters/*'): name = t.tag.split('_', 1) results['details']['params'][name[-1]] = t.text for it in b.findall('BlastOutput_iterations/Iteration'): # The file may contain a message, stor that for later use if it.find('.//Iteration_message') is not None: results['messages'].append(it.find('.//Iteration_message').text) else: r = { 'details': { 'id': it.xpath('string(Iteration_query-ID/text())'), 'def': it.xpath('string(Iteration_query-def/text())'), 'length': it.xpath('string(Iteration_query-len/text())'), }, 'statistics': { 'db_num': b.xpath('string(Iteration_stat/Statistics/Statistics_db-num/text())'), 'db_length': b.xpath('string(Iteration_stat/Statistics/Statistics_db-len/text())'), 'hsp_length': b.xpath('string(Iteration_stat/Statistics/Statistics_hsp-len/text())'), 'eff_space': b.xpath('string(Iteration_stat/Statistics/Statistics_eff-space/text())'), 'kappa': b.xpath('string(Iteration_stat/Statistics/Statistics_kappa/text())'), 'lambda': b.xpath('string(Iteration_stat/Statistics/Statistics_lambda/text())'), 'entropy': b.xpath('string(Iteration_stat/Statistics/Statistics_entropy/text())'), }, 'hits': [] } for ht in it.findall('Iteration_hits/Hit'): h = { 'num': ht.xpath('string(Hit_num/text())'), 'id': ht.xpath('string(Hit_id/text())'), 'def': ht.xpath('string(Hit_def/text())'), 'accession': ht.xpath('string(Hit_accession/text())'), 'length': ht.xpath('string(Hit_len/text())'), 'hsps': [], } query_from = [] query_to = [] for hs in ht.findall('.//Hsp'): hsp = { 'num': hs.xpath('string(Hsp_num/text())'), 'bit_score': hs.xpath('string(Hsp_bit-score/text())'), 'score': hs.xpath('string(Hsp_score/text())'), 'evalue': hs.xpath('string(Hsp_evalue/text())'), 'query_from': hs.xpath('string(Hsp_query-from/text())'), 'query_to': hs.xpath('string(Hsp_query-to/text())'), 'hit_from': hs.xpath('string(Hsp_hit-from/text())'), 'hit_to': hs.xpath('string(Hsp_hit-to/text())'), 'query_frame': hs.xpath('string(Hsp_query-frame/text())'), 'hit_frame': hs.xpath('string(Hsp_hit-frame/text())'), 'identity': hs.xpath('string(Hsp_identity/text())'), 'positive': hs.xpath('string(Hsp_positive/text())'), 'gaps': hs.xpath('string(Hsp_gaps/text())'), 'align_length': hs.xpath('string(Hsp_align-len/text())'), 'query_seq': hs.xpath('string(Hsp_qseq/text())'), 'hit_seq': hs.xpath('string(Hsp_hseq/text())'), 'midline': hs.xpath('string(Hsp_midline/text())'), } hsp['identity_percent'] = int(hsp['identity'])/float(hsp['align_length'])*100 hsp['gaps_percent'] = int(hsp['gaps'])/float(hsp['align_length'])*100 if float(hsp['evalue']) < cutoff: #float(hsp['bit_score']) > bit_score_filter: query_from.append(int(hsp['query_from'])) query_to.append(int(hsp['query_to'])) hsp['formatted'] = create_formatted_sequences(hsp) hsp['query_chunk'] = chunk_string(hsp['query_seq'], 60) hsp['match_chunk'] = chunk_string(hsp['midline'], 60) hsp['subject_chunk'] = chunk_string(hsp['hit_seq'], 60) h['hsps'].append(hsp) if len(h['hsps']) > 0: if sum(query_from) > sum(query_to): h['query_from'] = max(query_from) h['query_to'] = min(query_to) else: h['query_from'] = min(query_from) h['query_to'] = max(query_to) r['hits'].append(h) results['results'].append(r) return results
2.765625
3
Scrapers/setup.py
TLTFinancialConsulting/Stock-Analysis
0
12792893
from distutils.core import setup import py2exe setup(console=['Single Stock Scraper.py'])
1.109375
1
src/model/UrlMap.py
joyghosh/tiny
1
12792894
''' Created on 02-Jul-2016 @author: <NAME> @version: 1.0 @since: 1.0 ''' from flask_sqlalchemy import SQLAlchemy from restful.tiny_routes import app db = SQLAlchemy(app) class UrlMap(db.Model): ''' A model responsible for storing shortened to long url mapping. ''' id = db.Column('id', db.Integer, primary_key = True) uuid = db.Column('uuid', db.Integer, unique = True) short_url = db.Column('short_url', db.String(255), unique = True) url = db.Column('url', db.String(255), unique = True) def __init__(self, uuid, short_url, url): ''' Constructor ''' self.uuid = uuid self.short_url = short_url self.url = url
2.96875
3
method2/utils.py
Kenneth111/BlindWatermark
2
12792895
<gh_stars>1-10 import numpy as np from scipy.fftpack import dct, idct def dct2(a): return dct( dct( a, axis=0, norm='ortho' ), axis=1, norm='ortho' ) def idct2(a): return idct( idct( a, axis=0 , norm='ortho'), axis=1 , norm='ortho') def binarizeImg(img): threshold = 200 table = [] for i in range( 256 ): if i < threshold: table.append(0) else: table.append(1) tmp_img = img.point(table) return np.array(tmp_img)
2.546875
3
Python/Programming Fundamentals/Lists Basics/15. Search.py
teodoramilcheva/softuni-software-engineering
0
12792896
n = int(input()) word = input() list_of_strings = [input() for _ in range(n)] filtered_list = [] for i in range(n): if word in list_of_strings[i]: filtered_list.append(list_of_strings[i]) print(list_of_strings) print(filtered_list)
3.9375
4
examples/poll_card.py
smaeda-ks/twitter-python-ads-sdk
162
12792897
from twitter_ads.campaign import Tweet from twitter_ads.client import Client from twitter_ads.creative import MediaLibrary, PollCard from twitter_ads.enum import MEDIA_TYPE CONSUMER_KEY = '' CONSUMER_SECRET = '' ACCESS_TOKEN = '' ACCESS_TOKEN_SECRET = '' ACCOUNT_ID = '' # initialize the client client = Client(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) # load the advertiser account instance account = client.accounts(ACCOUNT_ID) # most recent Media Library video ml = MediaLibrary(account).all(account, media_type=MEDIA_TYPE.VIDEO) media_key = ml.first.media_key # create Poll Card with video pc = PollCard(account) pc.duration_in_minutes = 10080 # one week pc.first_choice = 'Northern' pc.second_choice = 'Southern' pc.name = ml.first.name + ' poll card from SDK' pc.media_key = media_key pc.save() # create Tweet Tweet.create(account, text='Which hemisphere do you prefer?', card_uri=pc.card_uri) # https://twitter.com/apimctestface/status/973002610033610753
2.53125
3
HAFTA-2/DERS-5/1.py
aydan08/Python-Kursu-15.02.21
1
12792898
<reponame>aydan08/Python-Kursu-15.02.21 a=input("Sayı Girin:") a=int(a) b=input("İkinci Sayı Girin:") b=int(b) c=a+b print(c)
3.65625
4
tagannotator/base/migrations/0004_auto_20200113_0232.py
kixlab/suggestbot-instagram-context-annotator
0
12792899
# Generated by Django 2.2.7 on 2020-01-13 02:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0003_auto_20200113_0225'), ] operations = [ migrations.RemoveField( model_name='photo', name='user', ), migrations.AddField( model_name='photo', name='title', field=models.CharField(blank=True, max_length=255), ), ]
1.46875
1
kibitzr/cli.py
paulmassen/kibitzr
478
12792900
import sys import logging import click import entrypoints LOG_LEVEL_CODES = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, } def merge_extensions(click_group): """ Each extension is called with click group for ultimate agility while preserving cli context. """ for extension in load_extensions(): extension(click_group) return click_group def load_extensions(): """Return list of Kibitzr CLI extensions""" return [ point.load() for point in entrypoints.get_group_all("kibitzr.cli") ] @click.group() @click.option("-l", "--log-level", default="info", type=click.Choice(LOG_LEVEL_CODES.keys()), help="Logging level") @click.pass_context def cli(ctx, log_level): """Run kibitzr COMMAND --help for detailed descriptions""" ctx.obj = {'log_level': LOG_LEVEL_CODES[log_level.lower()]} @cli.command() def version(): """Print version""" from kibitzr import __version__ as kibitzr_version print(kibitzr_version) @cli.command() def firefox(): """Launch Firefox with persistent profile""" from kibitzr.app import Application Application().run_firefox() @cli.command() @click.argument('name', nargs=-1) @click.pass_context def once(ctx, name): """Run kibitzr checks once and exit""" from kibitzr.app import Application app = Application() sys.exit(app.run(once=True, log_level=ctx.obj['log_level'], names=name)) @cli.command() @click.argument('name', nargs=-1) @click.pass_context def run(ctx, name): """Run kibitzr in the foreground mode""" from kibitzr.app import Application app = Application() sys.exit(app.run(once=False, log_level=ctx.obj['log_level'], names=name)) @cli.command() def init(): """Create boilerplate configuration files""" from kibitzr.app import Application Application.bootstrap() @cli.command() def telegram_chat(): """Return chat id for the last message sent to Telegram Bot""" # rename import to escape name clashing: from kibitzr.app import Application app = Application() app.telegram_chat() @cli.command() def clean(): """Clean change history""" from kibitzr.storage import PageHistory PageHistory.clean() @cli.command() def stash(): """Print stash contents""" from kibitzr.stash import Stash Stash.print_content() extended_cli = merge_extensions(cli) if __name__ == "__main__": extended_cli()
2.140625
2
tests/test_board.py
meyer1994/connect5
0
12792901
<reponame>meyer1994/connect5 from unittest import TestCase from ai.board import Board class TestBoard(TestCase): def setUp(self): self.board = Board(5, 5) self.board.board = ''.join([ '----X', 'XXXX-', '-----', 'XXXXO', 'X-X-X' ]) # X - X - X # X X X X O # - - - - - # X X X X - # - - - - X def test_constructor(self): self.assertEqual(self.board.width, 5) self.assertEqual(self.board.height, 5) def test_row(self): res = self.board.row(0) print(type(self.board.board)) row = '----X' self.assertEqual(res, row) res = self.board.row(3) row = 'XXXXO' self.assertEqual(res, row) def test_rows(self): for i, row in enumerate(self.board.rows): exp = self.board.row(i) self.assertEqual(exp, row) def test_cols(self): for i, col in enumerate(self.board.cols): exp = self.board.col(i) self.assertEqual(exp, col) def test_col(self): res = self.board.col(0) col = '-X-XX' self.assertEqual(res, col) res = self.board.col(3) col = '-X-X-' self.assertEqual(res, col) def test_rdiag(self): expected = [ 'X', 'X-', '-XX', 'X-X-', '-X-XX', '-X-O', '-X-', '--', 'X' ] for diag, exp in enumerate(expected): res = self.board.rdiag(diag) print(res) self.assertEqual(res, exp) def test_ldiag(self): expected = [ '-', 'X-', '-X-', 'X-X-', 'XX-XX', '-X--', 'XX-', '-O', 'X' ] for i, exp in enumerate(expected): res = self.board.ldiag(i) self.assertEqual(res, exp) def test_diags(self): expected = [ 'X', 'X-', '-XX', 'X-X-', '-X-XX', '-X-O', '-X-', '--', 'X', '-', 'X-', '-X-', 'X-X-', 'XX-XX', '-X--', 'XX-', '-O', 'X' ] results = list(self.board.diags) self.assertListEqual(results, expected) def test_get(self): coords = [ (0, 0), (0, 3), (0, 1), (3, 3) ] expected = [ '-', 'X', 'X', 'X' ] results = [ self.board.get(x, y) for x, y in coords ] self.assertListEqual(expected, results) def test_set(self): self.board.set(1, 1, 'O') res = self.board.get(1, 1) self.assertEqual(res, 'O') def test_str(self): string = ('X - X - X\n' 'X X X X O\n' '- - - - -\n' 'X X X X -\n' '- - - - X') res = str(self.board) self.assertEqual(string, res) res = repr(self.board) self.assertEqual(string, res) def test_len(self): res = len(self.board) self.assertEqual(res, 25) def test_eq(self): b1 = Board(20, 20) b2 = Board(20, 20) self.assertEqual(b1, b2) b1.set(0, 0, 'x') self.assertNotEqual(b1, b2)
3.5625
4
stubs/esp32_1_10_0/btree.py
jmannau/micropython-stubber
0
12792902
"Module 'btree' on firmware 'v1.10-247-g0fb15fc3f on 2019-03-29'" DESC = 2 INCL = 1 def open(): pass
0.984375
1
src/elm_fluent/html_compiler.py
elm-fluent/elm-fluent
17
12792903
<reponame>elm-fluent/elm-fluent """ HTML specific compilation functions """ import re import bs4 from fluent.syntax import ast from elm_fluent import codegen from elm_fluent.stubs import defaults as dtypes, html, html_attributes html_output_type = dtypes.List.specialize(a=html.Html) def compile_pattern(pattern, local_scope, compiler_env): skeleton, expr_replacements = replace_non_text_expressions(pattern.elements) # TODO - handle parse failures gracefully, and check the parser is ensuring # well-formedness dom = bs4.BeautifulSoup("<root>{0}</root>".format(skeleton), "lxml").find("root") return dom_nodes_to_elm( list(dom.children), expr_replacements, local_scope, compiler_env ) def dom_nodes_to_elm(nodes, expr_replacements, local_scope, compiler_env): # We have to structure this as a list of lists, then do a List.concat # at the end. In many cases the List.concat will disappear after # simplify. from elm_fluent import compiler items = [] for node in nodes: if isinstance(node, bs4.element.NavigableString): parts = interpolate_replacements(str(node), expr_replacements) for part in parts: if isinstance(part, str): items.append( HtmlList( [ local_scope.variables["Html.text"].apply( codegen.String(str(part)) ) ] ) ) else: val = compiler.compile_expr(part, local_scope, compiler_env) if val.type == html_output_type: # This is a list type, so simply append to our list of lists items.append(val) else: val = local_scope.variables["Html.text"].apply( compiler.render_to_string(val, local_scope, compiler_env) ) items.append(HtmlList([val])) else: assert isinstance(node, bs4.element.Tag) tag_name = node.name.lower() static_attributes = [] for attr_name, attr_value in sorted(node.attrs.items()): if isinstance(attr_value, list): # Bs4 treats class attribute differently, returns a list, which we convert # back to a string here: attr_value = " ".join(attr_value) attr_value_parts = interpolate_replacements( attr_value, expr_replacements ) attr_output_parts = [] for part in attr_value_parts: if isinstance(part, str): attr_output_parts.append(codegen.String(str(part))) else: with compiler_env.modified(html_context=False): attr_output_parts.append( compiler.render_to_string( compiler.compile_expr( part, local_scope, compiler_env ), local_scope, compiler_env, ) ) attr_final_value = codegen.StringConcat(attr_output_parts) if attr_name in html_attributes.ATTRIBUTES: attr_constructor = local_scope.variables[ "Attributes.{0}".format(attr_name) ] else: attr_constructor = local_scope.variables[ "Attributes.attribute" ].apply(codegen.String(attr_name)) static_attributes.append(attr_constructor.apply(attr_final_value)) if compiler_env.dynamic_html_attributes: selectors_for_node = codegen.List( list( map( codegen.String, get_selectors_for_node(node, expr_replacements), ) ) ) dynamic_attributes = local_scope.variables[ "Fluent.selectAttributes" ].apply( local_scope.variables[compiler.ATTRS_ARG_NAME], selectors_for_node ) else: dynamic_attributes = codegen.List([]) attributes = codegen.ListConcat( [codegen.List(static_attributes), dynamic_attributes], dtypes.List.specialize(a=html.Attribute), ) sub_items = dom_nodes_to_elm( list(node.children), expr_replacements, local_scope, compiler_env ) if tag_name in html.ELEMENTS: node_constructor = local_scope.variables["Html.{0}".format(tag_name)] else: node_constructor = local_scope.variables["Html.node"].apply( codegen.String(tag_name) ) item = node_constructor.apply(attributes, sub_items) items.append(HtmlList([item])) return HtmlListConcat(items) class HtmlList(codegen.List): def simplify(self, changes): retval = super(HtmlList, self).simplify(changes) if retval is not self: return retval def is_html_text_call(item): return ( isinstance(item, codegen.FunctionCall) and isinstance(item.expr, codegen.VariableReference) and ( "{0}.{1}".format(item.expr.module_name, item.expr.name) == "Html.text" ) ) new_items = [] for item in self.items: if ( len(new_items) > 0 and is_html_text_call(new_items[-1]) and is_html_text_call(item) ): last_item = new_items[-1] if not isinstance(last_item.args[0], codegen.StringConcat): last_item.args = [codegen.StringConcat([last_item.args[0]])] last_item.args[0].parts.append(item.args[0]) changes.append(True) else: new_items.append(item) self.items = new_items return self class HtmlListConcat(codegen.ListConcat): literal = HtmlList def __init__(self, parts): super(HtmlListConcat, self).__init__(parts, html_output_type) def replace_non_text_expressions(elements): """ Given a list of ast.Expression objects, returns a string with replacement markers and a dictionary of replacement info """ parts = [] expr_replacements = {} for element in elements: if isinstance(element, ast.TextElement): parts.append(element.value) else: # Need a replacement that doesn't have any special HTML chars in it # that would cause the HTML parser to do anything funny with it. # TODO - some mechanism that would guarantee this generated string # does not appear by chance in the actual message. replacement_name = "SSS{0}EEE".format(str(id(element))) expr_replacements[replacement_name] = element parts.append(replacement_name) return "".join(parts), expr_replacements def interpolate_replacements(text, expr_replacements): """ Given a text with replacement markers, and a dictionary of replacement markers to expression objects, returns a list containing text/expression objects. """ if not expr_replacements: return [text] replacement_strings = list(expr_replacements.keys()) splitter = re.compile( "({0})".format("|".join(re.escape(r) for r in replacement_strings)) ) split_text = [p for p in splitter.split(text) if p] return [expr_replacements.get(t, t) for t in split_text] def get_selectors_for_node(node, expr_replacements): tag_name = node.name.lower() yield tag_name def is_static_only(attr_value): parts = interpolate_replacements(attr_value, expr_replacements) return all(isinstance(p, str) for p in parts) classes = node.attrs.get("class", []) if is_static_only(" ".join(classes)): for class_ in classes: class_selector = ".{0}".format(class_) yield class_selector yield tag_name + class_selector id = node.attrs.get("id", None) if id is not None and is_static_only(id): id_selector = "#{0}".format(id) yield id_selector yield tag_name + id_selector for attr_name, attr_value in sorted(node.attrs.items()): if attr_name in ["id", "class"]: continue attr_present_selector = "[{0}]".format(attr_name) yield attr_present_selector yield tag_name + attr_present_selector if is_static_only(attr_value): attr_value_selector = '[{0}="{1}"]'.format(attr_name, attr_value) yield attr_value_selector yield tag_name + attr_value_selector
2.71875
3
api/tests/opentrons/file_runner/test_create_file_runner.py
mrakitin/opentrons
0
12792904
"""Tests for the create_protocol_runner factory.""" import pytest from pathlib import Path from opentrons.hardware_control import API as HardwareAPI from opentrons.protocol_engine import ProtocolEngine, create_protocol_engine from opentrons.file_runner import ( ProtocolFileType, ProtocolFile, JsonFileRunner, PythonFileRunner, create_file_runner, ) @pytest.fixture async def protocol_engine(hardware: HardwareAPI) -> ProtocolEngine: """Get an actual ProtocolEngine for smoke-test purposes.""" return await create_protocol_engine(hardware=hardware) async def test_create_json_runner( protocol_engine: ProtocolEngine, json_protocol_file: Path, ) -> None: """It should be able to create a JSON file runner.""" protocol_file = ProtocolFile( file_type=ProtocolFileType.JSON, file_path=json_protocol_file, ) result = create_file_runner( protocol_file=protocol_file, engine=protocol_engine, ) assert isinstance(result, JsonFileRunner) async def test_create_python_runner( protocol_engine: ProtocolEngine, python_protocol_file: Path, ) -> None: """It should be able to create a Python file runner.""" protocol_file = ProtocolFile( file_type=ProtocolFileType.PYTHON, file_path=python_protocol_file, ) result = create_file_runner( protocol_file=protocol_file, engine=protocol_engine, ) assert isinstance(result, PythonFileRunner)
2.46875
2
KGQA/LSTM/test_api.py
johnson7788/EmbedKGQA
0
12792905
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2022/4/18 11:45 上午 # @File : test_api.py # @Author: # @Desc : 测试 import unittest import requests import time, os import json import base64 import random import string import pickle import sys class LSTMKQGATestCase(unittest.TestCase): host_server = f'http://l8:9966' def test_lstmkgqa_file(self): """ 测试文件接口 :return: :rtype: """ url = f"{self.host_server}/api/predict_file" params = {'data_apth': "./../data/QA_data/MetaQA/qa_test_1hop.txt"} headers = {'content-type': 'application/json'} r = requests.post(url, headers=headers, data=json.dumps(params), timeout=360) result = r.json() print(result) assert r.status_code == 200 assert result is not None, "返回结果为None" #检查结果,里面肯定是字典格式 print("对文件接口测试完成") def test_lstmkgqa(self): """ 测试数据的正确答案 what does [Grégoire Colin] appear in Before the Rain [Joe Thomas] appears in which movies The Inbetweeners Movie|The Inbetweeners 2 what films did [Michelle Trachtenberg] star in Inspector Gadget|Black Christmas|Ice Princess|Harriet the Spy|The Scribbler what does [Helen Mack] star in The Son of Kong|Kiss and Make-Up|Divorce 测试接口 :return: ['问题是:what does Grégoire Colin appear in, 答案是: Before the Rain', '问题是:NE appears in which movies, 答案是: The Inbetweeners Movie', '问题是:what films did Michelle Trachtenberg star in, 答案是: Harriet the Spy', '问题是:what does <NAME> star in, 答案是: The Son of Kong', '问题是:what films did Shahid Kapoor act in, 答案是: Haider'] :rtype: """ url = f"{self.host_server}/api/predict" data = [ ['<NAME>', 'what does NE appear in'], ['<NAME>', 'NE appears in which movies'], ['<NAME>', 'what films did NE star in'], ['<NAME>', 'what does NE star in'], ['<NAME>', 'what films did NE act in'], ] params = {'data':data} headers = {'content-type': 'application/json'} r = requests.post(url, headers=headers, data=json.dumps(params), timeout=360) result = r.json() print(result) assert r.status_code == 200 assert result is not None, "返回结果为None" #检查结果,里面肯定是字典格式 print("对文件接口测试完成")
2.8125
3
Python-Automate-Email/main.py
abhijeetpandit7/Flight-Deals
0
12792906
<gh_stars>0 #This file will need to use the DataManager,FlightSearch, FlightData, NotificationManager classes to achieve the program requirements. from notification_manager import NotificationManager from flight_search import FlightSearch from flight_data import FlightData from data_manager import DataManager notification_manager = NotificationManager() flight_search = FlightSearch() flight_data = FlightData() data_manger = DataManager() user_list = data_manger.get_users() destination_list = data_manger.get_data() for city in destination_list: city_id = city['id'] lowest_price = city['lowestPrice'] fly_to = city['iataCode'] price_data = flight_search.get_data(fly_to) # Check if no flights available if not price_data: continue is_cheap_deal = flight_data.compare(price_data, lowest_price) if is_cheap_deal: flight_details = flight_data.get_data() data_manger.update_data(city_id, flight_data.min_price) notification_manager.send_alert(flight_details, user_list)
3.125
3
test/import_it.py
cltl/FrameNetNLTK
1
12792907
<reponame>cltl/FrameNetNLTK<gh_stars>1-10 import sys sys.path.insert(0, '../..') from FrameNetNLTK import load my_fn = load(folder='test_lexicon', verbose=2)
1.539063
2
examples/pybullet/gym/pybullet_envs/minitaur/agents/trajectory_generator/tg_inplace.py
felipeek/bullet3
9,136
12792908
"""Trajectory Generator for in-place stepping motion for quadruped robot.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np TWO_PI = 2 * math.pi def _get_actions_asymmetric_sine(phase, tg_params): """Returns the leg extension given current phase of TG and parameters. Args: phase: a number in [0, 2pi) representing current leg phase tg_params: a dictionary of tg parameters: stance_lift_cutoff -- switches the TG between stance (phase < cutoff) and lift (phase > cutoff) phase amplitude_swing -- amplitude in swing phase amplitude_lift -- amplitude in lift phase center_extension -- center of leg extension """ stance_lift_cutoff = tg_params['stance_lift_cutoff'] a_prime = np.where(phase < stance_lift_cutoff, tg_params['amplitude_stance'], tg_params['amplitude_lift']) scaled_phase = np.where( phase > stance_lift_cutoff, np.pi + (phase - stance_lift_cutoff) / (TWO_PI - stance_lift_cutoff) * np.pi, phase / stance_lift_cutoff * np.pi) return tg_params['center_extension'] + a_prime * np.sin(scaled_phase) def step(current_phases, leg_frequencies, dt, tg_params): """Steps forward the in-place trajectory generator. Args: current_phases: phases of each leg. leg_frequencies: the frequency to proceed the phase of each leg. dt: amount of time (sec) between consecutive time steps. tg_params: a set of parameters for trajectory generator, see the docstring of "_get_actions_asymmetric_sine" for details. Returns: actions: leg swing/extensions as output by the trajectory generator. new_state: new swing/extension. """ new_phases = np.fmod(current_phases + TWO_PI * leg_frequencies * dt, TWO_PI) extensions = [] for leg_id in range(4): extensions.append( _get_actions_asymmetric_sine(new_phases[..., leg_id], tg_params)) return new_phases, extensions def reset(): return np.array([0, np.pi * 0.5, np.pi, np.pi * 1.5])
3.0625
3
1_Agent_based_modeling.py
gy19sp/GEO5003-Practicals
0
12792909
<reponame>gy19sp/GEO5003-Practicals<gh_stars>0 import random # imports the random function """ ransomised position of y coordinate of agent in a 99*99 grid, this function varies from the random.random function, as the randint functions offers the possibility to create a range of numbers whereas random.random offers a range from 0-1""" y0= random.randint (0,99) x0= random.randint (0,99) #Make Random movement by 1 step in the y coordinate if random.random() < 0.5:# generates a random number with a value of 0-0.99 y0 += 1 #increases a step in the y direction else: y0 -= 1 #deccreases a step in the y direction #This is the same movement for the x coordinate if random.random() < 0.5: x0 += 1 #increases a step in the x direction else: x0 -= 1 #decreases a step in the x direction """ same action for a second agent""" y1= random.randint (0,99) #generates a number within the specified parameters in this case 0-99 x1= random.randint (0,99) #same method as for previous agent if random.random() < 0.5: y1 += 1 else: y1 -= 1 if random.random() < 0.5: x1 += 1 else: x1 -= 1 """ #y0 = 0 #x0 = 0 #y1 = 4 #x1 = 3 values used to test pythagoras theorem that gives an answer of 5 the randomised sequence gives varying answers""" answer = (((y0 - y1)**2) + ((x0 - x1)**2))**0.5 """a suared+ b squared= c squared, **0.5 being the square root of c, which is the distance between 1 and 2""" print (answer)# prints the result from the triangulation
3.859375
4
082 - LISTA, dividindo valores entre LISTAS.py
Rprjunior/PraticandoPython
0
12792910
'''082 - LISTA, DIVIDINDO VALORES ENTRE LISTAS. PROGRAMA QUE LEIA VÁRIOS VALORES E GUARDE NUMA LISTA. DIVIDA OS VALORES IMPARES E PARES EM OUTRAS DUAAS LISTAS E MOSTRE AS 3 NO FINAL.''' numeros = list() pares = list() impares = list() while True: numeros.append(int(input('Digite um valor: '))) resposta = str(input('Quer continuar? [S/N]: ')) if resposta in 'Nn': break for indice, valor in enumerate(numeros): if valor % 2 == 0: pares.append(valor) elif valor % 2 == 1: impares.append(valor) print(f'A LISTA completa é: {numeros}') print(f'A LISTA de PARES é: {pares}') print(f'A LISTA de ÍMPARES é: {impares}')
4
4
htic/data.py
jenskutilek/HumbleTypeInstructionCompiler
2
12792911
from __future__ import absolute_import from .error import HumbleError class Data(object): """Manage parsed data""" def __init__(self): self.gasp = [] """[(int size, bool doGridfit, bool doGray, bool symSmoothing, bool symGridfit)]""" self.maxp = {} """{string name : int value}""" self.cvt = [] """[int]""" self.fpgm = None """Block""" self.prep = None """Block""" self.glyphs = {} """{string name : Block block}""" self.__cvtLookup = {} self.__functionLookup = {} self.__functionRecipeLookup = {} self.__voidFunctionList = [] self.__storageLookup = {} self.__flagLookup = {} def addGasp(self, size, doGridFit, doGray, symSmoothing, symGridfit): self.gasp.append((size, doGridFit, doGray, symSmoothing, symGridfit)) def addMaxp(self, name, value): self.maxp[name] = value def setFpgm(self, block): self.fpgm = block def setPrep(self, block): self.prep = block def addGlyph(self, name, block): self.glyphs[name] = block def addCvt(self, name, value): if name in self.__cvtLookup: raise HumbleError("Duplicate CVT identifier: {}".format(name)) index = len(self.cvt) self.cvt.append(value) self.__cvtLookup[name] = index def addFunction(self, index, name, recipe, isVoid): if name in self.__functionLookup: raise HumbleError("Duplicate function identifier: {}".format(name)) if index in self.__functionLookup.values(): raise HumbleError("Duplicate function index: {} {}".format(index, name)) self.__functionLookup[name] = index self.__functionRecipeLookup[name] = recipe if isVoid: self.__voidFunctionList.append(name) def addStorage(self, name): if name not in self.__storageLookup: index = len(self.__storageLookup) self.__storageLookup[name] = index def addFlag(self, name, value): self.__flagLookup[name] = value def getCvtIndex(self, name): try: return self.__cvtLookup[name] except KeyError: raise HumbleError("Undeclared CVT identifier: {}".format(name)) def getFunctionIndex(self, name): try: return self.__functionLookup[name] except KeyError: raise HumbleError("Undeclared function identifier: {}".format(name)) def getFunctionRecipe(self, name): try: return self.__functionRecipeLookup[name] except KeyError: return () def isVoidFunction(self, name): return name in self.__voidFunctionList def getStorageIndex(self, name): try: return self.__storageLookup[name] except KeyError: raise HumbleError("Undeclared storage identifier: {}".format(name)) def getFlagValue(self, name): try: return self.__flagLookup[name] except KeyError: raise HumbleError("Undeclared flag alias: {}".format(name))
2.4375
2
Task1B.py
AndrewKeYanzhe/part-ia-flood-warning-system
0
12792912
<filename>Task1B.py from floodsystem.stationdata import build_station_list from floodsystem.geo import stations_by_distance def run(): stations = build_station_list() p = (52.2053, 0.1218) distances = stations_by_distance(stations, p) print("The closest stations are: ", distances[:10]) print("The furthest stations are: ", distances[-10:]) if __name__ == "__main__": print("*** Task 1B: CUED Part IA Flood Warning System ***") run()
3.15625
3
Models/FCNNs.py
alexchartrand/IoT
0
12792913
<gh_stars>0 # FCNNs #<NAME>, <NAME>, <NAME> (2017b) Time series classification from scratch with deep neural networks: #A strong baseline. In: International Joint Conference on Neural Networks, pp 1578–1585 import torch.nn as nn import torch.optim as optim from . import Utility class FCNNs(nn.Module): def __init__(self, in_feature, out_feature): super(FCNNs, self).__init__() #self.activation = nn.Softmax(dim=1) # This is include in the loss self.conv1 = Utility.ConvBlock(in_feature, 128, 8) self.conv2 = Utility.ConvBlock(128, 256, 5) self.conv3 = Utility.ConvBlock(256, 128, 3) self.gap = Utility.GAP() self.lin = nn.Linear(128, out_feature) def forward(self, x): h=self.conv1(x) h = self.conv2(h) h = self.conv3(h) h = self.gap(h) h = self.lin(h) return h def getOptimizer(self): return optim.Adam(self.parameters(), lr=0.001, betas=(0.9,0.999),eps=1e-7)
2.625
3
client/paddleflow/run/run_info.py
Mo-Xianyuan/PaddleFlow
0
12792914
""" Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ #!/usr/bin/env python3 # -*- coding:utf8 -*- class RunInfo(object): """the class of RunInfo info""" def __init__(self, runId, fsname, username, status, name, description, entry, parameters, run_yaml, runtime, dockerEnv, updateTime, source, runMsg, createTime, activateTime): """init """ self.runId = runId self.fsname = fsname self.username = username self.status = status self.name = name self.description = description self.entry = entry self.parameters = parameters self.run_yaml = run_yaml self.runtime = runtime self.dockerEnv = dockerEnv self.updateTime = updateTime self.source = source self.runMsg = runMsg self.createTime = createTime self.activateTime = activateTime class JobInfo(object): """ the class of job info""" def __init__(self, name, deps, parameters, command, env, status, start_time, end_time, image, jobid): self.name = name self.deps = deps self.parameters = parameters self.command = command self.env = env self.status = status self.start_time = start_time self.end_time = end_time self.image = image self.jobId = jobid class RunCacheInfo(object): """ the class of runcache info""" def __init__(self, cacheid, firstfp, secondfp, runid, source, step, fsname, username, expiredtime, strategy, custom, createtime, updatetime): self.cacheid = cacheid self.firstfp = firstfp self.secondfp = secondfp self.runid = runid self.source = source self.step = step self.fsname = fsname self.username = username self.expiredtime = expiredtime self.strategy = strategy self.custom = custom self.createtime = createtime self.updatetime = updatetime class ArtifaceInfo(object): """ the class of artiface info""" def __init__(self, runid, fsname, username, artifactpath, atype, step, artifactname, meta, createtime, updatetime): self.runid = runid self.fsname = fsname self.username = username self.artifactpath = artifactpath self.type = atype self.step = step self.artifactname = artifactname self.meta = meta self.createtime = createtime self.updatetime = updatetime
1.859375
2
src/RFDTypeDefinition.py
RFDaemoniac/ReadableFormattedData
1
12792915
<reponame>RFDaemoniac/ReadableFormattedData import re import pprint import pdb from RFDUtilityFunctions import LogValidationCheck, LogError, GetInteger, GetBoolean, GetFloat, GetString, ParseValue class RootTypes(): Unspecified = 'Unspecified' Bool = 'Bool' Int = 'Int' Float = 'Float' String = 'String' Array = 'Array' Object = 'Object' Any = 'Any' AllowedDefinitionMembers = { 'type', 'min', 'max', 'regex', 'extends', # rmf todo: this is important, but requires partial validation 'default_value', 'length', 'one_of', # rmf todo: @incomplete will need more work to make this able to be nested 'members', 'name', 'required', 'delete_members' # from parent } RootTypeNameToPythonType = { RootTypes.Bool : (bool), RootTypes.Int : (int), RootTypes.Float : (float), RootTypes.String : (basestring), RootTypes.Array : (list), RootTypes.Object : (dict), RootTypes.Any : () } BasicTypes = { RootTypes.Bool, RootTypes.Int, RootTypes.Float, RootTypes.String } BasicTypeParsers = { RootTypes.Bool : GetBoolean, RootTypes.Int : GetInteger, RootTypes.Float : GetFloat, RootTypes.String : GetString } class DefinitionNode(): def __init__(self, definition): self.definition = definition class DataNode(): def __init__(self, data_type, value, definition): self.data_type = data_type self.value = value self.definition = definition def ValitateTypeMatch(context, data, type_name_or_definition): validation_type = GetBasicType(type_name_or_definition) if (validation_type == RootTypes.String): type_name = type_name_or_definition if (type_name in RootTypeNameToPythonType): success = ValidateBuiltinTypeMatch(data, type_name) LogValidationCheck(data, type_name, success) return success else if (type_name in context.loaded_definitions): #rmf todo: @incomplete it's not just about whether it's a dict, but whether it is a definition, values should probably happen in a different loaded_ place if (not isinstance(context.loaded_definitions[type_name], dict)): LogError("Tried to validate against type that is data value") LogValidationCheck(data, type_name, success) return False definition = context.loaded_definitions[type_name] root_type = GetRootType(context, type_name) else: LogValidationCheck(data, type_name, success) return False else if (validation_type == RootTypes.Object): definition = type_name_or_definition root_type = GetRootType(data, definition) #rmf todo: this doesn't support extending either array or string, I think. if (root_type in BasicTypes): success = ValidateDefinitionOfBasicType(context, data, definition) else if (root_type == RootTypes.Array): success = ValidateDefinitionOfArrayType(context, data, definition) else: # rmf todo: @incomplete validate objects pass LogValidationCheck(data, type_name, success) return False def Validate(context, data, type_name_or_definition): ValitateTypeMatch(context, data, type_name_or_definition) def ValidateBuiltinTypeMatch(data, type_name): if (type_name == RootTypes.Any): return True else: return isinstance(data, RootTypeNameToPythonType[type_name]) def GetBasicType(data): for type_name in BasicTypes: if (ValidateBuiltinTypeMatch(data, type_name)): return type_name return None def IsBasicType(data): return (GetBasicType(data) != None) def ParseTypedBasicValue(string_buffer, type_name): parsed_value = BasicTypeParsers[type_name](string_buffer) if (parsed_value == None): LogError("Expected value " + string_buffer + " to be of type " + type_name) parsed_value = ParseValue(string_buffer) return parsed_value def GetRootType(context, type_name_or_defintion): # rmf todo: @Incomplete this shouldn't use definition['type'], it should be based on explicit extension validation_type = GetBasicType(type_name_or_definition) if (validation_type == RootTypes.String): type_name = type_name_or_definition else if (validation_type == RootTypes.Object): type_definition = type_name_or_definition if ('type' in type_defintion): return type_definition['type'] else if ('extends' in type_defition): type_name = type_defintion['extends'] else: return RootTypes.Unspecified checked_types = set() while (type_name != None): if (type_name in BasicTypes): return type_name if (type_name in checked_types): return None # prevent circular references checked_types.add(type_name) if (type_name not in context.loaded_definitions): return None type_defintion = context.loaded_definitions[type_name] if ('type' in type_defintion): return type_definition['type'] if ('extends' in type_defintion) type_name = type_defintion['extends'] return RootTypes.Unspecified def ValidateDefinitionOfBasicType(context, data, type_name_or_definition): if isinstance(definition, dict): definition = type_name_or_definition else: if type_name_or_definition in RootTypeNameToPythonType: return ValidateBuiltinTypeMatch(data, type_name_or_definition) if type_name_or_definition not in context.loaded_definitions: LogError("Unknown type name " + str(type_name_or_definition)) return False definition = context.loaded_definitions[type_name_or_definition] if 'extends' in definition: #rmf todo: @incomplete allow extending multiple types if not definition['extends'] in context.loaded_definitions: return False if not ValidateTypeMatch(context, data, definition['extends']): return False if 'type' in definition: if definition['type'] in RootTypeNameToPythonType: if not ValidateBuiltinTypeMatch(data, definition['type']): return False else: return False if 'min' in definition: if data < definition['min']: return False if 'max' in definition: if data > definition['max']: return False if 'regex' in definition: if not re.match(definition['regex']): return False if 'one_of' in definition: found = False for potential_node in definition['one_of']: # @RMF TODO: @Incomplete if the one of prevents extra members that are defined outside of one_of then this validation might fail when it should actually be valid if ValidateDefinitionOfBasicType(context, data, potential_node): found = True break if not found: return False return True def ValidateDefinitionOfArrayType(context, data, definition): if 'length' in definition: length_value = definition['length'] length_type = GetBasicType(length_value) if (length_type == RootTypes.Int): if (len(data) != length_value): return False else if (length_type == RootTypes.Object): if not ValidateDefinitionOfBasicType(context, len(data), definition['length']): return False if 'elements' in definition: elements_value = definition['elements'] elements_type = GetBasicType(elements_value) if (elements_type == RootTypes.String): for element in data: if not Validate(context, element, elements_type): return False else if (elements_type == RootTypes.Object):
2.34375
2
lib/modes/mode_twitch.py
okonomichiyaki/parrot.py
80
12792916
<reponame>okonomichiyaki/parrot.py<gh_stars>10-100 from lib.detection_strategies import single_tap_detection, loud_detection, medium_detection, percentage_detection import threading import numpy as np import pyautogui from pyautogui import press, hotkey, click, scroll, typewrite, moveRel, moveTo, position from time import sleep from subprocess import call from lib.system_toggles import toggle_eyetracker, turn_on_sound, mute_sound, toggle_speechrec import os import math class TwitchMode: def __init__(self, modeSwitcher): self.mode = "regular" self.modeSwitcher = modeSwitcher def start( self ): turn_on_sound() moveTo( 500, 500 ) click() moveTo(2000, 2000) hotkey('ctrl', 'f') def handle_input( self, dataDicts ): if( percentage_detection(dataDicts, "whistle", 90 ) or percentage_detection(dataDicts, "bell", 90 ) ): self.modeSwitcher.switchMode('browse') def exit( self ): self.mode = "regular" mute_sound() press('esc')
2.375
2
main.py
scsole/rpi-gpio-video
0
12792917
#!/usr/bin/env python # -*- coding: utf-8 -*- # # main.py # import RPi.GPIO as GPIO import time import subprocess import os PIR_PIN = 11 # GPIO11 GPIO.setmode(GPIO.BOARD) # Use header pin numbers GPIO.setup(PIR_PIN, GPIO.IN) running = False # Is a video currently playing? player = "omxplayer" # The video player being used video_path = "/home/pi/video.mp4" # Path to video file child = 0 if player == "vlc": opt = '--play-and-exit' else: opt = '' try: print("Waiting for motion") while True: if not GPIO.input(PIR_PIN): if running == False: print("Motion detected") child = subprocess.Popen([player, video_path, opt]) running = True print("Playing video") if running == True: child.poll() if child.returncode == 0: running = False print("Video complete, waiting for motion") time.sleep(1) except KeyboardInterrupt: print("Quit") GPIO.cleanup()
3.0625
3
scripts/feature_def_gen/feature_def_gen.py
isb-cgc/ISB-CGC-Webapp
13
12792918
### # Copyright 2015-2019, Institute for Systems Biology # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from csv import DictWriter from json import load as load_json import logging from io import StringIO from time import sleep import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "isb_cgc.settings") import django django.setup() import click from bq_data_access.v2.feature_id_utils import FeatureDataTypeHelper logging.basicConfig(level=logging.INFO) def run_query(project_id, provider, config): job_reference = provider.submit_query_and_get_job_ref(project_id) poll_retry_limit = provider.BQ_JOB_POLL_MAX_RETRIES poll_sleep_time = provider.BQ_JOB_POLL_SLEEP_TIME all_done = False total_retries = 0 poll_count = 0 # Poll for completion while all_done is False and total_retries < poll_retry_limit: poll_count += 1 total_retries += 1 is_finished = provider.is_bigquery_job_finished(project_id) all_done = is_finished sleep(poll_sleep_time) logging.debug("Done: {done} retry: {retry}".format(done=str(all_done), retry=total_retries)) query_result = provider.download_and_unpack_query_result() return query_result def load_config_from_path(config_class, config_json_path): config_dict = load_json(open(config_json_path, 'r')) return config_class.from_dict(config_dict) def get_csv_object(data_rows, schema, include_header=False): fieldnames = [x['name'] for x in schema] file_obj = StringIO() writer = DictWriter(file_obj, fieldnames=fieldnames) if include_header: writer.writeheader() writer.writerows(data_rows) return file_obj def save_csv(data_rows, schema, csv_path, include_header=False): file_obj = get_csv_object(data_rows, schema, include_header=include_header) with open(csv_path, 'w') as file_handle: file_handle.write(file_obj.getvalue()) @click.command() @click.argument('data_type', type=str) @click.option('--config_json', type=str) @click.option('-chr', "chromosome_array", type=str, multiple=True, help="Chromosome (required for methylation)") def print_query(data_type, config_json, chromosome_array): feature_type = FeatureDataTypeHelper.get_type(data_type) logging.info("Feature type: {}".format(str(feature_type))) config_class = FeatureDataTypeHelper.get_feature_def_config_from_data_type(feature_type) provider_class = FeatureDataTypeHelper.get_feature_def_provider_from_data_type(feature_type) if config_json is not None: config_instance = load_config_from_path(config_class, config_json) else: config_dict = FeatureDataTypeHelper.get_feature_def_default_config_dict_from_data_type(feature_type) config_instance = config_class.from_dict(config_dict) if not chromosome_array: chromosome_array = [str(c) for c in range(1, 23)] chromosome_array.extend(['X', 'Y']) provider = provider_class(config_instance, chromosome_array=chromosome_array) query = provider.build_query(config_instance) print(query) # project_id: project number of the BQ data project (typically isb-cgc's project number) # data_type: 4-letter data type code, eg. GNAB @click.command() @click.argument('project_id', type=click.INT) @click.argument('data_type', type=str) @click.argument('csv_path', type=str) @click.option('--config_json', type=str) @click.option('-chr', "chromosome_array", type=str, multiple=True, help="Chromosome (required for methylation)") def run(project_id, data_type, csv_path, config_json, chromosome_array): feature_type = FeatureDataTypeHelper.get_type(data_type) logging.info("Feature type: {}".format(str(feature_type))) config_class = FeatureDataTypeHelper.get_feature_def_config_from_data_type(feature_type) provider_class = FeatureDataTypeHelper.get_feature_def_provider_from_data_type(feature_type) if config_json is not None: config_instance = load_config_from_path(config_class, config_json) else: config_dict = FeatureDataTypeHelper.get_feature_def_default_config_dict_from_data_type(feature_type) config_instance = config_class.from_dict(config_dict) if not chromosome_array: chromosome_array = [str(c) for c in range(1, 23)] chromosome_array.extend(['X', 'Y']) else: chromosome_array = chromosome_array[0].split(",") provider = provider_class(config_instance, chromosome_array=chromosome_array) logging.info("Output CSV: {}".format(csv_path)) logging.info("Config: {}".format(str(config_instance))) result = run_query(project_id, provider, config_instance) save_csv(result, provider.get_mysql_schema(), csv_path, include_header=True) @click.group() def main(): pass main.add_command(print_query) main.add_command(run) if __name__ == '__main__': main()
1.9375
2
pysot/models/backbone/resnet.py
eldercrow/tracking-pytorch
0
12792919
<gh_stars>0 import math import torch import torch.nn as nn import torch.nn.functional as F from torchvision.models import resnet18 as _resnet18 from torchvision.models import resnet34 as _resnet34 from torchvision.models import resnet50 as _resnet50 __all__ = ['ResnetCGD', 'resnet18', 'resnet34', 'resnet50'] class NormLayer(nn.Module): def __init__(self, kernel_size, padding=(0, 0), eps=1e-06): ''' ''' super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if kernel_size[0] > 1 or kernel_size[1] > 1: self.pool = nn.AvgPool2d(kernel_size, 1, padding) else: self.pool = None self.eps = eps def forward(self, x): u_x = torch.mean(x, dim=1, keepdim=True) u_x2 = torch.mean(x*x, dim=1, keepdim=True) if self.pool is not None: u_x = self.pool(u_x) u_x2 = self.pool(u_x2) v_x = F.relu(u_x2 - (u_x * u_x), inplace=True) out = x / torch.sqrt(v_x + self.eps) return out class DepthToSpace(nn.Module): def __init__(self, block_size): super().__init__() self.bs = block_size def forward(self, x): N, C, H, W = x.size() x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W) x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs) x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs) return x class ResnetCGD(nn.Module): ''' ''' def __init__(self, backbone='resnet18', pretrained=False): ''' ''' super().__init__() net = self._get_backbone(backbone)(pretrained=pretrained) self.base_layers = nn.ModuleList(list(net.children())[:-2]) self.base_names = [l[0] for l in net.named_children()] self.color_layer = nn.Sequential( nn.AvgPool2d(4, stride=4), nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2), NormLayer(3, 1, 1), nn.AvgPool2d(2, 2, padding=0), ) self.grad_norm_layer = nn.Sequential( nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2), NormLayer(3, 1, 1), nn.AvgPool2d(2, 2, padding=0), ) # self.downsample_layer = nn.Sequential( # nn.ReLU(inplace=True), # nn.MaxPool2d(2, stride=2), # NormLayer(3, 1, 1), # ) self.upsample_layer = nn.Sequential( nn.ReLU(inplace=True), DepthToSpace(2), NormLayer(3, 1, 1), ) self.mid_layer = nn.Sequential( nn.ReLU(inplace=True), NormLayer(3, 1, 1), ) def _get_backbone(self, name): if name == 'resnet18': return _resnet18 elif name == 'resnet34': return _resnet34 elif name == 'resnet50': return _resnet50 else: raise ValueError('Not supported backbone') def forward(self, x): ''' ''' # color layer color_feat = self.color_layer(x) # base layers base_layers = {} for n, layer in zip(self.base_names, self.base_layers): x = layer(x) base_layers[n] = x # grad layer grad_feat = self.grad_norm_layer(base_layers['layer1']) # deep feature layer # fd = self.downsample_layer(base_layers['layer2']) fm = self.mid_layer(base_layers['layer3']) fu = self.upsample_layer(base_layers['layer4']) # deep_feat = torch.cat([fd, fm, fu], dim=1) feat = torch.cat([color_feat, grad_feat, fm, fu], dim=1) return feat def resnet18(**kwargs): return ResnetCGD(backbone='resnet18', **kwargs) def resnet34(**kwargs): return ResnetCGD(backbone='resnet34', **kwargs) def resnet50(**kwargs): return ResnetCGD(backbone='resnet50', **kwargs)
2.28125
2
clients/abn_client.py
xahgmah/abnamro2ynab
1
12792920
import abna import json import settings class ABNClient: mutations = None new_last_transaction = None FILENAME = "last_transactions.json" def __init__(self): self.sess = abna.Session(settings.ABNA_ACCOUNT) self.sess.login(settings.ABNA_PASSNUMBER, settings.ABNA_PASSWORD) self.last_transactions = self.get_last_transaction_timestamp() def get_mutations(self, iban): mutations = self.sess.mutations(iban) return self.get_only_new_mutations(iban, mutations) def get_only_new_mutations(self, iban, mutations): result = [] last_transaction_timestamp = int(self.last_transactions.get(iban, 0)) new_last_transaction = 0 for mutation in mutations['mutationsList']['mutations']: transaction_timestamp = int(mutation['mutation']['transactionTimestamp']) if transaction_timestamp > new_last_transaction: new_last_transaction = transaction_timestamp if transaction_timestamp > last_transaction_timestamp: result.append(mutation['mutation']) self.last_transactions[iban] = new_last_transaction return result def save_last_transaction_timestamp(self): with open(self.FILENAME, 'w') as f: json.dump(self.last_transactions, f) def get_last_transaction_timestamp(self): try: with open(self.FILENAME, 'r') as f: data = json.load(f) return data except FileNotFoundError: return {}
2.34375
2
Leetcode/0105. Construct Binary Tree from Preorder and Inorder Traversal.py
luckyrabbit85/Python
1
12792921
class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def buildTree(self, preorder: list[int], inorder: list[int]) -> list[TreeNode]: if not preorder or not inorder: return None root = TreeNode(preorder[0]) mid = inorder.index(preorder[0]) root.left = self.buildTree(preorder[1 : mid + 1], inorder[:mid]) root.right = self.buildTree(preorder[mid + 1 :], inorder[mid + 1 :]) return root
3.640625
4
oo/pessoa.py
DouglasPortela0403/pythonbirds
0
12792922
<gh_stars>0 class Pessoa: olhos = 2 def __init__(self, *filhos, nome=None, idade=None): self.nome = nome self.idade = idade self.filhos =list(filhos) def cumprimentar(self): return 'Olá' @staticmethod def metodo_estatico(): return 42 @classmethod def nome_e_atributos_de_classe(cls): return f'{cls}, {olhos}' if __name__ == '__main__': p = Pessoa(nome='Mariane') print(Pessoa.cumprimentar(p)) print(p.cumprimentar()) print(p.nome) print(p.idade) p.nome = 'Douglas' p.idade = 35 print(p.nome) print(p.idade) print(Pessoa.olhos) print(p.__dict__) print(Pessoa.metodo_estatico()) print(Pessoa.nome_e_atributos_de_classe())
3.6875
4
autos/googleapi/__init__.py
hans-t/autos
1
12792923
from .drive import Drive from .sheets import Sheets
0.980469
1
bin/nrcSpreadsheetScraper.py
SkyTruth/scraper
2
12792924
#!/usr/bin/env python # This document is part of scraper # https://github.com/SkyTruth/scraper # =================================================================================== # # # The MIT License (MIT) # # Copyright (c) 2014 SkyTruth # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # =================================================================================== # """ Scraper for the "temporary" NRC incident spreadsheet Sample command: ./bin/nrcSpreadsheetScraper.py --db-name test_skytruth --db-user `whoami` --db-host localhost """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from datetime import datetime import getpass import os from os.path import * import sys import urllib2 import psycopg2 import psycopg2.extras import xlrd #/* ======================================================================= */# #/* Python setup #/* ======================================================================= */# if sys.version[0] is 2: range = xrange #/* ======================================================================= */# #/* Build information #/* ======================================================================= */# __version__ = '0.1-dev' __release__ = 'August 8, 2014' __author__ = '<NAME>' __source__ = 'https://github.com/SkyTruth/scraper' __docname__ = basename(__file__) __license__ = ''' The MIT License (MIT) Copyright (c) 2014 SkyTruth Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' #/* ======================================================================= */# #/* Define print_usage() function #/* ======================================================================= */# def print_usage(): """ Command line usage information :return: 1 for exit code purposes :rtype: int """ print(""" Usage: {0} [--help-info] [options] [--no-download] [--download-url URL] {1} [--db-connection-string] [--db-host hostname] [--db-user username] {1} [--db-pass password] [--no-print-progress] [--print-queries] {1} [--no-execute-queries] [--overwrite] Options: --db-connection-string Explicitly define a Postgres supported connection string. All other --db-* options are ignored. --db-host Hostname for the target database [default: localhost] --db-user Username used for database connection [default: current user] --db-name Name of target database [default: skytruth] --db-pass Password for database user [default: ''] --download-url URL from which to download the input file --no-download Don't download the input file --overwrite-download If the --file-to-process already exists and --no-download has not been specified, blindly overwrite the file. Unless the user is specifying a specific target for the download, this flag is not needed due the default file name containing datetime down to the second. --file-to-process Specify where the input file will be downloaded to If used in conjunction with --no-download it is assumed that the specified file already exists and should be used for processing [default: Current_<CURRENT_DATETIME>.xlsx] --no-print-progress Don't print the progress indicator --print-queries Print queries immediately before execution Automatically turns off the progress indicator --no-execute-queries Don't execute queries """.format(__docname__, " " * len(__docname__))) return 1 #/* ======================================================================= */# #/* Define print_license() function #/* ======================================================================= */# def print_license(): """ Print out license information :return: 1 for exit code purposes :rtype: int """ print(__license__) return 1 #/* ======================================================================= */# #/* Define print_help() function #/* ======================================================================= */# def print_help(): """ Detailed help information :return: 1 for exit code purposes :rtype: int """ print(""" Help: {0} ------{1} {2} """.format(__docname__, '-' * len(__docname__), main.__doc__)) return 1 #/* ======================================================================= */# #/* Define print_help_info() function #/* ======================================================================= */# def print_help_info(): """ Print a list of help related flags :return: 1 for exit code purposes :rtype: int """ print(""" Help flags: --help More detailed description of this utility --usage Arguments, parameters, flags, options, etc. --version Version and ownership information --license License information """) return 1 #/* ======================================================================= */# #/* Define print_version() function #/* ======================================================================= */# def print_version(): """ Print script version information :return: 1 for exit code purposes :rtype: int """ print(""" %s version %s - released %s """ % (__docname__, __version__, __release__)) return 1 #/* ======================================================================= */# #/* Define dms2dd() function #/* ======================================================================= */# def dms2dd(degrees, minutes, seconds, quadrant): """ Convert degrees, minutes, seconds, quadrant to decimal degrees :param degrees: coordinate degrees :type degrees: int :param minutes: coordinate minutes :type minutes: int :param seconds: coordinate seconds :type seconds: int :param quadrant: coordinate quadrant (N, E, S, W) :type quadrant: str|unicode :return: decimal degrees :rtype: float """ illegal_vals = (None, '', u'') for iv in illegal_vals: if iv in (degrees, minutes, seconds, quadrant): raise ValueError("ERROR: Illegal value: %s" % iv) if quadrant.lower() not in ('n', 'e', 's', 'w'): raise ValueError("ERROR: Invalid quadrant: %s" % quadrant) output = int(degrees) + int(minutes) / 60 + int(seconds) / 3600 if quadrant.lower() in ('s', 'w'): output *= -1 return output #/* ======================================================================= */# #/* Define column_names() function #/* ======================================================================= */# def column_names(sheet, formatter=str): """ Get the ordered column names from an XLRD sheet object :param sheet: XLRD sheet object :type sheet: xlrd.Sheet :param formatter: :type formatter: type|function :return: list of column names :rtype: list """ return [formatter(cell.value) for cell in sheet.row(0)] #/* ======================================================================= */# #/* Define sheet2dict() function #/* ======================================================================= */# def sheet2dict(sheet): """ Convert an XLRD sheet object into a list of rows, each structured as a dictionary Example Input: "Column1","Column2","Column3" "Row 1 Val","Another Row 1 Val","Even More Row 1 Values" "Row 2 Val","Another Row 2 Val","Even More Row 2 Values" "Row 3 Val","Another Row 3 Val","Even More Row 3 Values" Example Output: [ { 'Column1': 'Row 1 Val', 'Column2': 'Another Row 1 Val', 'Column3': 'Even More Row 1 Values' }, { 'Column1': 'Row 2 Val', 'Column2': 'Another Row 2 Val', 'Column3': 'Even more Row 2 Values' } { 'Column1': 'Row 3 Val', 'Column2': 'Another Row 3 Val', 'Column3': 'Even more Row 3 Values' } ] :param sheet: XLRD sheet object from xlrd.open_workbook('workbook').sheet_by_name('name') :type sheet: xlrd.Sheet :return: list of elements, each containing one row of the sheet as a dictionary :rtype: dict """ output = [] columns = column_names(sheet) for r in range(1, sheet.nrows): # Skip first row since it contains the header output.append(dict((columns[c], sheet.cell_value(r, c)) for c in range(sheet.ncols))) return output #/* ======================================================================= */# #/* Define report_exists() function #/* ======================================================================= */# def report_exists(**kwargs): """ Check to see if a report has already been submitted to a table :param seqnos: reportnum :type seqnos: int|float :param field: :type field: :return: :rtype: bool """ reportnum = kwargs['reportnum'] cursor = kwargs['db_cursor'] table = kwargs['table'] field = kwargs.get('field', 'reportnum') schema = kwargs['schema'] # TODO: replace this hack with something better. # Perhpas have a report_exists method on each of the field map classes so we don't have to # have the same existance test for all tables if table=='"BotTaskStatus"': cursor.execute("""SELECT * FROM %s.%s WHERE bot='NrcExtractor' AND task_id = %s""" % (schema, table, reportnum)) else: cursor.execute("""SELECT * FROM %s.%s WHERE %s = %s""" % (schema, table, field, reportnum)) return len(cursor.fetchall()) > 0 #/* ======================================================================= */# #/* Define timestamp2datetime() function #/* ======================================================================= */# def timestamp2datetime(stamp, workbook_datemode, formatter='%Y-%m-%d %I:%M:%S'): """ Convert a float formatted date a Postgres supported timestamp :param stamp: timestamp from XLRD reading a date encoded field :type stamp: float :param workbook_datemode: from xlrd.Workbook.datemode :type workbook_datemode: int :return: date capable of being inserted into Postgres timestamp field :rtype: str|unicode """ dt = datetime(*xlrd.xldate_as_tuple(stamp, workbook_datemode)) return dt.strftime(formatter) #/* ======================================================================= */# #/* Define get_current_spreadsheet() function #/* ======================================================================= */# def download(url, destination, overwrite=False): """ Download a file :param url: URL to download from :type url: str|unicode :param destination: target path and filename for downloaded file :type destination: str|unicode :param overwrite: specify whether or not an existing destination should be overwritten :type overwrite: bool :return: path to downloaded file :rtype: str|unicode """ # Validate arguments if not overwrite and isfile(destination): raise ValueError("ERROR: Overwrite=%s and outfile exists: %s" % (overwrite, destination)) # Download response = urllib2.urlopen(url) with open(destination, 'w') as f: f.write(response.read()) return destination #/* ======================================================================= */# #/* Define name_current_file() function #/* ======================================================================= */# def name_current_file(input_name): """ Generate the output Current.xlsx name for permanent archival :param input_name: input file name (e.g. Current.xlsx) :type input_name: str|unicode :return: output formatted name :rtype: str|unicode """ dt = datetime.now() dt = dt.strftime("_%Y-%m-%d_%I:%M:%S") input_split = input_name.split('.') input_split[0] += dt return '.'.join(input_split) #/* ======================================================================= */# #/* Define db_row_count() function #/* ======================================================================= */# def db_row_count(cursor, schema_table): """ :param cursor: Postgres formatted database connection string :type cursor: psycopg2.cursor :param schema_table: schema.table :type schema_table: str|unicode :return: number of rows in the specified schema.table :rtype: int """ query = """SELECT COUNT(1) FROM %s;""" % schema_table cursor.execute(query) result = cursor.fetchall() return int(result[0][0]) #/* ======================================================================= */# #/* Define process_field_map() function #/* ======================================================================= */# def process_field_map(**kwargs): db_cursor = kwargs['db_cursor'] uid = kwargs['uid'] workbook = kwargs['workbook'] row = kwargs['row'] db_null_value = kwargs['db_null_value'] map_def = kwargs['map_def'] sheet = kwargs['sheet'] all_field_maps = kwargs['all_field_maps'] sheet_seqnos_field = kwargs['sheet_seqnos_field'] db_write_mode = kwargs['db_write_mode'] print_queries = kwargs['print_queries'] execute_queries = kwargs['execute_queries'] raw_sheet_cache = kwargs['raw_sheet_cache'] db_seqnos_field = kwargs['db_seqnos_field'] if map_def['processing'] is None: try: value = row[map_def['column']] except KeyError: # UID doesn't appear in the specified sheet - populate a NULL value value = db_null_value # Pass all necessary information to the processing function in order to get a result else: value = map_def['processing']['function'](db_cursor=db_cursor, uid=uid, workbook=workbook, row=row, db_null_value=db_null_value, map_def=map_def, sheet=sheet, all_field_maps=all_field_maps, sheet_seqnos_field=sheet_seqnos_field, db_write_mode=db_write_mode, print_queries=print_queries, execute_queries=execute_queries, raw_sheet_cache=raw_sheet_cache, db_seqnos_field=db_seqnos_field) return value #/* ======================================================================= */# #/* Define NrcScrapedReportField() class #/* ======================================================================= */# class NrcScrapedReportFields(object): """ Some fields in the NRC spreadsheet do not map directly to a column in the database. These fields require an additional processing step that is highly specific and cannot be re-used. The field map definition contains all of the additional arguments and information necessary to execute one of these processing functions. A class is used as a namespace to provide better organization and to prevent having to name functions something like: 'get_NrcScrapedReport_material_name_field' """ #/* ----------------------------------------------------------------------- */# #/* Define material_name() static method #/* ----------------------------------------------------------------------- */# @staticmethod def material_name(**kwargs): # Parse arguments map_def = kwargs['map_def'] print_queries = kwargs['print_queries'] execute_queries = kwargs['execute_queries'] extras_field_maps = map_def['processing']['args']['extras_field_maps'] db_write_mode = kwargs['db_write_mode'] uid = kwargs['uid'] sheet_seqnos_field = kwargs['sheet_seqnos_field'] db_cursor = kwargs['db_cursor'] raw_sheet_cache = kwargs['raw_sheet_cache'] db_seqnos_field = kwargs['db_seqnos_field'] db_null_value = kwargs['db_null_value'] sheet_cache = kwargs['sheet_cache'] # TODO: This currently only reads rows from the sheet specified in the field map and NOT the extra field maps # specified in the processing args. Currently not a problem since # Build query initial_value_to_be_returned = None for row in raw_sheet_cache[map_def['sheet_name']]: extra_query_fields = [] extra_query_values = [] # Found a matching row if row[sheet_seqnos_field] == uid: # The first instance goes into the table specified in the field map # This query must be handled by the parent process so this value is # returned at the very end if initial_value_to_be_returned is None: initial_value_to_be_returned = row[map_def['column']] # ALL occurrences are sent to a different table - specified in the field map arguments for e_db_map in extras_field_maps: for e_map_def in extras_field_maps[e_db_map]: value = process_field_map(db_cursor=db_cursor, uid=uid, workbook=kwargs['workbook'], row=row, db_null_value=db_null_value, map_def=e_map_def, sheet=sheet_cache[e_map_def['sheet_name']], all_field_maps=kwargs['all_field_maps'], sheet_seqnos_field=sheet_seqnos_field, db_write_mode=db_write_mode, print_queries=print_queries, execute_queries=execute_queries, raw_sheet_cache=raw_sheet_cache, db_seqnos_field=db_seqnos_field) # Make sure the value is properly quoted if value not in (None, '', u'', db_null_value): if isinstance(value, str) or isinstance(value, unicode): value = value.replace("'", '"') # Single quotes cause problems on insert try: if e_map_def['db_field_width']: value = value[:e_map_def['db_field_width']] except KeyError: pass extra_query_values.append("'%s'" % value) # String value else: extra_query_values.append("%s" % value) # int|float value extra_query_fields.append(e_map_def['db_field']) # Do something with the query query = """%s %s.%s (%s) VALUES (%s);""" % (db_write_mode, e_map_def['db_schema'], e_map_def['db_table'], ', '.join(extra_query_fields), ', '.join(extra_query_values)) if print_queries: print("") print(query) if execute_queries: db_cursor.execute(query) # This processing function handled ALL inserts - tell parent process there's nothing left to do return initial_value_to_be_returned #/* ----------------------------------------------------------------------- */# #/* Define full_report_url() static method #/* ----------------------------------------------------------------------- */# @staticmethod def full_report_url(**kwargs): """ Default value """ return 'http://nrc.uscg.mil/' #/* ----------------------------------------------------------------------- */# #/* Define materials_url() static method #/* ----------------------------------------------------------------------- */# @staticmethod def materials_url(**kwargs): """ Default value """ return NrcScrapedReportFields.full_report_url() #/* ----------------------------------------------------------------------- */# #/* Define time_stamp() static method #/* ----------------------------------------------------------------------- */# @staticmethod def time_stamp(**kwargs): """ Required to insert a NULL value """ return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define ft_id() function #/* ----------------------------------------------------------------------- */# @staticmethod def ft_id(**kwargs): """ Required to insert a NULL value """ return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define _datetime_caller() function #/* ----------------------------------------------------------------------- */# @staticmethod def _datetime_caller(**kwargs): """ Several methods require converting a timestamp to a Postgres supported timestamp format. This method eliminates repitition :param workbook: :type workbook: :param row: :type row: :param map_def: :type map_def: :rtype: :return: """ # TODO: Use 24 hour time workbook = kwargs['workbook'] row = kwargs['row'] map_def = kwargs['map_def'] return timestamp2datetime(row[map_def['column']], workbook.datemode) #/* ----------------------------------------------------------------------- */# #/* Define recieved_time() function #/* ----------------------------------------------------------------------- */# @staticmethod def recieved_datetime(**kwargs): """ See documentation for function called in the return statement """ return NrcScrapedReportFields._datetime_caller(**kwargs) #/* ----------------------------------------------------------------------- */# #/* Define incident_datetime() function #/* ----------------------------------------------------------------------- */# @staticmethod def incident_datetime(**kwargs): """ See documentation for function called in the return statement """ return NrcScrapedReportFields._datetime_caller(**kwargs) #/* ----------------------------------------------------------------------- */# #/* Define incident_datetime() function #/* ----------------------------------------------------------------------- */# @staticmethod def calltype(**kwargs): """ Database is expecting """ map_def = kwargs['map_def'] row = kwargs['row'] value = row[map_def['column']] if value == 'INC': value = 'INCIDENT' return value #/* ======================================================================= */# #/* Define NrcParsedReportFields() class #/* ======================================================================= */# class NrcParsedReportFields(object): """ Some fields in the NRC spreadsheet do not map directly to a column in the database. These fields require an additional processing step that is highly specific and cannot be re-used. The field map definition contains all of the additional arguments and information necessary to execute one of these processing functions. A class is used as a namespace to provide better organization and to prevent having to name functions something like: 'get_NrcScrapedReport_material_name_field' """ #/* ----------------------------------------------------------------------- */# #/* Define areaid() static method #/* ----------------------------------------------------------------------- */# @staticmethod def areaid(**kwargs): # TODO: Implement - currently returning NULL return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define blockid() static method #/* ----------------------------------------------------------------------- */# @staticmethod def blockid(**kwargs): # TODO: Implement - currently returning NULL return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define platform_letter() static method #/* ----------------------------------------------------------------------- */# @staticmethod def platform_letter(**kwargs): # TODO: Implement - currently returning NULL return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define _sheen_handler() static method #/* ----------------------------------------------------------------------- */# @staticmethod def _sheen_handler(**kwargs): """ Several converters require """ row = kwargs['row'] map_def = kwargs['map_def'] db_null_value = kwargs['db_null_value'] value = row[map_def['column']] unit = row[map_def['processing']['args']['unit_field']] # If the value is not a float, change it to nothing so the next test fails try: value = float(value) except ValueError: value = '' # No sheen size - nothing to do if value == '' or unit == '': return db_null_value # Found a sheen size and unit - perform conversion else: multipliers = { 'F': 1, 'FE': 1, 'FEET': 1, 'IN': 0.0833333, 'INCHES': 0.0833333, 'KILOMETERS': 3280.84, 'METER': 3.28084, 'METERS': 3.28084, 'MI': 5280, 'MIL': 5280, 'MILES': 5280, 'NI': 5280, # Assumed mistyping of 'MI' 'UN': 0.0833333, # Assumed mistyping of 'IN' 'YARDS': 3 } # Database is expecting to handle the normalization by reading from a field containing "1.23 METERS" # This function takes care of that but must still supply the expected post-normalization format if unit.upper() not in multipliers: return db_null_value return unicode(multipliers[unit.upper()] * value) + ' FEET' #/* ----------------------------------------------------------------------- */# #/* Define sheen_size_length() static method #/* ----------------------------------------------------------------------- */# @staticmethod def sheen_size_length(**kwargs): """ See called function documentation """ return NrcParsedReportFields._sheen_handler(**kwargs) #/* ----------------------------------------------------------------------- */# #/* Define sheen_size_width() static method #/* ----------------------------------------------------------------------- */# @staticmethod def sheen_size_width(**kwargs): """ See called function documentation """ return NrcParsedReportFields._sheen_handler(**kwargs) #/* ----------------------------------------------------------------------- */# #/* Define affected_area() static method #/* ----------------------------------------------------------------------- */# @staticmethod def affected_area(**kwargs): return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define time_stamp() static method #/* ----------------------------------------------------------------------- */# @staticmethod def time_stamp(**kwargs): """ Required to insert a NULL value """ return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define ft_id() static method #/* ----------------------------------------------------------------------- */# @staticmethod def ft_id(**kwargs): """ Required to insert a NULL value """ return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define _coord_formatter() protected static method #/* ----------------------------------------------------------------------- */# @staticmethod def _coord_formatter(**kwargs): """ The latitude() and longitude() methods require the same general logic. """ try: row = kwargs['row'] col_deg = kwargs['map_def']['processing']['args']['col_degrees'] col_min = kwargs['map_def']['processing']['args']['col_minutes'] col_sec = kwargs['map_def']['processing']['args']['col_seconds'] col_quad = kwargs['map_def']['processing']['args']['col_quadrant'] output = dms2dd(row[col_deg], row[col_min], row[col_sec], row[col_quad]) except (ValueError, KeyError): output = kwargs['db_null_value'] return output #/* ----------------------------------------------------------------------- */# #/* Define latitude() static method #/* ----------------------------------------------------------------------- */# @staticmethod def latitude(**kwargs): """ Convert coordinates from DMS to DD """ return NrcParsedReportFields._coord_formatter(**kwargs) #/* ----------------------------------------------------------------------- */# #/* Define longitude() static method #/* ----------------------------------------------------------------------- */# @staticmethod def longitude(**kwargs): """ Convert coordinates from DMS to DD """ return NrcParsedReportFields._coord_formatter(**kwargs) #/* ======================================================================= */# #/* Define NrcScrapedMaterialFields() class #/* ======================================================================= */# class NrcScrapedMaterialFields(object): """ Some fields in the NRC spreadsheet do not map directly to a column in the database. These fields require an additional processing step that is highly specific and cannot be re-used. The field map definition contains all of the additional arguments and information necessary to execute one of these processing functions. A class is used as a namespace to provide better organization and to prevent having to name functions something like: 'get_NrcScrapedReport_material_name_field' """ #/* ----------------------------------------------------------------------- */# #/* Define ft_id() static method #/* ----------------------------------------------------------------------- */# @staticmethod def ft_id(**kwargs): return kwargs.get('db_null_value', None) #/* ----------------------------------------------------------------------- */# #/* Define st_id() static method #/* ----------------------------------------------------------------------- */# @staticmethod def st_id(**kwargs): return kwargs.get('db_null_value', None) #/* ======================================================================= */# #/* Define BotTaskStatusFields() class #/* ======================================================================= */# class BotTaskStatusFields(object): """ Some fields in the NRC spreadsheet do not map directly to a column in the database. These fields require an additional processing step that is highly specific and cannot be re-used. The field map definition contains all of the additional arguments and information necessary to execute one of these processing functions. A class is used as a namespace to provide better organization and to prevent having to name functions something like: 'get_NrcScrapedReport_material_name_field' """ #/* ----------------------------------------------------------------------- */# #/* Define status() static method #/* ----------------------------------------------------------------------- */# @staticmethod def status(**kwargs): return 'DONE' #/* ----------------------------------------------------------------------- */# #/* Define bot() static method #/* ----------------------------------------------------------------------- */# @staticmethod def bot(**kwargs): return 'NrcExtractor' #/* ======================================================================= */# #/* Define main() function #/* ======================================================================= */# def main(args): """ Main routine to parse, transform, and insert Current.xlsx into the tables used by the Alerts system. http://nrc.uscg.mil/FOIAFiles/Current.xlsx Before doing any transformations, a set of SEQNOS/reportnum's are gathered from one of the workbook's sheets. The default column in 'CALLS' but can be specified by the user. This set of ID's are treated as primary keys and drive processing. Rather than process the input document sheet by sheet and row by row, a set of field map definitions are declared to describe which fields in which sheets should be inserted into which table in which schema. Each field map is applied against each ID which means that if ID number 1234 is being processed, the bare minimum field map example below states that whatever value is in sheet 'CALLS' and column 'RESPONSIBLE_COMPANY' can be sent to public."NrcScrapedReport".suspected_responsible_company The more complicated field map states that a specific function must do more of the heavy lifting. Field maps are grouped by table and center around the target field. There should be one map for every field in a table. The structure for field maps is roughly as follows: All field maps = { 'table_name': [ { 'db_table': Name of target table, 'db_field': Name of target field, 'db_field_width': Maximum width for this field - used in string slicing 'db_schema': Name of target schema, 'sheet_name': Name of source sheet in input file, 'column': Name of source column in sheet_name, 'processing': { # Optional - should be set to None if not used 'function': Callable object responsible for additional sub-processing 'args': { # Essentially kwargs 'Arg1': parameter, 'Arg2': ... } } }, { 'db_table': Name of target table, 'db_field': Name of target field, 'db_schema': Name of target schema, 'sheet_name': Name of source sheet in input file, 'column': Name of source column in sheet_name, 'processing': { # Optional - should be set to None if not used 'function': Callable object responsible for additional sub-processing 'args': { # Essentially kwargs 'Arg1': parameter, 'Arg2': ... } } }, ], 'TABLE_NAME': [ { 'db_table': Name of target table, 'db_field': Name of target field, 'db_schema': Name of target schema, 'sheet_name': Name of source sheet in input file, 'column': Name of source column in sheet_name, 'processing': { # Optional - should be set to None if not used 'function': Callable object responsible for additional sub-processing 'args': { # Essentially kwargs 'Arg1': parameter, 'Arg2': ... } } } ], } The order of operations for a given ID is as follows: 1. Get an ID 2. Get a set of field maps for one target table 3. Process all field maps and assemble an insert query 4. Execute the insert statement 5. Repeat steps 2-4 until all tables have been processed Example bare minimum field map: The field map below shows that the value in the 'RESPONSIBLE_COMPANY' column in the 'CALLS' sheet can be sent directly to public."NrcScrapedReport".suspected_responsible_company without any additional processing. Note the quotes around the table name. { 'db_table': '"NrcScrapedReport"', 'db_field': 'suspected_responsible_company', 'db_field_width': 32, 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': 'RESPONSIBLE_COMPANY', 'processing': None }, Example field map with all options: This field map shows that no specific column contains the value required for public."NrcParsedReport".longitude Instead, some information must be passed to the NrcParsedReportFields.longitude() function where the actual processing happens. Field maps using additional processing always receive the following kwargs: all_field_maps All field maps with keys set to schema.table db_cursor The cursor to be used for all queries db_null_value Value to use for NULL db_seqnos_field The reportnum field in the database db_write_mode The first part of the SQL statement for writes (e.g. INSERT INTO) execute_queries Specifies whether or not queries should actually be executed map_def Current map definition being processed (example below) print_queries Specifies whether or not queries should be printed as they are executed raw_sheet_cache Structured similar to the normal sheet cache, but with a list of rows instead of a dictionary containing reportnums as keys and rows as values row The current row being processed - structured just like a csv.DictReader row sheet The entire sheet from which the row was extracted as described in the field map sheet_seqnos_field The field in all sheets containing the reportnum uid The current SEQNOS/reportnum being processed workbook XLRD workbook object The callable object specified in map_def['processing']['function'] is responsible for ALL queries. The processing functions are intended to return a final value to be inserted into the target field described in the field map but this behavior is not required. If the function itself handles all queries internally it can return '__NO_QUERY__' in order to be excluded from the insert statement for that table. { 'db_table': '"NrcParsedReport"', 'db_field': 'longitude', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.longitude, 'args': { 'col_degrees': 'LONG_DEG', 'col_minutes': 'LONG_MIN', 'col_seconds': 'LONG_SEC', 'col_quadrant': 'LONG_QUAD' } } }, :param args: arguments from the commandline (sys.argv[1:] in order to drop the script name) :type args: list :return: 0 on success and 1 on error :rtype: int """ #/* ----------------------------------------------------------------------- */# #/* Define Field Maps #/* ----------------------------------------------------------------------- */# field_map_order = ['public."NrcScrapedReport"', 'public."NrcParsedReport"','public."BotTaskStatus"' ] field_map = { 'public."NrcScrapedReport"': [ { 'db_table': '"NrcScrapedReport"', 'db_field': 'reportnum', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': 'SEQNOS', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'recieved_datetime', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': 'DATE_TIME_RECEIVED', 'processing': { 'function': NrcScrapedReportFields.recieved_datetime } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'calltype', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': 'CALLTYPE', 'processing': { 'function': NrcScrapedReportFields.calltype } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'suspected_responsible_company', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': 'RESPONSIBLE_COMPANY', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'description', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'DESCRIPTION_OF_INCIDENT', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'incident_datetime', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'INCIDENT_DATE_TIME', 'processing': { 'function': NrcScrapedReportFields.incident_datetime } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'incidenttype', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'TYPE_OF_INCIDENT', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'cause', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'INCIDENT_CAUSE', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'location', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_ADDRESS', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'state', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_STATE', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'nearestcity', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_NEAREST_CITY', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'county', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_COUNTY', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'medium_affected', 'db_schema': 'public', 'sheet_name': 'INCIDENT_DETAILS', 'column': 'MEDIUM_DESC', 'processing': None }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'material_name', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'NAME_OF_MATERIAL', 'processing': { 'function': NrcScrapedReportFields.material_name, 'args': { 'extras_table': '"NrcScrapedMaterial"', 'extras_schema': 'public', 'extras_field_maps': { 'public."NrcScrapedReport"': [ { 'db_table': "NrcScrapedMaterial", 'db_field': 'reportnum', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'SEQNOS', 'processing': None }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'name', 'db_field_width': 32, 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'NAME_OF_MATERIAL', 'processing': None }, { 'db_table': "NrcScrapedMaterial", 'db_field': 'reached_water', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'IF_REACHED_WATER', 'processing': None }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'amt_in_water', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'AMOUNT_IN_WATER', 'processing': None }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'amt_in_water_unit', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'UNIT_OF_MEASURE_REACH_WATER', 'processing': None }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'chris_code', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'CHRIS_CODE', 'processing': None }, { # TODO: Not populated 'db_table': '"NrcScrapedMaterial"', 'db_field': 'amount', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'AMOUNT_OF_MATERIAL', 'processing': None }, { # TODO: Not populated 'db_table': '"NrcScrapedMaterial"', 'db_field': 'unit', 'db_schema': 'public', 'sheet_name': 'MATERIAL_INVOLVED', 'column': 'UNIT_OF_MEASURE', 'processing': None }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'ft_id', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedMaterialFields.ft_id } }, { 'db_table': '"NrcScrapedMaterial"', 'db_field': 'st_id', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedMaterialFields.st_id } } ] } } } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'full_report_url', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedReportFields.full_report_url } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'materials_url', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedReportFields.materials_url } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'time_stamp', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedReportFields.time_stamp } }, { 'db_table': '"NrcScrapedReport"', 'db_field': 'ft_id', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcScrapedReportFields.ft_id } } ], 'public."NrcParsedReport"': [ { 'db_table': '"NrcParsedReport"', 'db_field': 'reportnum', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'SEQNOS', 'processing': None }, { 'db_table': '"NrcParsedReport"', 'db_field': 'latitude', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.latitude, 'args': { 'col_degrees': 'LAT_DEG', 'col_minutes': 'LAT_MIN', 'col_seconds': 'LAT_SEC', 'col_quadrant': 'LAT_QUAD' } } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'longitude', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.longitude, 'args': { 'col_degrees': 'LONG_DEG', 'col_minutes': 'LONG_MIN', 'col_seconds': 'LONG_SEC', 'col_quadrant': 'LONG_QUAD' } } }, { # TODO: Implement - check notes about which column to use 'db_table': '"NrcParsedReport"', 'db_field': 'areaid', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.areaid } }, { # TODO: Implement - check notes about which column to use 'db_table': '"NrcParsedReport"', 'db_field': 'blockid', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.blockid } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'zip', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_ZIP', 'processing': None }, { # TODO: Implement - check notes about which column to use 'db_table': '"NrcParsedReport"', 'db_field': 'platform_letter', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.platform_letter } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'sheen_size_length', 'db_schema': 'public', 'sheet_name': 'INCIDENT_DETAILS', 'column': 'SHEEN_SIZE_LENGTH', 'processing': { 'function': NrcParsedReportFields.sheen_size_length, 'args': {'unit_field': 'SHEEN_SIZE_LENGTH_UNITS'} } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'sheen_size_width', 'db_schema': 'public', 'sheet_name': 'INCIDENT_DETAILS', 'column': 'SHEEN_SIZE_WIDTH', 'processing': { 'function': NrcParsedReportFields.sheen_size_width, 'args': {'unit_field': 'SHEEN_SIZE_WIDTH_UNITS'} } }, { # TODO: Implement 'db_table': '"NrcParsedReport"', 'db_field': 'affected_area', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': NrcParsedReportFields.affected_area, } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'county', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'LOCATION_COUNTY', 'processing': None }, { 'db_table': '"NrcParsedReport"', 'db_field': 'time_stamp', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcParsedReportFields.time_stamp, } }, { 'db_table': '"NrcParsedReport"', 'db_field': 'ft_id', 'db_schema': 'public', 'sheet_name': 'CALLS', 'column': None, 'processing': { 'function': NrcParsedReportFields.ft_id, } } ], 'public."BotTaskStatus"': [ { 'db_table': '"BotTaskStatus"', 'db_field': 'task_id', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': 'SEQNOS', 'processing': None }, { 'db_table': '"BotTaskStatus"', 'db_field': 'status', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': BotTaskStatusFields.status, } }, { 'db_table': '"BotTaskStatus"', 'db_field': 'bot', 'db_schema': 'public', 'sheet_name': 'INCIDENT_COMMONS', 'column': None, 'processing': { 'function': BotTaskStatusFields.bot, } }, ], } #/* ----------------------------------------------------------------------- */# #/* Define Defaults #/* ----------------------------------------------------------------------- */# # Database db_connection_string = None db_host = 'localhost' db_name = 'skytruth' db_user = getpass.getuser() db_pass = '' db_write_mode = 'INSERT INTO' db_seqnos_field = 'reportnum' db_null_value = 'NULL' sheet_seqnos_field = 'SEQNOS' # NRC file I/O download_url = 'http://nrc.uscg.mil/FOIAFiles/Current.xlsx' file_to_process = os.getcwd() + sep + name_current_file(basename(download_url)) overwrite_downloaded_file = False download_file = True process_subsample = None process_subsample_min = 0 # User feedback settings print_progress = True print_queries = False execute_queries = True final_table_counts = ['public."NrcParsedReport"', 'public."NrcScrapedMaterial"', 'public."NrcScrapedReport"'] #/* ----------------------------------------------------------------------- */# #/* Parse arguments #/* ----------------------------------------------------------------------- */# i = 0 arg_error = False while i < len(args): try: arg = args[i] # Help arguments if arg in ('--help-info', '-help-info', '--helpinfo', '-help-info'): return print_help_info() elif arg in ('--help', '-help', '--h', '-h'): return print_help() elif arg in ('--usage', '-usage'): return print_usage() elif arg in ('--version', '-version'): return print_version() elif arg in ('--license', '-usage'): return print_license() # Spreadsheet I/O elif arg == '--no-download': i += 1 download_file = False elif arg == '--download-url': i += 2 download_url = args[i - 1] elif arg == '--file-to-process': i += 2 file_to_process = abspath(args[i - 1]) # Database connection elif arg == '--db-connection-string': i += 2 db_connection_string = args[i - 1] elif arg == '--db-host': i += 2 db_host = args[i - 1] elif arg == '--db-user': i += 2 db_user = args[i - 1] elif arg == '--db-name': i += 2 db_name = args[i - 1] elif arg == '--db-pass': i += 2 db_pass = args[i - 1] # Commandline print-outs elif arg == '--no-print-progress': i += 1 print_progress = False elif arg == '--print-queries': i += 1 print_queries = True print_progress = False elif arg == '--no-execute-queries': i += 1 execute_queries = False # Additional options elif arg == '--overwrite-download': i += 1 overwrite_downloaded_file = True elif arg == '--subsample': i += 2 process_subsample = args[i - 1] elif arg == '--subsample-min': i += 2 process_subsample_min = args[i - 1] # Positional arguments and errors else: # Invalid argument i += 1 arg_error = True print("ERROR: Invalid argument: %s" % arg) # This catches three conditions: # 1. The last argument is a flag that requires parameters but the user did not supply the parameter # 2. The arg parser did not properly consume all parameters for an argument # 3. The arg parser did not properly iterate the 'i' variable except IndexError: i += 1 arg_error = True print("ERROR: An argument has invalid parameters") #/* ----------------------------------------------------------------------- */# #/* Adjust options #/* ----------------------------------------------------------------------- */# # Database - must be done here in order to allow the user to overwrite the default credentials and settings if db_connection_string is None: db_connection_string = "host='%s' dbname='%s' user='%s' password='%s'" % (db_host, db_name, db_user, db_pass) #/* ----------------------------------------------------------------------- */# #/* Validate parameters #/* ----------------------------------------------------------------------- */# bail = False # Make sure arguments were properly parse if arg_error: bail = True print("ERROR: Did not successfully parse arguments") # Make sure the downloaded file is not going to be accidentally deleted if download_file and not overwrite_downloaded_file and isfile(file_to_process): bail = True print("ERROR: Overwrite=%s and download target exists: %s" % (overwrite_downloaded_file, file_to_process)) # Make sure the user has write permission to the target directory if not os.access(dirname(file_to_process), os.W_OK): bail = True print("ERROR: Need write permission for download directory: %s" % dirname(file_to_process)) # Handle subsample if process_subsample is not None: try: process_subsample = int(process_subsample) process_subsample_min = int(process_subsample_min) except ValueError: bail = True print("ERROR: Invalid subsample or subsample min - must be an int: %s" % process_subsample) # Exit if any problems were encountered if bail: return 1 #/* ----------------------------------------------------------------------- */# #/* Prep DB connection and XLRD workbook for processing #/* ----------------------------------------------------------------------- */# # Test connection print("Connecting to DB: %s" % db_connection_string) try: connection = psycopg2.connect(db_connection_string) connection.close() except psycopg2.OperationalError as e: print("ERROR: Could not connect to database: %s" % db_connection_string) print(" Postgres Error: %s" % e) return 1 #/* ----------------------------------------------------------------------- */# #/* Download the spreadsheet #/* ----------------------------------------------------------------------- */# if download_file: print("Downloading: %s" % download_url) print("Target: %s" % file_to_process) try: download(download_url, file_to_process) except urllib2.URLError, e: print("ERROR: Could not download from URL: %s" % download_url) print(" URLLIB Error: %s" % e) return 1 # Prep workbook print("Opening workbook: %s" % file_to_process) with xlrd.open_workbook(file_to_process, 'r') as workbook: # Establish a DB connection and turn on dict reading db_conn = psycopg2.connect(db_connection_string) db_conn.autocommit = True db_cursor = db_conn.cursor(cursor_factory=psycopg2.extras.DictCursor) #/* ----------------------------------------------------------------------- */# #/* Validate field map definitions #/* ----------------------------------------------------------------------- */# validate_field_map_error = False print("Validating field mapping ...") for db_map in field_map_order: # Check each field definition in the set of mappings for map_def in field_map[db_map]: # Attempt to get the sheet to test if map_def['sheet_name'] is not None and map_def['column'] is not None: try: sheet = workbook.sheet_by_name(map_def['sheet_name']) if map_def['column'] not in column_names(sheet): validate_field_map_error = True print("ERROR: Can't find source: %s -> %s.%s" % (file_to_process, map_def['sheet_name'], map_def['column'])) # Could not get the sheet to test except xlrd.XLRDError: validate_field_map_error = True print("ERROR: Sheet does not exist: %s" % map_def['sheet_name']) # Make sure schema and table exist in the DB query = "SELECT * FROM information_schema.columns WHERE table_schema = '%s' AND table_name = '%s' AND column_name = '%s';" \ % (map_def['db_schema'], map_def['db_table'].replace('"', ''), map_def['db_field']) db_cursor.execute(query) results = db_cursor.fetchall() if not results: validate_field_map_error = True print("ERROR: Invalid DB target: %s.%s.%s.%s.%s" % (db_host, db_name, map_def['db_schema'], map_def['db_table'], map_def['db_field'])) # Encountered an error validating the field map if validate_field_map_error: db_cursor.close() db_conn.close() return 1 #/* ----------------------------------------------------------------------- */# #/* Cache initial DB row counts for final stat printing #/* ----------------------------------------------------------------------- */# initial_db_row_counts = {ts: db_row_count(db_cursor, ts) for ts in final_table_counts} #/* ----------------------------------------------------------------------- */# #/* Additional prep #/* ----------------------------------------------------------------------- */# # Cache all sheets needed by the field definitions as dictionaries print("Caching sheets ...") sheet_cache = {} raw_sheet_cache = {} for sname in workbook.sheet_names(): if sname not in sheet_cache: try: sheet_dict = sheet2dict(workbook.sheet_by_name(sname)) raw_sheet_cache[sname] = sheet_dict sheet_cache[sname] = {row[sheet_seqnos_field]: row for row in sheet_dict} except IndexError: # Sheet was empty pass # Get a list of unique report id's unique_report_ids = [] for s_name, s_rows in sheet_cache.iteritems(): for reportnum in s_rows.keys(): unique_report_ids.append(reportnum) unique_report_ids = list(set(unique_report_ids)) # Grab a subsample if necessary if process_subsample is not None and process_subsample < len(unique_report_ids): # TODO: Delete constraining line - needed to verify everything was wroking unique_report_ids = [i for i in unique_report_ids if i > 1074683] unique_report_ids.sort() unique_report_ids = unique_report_ids[process_subsample_min:process_subsample_min + process_subsample] #/* ----------------------------------------------------------------------- */# #/* Process data #/* ----------------------------------------------------------------------- */# # Loops: # Get a report number to process # Get a set of field maps for a single table to process # Get a field map to process print("Processing workbook ...") num_ids = len(unique_report_ids) uid_i = 0 # Loop through the primary keys for uid in unique_report_ids: # Update user uid_i += 1 if print_progress: sys.stdout.write("\r\x1b[K" + " %s/%s" % (uid_i, num_ids)) sys.stdout.flush() # Get field maps for one table for db_map in field_map_order: query_fields = [] query_values = [] # If the report already exists, in the target table, skip everything else _schema, _table = db_map.split('.') if not report_exists(db_cursor=db_cursor, reportnum=uid, schema=_schema, table=_table): # Get a single field map to process for map_def in field_map[db_map]: # Don't need to process the reportnum information since it was added to the initial query above if map_def['db_field'] == db_seqnos_field: query_fields = [db_seqnos_field] query_values = [str(uid)] else: # Get the row for this sheet try: row = sheet_cache[map_def['sheet_name']][uid] except KeyError: row = None # If no additional processing is required, simply grab the value from the sheet and add to the query if row is not None: #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# #/* Value goes from input file straight into DB #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# if map_def['processing'] is None: try: value = row[map_def['column']] except KeyError: # UID doesn't appear in the specified sheet - populate a NULL value value = db_null_value #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# #/* Value with additional processing #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# # Pass all necessary information to the processing function in order to get a result else: value = map_def['processing']['function'](db_cursor=db_cursor, uid=uid, workbook=workbook, row=row, db_null_value=db_null_value, map_def=map_def, sheet=sheet_cache[map_def['sheet_name']], all_field_maps=field_map, sheet_seqnos_field=sheet_seqnos_field, db_write_mode=db_write_mode, print_queries=print_queries, execute_queries=execute_queries, raw_sheet_cache=raw_sheet_cache, db_seqnos_field=db_seqnos_field, sheet_cache=sheet_cache) #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# #/* Add this field map to the insert statement #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# # Handle NULL values - these should be handled elsewhere so this is more of a safety net if value is None or not value: value = db_null_value # Assemble query if value not in ('__NO_QUERY__', db_null_value): query_fields.append(map_def['db_field']) # Only put quotes around specific values if isinstance(value, str) or isinstance(value, unicode): # Having single quotes in the string causes problems on insert because the entire # value is single quoted value = value.replace("'", '"') query_values.append("'%s'" % value) else: query_values.append("%s" % value) #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# #/* Execute query #/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */# # Execute query, but not if the report already exists query = """%s %s (%s) VALUES (%s);""" \ % (db_write_mode, db_map, ", ".join(query_fields), ", ".join(query_values)) if print_queries: print("") try: print(query) except Exception as e: print ("Error printing SQL query to console (unicode weirdness?") print (e.message) if execute_queries: db_cursor.execute(query) # Done processing - update user if print_progress: print(" - Done") #/* ----------------------------------------------------------------------- */# #/* Cleanup and final return #/* ----------------------------------------------------------------------- */# # Update user padding = max([len(i) for i in field_map.keys()]) indent = " " * 2 print("Initial row counts:") for schema_table, count in initial_db_row_counts.iteritems(): print("%s%s%s" % (indent, schema_table + ' ' * (padding - len(schema_table) + 4), count)) print("Final row counts:") final_db_row_counts = {ts: db_row_count(db_cursor, ts) for ts in final_table_counts} for schema_table, count in final_db_row_counts.iteritems(): print("%s%s%s" % (indent, schema_table + ' ' * (padding - len(schema_table) + 4), count)) print("New rows:") for schema_table, count in final_db_row_counts.iteritems(): print("%s%s%s" % (indent, schema_table + ' ' * (padding - len(schema_table) + 4), final_db_row_counts[schema_table] - initial_db_row_counts[schema_table])) # Success - commit inserts and destroy DB connections # db_conn.commit() # connection is now set to autocommit db_cursor.close() db_conn.close() return 0 #/* ======================================================================= */# #/* Commandline Execution #/* ======================================================================= */# if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
1.78125
2
s3splitmerge/tests/aws.py
MacHu-GWU/s3splitmerge-project
0
12792925
<gh_stars>0 # -*- coding: utf-8 -*- """ S3 object for testing naming convention:: s3://{bucket}/{prefix}/{module}/{function/method_name}/{filename} """ import boto3 # --- manually configure following settings aws_profile = None aws_region = "us-east-1" bucket = "aws-data-lab-sanhe-aws-etl-solutions" prefix = "s3splitmerge/tests" boto_ses = boto3.session.Session(profile_name=aws_profile, region_name=aws_region) s3_client = boto_ses.client("s3")
1.617188
2
modules/infra/admin_piccolo/tables.py
Fates-List/BotList
17
12792926
<reponame>Fates-List/BotList<filename>modules/infra/admin_piccolo/tables.py import datetime from piccolo.columns.column_types import (UUID, Array, BigInt, Boolean, Float, ForeignKey, Integer, Secret, Text, Timestamptz, Varchar) from piccolo.columns.readable import Readable from piccolo.table import Table from modules.models import enums class Vanity(Table, tablename="vanity"): type = Integer() vanity_url = Text(primary_key = True) redirect = BigInt() class User(Table, tablename="users"): vote_epoch = Timestamptz(help_text = "When the user has last voted") description = Text(default = "This user prefers to be an enigma") badges = Array(base_column = Text(), help_text = "Custom User Badges. The ones currently on profiles are special and manually handled without using this column.") username = Text() profile_css = Text(default = "") user_css = Text(default = "") state = Integer(default = 0, choices = enums.UserState) coins = Integer(default = 0) js_allowed = Boolean(default = False, help_text = "Is the user allowed to use javascript") api_token = Text() class Bot(Table, tablename="bots"): username_cached = Text() verifier = BigInt() state = Integer(choices = enums.BotState, default = 1) description = Text() long_description_type = Integer(default = 0, choices = enums.LongDescType) long_description = Text() votes = BigInt(default = 0) guild_count = BigInt(default = 0) shard_count = BigInt(default = 0) shards = Array(base_column = Integer()) user_count = BigInt(default = 0) last_stats_post = Timestamptz(default = datetime.datetime.now()) created_at = Timestamptz(default = datetime.datetime.now()) webhook_type = Integer(choices = enums.WebhookType) webhook = Text() bot_library = Text() css = Text(default = "") prefix = Varchar(length = 13) di_text = Text(help_text = "Discord Integration Text") website = Text() discord = Text() banner_card = Text() banner_page = Text() github = Text() donate = Text() privacy_policy = Text() nsfw = Boolean(default = False) api_token = Text() js_allowed = Boolean(default = True) invite = Text() invite_amount = Integer(default = 0) features = Array(base_column = Text(), default = []) class BotTag(Table, tablename="bot_tags"): bot_id = ForeignKey(references=Bot) tag = Text(null = False) class Review(Table, tablename="reviews"): """Never ever make reviews on your own through this panel""" id = UUID() target_type = Integer(choices=enums.ReviewType) target_id = BigInt() user_id = ForeignKey(references=User) star_rating = Float(help_text = "Amount of stars a bot has") review_text = Text() review_upvotes = Array(base_column = BigInt(), default = []) review_downvotes = Array(base_column = BigInt(), default=[]) flagged = Boolean(default=False) epoch = Array(base_column = BigInt(), default=[]) replies = Array(base_column=UUID(), default=[]) reply = Boolean(default=False) @classmethod def get_readable(cls): return Readable(template="%s", columns=[cls.name])
2.203125
2
01_Python_Basico_Intermediario/Aula027/aula27.py
Joao-Inacio/Curso-de-Python3
1
12792927
""" Expressão condicional com operador OR """ nome = input('Qual é seu nome: ') print(nome or 'Você não digitou nada!')
3.734375
4
elements-of-programming-interviews/14.1.sorted-array-intersection.py
vtemian/interviews-prep
8
12792928
<filename>elements-of-programming-interviews/14.1.sorted-array-intersection.py from typing import List def intersection(x: List[int], y: List[int]) -> List[int]: result = [] idx_x = idx_y = 0 while idx_x < len(x) and idx_y < len(y): if x[idx_x] == y[idx_y] and (not result or result[-1] != x[idx_x]): result.append(x[idx_x]) idx_x += 1 idx_y += 1 elif x[idx_x] > y[idx_y]: idx_y += 1 else: idx_x += 1 return result result = intersection([1, 2, 2, 3, 3, 4], [2, 3, 3]) assert result == [2, 3] result = intersection([1, 2, 2, 3, 3, 4], [4]) assert result == [4] result = intersection([1, 2, 2, 3, 3, 4], [5]) assert result == []
3.828125
4
src/semver/__init__.py
b0uh/python-semver
159
12792929
<gh_stars>100-1000 """ semver package major release 3. A Python module for semantic versioning. Simplifies comparing versions. """ from ._deprecated import ( bump_build, bump_major, bump_minor, bump_patch, bump_prerelease, compare, finalize_version, format_version, match, max_ver, min_ver, parse, parse_version_info, replace, cmd_bump, cmd_compare, cmd_nextver, cmd_check, createparser, process, main, ) from .version import Version, VersionInfo from .__about__ import ( __version__, __author__, __maintainer__, __author_email__, __description__, __maintainer_email__, SEMVER_SPEC_VERSION, )
0.898438
1
src/lda_test.py
mpenza19/LatentDirichletAlloc
0
12792930
# Adapted from: # https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/ import read_bibtex import os, shutil from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem.porter import PorterStemmer import string import gensim from gensim import corpora from gensim.test.utils import datapath import numpy as np stop = set(stopwords.words('english')) stop.add("exist") stop.add("because") stop.add("via") stop.add("interest") stop.add("therefore") stop.add("hence") stop.add("this") exclude = set(string.punctuation) exclude.add("-") exclude.add("_") exclude.add(".") exclude.add(";") lemma = WordNetLemmatizer() stemmer = PorterStemmer() ntopics = 30 npasses = 400 result_dir="doc_results_all_500_30" model_dir="model_all_500_30" year_from=1980 # Creating the object for LDA model using gensim library Lda = gensim.models.ldamodel.LdaModel def clean(doc): punc_free = ''.join(ch for ch in doc if ch not in exclude) lemmatized = " ".join(lemma.lemmatize(word)+" " for word in punc_free.lower().split()) stemmed = " ".join(stemmer.stem(word) for word in lemmatized.split()) stop_free = " ".join([i for i in stemmed.split() if i not in stop]) return stop_free def main(): if result_dir in os.listdir("."): shutil.rmtree("./"+result_dir) os.mkdir("./"+result_dir) # Read and clean data doc_set = read_bibtex.bibtex_tostring_from(year_from) doc_clean = [clean(doc).split() for doc in doc_set] # Creating the term dictionary of our courpus, where every unique term is assigned an index. dictionary = corpora.Dictionary(doc_clean) # Converting list of documents (corpus) into Document Term Matrix using dictionary prepared above. doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean] # Loading the LDA model ldamodel = Lda.load("./"+model_dir+"/all") # Infer topic distribution for each doc topic_dist = [ldamodel.get_document_topics(dictionary.doc2bow(doc)) for doc in doc_clean] # Save results np.save("./"+result_dir+"/all", np.array(topic_dist)) dist_array = np.array(topic_dist) transpose_array = [[] for x in range(n_topics)] for itr in range(len(dist_array)): for top, weight in dist_array[itr]: transpose_array[top].append((itr, weight)) for row in transpose_array: row.sort(key=lambda x: x[1], reverse=True) np.save("./"+result_dir+"/all_transpose", np.array(transpose_array)) main()
3.09375
3
test_package/conanfile.py
appimage-conan-community/appimagetool_installer
0
12792931
<reponame>appimage-conan-community/appimagetool_installer import os from conans import ConanFile, CMake, tools class AppimagetoolinstallerTestConan(ConanFile): settings = "os", "compiler", "build_type", "arch" exports_sources = ("appimage.svg", "org.appimagecraft.TestApp.desktop") # build_requires = ("cmake_installer/3.10.0@conan/stable") def build(self): cmake = CMake(self) cmake.definitions["CMAKE_INSTALL_PREFIX"] = self.build_folder + "/AppDir" cmake.configure() cmake.build(target="install") def test(self): if not tools.cross_building(self.settings): self.run("appimagetool %s" % (self.build_folder + "/AppDir"), run_environment=True) self.run(self.build_folder + "/Test_App-x86_64.AppImage --appimage-extract-and-run")
1.84375
2
docs/examples/tutorial/2_split/main3.py
ynikitenko/lena
4
12792932
<filename>docs/examples/tutorial/2_split/main3.py from __future__ import print_function import os from lena.core import Sequence, Split, Source from lena.structures import Histogram from lena.math import mesh from lena.output import ToCSV, Write, LaTeXToPDF, PDFToPNG from lena.output import MakeFilename, RenderLaTeX from lena.variables import Variable from read_data import ReadData def main(): data_file = os.path.join("..", "data", "normal_3d.csv") write = Write("output") s = Sequence( ReadData(), Split([ ( Variable("x", lambda vec: vec[0]), Histogram(mesh((-10, 10), 10)), ), ( Variable("y", lambda vec: vec[1]), Histogram(mesh((-10, 10), 10)), ), ( Variable("z", lambda vec: vec[2]), Histogram(mesh((-10, 10), 10)), ), ]), MakeFilename("{{variable.name}}"), ToCSV(), write, RenderLaTeX("histogram_1d.tex", "templates"), write, LaTeXToPDF(), PDFToPNG(), ) results = s.run([data_file]) for res in results: print(res) if __name__ == "__main__": main()
2.65625
3
build-support/mini-cluster/relocate_binaries_for_mini_cluster.py
granthenke/kudu
2
12792933
<reponame>granthenke/kudu #!/usr/bin/env python ################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ################################################################################ # This script makes Kudu release binaries relocatable for easy use by # integration tests using a mini cluster. The resulting binaries should never # be deployed to run an actual Kudu service, whether in production or # development, because all security dependencies are copied from the build # system and will not be updated if the operating system on the runtime host is # patched. ################################################################################ import logging import optparse import os import os.path import re import shutil import subprocess import sys SOURCE_ROOT = os.path.join(os.path.dirname(__file__), "../..") # Add the build-support dir to the system path so we can import kudu-util. sys.path.append(os.path.join(SOURCE_ROOT, "build-support")) from kudu_util import check_output, Colors, init_logging from dep_extract import DependencyExtractor # Constants. LC_RPATH = 'LC_RPATH' LC_LOAD_DYLIB = 'LC_LOAD_DYLIB' KEY_CMD = 'cmd' KEY_NAME = 'name' KEY_PATH = 'path' # Exclude libraries that are GPL-licensed and libraries that are not portable # across Linux kernel versions. PAT_LINUX_LIB_EXCLUDE = re.compile(r"""(libpthread| libc| libstdc\+\+| librt| libdl| libgcc.* )\.so""", re.VERBOSE) # We don't want to ship libSystem because it includes kernel and thread # routines that we assume may not be portable between macOS versions. # TODO(mpercy): consider excluding libc++ as well. PAT_MACOS_LIB_EXCLUDE = re.compile(r"libSystem") # Config keys. BUILD_ROOT = 'build_root' BUILD_BIN_DIR = 'build_bin_dir' ARTIFACT_ROOT = 'artifact_root' ARTIFACT_BIN_DIR = 'artifact_bin_dir' ARTIFACT_LIB_DIR = 'artifact_lib_dir' IS_MACOS = os.uname()[0] == "Darwin" IS_LINUX = os.uname()[0] == "Linux" def check_for_command(command): """ Ensure that the specified command is available on the PATH. """ try: subprocess.check_call(['which', command]) except subprocess.CalledProcessError as err: logging.error("Unable to find %s command", command) raise err def objdump_private_headers(binary_path): """ Run `objdump -p` on the given binary. Returns a list with one line of objdump output per record. """ check_for_command('objdump') try: output = check_output(["objdump", "-p", binary_path]) except subprocess.CalledProcessError as err: logging.error(err) return [] return output.strip().decode("utf-8").split("\n") def parse_objdump_macos(cmd_type, dump): """ Parses the output from objdump_private_headers() for macOS. 'cmd_type' must be one of the following: * LC_RPATH: Returns a list containing the rpath search path, with one search path per entry. * LC_LOAD_DYLIB: Returns a list of shared object library dependencies, with one shared object per entry. They are returned as stored in the MachO header, without being first resolved to an absolute path, and may look like: @rpath/Foo.framework/Versions/A/Foo 'dump' is the output from objdump_private_headers(). """ # Parsing state enum values. PARSING_NONE = 0 PARSING_NEW_RECORD = 1 PARSING_RPATH = 2 PARSING_LIB_PATHS = 3 state = PARSING_NONE values = [] for line in dump: if re.match('^Load command', line): state = PARSING_NEW_RECORD continue splits = re.split('\s+', line.strip().decode("utf-8"), maxsplit=2) key = splits[0] val = splits[1] if len(splits) > 1 else None if state == PARSING_NEW_RECORD: if key == KEY_CMD and val == LC_RPATH: state = PARSING_RPATH continue if key == KEY_CMD and val == LC_LOAD_DYLIB: state = PARSING_LIB_PATHS continue if state == PARSING_RPATH and cmd_type == LC_RPATH: if key == KEY_PATH: # Strip trailing metadata from rpath dump line. values.append(val) if state == PARSING_LIB_PATHS and cmd_type == LC_LOAD_DYLIB: if key == KEY_NAME: values.append(val) return values def get_rpaths_macos(binary_path): """ Helper function that returns a list of rpaths parsed from the given binary. """ dump = objdump_private_headers(binary_path) return parse_objdump_macos(LC_RPATH, dump) def resolve_library_paths_macos(raw_library_paths, rpaths): """ Resolve the library paths from parse_objdump_macos(LC_LOAD_DYLIB, ...) to absolute filesystem paths using the rpath information returned from get_rpaths_macos(). Returns a mapping from original to resolved library paths on success. If any libraries cannot be resolved, prints an error to stderr and returns an empty map. """ resolved_paths = {} for raw_lib_path in raw_library_paths: if not raw_lib_path.startswith("@rpath"): resolved_paths[raw_lib_path] = raw_lib_path continue resolved = False for rpath in rpaths: resolved_path = re.sub('@rpath', rpath, raw_lib_path) if os.path.exists(resolved_path): resolved_paths[raw_lib_path] = resolved_path resolved = True break if not resolved: raise FileNotFoundError("Unable to locate library %s in rpath %s" % (raw_lib_path, rpaths)) return resolved_paths def get_dep_library_paths_macos(binary_path): """ Returns a map of symbolic to resolved library dependencies of the given binary. See resolve_library_paths_macos(). """ dump = objdump_private_headers(binary_path) raw_library_paths = parse_objdump_macos(LC_LOAD_DYLIB, dump) rpaths = parse_objdump_macos(LC_RPATH, dump) return resolve_library_paths_macos(raw_library_paths, rpaths) def get_artifact_name(): """ Create an archive with an appropriate name. Including version, OS, and architecture. """ if IS_LINUX: os_str = "linux" elif IS_MACOS: os_str = "osx" else: raise NotImplementedError("Unsupported platform") arch = os.uname()[4] with open(os.path.join(SOURCE_ROOT, "version.txt"), 'r') as version: version = version.readline().strip().decode("utf-8") artifact_name = "kudu-binary-%s-%s-%s" % (version, os_str, arch) return artifact_name def mkconfig(build_root, artifact_root): """ Build a configuration map for convenient plumbing of path information. """ config = {} config[BUILD_ROOT] = build_root config[BUILD_BIN_DIR] = os.path.join(build_root, "bin") config[ARTIFACT_ROOT] = artifact_root config[ARTIFACT_BIN_DIR] = os.path.join(artifact_root, "bin") config[ARTIFACT_LIB_DIR] = os.path.join(artifact_root, "lib") return config def prep_artifact_dirs(config): """ Create any required artifact output directories, if needed. """ if not os.path.exists(config[ARTIFACT_ROOT]): os.makedirs(config[ARTIFACT_ROOT], mode=0755) if not os.path.exists(config[ARTIFACT_BIN_DIR]): os.makedirs(config[ARTIFACT_BIN_DIR], mode=0755) if not os.path.exists(config[ARTIFACT_LIB_DIR]): os.makedirs(config[ARTIFACT_LIB_DIR], mode=0755) def copy_file(src, dest): """ Copy the file with path 'src' to path 'dest'. If 'src' is a symlink, the link will be followed and 'dest' will be written as a plain file. """ shutil.copyfile(src, dest) def chrpath(target, new_rpath): """ Change the RPATH or RUNPATH for the specified target. See man chrpath(1). """ # Continue with a warning if no rpath is set on the binary. try: subprocess.check_call(['chrpath', '-l', target]) except subprocess.CalledProcessError as err: logging.warning("No RPATH or RUNPATH set on target %s, continuing...", target) return # Update the rpath. try: subprocess.check_call(['chrpath', '-r', new_rpath, target]) except subprocess.CalledProcessError as err: logging.warning("Failed to chrpath for target %s", target) raise err def relocate_deps_linux(target_src, target_dst, config): """ See relocate_deps(). Linux implementation. """ NEW_RPATH = '$ORIGIN/../lib' # Make sure we have the chrpath command available in the Linux build. check_for_command('chrpath') # Copy the linked libraries. dep_extractor = DependencyExtractor() dep_extractor.set_library_filter(lambda path: False if PAT_LINUX_LIB_EXCLUDE.search(path) else True) libs = dep_extractor.extract_deps(target_src) for lib_src in libs: lib_dst = os.path.join(config[ARTIFACT_LIB_DIR], os.path.basename(lib_src)) copy_file(lib_src, lib_dst) # We have to set the RUNPATH of the shared objects as well for transitive # dependencies to be properly resolved. $ORIGIN is always relative to the # running executable. chrpath(lib_dst, NEW_RPATH) # We must also update the RUNPATH of the executable itself to look for its # dependencies in a relative location. chrpath(target_dst, NEW_RPATH) def relocate_deps_macos(target_src, target_dst, config): """ See relocate_deps(). macOS implementation. """ libs = get_dep_library_paths_macos(target_src) check_for_command('install_name_tool') for (search_name, resolved_path) in libs.iteritems(): # Filter out libs we don't want to archive. if PAT_MACOS_LIB_EXCLUDE.search(resolved_path): continue # Archive the rest of the runtime dependencies. lib_dst = os.path.join(config[ARTIFACT_LIB_DIR], os.path.basename(resolved_path)) copy_file(resolved_path, lib_dst) # Change library search path or name for each archived library. modified_search_name = re.sub('^.*/', '@rpath/', search_name) subprocess.check_call(['install_name_tool', '-change', search_name, modified_search_name, target_dst]) # Modify the rpath. rpaths = get_rpaths_macos(target_src) for rpath in rpaths: subprocess.check_call(['install_name_tool', '-delete_rpath', rpath, target_dst]) subprocess.check_call(['install_name_tool', '-add_rpath', '@executable_path/../lib', target_dst]) def relocate_deps(target_src, target_dst, config): """ Make the target relocatable and copy all of its dependencies into the artifact directory. """ if IS_LINUX: return relocate_deps_linux(target_src, target_dst, config) if IS_MACOS: return relocate_deps_macos(target_src, target_dst, config) raise NotImplementedError("Unsupported platform") def relocate_target(target, config): """ Copy all dependencies of the executable referenced by 'target' from the build directory into the artifact directory, and change the rpath of the executable so that the copied dependencies will be found when the executable is invoked. """ # Create artifact directories, if needed. prep_artifact_dirs(config) # Copy the target into the artifact directory. target_src = os.path.join(config[BUILD_BIN_DIR], target) target_dst = os.path.join(config[ARTIFACT_BIN_DIR], target) copy_file(target_src, target_dst) # Make the target relocatable and copy all of its dependencies into the # artifact directory. return relocate_deps(target_src, target_dst, config) def main(): if len(sys.argv) < 3: print("Usage: %s kudu_build_dir target [target ...]" % (sys.argv[0], )) sys.exit(1) # Command-line arguments. build_root = sys.argv[1] targets = sys.argv[2:] init_logging() if not os.path.exists(build_root): logging.error("Build directory %s does not exist", build_root) sys.exit(1) artifact_name = get_artifact_name() artifact_root = os.path.join(build_root, artifact_name) # Clear the artifact root to ensure a clean build. if os.path.exists(artifact_root): shutil.rmtree(artifact_root) logging.info("Including targets and their dependencies in archive...") config = mkconfig(build_root, artifact_root) for target in targets: relocate_target(target, config) if __name__ == "__main__": main()
1.273438
1
SumOfPrimes.py
kevjames3/CodingChallenges
0
12792934
''' Focus of this file is to determine the sum of the first 1000 prime numbers. ''' import random import math def isPrime(num): result = True if num > 2 and not (num % 2 == 0): #Use Fermat's little theorem a^n (mod n) = a (mod n). #If they equal each other, then that means that this #one is prime. Also, 2 <= a < n where a is an integer a = random.randint(2, num - 1) if ((a ** num) % num) == (a % num): sqrt_n = math.sqrt(num) for divider in range(3, int(math.ceil(sqrt_n) + 1)): if num % divider == 0: result = False break else: result = False elif not num == 2: result = False return result if __name__ == '__main__': primeList = [] currentNumber = 0 while len(primeList) < 1000: if isPrime(currentNumber): primeList.append(currentNumber) currentNumber += 1 print sum(primeList)
4.0625
4
src/rnn/text_classification_model_simple.py
jorgemf/kaggle_redefining_cancer_treatment
20
12792935
import tensorflow as tf from tensorflow.contrib import slim import tensorflow.contrib.layers as layers from ..configuration import * from .text_classification_train import main class ModelSimple(object): """ Base class to create models for text classification. It uses several layers of GRU cells. """ def model(self, input_text_begin, input_text_end, gene, variation, num_output_classes, batch_size, embeddings, training=True, dropout=TC_MODEL_DROPOUT): """ Creates a model for text classification :param tf.Tensor input_text: the input data, the text as [batch_size, text_vector_max_length, embeddings_size] :param int num_output_classes: the number of output classes for the classifier :param int batch_size: batch size, the same used in the dataset :param List[List[float]] embeddings: a matrix with the embeddings for the embedding lookup :param int num_hidden: number of hidden GRU cells in every layer :param int num_layers: number of layers of the model :param float dropout: dropout value between layers :param boolean training: whether the model is built for training or not :return Dict[str,tf.Tensor]: a dict with logits and prediction tensors """ input_text_begin = tf.reshape(input_text_begin, [batch_size, MAX_WORDS]) if input_text_end is not None: input_text_end = tf.reshape(input_text_end, [batch_size, MAX_WORDS]) embedded_sequence_begin, sequence_length_begin, \ embedded_sequence_end, sequence_length_end, \ gene, variation = \ self.model_embedded_sequence(embeddings, input_text_begin, input_text_end, gene, variation) _, max_length, _ = tf.unstack(tf.shape(embedded_sequence_begin)) with tf.variable_scope('text_begin'): output_begin = self.rnn(embedded_sequence_begin, sequence_length_begin, max_length, dropout, batch_size, training) if input_text_end is not None: with tf.variable_scope('text_end'): output_end = self.rnn(embedded_sequence_end, sequence_length_end, max_length, dropout, batch_size, training) output = tf.concat([output_begin, output_end], axis=1) else: output = output_begin # full connected layer logits = self.model_fully_connected(output, gene, variation, num_output_classes, dropout, training) prediction = tf.nn.softmax(logits) return { 'logits' : logits, 'prediction': prediction, } def rnn(self, sequence, sequence_length, max_length, dropout, batch_size, training, num_hidden=TC_MODEL_HIDDEN, num_layers=TC_MODEL_LAYERS): # Recurrent network. cells = [] for _ in range(num_layers): cell = tf.nn.rnn_cell.GRUCell(num_hidden) if training: cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=dropout) cells.append(cell) network = tf.nn.rnn_cell.MultiRNNCell(cells) type = sequence.dtype sequence_output, _ = tf.nn.dynamic_rnn(network, sequence, dtype=tf.float32, sequence_length=sequence_length, initial_state=network.zero_state(batch_size, type)) # get last output of the dynamic_rnn sequence_output = tf.reshape(sequence_output, [batch_size * max_length, num_hidden]) indexes = tf.range(batch_size) * max_length + (sequence_length - 1) output = tf.gather(sequence_output, indexes) return output def model_fully_connected(self, output, gene, variation, num_output_classes, dropout, training): output = layers.dropout(output, keep_prob=dropout, is_training=training) net = tf.concat([output, gene, variation], axis=1) net = layers.fully_connected(net, 128, activation_fn=tf.nn.relu) net = layers.dropout(net, keep_prob=dropout, is_training=training) logits = layers.fully_connected(net, num_output_classes, activation_fn=None) return logits def remove_padding(self, input_text): # calculate max length of the input_text mask = tf.greater_equal(input_text, 0) # true for words false for padding sequence_length = tf.reduce_sum(tf.cast(mask, tf.int32), 1) # truncate the input text to max length max_sequence_length = tf.reduce_max(sequence_length) input_text_length = tf.shape(input_text)[1] empty_padding_lenght = input_text_length - max_sequence_length input_text, _ = tf.split(input_text, [max_sequence_length, empty_padding_lenght], axis=1) return input_text, sequence_length def model_embedded_sequence(self, embeddings, input_text_begin, input_text_end, gene, variation): """ Given the embeddings and the input text returns the embedded sequence and the sequence length. The input_text is truncated to the max length of the sequence, so the output embedded_sequence wont have the same shape as input_text or even a constant shape :param embeddings: :param input_text: :return: (embedded_sequence, sequence_length) """ input_text_begin, sequence_length_begin = self.remove_padding(input_text_begin) if input_text_end is not None: input_text_end, sequence_length_end = self.remove_padding(input_text_end) else: sequence_length_end = None variation, variation_length = self.remove_padding(variation) # create the embeddings # first vector is a zeros vector used for padding embeddings_dimension = len(embeddings[0]) embeddings = [[0.0] * embeddings_dimension] + embeddings embeddings = tf.constant(embeddings, name='embeddings', dtype=tf.float32) # this means we need to add 1 to the input_text input_text_begin = tf.add(input_text_begin, 1) if input_text_end is not None: input_text_end = tf.add(input_text_end, 1) gene = tf.add(gene, 1) variation = tf.add(variation, 1) embedded_sequence_begin = tf.nn.embedding_lookup(embeddings, input_text_begin) if input_text_end is not None: embedded_sequence_end = tf.nn.embedding_lookup(embeddings, input_text_end) else: embedded_sequence_end = None embedded_gene = tf.nn.embedding_lookup(embeddings, gene) embedded_gene = tf.squeeze(embedded_gene, axis=1) embedded_variation = tf.nn.embedding_lookup(embeddings, variation) embedded_variation = tf.reduce_mean(embedded_variation, axis=1) return embedded_sequence_begin, sequence_length_begin, \ embedded_sequence_end, sequence_length_end, \ embedded_gene, embedded_variation def model_arg_scope(self, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): with slim.arg_scope([slim.batch_norm], decay=batch_norm_decay, epsilon=batch_norm_epsilon, activation_fn=None) as scope: return scope def targets(self, labels, output_classes): """ Transform a vector of labels into a matrix of one hot encoding labels :param tf.Tensor labels: an array of labels with dimension [batch_size] :param int output_classes: the total number of output classes :return tf.Tensor: a tensorflow tensor """ targets = tf.one_hot(labels, axis=-1, depth=output_classes, on_value=1.0, off_value=0.0) targets = tf.squeeze(targets, axis=1) return targets def loss(self, targets, graph_data): """ Calculates the softmax cross entropy loss :param tf.Tensor logits: logits output of the model :param tf.Tensor targets: targets with the one hot encoding labels :return tf.Tensor : a tensor with the loss value """ logits = graph_data['logits'] loss = tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=logits) return tf.reduce_mean(loss) def optimize(self, loss, global_step, learning_rate_initial=TC_LEARNING_RATE_INITIAL, learning_rate_decay=TC_LEARNING_RATE_DECAY, learning_rate_decay_steps=TC_LEARNING_RATE_DECAY_STEPS): """ Creates a learning rate and an optimizer for the loss :param tf.Tensor loss: the tensor with the loss of the model :param tf.Tensor global_step: the global step for training :param int learning_rate_initial: the initial learning rate :param int learning_rate_decay: the decay of the learning rate :param int learning_rate_decay_steps: the number of steps to decay the learning rate :return (tf.Tensor, tf.Tensor): a tuple with the optimizer and the learning rate """ learning_rate = tf.train.exponential_decay(learning_rate_initial, global_step, learning_rate_decay_steps, learning_rate_decay, staircase=True, name='learning_rate') # optimizer optimizer = tf.train.RMSPropOptimizer(learning_rate) # optimizer = tf.train.GradientDescentOptimizer(learning_rate) # optimizer = tf.train.AdamOptimizer(learning_rate) optimizer = optimizer.minimize(loss, global_step=global_step) return optimizer, learning_rate if __name__ == '__main__': main(ModelSimple(), 'simple', batch_size=TC_BATCH_SIZE)
3.1875
3
Programmi/script/print_comandi_c0data.py
lgiacomazzo/SG0-ITA
1
12792936
<reponame>lgiacomazzo/SG0-ITA<filename>Programmi/script/print_comandi_c0data.py path_dir = "SG0-2.1.1/immagini_c0data" print("") print("") print(f"cd {path_dir}") lista_png = ["BG12A.png","BG24A1.png","BG24A3.png","BG24A4.png","BG24A5.png","BG24E1.png","BG24E4.png","BG24N1.png","BG24N3.png","BG24N4.png","BG83A3.png","IBG094.png","IBG099.png","SG0_IBG004A.png","SG0_IBG005A.png","SG0_IBG005C.png","SG0_IBG010A.png","SG0_IBG010B.png","SG0_IBG015A.png","SG0_IBG019A.png","SG0_IBG031A.png","SG0_IBG031B.png","SG0_IBG031C.png","SG0_IBG031D.png","SG0_IBG031E.png","SG0_IBG031F.png","SG0_IBG031G.png","SG0_IBG034A.png","SG0_IBG034B.png","SG0_IBG034C.png","SG0_IBG035A.png","SG0_IBG048A.png","SG0_IBG049A_honorifics.png","SG0_IBG049B_honorifics.png","SG0_IBG052A.png","SG0_IBG056C.png","SG0_IBG058A.png","z_warning.png"] lista_dds = ["CLEARLIST.dds","CONFIG.dds","DATA01.dds","EXMENU.dds","EXMENU2.dds","GSYSMES.dds","help00.dds","help01.dds","MENUCHIP.dds","MESWIN.dds","PHONE.dds","PHONE_B.dds","PHONE_RINE.dds","SAVEMENU.dds","SYSM_SAVEMENU.dds","SYSM_TIPS.dds","TIPSCHIPS.dds","title_chip.dds"] #pipeline = ["replace", "add"] pipeline = ["replace"] for nome in lista_png: for op in pipeline: print("open c0data.mpk") print(f"{op} {nome}") print("close c0data.mpk") for nome in lista_dds: for op in pipeline: print("open c0data.mpk") print(f"{op} {nome}") print("close c0data.mpk") print("exit") print("") print("") print(f"copia questi comandi nella shell di Ungelify, ma prima, copia il file c0data.mpk nella directory {path_dir}")
1.804688
2
ventura/_hweb.py
HermesPasser/ventura
0
12792937
import urllib.request as req import ventura._hpath as hpath import os def download(url, file_name): response = req.urlopen(url) # Create folders if need hpath.create_dir(file_name) file = open(file_name,'wb') file.write(response.read()) file.close() def get_page(url): response = req.urlopen(url) return response.read().decode("utf8")
2.9375
3
pyramid_api/helper_types.py
shawnsarwar/pyramid_analytics_python
0
12792938
<reponame>shawnsarwar/pyramid_analytics_python from dataclasses import dataclass import json from string import Template from typing import Any from dataclasses_json import DataClassJsonMixin from . import api_types @dataclass class MetaData(DataClassJsonMixin): name: str = None dstPath: str = None modified: str = None @dataclass class WrappedType(DataClassJsonMixin): className: str = None metaData: MetaData = None data: dict = None def to_instance(self): class_ = getattr(api_types, self.className) return class_.from_json(json.dumps(self.data)) def to_file(self, path_): with open(path_, 'w') as f: json.dump(json.loads(self.to_json()), f, indent=2) @staticmethod def createFromFile(path_, template_values=None, error_on_missing=True): with open(path_, 'r') as f: obj = json.dumps(json.load(f)) if template_values: obj = Template(obj) if error_on_missing: obj = obj.substitute(template_values) else: obj = obj.safe_substitute(template_values) return WrappedType.from_json(obj) @staticmethod def create(instance: Any) -> 'WrappedType': # expects an instance of an api_type Class class_ = type(instance) return WrappedType( class_.__qualname__, MetaData(), json.loads(instance.to_json()) )
2.265625
2
python/pynet/w01_03.py
bandarji/lekhan
0
12792939
#!/usr/bin/env python """ Create three different variables the first variable should use all lower case characters with underscore ( _ ) as the word separator. The second variable should use all upper case characters with underscore as the word separator. The third variable should use numbers, letters, and underscore, but still be a valid variable Python variable name. Make all three variables be strings that refer to IPv6 addresses. Use the from future technique so that any string literals in Python2 are unicode. compare if variable1 equals variable2 compare if variable1 is not equal to variable3 """ def main(): if __name__ == '__main__': main()
4.125
4
tsserver/configutils.py
m4tx/techswarm-server
1
12792940
import os from tsserver import app def get_upload_dir(): return os.path.join(app.root_path, app.config['PHOTOS_UPLOAD_FOLDER'])
1.742188
2
carts/views.py
cristinacorghi/BeautyProject
0
12792941
from django.shortcuts import render, HttpResponseRedirect from django.urls import reverse import Store.views from Store.models.productModel import * from .forms import CustomerPaymentForm from .models import * from Store.models.productModel import CustomerOrders def cart_view(request): try: the_id = request.session['cart_id'] # prende l'id del profumo cart = Cart.objects.get(id=the_id) except: the_id = None if the_id is None: empty_message = "Your cart is empty, please keep shopping" context = {"empty": True, 'empty_message': empty_message} else: new_total = 0.00 # prezzo totale for item in cart.cartitem_set.all(): line_total = float(item.product.price) * item.quantity # prezzo * quantità new_total += line_total request.session['items_total'] = cart.cartitem_set.count() cart.total = new_total # prezzo totale cart.save() context = {"cart": cart} template = "cart.html" return render(request, template, context) def add_to_cart(request, pk): try: the_id = request.session['cart_id'] except: new_cart = Cart() new_cart.save() request.session['cart_id'] = new_cart.id the_id = new_cart.id cart = Cart.objects.get(id=the_id) try: product = Product.objects.get(id=pk) except Product.DoesNotExist: pass except: pass if request.method == 'POST': if product.quantity == 0: lista_attesa = WaitingListModel.objects.create(product=product, user=request.user) lista_attesa.save() return render(request, 'finished_perfumes.html', {'product': product}) elif int(request.POST['qty']) > product.quantity: return render(request, 'finished_perfumes.html', {'product': product}) else: qty = request.POST['qty'] # quantità aggiunta al carello del singolo profumo cart_item = CartItem.objects.create(cart=cart, product=product) cart_item.quantity = qty cart_item.save() return HttpResponseRedirect(reverse("carts:cart_view")) return HttpResponseRedirect(reverse("carts:cart_view")) def remove_from_cart(request, id): try: the_id = request.session['cart_id'] cart = Cart.objects.get(id=the_id) except: the_id = None return HttpResponseRedirect(reverse("carts:cart_view")) cartitem = CartItem.objects.get(id=id) cartitem.delete() return HttpResponseRedirect(reverse("carts:cart_view")) def customer_payment(request): if request.method == 'POST': form = CustomerPaymentForm(request.POST, instance=request.user) if not form.is_valid(): return render(request, 'payment.html', {'form': form}) else: form.save() cartitem = CartItem.objects.all() for item in cartitem: orderdetail = CustomerOrders(user=request.user, product=item.product) orderdetail.save() item.product.quantity -= item.quantity # aggiorno la quantità nel database Product.objects.filter(id=item.product.pk).update(quantity=item.product.quantity) cartitem.delete() # quando procedo al pagamento il carrello torna vuoto request.session['items_total'] = 0 template = "success_payment.html" context = {"empty": True, 'form': form, 'cartitem': cartitem} return render(request, template, context) form = CustomerPaymentForm() return render(request, 'payment.html', {'form': form}) def success_payment(request): return render(request, 'success_payment.html')
2.390625
2
sessao03/04_56-FuncoesPart3/aula56.py
Ruteski/CursoPythonOM
0
12792942
""" funcoes - *args e **kwargs """ # def func(a1,a2,a3,a4,a5, nome=None, a6=None): # print(a1,a2,a3,a4,a5,nome, a6) # return nome, a6 # # # var = func(1,2,3,4,5, nome='lincoln', a6='5') # print(var[0], var[1]) # **kwargs = key word args - argumentos nomeados, basicamente um json def func(*args, **kwargs): # print(args) # print(args[0]) # print(args[-1]) # acessa o ultimo item da lista # print(len(args)) # for v in args: # print(v) # print(args[0]) print(args) print(kwargs) # print(kwargs['nome']) # print(kwargs['sobrenome']) nome = kwargs.get('nome') print(nome) idade = kwargs.get('idade') if idade is not None: print(idade) else: print('idade nao existe') # lista = [1,2,3,4,5] # n1, n2, *n = lista # print(n1, n2, n) # print(*lista, sep='\n') # func(1,2,3,4,5,6) lista = [1,2,3,4,5] lista2 = [10,20,30,40,50] func(*lista, *lista2, nome='lincoln', sobrenome='ruteski')
4.0625
4
clusterwrapper/clustermetrics.py
opennlp/DeepPhrase
2
12792943
<reponame>opennlp/DeepPhrase<filename>clusterwrapper/clustermetrics.py from sklearn.metrics import silhouette_score, calinski_harabaz_score def get_silhouette_coefficient(cluster_train_data,labels_assigned): return silhouette_score(cluster_train_data,labels_assigned) def get_calinski_harabaz_coefficient(cluster_train_data, labels_assigned): return calinski_harabaz_score(cluster_train_data, labels_assigned)
2.046875
2
Python/Strings/designer_door.py
abivilion/Hackerank-Solutions-
0
12792944
<gh_stars>0 # Enter your code here. Read input from STDIN. Print output to STDOUT x,y = map(int,input().split()) items = list(range(1,x+1,2)) items = items+items[::-1][1:] for i in items: text= "WELCOME" if i == x else '.|.'*i print (text.center(y,'-'))
3.65625
4
deployment_tool/middleware.py
Onyxnetworks/deployment_tool
0
12792945
<filename>deployment_tool/middleware.py import re from django.shortcuts import render, redirect from django.conf import settings EXEMPT_URL = settings.LOGIN_URL.lstrip('/') # Class to redirect user to login unless they have a valid APIC Cookie class LoginRequiredMiddleware: def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) return response def process_view(self, request, view_func, view_args, view_kwargs): path = request.path_info.lstrip('/') if request.session.has_key('APIC_COOKIE') and path in EXEMPT_URL: return redirect(settings.LOGIN_REDIRECT_URL) elif request.session.has_key('APIC_COOKIE') or path in EXEMPT_URL: return None else: return redirect(settings.LOGIN_URL)
2.1875
2
soam/core/__init__.py
MuttData/soam
1
12792946
"""SoaM core.""" from soam.core.runner import SoamFlow from soam.core.step import Step
0.898438
1
weixin/framework/tornado.py
500-Error/weixin-SDK
1
12792947
<gh_stars>1-10 # encoding=utf-8 import functools import tornado.web from ..utils import is_valid_request def weixin_request_only(func): @functools.wraps(func) def _wrapper_(req): nts = map(lambda k: req.get_query_argument(k, ""), ['nonce', 'timestamp', 'signature']) nonce, timestamp, sig = nts token = req.config.token if is_valid_request(token, nonce, timestamp, sig): return func(req) req.set_status(403) return _wrapper_ def make_handler(weapp): weapp.initialize() class WeixinRequestHandler(tornado.web.RequestHandler): def initialize(self): self.weapp = weapp self.config = weapp.config def compute_etag(self): return def set_default_headers(self): self.clear_header('Server') @weixin_request_only def get(self): echo_str = self.get_argument ('echostr', "") self.finish(echo_str) @weixin_request_only async def post(self): xml = self.weapp.reply(self.request.body) or "" self.write(xml) return WeixinRequestHandler
2.125
2
Mixin/Search.py
parente/clique
3
12792948
<filename>Mixin/Search.py<gh_stars>1-10 ''' Defines search related mixins. @author: <NAME> <<EMAIL>> @copyright: Copyright (c) 2008 <NAME> @license: BSD License All rights reserved. This program and the accompanying materials are made available under the terms of The BSD License which accompanies this distribution, and is available at U{http://www.opensource.org/licenses/bsd-license.php} ''' class CircularSearchMixin(object): ''' Mixing providing a generic method using callbacks to perform a circular search through a body of items. How the search proceeds is entirely defined by the callbacks. ''' def CircularSearch(self, start_cb, end_cb, move_cb, test_cb, found_cb, reset_cb, text, current): ''' Method for performing a generic, wrapping search over an entire collection. @param start_cb: Function to call when the search is starting @type start_cb: callable @param end_cb: Function to call when the search is ending @type end_cb: callable @param move_cb: Function to call to move to another item to test @type move_cb: callable @param test_cb: Function to call to test if an item contains the text @type test_cb: callable @param found_cb: Function to call when text is found in an item @type found_cb: callable @param reset_cb: Function to call when wrapping during search @type reset_cb: callable @param text: Text to locate @type text: string @param current: Start the search on the current item? @type current: boolean @return: True if wrapped, False if not wrapped, None if not found @rtype: boolean ''' # set to first item to test curr = start_cb() try: if not current: curr = move_cb(start_cb()) except (ValueError, AttributeError): # ignore any errors here, we might need to wrap pass else: while 1: if test_cb(curr, text): found_cb(curr) end_cb() return False # seek in desired direction try: curr = move_cb(curr) except ValueError: break except AttributeError: end_cb() return None try: # reset to endpoint curr = reset_cb(curr) except (ValueError, AttributeError): end_cb() return None while 1: if test_cb(curr, text): found_cb(curr) end_cb() return True # seek in desired direction try: curr = move_cb(curr) except (ValueError, AttributeError): break end_cb() return None
2.828125
3
projectmanager/migrations/0010_client_email.py
gregplaysguitar/django-projectmanager
8
12792949
<reponame>gregplaysguitar/django-projectmanager # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('projectmanager', '0009_auto_20150414_1019'), ] operations = [ migrations.AddField( model_name='client', name='email', field=models.EmailField(default=b'', max_length=254, blank=True), ), ]
1.398438
1
barcodes/dxfwrite/dxfwrite/htmlcolors.py
sbarton272/AcousticBarcodes-Explorations
2
12792950
capitalized_html_colors = { "Blue": ( 0, 0, 255 ), "Pink": ( 255, 192, 203 ), "Darkorange": ( 255, 140, 0 ), "Fuchsia": ( 255, 0, 255 ), "LawnGreen": ( 124, 252, 0 ), "AliceBlue": ( 240, 248, 255 ), "Crimson": ( 220, 20, 60 ), "White": ( 255, 255, 255 ), "NavajoWhite": ( 255, 222, 173 ), "Cornsilk": ( 255, 248, 220 ), "Bisque": ( 255, 228, 196 ), "PaleGreen": ( 152, 251, 152 ), "Brown": ( 165, 42, 42 ), "DarkTurquoise": ( 0, 206, 209 ), "DarkGreen": ( 0, 100, 0 ), "DarkGoldenRod": ( 184, 134, 11 ), "MediumOrchid": ( 186, 85, 211 ), "Chocolate": ( 210, 105, 30 ), "Purple": ( 128, 0, 128 ), "PapayaWhip": ( 255, 239, 213 ), "Olive": ( 128, 128, 0 ), "LightSlateGray": ( 119, 136, 153 ), "PeachPuff": ( 255, 218, 185 ), "Plum": ( 221, 160, 221 ), "MediumAquaMarine": ( 102, 205, 170 ), "MintCream": ( 245, 255, 250 ), "CornflowerBlue": ( 100, 149, 237 ), "HotPink": ( 255, 105, 180 ), "DarkBlue": ( 0, 0, 139 ), "LimeGreen": ( 50, 205, 50 ), "DeepSkyBlue": ( 0, 191, 255 ), "DarkKhaki": ( 189, 183, 107 ), "LightGrey": ( 211, 211, 211 ), "Yellow": ( 255, 255, 0 ), "Gainsboro": ( 220, 220, 220 ), "MistyRose": ( 255, 228, 225 ), "SandyBrown": ( 244, 164, 96 ), "DeepPink": ( 255, 20, 147 ), "SeaShell": ( 255, 245, 238 ), "Magenta": ( 255, 0, 255 ), "DarkGrey": ( 169, 169, 169 ), "DarkCyan": ( 0, 139, 139 ), "DarkSlateGrey": ( 47, 79, 79 ), "GreenYellow": ( 173, 255, 47 ), "DarkOrchid": ( 153, 50, 204 ), "LightGoldenRodYellow": ( 250, 250, 210 ), "OliveDrab": ( 107, 142, 35 ), "Chartreuse": ( 127, 255, 0 ), "Peru": ( 205, 133, 63 ), "MediumTurquoise": ( 72, 209, 204 ), "Orange": ( 255, 165, 0 ), "Red": ( 255, 0, 0 ), "Wheat": ( 245, 222, 179 ), "LightCyan": ( 224, 255, 255 ), "LightSeaGreen": ( 32, 178, 170 ), "BlueViolet": ( 138, 43, 226 ), "LightSlateGrey": ( 119, 136, 153 ), "Cyan": ( 0, 255, 255 ), "MediumPurple": ( 147, 112, 216 ), "MidnightBlue": ( 25, 25, 112 ), "Coral": ( 255, 127, 80 ), "PaleTurquoise": ( 175, 238, 238 ), "Gray": ( 128, 128, 128 ), "MediumSeaGreen": ( 60, 179, 113 ), "Moccasin": ( 255, 228, 181 ), "Turquoise": ( 64, 224, 208 ), "DarkSlateBlue": ( 72, 61, 139 ), "Green": ( 0, 128, 0 ), "Beige": ( 245, 245, 220 ), "Teal": ( 0, 128, 128 ), "Azure": ( 240, 255, 255 ), "LightSteelBlue": ( 176, 196, 222 ), "DimGrey": ( 105, 105, 105 ), "Tan": ( 210, 180, 140 ), "AntiqueWhite": ( 250, 235, 215 ), "SkyBlue": ( 135, 206, 235 ), "GhostWhite": ( 248, 248, 255 ), "HoneyDew": ( 240, 255, 240 ), "FloralWhite": ( 255, 250, 240 ), "LavenderBlush": ( 255, 240, 245 ), "SeaGreen": ( 46, 139, 87 ), "Lavender": ( 230, 230, 250 ), "BlanchedAlmond": ( 255, 235, 205 ), "DarkOliveGreen": ( 85, 107, 47 ), "DarkSeaGreen": ( 143, 188, 143 ), "SpringGreen": ( 0, 255, 127 ), "Navy": ( 0, 0, 128 ), "Orchid": ( 218, 112, 214 ), "Salmon": ( 250, 128, 114 ), "IndianRed": ( 205, 92, 92 ), "Snow": ( 255, 250, 250 ), "SteelBlue": ( 70, 130, 180 ), "MediumSlateBlue": ( 123, 104, 238 ), "Black": ( 0, 0, 0 ), "LightBlue": ( 173, 216, 230 ), "Ivory": ( 255, 255, 240 ), "MediumVioletRed": ( 199, 21, 133 ), "DarkViolet": ( 148, 0, 211 ), "DarkGray": ( 169, 169, 169 ), "SaddleBrown": ( 139, 69, 19 ), "DarkMagenta": ( 139, 0, 139 ), "Tomato": ( 255, 99, 71 ), "WhiteSmoke": ( 245, 245, 245 ), "MediumSpringGreen": ( 0, 250, 154 ), "DodgerBlue": ( 30, 144, 255 ), "Aqua": ( 0, 255, 255 ), "ForestGreen": ( 34, 139, 34 ), "LemonChiffon": ( 255, 250, 205 ), "Silver": ( 192, 192, 192 ), "LightGray": ( 211, 211, 211 ), "GoldenRod": ( 218, 165, 32 ), "Indigo": ( 75, 0, 130 ), "CadetBlue": ( 95, 158, 160 ), "LightYellow": ( 255, 255, 224 ), "PowderBlue": ( 176, 224, 230 ), "RoyalBlue": ( 65, 105, 225 ), "Sienna": ( 160, 82, 45 ), "Thistle": ( 216, 191, 216 ), "Lime": ( 0, 255, 0 ), "SlateGray": ( 112, 128, 144 ), "DarkRed": ( 139, 0, 0 ), "LightSkyBlue": ( 135, 206, 250 ), "SlateBlue": ( 106, 90, 205 ), "YellowGreen": ( 154, 205, 50 ), "Aquamarine": ( 127, 255, 212 ), "LightCoral": ( 240, 128, 128 ), "DarkSlateGray": ( 47, 79, 79 ), "Khaki": ( 240, 230, 140 ), "BurlyWood": ( 222, 184, 135 ), "MediumBlue": ( 0, 0, 205 ), "DarkSalmon": ( 233, 150, 122 ), "RosyBrown": ( 188, 143, 143 ), "LightSalmon": ( 255, 160, 122 ), "PaleVioletRed": ( 216, 112, 147 ), "FireBrick": ( 178, 34, 34 ), "Violet": ( 238, 130, 238 ), "Grey": ( 128, 128, 128 ), "LightGreen": ( 144, 238, 144 ), "Linen": ( 250, 240, 230 ), "OrangeRed": ( 255, 69, 0 ), "PaleGoldenRod": ( 238, 232, 170 ), "DimGray": ( 105, 105, 105 ), "Maroon": ( 128, 0, 0 ), "LightPink": ( 255, 182, 193 ), "SlateGrey": ( 112, 128, 144 ), "Gold": ( 255, 215, 0 ), "OldLace": ( 253, 245, 230 ) } lowercase_html_colors = dict( ((key.lower(), value) for key, value in capitalized_html_colors.items()) ) #lowercase_html_colors = { key.lower(): value for key, value in capitalized_html_colors.items() } def get_color_tuple_by_name(colorname): return lowercase_html_colors[colorname.lower()]
1.625
2