max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
main.py
Pommers/LCExtract
0
12792951
<filename>main.py from src.LCExtract.LCExtract import LCExtract if __name__ == '__main__': LCExtract()
1.03125
1
import_export_google_civic/migrations/0001_initial.py
adborden/WeVoteBase
0
12792952
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='GoogleCivicCandidateCampaign', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=254, verbose_name=b'google civic candidate name')), ('party', models.CharField(max_length=254, null=True, verbose_name=b'google civic party', blank=True)), ('photo_url', models.CharField(max_length=254, null=True, verbose_name=b'google civic photoUrl', blank=True)), ('order_on_ballot', models.CharField(max_length=254, null=True, verbose_name=b'google civic order on ballot', blank=True)), ('google_civic_contest_office_id', models.CharField(max_length=254, verbose_name=b'google civic internal temp contest_office_id id')), ('we_vote_contest_office_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote contest_office_id id', blank=True)), ('google_civic_election_id', models.CharField(max_length=254, verbose_name=b'google election id')), ('we_vote_election_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote election id', blank=True)), ('we_vote_candidate_campaign_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote candidate campaign id', blank=True)), ('we_vote_politician_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote politician id', blank=True)), ('candidate_url', models.URLField(null=True, verbose_name=b'website url of candidate campaign', blank=True)), ('facebook_url', models.URLField(null=True, verbose_name=b'facebook url of candidate campaign', blank=True)), ('twitter_url', models.URLField(null=True, verbose_name=b'twitter url of candidate campaign', blank=True)), ('google_plus_url', models.URLField(null=True, verbose_name=b'google plus url of candidate campaign', blank=True)), ('youtube_url', models.URLField(null=True, verbose_name=b'youtube url of candidate campaign', blank=True)), ('email', models.CharField(max_length=254, null=True, verbose_name=b'google civic candidate campaign email', blank=True)), ('phone', models.CharField(max_length=254, null=True, verbose_name=b'google civic candidate campaign email', blank=True)), ('was_processed', models.BooleanField(default=False, verbose_name=b'is primary election')), ], ), migrations.CreateModel( name='GoogleCivicContestOffice', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('office', models.CharField(max_length=254, verbose_name=b'google civic office')), ('google_civic_election_id', models.CharField(max_length=254, null=True, verbose_name=b'google civic election id', blank=True)), ('we_vote_election_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote election id', blank=True)), ('we_vote_contest_office_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote contest office id', blank=True)), ('number_voting_for', models.CharField(max_length=254, null=True, verbose_name=b'google civic number of candidates to vote for', blank=True)), ('number_elected', models.CharField(max_length=254, null=True, verbose_name=b'google civic number of candidates who will be elected', blank=True)), ('contest_level0', models.CharField(max_length=254, null=True, verbose_name=b'google civic level, option 0', blank=True)), ('contest_level1', models.CharField(max_length=254, null=True, verbose_name=b'google civic level, option 1', blank=True)), ('contest_level2', models.CharField(max_length=254, null=True, verbose_name=b'google civic level, option 2', blank=True)), ('ballot_placement', models.CharField(max_length=254, null=True, verbose_name=b'google civic ballot placement', blank=True)), ('primary_party', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('district_name', models.CharField(max_length=254, verbose_name=b'google civic district name')), ('district_scope', models.CharField(max_length=254, verbose_name=b'google civic district scope')), ('district_ocd_id', models.CharField(max_length=254, verbose_name=b'google civic district ocd id')), ('electorate_specifications', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('special', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('was_processed', models.BooleanField(default=False, verbose_name=b'is primary election')), ], ), migrations.CreateModel( name='GoogleCivicContestReferendum', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('referendum_title', models.CharField(max_length=254, verbose_name=b'google civic referendum title')), ('referendum_subtitle', models.CharField(max_length=254, verbose_name=b'google civic referendum subtitle')), ('referendum_url', models.CharField(max_length=254, null=True, verbose_name=b'google civic referendum details url')), ('google_civic_election_id', models.CharField(max_length=254, verbose_name=b'google civic election id')), ('we_vote_election_id', models.CharField(max_length=254, null=True, verbose_name=b'we vote election id', blank=True)), ('ballot_placement', models.CharField(max_length=254, null=True, verbose_name=b'google civic ballot placement', blank=True)), ('primary_party', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('district_name', models.CharField(max_length=254, verbose_name=b'google civic district name')), ('district_scope', models.CharField(max_length=254, verbose_name=b'google civic district scope')), ('district_ocd_id', models.CharField(max_length=254, verbose_name=b'google civic district ocd id')), ('electorate_specifications', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('special', models.CharField(max_length=254, null=True, verbose_name=b'google civic primary party', blank=True)), ('was_processed', models.BooleanField(default=False, verbose_name=b'is primary election')), ], ), migrations.CreateModel( name='GoogleCivicElection', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('google_civic_election_id', models.CharField(unique=True, max_length=20, verbose_name=b'google civic election id')), ('we_vote_election_id', models.CharField(max_length=20, unique=True, null=True, verbose_name=b'we vote election id', blank=True)), ('name', models.CharField(max_length=254, verbose_name=b'google civic election name')), ('election_day', models.CharField(max_length=254, verbose_name=b'google civic election day')), ('was_processed', models.BooleanField(default=False, verbose_name=b'is primary election')), ], ), ]
1.695313
2
aliyun_rocketmq_provider/__init__.py
Ed-XCF/airflow-provider-rocketmq
0
12792953
def get_provider_info(): return { "package-name": "airflow-providers-aliyun-rocketmq", "name": "Aliyun RocketMQ Airflow Provider", "description": "Airflow provider for aliyun rocketmq", "hook-class-names": ["aliyun_rocketmq_provider.hooks.aliyun_rocketmq.AliyunRocketMQHook"], "versions": ["0.1.2"] }
1.601563
2
rrs_cleaner.py
mwweinberg/red_raid_squeakquel
0
12792954
from bs4 import BeautifulSoup import urllib #sets the URLs h1 = "test_eng.html" h2 = "test2_eng.html" # need to either figure out how to skip "None" results or turn search_all into a string def headliner(url): soup = BeautifulSoup((open(url)), "lxml") head1 = soup.find_all(['h1','h2','h3']) head2 = soup.h2.string head3 = soup.h3.string print head1 print head1[0].get_text() #print head1[1].get_text() #print head2[2].get_text() #print head2 #print head3 print "" headliner(h1)
3.25
3
setup.py
test-room-7/alias
2
12792955
<filename>setup.py import os import sys from setuptools import setup from setuptools.command.install import install sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'src')) from alias import ALIASES_DIR_VAR # noqa: E402 from alias import get_aliases_dir # noqa: E402 def set_env_var(var, value): os.system(f'setx {var} "{value}"') class PostInstallCommand(install): """Post-installation for installation mode.""" def run(self): install.run(self) if ALIASES_DIR_VAR not in os.environ: aliases_dir = get_aliases_dir() set_env_var(ALIASES_DIR_VAR, aliases_dir) setup( cmdclass={ 'install': PostInstallCommand, } )
2.203125
2
test/client/network/test_get_public_ip.py
redmic-project/device-oag-buoy-buoy-client
0
12792956
import unittest from unittest.mock import patch from nose.tools import eq_ from buoy.client.network import ip class MockResponse: def __init__(self, **kwargs): self.content = str.encode(kwargs.pop('content', "")) self.status_code = kwargs.pop('status_code', 404) class TestPublicIP(unittest.TestCase): def setUp(self): self.services = ['http://icanhazip.com', 'http://ipv4bot.whatismyipaddress.com', 'https://api.ipify1.org', 'http://ip.42.pl/raw'] @patch.object(ip, 'get') def test_get_public_ip_return_ip_in_last_service(self, mock_method): service_ok = self.services[-1] max_attempts = len(self.services) ip_expected = "172.16.58.3" def mocked_requests_get(*args, **kwargs): mock_resp = MockResponse() if args[0] == service_ok: mock_resp = MockResponse(content=ip_expected, status_code=200) return mock_resp mock_method.side_effect = mocked_requests_get eq_(ip_expected, ip.get_public_ip(services=self.services)) eq_(mock_method.call_count, max_attempts) @patch.object(ip, 'get') def test_get_public_ip_return_ip_in_first_service(self, mock_method): service_ok = self.services[0] max_attempts = 1 ip_expected = "172.16.58.3" def mocked_requests_get(*args, **kwargs): mock_resp = MockResponse() if args[0] == service_ok: mock_resp = MockResponse(content=ip_expected, status_code=200) return mock_resp mock_method.side_effect = mocked_requests_get eq_(ip_expected, ip.get_public_ip(services=self.services)) eq_(mock_method.call_count, max_attempts) @patch.object(ip, 'get') def test_get_public_ip_return_exception(self, mock_method): max_attempts = len(self.services) def mocked_requests_get(*args, **kwargs): return MockResponse() mock_method.side_effect = mocked_requests_get self.assertRaises(ip.NoIPException, ip.get_public_ip, services=self.services) eq_(mock_method.call_count, max_attempts) if __name__ == '__main__': unittest.main()
2.703125
3
data_handler/PostDataGenerator/InputEstimators/InputEstimationVisualizer.py
muratcancicek/pointer_head
0
12792957
<reponame>muratcancicek/pointer_head from .MappingFunctions import Boundary, StaticMapping, DynamicMapping from datetime import datetime from ... import Paths import numpy as np import cv2 import os class InputEstimationVisualizer(object): def __init__(self, sceneScale = 1, landmarkColorStr = '#00ff00', screenColorStr = '#0000ff'): super() self._size = (1280, 720) def addBox(self, frame, pPts): color = (255, 255, 255) cv2.polylines(frame, [pPts], True, color, 2, cv2.LINE_AA) if len(pPts) > 4: _pPts = [] for start, end in [(1,6), (2, 7), (3, 8)]: p = (tuple(pPts[start]), tuple(pPts[end])) _pPts.append(p) for start, end in _pPts: cv2.line(frame, start, end, color, 2, cv2.LINE_AA) return frame def addLandmarks(self, frame, landmarks, c = (255, 0, 0)): for i, (x, y) in enumerate(landmarks): #if not i in [39, 42]: # continue cv2.circle(frame, (x, y), 6, c, -1, cv2.LINE_AA) return frame def addPointer(self, frame, outputValues): #boundaries = self._mappingFunc.getOutputBoundaries() outputSize = (1920, 1080) outputValues[0] = outputSize[0] - outputValues[0] boundaries = Boundary(0, outputSize[0], 0, outputSize[1]) (height, width, depth) = frame.shape (xRange, yRange, _) = boundaries.getRanges() if xRange != width or yRange != height: xRange, yRange = boundaries.getVolumeAbsRatio(outputValues) x, y = int(xRange*width), int(yRange*height) else: x, y = outputValues[:2].astype(int) cv2.circle(frame, (x, y), 1, (0, 0, 235), 56, cv2.LINE_AA) return frame def addAllInputs(self, frame, pPts = None, landmarks = None, outputValues = None): if not landmarks is None: frame = self.addLandmarks(frame, landmarks.astype(int)) if not pPts is None: frame = self.addBox(frame, pPts.astype(int)) if not outputValues is None: frame = self.addPointer(frame, outputValues.astype(int)) return frame def showFrame(self, frame, delay = 1): cv2.imshow('frame', frame) k = cv2.waitKey(delay) if k == 27 or k == ord('q'): return False else: return True def __addText(self, frame, text, pos, color, largeScale = True): if largeScale: cv2.putText(frame, text, pos, cv2.FONT_HERSHEY_SIMPLEX, 2, color, thickness=8) else: cv2.putText(frame, text, pos, cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, thickness=1) return frame def _addValuesLineByLine(self, frame, values, labels, position, colors, largeScale = True): for v, l, c in zip(values, labels, colors): text = "{:s}: {:7.2f}".format(l, float(v)) frame = self.__addText(frame, text, position, c, largeScale) position = (position[0], position[1]+(70 if largeScale else 30)) return frame def _addValues(self, inputValues, frame, pos = (20, 60), prefix = '', largeScale = True): labels = [prefix+l for l in ['X', 'Y', 'Z']] g = 0 if largeScale else 200 colors = ((0, 0, 255), (0, 255, 0), (255, g, 0)) return self._addValuesLineByLine(frame, inputValues, labels, pos, colors, largeScale) def _addMeasurements(self, inputValues, pose, frame, largeScale = True): initialPos, gap = ((20, 60), 200) if largeScale else ((20, 30), 90) frame = self._addValues(pose[:3], frame, pos = initialPos, prefix = 'Pos', largeScale = largeScale) initialPos = (initialPos[0], initialPos[1] + gap) frame = self._addValues(pose[3:], frame, pos =initialPos, prefix = 'Or', largeScale = largeScale) initialPos = (initialPos[0], initialPos[1] + gap) frame = self._addValues(inputValues, frame, pos = initialPos, prefix = 'Gaze', largeScale = largeScale) return frame def showFrameWithAllInputs(self, frame, pPts = None, landmarks = None, outputValues = None, pose = None, delay = 1): frame = self.addAllInputs(frame, pPts, landmarks, outputValues) h, w, _ = frame.shape cv2.line(frame, (0, int(h/2)), (w, int(h/2)), (0,0,0), 5) cv2.line(frame, (int(w/2), 0), (int(w/2), h), (0,0,0), 5) if not pose is None: frame = self._addMeasurements(outputValues, pose, frame) return self.showFrame(frame, delay) def playSubjectVideoWithLandmarks(self, estimator, streamer): self._estimator = estimator for frame in streamer: landmarks = estimator.detectFacialLandmarks(frame) k = self.showFrameWithAllInputs(frame, landmarks = landmarks) if not k: break return def playSubjectVideoWithAllInputs(self, estimator, streamer): self._estimator = estimator for frame in streamer: annotations = \ estimator.estimateInputValuesWithAnnotations(frame) pose = estimator.getHeadPose() inputValues, pPts, landmarks = annotations k = self.showFrameWithAllInputs(frame, pPts, landmarks, inputValues, pose) if not k: break return def replaySubjectVideoWithPostData(self, postData, streamer): if not isinstance(postData, tuple): jointStreamer = zip(postData, streamer) for landmarks, frame in jointStreamer: k = self.showFrameWithAllInputs(frame, landmarks = landmarks) if not k: break return else: jointStreamer = zip(*(postData + (streamer,))) for headGaze, pose, landmarks, pPts, frame in jointStreamer: k = self.showFrameWithAllInputs(frame, pPts, landmarks, headGaze, pose) if not k: break return def __initializeRecorder(self, id, trailName, fps = 30, dims = (1280, 720)): fourcc = cv2.VideoWriter_fourcc(*'MP42') dir = Paths.MergedVideosFolder + ('%s%s' % (id, Paths.sep)) if not os.path.isdir(dir): os.makedirs(dir, exist_ok = True) now = str(datetime.now())[:-7].replace(':', '-').replace(' ', '_') recordName = trailName + '_%s_%s_WithAllInput.avi' % (id, now) print(dir + recordName, 'will be written') print(dims) return cv2.VideoWriter(dir + recordName, fourcc, fps, dims) def recordSubjectVideoWithPostdata(self, postData, id, trailName, streamer): recorder = self.__initializeRecorder(id, trailName, dims = (1280, 720)) print(self._size) if not isinstance(postData, tuple): jointStreamer = zip(postData, streamer) for landmarks, frame in jointStreamer: frame = self.addAllInputs(frame, landmarks = landmarks) k = self.showFrame(frame) if not k: recorder.release() break recorder.write(frame.astype(np.uint8)) else: jointStreamer = zip(*(postData + (streamer,))) for headGaze, pose, landmarks, pPts, frame in jointStreamer: frame = self.addAllInputs(frame, pPts, landmarks, outputValues) k = self.showFrame(frame) if not k: recorder.release() break recorder.write(frame.astype(np.uint8)) recorder.release() return
2
2
projects/Alleria/alleria/config.py
sm047/detectron2
5
12792958
<reponame>sm047/detectron2<gh_stars>1-10 #!/usr/bin/env python3 # @Time : 4/6/20 5:47 PM # @Author : fangcheng.ji # @FileName: config.py from detectron2.config import CfgNode as CN def add_alleria_config(cfg): _C = cfg # ---------------------------------------------------------------------------- # # Data Augmentation # ---------------------------------------------------------------------------- # # mosaic augmentation _C.DATALOADER.MOSAIC_PROB = 0.33 # mix-up augmentation _C.DATALOADER.MIXUP_PROB = 0.34 _C.DATALOADER.CUTOUT_PROB = 0.0 # output prediction and ground truth to image _C.TEST.VISUAL_OUTPUT = False _C.TEST.AUG.NMS_TH = 0.6 # ensemble multi model _C.TEST.ENSEMBLE = CN() _C.TEST.ENSEMBLE.ENABLED = False _C.TEST.ENSEMBLE.NUM = 2 _C.TEST.ENSEMBLE.CONFIGS = ("",)
1.515625
2
NYK.py
innovationgarage/shipdash
0
12792959
import json import numpy as np import pandas as pd pd.options.mode.chained_assignment = None from sklearn.preprocessing import Imputer, StandardScaler import DataSource import os.path class NYK(DataSource.DataSource): def __init__(self, app, dsrc_name='', dsrc_type='csv', dsrc_path='data/', file_name='', header_rows=None, date_cols=None, skip_rows=None, lat1=None, long1=None, lat2=None, long2=None): DataSource.DataSource.__init__(self, app, dsrc_name) self.dsrc_type = dsrc_type self.dsrc_path = dsrc_path self.file_name = file_name self.header_rows = header_rows self.date_cols = date_cols self.skip_rows = skip_rows self.lat1 = lat1 self.long1 = long1 self.lat2 = lat2 self.long2 = long2 self.read_prepare_data() self.init_dsrc() """These methods are fine-tuned for the current data sets. I need to generalize them once I know more about different types of data coming in""" @classmethod def clean(cls, df, name): """Find all empty space or all NaN columns and drops them from the DataFrame""" df.replace(r'\s+', np.nan, regex=True, inplace=True) df.replace(r'-', np.nan, regex=True, inplace=True) df.dropna(axis=1, how='all', inplace=True) df.columns = [str(x) for x in df.columns] df.reset_index(level=[0], inplace=True) df.rename(columns={'index': 'ind'}, inplace=True) """This is to find coordinate columns etc. manually, because we don't know anything about the structure of our data!""" # df.to_csv('data/'+name+'_clean.csv') return df @classmethod def scale_impute(cls, df, method): """Find float columns, impute their NaN values with 'method', and then min-max scale the column/feature""" fill_NaN = Imputer(missing_values=np.nan, strategy=method, axis=1) df[df.loc[:, df.dtypes == 'float64'].columns.difference(['lat1', 'long1', 'lat2', 'long2'])] = fill_NaN.fit_transform( df[df.loc[:, df.dtypes == 'float64'].columns.difference(['lat1', 'long1', 'lat2', 'long2'])] ) scaler = StandardScaler() df[df.loc[:, df.dtypes == 'float64'].columns.difference(['lat1', 'long1', 'lat2', 'long2'])] = scaler.fit_transform( df[df.loc[:, df.dtypes == 'float64'].columns.difference(['lat1', 'long1', 'lat2', 'long2'])] ) return df @classmethod def convert_coordinate(cls, df, col_in, col_out): """Convert coordinates of the format [d]ddmm.mmm to [dd]d.ddd""" ##FIXME! This is assuming all coordinates are E and N df[col_out] = (df[col_in]/100 - (df[col_in]/100).astype(int))*100.*0.0166666667 + (df[col_in]/100).astype(int) return df @classmethod def wgs84_to_web_mercator(cls, df, lon, lat): """Convert decimal longitude/latitude to Web Mercator format""" k = 6378137 df['wm%s'%lon] = df[lon] * (k * np.pi/180.0) df['wm%s'%lat] = np.log(np.tan((90 + df[lat]) * np.pi/360.0)) * k return df def read_prepare_data(self): """Use all data tools above to deliver the final cleaned DataFrame""" self.data = self.dsrc_types[self.dsrc_type]( os.path.join(self.dsrc_path, self.file_name), header = self.header_rows, parse_dates = self.date_cols, skiprows = self.skip_rows, error_bad_lines = False, low_memory = False ) self.data['timestamp2'] = pd.to_datetime(self.data[0]) self.data['timestamp1'] = pd.to_datetime(self.data[1]) self.clean(self.data, self.dsrc_name) self.convert_coordinate(self.data, str(self.lat1), 'lat1') self.convert_coordinate(self.data, str(self.long1), 'long1') self.convert_coordinate(self.data, str(self.lat2), 'lat2') self.convert_coordinate(self.data, str(self.long2), 'long2') self.scale_impute(self.data, 'mean') self.wgs84_to_web_mercator(self.data, 'long1', 'lat1') self.wgs84_to_web_mercator(self.data, 'long2', 'lat2') self.data['timestamp_date'] = self.data['timestamp1'].dt.strftime('%Y-%m-%d') DataSource.DataSource.types['NYK'] = NYK
2.9375
3
complex-flock.py
jasonmpittman/100-days-of-alife-code
0
12792960
#!/usr/bin/env python3 # Created on 05/07/2018 # @author: <NAME> # @license: MIT-license # Purpose: example of multiple agent flocking behavior # Explanation: import pygame, sys, random, math pygame.init() stopped = False window_height = 800 window_width = 600 black = (0,0,0) white = (255,255,255) class agent: def __init__(self, x, y): self.x = x self.y = y self.velocityX = 10 self.velocityY = 10 while not stopped: ev = pygame.event.get() for event in ev: if event.type == pygame.MOUSEBUTTONDOWN: pos = pygame.mouse.get_pos() if event.type == pygame.QUIT: running = False
3.171875
3
autograd_minimize/torch_wrapper.py
brunorigal/autograd_minimize
8
12792961
import numpy as np import torch from .base_wrapper import BaseWrapper from torch.autograd.functional import hvp, vhp, hessian from typing import List, Tuple, Dict, Union, Callable from torch import nn, Tensor class TorchWrapper(BaseWrapper): def __init__(self, func, precision='float32', hvp_type='vhp', device='cpu'): self.func = func # Not very clean... if 'device' in dir(func): self.device = func.device else: self.device = torch.device(device) if precision == 'float32': self.precision = torch.float32 elif precision == 'float64': self.precision = torch.float64 else: raise ValueError self.hvp_func = hvp if hvp_type == 'hvp' else vhp def get_value_and_grad(self, input_var): assert 'shapes' in dir( self), 'You must first call get input to define the tensors shapes.' input_var_ = self._unconcat(torch.tensor( input_var, dtype=self.precision, requires_grad=True, device=self.device), self.shapes) loss = self._eval_func(input_var_) input_var_grad = input_var_.values() if isinstance( input_var_, dict) else input_var_ grads = torch.autograd.grad(loss, input_var_grad) if isinstance(input_var_, dict): grads = {k: v for k, v in zip(input_var_.keys(), grads)} return [loss.cpu().detach().numpy().astype(np.float64), self._concat(grads)[0].cpu().detach().numpy().astype(np.float64)] def get_hvp(self, input_var, vector): assert 'shapes' in dir( self), 'You must first call get input to define the tensors shapes.' input_var_ = self._unconcat(torch.tensor( input_var, dtype=self.precision, device=self.device), self.shapes) vector_ = self._unconcat(torch.tensor( vector, dtype=self.precision, device=self.device), self.shapes) if isinstance(input_var_, dict): input_var_ = tuple(input_var_.values()) if isinstance(vector_, dict): vector_ = tuple(vector_.values()) if isinstance(input_var_, list): input_var_ = tuple(input_var_) if isinstance(vector_, list): vector_ = tuple(vector_) loss, vhp_res = self.hvp_func(self.func, input_var_, v=vector_) return self._concat(vhp_res)[0].cpu().detach().numpy().astype(np.float64) def get_hess(self, input_var): assert 'shapes' in dir( self), 'You must first call get input to define the tensors shapes.' input_var_ = torch.tensor( input_var, dtype=self.precision, device=self.device) def func(inp): return self._eval_func(self._unconcat(inp, self.shapes)) hess = hessian(func, input_var_, vectorize=False) return hess.cpu().detach().numpy().astype(np.float64) def get_ctr_jac(self, input_var): assert 'shapes' in dir( self), 'You must first call get input to define the tensors shapes.' input_var_ = self._unconcat(torch.tensor( input_var, dtype=self.precision, requires_grad=True, device=self.device), self.shapes) ctr_val = self._eval_ctr_func(input_var_) input_var_grad = input_var_.values() if isinstance( input_var_, dict) else input_var_ grads = torch.autograd.grad(ctr_val, input_var_grad) return grads.cpu().detach().numpy().astype(np.float64) def _reshape(self, t, sh): if torch.is_tensor(t): return t.reshape(sh) elif isinstance(t, np.ndarray): return np.reshape(t, sh) else: raise NotImplementedError def _tconcat(self, t_list, dim=0): if torch.is_tensor(t_list[0]): return torch.cat(t_list, dim) elif isinstance(t_list[0], np.ndarray): return np.concatenate(t_list, dim) else: raise NotImplementedError def _gather(self, t, i, j): if isinstance(t, np.ndarray) or torch.is_tensor(t): return t[i:j] else: raise NotImplementedError def torch_function_factory(model, loss, train_x, train_y, precision='float32', optimized_vars=None): """ A factory to create a function of the torch parameter model. :param model: torch model :type model: torch.nn.Modle] :param loss: a function with signature loss_value = loss(pred_y, true_y). :type loss: function :param train_x: dataset used as input of the model :type train_x: np.ndarray :param train_y: dataset used as ground truth input of the loss :type train_y: np.ndarray :return: (function of the parameters, list of parameters, names of parameters) :rtype: tuple """ # named_params = {k: var.cpu().detach().numpy() for k, var in model.named_parameters()} params, names = extract_weights(model) device = params[0].device prec_ = torch.float32 if precision == 'float32' else torch.float64 if isinstance(train_x, np.ndarray): train_x = torch.tensor(train_x, dtype=prec_, device=device) if isinstance(train_y, np.ndarray): train_y = torch.tensor(train_y, dtype=prec_, device=device) def func(*new_params): load_weights(model, {k: v for k, v in zip(names, new_params)}) out = apply_func(model, train_x) return loss(out, train_y) func.device = device return func, [p.cpu().detach().numpy() for p in params], names def apply_func(func, input_): if isinstance(input_, dict): return func(**input_) elif isinstance(input_, list) or isinstance(input_, tuple): return func(*input_) else: return func(input_) # Adapted from https://github.com/pytorch/pytorch/blob/21c04b4438a766cd998fddb42247d4eb2e010f9a/benchmarks/functional_autograd_benchmark/functional_autograd_benchmark.py # Utilities to make nn.Module "functional" # In particular the goal is to be able to provide a function that takes as input # the parameters and evaluate the nn.Module using fixed inputs. def _del_nested_attr(obj: nn.Module, names: List[str]) -> None: """ Deletes the attribute specified by the given list of names. For example, to delete the attribute obj.conv.weight, use _del_nested_attr(obj, ['conv', 'weight']) """ if len(names) == 1: delattr(obj, names[0]) else: _del_nested_attr(getattr(obj, names[0]), names[1:]) def _set_nested_attr(obj: nn.Module, names: List[str], value: Tensor) -> None: """ Set the attribute specified by the given list of names to value. For example, to set the attribute obj.conv.weight, use _del_nested_attr(obj, ['conv', 'weight'], value) """ if len(names) == 1: setattr(obj, names[0], value) else: _set_nested_attr(getattr(obj, names[0]), names[1:], value) def extract_weights(mod: nn.Module) -> Tuple[Tuple[Tensor, ...], List[str]]: """ This function removes all the Parameters from the model and return them as a tuple as well as their original attribute names. The weights must be re-loaded with `load_weights` before the model can be used again. Note that this function modifies the model in place and after this call, mod.parameters() will be empty. """ orig_params = [p for p in mod.parameters() if p.requires_grad] # Remove all the parameters in the model names = [] for name, p in list(mod.named_parameters()): if p.requires_grad: _del_nested_attr(mod, name.split(".")) names.append(name) # Make params regular Tensors instead of nn.Parameter params = tuple(p.detach().requires_grad_() for p in orig_params) return params, names def load_weights(mod: nn.Module, params: Dict[str, Tensor]) -> None: """ Reload a set of weights so that `mod` can be used again to perform a forward pass. Note that the `params` are regular Tensors (that can have history) and so are left as Tensors. This means that mod.parameters() will still be empty after this call. """ for name, p in params.items(): _set_nested_attr(mod, name.split("."), p)
2.15625
2
tests/test_components.py
pritchardn/MonteCarloDlgApp
0
12792962
<gh_stars>0 import pytest from montecarlodlgapp import MonteCarloAppDrop, MyDataDROP given = pytest.mark.parametrize def test_myApp_class(): first = MonteCarloAppDrop("a", "a") second = MonteCarloAppDrop("a", "a") second.randomSeed = 100 first.initialize() second.initialize() pi_1 = first.run() assert pi_1 != second.run() def test_myData_class(): assert MyDataDROP("a", "a").getIO() == "Hello from MyDataDROP" def test_myData_dataURL(): assert MyDataDROP("a", "a").dataURL == "Hello from the dataURL method"
2.453125
2
corehq/apps/smsbillables/management/commands/bootstrap_unicel_gateway.py
dslowikowski/commcare-hq
1
12792963
import logging from django.core.management.base import LabelCommand from corehq.apps.accounting.models import Currency from corehq.apps.sms.models import INCOMING, OUTGOING from corehq.apps.smsbillables.models import SmsGatewayFee from corehq.apps.unicel.api import UnicelBackend logger = logging.getLogger('accounting') class Command(LabelCommand): help = "bootstrap Unicel gateway fees" args = "" label = "" def handle(self, *labels, **options): SmsGatewayFee.create_new(UnicelBackend.get_api_id(), INCOMING, 0.50, currency=Currency.objects.get(code="INR")) SmsGatewayFee.create_new(UnicelBackend.get_api_id(), OUTGOING, 0.50, currency=Currency.objects.get(code="INR")) logger.info("Updated Unicel gateway fees.")
1.96875
2
src/robusta/runner/main.py
shahar-lev/robusta
0
12792964
import os import os.path from inspect import getmembers import manhole from .log_init import init_logging from .web import Web from ..core.playbooks.playbooks_event_handler_impl import PlaybooksEventHandlerImpl from .. import api as robusta_api from .config_loader import ConfigLoader from ..model.config import Registry def main(): init_logging() registry = Registry() event_handler = PlaybooksEventHandlerImpl(registry) loader = ConfigLoader(registry, event_handler) if os.environ.get("ENABLE_MANHOLE", "false").lower() == "true": manhole.install(locals=dict(getmembers(robusta_api))) Web.init(event_handler) Web.run() # blocking loader.close() if __name__ == "__main__": main()
1.851563
2
app/recipe/views.py
HHHMHA/recipe-app-api
1
12792965
from rest_framework import viewsets, mixins from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from .serializers import TagSerializer, IngredientSerializer, RecipeSerializer from core.models import Tag, Ingredient, Recipe class BaseRecipeAttrViewSet(viewsets.GenericViewSet, mixins.ListModelMixin, mixins.CreateModelMixin): """Base class for a user owned recipe attributes""" authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) def get_queryset(self): """Return objects for the current authenticated user only""" qs = super(BaseRecipeAttrViewSet, self).get_queryset() return qs.filter(user=self.request.user).order_by('-name') def perform_create(self, serializer): """Create a new object""" serializer.save(user=self.request.user) class TagViewSet(BaseRecipeAttrViewSet): """Manage tags in the database""" serializer_class = TagSerializer queryset = Tag.objects.all() class IngredientViewSet(BaseRecipeAttrViewSet): """Manage ingredients in the database""" serializer_class = IngredientSerializer queryset = Ingredient.objects.all() class RecipeViewSet(viewsets.ModelViewSet): """Manage Recipe in the database""" serializer_class = RecipeSerializer queryset = Recipe.objects.all() authentication_classes = (TokenAuthentication,) permission_classes = (IsAuthenticated,) # Must override because the old one order by name def get_queryset(self): """Retrieve the recipes for the authenticated user""" qs = super(RecipeViewSet, self).get_queryset() return qs.filter(user=self.request.user)
2.1875
2
tests/support/sample_app/serializers.py
proteanhq/flask-authentic
3
12792966
""" Serializers used by the sample app """ from authentic.entities import Account from protean.context import context from protean_flask.core.serializers import EntitySerializer from protean_flask.core.serializers import ma from .entities import Human class AccountSerializer(EntitySerializer): """ Serializer for Account Entity""" id = ma.fields.Integer() class Meta: entity = Account fields = ('id', 'name', 'username', 'email', 'title', 'phone', 'timezone', 'is_locked', 'is_active', 'is_verified') class HumanSerializer(EntitySerializer): """ Serializer for Human Entity""" current_account = ma.fields.Method('get_current_account') def get_current_account(self, obj): """ Return the current logged in user """ if context.account: return context.account.id else: return None class Meta: entity = Human
2.796875
3
twitter_api/tweets_locale_by_tag.py
lcontini/twitter_search_api
3
12792967
#### NOT WORKING import logging import configs import tweepy import pymongo import json # TWITTER PARAMS HASHTAGS_LIST = configs.HASHTAGS_LIST # MONGODB PARAMS MONGO_COL_TWEETS = configs.MONGO_COL_TWEETS MONGO_COL_USER = configs.MONGO_COL_USER MONGO_COL_TTAGS = configs.MONGO_COL_TTAGS MONGO_COL_LOCALE = configs.MONGO_COL_LOCALE def get_user_locale_info(api, db_connection, mongo_col_tweets, mongo_col_user): logging.info("entrando na funcao get_user_locale_info") tweet_col = db_connection[mongo_col] user_data_list = [] user_data = {} user_list = tweet_col.find({}, {'hashtag':1, 'user':1, 'lang':1}) for user in user_list: user_data['hashtag'] = user['hashtag'] user_data['user'] = user['user'] user_data['lang'] = user['lang'] user_data_list.append(user_data) user_data = {} user_data = user_data_list user_locale_data = get_user_info(api, db_connection, mongo_col_tweets, user_data) return(user_locale_data) def get_user_info(api, db_connection, mongo_col_user, user_list): user_col = db_connection[mongo_col_user] logging.info("entrando na funcao get_user_info") filtered_user_list = [] insert_ids = [] for user in user_list: logging.info("looking up for user {0}".format(user['user'])) user_raw = api.get_user(screen_name=user['user']) user_raw_json = user_raw._json user_filtered = {'hashtag': user['hashtag'], 'name': user_raw_json['name'], 'lang': user['lang'], 'location': user_raw_json['location']} # x = user_col.insert_many(user_locale_list) insert_ids.append(x.insert_ids) return(filtered_user_list) def insert_user_locale_info(api, db_connection, mongo_col_user, user_locale_list): user_col = db_connection[mongo_col_user] count_documents = user_col.count() if not count_documents == 0: logging.info("Collection \"{0}\" is not empty. Performing cleanup".format(mongo_col_user)) clean_collection = configs.cleanup_collection(db_connection, mongo_col_user) logging.info("Collection cleanup: {0} documents were deleted from the collection.".format(clean_collection)) x = user_col.insert_many(user_locale_list) return(len(x.inserted_ids)) # def group_tweets_by_tag(api, db_connection, hashtags_list): # print() # def get_locale_by_tag(api, db_connection, hashtags_list): # print() #### NOT WORKING # def main(): # logging.info("Collecting lang/locale count, per tag, for the given hashtags: {0}".format(' '.join(HASHTAGS_LIST))) # api_auth = configs.twitter_auth() # mongodb_connection = configs.mongodb_connect() # user_locale_list = get_user_locale_info(api_auth, mongodb_connection, MONGO_COL_TWEETS) # insert_user_locale_info(api_auth, mongodb_connection, MONGO_COL_USER, user_locale_list) # tweets_by_tag = group_tweets_by_tag(api_auth, mongodb_connection, MONGO_COL_TWEETS, MONGO_COL_TTAGS, HASHTAGS_LIST) # locale_by_tag = get_locale_by_tag(api_auth, mongodb_connection, MONGO_COL_TWEETS, MONGO_COL_LOCALE, HASHTAGS_LIST) # logging.info("Lang/Locale count per tag stored into the collection \"{0}\"".format(MONGO_COL_LOCALE)) # if __name__ == "__main__": # configs.logging_basic_config() # main()
2.671875
3
baiduTransAPI.py
dujiaxin/Dajia_AI
1
12792968
# coding=utf-8 import http.client import hashlib import urllib import random import json class BaiduTranslate: appid = '' # 填写你的appid secretKey = '' # 填写你的密钥 httpClient = None def __init__(self, appid, secretKey): self.appid = appid self.secretKey = secretKey def translate(self,q): myurl = '/api/trans/vip/translate' fromLang = 'auto' # 原文语种 toLang = 'zh' # 译文语种 salt = random.randint(32768, 65536) q = q sign = self.appid + q + str(salt) + self.secretKey sign = hashlib.md5(sign.encode()).hexdigest() myurl = myurl + '?appid=' + self.appid + '&q=' + urllib.parse.quote(q) + '&from=' + fromLang + '&to=' + toLang + '&salt=' + str( salt) + '&sign=' + sign try: httpClient = http.client.HTTPConnection('api.fanyi.baidu.com') httpClient.request('GET', myurl) # response是HTTPResponse对象 response = httpClient.getresponse() result_all = response.read().decode("utf-8") result = json.loads(result_all) print (result) return result['trans_result'][0]['dst'] except Exception as e: print (e) finally: if httpClient: httpClient.close()
2.59375
3
quotes/api/views.py
vyahello/quotes
3
12792969
<reponame>vyahello/quotes """Module represents API for routes.""" from typing import List, Type from rest_framework.generics import ( ListCreateAPIView, RetrieveUpdateDestroyAPIView, ) from app.models import Quote from .serializers import QuoteSerializer from .permissions import IsOwnerOrReadOnly class Quotes(ListCreateAPIView): """Responsible for retrieving all quotes from an application. Endpoint is `/api/` ``GET``: retrieve all quotes ``POST``: creates a new quote """ queryset: List[Quote] = Quote.objects.all() serializer_class: Type[QuoteSerializer] = QuoteSerializer class QuoteDetail(RetrieveUpdateDestroyAPIView): """Responsible for retrieving a single quote from an application. Endpoint is `/api/<id>` ``GET``: retrieve a single quote ``PUT``: updates a single quote ``DELETE``: deletes a single quote """ permission_classes = (IsOwnerOrReadOnly,) queryset: List[Quote] = Quote.objects.all() serializer_class: Type[QuoteSerializer] = QuoteSerializer
2.296875
2
dataverse/dataverse.py
rliebz/dataverse-client-python
1
12792970
import requests from dataset import Dataset from exceptions import ( InsufficientMetadataError, MethodNotAllowedError, OperationFailedError, ConnectionError ) from utils import get_element, get_elements, sanitize class Dataverse(object): def __init__(self, connection, collection): self.connection = connection self.collection = collection self._contents_json = None @property def is_published(self): collection_info = requests.get( self.collection.get('href'), auth=self.connection.auth, ).content status_tag = get_element( collection_info, namespace="http://purl.org/net/sword/terms/state", tag="dataverseHasBeenReleased", ) status = status_tag.text return status.lower() == 'true' @property def alias(self): return self.collection.get('href').split('/')[-1] @property def title(self): return sanitize(get_element( self.collection, namespace='atom', tag='title', ).text) def get_contents(self, refresh=False): if not refresh and self._contents_json: return self._contents_json content_uri = 'https://{0}/api/dataverses/{1}/contents'.format( self.connection.host, self.alias ) resp = requests.get( content_uri, params={'key': self.connection.token} ) if resp.status_code != 200: raise ConnectionError('Atom entry could not be retrieved.') self._contents_json = resp.json()['data'] return self._contents_json def publish(self): edit_uri = 'https://{0}/dvn/api/data-deposit/v1.1/swordv2/edit/dataverse/{1}'.format( self.connection.host, self.alias ) resp = requests.post( edit_uri, headers={'In-Progress': 'false'}, auth=self.connection.auth, ) if resp.status_code != 200: raise OperationFailedError('The Dataverse could not be published.') def add_dataset(self, dataset): if get_element(dataset._entry, 'title', 'dcterms') is None: raise InsufficientMetadataError('This dataset must have a title.') if get_element(dataset._entry, 'description', 'dcterms') is None: raise InsufficientMetadataError('This dataset must have a description.') if get_element(dataset._entry, 'creator', 'dcterms') is None: raise InsufficientMetadataError('This dataset must have an author.') resp = requests.post( self.collection.get('href'), data=dataset.get_entry(), headers={'Content-type': 'application/atom+xml'}, auth=self.connection.auth, ) if resp.status_code != 201: raise OperationFailedError('This dataset could not be added.') dataset.dataverse = self dataset._refresh(receipt=resp.content) def delete_dataset(self, dataset): if dataset._state == 'DELETED' or dataset._state == 'DEACCESSIONED': return resp = requests.delete( dataset.edit_uri, auth=self.connection.auth, ) if resp.status_code == 405: raise MethodNotAllowedError('Published datasets can only be ' 'deleted from the GUI. For more information, please refer to ' 'https://github.com/IQSS/dataverse/issues/778') dataset._state = 'DEACCESSIONED' def get_datasets(self): collection_info = requests.get( self.collection.get('href'), auth=self.connection.auth, ).content entries = get_elements(collection_info, tag='entry') return [Dataset.from_dataverse(entry, self) for entry in entries] def get_dataset_by_doi(self, doi): return next((s for s in self.get_datasets() if s.doi == doi), None) def get_dataset_by_title(self, title): return next((s for s in self.get_datasets() if s.title == title), None) def get_dataset_by_string_in_entry(self, string): return next((s for s in self.get_datasets() if string in s.get_entry()), None)
2.625
3
mergify_engine/tests/functional/actions/test_update.py
truthiswill/mergify-engine
266
12792971
# -*- encoding: utf-8 -*- # # Copyright © 2018–2021 Mergify SAS # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import yaml from mergify_engine import config from mergify_engine import context from mergify_engine.tests.functional import base class TestUpdateAction(base.FunctionalTestBase): async def test_update_action(self): rules = { "pull_request_rules": [ { "name": "update", "conditions": [f"base={self.main_branch_name}"], "actions": {"update": {}}, }, { "name": "merge", "conditions": [f"base={self.main_branch_name}", "label=merge"], "actions": {"merge": {}}, }, ] } await self.setup_repo(yaml.dump(rules)) p1, _ = await self.create_pr() p2, _ = await self.create_pr() commits = await self.get_commits(p2["number"]) assert len(commits) == 1 await self.add_label(p1["number"], "merge") await self.run_engine() await self.wait_for("pull_request", {"action": "closed"}) p1 = await self.get_pull(p1["number"]) assert p1["merged"] await self.wait_for("push", {"ref": f"refs/heads/{self.main_branch_name}"}) await self.run_engine() commits = await self.get_commits(p2["number"]) assert len(commits) == 2 assert commits[-1]["commit"]["author"]["name"] == config.BOT_USER_LOGIN assert commits[-1]["commit"]["message"].startswith("Merge branch") async def test_update_action_on_closed_pr_deleted_branch(self): rules = { "pull_request_rules": [ { "name": "update", "conditions": [f"base={self.main_branch_name}"], "actions": {"update": {}}, }, { "name": "merge", "conditions": [f"base={self.main_branch_name}", "label=merge"], "actions": {"merge": {}, "delete_head_branch": {}}, }, ] } await self.setup_repo(yaml.dump(rules)) p1, _ = await self.create_pr() p2, _ = await self.create_pr() commits = await self.get_commits(p2["number"]) assert len(commits) == 1 await self.add_label(p1["number"], "merge") await self.run_engine() p1 = await self.get_pull(p1["number"]) assert p1["merged"] await self.wait_for("push", {"ref": f"refs/heads/{self.main_branch_name}"}) await self.run_engine() commits = await self.get_commits(p2["number"]) assert len(commits) == 2 assert commits[-1]["commit"]["author"]["name"] == config.BOT_USER_LOGIN assert commits[-1]["commit"]["message"].startswith("Merge branch") # Now merge p2 so p1 is not up to date await self.add_label(p2["number"], "merge") await self.run_engine() ctxt = await context.Context.create(self.repository_ctxt, p1, []) checks = await ctxt.pull_engine_check_runs for check in checks: assert check["conclusion"] == "success", check
2.09375
2
0701-0800/0725-Split Linked List in Parts/0725-Split Linked List in Parts.py
jiadaizhao/LeetCode
49
12792972
<reponame>jiadaizhao/LeetCode<filename>0701-0800/0725-Split Linked List in Parts/0725-Split Linked List in Parts.py # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def splitListToParts(self, root: ListNode, k: int) -> List[ListNode]: le = 0 head = root while head: le += 1 head = head.next count, remain = divmod(le, k) result = [None] * k head = root prev = None for i in range(k): if head is None: break else: result[i] = head for j in range(count): prev = head head = head.next if remain > 0: prev = head head = head.next remain -= 1 prev.next = None return result
3.625
4
spirv_tools/passes/dead_inst_elim.py
kristerw/spirv-tools
22
12792973
<reponame>kristerw/spirv-tools """Removes unused instructions. The definition of "unused instruction" is an instruction having a return ID that is not used by any non-debug and non-decoration instruction, and does not have side effects.""" from spirv_tools import ir def remove_debug_if_dead(inst): """Remove debug instruction if it is not used.""" assert inst.op_name in ir.DEBUG_INSTRUCTIONS if inst.op_name == 'OpName': if inst.operands[0].inst is None: inst.destroy() def remove_decoration_if_dead(inst): """Remove decoration instruction if it is not used.""" assert inst.op_name in ir.DECORATION_INSTRUCTIONS if inst.op_name != 'OpDecorationGroup': if inst.operands[0].inst is None: inst.destroy() def process_function(module, function): """Run the pass on one function.""" # We need to re-run the pass if elimination of a phi-node makes # instructions dead in an already processed basic block. rerun = True while rerun: rerun = False processed_bbs = set() for inst in function.instructions_reversed(): if inst.op_name == 'OpLabel': processed_bbs.add(inst.basic_block) if not inst.has_side_effects() and not inst.uses(): if inst.op_name == 'OpPhi': processed_bbs.add(inst.basic_block) operands = inst.operands[:] inst.destroy() for operand in operands: if (operand.inst.op_name != 'OpLabel' and operand.inst.basic_block in processed_bbs and not operand.inst.uses()): rerun = True break else: inst.destroy() def run(module): """Remove all unused instructions.""" # Garbage collect old unused debug and decoration instructions. # This is done before the real pass because: # * They need some special handling, as they do not have inst.result_id # * They come in the wrong order with regard to constants, so we would # need extra code in the real pass to ensure constants used in OpLine # are removed. # Note: the debug and decoration instructions that are live at the start # of this pass is handled by the real pass when the instruction they # point to is removed. for inst in module.global_instructions.name_insts: remove_debug_if_dead(inst) for inst in module.global_instructions.op_string_insts: remove_debug_if_dead(inst) for inst in reversed(module.global_instructions.decoration_insts): remove_decoration_if_dead(inst) # Remove unused instructions in functions. for function in module.functions: process_function(module, function) # Remove unused global instructions. for inst in module.global_instructions.instructions_reversed(): if not inst.has_side_effects() and not inst.uses(): inst.destroy()
2.21875
2
docassemble/ALRMFinancialCounsellingForm/data/modules/test_access.py
mferrare/docassemble-ALRMFinancialCounsellingForm
0
12792974
import msal import logging import requests import json config = { "authority": "https://login.microsoftonline.com/9f4083b0-0ac6-4dee-b0bb-b78b1436f9f3", "client_id": "d584a43a-c4c1-4fbe-9c1c-3cae87420e6e", "scope": [ "https://graph.microsoft.com/.default" ], "secret": "<KEY>", "endpoint": "https://graph.microsoft.com/v1.0/users" } # Create a preferably long-lived app instance that maintains a token cache. app = msal.ConfidentialClientApplication( config["client_id"], authority=config["authority"], client_credential=config["secret"] ) # The pattern to acquire a token looks like this. result = None # First, the code looks up a token from the cache. # Because we're looking for a token for the current app, not for a user, # use None for the account parameter. result = app.acquire_token_silent(config["scope"], account=None) if not result: logging.info("No suitable token exists in cache. Let's get a new one from AAD.") result = app.acquire_token_for_client(scopes=config["scope"]) if "access_token" in result: # Call a protected API with the access token. endpoint_root = 'https://graph.microsoft.com/v1.0' http_headers = { 'Authorization' : 'Bearer ' + result['access_token'], 'Accept' : 'application/json', 'Content-Type' : 'application/json' } # Look for our site siteName='MFPersonal' endpoint = '{}/sites?search={}'.format(endpoint_root, siteName) siteq = requests.get(endpoint, headers=http_headers, stream=False).json() # We may not have a site try: our_site = None for a_site in siteq['value']: if a_site['name'] == siteName: our_site = a_site break list_ep = '{}/sites/{}/lists/{}'.format(endpoint_root, our_site['id'], 'Test%20List') the_list = requests.get(list_ep, headers=http_headers, stream=False).json() listitem_ep = '{}/sites/{}/lists/{}/items'.format(endpoint_root, our_site['id'], the_list['id']) the_items = requests.get(listitem_ep, headers=http_headers, stream=False).json() an_item_ep = '{}/sites/{}/lists/{}/items/1'.format(endpoint_root, our_site['id'], the_list['id']) an_item = requests.get(an_item_ep, headers=http_headers, stream=False).json() new_item = { 'fields': { 'Title' : 'Another item', 'testfield' : 'another test field' } } payload = json.dumps(new_item) new_item_ep = '{}/sites/{}/lists/{}/items'.format(endpoint_root, our_site['id'], the_list['id']) make_new_item = requests.post(new_item_ep, headers=http_headers, data=payload, stream=False).json() except Error as e: print(str(e)) print(result["token_type"]) else: print(result.get("error")) print(result.get("error_description")) print(result.get("correlation_id")) # You might need this when reporting a bug.
2.625
3
raysect/core/math/cython/tests/test_tetrahedra.py
raysect/source
71
12792975
# Copyright (c) 2014-2021, Dr <NAME>, Raysect Project # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the Raysect Project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Unit tests for the Vector3D object. """ import unittest import numpy as np # from raysect.core.math.cython.tetrahedra import _test_inside_tetrahedra as inside_tetrahedra from raysect.core.math.cython.tetrahedra import _test_barycentric_inside_tetrahedra as inside_tetrahedra class TestTetrahedra(unittest.TestCase): def test_inside_tetrahedra(self): """Tests the inside tetrahedra algorithm.""" # defining triangle vertices v1x, v1y, v1z = 0, 0, 0 v2x, v2y, v2z = 1, 0, 0 v3x, v3y, v3z = 0, 1, 0 v4x, v4y, v4z = 0, 0, 1 # test vertices are inside self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, v1x, v1y, v1z)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, v2x, v2y, v2z)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, v3x, v3y, v3z)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, v4x, v4y, v4z)) # check line segments are inside self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.5, 0, 0)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0, 0.5, 0)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0, 0, 0.5)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.5, 0, 0.5)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0, 0.5, 0.5)) self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.5, 0.5, 0)) # check an interior point self.assertTrue(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.25, 0.25, 0.25)) # check an exterior point self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, -0.5, -0.5, -0.5)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.5, -0.01, 0.5)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, -0.01, 0.5, 0.5)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.25, 0.25, -0.01)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.5, 0.5, 0.0001)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 1.0, 1.0, 1.0)) self.assertFalse(inside_tetrahedra(v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, v4x, v4y, v4z, 0.3333, 0.3333, 0.335)) if __name__ == "__main__": unittest.main()
1.359375
1
test_relation.py
melahi/my-tensorflow-layers
1
12792976
<reponame>melahi/my-tensorflow-layers import numpy as np import tensorflow as tf from tensorflow.python.keras import testing_utils, backend from tensorflow.python.keras.utils import get_custom_objects from tensorflow.python.platform import test from relation import Relation class RelationTest(test.TestCase): @staticmethod def test_relation_layer(): backend.set_session(None) input_data = np.array([[[3, 2, 4], [1, 5, 2]], [[30, 20, 40], [10, 50, 20]]], dtype=np.float32) weights = np.array([[1, 0], [5, 6], [7, 8]], dtype=np.float32) bias = np.array([4, 7], dtype=np.float32) expected_output = np.array([[[6926, 8642], [6845, 8822]], [[663440, 807500], [655340, 825500]]], dtype=np.float32) tf.reset_default_graph() get_custom_objects()['Relation'] = Relation kwargs = {'relations': 2, 'kernel_initializer': tf.constant_initializer(weights), 'bias_initializer': tf.constant_initializer(bias) } a = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) output = testing_utils.layer_test(Relation, kwargs=kwargs, input_data=input_data, expected_output=expected_output) if not np.array_equal(output, expected_output): raise AssertionError('The output is not equal to our expected output') @staticmethod def test_my_case(): backend.set_session(None) input_data = np.array([[[15, 0, 10], [13, 1, 10], [13, 5, 19], [19, 19, 4]], [[5, 14, 10], [9, 11, 12], [4, 7, 7], [1, 9, 0]], [[14, 17, 1], [1, 9, 16], [7, 6, 9], [17, 7, 3]]], dtype=np.float32) w1 = np.array([[3, 8, 6, 7, 8], [3, 1, 0, 8, 7], [4, 9, 8, 1, 9]], dtype=np.float32) w2 = np.array([[3, 0, 0, 2, 3], [3, 8, 9, 5, 7], [3, 9, 7, 0, 7]], dtype=np.float32) g = np.array([[7, 9, 4, 9, 0], [1, 1, 5, 4, 0], [6, 1, 7, 1, 3]], dtype=np.float32) bias = np.array([0, 0, 0, 0, 0], dtype=np.float32) expected_output = np.array([[[128560, 219497, 209334, 128295, 48435], [126451, 210377, 201342, 124197, 47274], [160195, 262057, 249294, 152200, 61335], [160195, 217673, 193350, 247137, 62754]], [[61893, 76272, 131794, 81197, 34404], [65721, 87599, 151154, 83381, 36927], [49365, 66150, 117274, 57173, 27096], [38577, 45665, 81458, 52805, 20745]], [[86352, 109637, 130294, 167782, 34419], [84894, 119274, 153562, 92742, 32244], [75660, 111732, 142482, 98638, 29112], [80034, 123045, 149130, 137230, 31983]]], dtype=np.float32) kwargs = {'relations': 5} layer_cls = Relation(**kwargs) my_i = tf.keras.layers.Input(input_data.shape[1:], dtype=tf.float32) my_layer = layer_cls(my_i) model = tf.keras.Model(my_i, my_layer) weights = [w1, w2, g, bias] layer_cls.set_weights(weights) output = model.predict(input_data) if not np.array_equal(output, expected_output): raise AssertionError("The output is not equal with the expected output") if __name__ == '__main__': test.main()
2.28125
2
typeidea/comment/models.py
ShanGis/TypeIdea
0
12792977
from django.db import models from django.contrib.auth.models import User from blog.models import Post class Comment(models.Model): STATUS_ITEMS = ( (1,'正常'), (2,'删除'), ) target = models.CharField(max_length=200, null=True, verbose_name='评论目标') content = models.CharField(max_length=2000, verbose_name='内容') nickname = models.CharField(max_length=50, verbose_name='别名') status = models.PositiveIntegerField(default=1, choices=STATUS_ITEMS, verbose_name='状态') websit = models.URLField(verbose_name='网址') email = models.EmailField(verbose_name='邮箱') created_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') class Meta(): verbose_name = verbose_name_plural = '评论' def __str__(self): return '{}'.format(self.target) def nickname_show(self): return '来自{}的评论'.format(self.nickname) nickname_show.short_description = '评论者'
2.140625
2
mmdet/ops/ops/rotated/rotate_roi_align.py
qgh1223/SLRDet
27
12792978
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from mmdet import _Custom as _C from apex import amp class _RROIAlign(Function): @staticmethod def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0): out_h, out_w = _pair(out_size) assert isinstance(out_h, int) and isinstance(out_w, int) ctx.spatial_scale = spatial_scale ctx.sample_num = sample_num ctx.save_for_backward(rois) ctx.feature_size = features.size() output = _C.rotate_roi_align_forward( features, rois, spatial_scale, out_h, out_w, sample_num ) # return output, argmax # DEBUG ONLY return output @staticmethod @once_differentiable def backward(ctx, grad_output): feature_size = ctx.feature_size spatial_scale = ctx.spatial_scale sample_num = ctx.sample_num rois = ctx.saved_tensors[0] assert (feature_size is not None and grad_output.is_cuda) batch_size, num_channels, data_height, data_width = feature_size out_w = grad_output.size(3) out_h = grad_output.size(2) grad_input = grad_rois = None if ctx.needs_input_grad[0]: grad_input = _C.rotate_roi_align_backward( grad_output.contiguous(), rois, spatial_scale, out_h, out_w, batch_size, num_channels, data_height, data_width, sample_num ) return grad_input, grad_rois, None, None, None rroi_align = _RROIAlign.apply class RROIAlign(nn.Module): def __init__(self, out_size, spatial_scale, sample_num=0): super(RROIAlign, self).__init__() self.out_size = out_size self.spatial_scale = spatial_scale self.sample_num = sample_num @amp.float_function def forward(self, features, rois): return rroi_align( features, rois, self.out_size, self.spatial_scale, self.sample_num ) def __repr__(self): format_str = self.__class__.__name__ format_str += '(out_size={}, spatial_scale={}, sample_num={}'.format( self.out_size, self.spatial_scale, self.sample_num) return format_str
1.945313
2
eqv_transformer/dynamics_predictor.py
oxcsml/lie-transformer
36
12792979
from torch import nn from attrdict import AttrDict import torch import torch.nn.functional as F from lie_conv.dynamicsTrainer import Partial from torchdiffeq import odeint from lie_conv.hamiltonian import SpringV, SpringH, HamiltonianDynamics, KeplerV, KeplerH class DynamicsPredictor(nn.Module): """This class implements forward pass through our model, including loss computation.""" def __init__(self, predictor, debug=False, task="spring", model_with_dict=True): super().__init__() self.predictor = predictor self.debug = debug self.task = task self.model_with_dict = model_with_dict if self.debug: print("DynamicsPredictor is in DEBUG MODE.") def _rollout_model(self, z0, ts, sys_params, tol=1e-4): """inputs [z0: (bs, z_dim), ts: (bs, T), sys_params: (bs, n, c)] outputs pred_zs: (bs, T, z_dim)""" dynamics = Partial(self.predictor, sysP=sys_params) zs = odeint(dynamics, z0, ts[0], rtol=tol, method="rk4") return zs.permute(1, 0, 2) def forward(self, data): o = AttrDict() (z0, sys_params, ts), true_zs = data pred_zs = self._rollout_model(z0, ts, sys_params) mse = (pred_zs - true_zs).pow(2).mean() if self.debug: if self.task == "spring": # currently a bit inefficient to do the below? with torch.no_grad(): (z0, sys_params, ts), true_zs = data z = z0 m = sys_params[..., 0] # assume the first component encodes masses D = z.shape[-1] # of ODE dims, 2*num_particles*space_dim q = z[:, : D // 2].reshape(*m.shape, -1) p = z[:, D // 2 :].reshape(*m.shape, -1) V_pred = self.predictor.compute_V((q, sys_params)) k = sys_params[..., 1] V_true = SpringV(q, k) mse_V = (V_pred - V_true).pow(2).mean() # dynamics dyn_tz_pred = self.predictor(ts, z0, sys_params) H = lambda t, z: SpringH( z, sys_params[..., 0].squeeze(-1), sys_params[..., 1].squeeze(-1) ) dynamics = HamiltonianDynamics(H, wgrad=False) dyn_tz_true = dynamics(ts, z0) mse_dyn = (dyn_tz_true - dyn_tz_pred).pow(2).mean() o.mse_dyn = mse_dyn o.mse_V = mse_V o.prediction = pred_zs o.mse = mse o.loss = mse # loss wrt which we train the model if self.debug: o.reports = AttrDict({"mse": o.mse, "mse_V": o.mse_V, "mse_dyn": o.mse_dyn}) else: o.reports = AttrDict({"mse": o.mse}) if not self.model_with_dict: return pred_zs return o
2.109375
2
hackerrank/Algorithms/implementation/strange-code.py
tjeubaoit/algorithm
0
12792980
<reponame>tjeubaoit/algorithm<filename>hackerrank/Algorithms/implementation/strange-code.py # Complete the strangeCounter function below. def strangeCounter(t): c, i = 0, 0 while c < t: c += 3 << i i += 1 return c - t + 1 def strangeCounter2(t): rem = 3 while t > rem: t = t-rem rem *= 2 return rem-t+1
3.59375
4
brainstat/tutorial/__init__.py
rmarkello/BrainStat
0
12792981
<gh_stars>0 """Functions required for the BrainStat Tutorials"""
1.09375
1
src/sim/basicExampleTest/results/aco.py
andremtsilva/dissertacao
0
12792982
<reponame>andremtsilva/dissertacao import acopy import networkx as nx def main(): G = nx.read_graphml('graph_binomial_tree_5.graphml') print(G.nodes()) print(nx.get_node_attributes(G, 'IPT')) """ solver = acopy.Solver(rho=.03, q=1) colony = acopy.Colony(alpha=1, beta=3) tour = solver.solve(G, colony, limit=100) print(tour.cost) print(tour.nodes) """ if __name__ == '__main__': main()
2.984375
3
gameServer/playerCode/trade.py
hydrogen602/settlersPy
0
12792983
<gh_stars>0 from typing import Dict, List from ..extraCode.location import Resource from ..extraCode.util import ActionError from .player import Player class Trade: def __init__(self, cost: Dict[Resource, int], goodsOffered: Dict[Resource, int]): self._cost: Dict[Resource, int] = cost self._goodsOffered: Dict[Resource, int] = goodsOffered def purchase(self, player: Player): ''' throws `ActionError`. player is the one accepting the trade ''' player.requireResources(self._cost) # raises ActionError player.takeResources(self._cost) player.giveResources(self._goodsOffered) class InterPlayerTrade(Trade): def __init__(self, cost: Dict[Resource, int], goodsOffered: Dict[Resource, int], offeror: Player, offerees: List[Player] = []): ''' Offeror is the one proposing the offer, Offerees is the recipients of the offer. If Offerees is empty, then anyone can accept the offer. InterPlayerTrade are for only a single trade and so become invalid after a successful trade. Throws ActionError if the Offeror does not have what he offers ''' offeror.requireResources(goodsOffered) # throws ActionError self.__offeror: Player = offeror self.__offerees: List[Player] = offerees self.__closedDeal = False # whether the deal has been closed self.__invalid = False # whether the deal has been invalidated super().__init__(cost, goodsOffered) def __isValidOfferee(self, player: Player) -> bool: ''' Returns whether or not this player can accept the given trade deal. ''' return len(self.__offerees) == 0 or player in self.__offerees # len(self.__offerees) == 0 means anyone can accept # player in self.__offerees checks if the player is in the list of accepted players def purchase(self, player: Player): # errors here would go to player if not self.__isValidOfferee(player): raise ActionError(f"Player is not allowed to take this trade offer") if self.__invalid: raise ActionError(f"This trade offer is invalid due to {self.__offeror.name}") if self.__closedDeal: raise ActionError(f"This offer has already been accepted") if not self.__offeror.hasResources(self._goodsOffered): # offeror no longer has what he offered self.__invalid = True raise ActionError(f"{self.__offeror.name} doesn't have what he/she offered") player.requireResources(self._cost) # both have what they wish to trade player.takeResources(self._cost) self.__offeror.takeResources(self._goodsOffered) player.giveResource(self._goodsOffered) self.__offeror.giveResources(self._cost) self.__closedDeal = True
3.046875
3
ieee_1584/equations.py
LiaungYip/arcflash
1
12792984
<reponame>LiaungYip/arcflash # Copyright 2022, <NAME> - https://www.penwatch.net # Licensed under the MIT License. Refer LICENSE.txt. import logging from math import log10, sqrt from ieee_1584.cubicle import Cubicle from ieee_1584.tables import table_1, table_3, table_4, table_5 def I_arc_intermediate(c: Cubicle, V_oc: float, I_bf: float): # Equation 1 assert V_oc in (0.6, 2.7, 14.3,) k = table_1[(c.EC, V_oc,)] x1 = + k["k1"] \ + k["k2"] * log10(I_bf) \ + k["k3"] * log10(c.G) x2 = + k["k4"] * I_bf ** 6 \ + k["k5"] * I_bf ** 5 \ + k["k6"] * I_bf ** 4 \ + k["k7"] * I_bf ** 3 \ + k["k8"] * I_bf ** 2 \ + k["k9"] * I_bf ** 1 \ + k["k10"] I_a = (10 ** x1) * x2 return I_a def I_arc_min(c: Cubicle, I_arc: float): # Equation 2 return I_arc * (1 - 0.5 * c.VarCF) def E_AFB_intermediate(c: Cubicle, V_oc: float, I_arc: float, I_bf: float, T: float, I_arc_600: float = None): logging.warning( "Function E_AFB_intermediate() is deprecated. Use intermediate_E() and intermediate_AFB_from_E() instead.") E = intermediate_E(c, V_oc, I_arc, I_bf, T, I_arc_600) AFB = intermediate_AFB_from_E(c, V_oc, E) return E, AFB def intermediate_E(c: Cubicle, V_oc: float, I_arc: float, I_bf: float, T: float, I_arc_600: float = None): # Implements equations 3, 4, 5, 6 for "intermediate incident energy". assert (V_oc <= 0.6) or (V_oc in (0.6, 2.7, 14.3,)) if V_oc <= 0.6: k = table_3[c.EC] elif V_oc == 2.7: k = table_4[c.EC] elif V_oc == 14.3: k = table_5[c.EC] else: k = None x1 = 12.552 / 50 * T x2 = k["k1"] + k["k2"] * log10(c.G) if I_arc_600 is None: # HV case. Eqs 3, 4, 5 x3_num = k["k3"] * I_arc else: # LV case. Eq 6. x3_num = k["k3"] * I_arc_600 x3_den = + k["k4"] * I_bf ** 7 \ + k["k5"] * I_bf ** 6 \ + k["k6"] * I_bf ** 5 \ + k["k7"] * I_bf ** 4 \ + k["k8"] * I_bf ** 3 \ + k["k9"] * I_bf ** 2 \ + k["k10"] * I_bf x3 = x3_num / x3_den x4 = + k["k11"] * log10(I_bf) \ + k["k13"] * log10(I_arc) \ + log10(1 / c.CF) x5 = k["k12"] * log10(c.D) # Equations 3, 4, 5, 6 E = x1 * 10 ** (x2 + x3 + x4 + x5) assert E >= 0 return E def intermediate_AFB_from_E(c: Cubicle, V_oc: float, E: float): # Implements equations 7, 8, 9, 10, for "intermediate arc flash boundary", in a simpler way. # # Calculates the (intermediate) arc flash boundary, i.e. AFB_600, from the incident energy i.e. E_600 only. # Knowledge of T, G, I_arc, I_bf, and CF is not required, as it would be if using Eq's 7, 8, 9, 10 directly. # This is useful for multi-time-step calculations where there is no singular value of T, I_arc, or I_bf. # # Motivation: # =========== # # The IEEE 1584-2018 formulas for arc flash boundary (AFB), i.e. eq's 7, 8, 9, and 10, are pretty complicated. # # In particular, the equations for AFB requires knowledge of time T, busbar gap G, the currents I_arc and I_bf, # and size correction factor CF. # # This is a problem when doing multi-time-step arc flash calculations where the values of T, I_arc, and I_bf are # different for each time-step. What single value of I_arc would you plug into Eq 7, when I_arc is 10 kA for 100 ms, # then 5 kA for 900 ms, then 2 kA for 1,000 ms? # # Details: # ======== # # Consider Eq 3 for the quantity E_600. # # First, we recognise that the relationship between incident energy E_600 (J/cm²) and distance D (mm) is simply # that __the energy E_600 falls off exponentially with distance D__. If we rearrange Eq 3 using exponent identities # we can simplify to: # # E_600 = F * ( D ^ k12 ) # # Where: # * E_600 is the __intermediate__ arcing energy at V = 0.6 kV, with units of J/cm², # * F_600 is a (reasonably complicated) function of time T, busbar gap G, currents I_arc and I_bf, and size # correction factor CF, # * D is the distance (mm) from the fault to where E_600 has been measured. # * k12 is a constant __"distance exponent"__ from Table 3, Table 4, or Table 5. # # We can calculate what F_600** would have been: # # F_600 = E_600 / ( D ^ k12 ) # # Once we know the value of F_600, we can calculate E_600' at any distance D' we like: # # E_600' (at distance D') = F_600 * ( D' ^ k12 ) # # Alternately, we can calculate the distance D' that will give a particular value of E_600'. # # D' = (E_600' / F_600) ^ ( 1 / k12 ) # # Finally note that the arc flash boundary, AFB_600, is simply the special case where E_600' is equal to exactly # 1.2 cal/cm². Noting that 1.2 cal/cm² * 4.184 J/cal = 5.0208 J/cm², # # AFB_600 = (5.0208 / F_600) ^ ( 1 / k12 ) # # ** Sidenote: The physical meaning of the quantity "F_600" is that F_600 is, in some sense, the total amount of # energy released (i.e. Joules). (The distribution of energy is not isotropic, i.e. k12 != -2.00, so this # interpretation is not exact.) # # Sidenote 2: the funny number "50/12.552" in Eq 3/4/5/6 turns into the magic number 20 in Eq 7/8/9/10. # 1.2 cal/cm² × 4.184 J/cal = 5.0208 J/cm² # 50 / 12.552 * 5.0208 = 20 (exact) assert (V_oc <= 0.6) or (V_oc in (0.6, 2.7, 14.3,)) if V_oc <= 0.6: k = table_3[c.EC] elif V_oc == 2.7: k = table_4[c.EC] elif V_oc == 14.3: k = table_5[c.EC] else: k = None # After all the explanation, calculation of the (intermediate) AFB is simply 2 lines. F = E / (c.D ** k["k12"]) AFB = (5.0208 / F) ** (1 / k["k12"]) assert AFB >= 0 return AFB def interpolate(c: Cubicle, x_600, x_2700, x_14300): V_oc = c.V_oc # Eq 16, Eq 19, Eq 22 x1 = (((x_2700 - x_600) / 2.1) * (V_oc - 2.7)) + x_2700 # Eq 17, Eq 20, Eq 23 x2 = (((x_14300 - x_2700) / 11.6) * (V_oc - 14.3)) + x_14300 # Eq 18, Eq 21, Eq 24 x3 = ((x1 * (2.7 - V_oc)) / 2.1) + ((x2 * (V_oc - 0.6)) / 2.1) if 0.600 < V_oc <= 2.7: return x3 elif V_oc > 2.7: return x2 def I_arc_final_LV(c: Cubicle, I_arc_600, I_bf): # Equation 25 V_oc = c.V_oc x1 = (0.6 / V_oc) ** 2 x2 = 1 / (I_arc_600 ** 2) x3 = (0.6 ** 2 - V_oc ** 2) / (0.6 ** 2 * I_bf ** 2) x4 = sqrt(x1 * (x2 - x3)) return 1 / x4
2.078125
2
setup.py
Pratilipi-Labs/python-logware
0
12792985
<reponame>Pratilipi-Labs/python-logware<gh_stars>0 from setuptools import setup setup(name='logware', version='0.1.4', description='Logging middleware for python web services', url='https://github.com/Pratilipi-Labs/python-logware', author='Giridhar', author_email='<EMAIL>', license='MIT', packages=['logware'], install_requires=[ 'webob' ], zip_safe=False)
1.023438
1
run/index-correct.py
ai-ku/uwsd
3
12792986
#! /usr/bin/python # -*- coding: utf-8 -*- __author__ = "<NAME>" import sys from collections import defaultdict as dd from nlp_utils import fopen pos_file = sys.argv[1] aw_file = sys.argv[2] TAG = "-NONE-" aw_lines = fopen(aw_file).readlines() indices = dd(list) for line in aw_lines: line = line.split() line_ind = int(line[2]) term_ind = int(line[3]) indices[line_ind].append(term_ind) whole_ind = [] for i, line in enumerate(fopen(pos_file)): line = line.split() remove = [] for j, t in enumerate(line): if t == TAG: remove.append(j) m = len(indices[i]) remove_part = [0] * m for j, ind in enumerate(indices[i]): rr = 0 for tag_ind in remove: if tag_ind < ind: rr += 1 remove_part[j] = rr result = [] for ind, rem in zip(indices[i], remove_part): #print ind, rem result.append(ind - rem) whole_ind.extend(result) #print ' '.join([str(k) for k in result]) for line, new_index in zip(aw_lines, whole_ind): line = line.split() line.append(str(new_index)) print "\t".join(line)
2.578125
3
dpmm/data.py
jmeyers314/DP_SNe
20
12792987
import numpy as np from utils import pick_discrete class PseudoMarginalData(object): def __init__(self, data, interim_prior): # Data should have dims [NOBJ, NSAMPLE, NDIM] or [NOBJ, NSAMPLE] if NDIM is 1 # interim_prior should have dims [NOBJ, NSAMPLE] self.data = data self.interim_prior = interim_prior if self.data.ndim == 2: self.nobj, self.nsample = self.data.shape else: self.nobj, self.nsample, self.ndim = self.data.shape if self.interim_prior.shape != (self.nobj, self.nsample): ds = self.data.shape ips = self.interim_prior.shape raise ValueError(("data shape [NOBJ, NSAMPLE, NDIM] = [{}, {}, {}]" + " inconsistent with interim_prior shape [NOBJ, NSAMPLE] = [{}, {}]") .format(ds[0], ds[1], ds[2], ips[0], ips[2])) def __len__(self): return self.nobj def __getitem__(self, index): import numbers cls = type(self) # *Leave* a shallow axis in the case a single object is requested. if isinstance(index, numbers.Integral): return cls(self.data[np.newaxis, index], self.interim_prior[np.newaxis, index]) else: return cls(self.data[index], self.interim_prior[index]) def random_sample(self): """Return a [NOBJ, NDIM] numpy array sampling over NSAMPLE using inverse interim_prior weights. Needed to compute a posterior object.""" ps = 1./self.interim_prior ps /= np.sum(ps, axis=1)[:, np.newaxis] return np.array([self.data[i, pick_discrete(p)] for i, p in enumerate(ps)]) class NullManip(object): def init(self, D): pass def __call__(self, D): return D def unmanip(self, D): return D def update(self, D, phi, c, prior): pass
2.8125
3
bitgo/cmd.py
geeks121/pybitgo
3
12792988
<filename>bitgo/cmd.py<gh_stars>1-10 __author__ = 'sserrano' import json import os from .bitgo import BitGo def load_config(filename): if os.path.exists(filename): try: return json.load(open(filename, 'rb')) except ValueError: return {} else: return {} def update_config(filename, cnf): config = load_config(filename) config.update(cnf) json.dump(config, open(filename, "wb")) def main(): import getpass from optparse import OptionParser import sys from os.path import expanduser home = expanduser("~") parser = OptionParser() parser.add_option("-a", "--access-token", dest="access_token", help="access token") parser.add_option("-w", "--wallet-id", dest="wallet_id", help="wallet id") (options, args) = parser.parse_args() if len(args) == 0: print "a command is required, available: access_token, get_wallets, get_balance, send" sys.exit(1) action = args[0] config_filename = os.path.join(home, ".bitgo") config = load_config(config_filename) if action == 'access_token': username = raw_input('username: ') password = <PASSWORD>('password: ') otp = raw_input('otp: ') bitgo = BitGo() access_token = bitgo.get_access_token(username, password, otp) print "access_token: ", access_token if raw_input("store y/n? ") == "y": update_config(config_filename, {'access_token': access_token}) sys.exit(0) if options.access_token: access_token = options.access_token elif 'access_token' in config: access_token = config['access_token'] else: print "the --access-token is a required parameter" sys.exit(1) bitgo = BitGo(access_token=access_token) if action == 'get_wallets': print bitgo.get_wallets() elif action == 'get_balance': if options.wallet_id is None: print "option -w {{ wallet_id }} is required for get_balance" sys.exit(1) print bitgo.get_balance(options.wallet_id) / float(10**8) elif action == 'get_wallet': if options.wallet_id is None: print "option -w {{ wallet_id }} is required for get_wallet" sys.exit(1) otp = getpass.getpass('otp: ') bitgo.unlock(otp) print bitgo.get_wallet(options.wallet_id) elif action == 'get_unspents': if options.wallet_id is None: print "option -w {{ wallet_id }} is required for get_unspents" sys.exit(1) print bitgo.get_unspents(options.wallet_id) elif action == 'send': if options.wallet_id is None: print "option -w {{ wallet_id }} is required for send" sys.exit(1) if len(args) != 3: print "address and amount are required" sys.exit(1) otp = raw_input('otp: ') passcode = getpass.getpass('passcode: ') bitgo.unlock(otp) print bitgo.send(options.wallet_id, passcode, args[1], float(args[2]) * 10**8) else: print "invalid command" if __name__ == '__main__': main()
2.40625
2
2017/d5/jumps.py
remarkablerocket/advent-of-code
0
12792989
#!/usr/bin/env python3 from operator import eq as isequal def import_input(path): with open(path, encoding='utf-8') as infile: return [int(line) for line in infile] instructions = import_input("input.txt") class Jumper: def __init__(self, instructions): self.instructions = instructions def solve(self): steps = 0 i = 0 while 0 <= i < len(self.instructions): jump = self.instructions[i] if self.instructions[i] >= 3: self.instructions[i] -= 1 else: self.instructions[i] += 1 i += jump steps += 1 return steps jump = Jumper(instructions) print(jump.solve())
3.53125
4
domainparsers/imgur.py
petarGitNik/reddit-image-downloader
3
12792990
#!/usr/bin/python3 """ This module contains classes for parsing the imgur.com site. It consists of three classes: ~ ImgurException ~ ImgurFileFormats ~ Imgur Imgur is the main class and it obtains list of direct image urls that could be used to download images. Example usage: ```python3 imgur = Imgur('http://imgur.com/gallery/vTTHZ') imgur.prepare_images() images = imgur.images ``` imgur.images is a deque of two keyed dictionaries. Example usage: ```python3 for image in images: print(image['url'], image['filename']) ``` If images need to be downloaded in order they appear in an album, their filenames have to be numerated. Full examples: ```python3 imgur = Imgur('http://imgur.com/gallery/vTTHZ') imgur.prepare_images() imgur.images # These are not guaranteed to appear in order when downloaded imgur.numerate_images() images = imgur.images ``` Note: For up to date version of this class visit: https://github.com/petarGitNik/imgur-downloader """ import re from collections import deque from urllib.request import urlopen from urllib.error import HTTPError from urllib.error import URLError __version__ = 'v0.2' __status__ = 'Development' class ImgurException(Exception): """ This exception is raised if supplied link is invalid. """ pass class ImgurFileFormats(object): """ Contains extensions for file formats that are allowed on imgur. Source: https://help.imgur.com/hc/en-us/articles/115000083326-What-files-can-I-upload- Archived: http://archive.is/89Uky https://web.archive.org/web/20170222111303/https://help.imgur.com/hc/en-us/articles/115000083326-What-files-can-I-upload- """ JPG = '.jpg' JPEG = '.jpeg' PNG = '.png' GIF = '.gif' APNG = '.apng' TIFF = '.tiff' PDF = '.pdf' XCF = '.xcf' #WEBM = '.webm' #MP4 = '.mp4' @classmethod def formats(cls): """ Return a set consisting of all class attributes. Class attributes must not be callable. """ formats = set() for attribute in ImgurFileFormats.__dict__.keys(): if attribute[:2] != '__': value = getattr(ImgurFileFormats, attribute) if not callable(value): formats.add(value) return formats class Imgur(object): """ Imgur contains all necessary methods to extract image or album images from imgur link. """ def __init__(self, url): """ Initiate Imgur object. """ self.url = self.sanitize(url) self.images = deque() def sanitize(self, url): """ Check if the supplied link is valid. If not, raise ImgurException. This method checks only if the domain is valid. """ if re.match('https?\:\/\/(i\.)?imgur\.com\/', url): if self.is_it_gifv(url): return self.sanitize_gifv(url) return url raise ImgurException('Invalid link.') def sanitize_gifv(self, url): """ Remove 'v' from .gifv """ pattern = 'https?\:\/\/i\.imgur\.com\/[a-zA-Z0-9]+\.gif' return re.match(pattern, url).group(0) def is_it_gifv(self, url): """ Check if the supplied link points to .gifv page. """ if '.gifv' in url: return True return False def is_it_image(self): """ Check if the url points to image. Examples: http(s)://i.imgur.com/[image_hash].[extension] http(s)://i.imgur.com/[image_hash] http(s)://imgur.com/[image_hash] """ # https*\:\/\/(i\.)?imgur\.com\/[a-zA-Z0-9]*(\.[a-zA-Z]{1,4})? return not self.is_it_album() def is_it_album(self): """ Check if the url points to an album. Examples: http(s)://imgur.com/a/[album_hash] http(s)://imgur.com/gallery/[album_hash] """ return ('/a/' in self.url) or ('/gallery/' in self.url) def is_it_grid(self): """ Check if the url points to a grid view. Example: http(s)://imgur.com/a/[album_hash]?grid """ return self.url.endswith('?grid') def change_gallery(self): """ Change /gallery/ to /a/ in url. """ return self.url.replace('/gallery/', '/a/') def turn_into_grid(self): """ Append ?grid to url. """ if self.is_it_album(): if not self.is_it_grid(): return ''.join([self.change_gallery(), '?grid']) else: return self.url raise ImgurException('Cannot convert single image into album grid.') def prepare_images(self): """ Parses HTML from the provided url to obtain link(s) to image(s). Raises exception if the link already ends with an extension. """ if self.is_it_image(): if self.contains_extension(self.url): self.images.append( self.pack_image(self.url, self.get_image_filename(self.url)) ) return else: self.parse_and_prepare_images(self.url) return grid = self.turn_into_grid() self.parse_and_prepare_images(grid) return def parse_and_prepare_images(self, url): """ Obtain and parse html, and append image dictionaries to image deque. """ pattern = '\{"hash":"([a-zA-Z0-9]+)".*?"ext":"([\.a-zA-Z0-9\?\#]+)".*?\}' try: html = urlopen(url).read().decode('utf-8') filenames_with_duplicates = re.findall(pattern, html) filenames_clean = self.remove_duplicates(filenames_with_duplicates) urls = self.build_image_url_list(filenames_clean) for url in urls: self.images.append( self.pack_image(url, self.get_image_filename(url)) ) except HTTPError as e: print(e.status) except URLError as e: print(e.reason) def build_image_url_list(self, filenames): """ Build list of direct links to images. Input filenames list is a list of tuples e.g. [('jedEzFL', '.jpg'), ('lciC5G8', '.jpg')]. The output looks like: ['https://i.imgur.com/jedEzFL.jpg', 'https://i.imgur.com/lciC5G8.jpg'] """ urls = [] for filename, extension in filenames: urls.append(''.join(['https://i.imgur.com/', filename, extension])) return urls def remove_duplicates(self, filenames): """ Remove duplicates from a list of tuples containing filenames with extensions. """ clean = [] for filename in filenames: if filename not in clean: clean.append(filename) return clean def contains_extension(self, url): """ Check if the image url contains extension. If there is an extension it is returned. Otherwise, None is returned. """ for extension in ImgurFileFormats.formats(): if extension in url: return extension return None def get_image_filename(self, url): """ Get image file name from its url. Examples: https://i.imgur.com/jedEzFL.jpg -> jedEzFL.jpg https://i.imgur.com/jedEzFL.jpg?1 -> jedEzFL.jpg """ candidate = url.split('/')[-1] extension = self.contains_extension(url) pattern = ''.join(['.+\\', extension]) return re.match(pattern, candidate).group(0) def pack_image(self, url, filename): """ Returns a dictionary with image url and corresponding filename. """ return {'url' : url, 'filename' : filename} def number_of_images(self): """ Get the number of images from the images attribute. """ return len(self.images) def numerate_images(self): """ Append ordinal number to image filename. """ total = self.digits_in_a_number(len(self.images)) ordinal = '{0:0%dd}' % total for index, image in enumerate(self.images, start=1): image['filename'] = ''.join([ ordinal.format(index), '-', image['filename'] ]) def digits_in_a_number(self, number): """ Return how many digits are there in a number. """ return len(str(number))
2.984375
3
pyfibre_analysis_tools/__init__.py
franklongford/pyfibre_analysis_scripts
0
12792991
from .analysis_tools import load_databases # noqa: E501 from .plotting import confidence_ellipse, scatter, plot_roc_curve, plot_lda_analysis # noqa: E501
1.085938
1
sa.py
Crismaria11/Lab03_SecDS
0
12792992
import pefile import numpy as np # import os execs = [ "1F2EB7B090018D975E6D9B40868C94CA", "33DE5067A433A6EC5C328067DC18EC37", "65018CD542145A3792BA09985734C12A", "<KEY>", "<KEY>", "<KEY>", "<KEY>", "<KEY>", "A316D5AECA269CA865077E7FFF356E7D", "<KEY>", "AL65_DB05DF0498B59B42A8E493CF3C10C578", "B07322743778B5868475DBE66EEDAC4F", "B98hX8E8622C393D7E832D39E620EAD5D3B49", "BVJ2D9FBF759F527AF373E34673DC3ACA462", "DS22_A670D13D4D014169C4080328B8FEB86", "EEE99EC8AA67B05407C01094184C33D2B5A44", "F6655E39465C2FF5B016980D918EA028", "F8437E44748D2C3FCF84019766F4E6DC", "<KEY>", "FGTR43_EF8E0FB20E7228C7492CCDC59D87C690", "<KEY>", "FTTR9EA3C16194CE354C244C1B74C46CD92E", "<KEY>", "GFT4_7DDD3D72EAD03C7518F5D47650C8572", "<KEY>", "<KEY>", "JKK8CA6FE7A1315AF5AFEAC2961460A80569", "<KEY>", "<KEY>", "L11_1415EB8519D13328091CC5C76A624E3D", "NBV_8B75BCBFF174C25A0161F30758509A44", "NV99_C9C9DBF388A8D81D8CFB4D3FC05F8E4", "PL98_BD8B082B7711BC980252F988BB0CA936", "POL55_A4F1ECC4D25B33395196B5D51A06790", "QW2_4C6BDDCCA2695D6202DF38708E14FC7E", "RTC_7F85D7F628CE62D1D8F7B39D8940472", "SAM_B659D71AE168E774FAAF38DB30F4A84", "TG78Z__727A6800991EEAD454E53E8AF164A99C", "VBMM9_149B7BD7218AAB4E257D28469FDDB0D", "VC990_468FF2C12CFFC7E5B2FE0EE6BB3B239E", ] prueba = {"correlativo": None, "nameExec": None, "sectionName": [], "sectionVA": [], "sectionVS": [], "sectionSR": [], "kernel32": [], "msvcrt": [], "shell32": [], "user32": [], "ws232": [], "ADVAPI32": [], "GDI32": [], "KERNEL32": [], "NETAPI32": [], "PSAPI": [], "WININET": [], "ntdll": [], "TimeStamp": None} # pe = pefile.PE("65018CD542145A3792BA09985734C12A") # algo = [10, 20, 30, 40, 50] granPrueba = [] entrysList = [] for a in execs: sectionNames = [] sectionVA = [] sectionVS = [] sectionSR = [] kernel32 = [] msvcrt = [] shell32 = [] user32 = [] ws232 = [] ADVAPI32 = [] GDI32 = [] KERNEL32 = [] NETAPI32 = [] PSAPI = [] WININET = [] ntdll = [] # print(execs.index(a) + 1) print("a") print(a) c = execs.index(a) + 1 pe = pefile.PE(a) prueba["correlativo"] = c prueba["nameExec"] = a print(c) print("Secciones") for section in pe.sections: print(section.Name, hex(section.VirtualAddress), hex(section.Misc_VirtualSize), section.SizeOfRawData) b = section.Name sectionNames.append(b.decode('utf-8')) sectionVA.append(section.VirtualAddress) sectionVS.append(section.Misc_VirtualSize) sectionSR.append(section.SizeOfRawData) prueba["sectionName"] = sectionNames prueba["sectionVA"] = sectionVA prueba["sectionVS"] = sectionVS prueba["sectionSR"] = sectionSR print() print() print("Entradas") for entry in pe.DIRECTORY_ENTRY_IMPORT: print('Llamadas DLL:') print (entry.dll) l = entry.dll print('Llamadas a funciones:') entrysList.append(str(l.decode('utf-8'))) if str(entry.dll) == "b'KERNEL32.DLL'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) kernel32.append(x.decode('utf-8')) prueba["kernel32"] = kernel32 elif str(entry.dll) == "b'ADVAPI32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) ADVAPI32.append(x.decode('utf-8')) prueba["ADVAPI32"] = ADVAPI32 elif str(entry.dll) == "b'GDI32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) GDI32.append(x.decode('utf-8')) prueba["GDI32"] = GDI32 elif str(entry.dll) == "b'KERNEL32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) KERNEL32.append(x.decode('utf-8')) prueba["KERNEL32"] = KERNEL32 elif str(entry.dll) == "b'NETAPI32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) NETAPI32.append(x.decode('utf-8')) prueba["NETAPI32"] = NETAPI32 elif str(entry.dll) == "b'PSAPI.DLL'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) PSAPI.append(x.decode('utf-8')) prueba["PSAPI"] = PSAPI elif str(entry.dll) == "b'WININET.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) WININET.append(x.decode('utf-8')) prueba["WININET"] = WININET elif str(entry.dll) == "b'ntdll.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) ntdll.append(x.decode('utf-8')) prueba["ntdll"] = ntdll elif str(entry.dll) == "b'MSVCRT.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) msvcrt.append(x.decode('utf-8')) prueba["msvcrt"] = msvcrt elif str(entry.dll) == "b'SHELL32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) shell32.append(x.decode('utf-8')) prueba["shell32"] = shell32 elif str(entry.dll) == "b'USER32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) user32.append(x.decode('utf-8')) prueba["user32"] = user32 elif str(entry.dll) == "b'WS2_32.dll'": for function in entry.imports: x = function.name print('\t', x.decode('utf-8')) ws232.append(x.decode('utf-8')) prueba["ws232"] = ws232 # listamalware = os.listdir(path) print() print() print("TimeStamp") print("TimeDateStamp : " + pe.FILE_HEADER.dump_dict()['TimeDateStamp']['Value'].split('[')[1][:-1]) z = pe.FILE_HEADER.dump_dict()['TimeDateStamp']['Value'].split('[')[1][:-1] print(z) prueba["TimeStamp"] = z print(c) # print() # print() # print(pe.FILE_HEADER.NumberOfSections) granPrueba.append(prueba) prueba = {"correlativo": None, "nameExec": None, "sectionName": [], "sectionVA": [], "sectionVS": [], "sectionSR": None, "kernel32": None, "msvcrt": None, "shell32": None, "user32": None, "ws232": None, "TimeStamp": None} # print(granPrueba) import pandas as pd df = pd.DataFrame(granPrueba) print(df) # print(entrysList) def unique(list1): x = np.array(list1) print(np.unique(x)) unique(entrysList) df.to_csv("dataset.csv")
1.335938
1
main.py
roesel/growth
1
12792993
# -*- coding: utf-8 -*- ''' The main script to run, enables profiling. ''' import numpy as np import math from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from crystal import * from plot_init_tools import * def main(num_of_growths): ''' Main method to start simulation. Uncomment specific simulation or write a new one. ''' # Main simulation crystal, x is dimensions (m=n=x) # Stairs x, init = make_init("stairs", 200) c = Crystal(x, x, initial_grid=init.copy(), mode="step", hist_int=int(num_of_growths/4), \ border_policy="loop", use_height=False) c.grow(num_of_growths) plot_crystal(c) # # Step # x, init = make_init("step", 200) # c = Crystal(x, x, initial_grid=init.copy(), mode="step", hist_int=int(num_of_growths/4), \ # border_policy="loop") # #c.print_grid() # c.grow(num_of_growths) # #c.print_grid() # plot_crystal(c) # # # Screw # x, init = make_init("screw", 200) # c = Crystal(x, x, initial_grid=init.copy(), mode="spin", hist_int=int(num_of_growths/8), \ # border_policy="flex") # #c.print_grid() # c.grow(num_of_growths) # #c.print_grid() # plot_crystal(c) # # A crystal object serving to visualize only "what grew" without init state # d = Crystal(x, x, initial_grid=(c.grid-init)) # plot_crystal(d, 2) # Show history of simulation plot_history(c) # # Generate a publishable plot # plot_out(c) def profile(): ''' Function used to profile code for speedups. ''' import cProfile cProfile.run('main(50)', 'pstats') from pstats import Stats p = Stats('pstats') p.strip_dirs().sort_stats('time').print_stats(10) main(50) #profile()
2.859375
3
setup.py
TomaLaPlazaConCabeza/web-app
0
12792994
<reponame>TomaLaPlazaConCabeza/web-app from setuptools import find_packages, setup with open("README.md") as handle: LONG_DESCRIPTION = handle.read() setup( name="web_app", description="Wep App for TomaLaPlazaConCabeza", long_description=LONG_DESCRIPTION, version="0.1.0-dev", author="TomaLaPlazaConCabeza", author_email="<EMAIL>", url="https://github.com/TomaLaPlazaConCabeza/web-app", license="BSD-3-clause", packages=find_packages(), python_requires=">=3.8", zip_safe=False, install_requires=[ "Flask>=1.1.2,<1.2.0", "numpy>=1.18.4,<1.19.0", "Shapely>=1.7.0,<1.8.0", "descartes>=1.1.0,<1.2.0", ], )
1.4375
1
src/basic/go_cache.py
invokerrrr/alphago_weak
0
12792995
# -*- coding: utf-8 -*- from os import path, getcwd, makedirs, listdir, remove from typing import * import pickle from abc import ABCMeta, abstractmethod from sgfmill.sgf import Sgf_game import numpy as np from .go_types import * __all__ = ["set_cache_dir", "get_cache_dir", "get_game_dir", "get_archive_dir", "get_array_dir", "GameData", "GameArchive", "GameDatabase", "ArrayDatabase"] default_cache_dir = path.join(path.dirname(path.realpath(__file__)), "../..", ".data") cache_dir = default_cache_dir archive_folder = path.join(cache_dir, ".kgs") game_folder = path.join(cache_dir, ".game") array_folder = path.join(cache_dir, ".array") def set_cache_dir(directory: Optional[str] = None) -> NoReturn: global cache_dir, archive_folder, game_folder, array_folder if directory is None: directory = default_cache_dir cache_dir = path.join(getcwd(), directory) archive_folder = path.join(cache_dir, ".kgs") game_folder = path.join(cache_dir, ".game") array_folder = path.join(cache_dir, ".array") makedirs(get_cache_dir(), exist_ok=True) makedirs(get_archive_dir(), exist_ok=True) makedirs(get_game_dir(), exist_ok=True) makedirs(get_array_dir(), exist_ok=True) def get_cache_dir() -> str: return cache_dir def get_archive_dir() -> str: return archive_folder def get_game_dir() -> str: return game_folder def get_array_dir() -> str: return array_folder class GameData(NamedTuple): size: int winner: GoPlayer sequence: List[Tuple[Optional[GoPlayer], Optional[GoPoint]]] komi: float setup_stones: Tuple[Optional[Set[GoPoint]], Optional[Set[GoPoint]], Optional[Set[GoPoint]]] @classmethod def from_sgf(cls, sgf_game: Sgf_game): size = sgf_game.get_size() winner = GoPlayer.to_player(sgf_game.get_winner()) sequence = list(map(lambda move: (GoPlayer.to_player(move[0]), move[1]), (node.get_move() for node in sgf_game.get_main_sequence()))) komi = sgf_game.get_komi() setup_stones = sgf_game.get_root().get_setup_stones() return cls(size, winner, sequence, komi, setup_stones) @staticmethod def from_pickle(name: str, size: Union[int, str] = 19): with open(path.join(get_game_dir(), str(size), name), "rb") as f: return pickle.load(f) @staticmethod def pickle_exists(name: str, size: Union[int, str] = 19): return path.exists(path.join(get_game_dir(), str(size), name)) def to_pickle(self, name: str): makedirs(self.root(), exist_ok=True) dest = self.path(name) with open(dest, "wb") as f: pickle.dump(self, f) def root(self): return path.join(get_game_dir(), str(self.size)) def path(self, name: str): return path.join(self.root(), name) class GameArchive(metaclass=ABCMeta): name = "none" @classmethod def archive_map(cls): _dict = {_cls.name: _cls for _cls in cls.__subclasses__()} for v in cls.__subclasses__(): _dict.update(v.archive_map()) return _dict @abstractmethod def retrieve(self, force=False) -> NoReturn: """ Retrieve all archives available from Internet. :param force: whether forces to download archive if it has already existed """ pass @abstractmethod def extract(self, force=False) -> NoReturn: """ Extract all game archives to Game Cache Folder, every single file should end with `.game.pkl` and be start with it's size of the board. """ pass @abstractmethod def unpack(self, force=False) -> NoReturn: """ Unpack all game archives to :param force: whether forces to download archive if it has already existed """ pass def download(self, force=False): self.retrieve(force=force) self.unpack(force=force) self.extract(force=force) class GameDatabase: def __init__(self, size=19): self.size = size def __len__(self): return len(self.keys()) def __getitem__(self, name: str) -> GameData: return GameData.from_pickle(name, self.size) def __setitem__(self, name: str, data: GameData): data.to_pickle(name) def __delitem__(self, name: str): remove(path.join(get_game_dir(), str(self.size), name)) def __contains__(self, name: str): return path.exists(path.join(get_game_dir(), str(self.size), name)) def __eq__(self, other): if isinstance(other, GameDatabase): return self.size == other.size return NotImplemented def root(self): return path.join(get_game_dir(), str(self.size)) def keys(self) -> List[str]: return listdir(self.root()) def values(self) -> Iterable[GameData]: for key in self.keys(): yield self[key] def items(self) -> Iterable[Tuple[str, GameData]]: for key in self.keys(): yield key, self[key] class ArrayDatabase: def __init__(self, method: str, size=19): self.size = size self.method = method makedirs(self.root(), exist_ok=True) def __len__(self): return len(self.keys()) def __getitem__(self, key: str) -> Tuple[np.ndarray, ...]: file = path.join(self.root(), key) with open(file, "rb") as f: return pickle.load(f) def __setitem__(self, key: str, value: Tuple[np.ndarray, ...]): file = path.join(self.root(), key) with open(file, "wb") as f: pickle.dump(value, f) def __delitem__(self, key: str): file = path.join(self.root(), key) remove(file) def __contains__(self, key: str): return path.exists(path.join(self.root(), key)) def root(self): return path.join(get_array_dir(), str(self.size), self.method) def keys(self) -> List[str]: return listdir(self.root()) def values(self) -> Iterable[np.ndarray]: for key in self.keys(): yield self[key] def items(self) -> Iterable[Tuple[str, np.ndarray]]: for key in self.keys(): yield key, self[key]
2.484375
2
test/integration/targets/script/files/no_shebang.py
Container-Projects/ansible-provider-docs
37
12792996
<reponame>Container-Projects/ansible-provider-docs import sys sys.stdout.write("Script with shebang omitted")
1.328125
1
god_zip.py
mbmccoy/voice_of_god
2
12792997
from collections import defaultdict import gzip import os import random import textwrap class Heresy(Exception): """You have defiled the word of God!""" pass def bits(byte_string): """Generates a sequence of bits from a byte stream""" for byte in byte_string: for bit_num in range(8): # Extract bit from byte byte, bit = byte >> 1, byte % 2 yield bit def generate_ngram_dict(filename, tuple_length): """Generate a dict with ngrams as key following words as value :param filename: Filename to read from. :param tuple_length: The length of the ngram keys :return: Dict of the form {ngram: [next_words], ... } """ def file_words(file_pointer): """Generator for words in a file""" for line in file_pointer: for word in line.split(): yield word ngrams = defaultdict(lambda: set()) with open(filename, 'r') as fp: word_list = [] for word in file_words(fp): if len(word_list) < tuple_length: word_list.append(word) continue ngrams[tuple(word_list)].add(word) word_list = word_list[1:] + [word] return {key: tuple(val) for key, val in ngrams.items()} class GodZip(object): """Turn unholy bits into holy words!""" hallelujah = "Sayeth the Lord:\n\n" amen = "\n\nAmen." def __init__(self, tuple_length=3, line_width=70, compress=True): self.compress = compress self.line_width = line_width self.tuple_length = tuple_length data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'bible-kjv.raw.txt') self.god_grams = generate_ngram_dict(data_path, tuple_length) self.capital_tuples = [key for key, value in self.god_grams.items() if key[0][0].isupper()] def praise(self, unholy_bytes): """Encode unholy bytes or unholy unicode into Holy text""" if not unholy_bytes: raise Heresy("Thou shalt not be silent in the face of the Lord!") if not isinstance(unholy_bytes, bytes): unholy_bytes = unholy_bytes.encode() if self.compress: unholy_bytes = gzip.compress(unholy_bytes) # Start with a capitalized tuple speech_of_god = list(random.choice(self.capital_tuples)) for bit in bits(unholy_bytes): holy_tuple = tuple(speech_of_god[-self.tuple_length:]) holy_words = self.god_grams[holy_tuple] # Make sure that we have some words to choose from while len(holy_words) <= 1: chosen_word = holy_words[0] speech_of_god.append(chosen_word) holy_tuple = tuple(speech_of_god[-self.tuple_length:]) holy_words = self.god_grams[holy_tuple] # Select from even indices if bit == 0, odd if bit == 1 chosen_word = random.choice(holy_words[bit::2]) speech_of_god.append(chosen_word) holy_sentences = ' '.join(speech_of_god).split('. ') annotated_speech_of_god = '.\n\n'.join( [ '\n'.join(textwrap.wrap("[{}] ".format(idx + 1) + holy_phrase, width=self.line_width)) for idx, holy_phrase in enumerate(holy_sentences) ] ) return self.hallelujah + annotated_speech_of_god + self.amen def reveal_from_words(self, holy_words): """Decode a list of holy words into unholy bytes.""" try: holy_tuple = tuple(holy_words[:self.tuple_length]) except: raise Heresy("You mock the word of God!") unholy_bytes = b'' unholy_num = 0 bit_counter = 0 for holy_word in holy_words[self.tuple_length:]: try: holy_ngram_list = self.god_grams[holy_tuple] except: raise Heresy("Thou shalt not modify the word of God!") holy_tuple = tuple(holy_tuple[1:] + (holy_word,)) if len(holy_ngram_list) <= 1: continue try: unholy_bit = holy_ngram_list.index(holy_word) % 2 except: raise Heresy("Not one word of God shall be changed!") unholy_num |= unholy_bit << bit_counter bit_counter += 1 if bit_counter % 8 == 0: unholy_bytes += bytes([unholy_num]) unholy_num = 0 bit_counter = 0 if self.compress: unholy_bytes = gzip.decompress(unholy_bytes) return unholy_bytes def reveal(self, annotated_speech): """Decode holy speech into bytes""" split_annotated_speech = annotated_speech.split('\n\n') # Check for hallelujah and amen if split_annotated_speech[0] != self.hallelujah.strip() \ or split_annotated_speech[-1] != self.amen.strip(): raise Heresy("Your praise is insufficient!") # Remove hallelujah and amen try: holy_annotated_sentences = split_annotated_speech[1:-1] except: raise Heresy("The word of God will not be silenced!") # Remove line annotations try: holy_words = ' '.join([sentence.split('] ')[1] for sentence in holy_annotated_sentences]).split() except: raise Heresy("How dare you imitate the word of God!") return self.reveal_from_words(holy_words) def hex_expand(byte_str): return ':'.join('{:02x}'.format(byte) for byte in byte_str) if __name__ == '__main__': god = GodZip(compress=False) hello_world = "Hello world!" print("I praise unto God: %s\n\n" % hello_world) holy_hello_world = god.praise(hello_world) print(holy_hello_world) assert(hello_world == god.reveal(holy_hello_world).decode())
3.421875
3
backend/apps/users/urls.py
tomoya-kwansei/emonotateV2
0
12792998
<reponame>tomoya-kwansei/emonotateV2 from rest_framework.routers import DefaultRouter from django.conf.urls import url, include from .views import * router = DefaultRouter() router.register(r'users', UserViewSet) router.register(r'curves', CurveViewSet, basename='curves') router.register(r'contents', ContentViewSet, basename='contents') router.register(r'youtube', YouTubeContentViewSet, basename='youtube') router.register(r'valuetypes', ValueTypeViewSet, basename='valuetypes') router.register(r'requests', RequestViewSet, basename='requests') urlpatterns = router.urls urlpatterns += url(r'sign_s3/$', sign_s3),
2.3125
2
tests/conftest.py
JackGuyver/pyansys
0
12792999
import socket import os import pytest import pyvista from pyansys.misc import get_ansys_bin import pyansys from pyansys.errors import MapdlExitedError pyvista.OFF_SCREEN = True # check for a valid MAPDL install with CORBA valid_rver = ['182', '190', '191', '192', '193', '194', '195', '201'] EXEC_FILE = None for rver in valid_rver: if os.path.isfile(get_ansys_bin(rver)): EXEC_FILE = get_ansys_bin(rver) if 'PYANSYS_IGNORE_ANSYS' in os.environ: HAS_ANSYS = False else: HAS_ANSYS = EXEC_FILE is not None skip_no_ansys = pytest.mark.skipif(not HAS_ANSYS, reason="Requires ANSYS installed") modes = ['corba'] # if os.name == 'posix': # console only for linux # modes.append('console') collect_ignore = [] if not HAS_ANSYS: collect_ignore.append("test_post.py") @pytest.fixture(scope="session", params=modes) def mapdl(): # launch in shared memory parallel for Windows VM # configure shared memory parallel for VM additional_switches = '' if os.name == 'nt' and socket.gethostname() == 'WIN-FRDMRVG7QAB': additional_switches = '-smp' elif os.name == 'posix': os.environ['I_MPI_SHM_LMT'] = 'shm' # necessary on ubuntu and dmp mapdl = pyansys.launch_mapdl(EXEC_FILE, override=True, mode='corba', additional_switches=additional_switches) mapdl._show_matplotlib_figures = False # don't show matplotlib figures yield mapdl ### test exit ### # must be after yield as this uses a module scoped fixture mapdl.exit() assert mapdl._exited with pytest.raises(RuntimeError): mapdl.prep7() assert not os.path.isfile(mapdl._lockfile) assert 'MAPDL exited' in str(mapdl) with pytest.raises(MapdlExitedError): mapdl.prep7()
1.820313
2
bm25.py
ChosenOne2241/BM25
0
12793000
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Description: Build a structural data from orginial Cranfield collection and # implement the BM25 alogrithm information retrieval; # also 5 evaluation methods (precision, recall, MAP, P at N and # NDCG at N) are applied. # Tested under Python 3.5 on Ubuntu 16.04. # Author: '(<NAME>.) # Date created: 2018-05-07 # Here are some Python standard modules used in the script. import argparse # Used to parse program arguments. # More details are here: https://docs.python.org/3/library/argparse.html import readline # Used to create a typing history buffer for `manual` mode. # More details are here: https://docs.python.org/3/library/readline.html import json # Used to create a human-readable JSON file for index information and the like. import string # Used to do some regex operations. import math import os # Here are some Python libraries that places locally. import porter STOP_WORDS_PATH = "stopwords.txt" DOCUMENT_PATH = "./cran/cran.all.1400" QUERY_PATH = "./cran/cran.qry" RELEVANCE_PATH = "./cran/cranqrel" INDEX_PATH = "index.json" EVALUATION_PATH = "evaluation_output.txt" # Labels in `cran.all.1400` and `cranqrel` text files. ID = ".I" TITLE = ".T" AUTHORS = ".A" BIBLIOGRAPHY = ".B" WORDS = ".W" LABELS = [ID, TITLE, AUTHORS, BIBLIOGRAPHY, WORDS] CONTENTS = [AUTHORS, BIBLIOGRAPHY, WORDS] DELIMITER_SYMBOL = "*" BOUNDARY_LENGTH = 80 # It decides the length of the boundary between two `manual` queries. MOST_RELEVANT = 15 # At most top `MOST_RELEVANT` results are returned for each query. USER_STOP_WORD = "QUIT" # When user types `USER_STOP_WORD`, the program ends; it is case-sensitive. RELEVANCE_SCORE_THRESHOLD = 4 # Filter out ones with relevance score larger than `RELEVANCE_SCORE_THRESHOLD` # from `QUERY_PATH`. The default value is 4 (-1, 1, 2, 3, 4), which means all # documents in it will be reserved. RELEVANCE_SCORE_FIX = 5 # It is a number used as minuend to convert original relevance scores to # NDCG-friendly ones. # Constants used in BM25 model. K = 1.0 B = 0.75 # A constant used in Precision at N and NDCG at N. # If `MOST_RELEVANT` is equal to `N`, precision will be the same as P at N for Cranfield collection. # N.B.: `N` cannot be larger than `MOST_RELEVANT`. N = 10 def is_number(word): """ A helper function to check if a string can be converted to an integer. Used to process documents and queries. """ try: int(word) return True except ValueError: return False def is_valid(word): """ A helper function to check if a string is valid. Used to process documents and queries. """ if word != "" and word not in stop_words and not is_number(word): return True else: return False def get_arguments(): parser = argparse.ArgumentParser(description = "A script used to build BM25 model and relative evaluation methods. If the index JSON file is not available, just type `python3 bm25.py` to generate one in the working directory and extra arguments will be ignored in this case") parser.add_argument("-m", required = False, choices = ["manual", "evaluation"], default = "manual", help = "mode selection; `manual` mode is chosen by default if it is not specified") parser.add_argument("-o", required = False, nargs = "?", const = EVALUATION_PATH, metavar = "FILE NAME", help = "BM25 evaluation result output in lines of 3-tuples (query ID, document ID, and its rank [1 - 15]) form; if `FILE NAME` is not given, the default output file name is `evaluation_output.txt`") return parser.parse_args() def load_stop_words(): stop_words = set() with open(STOP_WORDS_PATH, "r") as fp: for line in fp: stop_words.add(line.rstrip()) return stop_words def process_documents(): """ Build vectors of each term and calculate lengths of each documents. Also a dictionary containing pairs of original words and stemmed words are returned. """ def add_new_word(word): # A helper function to add a new word in `term_vectors`. if word not in stemming: stemming[word] = stemmer.stem(word) stemmed_word = stemming[word] if stemmed_word not in term_vectors: term_vectors[stemmed_word] = {} if document_ID in term_vectors[stemmed_word]: (term_vectors[stemmed_word])[document_ID] += 1 else: term_vectors[stemmed_word].update({document_ID : 1}) stemming = {} term_vectors = {} # `term_vectors` structure: {[Key] Term : [Value] {[Key] Document ID : [Value] Appearance Times}}. document_lengths = {} average_length = 0.0 num_of_documents = 0 with open(DOCUMENT_PATH, "r") as fp: document_ID = 0 length = 0.0 for line in fp: current_section = line[0 : 2] if current_section in LABELS: if current_section == ID: document_lengths[document_ID] = math.sqrt(length) # Calculate the previous document length and start a new one. # The empty entry for document 0 is also created although # in Cranfield collection, document ID begins from 001. average_length += document_lengths[document_ID] document_ID += 1 # Ignore original document IDs, which is the numbers followed by ".I", # since they may not be consecutive. num_of_documents += 1 length = 0.0 section = current_section continue # Update and go to next line immediately. elif section in CONTENTS: line = line.translate(removing_punctuation_map) line = line.replace("--", " ") # Also, treat two consecutive hyphens as a space. for term in line.split(): # Split according to whitespace characters and deal with two special cases: # abbreviations with "." and hyphenated compounds. term = term.replace(".", "") # Remove full stops in one term, used to convert abbreviations # like "m.i.t." (line 1222) / "u.s.a." (line 32542) into "mit" / "usa". # In the meantime, something like "..e.g.at" (line 17393), # "i.e.it" (line 17287), "trans.amer.math.soc.33" (line 31509), # or "studies.dash" (line 516) will not be handled as expected. # All float-point numbers like "3.2x10" (line 18799), "79.5degree" # (line 20026) will be converted into integers by just removing dots. # And similarly, phrases like "m. i. t." (line 36527) and # "i. e." (line 11820) will be ignored. # "r.m.s." (line 20241) will become "rm" stored in the dictionary after stemming. compound = term.replace("-", "") if is_valid(compound): add_new_word(compound) if section == WORDS: length += 1.0 # Treat a compound word as one word; words in `AUTHORS` # and `BIBLIOGRAPHY` section will not be counted. term_split = term.split("-") if len(term_split) > 1: # If only one item in `term_split`, which means there is no hyphen in this word. # There may exist a term with an ending hyphens like # "sub- and" (line 14632), which causes an extra empty string is created # and makes term_split look like ["sub", ""]. for element in term_split: # Deal with each part of compound words like "two-step" (line 38037) or # type names like "75s-t6" (line 28459) or "a52b06" (line 25717). if is_valid(element): add_new_word(element) # Filter out all pure integers; for example, for "f8u-3" (line 35373), # both "f8u" and "f8u3" will be saved, but not "3". # Calculate the last length since Cranfield collection does not have ending symbols. document_lengths[document_ID] = math.sqrt(length) # Skip the document with index 0 from document length vector. del document_lengths[0] average_length = (document_lengths[document_ID] + average_length) / num_of_documents for document in document_lengths.keys(): document_lengths[document] = document_lengths[document] / average_length # Now document_lengths stores a normalised length for each document. return stemming, term_vectors, document_lengths def process_single_query(query): """ Process single line text. Used by `process_queries` function and `manual` mode. """ def add_new_word(word): # A helper function to add a new word in `query_terms`. if word not in stemming: stemming[word] = stemmer.stem(word) stemmed_word = stemming[word] if stemmed_word not in query_terms: query_terms.append(stemmed_word) query_terms = [] query = query.strip() query = query.translate(removing_punctuation_map) query = query.replace("--", " ") for term in query.split(): term = term.replace(".", "").lower() compound = term.replace("-", "") if is_valid(compound): add_new_word(compound) term_split = term.split("-") if len(term_split) > 1: for element in term_split: if is_valid(element): add_new_word(element) return query_terms def process_queries(): with open(QUERY_PATH, "r") as fp: query_list = {} query = [] query_ID = 0 for line in fp: current_section = line[0 : 2] if current_section in LABELS: if current_section == ID: query_list[query_ID] = query query = [] query_ID += 1 # Ignore original query IDs, which is the numbers followed # by ".I", since they are not consecutive. if current_section == WORDS: section = current_section continue elif section in CONTENTS: if query == []: query = process_single_query(line) else: query += process_single_query(line) query_list[query_ID] = query # Add the last entry. del query_list[0] # Skip the first one. return query_list def bm25_similarities(query): """ It returns a descending list with at most top `MOST_RELEVANT` pairs (Document ID, Similarity) based on BM25 to calculate similarities. """ similarities = [] for document_ID in range(1, nums_of_documents + 1): # Document ID begins from 1. similarity = 0.0 for term in query: if term in term_vectors and document_ID in term_vectors[term]: frequency = (term_vectors[term])[document_ID] n_i = len(term_vectors[term]) idf = math.log((nums_of_documents - n_i + 0.5) / (n_i + 0.5), 2) similarity += frequency * (1.0 + K) / (frequency + K * ((1.0 - B) + B * document_lengths[document_ID])) * idf if similarity > 0.0: # Ignore the one with similarity score 0. pair = (document_ID, similarity) similarities.append(pair) # Sort results in desceding order. similarities = sorted(similarities, key = lambda x : x[1], reverse = True) if len(similarities) > MOST_RELEVANT: return similarities[0 : MOST_RELEVANT] else: return similarities def manual_mode(): """ When in `manual` mode, the function will not end until user types "QUIT". """ while True: print(DELIMITER_SYMBOL * BOUNDARY_LENGTH) # Print `BOUNDARY_LENGTH` `DELIMITER_SYMBOL`s to fill the default # width of terminal window. user_query = input("Enter query (type \"QUIT\" to terminate): ") if user_query == USER_STOP_WORD: break query_terms = process_single_query(user_query) print("Results for query " + str(query_terms)) print("Rank\tID\tScore") rank = 1 for result in bm25_similarities(query_terms): print("{0}\t{1}\t{2}".format(str(rank), result[0], str(result[1])), end = "\n") rank += 1 def load_relevance_scores(): relevance_scores = {} # `relevance_scores` structure: {[KEY] query ID : [Value] [(Document ID, Relevance Score)]} with open(RELEVANCE_PATH, "r") as fp: for line in fp: fields = line.split() query_ID = int(fields[0]) pair = (int(fields[1]), int(fields[2])) if query_ID in relevance_scores: relevance_scores[query_ID].append(pair) # It assumes no repetition of document IDs for each query. else: relevance_scores[query_ID] = [pair] for query_ID in relevance_scores: # Sort pairs in ascending order for each query; the less the relevance # score is, the more relevant the document is. relevance_scores[query_ID] = sorted(relevance_scores[query_ID], key = lambda x : x[1]) return relevance_scores def make_query_results(): """ It returns possible relevant documents for each query based on BM25 model. """ query_list = process_queries() query_results = {} # `query_results` structure: {[KEY] query ID : [Value] [(Document ID, Relevance Score)]}, which is exactly the same structure and length as `relevance_scores`. for query_ID in query_list: rank = 1 query_results[query_ID] = [] for pair in bm25_similarities(query_list[query_ID]): query_results[query_ID].append((pair[0], rank)) rank += 1 return query_results def make_relevance_set(query_ID): # Relevant documents (Rel). relevance_set = set() for pair in relevance_scores[query_ID]: if pair[1] <= RELEVANCE_SCORE_THRESHOLD: # We only include queries whose relevance scores are less than or equal # to `RELEVANCE_SCORE_THRESHOLD` here. relevance_set.add(pair[0]) return relevance_set def make_retrieval_set(query_ID): # Retrieval documents (Ret). retrieval_set = set() for pair in query_results[query_ID]: retrieval_set.add(pair[0]) return retrieval_set def precision(): """ It calculates arithmetic mean of precisions for all queries. """ precision = 0.0 for query_ID in relevance_scores: relevance_set = make_relevance_set(query_ID) retrieval_set = make_retrieval_set(query_ID) appearance_times = 0 for document_ID in retrieval_set: if document_ID in relevance_set: appearance_times += 1 precision += appearance_times / len(retrieval_set) precision = precision / len(query_results) return precision def recall(): """ It calculates arithmetic mean of recalls for all queries. """ recall = 0.0 for query_ID in relevance_scores: relevance_set = make_relevance_set(query_ID) retrieval_set = make_retrieval_set(query_ID) appearance_times = 0 for document_ID in relevance_set: if document_ID in retrieval_set: appearance_times += 1 recall += appearance_times / len(relevance_set) recall = recall / len(query_results) return recall def p_at_n(n): """ It calculates arithmetic mean of precisions at N for all queries. """ p_at_n = 0.0 for query_ID in relevance_scores: relevance_set = make_relevance_set(query_ID) appearance_times = 0 for pair in query_results[query_ID]: if pair[0] in relevance_set and pair[1] <= n: appearance_times += 1 p_at_n += appearance_times / n p_at_n = p_at_n / len(query_results) return p_at_n def mean_average_precision(): """ It calculates mean average precision for all queries. """ mean_average_precision = 0.0 for query_ID in relevance_scores: relevance_set = make_relevance_set(query_ID) appearance_times = 0 current_map = 0.0 for pair in query_results[query_ID]: if pair[0] in relevance_set: appearance_times += 1 current_map += appearance_times / pair[1] mean_average_precision += current_map / len(relevance_set) mean_average_precision = mean_average_precision / len(query_results) return mean_average_precision def ndcg_at_n(n): """ It yields a list of NDCGs at up to N of each query separately. """ for query_ID, score_list in relevance_scores.items(): relevance_set = make_relevance_set(query_ID) score_list_dict = dict(score_list) # Convert a list of pairs to dictionary for convienence. # Step one: gain vector. gain_vector = [] for pair in query_results[query_ID]: if pair[0] in relevance_set: gain_vector.append(RELEVANCE_SCORE_FIX - score_list_dict[pair[0]]) # Convert original ranking scores to NDCG-usable scores. else: gain_vector.append(0) # Step two: DCG (Discounted Cumulated Gain). dcg = [gain_vector[0]] # Put the first item in `dcg`. for i in range(1, len(gain_vector)): dcg.append(gain_vector[i] / math.log(i + 1, 2) + dcg[-1]) # Step three: IDCG (Ideal Discounted Cumulated Gain). ideal_gain_vector = [] for pair in score_list: ideal_gain_vector.append(RELEVANCE_SCORE_FIX - score_list_dict[pair[0]]) idcg = [ideal_gain_vector[0]] for i in range(1, len(ideal_gain_vector)): idcg.append(ideal_gain_vector[i] / math.log(i + 1, 2) + idcg[-1]) # Step four: NDCG (Normalised Discounted Cumulated Gain) at N. ndcg_at_n = [] for pair in zip(dcg, idcg): ndcg_at_n.append(pair[0] / pair[1]) if len(ndcg_at_n) > n: # And finally, yield at most `n` results for each query. yield query_ID, ndcg_at_n[0 : n] else: yield query_ID, ndcg_at_n def print_evaluation_results(): print("Evaluation Results:") print("Precision: {0}".format(precision()), end = "\n") print("Recall: {0}".format(recall()), end = "\n") print("P@{0}: {1}".format(N, p_at_n(N)), end = "\n") print("Mean Average Precision: {0}".format(mean_average_precision()), end = "\n") for query_ID, ndcg in ndcg_at_n(N): print("NDCG@{0} <Query {1}>: {2}".format(N, query_ID, ndcg), end = "\n") if __name__ == "__main__": stemmer = porter.PorterStemmer() stop_words = load_stop_words() punctuation = string.punctuation[0 : 12] + string.punctuation[14:] removing_punctuation_map = dict((ord(character), " ") for character in punctuation) # Remove all punctuations except full stops and hyphens. args = get_arguments() if os.path.exists(INDEX_PATH): print("[Loading BM25 index from file.]") with open(INDEX_PATH, "r") as fp: stemming, term_vectors, document_lengths = json.load(fp) # Warning: unlike Python, `dict` type in JSON cannot have `int` key, # therefore a conversion is of necessity. document_lengths = {int(ID) : length for ID, length in document_lengths.items()} for term, vector in term_vectors.items(): term_vectors[term] = {int(ID) : appearance_times for ID, appearance_times in vector.items()} nums_of_documents = len(document_lengths) # It is used in `bm25_similarities()` function. if args.m == "manual": manual_mode() elif args.m == "evaluation": relevance_scores = load_relevance_scores() query_results = make_query_results() print_evaluation_results() if args.o is not None: # If `-o` option is available. with open(args.o, "w") as fp: for query_ID, pair_list in query_results.items(): for pair in pair_list: fp.write("{0} {1} {2}\n".format(query_ID, pair[0], pair[1])) else: # For first-time running, it creates an index JSON file and exit. print("[Generating the index file.]") with open(INDEX_PATH, "w") as fp: json.dump(process_documents(), fp)
2.3125
2
variants/migrations/0013_smallvariantflags_flag_summary.py
brand-fabian/varfish-server
14
12793001
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-14 19:30 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("variants", "0012_auto_20181114_1914")] operations = [ migrations.AddField( model_name="smallvariantflags", name="flag_summary", field=models.CharField( choices=[ ("positive", "positive"), ("uncertain", "uncertain"), ("negative", "negative"), ("empty", "empty"), ], default="empty", max_length=32, ), ) ]
1.664063
2
exchangelib/services/get_attachment.py
RossK1/exchangelib
1,006
12793002
from itertools import chain from .common import EWSAccountService, create_attachment_ids_element from ..util import create_element, add_xml_child, set_xml_value, DummyResponse, StreamingBase64Parser,\ StreamingContentHandler, ElementNotFound, MNS # https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/bodytype BODY_TYPE_CHOICES = ('Best', 'HTML', 'Text') class GetAttachment(EWSAccountService): """MSDN: https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/getattachment-operation""" SERVICE_NAME = 'GetAttachment' element_container_name = '{%s}Attachments' % MNS def call(self, items, include_mime_content, body_type, filter_html_content, additional_fields): if body_type and body_type not in BODY_TYPE_CHOICES: raise ValueError("'body_type' %s must be one of %s" % (body_type, BODY_TYPE_CHOICES)) return self._elems_to_objs(self._chunked_get_elements( self.get_payload, items=items, include_mime_content=include_mime_content, body_type=body_type, filter_html_content=filter_html_content, additional_fields=additional_fields, )) def _elems_to_objs(self, elems): from ..attachments import FileAttachment, ItemAttachment cls_map = {cls.response_tag(): cls for cls in (FileAttachment, ItemAttachment)} for elem in elems: if isinstance(elem, Exception): yield elem continue yield cls_map[elem.tag].from_xml(elem=elem, account=self.account) def get_payload(self, items, include_mime_content, body_type, filter_html_content, additional_fields): payload = create_element('m:%s' % self.SERVICE_NAME) shape_elem = create_element('m:AttachmentShape') if include_mime_content: add_xml_child(shape_elem, 't:IncludeMimeContent', 'true') if body_type: add_xml_child(shape_elem, 't:BodyType', body_type) if filter_html_content is not None: add_xml_child(shape_elem, 't:FilterHtmlContent', 'true' if filter_html_content else 'false') if additional_fields: additional_properties = create_element('t:AdditionalProperties') expanded_fields = chain(*(f.expand(version=self.account.version) for f in additional_fields)) set_xml_value(additional_properties, sorted( expanded_fields, key=lambda f: (getattr(f.field, 'field_uri', ''), f.path) ), version=self.account.version) shape_elem.append(additional_properties) if len(shape_elem): payload.append(shape_elem) attachment_ids = create_attachment_ids_element(items=items, version=self.account.version) payload.append(attachment_ids) return payload def _update_api_version(self, api_version, header, **parse_opts): if not parse_opts.get('stream_file_content', False): super()._update_api_version(api_version, header, **parse_opts) # TODO: We're skipping this part in streaming mode because StreamingBase64Parser cannot parse the SOAP header @classmethod def _get_soap_parts(cls, response, **parse_opts): if not parse_opts.get('stream_file_content', False): return super()._get_soap_parts(response, **parse_opts) # Pass the response unaltered. We want to use our custom streaming parser return None, response def _get_soap_messages(self, body, **parse_opts): if not parse_opts.get('stream_file_content', False): return super()._get_soap_messages(body, **parse_opts) from ..attachments import FileAttachment # 'body' is actually the raw response passed on by '_get_soap_parts' r = body parser = StreamingBase64Parser() field = FileAttachment.get_field_by_fieldname('_content') handler = StreamingContentHandler(parser=parser, ns=field.namespace, element_name=field.field_uri) parser.setContentHandler(handler) return parser.parse(r) def stream_file_content(self, attachment_id): # The streaming XML parser can only stream content of one attachment payload = self.get_payload( items=[attachment_id], include_mime_content=False, body_type=None, filter_html_content=None, additional_fields=None, ) self.streaming = True try: yield from self._get_response_xml(payload=payload, stream_file_content=True) except ElementNotFound as enf: # When the returned XML does not contain a Content element, ElementNotFound is thrown by parser.parse(). # Let the non-streaming SOAP parser parse the response and hook into the normal exception handling. # Wrap in DummyResponse because _get_soap_parts() expects an iter_content() method. response = DummyResponse(url=None, headers=None, request_headers=None, content=enf.data) _, body = super()._get_soap_parts(response=response) res = super()._get_soap_messages(body=body) for e in self._get_elements_in_response(response=res): if isinstance(e, Exception): raise e # The returned content did not contain any EWS exceptions. Give up and re-raise the original exception. raise enf finally: self.streaming = False self.stop_streaming()
2.109375
2
spinsim/__init__.py
rpanderson/spinsim
0
12793003
<filename>spinsim/__init__.py """ """ # from . import utilities from enum import Enum import numpy as np import numba as nb from numba import cuda from numba import roc import math sqrt2 = math.sqrt(2) sqrt3 = math.sqrt(3) class SpinQuantumNumber(Enum): """ Options for the spin quantum number of a system. Parameters ---------- value : :obj:`float` The numerical value of the spin quantum number. dimension : :obj:`int` Dimension of the hilbert space the states with this spin belong to. label : :obj:`str` A text label that can be used for archiving. """ def __init__(self, value, dimension, label): super().__init__() self._value_ = value self.dimension = dimension self.label = label HALF = (1/2, 2, "half") """ For two level systems. """ ONE = (1, 3, "one") """ For three level systems. """ class IntegrationMethod(Enum): """ Options for describing which method is used during the integration. Parameters ---------- value : :obj:`str` A text label that can be used for archiving. """ MAGNUS_CF4 = "magnus_cf4" """ Commutator free, fourth order Magnus based integrator. """ MIDPOINT_SAMPLE = "midpoint_sample" """ Euler integration method. """ HALF_STEP = "half_step" """ Integration method from AtomicPy. Makes two Euler integration steps, one sampling the field from the start of the time step, one sampling the field from the end of the time step. The equivalent of the trapezoidal method. """ class ExponentiationMethod(Enum): """ The implementation to use for matrix exponentiation within the integrator. Parameters ---------- value : :obj:`str` A text label that can be used for archiving. index : :obj:`int` A reference number, used when compiling the integrator, where higher level objects like enums cannot be interpreted. """ def __init__(self, value, index): super().__init__() self._value_ = value self.index = index ANALYTIC = ("analytic", 0) """ Analytic expression of the matrix exponential. For spin half :obj:`SpinQuantumNumber.HALF` systems only. """ LIE_TROTTER = ("lie_trotter", 1) """ Approximation using the Lie Trotter theorem. """ class Device(Enum): """ The target device that the integrator is being compiled for. .. _Supported Python features: http://numba.pydata.org/numba-doc/latest/reference/pysupported.html .. _Supported Numpy features: http://numba.pydata.org/numba-doc/latest/reference/numpysupported.html .. _Supported CUDA Python features: http://numba.pydata.org/numba-doc/latest/cuda/cudapysupported.html """ def __init__(self, value, index): super().__init__() self._value_ = value self.index = index if value == "python": def jit_host(template, max_registers): def jit_host(func): return func return jit_host self.jit_host = jit_host def jit_device(func): return func self.jit_device = jit_device def jit_device_template(template): def jit_device_template(func): return func return jit_device_template self.jit_device_template = jit_device_template elif value == "cpu_single": def jit_host(template, max_registers): def jit_host(func): return nb.njit(template)(func) return jit_host self.jit_host = jit_host def jit_device(func): return nb.njit()(func) self.jit_device = jit_device def jit_device_template(template): def jit_device_template(func): return nb.njit(template)(func) return jit_device_template self.jit_device_template = jit_device_template elif value == "cpu": def jit_host(template, max_registers): def jit_host(func): return nb.njit(template, parallel = True)(func) return jit_host self.jit_host = jit_host def jit_device(func): return nb.njit()(func) self.jit_device = jit_device def jit_device_template(template): def jit_device_template(func): return nb.njit(template)(func) return jit_device_template self.jit_device_template = jit_device_template elif value == "cuda": def jit_host(template, max_registers): def jit_host(func): return cuda.jit(template, debug = False, max_registers = max_registers)(func) return jit_host self.jit_host = jit_host def jit_device(func): return cuda.jit(device = True, inline = True)(func) self.jit_device = jit_device def jit_device_template(template): def jit_device_template(func): return cuda.jit(template, device = True, inline = True)(func) return jit_device_template self.jit_device_template = jit_device_template elif value == "roc": def jit_host(template, max_registers): def jit_host(func): return roc.jit(template)(func) return jit_host self.jit_host = jit_host def jit_device(func): return roc.jit(device = True)(func) self.jit_device = jit_device def jit_device_template(template): def jit_device_template(func): return roc.jit(template, device = True)(func) return jit_device_template self.jit_device_template = jit_device_template PYTHON = ("python", 0) """ Use pure python interpreted code for the integrator, ie, don't compile the integrator. """ CPU_SINGLE = ("cpu_single", 0) """ Use the :func:`numba.jit()` LLVM compiler to compile the integrator to run on a single CPU core. .. note :: To use this device option, the user defined field function must be :func:`numba.jit()` compilable. See `Supported Python features`_ for compilable python features, and `Supported Numpy features`_ for compilable numpy features. """ CPU = ("cpu", 0) """ Use the :func:`numba.jit()` LLVM compiler to compile the integrator to run on all CPU cores, in parallel. .. note :: To use this device option, the user defined field function must be :func:`numba.jit()` compilable. See `Supported Python features`_ for compilable python features, and `Supported Numpy features`_ for compilable numpy features. """ CUDA = ("cuda", 1) """ Use the :func:`numba.cuda.jit()` LLVM compiler to compile the integrator to run on an Nvidia cuda compatible GPU, in parallel. .. note :: To use this device option, the user defined field function must be :func:`numba.cuda.jit()` compilable. See `Supported CUDA Python features`_ for compilable python features. """ ROC = ("roc", 2) """ Use the :func:`numba.roc.jit()` LLVM compiler to compile the integrator to run on an AMD ROCm compatible GPU, in parallel. .. warning :: Work in progress, not currently functional! """ class Results: """ The results of a an evaluation of the integrator. Attributes ---------- time : :obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index) The times that `state` was evaluated at. time_evolution : :obj:`numpy.ndarray` of :obj:`numpy.float128` (time_index, y_index, x_index) The evaluated time evolution operator between each time step. See :ref:`architecture` for some information. state : :obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number) The evaluated quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. spin : :obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index, spatial_direction) The expected spin projection (Bloch vector) over time. This is calculated just in time using the JITed :obj:`callable` `spin_calculator`. spin_calculator : :obj:`callable` Calculates the expected spin projection (Bloch vector) over time for a given time series of a quantum state. Used to calculate `spin` the first time it is referenced by the user. Parameters: * **state** (:obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number)) - The quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. Returns: * **spin** (:obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index, spatial_direction)) - The expected spin projection (Bloch vector) over time. """ def __init__(self, time, time_evolution, state, spin_calculator): """ Parameters ---------- time : :obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index) The times that `state` was evaluated at. time_evolution : :obj:`numpy.ndarray` of :obj:`numpy.float128` (time_index, y_index, x_index) The evaluated time evolution operator between each time step. See :ref:`architecture` for some information. state : :obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number) The evaluated quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. spin_calculator : :obj:`callable` Calculates the expected spin projection (Bloch vector) over time for a given time series of a quantum state. Used to calculate `spin` the first time it is referenced by the user. Parameters: * **state** (:obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number)) - The quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. Returns: * **spin** (:obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index, spatial_direction)) - The expected spin projection (Bloch vector) over time. """ self.time = time self.time_evolution = time_evolution self.state = state self.spin_calculator = spin_calculator def __getattr__(self, attr_name): if attr_name == "spin": spin = self.spin_calculator(self.state) setattr(self, attr_name, spin) return self.spin raise AttributeError("{} has no attribute called {}.".format(self, attr_name)) class Simulator: """ Attributes ---------- spin_quantum_number : :obj:`SpinQuantumNumber` The option to select whether the simulator will integrate a spin half :obj:`SpinQuantumNumber.HALF`, or spin one :obj:`SpinQuantumNumber.ONE` quantum system. threads_per_block : :obj:`int` The size of each thread block (workgroup), in terms of the number of threads (workitems) they each contain, when running on the GPU target devices :obj:`Device.CUDA` (:obj:`Device.ROC`). Defaults to 64. Modifying might be able to increase execution time for different GPU models. device : :obj:`Device` The option to select which device will be targeted for integration. That is, whether the integrator is compiled for a CPU or GPU. Defaults to :obj:`Device.CUDA` if the system it is being run on is Nvidia Cuda compatible, and defaults to :obj:`Device.CPU` otherwise. See :obj:`Device` for all options and more details. get_time_evolution_raw : :obj:`callable` The internal function for evaluating the time evolution operator in parallel. Compiled for chosen device on object constrution. Parameters: * **sweep_parameter** (:obj:`float`) - The input to the `get_field` function supplied by the user. Modifies the field function so the integrator can be used for many experiments, without the need for slow recompilation. For example, if the `sweep_parameter` is used to define the bias field strength in `get_field`, then one can run many simulations, sweeping through bias values, by calling this method multiple times, each time varying `sweep_parameter`. * **time_coarse** (:obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index)) - The times that `state` was evaluated at. * **time_end_points** (:obj:`numpy.ndarray` of :obj:`numpy.float64` (start/end)) - The time offset that the experiment is to start at, and the time that the experiment is to finish at. Measured in s. * **time_step_integration** (:obj:`float`) - The integration time step. Measured in s. * **time_step_output** (:obj:`float`) - The sample resolution of the output timeseries for the state. Must be a whole number multiple of `time_step_integration`. Measured in s. * **time_evolution_coarse** (:obj:`numpy.ndarray` of :obj:`numpy.float128` (time_index, y_index, x_index)) - The evaluated time evolution operator between each time step. See :ref:`architecture` for some information. spin_calculator : :obj:`callable` Calculates the expected spin projection (Bloch vector) over time for a given time series of a quantum state. This :obj:`callable` is passed to the :obj:`Results` object returned from :func:`Simulator.evaluate()`, and is executed there just in time if the `spin` property is needed. Compiled for chosen device on object constrution. Parameters: * **state** (:obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number)) - The quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. Returns: * **spin** (:obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index, spatial_direction)) - The expected spin projection (Bloch vector) over time. """ def __init__(self, get_field, spin_quantum_number, device = None, exponentiation_method = None, use_rotating_frame = True, integration_method = IntegrationMethod.MAGNUS_CF4, trotter_cutoff = 32, threads_per_block = 64, max_registers = 63): """ .. _Achieved Occupancy: https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm Parameters ---------- get_field : :obj:`callable` A python function that describes the field that the spin system is being put under. It must have three arguments: * **time_sample** (:obj:`float`) - the time to sample the field at, in units of s. * **simulation_index** (:obj:`int`) - a parameter that can be swept over when multiple simulations need to be run. For example, it is used to sweep over dressing frequencies during the simulations that `spinsim` was designed for. * **field_sample** (:class:`numpy.ndarray` of :class:`numpy.float64` (spatial_index)) the returned value of the field. This is a four dimensional vector, with the first three entries being x, y, z spatial directions (to model a magnetic field, for example), and the fourth entry being the amplitude of the quadratic shift (only appearing, and required, in spin one systems). .. note:: This function must be compilable for the device that the integrator is being compiled for. See :class:`Device` for more information and links. spin_quantum_number : :obj:`SpinQuantumNumber` The option to select whether the simulator will integrate a spin half :obj:`SpinQuantumNumber.HALF`, or spin one :obj:`SpinQuantumNumber.ONE` quantum system. device : :obj:`Device` The option to select which device will be targeted for integration. That is, whether the integrator is compiled for a CPU or GPU. Defaults to :obj:`Device.CUDA` if the system it is being run on is Nvidia Cuda compatible, and defaults to :obj:`Device.CPU` otherwise. See :obj:`Device` for all options and more details. exponentiation_method : :obj:`ExponentiationMethod` Which method to use for matrix exponentiation in the integration algorithm. Defaults to :obj:`ExponentiationMethod.LIE_TROTTER` when `spin_quantum_number` is set to :obj:`SpinQuantumNumber.ONE`, and defaults to :obj:`ExponentiationMethod.ANALYTIC` when `spin_quantum_number` is set to :obj:`SpinQuantumNumber.HALF`. See :obj:`ExponentiationMethod` for more details. use_rotating_frame : :obj:`bool` Whether or not to use the rotating frame optimisation. Defaults to :obj:`True`. If set to :obj:`True`, the integrator moves into a frame rotating in the z axis by an amount defined by the field in the z direction. This removes the (possibly large) z component of the field, which increases the accuracy of the output since the integrator will on average take smaller steps. .. note :: The use of a rotating frame is commonly associated with the use of a rotating wave approximation, a technique used to get approximate analytic solutions of spin system dynamics. This is not done when this option is set to :obj:`True` - no such approximations are made, and the output state in given out of the rotating frame. One can, of course, use :mod:`spinsim` to integrate states in the rotating frame, using the rating wave approximation: just define `get_field()` with field functions that use the rotating wave approximation in the rotating frame. integration_method : :obj:`IntegrationMethod` Which integration method to use in the integration. Defaults to :obj:`IntegrationMethod.MAGNUS_CF4`. See :obj:`IntegrationMethod` for more details. trotter_cutoff : :obj:`int` The number of squares made by the matrix exponentiator, if :obj:`ExponentiationMethod.LIE_TROTTER` is chosen. threads_per_block : :obj:`int` The size of each thread block (workgroup), in terms of the number of threads (workitems) they each contain, when running on the GPU target devices :obj:`Device.CUDA` (:obj:`Device.ROC`). Defaults to 64. Modifying might be able to increase execution time for different GPU models. max_registers : :obj:`int` The maximum number of registers allocated per thread when using :obj:`Device.CUDA` as the target device, and can be modified to increase the execution speed for a specific GPU model. Defaults to 63 (optimal for GTX1070, the device used for testing. Note that one extra register per thread is always added to the number specified for control, so really this number is 64). Raising this value allocates more registers (fast memory) to each thread, out of a maximum number for the whole GPU, for each specific GPU model. This means that if more registers are allocated than are available for the GPU model, the GPU must run fewer threads concurrently than it has Cuda cores, meaning some cores are inactive, and the GPU is said to have less occupancy. Lowering the value increases GPU occupancy, meaning more threads run concurrently, at the expense of fewer resgiters being avaliable to each thread, meaning slower memory must be used. Thus, there will be an optimal value of `max_registers` for each model of GPU running :mod:`spinsim`, balancing more threads vs faster running threads, and changing this value could increase performance for your GPU. See `Achieved Occupancy`_ for Nvidia's official explanation. """ if not device: if cuda.is_available(): device = Device.CUDA else: device = Device.CPU self.threads_per_block = threads_per_block self.spin_quantum_number = spin_quantum_number self.device = device self.get_time_evolution_raw = None self.get_spin_raw = None try: self.compile_time_evolver(get_field, spin_quantum_number, device, use_rotating_frame, integration_method, exponentiation_method, trotter_cutoff, threads_per_block, max_registers) except: print("\033[31mspinsim error: numba could not jit get_field function into a device function.\033[0m\n") raise def compile_time_evolver(self, get_field, spin_quantum_number, device, use_rotating_frame = True, integration_method = IntegrationMethod.MAGNUS_CF4, exponentiation_method = None, trotter_cutoff:int = 28, threads_per_block = 64, max_registers = 63): """ Compiles the integrator and spin calculation functions of the simulator. Parameters ---------- get_field : :obj:`callable` A python function that describes the field that the spin system is being put under. It must have three arguments: * **time_sample** (:obj:`float`) - the time to sample the field at, in units of s. * **simulation_index** (:obj:`int`) - a parameter that can be swept over when multiple simulations need to be run. For example, it is used to sweep over dressing frequencies during the simulations that `spinsim` was designed for. * **field_sample** (:class:`numpy.ndarray` of :class:`numpy.float64` (spatial_index)) the returned value of the field. This is a four dimensional vector, with the first three entries being x, y, z spatial directions (to model a magnetic field, for example), and the fourth entry being the amplitude of the quadratic shift (only appearing, and required, in spin one systems). .. note:: This function must be compilable for the device that the integrator is being compiled for. See :class:`Device` for more information and links. spin_quantum_number : :obj:`SpinQuantumNumber` The option to select whether the simulator will integrate a spin half :obj:`SpinQuantumNumber.HALF`, or spin one :obj:`SpinQuantumNumber.ONE` quantum system. device : :obj:`Device` The option to select which device will be targeted for integration. That is, whether the integrator is compiled for a CPU or GPU. Defaults to :obj:`Device.CUDA` if the system it is being run on is Nvidia Cuda compatible, and defaults to :obj:`Device.CPU` otherwise. See :obj:`Device` for all options and more details. exponentiation_method : :obj:`ExponentiationMethod` Which method to use for matrix exponentiation in the integration algorithm. Defaults to :obj:`ExponentiationMethod.LIE_TROTTER` when `spin_quantum_number` is set to :obj:`SpinQuantumNumber.ONE`, and defaults to :obj:`ExponentiationMethod.ANALYTIC` when `spin_quantum_number` is set to :obj:`SpinQuantumNumber.HALF`. See :obj:`ExponentiationMethod` for more details. use_rotating_frame : :obj:`bool` Whether or not to use the rotating frame optimisation. Defaults to :obj:`True`. If set to :obj:`True`, the integrator moves into a frame rotating in the z axis by an amount defined by the field in the z direction. This removes the (possibly large) z component of the field, which increases the accuracy of the output since the integrator will on average take smaller steps. .. note :: The use of a rotating frame is commonly associated with the use of a rotating wave approximation, a technique used to get approximate analytic solutions of spin system dynamics. This is not done when this option is set to :obj:`True` - no such approximations are made, and the output state in given out of the rotating frame. One can, of course, use :mod:`spinsim` to integrate states in the rotating frame, using the rating wave approximation: just define `get_field()` with field functions that use the rotating wave approximation in the rotating frame. integration_method : :obj:`IntegrationMethod` Which integration method to use in the integration. Defaults to :obj:`IntegrationMethod.MAGNUS_CF4`. See :obj:`IntegrationMethod` for more details. trotter_cutoff : :obj:`int` The number of squares made by the matrix exponentiator, if :obj:`ExponentiationMethod.LIE_TROTTER` is chosen. threads_per_block : :obj:`int` The size of each thread block (workgroup), in terms of the number of threads (workitems) they each contain, when running on the GPU target devices :obj:`Device.CUDA` (:obj:`Device.ROC`). Defaults to 64. Modifying might be able to increase execution time for different GPU models. max_registers : :obj:`int` The maximum number of registers allocated per thread when using :obj:`Device.CUDA` as the target device, and can be modified to increase the execution speed for a specific GPU model. Defaults to 63 (optimal for GTX1070, the device used for testing. Note that one extra register per thread is always added to the number specified for control, so really this number is 64). Raising this value allocates more registers (fast memory) to each thread, out of a maximum number for the whole GPU, for each specific GPU model. This means that if more registers are allocated than are available for the GPU model, the GPU must run fewer threads concurrently than it has Cuda cores, meaning some cores are inactive, and the GPU is said to have less occupancy. Lowering the value increases GPU occupancy, meaning more threads run concurrently, at the expense of fewer resgiters being avaliable to each thread, meaning slower memory must be used. Thus, there will be an optimal value of `max_registers` for each model of GPU running :mod:`spinsim`, balancing more threads vs faster running threads, and changing this value could increase performance for your GPU. See `Achieved Occupancy`_ for Nvidia's official explanation. """ utilities = Utilities(spin_quantum_number, device, threads_per_block) conj = utilities.conj complex_abs = utilities.complex_abs norm2 = utilities.norm2 inner = utilities.inner set_to = utilities.set_to set_to_one = utilities.set_to_one set_to_zero = utilities.set_to_zero matrix_multiply = utilities.matrix_multiply adjoint = utilities.adjoint matrix_exponential_analytic = utilities.matrix_exponential_analytic matrix_exponential_lie_trotter = utilities.matrix_exponential_lie_trotter jit_host = device.jit_host jit_device = device.jit_device jit_device_template = device.jit_device_template device_index = device.index dimension = spin_quantum_number.dimension lie_dimension = dimension + 1 # utility_set = spin_quantum_number.utility_set if not exponentiation_method: if spin_quantum_number == SpinQuantumNumber.ONE: exponentiation_method = ExponentiationMethod.LIE_TROTTER elif spin_quantum_number == SpinQuantumNumber.HALF: exponentiation_method = ExponentiationMethod.ANALYTIC if integration_method == IntegrationMethod.MAGNUS_CF4: sample_index_max = 3 sample_index_end = 4 elif integration_method == IntegrationMethod.HALF_STEP: sample_index_max = 3 sample_index_end = 4 elif integration_method == IntegrationMethod.MIDPOINT_SAMPLE: sample_index_max = 1 sample_index_end = 1 exponentiation_method_index = exponentiation_method.index if (exponentiation_method == ExponentiationMethod.ANALYTIC) and (spin_quantum_number != SpinQuantumNumber.HALF): print("\033[31mspinsim warning!!!\n_attempting to use an analytic exponentiation method outside of spin half. Switching to a Lie Trotter method.\033[0m") exponentiation_method = ExponentiationMethod.LIE_TROTTER exponentiation_method_index = 1 @jit_device_template("(float64[:], complex128[:, :], complex128[:, :])") def append_exponentiation(field_sample, time_evolution_fine, time_evolution_coarse): if device_index == 0: time_evolution_old = np.empty((dimension, dimension), dtype = np.complex128) elif device_index == 1: time_evolution_old = cuda.local.array((dimension, dimension), dtype = np.complex128) elif device_index == 2: time_evolution_old_group = roc.shared.array((threads_per_block, dimension, dimension), dtype = np.complex128) time_evolution_old = time_evolution_old_group[roc.get_local_id(1), :, :] # Calculate the exponential if exponentiation_method_index == 0: matrix_exponential_analytic(field_sample, time_evolution_fine) elif exponentiation_method_index == 1: matrix_exponential_lie_trotter(field_sample, time_evolution_fine, trotter_cutoff) # Premultiply to the exitsing time evolution operator set_to(time_evolution_coarse, time_evolution_old) matrix_multiply(time_evolution_fine, time_evolution_old, time_evolution_coarse) if use_rotating_frame: if dimension == 3: @jit_device_template("(float64[:], float64, complex128)") def transform_frame_spin_one_rotating(field_sample, rotating_wave, rotating_wave_winding): X = (field_sample[0] + 1j*field_sample[1])/rotating_wave_winding field_sample[0] = X.real field_sample[1] = X.imag field_sample[2] = field_sample[2] - rotating_wave transform_frame = transform_frame_spin_one_rotating else: @jit_device_template("(float64[:], float64, complex128)") def transform_frame_spin_half_rotating(field_sample, rotating_wave, rotating_wave_winding): X = (field_sample[0] + 1j*field_sample[1])/(rotating_wave_winding**2) field_sample[0] = X.real field_sample[1] = X.imag field_sample[2] = field_sample[2] - 2*rotating_wave transform_frame = transform_frame_spin_half_rotating else: @jit_device_template("(float64[:], float64, complex128)") def transform_frame_lab(field_sample, rotating_wave, rotating_wave_winding): return transform_frame = transform_frame_lab get_field_jit = jit_device(get_field) if integration_method == IntegrationMethod.MAGNUS_CF4: @jit_device_template("(float64, float64, float64, float64, float64[:, :], float64, complex128[:])") def get_field_integration_magnus_cf4(sweep_parameter, time_fine, time_coarse, time_step_integration, field_sample, rotating_wave, rotating_wave_winding): time_sample = ((time_fine + 0.5*time_step_integration*(1 - 1/sqrt3)) - time_coarse) rotating_wave_winding[0] = math.cos(math.tau*rotating_wave*time_sample) + 1j*math.sin(math.tau*rotating_wave*time_sample) time_sample += time_coarse get_field_jit(time_sample, sweep_parameter, field_sample[0, :]) time_sample = ((time_fine + 0.5*time_step_integration*(1 + 1/sqrt3)) - time_coarse) rotating_wave_winding[1] = math.cos(math.tau*rotating_wave*time_sample) + 1j*math.sin(math.tau*rotating_wave*time_sample) time_sample += time_coarse get_field_jit(time_sample, sweep_parameter, field_sample[1, :]) @jit_device_template("(complex128[:, :], complex128[:, :], float64[:, :], float64, float64, complex128[:])") def append_exponentiation_integration_magnus_cf4(time_evolution_fine, time_evolution_coarse, field_sample, time_step_integration, rotating_wave, rotating_wave_winding): transform_frame(field_sample[0, :], rotating_wave, rotating_wave_winding[0]) transform_frame(field_sample[1, :], rotating_wave, rotating_wave_winding[1]) w0 = (1.5 + sqrt3)/6 w1 = (1.5 - sqrt3)/6 field_sample[2, 0] = math.tau*time_step_integration*(w0*field_sample[0, 0] + w1*field_sample[1, 0]) field_sample[2, 1] = math.tau*time_step_integration*(w0*field_sample[0, 1] + w1*field_sample[1, 1]) field_sample[2, 2] = math.tau*time_step_integration*(w0*field_sample[0, 2] + w1*field_sample[1, 2]) if dimension > 2: field_sample[2, 3] = math.tau*time_step_integration*(w0*field_sample[0, 3] + w1*field_sample[1, 3]) append_exponentiation(field_sample[2, :], time_evolution_fine, time_evolution_coarse) field_sample[2, 0] = math.tau*time_step_integration*(w1*field_sample[0, 0] + w0*field_sample[1, 0]) field_sample[2, 1] = math.tau*time_step_integration*(w1*field_sample[0, 1] + w0*field_sample[1, 1]) field_sample[2, 2] = math.tau*time_step_integration*(w1*field_sample[0, 2] + w0*field_sample[1, 2]) if dimension > 2: field_sample[2, 3] = math.tau*time_step_integration*(w1*field_sample[0, 3] + w0*field_sample[1, 3]) append_exponentiation(field_sample[2, :], time_evolution_fine, time_evolution_coarse) get_field_integration = get_field_integration_magnus_cf4 append_exponentiation_integration = append_exponentiation_integration_magnus_cf4 elif integration_method == IntegrationMethod.HALF_STEP: @jit_device_template("(float64, float64, float64, float64, float64[:, :], float64, complex128[:])") def get_field_integration_half_step(sweep_parameter, time_fine, time_coarse, time_step_integration, field_sample, rotating_wave, rotating_wave_winding): time_sample = time_fine - time_coarse rotating_wave_winding[0] = math.cos(math.tau*rotating_wave*time_sample) + 1j*math.sin(math.tau*rotating_wave*time_sample) time_sample += time_coarse get_field_jit(time_sample, sweep_parameter, field_sample[0, :]) time_sample = time_fine + time_step_integration - time_coarse rotating_wave_winding[1] = math.cos(math.tau*rotating_wave*time_sample) + 1j*math.sin(math.tau*rotating_wave*time_sample) time_sample += time_coarse get_field_jit(time_sample, sweep_parameter, field_sample[1, :]) @jit_device_template("(complex128[:, :], complex128[:, :], float64[:, :], float64, float64, complex128[:])") def append_exponentiation_integration_half_step(time_evolution_fine, time_evolution_coarse, field_sample, time_step_integration, rotating_wave, rotating_wave_winding): transform_frame(field_sample[0, :], rotating_wave, rotating_wave_winding[0]) transform_frame(field_sample[1, :], rotating_wave, rotating_wave_winding[1]) field_sample[2, 0] = math.tau*time_step_integration*field_sample[0, 0]/2 field_sample[2, 1] = math.tau*time_step_integration*field_sample[0, 1]/2 field_sample[2, 2] = math.tau*time_step_integration*field_sample[0, 2]/2 if dimension > 2: field_sample[2, 3] = math.tau*time_step_integration*field_sample[0, 3]/2 append_exponentiation(field_sample[2, :], time_evolution_fine, time_evolution_coarse) field_sample[2, 0] = math.tau*time_step_integration*field_sample[1, 0]/2 field_sample[2, 1] = math.tau*time_step_integration*field_sample[1, 1]/2 field_sample[2, 2] = math.tau*time_step_integration*field_sample[1, 2]/2 if dimension > 2: field_sample[2, 3] = math.tau*time_step_integration*field_sample[1, 3]/2 append_exponentiation(field_sample[2, :], time_evolution_fine, time_evolution_coarse) get_field_integration = get_field_integration_half_step append_exponentiation_integration = append_exponentiation_integration_half_step elif integration_method == IntegrationMethod.MIDPOINT_SAMPLE: @jit_device_template("(float64, float64, float64, float64, float64[:, :], float64, complex128[:])") def get_field_integration_midpoint(sweep_parameter, time_fine, time_coarse, time_step_integration, field_sample, rotating_wave, rotating_wave_winding): time_sample = time_fine + 0.5*time_step_integration - time_coarse rotating_wave_winding[0] = math.cos(math.tau*rotating_wave*time_sample) + 1j*math.sin(math.tau*rotating_wave*time_sample) time_sample += time_coarse get_field_jit(time_sample, sweep_parameter, field_sample[0, :]) @jit_device_template("(complex128[:, :], complex128[:, :], float64[:, :], float64, float64, complex128[:])") def append_exponentiation_integration_midpoint(time_evolution_fine, time_evolution_coarse, field_sample, time_step_integration, rotating_wave, rotating_wave_winding): transform_frame(field_sample[0, :], rotating_wave, rotating_wave_winding[0]) field_sample[0, 0] = math.tau*time_step_integration*field_sample[0, 0] field_sample[0, 1] = math.tau*time_step_integration*field_sample[0, 1] field_sample[0, 2] = math.tau*time_step_integration*field_sample[0, 2] if dimension > 2: field_sample[0, 3] = math.tau*time_step_integration*field_sample[0, 3] append_exponentiation(field_sample[0, :], time_evolution_fine, time_evolution_coarse) get_field_integration = get_field_integration_midpoint append_exponentiation_integration = append_exponentiation_integration_midpoint @jit_device_template("(int64, float64[:], float64, float64, float64[:], complex128[:, :, :], float64)") def get_time_evolution_loop(time_index, time_coarse, time_step_output, time_step_integration, time_end_points, time_evolution_coarse, sweep_parameter): # Declare variables if device_index == 0: time_evolution_fine = np.empty((dimension, dimension), dtype = np.complex128) field_sample = np.empty((sample_index_max, lie_dimension), dtype = np.float64) rotating_wave_winding = np.empty(sample_index_end, dtype = np.complex128) elif device_index == 1: time_evolution_fine = cuda.local.array((dimension, dimension), dtype = np.complex128) field_sample = cuda.local.array((sample_index_max, lie_dimension), dtype = np.float64) rotating_wave_winding = cuda.local.array(sample_index_end, dtype = np.complex128) elif device_index == 2: time_evolution_fine_group = roc.shared.array((threads_per_block, dimension, dimension), dtype = np.complex128) time_evolution_fine = time_evolution_fine_group[roc.get_local_id(1), :, :] field_sample_group = roc.shared.array((threads_per_block, sample_index_max, lie_dimension), dtype = np.float64) field_sample = field_sample_group[roc.get_local_id(1), :, :] rotating_wave_winding_group = roc.shared.array((threads_per_block, sample_index_end), dtype = np.complex128) rotating_wave_winding = rotating_wave_winding_group[roc.get_local_id(1), :] time_coarse[time_index] = time_end_points[0] + time_step_output*time_index time_fine = time_coarse[time_index] # Initialise time evolution operator to 1 set_to_one(time_evolution_coarse[time_index, :]) field_sample[0, 2] = 0 if use_rotating_frame: time_sample = time_coarse[time_index] + time_step_output/2 get_field_jit(time_sample, sweep_parameter, field_sample[0, :]) rotating_wave = field_sample[0, 2] if dimension == 2: rotating_wave /= 2 # For every fine step for time_fine_index in range(math.floor(time_step_output/time_step_integration + 0.5)): get_field_integration(sweep_parameter, time_fine, time_coarse[time_index], time_step_integration, field_sample, rotating_wave, rotating_wave_winding) append_exponentiation_integration(time_evolution_fine, time_evolution_coarse[time_index, :], field_sample, time_step_integration, rotating_wave, rotating_wave_winding) time_fine += time_step_integration if use_rotating_frame: # Take out of rotating frame rotating_wave_winding[0] = math.cos(math.tau*rotating_wave*time_step_output) + 1j*math.sin(math.tau*rotating_wave*time_step_output) time_evolution_coarse[time_index, 0, 0] /= rotating_wave_winding[0] time_evolution_coarse[time_index, 0, 1] /= rotating_wave_winding[0] if dimension > 2: time_evolution_coarse[time_index, 0, 2] /= rotating_wave_winding[0] time_evolution_coarse[time_index, 2, 0] *= rotating_wave_winding[0] time_evolution_coarse[time_index, 2, 1] *= rotating_wave_winding[0] time_evolution_coarse[time_index, 2, 2] *= rotating_wave_winding[0] else: time_evolution_coarse[time_index, 1, 0] *= rotating_wave_winding[0] time_evolution_coarse[time_index, 1, 1] *= rotating_wave_winding[0] @jit_host("(float64, float64[:], float64[:], float64, float64, complex128[:, :, :])", max_registers) def get_time_evolution(sweep_parameter, time_coarse, time_end_points, time_step_integration, time_step_output, time_evolution_coarse): """ Find the stepwise time evolution opperator. Parameters ---------- sweep_parameter : :obj:`float` time_coarse : :class:`numpy.ndarray` of :class:`numpy.float64` (time_index) A coarse grained list of time samples that the time evolution operator is found for. In units of s. This is an output, so use an empty :class:`numpy.ndarray` with :func:`numpy.empty()`, or declare a :class:`numpy.ndarray` using :func:`numba.cuda.device_array_like()`. time_end_points : :class:`numpy.ndarray` of :class:`numpy.float64` (start time (0) or end time (1)) The time values for when the experiment is to start and finishes. In units of s. time_step_integration : :obj:`float` The time step used within the integration algorithm. In units of s. time_step_output : :obj:`float` The time difference between each element of `time_coarse`. In units of s. Determines the sample rate of the outputs `time_coarse` and `time_evolution_coarse`. time_evolution_coarse : :class:`numpy.ndarray` of :class:`numpy.complex128` (time_index, bra_state_index, ket_state_index) Time evolution operator (matrix) between the current and next timesteps, for each time sampled. See :math:`U(t)` in :ref:`overview_of_simulation_method`. This is an output, so use an empty :class:`numpy.ndarray` with :func:`numpy.empty()`, or declare a :class:`numpy.ndarray` using :func:`numba.cuda.device_array_like()`. """ if device_index == 0: for time_index in nb.prange(time_coarse.size): get_time_evolution_loop(time_index, time_coarse, time_step_output, time_step_integration, time_end_points, time_evolution_coarse, sweep_parameter) elif device_index == 1: # Run calculation for each coarse timestep in parallel time_index = cuda.grid(1) if time_index < time_coarse.size: get_time_evolution_loop(time_index, time_coarse, time_step_output, time_step_integration, time_end_points, time_evolution_coarse, sweep_parameter) elif device_index == 2: # Run calculation for each coarse timestep in parallel time_index = roc.get_global_id(1) if time_index < time_coarse.size: get_time_evolution_loop(time_index, time_coarse, time_step_output, time_step_integration, time_end_points, time_evolution_coarse, sweep_parameter) return @jit_host("(complex128[:, :], float64[:, :])", max_registers = max_registers) def get_spin(state, spin): """ Calculate each expected spin value in parallel. For spin half: .. math:: \\begin{align*} \\langle F\\rangle(t) = \\begin{pmatrix} \\Re(\\psi_{+\\frac{1}{2}}(t)\\psi_{-\\frac{1}{2}}(t)^*)\\\\ -\\Im(\\psi_{+\\frac{1}{2}}(t)\\psi_{-\\frac{1}{2}}(t)^*)\\\\ \\frac{1}{2}(|\\psi_{+\\frac{1}{2}}(t)|^2 - |\\psi_{-\\frac{1}{2}}(t)|^2) \\end{pmatrix} \\end{align*} For spin one: .. math:: \\begin{align*} \\langle F\\rangle(t) = \\begin{pmatrix} \\Re(\\sqrt{2}\\psi_{0}(t)^*(\\psi_{+1}(t) + \\psi_{-1}(t))\\\\ -\\Im(\\sqrt{2}\\psi_{0}(t)^*(\\psi_{+1}(t) - \\psi_{-1}(t))\\\\ |\\psi_{+1}(t)|^2 - |\\psi_{-1}(t)|^2 \\end{pmatrix} \\end{align*} Parameters ---------- state : :class:`numpy.ndarray` of :class:`numpy.complex128` (time_index, state_index) The state (wavefunction) of the spin system in the lab frame, for each time sampled. See :math:`\\psi(t)` in :ref:`overview_of_simulation_method`. spin : :class:`numpy.ndarray` of :class:`numpy.float64` (time_index, spatial_index) The expected value for hyperfine spin of the spin system in the lab frame, for each time sampled. Units of :math:`\\hbar`. This is an output, so use an empty :class:`numpy.ndarray` with :func:`numpy.empty()`, or declare a :class:`numpy.ndarray` using :func:`numba.cuda.device_array_like()`. """ if device_index == 0: for time_index in nb.prange(spin.shape[0]): if dimension == 2: spin[time_index, 0] = (state[time_index, 0]*conj(state[time_index, 1])).real spin[time_index, 1] = (1j*state[time_index, 0]*conj(state[time_index, 1])).real spin[time_index, 2] = 0.5*(state[time_index, 0].real**2 + state[time_index, 0].imag**2 - state[time_index, 1].real**2 - state[time_index, 1].imag**2) else: spin[time_index, 0] = (2*conj(state[time_index, 1])*(state[time_index, 0] + state[time_index, 2])/sqrt2).real spin[time_index, 1] = (2j*conj(state[time_index, 1])*(state[time_index, 0] - state[time_index, 2])/sqrt2).real spin[time_index, 2] = state[time_index, 0].real**2 + state[time_index, 0].imag**2 - state[time_index, 2].real**2 - state[time_index, 2].imag**2 elif device_index > 0: if device_index == 1: time_index = cuda.grid(1) elif device_index == 1: time_index = roc.get_global_id(1) if time_index < spin.shape[0]: if dimension == 2: spin[time_index, 0] = (state[time_index, 0]*conj(state[time_index, 1])).real spin[time_index, 1] = (1j*state[time_index, 0]*conj(state[time_index, 1])).real spin[time_index, 2] = 0.5*(state[time_index, 0].real**2 + state[time_index, 0].imag**2 - state[time_index, 1].real**2 - state[time_index, 1].imag**2) else: spin[time_index, 0] = (2*conj(state[time_index, 1])*(state[time_index, 0] + state[time_index, 2])/sqrt2).real spin[time_index, 1] = (2j*conj(state[time_index, 1])*(state[time_index, 0] - state[time_index, 2])/sqrt2).real spin[time_index, 2] = state[time_index, 0].real**2 + state[time_index, 0].imag**2 - state[time_index, 2].real**2 - state[time_index, 2].imag**2 return def spin_calculator(state): """ Calculates the expected spin projection (Bloch vector) over time for a given time series of a quantum state. Parameters ---------- state : :obj:`numpy.ndarray` of :obj:`numpy.complex128` (time_index, magnetic_quantum_number) The quantum state of the spin system over time, written in terms of the eigenstates of the spin projection operator in the z direction. Returns ------- spin : :obj:`numpy.ndarray` of :obj:`numpy.float64` (time_index, spatial_direction) The expected spin projection (Bloch vector) over time. """ if device.index == 0: spin = np.empty((state.shape[0], 3), np.float64) get_spin(state, spin) elif device == Device.CUDA: spin = cuda.device_array((state.shape[0], 3), np.float64) blocks_per_grid = (state.shape[0] + (threads_per_block - 1)) // threads_per_block get_spin[blocks_per_grid, threads_per_block](cuda.to_device(state), spin) spin = spin.copy_to_host() elif device == Device.ROC: spin = roc.device_array((state.shape[0], 3), np.float64) blocks_per_grid = (state.shape[0] + (threads_per_block - 1)) // threads_per_block get_spin[blocks_per_grid, threads_per_block](roc.to_device(state), spin) spin = spin.copy_to_host() return spin self.get_time_evolution_raw = get_time_evolution self.spin_calculator = spin_calculator def evaluate(self, sweep_parameter, time_start, time_end, time_step_integration, time_step_output, state_init): """ Integrates the time dependent Schroedinger equation and returns the quantum state of the spin system over time. Parameters ---------- sweep_parameter : :obj:`float` The input to the `get_field` function supplied by the user. Modifies the field function so the integrator can be used for many experiments, without the need for slow recompilation. For example, if the `sweep_parameter` is used to define the bias field strength in `get_field`, then one can run many simulations, sweeping through bias values, by calling this method multiple times, each time varying `sweep_parameter`. time_start : :obj:`float` The time offset that the experiment is to start at. Measured in s. time_end : :obj:`float` The time that the experiment is to finish at. Measured in s. The duration of the experiment is `time_end - time_start`. time_step_integration : :obj:`float` The integration time step. Measured in s. time_step_output : :obj:`float` The sample resolution of the output timeseries for the state. Must be a whole number multiple of `time_step_integration`. Measured in s. state_init : :obj:`numpy.ndarray` of :obj:`numpy.complex128` (magnetic_quantum_number) The initial quantum state of the spin system, written in terms of the eigenstates of the spin projection operator in the z direction. Returns ------- results : :obj:`Results` An object containing the results of the simulation. """ if math.fabs(time_step_output/time_step_integration - round(time_step_output/time_step_integration)) > 1e-6: print(f"\033[33mspinsim warning: time_step_output not an integer multiple of time_step_integration. Resetting time_step_integration to {time_step_output/round(time_step_output/time_step_integration):8.4e}.\033[0m\n") time_step_integration = time_step_output/round(time_step_output/time_step_integration) time_end_points = np.asarray([time_start, time_end], np.float64) state_init = np.asarray(state_init, np.complex128) time_index_max = int((time_end_points[1] - time_end_points[0])/time_step_output) if self.device.index == 0: time = np.empty(time_index_max, np.float64) time_evolution_coarse = np.empty((time_index_max, self.spin_quantum_number.dimension, self.spin_quantum_number.dimension), np.complex128) self.get_time_evolution_raw(sweep_parameter, time, time_end_points, time_step_integration, time_step_output, time_evolution_coarse) elif self.device == Device.CUDA: time = cuda.device_array(time_index_max, np.float64) time_evolution_coarse = cuda.device_array((time_index_max, self.spin_quantum_number.dimension, self.spin_quantum_number.dimension), np.complex128) blocks_per_grid = (time.size + (self.threads_per_block - 1)) // self.threads_per_block try: self.get_time_evolution_raw[blocks_per_grid, self.threads_per_block](sweep_parameter, time, time_end_points, time_step_integration, time_step_output, time_evolution_coarse) except: print("\033[31mspinsim error: numba.cuda could not jit get_field function into a cuda device function.\033[0m\n") raise time_evolution_coarse = time_evolution_coarse.copy_to_host() time = time.copy_to_host() elif self.device == Device.ROC: time = roc.device_array(time_index_max, np.float64) time_evolution_coarse = roc.device_array((time_index_max, self.spin_quantum_number.dimension, self.spin_quantum_number.dimension), np.complex128) blocks_per_grid = (time.size + (self.threads_per_block - 1)) // self.threads_per_block try: self.get_time_evolution_raw[blocks_per_grid, self.threads_per_block](sweep_parameter, time, time_end_points, time_step_integration, time_step_output, time_evolution_coarse) except: print("\033[31mspinsim error: numba.roc could not jit get_field function into a roc device function.\033[0m\n") raise time_evolution_coarse = time_evolution_coarse.copy_to_host() time = time.copy_to_host() state = np.empty((time_index_max, self.spin_quantum_number.dimension), np.complex128) self.get_state(state_init, state, time_evolution_coarse) results = Results(time, time_evolution_coarse, state, self.spin_calculator) return results @staticmethod @nb.njit def get_state(state_init, state, time_evolution): """ Use the stepwise time evolution operators in succession to find the quantum state timeseries of the 3 level atom. Parameters ---------- state_init : :class:`numpy.ndarray` of :class:`numpy.complex128` The state (spin wavefunction) of the system at the start of the simulation. state : :class:`numpy.ndarray` of :class:`numpy.complex128` (time_index, state_index) The state (wavefunction) of the spin system in the lab frame, for each time sampled. time_evolution : :class:`numpy.ndarray` of :class:`numpy.complex128` (time_index, bra_state_index, ket_state_index) The evaluated time evolution operator between each time step. See :ref:`architecture` for some information. """ for time_index in range(state.shape[0]): # State = time evolution * previous state for x_index in nb.prange(state.shape[1]): state[time_index, x_index] = 0 if time_index > 0: for z_index in range(state.shape[1]): state[time_index, x_index] += time_evolution[time_index - 1, x_index, z_index]*state[time_index - 1, z_index] else: state[time_index, x_index] += state_init[x_index] sqrt2 = math.sqrt(2) sqrt3 = math.sqrt(3) machine_epsilon = np.finfo(np.float64).eps*1000 class Utilities: """ A on object that contains definitions of all of the device functions (functions compiled for use on the target device) used in the integrator. These device functions are compiled for the chosen target device on construction of the object. Attributes ---------- conj(z) : :obj:`callable` Conjugate of a complex number. .. math:: \\begin{align*} (a + ib)^* &= a - ib\\\\ a, b &\\in \\mathbb{R} \\end{align*} Parameters: * **z** (:class:`numpy.complex128`) - The complex number to take the conjugate of. Returns * **cz** (:class:`numpy.complex128`) - The conjugate of z. complex_abs(z) : :obj:`callable` The absolute value of a complex number. .. math:: \\begin{align*} |a + ib| &= \\sqrt{a^2 + b^2}\\\\ a, b &\\in \\mathbb{R} \\end{align*} Parameters: * **z** (:class:`numpy.complex128`) - The complex number to take the absolute value of. Returns * **az** (:class:`numpy.float64`) - The absolute value of z. norm2(z) : :obj:`callable` The 2 norm of a complex vector. .. math:: \|a + ib\|_2 = \\sqrt {\\left(\\sum_i a_i^2 + b_i^2\\right)} Parameters: * **z** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (index)) - The vector to take the 2 norm of. Returns * **nz** (:class:`numpy.float64`) - The 2 norm of z. inner(left, right) : :obj:`callable` The inner (maths convention dot) product between two complex vectors. .. note:: The mathematics definition is used here rather than the physics definition, so the left vector is conjugated. Thus the inner product of two orthogonal vectors is 0. .. math:: \\begin{align*} l \\cdot r &\\equiv \\langle l, r \\rangle\\\\ l \\cdot r &= \\sum_i (l_i)^* r_i \\end{align*} Parameters: * **left** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (index)) - The vector to left multiply in the inner product. * **right** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (index)) - The vector to right multiply in the inner product. Returns * **d** (:class:`numpy.complex128`) - The inner product of l and r. set_to(operator, result) : :obj:`callable` Copy the contents of one matrix into another. .. math:: (A)_{i, j} = (B)_{i, j} Parameters: * **operator** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to copy from. * **result** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to copy to. set_to_one(operator) : :obj:`callable` Make a matrix the multiplicative identity, ie, :math:`1`. .. math:: \\begin{align*} (A)_{i, j} &= \\delta_{i, j}\\\\ &= \\begin{cases} 1,&i = j\\\\ 0,&i\\neq j \\end{cases} \\end{align*} Parameters: * **operator** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to set to :math:`1`. set_to_zero(operator) : :obj:`callable` Make a matrix the additive identity, ie, :math:`0`. .. math:: \\begin{align*} (A)_{i, j} = 0 \\end{align*} Parameters: * **operator** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to set to :math:`0`. matrix_multiply(left, right, result) : :obj:`callable` Multiply matrices left and right together, to be returned in result. .. math:: \\begin{align*} (LR)_{i,k} = \\sum_j (L)_{i,j} (R)_{j,k} \\end{align*} Parameters: * **left** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to left multiply by. * **right** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix to right multiply by. * **result** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - A matrix to be filled with the result of the product. adjoint(operator) : :obj:`callable` Takes the hermitian adjoint of a matrix. .. math:: \\begin{align*} A^\\dagger &\\equiv A^H\\\\ (A^\\dagger)_{y,x} &= ((A)_{x,y})^* \\end{align*} Matrix can be in :math:`\\mathbb{C}^{2\\times2}` or :math:`\\mathbb{C}^{3\\times3}`. Parameters: * **operator** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The operator to take the adjoint of. * **result** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - An array to write the resultant adjoint to. matrix_exponential_analytic(field_sample, result) : :obj:`callable` Calculates a :math:`\\mathfrak{su}(2)` matrix exponential based on its analytic form. .. warning:: Only available for use with spin half systems. Will not work with spin one systems. Assumes the exponent is an imaginary linear combination of :math:`\\mathfrak{su}(2)`, being, .. math:: \\begin{align*} A &= -i(x J_x + y J_y + z J_z), \\end{align*} with .. math:: \\begin{align*} J_x &= \\frac{1}{2}\\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix},& J_y &= \\frac{1}{2}\\begin{pmatrix} 0 & -i \\\\ i & 0 \\end{pmatrix},& J_z &= \\frac{1}{2}\\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\end{pmatrix} \\end{align*} Then the exponential can be calculated as .. math:: \\begin{align*} \\exp(A) &= \\exp(-ix J_x - iy J_y - iz J_z)\\\\ &= \\begin{pmatrix} \\cos(\\frac{r}{2}) - i\\frac{z}{r}\\sin(\\frac{r}{2}) & -\\frac{y + ix}{r}\\sin(\\frac{r}{2})\\\\ \\frac{y - ix}{r}\\sin(\\frac{r}{2}) & \\cos(\\frac{r}{2}) + i\\frac{z}{r}\\sin(\\frac{r}{2}) \\end{pmatrix} \\end{align*} with :math:`r = \\sqrt{x^2 + y^2 + z^2}`. Parameters: * **field_sample** (:class:`numpy.ndarray` of :class:`numpy.float64`, (y_index, x_index)) - The values of x, y and z respectively, as described above. * **result** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix which the result of the exponentiation is to be written to. matrix_exponential_lie_trotter(field_sample, result) : :obj:`callable` Calculates a matrix exponential based on the Lie Product Formula, .. math:: \\exp(A + B) = \\lim_{c \\to \\infty} \\left(\\exp\\left(\\frac{1}{c}A\\right) \\exp\\left(\\frac{1}{c}B\\right)\\right)^c. **For spin half systems:** Assumes the exponent is an imaginary linear combination of a subspace of :math:`\\mathfrak{su}(2)`, being, .. math:: \\begin{align*} A &= -i(x J_x + y J_y + z J_z), \\end{align*} with .. math:: \\begin{align*} J_x &= \\frac{1}{2}\\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix},& J_y &= \\frac{1}{2}\\begin{pmatrix} 0 & -i \\\\ i & 0 \\end{pmatrix},& J_z &= \\frac{1}{2}\\begin{pmatrix} 1 & 0 \\\\ 0 & -1 \\end{pmatrix} \\end{align*} Then the exponential can be approximated as, for large :math:`\\tau`, .. math:: \\begin{align*} \\exp(A) &= \\exp(-ix J_x - iy J_y - iz J_z)\\\\ &= \\exp(2^{-\\tau}(-ix J_x - iy J_y - iz J_z))^{2^\\tau}\\\\ &\\approx (\\exp(-i(2^{-\\tau} x) J_x) \\exp(-i(2^{-\\tau} y) J_y) \\exp(-i(2^{-\\tau} z) J_z)^{2^\\tau}\\\\ &= \\begin{pmatrix} (c_Xc_Y - is_Xs_Y) e^{-iZ} & -(c_Xs_Y + is_Xc_Y) e^{iZ} \\\\ (c_Xs_Y - is_Xc_Y) e^{-iZ} & (c_Xc_Y + is_Xs_Y) e^{iZ} \\end{pmatrix}^{2^\\tau}\\\\ &= T^{2^\\tau}, \\end{align*} with .. math:: \\begin{align*} X &= \\frac{1}{2}2^{-\\tau}x,\\\\ Y &= \\frac{1}{2}2^{-\\tau}y,\\\\ Z &= \\frac{1}{2}2^{-\\tau}z,\\\\ c_{\\theta} &= \\cos(\\theta),\\\\ s_{\\theta} &= \\sin(\\theta). \\end{align*} **For spin one systems** Assumes the exponent is an imaginary linear combination of a subspace of :math:`\\mathfrak{su}(3)`, being, .. math:: \\begin{align*} A &= -i(x J_x + y J_y + z J_z + q J_q), \\end{align*} with .. math:: \\begin{align*} J_x &= \\frac{1}{\\sqrt{2}}\\begin{pmatrix} 0 & 1 & 0 \\\\ 1 & 0 & 1 \\\\ 0 & 1 & 0 \\end{pmatrix},& J_y &= \\frac{1}{\\sqrt{2}}\\begin{pmatrix} 0 & -i & 0 \\\\ i & 0 & -i \\\\ 0 & i & 0 \\end{pmatrix},\\\\ J_z &= \\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & 0 & 0 \\\\ 0 & 0 & -1 \\end{pmatrix},& J_q &= \\frac{1}{3}\\begin{pmatrix} 1 & 0 & 0 \\\\ 0 & -2 & 0 \\\\ 0 & 0 & 1 \\end{pmatrix} \\end{align*} Then the exponential can be approximated as, for large :math:`\\tau`, .. math:: \\begin{align*} \\exp(A) &= \\exp(-ix J_x - iy J_y - iz J_z - iq J_q)\\\\ &= \\exp(2^{-\\tau}(-ix J_x - iy J_y - iz J_z - iq J_q))^{2^\\tau}\\\\ &\\approx (\\exp(-i(2^{-\\tau} x) J_x) \\exp(-i(2^{-\\tau} y) J_y) \\exp(-i(2^{-\\tau} z J_z + (2^{-\\tau} q) J_q)))^{2^\\tau}\\\\ &= \\begin{pmatrix} \\frac{e^{-i\\left(Z + \\frac{Q}{3}\\right)}(c_X + c_Y - i s_Xs_Y)}{2} & \\frac{e^{i\\frac{2Q}{3}} (-s_Y -i c_Y s_X)}{\\sqrt{2}} & \\frac{e^{-i\\left(-Z + \\frac{Q}{3}\\right)}(c_X - c_Y + i s_Xs_Y)}{2} \\\\ \\frac{e^{-i\\left(Z + \\frac{Q}{3}\\right)} (-i s_X + c_X s_Y)}{\\sqrt{2}} & e^{i\\frac{2Q}{3}} c_X c_Y & \\frac{e^{-i(Z - \\frac{Q}{3})} (-i s_X - c_X s_Y)}{\\sqrt{2}} \\\\ \\frac{e^{-i\\left(Z + \\frac{Q}{3}\\right)}(c_X - c_Y - i s_Xs_Y)}{2} & \\frac{e^{i\\frac{2Q}{3}} (s_Y -i c_Y s_X)}{\\sqrt{2}} & \\frac{e^{-i\\left(-Z + \\frac{Q}{3}\\right)}(c_X + c_Y + i s_Xs_Y)}{2} \\end{pmatrix}^{2^\\tau}\\\\ &= T^{2^\\tau}, \\end{align*} with .. math:: \\begin{align*} X &= 2^{-\\tau}x,\\\\ Y &= 2^{-\\tau}y,\\\\ Z &= 2^{-\\tau}z,\\\\ Q &= 2^{-\\tau}q,\\\\ c_{\\theta} &= \\cos(\\theta),\\\\ s_{\\theta} &= \\sin(\\theta). \\end{align*} Once :math:`T` is calculated, it is then recursively squared :math:`\\tau` times to obtain :math:`\\exp(A)`. Parameters: * **field_sample** (:class:`numpy.ndarray` of :class:`numpy.float64`, (y_index, x_index)) - The values of x, y and z (and q for spin one) respectively, as described above. * **result** (:class:`numpy.ndarray` of :class:`numpy.complex128`, (y_index, x_index)) - The matrix which the result of the exponentiation is to be written to. * **trotter_cutoff** (:obj:`int`) - The number of squares to make to the approximate matrix (:math:`\\tau` above). """ def __init__(self, spin_quantum_number, device, threads_per_block): """ Parameters ---------- spin_quantum_number : :obj:`SpinQuantumNumber` The option to select whether the simulator will integrate a spin half :obj:`SpinQuantumNumber.HALF`, or spin one :obj:`SpinQuantumNumber.ONE` quantum system. device : :obj:`Device` The option to select which device will be targeted for integration. That is, whether the integrator is compiled for a CPU or GPU. Defaults to :obj:`Device.CUDA` if the system it is being run on is Nvidia Cuda compatible, and defaults to :obj:`Device.CPU` otherwise. See :obj:`Device` for all options and more details. threads_per_block : :obj:`int` The size of each thread block (workgroup), in terms of the number of threads (workitems) they each contain, when running on the GPU target devices :obj:`Device.CUDA` (:obj:`Device.ROC`). Defaults to 64. Modifying might be able to increase execution time for different GPU models. """ jit_device = device.jit_device device_index = device.index @jit_device def conj(z): return (z.real - 1j*z.imag) @jit_device def complex_abs(z): return math.sqrt(z.real**2 + z.imag**2) if spin_quantum_number == SpinQuantumNumber.HALF: @jit_device def norm2(z): return math.sqrt(z[0].real**2 + z[0].imag**2 + z[1].real**2 + z[1].imag**2) @jit_device def inner(left, right): return conj(left[0])*right[0] + conj(left[1])*right[1] @jit_device def set_to(operator, result): result[0, 0] = operator[0, 0] result[1, 0] = operator[1, 0] result[0, 1] = operator[0, 1] result[1, 1] = operator[1, 1] @jit_device def set_to_one(operator): operator[0, 0] = 1 operator[1, 0] = 0 operator[0, 1] = 0 operator[1, 1] = 1 @jit_device def set_to_zero(operator): operator[0, 0] = 0 operator[1, 0] = 0 operator[0, 1] = 0 operator[1, 1] = 0 @jit_device def matrix_multiply(left, right, result): result[0, 0] = left[0, 0]*right[0, 0] + left[0, 1]*right[1, 0] result[1, 0] = left[1, 0]*right[0, 0] + left[1, 1]*right[1, 0] result[0, 1] = left[0, 0]*right[0, 1] + left[0, 1]*right[1, 1] result[1, 1] = left[1, 0]*right[0, 1] + left[1, 1]*right[1, 1] @jit_device def matrix_square_residual(operator, result): result[0, 0] = (2 + operator[0, 0])*operator[0, 0] + operator[0, 1]*operator[1, 0] result[1, 0] = operator[1, 0]*operator[0, 0] + (2 + operator[1, 1])*operator[1, 0] result[0, 1] = (2 + operator[0, 0])*operator[0, 1] + operator[0, 1]*operator[1, 1] result[1, 1] = operator[1, 0]*operator[0, 1] + (2 + operator[1, 1])*operator[1, 1] @jit_device def adjoint(operator, result): result[0, 0] = conj(operator[0, 0]) result[1, 0] = conj(operator[0, 1]) result[0, 1] = conj(operator[1, 0]) result[1, 1] = conj(operator[1, 1]) @jit_device def matrix_exponential_analytic(field_sample, result): x = field_sample[0] y = field_sample[1] z = field_sample[2] r = math.sqrt(x**2 + y**2 + z**2) if r > 0: x /= r y /= r z /= r c = math.cos(r/2) s = math.sin(r/2) result[0, 0] = c - 1j*z*s result[1, 0] = (y - 1j*x)*s result[0, 1] = -(y + 1j*x)*s result[1, 1] = c + 1j*z*s else: result[0, 0] = 1 result[1, 0] = 0 result[0, 1] = 0 result[1, 1] = 1 @jit_device def matrix_exponential_lie_trotter(field_sample, result, trotter_cutoff): hyper_cube_amount = math.ceil(trotter_cutoff/2) if hyper_cube_amount < 0: hyper_cube_amount = 0 precision = 4**hyper_cube_amount a = math.sqrt(field_sample[0]*field_sample[0] + field_sample[1]*field_sample[1]) if a > 0: ep = (field_sample[0] + 1j*field_sample[1])/a else: ep = 1 a = a/precision Ca = math.cos(a/2) Sa = -1j*math.sin(a/2) ez = field_sample[2]/(2*precision) ez = math.cos(ez) + 1j*math.sin(ez) # eq = field_sample[3]/(6*precision) # eq = math.cos(eq) + 1j*math.sin(eq) result[0, 0] = Ca/ez - 1 result[1, 0] = Sa*ep result[0, 1] = Sa/ep result[1, 1] = Ca*ez - 1 if device_index == 0: temporary = np.empty((2, 2), dtype = np.complex128) elif device_index == 1: temporary = cuda.local.array((2, 2), dtype = np.complex128) elif device_index == 2: temporary_group = roc.shared.array((threads_per_block, 2, 2), dtype = np.complex128) temporary = temporary_group[roc.get_local_id(1), :, :] for power_index in range(hyper_cube_amount): matrix_square_residual(result, temporary) matrix_square_residual(temporary, result) # matrix_multiply(result, result, temporary) # matrix_multiply(temporary, temporary, result) result[0, 0] += 1 result[1, 1] += 1 # @jit_device # def matrix_exponential_lie_trotter(field_sample, result, trotter_cutoff): # hyper_cube_amount = math.ceil(trotter_cutoff/2) # if hyper_cube_amount < 0: # hyper_cube_amount = 0 # precision = 4**hyper_cube_amount # x = field_sample[0]/(2*precision) # y = field_sample[1]/(2*precision) # z = field_sample[2]/(2*precision) # cx = math.cos(x) # sx = math.sin(x) # cy = math.cos(y) # sy = math.sin(y) # cisz = math.cos(z) + 1j*math.sin(z) # result[0, 0] = (cx*cy - 1j*sx*sy)/cisz # result[1, 0] = (cx*sy -1j*sx*cy)/cisz # result[0, 1] = -(cx*sy + 1j*sx*cy)*cisz # result[1, 1] = (cx*cy + 1j*sx*sy)*cisz # if device_index == 0: # temporary = np.empty((2, 2), dtype = np.complex128) # elif device_index == 1: # temporary = cuda.local.array((2, 2), dtype = np.complex128) # elif device_index == 2: # temporary_group = roc.shared.array((threads_per_block, 2, 2), dtype = np.complex128) # temporary = temporary_group[roc.get_local_id(1), :, :] # for power_index in range(hyper_cube_amount): # matrix_multiply(result, result, temporary) # matrix_multiply(temporary, temporary, result) else: @jit_device def norm2(z): return math.sqrt(z[0].real**2 + z[0].imag**2 + z[1].real**2 + z[1].imag**2 + z[2].real**2 + z[2].imag**2) @jit_device def cross(left, right, result): result[0] = conj(left[1]*right[2] - left[2]*right[1]) result[1] = conj(left[2]*right[0] - left[0]*right[2]) result[2] = conj(left[0]*right[1] - left[1]*right[0]) @jit_device def inner(left, right): return conj(left[0])*right[0] + conj(left[1])*right[1] + conj(left[2])*right[2] @jit_device def set_to(operator, result): result[0, 0] = operator[0, 0] result[1, 0] = operator[1, 0] result[2, 0] = operator[2, 0] result[0, 1] = operator[0, 1] result[1, 1] = operator[1, 1] result[2, 1] = operator[2, 1] result[0, 2] = operator[0, 2] result[1, 2] = operator[1, 2] result[2, 2] = operator[2, 2] @jit_device def set_to_one(operator): operator[0, 0] = 1 operator[1, 0] = 0 operator[2, 0] = 0 operator[0, 1] = 0 operator[1, 1] = 1 operator[2, 1] = 0 operator[0, 2] = 0 operator[1, 2] = 0 operator[2, 2] = 1 @jit_device def set_to_zero(operator): operator[0, 0] = 0 operator[1, 0] = 0 operator[2, 0] = 0 operator[0, 1] = 0 operator[1, 1] = 0 operator[2, 1] = 0 operator[0, 2] = 0 operator[1, 2] = 0 operator[2, 2] = 0 @jit_device def matrix_multiply(left, right, result): result[0, 0] = left[0, 0]*right[0, 0] + left[0, 1]*right[1, 0] + left[0, 2]*right[2, 0] result[1, 0] = left[1, 0]*right[0, 0] + left[1, 1]*right[1, 0] + left[1, 2]*right[2, 0] result[2, 0] = left[2, 0]*right[0, 0] + left[2, 1]*right[1, 0] + left[2, 2]*right[2, 0] result[0, 1] = left[0, 0]*right[0, 1] + left[0, 1]*right[1, 1] + left[0, 2]*right[2, 1] result[1, 1] = left[1, 0]*right[0, 1] + left[1, 1]*right[1, 1] + left[1, 2]*right[2, 1] result[2, 1] = left[2, 0]*right[0, 1] + left[2, 1]*right[1, 1] + left[2, 2]*right[2, 1] result[0, 2] = left[0, 0]*right[0, 2] + left[0, 1]*right[1, 2] + left[0, 2]*right[2, 2] result[1, 2] = left[1, 0]*right[0, 2] + left[1, 1]*right[1, 2] + left[1, 2]*right[2, 2] result[2, 2] = left[2, 0]*right[0, 2] + left[2, 1]*right[1, 2] + left[2, 2]*right[2, 2] @jit_device def matrix_square_residual(operator, result): result[0, 0] = (2 + operator[0, 0])*operator[0, 0] + operator[0, 1]*operator[1, 0] + operator[0, 2]*operator[2, 0] result[1, 0] = operator[1, 0]*operator[0, 0] + (2 + operator[1, 1])*operator[1, 0] + operator[1, 2]*operator[2, 0] result[2, 0] = operator[2, 0]*operator[0, 0] + operator[2, 1]*operator[1, 0] + (2 + operator[2, 2])*operator[2, 0] result[0, 1] = (2 + operator[0, 0])*operator[0, 1] + operator[0, 1]*operator[1, 1] + operator[0, 2]*operator[2, 1] result[1, 1] = operator[1, 0]*operator[0, 1] + (2 + operator[1, 1])*operator[1, 1] + operator[1, 2]*operator[2, 1] result[2, 1] = operator[2, 0]*operator[0, 1] + operator[2, 1]*operator[1, 1] + (2 + operator[2, 2])*operator[2, 1] result[0, 2] = (2 + operator[0, 0])*operator[0, 2] + operator[0, 1]*operator[1, 2] + operator[0, 2]*operator[2, 2] result[1, 2] = operator[1, 0]*operator[0, 2] + (2 + operator[1, 1])*operator[1, 2] + operator[1, 2]*operator[2, 2] result[2, 2] = operator[2, 0]*operator[0, 2] + operator[2, 1]*operator[1, 2] + (2 + operator[2, 2])*operator[2, 2] @jit_device def adjoint(operator, result): result[0, 0] = conj(operator[0, 0]) result[1, 0] = conj(operator[0, 1]) result[2, 0] = conj(operator[0, 2]) result[0, 1] = conj(operator[1, 0]) result[1, 1] = conj(operator[1, 1]) result[2, 1] = conj(operator[1, 2]) result[0, 2] = conj(operator[2, 0]) result[1, 2] = conj(operator[2, 1]) result[2, 2] = conj(operator[2, 2]) @jit_device def matrix_exponential_analytic(field_sample, result, trotter_cutoff): pass @jit_device def matrix_exponential_lie_trotter(field_sample, result, trotter_cutoff): hyper_cube_amount = math.ceil(trotter_cutoff/2) if hyper_cube_amount < 0: hyper_cube_amount = 0 precision = 4**hyper_cube_amount a = math.sqrt(field_sample[0]*field_sample[0] + field_sample[1]*field_sample[1]) if a > 0: ep = (field_sample[0] + 1j*field_sample[1])/a else: ep = 1 a = a/precision Ca = math.cos(a/2) Sa = math.sin(a/2) ca = math.cos(a) sa = -1j*math.sin(a)/sqrt2 ez = field_sample[2]/(2*precision) ez = math.cos(ez) + 1j*math.sin(ez) eq = field_sample[3]/(6*precision) eq = math.cos(eq) + 1j*math.sin(eq) # Ca = 1 # Sa = a/2 # ca = 1 # sa = -1j*a/sqrt2 # ez = field_sample[2]/(2*precision) # ez = 1 + 1j*ez # eq = field_sample[3]/(6*precision) # eq = 1 + 1j*eq result[0, 0] = (Ca/(eq*ez))*(Ca/(eq*ez)) - 1 result[1, 0] = sa*eq*ep/ez result[2, 0] = -((Sa*ep/eq)*(Sa*ep/eq)) result[0, 1] = sa*eq/(ez*ep) result[1, 1] = ca*(eq*eq*eq*eq) - 1 result[2, 1] = sa*eq*ez*ep result[0, 2] = -((Sa*eq/ep)*(Sa*eq/ep)) result[1, 2] = sa*eq*ez/ep result[2, 2] = (Ca*ez/eq)*(Ca*ez/eq) - 1 if device_index == 0: temporary = np.empty((3, 3), dtype = np.complex128) elif device_index == 1: temporary = cuda.local.array((3, 3), dtype = np.complex128) elif device_index == 2: temporary_group = roc.shared.array((threads_per_block, 3, 3), dtype = np.complex128) temporary = temporary_group[roc.get_local_id(1), :, :] for power_index in range(hyper_cube_amount): matrix_square_residual(result, temporary) matrix_square_residual(temporary, result) result[0, 0] += 1 result[1, 1] += 1 result[2, 2] += 1 # @jit_device # def matrix_exponential_lie_trotter(field_sample, result, trotter_cutoff): # hyper_cube_amount = math.ceil(trotter_cutoff/2) # if hyper_cube_amount < 0: # hyper_cube_amount = 0 # precision = 4**hyper_cube_amount # x = field_sample[0]/precision # y = field_sample[1]/precision # z = field_sample[2]/precision # q = field_sample[3]/precision # cx = math.cos(x) # sx = math.sin(x) # cy = math.cos(y) # sy = math.sin(y) # cisz = math.cos(z + q/3) - 1j*math.sin(z + q/3) # result[0, 0] = 0.5*cisz*(cx + cy - 1j*sx*sy) # result[1, 0] = cisz*(-1j*sx + cx*sy)/sqrt2 # result[2, 0] = 0.5*cisz*(cx - cy - 1j*sx*sy) # cisz = math.cos(2*q/3) + 1j*math.sin(2*q/3) # result[0, 1] = cisz*(-sy - 1j*cy*sx)/sqrt2 # result[1, 1] = cisz*cx*cy # result[2, 1] = cisz*(sy - 1j*cy*sx)/sqrt2 # cisz = math.cos(z - q/3) + 1j*math.sin(z - q/3) # result[0, 2] = 0.5*cisz*(cx - cy + 1j*sx*sy) # result[1, 2] = cisz*(-1j*sx - cx*sy)/sqrt2 # result[2, 2] = 0.5*cisz*(cx + cy + 1j*sx*sy) # if device_index == 0: # temporary = np.empty((3, 3), dtype = np.complex128) # elif device_index == 1: # temporary = cuda.local.array((3, 3), dtype = np.complex128) # elif device_index == 2: # temporary_group = roc.shared.array((threads_per_block, 3, 3), dtype = np.complex128) # temporary = temporary_group[roc.get_local_id(1), :, :] # for power_index in range(hyper_cube_amount): # matrix_multiply(result, result, temporary) # matrix_multiply(temporary, temporary, result) self.conj = conj self.complex_abs = complex_abs self.norm2 = norm2 self.inner = inner self.set_to = set_to self.set_to_one = set_to_one self.set_to_zero = set_to_zero self.matrix_multiply = matrix_multiply self.adjoint = adjoint self.matrix_exponential_analytic = matrix_exponential_analytic self.matrix_exponential_lie_trotter = matrix_exponential_lie_trotter self.matrix_square_residual = matrix_square_residual
2.96875
3
board/boot.py
vincent-l-j/micropython-stubber
1
12793004
<filename>board/boot.py<gh_stars>1-10 # This file is executed on every boot (including wake-boot from deepsleep) import machine import uos as os try: import esp esp.osdebug(None) except ImportError: esp = None try: import pyb pyb.country("US") # ISO 3166-1 Alpha-2 code, eg US, GB, DE, AU pyb.usb_mode("VCP+MSC") # act as a serial and a storage device # pyb.main('main.py') # main script to run after this one except ImportError: pass SD = False if SD: # Mount SD to /sd try: # Some boards have pulldown and/or LED on GPIO2, pullup avoids issues on TTGO 8 v1.8 # machine.Pin(2,mode=machine.Pin.IN, pull=machine.Pin.PULL_UP) # os.mount(machine.SDCard(slot=1, width=4), "/sd") # SD mode 4 bit if esp: # # SPI 1 bit M5Stack Core os.mount(machine.SDCard(slot=2, width=1, sck=18, miso=19, mosi=23, cs=4), "/sd") # SPI 1 bit M5Stack Core print("SD Card mounted") except OSError as e: if e.args[0] == 16: print("No SD Card found")
2.53125
3
atm_controller.py
chulpyo/simple-atm-controller
0
12793005
from __future__ import annotations from typing import List, Dict, Tuple, Optional from abc import ABCMeta, abstractmethod from enum import Enum from bank import Bank from cash_bin import CashBin from card_reader import CardReader class ControlType(Enum): SeeBalance = (0, "잔고 출력") Deposit = (1, "입금") Withdraw = (2, "출금") def __init__(self, code: int, desc: str) -> None: self.code = code self.desc = desc class AbstractAtmController(metaclass=ABCMeta): def __init__(self, bank: Bank, cash_bin: CashBin, card_reader: CardReader) -> None: self.bank = bank self.cash_bin = cash_bin self.card_reader = card_reader self.accounts = None self.pin = None self.card_number = None self.account = None @abstractmethod def input_pin(self, pin: str) -> None: pass @abstractmethod def authentication(self, card_number: str, pin: str) -> Tuple[bool, str]: pass @abstractmethod def select_account(self, account: str) -> Tuple[bool, str]: pass @abstractmethod def control_account( self, control: ControlType, delta: int = 0 ) -> Tuple[bool, str, int]: pass def finish(self) -> None: self.accounts = None self.pin = None self.card_number = None self.account = None class AtmController(AbstractAtmController): def input_pin(self, pin: str) -> None: self.pin = pin def authentication(self) -> Tuple[bool, str]: self.card_number = self.card_reader.get_card_number() self.accounts = self.bank.check_pin(self.card_number, self.pin) if self.accounts is None: self.finish() return (False, "인증 실패.") else: return (True, "성공") def select_account(self, account: str) -> Tuple[bool, str]: if account in self.accounts: self.account = account return (True, "성공") else: self.finish() return (False, "존재하지 않는 계좌 입니다.") def control_account( self, control: ControlType, delta: int = 0 ) -> Tuple[bool, str, int]: # 중복된 예외처리 존재, 개선 필요 # 카드 번호, 계좌가 없을시 atmcontroller의 control_account와 bank의 control_balnce에서 동시에 채크함 if self.card_number is None or self.account is None: self.finish() return (False, "카드번호 혹은 계좌가 존재하지 않습니다.", -1) if control == ControlType.SeeBalance: result = (True, "성공", self.bank.get_balance(self.card_number, self.account)) elif control == ControlType.Deposit or control == ControlType.Withdraw: # delta 는 양의 정수만 입력된다고 가정 if control == ControlType.Withdraw: delta = delta * -1 if self.cash_bin.get_balance() + delta < 0: self.finish() return (False, "현금통에 현금이 부족합니다.", -1) if self.bank.get_balance(self.card_number, self.account) + delta < 0: self.finish() return (False, "계좌에 잔고가 부족합니다.", -1) balance = self.bank.control_balance(self.card_number, self.account, delta) if balance < 0: result = (False, "실패(예외처리용)", balance) else: result = (True, "성공", balance) else: result = (False, "잘못된 제어구문입니다.", -1) self.finish() return result
3.3125
3
teamcat_service/docker_build/target/one_step_build/teamcat/doraemon/project/viewmodels/project_fortesting_list_view.py
zhangyin2088/Teamcat
6
12793006
#coding=utf-8 ''' Created on 2015-10-10 @author: Devuser ''' class ProjectFortestingList(object): def __init__(self,fullpart,isversion,fortestings): self.fullpart=fullpart self.isversion=isversion self.fortestings=fortestings
2.046875
2
cloudrunner_server/api/controllers/groups.py
ttrifonov/cloudrunner-server
2
12793007
#!/usr/bin/python # -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # /******************************************************* # * Copyright (C) 2013-2014 CloudRunner.io <<EMAIL>> # * # * Proprietary and confidential # * This file is part of CloudRunner Server. # * # * CloudRunner Server can not be copied and/or distributed # * without the express permission of CloudRunner.io # *******************************************************/ import logging from pecan import expose, request # noqa from sqlalchemy.exc import IntegrityError from cloudrunner_server.api.decorators import wrap_command from cloudrunner_server.api.model import Group, Org, Role from cloudrunner_server.api.policy.decorators import check_policy from cloudrunner_server.api.util import JsonOutput as O LOG = logging.getLogger() class Groups(object): @expose('json', generic=True) @check_policy('is_admin') @wrap_command(Group) def groups(self, name=None, *args): def modifier(roles): return [dict(as_user=role.as_user, servers=role.servers) for role in roles] if name: group = Group.visible(request).filter(Group.name == name).first() return O.group(group.serialize( skip=['id', 'org_id'], rel=[('roles', 'roles', modifier)])) else: groups = [u.serialize( skip=['id', 'org_id'], rel=[('roles', 'roles', modifier)]) for u in Group.visible(request).all()] return O._anon(groups=groups, quota=dict(allowed=request.user.tier.groups)) @groups.when(method='POST', template='json') @check_policy('is_admin') @groups.wrap_create() def add_group(self, name, *args, **kwargs): name = name or kwargs['name'] org = request.db.query(Org).filter( Org.name == request.user.org).one() group = Group(name=name, org=org) request.db.add(group) request.db.commit() @groups.when(method='PUT', template='json') @check_policy('is_admin') @groups.wrap_modify() def modify_group_roles(self, name, *args, **kwargs): name = name or kwargs['name'] add_roles = request.POST.getall('add') rm_roles = request.POST.getall('remove') group = Group.visible(request).filter(Group.name == name).first() if not group: return O.error(msg="Group is not available") for role in rm_roles: as_user, _, servers = role.rpartition("@") if not as_user or not servers: continue if as_user == "*": as_user = "@" roles = [r for r in group.roles if r.as_user == as_user and r.servers == servers] for r in roles: request.db.delete(r) request.db.commit() errs = [] for role in add_roles: as_user, _, servers = role.rpartition("@") if not Role.is_valid(as_user): errs.append(as_user) if errs: if len(errs) == 1: return O.error(msg="The role '%s' is not valid" % errs[0]) else: return O.error(msg="The following roles are not valid: %s" % ", ".join(errs)) for role in add_roles: as_user, _, servers = role.rpartition("@") if not as_user or not servers: continue if as_user == "*": as_user = "@" r = Role(as_user=as_user, servers=servers, group=group) try: request.db.add(r) request.db.commit() except IntegrityError: request.db.rollback() @groups.when(method='DELETE', template='json') @check_policy('is_admin') @groups.wrap_delete() def rm_group(self, name, *args): group = Group.visible(request).filter(Group.name == name).first() if not group: return O.error(msg="Group not found") request.db.delete(group) request.db.commit()
1.984375
2
couchfs/api.py
thanos/couchfs
1
12793008
""" A client api for couchdb attachments """ """Main module.""" import logging import fnmatch import io import mimetypes import os import pathlib import re import tempfile from contextlib import contextmanager import requests logger = logging.getLogger(__file__) echo = logger.info class CouchDBClientException(Exception): def __init__(self, *args, **kwargs): super(CouchDBClientException, self).__init__(*args, **kwargs) class URLRequired(CouchDBClientException): """A valid URL is required.""" class BadConnectionURI(CouchDBClientException): """A valid URL is required.""" class CouchDBClient: URI_ENVIRON_KEY = 'COUCHDB_URI' CONNECTION_RE = 'couchdb(s)?://((\w+)\:(.+)@)?([\w\.]+)(:(\d+))?/(\w+)' URI_RE = re.compile(CONNECTION_RE) def __init__(self, uri=None): if uri is None: uri = os.environ.get(self.URI_ENVIRON_KEY) if not uri: key = self.URI_ENVIRON_KEY raise URLRequired(f'You can set environment varialble {key}') scheme, userid, psswd, host, port, db = self.parse_connection_uri(uri) if userid and psswd: self.auth = (userid, psswd) else: self.auth = None self.db = db self.db_uri = f'{scheme}://{host}{port}/{self.db}' def check_db(self): response = requests.head(f"{self.db_uri}", auth=self.auth) return response.status_code == 200 def create_db(self): response = requests.put(f"{self.db_uri}", auth=self.auth) response.raise_for_status() def save_doc(self, doc): _id = doc['_id'] doc_uri = f'{self.db_uri}/{_id}' response = requests.head(doc_uri, auth=self.auth) if response.status_code == 200: rev = response.headers['ETag'] headers = {'If-Match': rev[1:-1]} response = requests.put(doc_uri, json=doc, headers=headers, auth=self.auth) elif response.status_code == 404: response = requests.post(self.db_uri, json=doc, auth=self.auth) response.raise_for_status() def parse_connection_uri(self, uri): """ Given: 'couchdb://admin:*****%@127.0.0.1:5984/test' -> http://127.0.0.1:5984/ :param uri: :return {host, db, auth, passwd}: """ if match := self.URI_RE.match(uri): (ssl, _, userid, psswd, host, _, port, db) = match.groups() scheme = 'http' + ('s' if ssl else '') port = f':{port}' if port else '' return scheme, userid, psswd, host, port, db else: raise BadConnectionURI(f'use a connections like {self.CONNECTION_RE}') def list_attachments(self, *patterns): regexs = [] for pattern in patterns: if self.WILDCARD_RE.search(pattern): regex = re.compile(fnmatch.translate(pattern)) else: regex = re.compile(fnmatch.translate(pattern)[:-2]) regexs.append(regex) for file_path, file_size in self.run_view(): if not regexs or any([regex.search(file_path) for regex in regexs]): yield file_path, file_size def run_view(self, **args): params = {'reduce': False, 'include_docs': False} if 'depth' in args: params['group_level'] = args['depth'] params['reduce'] = True response = requests.get(f"{self.db_uri}/_design/couchfs_views/_view/attachment_list", params=params, auth=self.auth) response.raise_for_status() for doc in response.json()['rows']: yield '/'.join(doc['key']), doc['value'] def download(self, src, dst, dry_run=False): for src, dst in self.download_srcdst(src, dst): if dry_run: yield src, dst, 'DRY RUN', response else: uri = f'{self.db_uri}/{src}' response = requests.get(uri, auth=self.auth) yield uri, dst, response.status_code, response.reason WILDCARD_RE = re.compile('[\*\?\[\]]+') def download_srcdst(self, src, dst, dry_run=False): if match := self.WILDCARD_RE.search(src): regex = re.compile(fnmatch.translate(src)) is_copying_files = True else: regex = re.compile(fnmatch.translate(src)[:-2]) sub_regex = re.compile(src) is_copying_files = False for file_path, _ in self.ls(): if regex.search(file_path): if is_copying_files: match = self.WILDCARD_RE.search(src) dst_file_path = file_path[match.span()[0]:] if dst_file_path.startswith('/'): dst_file_path = file_path[1:] dest_path = os.path.join(dst, dst_file_path) else: dst_file_path = file_path[len(src):] if file_path.startswith('/'): dst_file_path = dst_file_path[1:] dest_path = os.path.join(dst, dst_file_path[1:]) if not dest_path.startswith('dump'): print('NO DUMP', is_copying_files, dst, file_path[len(src):]) # break yield file_path, dest_path def download_file(self, url, dest): with open(dest, 'wb') as f: return self.download_to_file(url, f) def download_to_file(self, url, file_obj): with requests.get(url, stream=True, auth=self.auth) as r: r.raise_for_status() for chunk in r.iter_content(chunk_size=8192): if chunk: file_obj.write(chunk) @contextmanager def get_attachment(self, url, in_memory=False): try: if in_memory: bytes_fp = io.BytesIO() self.download_to_file(url, bytes_fp) yield bytes_fp.getvalue() else: fp = tempfile.NamedTemporaryFile(delete=False) self.download_to_file(url, fp) fp.close() yield open(fp.name, 'rb') finally: if in_memory: bytes_fp.close() else: os.unlink(fp.name) def get_attachment_as_bytes(self, url): return requests.get(url, stream=True, auth=self.auth).content def upload(self, src, dst, dry_run=False): src = os.path.abspath(src) if os.path.isfile(src): if dry_run: yield src, dst, 'DRY RUN', '' else: with open(src, 'rb') as src_fp: yield self.upload_file(src_fp, os.path.join(dst, os.path.basename(src))) elif os.path.isdir(src): p = pathlib.Path(src).resolve() for (dirpath, dirs, files) in os.walk(src): for filename in files: file_path = os.path.join(dirpath, filename) pp = file_path[len(p.parent.as_posix()) + 1:] dest_path = os.path.join(dst, pp) if dry_run: yield file_path, dest_path, 'DRY RUN', '' else: yield self.upload_file(file_path, dest_path) def upload_bytes_file(self, src_bytes, dst): with tempfile.NamedTemporaryFile() as src_fp: src_fp.name = os.path.basename(dst) src_fp.write(src_bytes) return self.upload_file(src_fp, dst) def upload_file(self, src, dst): """ Uploads a file using dst as the doc/bucket id :param src: path to file to upload :param dst: id :return: file_name, file_url, upload status, upload message """ doc_id = [segment for segment in dst.split('/') if segment][0] file_name = '/'.join(dst.split('/')[1:]) doc_uri = f'{self.db_uri}/{doc_id}' file_uri = f'{doc_uri}/{file_name}' response = requests.head(f'{doc_uri}', auth=self.auth) if response.status_code == 404: response = requests.post(f'{self.db_uri}', json=dict(_id=doc_id), auth=self.auth) if response.status_code != 201: return file_name, f'{file_uri}', response.status_code, response.reason rev = response.json()['rev'] else: rev = response.headers['ETag'] major, _ = mimetypes.guess_type(src.name) headers = {'Content-type': f'{major}', 'If-Match': rev[1:-1]} response = requests.put(f'{file_uri}', data=src, headers=headers, auth=self.auth) response.raise_for_status() return file_name, f'{file_uri}', response.status_code, response.reason @classmethod def init_db(cls, logger=echo): echo('connecting to couchdb') client = cls() logger('checking the db') if not client.check_db(): logger('creating the db') client.create_db() _id = client.COUCHFS_VIEWS['_id'] logger(f'creating or updating the db {_id}') client.save_doc(client.COUCHFS_VIEWS) logger(f'db is now setup') COUCHFS_VIEWS={ "_id": "_design/couchfs_views", "views": { "attachment_list": { "map": "function (doc) {\n if (doc._attachments) {\n for (const file_name in doc._attachments) {\n emit((doc._id+'/'+file_name).split('/'), doc._attachments[file_name].length);\n }\n} else {\n emit(doc._id.split('/'), 0)\n}\n}", "reduce": "_stats" } }, "language": "javascript" }
2.90625
3
0x02-python-import_modules/5-variable_load.py
darkares23/holbertonschool-higher_level_programming
0
12793009
<gh_stars>0 #!/usr/bin/python3 if __name__ == "__main__": import variable_load_5 print("{:d}".format(variable_load_5.a))
1.84375
2
7kyu/jaden_casing_strings.py
nhsz/codewars
1
12793010
# http://www.codewars.com/kata/5390bac347d09b7da40006f6/ import string def to_jaden_case(s): return string.capwords(s)
2
2
03/solve.py
jkowalleck/AoC2020
0
12793011
<reponame>jkowalleck/AoC2020<filename>03/solve.py from collections import namedtuple from os import path from typing import List INPUT_FILE = path.join(path.dirname(__file__), 'input') def get_input() -> List[str]: with open(INPUT_FILE) as fh: return [line.rstrip('\n') for line in fh.readlines()] class Tile: @classmethod def from_raw_lines(cls, lines: List[str]) -> "Tile": trees = [ [char == '#' for char in line] for line in lines ] return cls(trees) def __init__(self, trees: List[List[bool]]) -> None: self.trees = trees self.height = len(self.trees) self.width = len(self.trees[0]) Position = namedtuple('Position', ['x', 'y']) class Map: def __init__(self, tile: Tile) -> None: self.tile = tile self.pos = Position(0, 0) def step(self, x, y) -> None: new_pos = Position(self.pos.x + x, self.pos.y + y) if new_pos.y >= self.tile.height: raise ValueError('stepped out') self.pos = new_pos def pos_has_tree(self) -> bool: tile_pos = Position(self.pos.x % self.tile.width, self.pos.y) return self.tile.trees[tile_pos.y][tile_pos.x] def solve(step_x, step_y) -> int: map_ = Map(Tile.from_raw_lines(get_input())) tree_count = 0 while True: try: map_.step(step_x, step_y) tree_count += 1 if map_.pos_has_tree() else 0 except ValueError: return tree_count if __name__ == '__main__': solution_part1 = solve(3, 1) print(f'solution part 1: {solution_part1}') solution_part2 = solve(1, 1) * solve(3, 1) * solve(5, 1) * solve(7, 1) * solve(1, 2) print(f'solution part 2: {solution_part2}')
3.421875
3
scripts/annotate_variants.py
gwaygenomics/pdx_exomeseq
15
12793012
""" <NAME> 2017 scripts/annotate_variants.py Use ANNOVAR to first convert a sample into annovar format and then annotate """ import os import argparse import subprocess parser = argparse.ArgumentParser() parser.add_argument('-m', '--merged', action='store_true', help='use directory for merged VCFs') parser.add_argument('-g', '--humanonly', action='store_true', help='use humanonly directory for merged VCFs') args = parser.parse_args() merged = args.merged humanonly = args.humanonly if merged: vcf_file_dir = os.path.join('processed', 'gatk_merged_vcf') annovar_file_dir = os.path.join('results', 'annovar_merged_vcfs') annotated_file_dir = os.path.join('results', 'annotated_merged_vcfs') else: vcf_file_dir = os.path.join('results', 'gatk_vcfs') annovar_file_dir = os.path.join('results', 'annovar_vcfs') annotated_file_dir = os.path.join('results', 'annotated_vcfs') if humanonly: human_string = 'humanonly' vcf_file_dir = '{}_{}'.format(vcf_file_dir, human_string) annovar_file_dir = '{}_{}'.format(annovar_file_dir, human_string) annotated_file_dir = '{}_{}'.format(annotated_file_dir, human_string) annovar_dir = os.path.join('modules', 'annovar') humandb_dir = os.path.join(annovar_dir, 'humandb/') convert_annovar = os.path.join(annovar_dir, 'convert2annovar.pl') table_annovar = os.path.join(annovar_dir, 'table_annovar.pl') conv_com = 'perl {} -format vcf4 -filter pass'.format(convert_annovar) anno_com = 'perl {} {} -buildver hg19'.format(table_annovar, humandb_dir) # Convert to annovar format for vcf_file in os.listdir(vcf_file_dir): if '.idx' not in vcf_file: base_name = vcf_file.split('.')[0] full_vcf_file = os.path.join(vcf_file_dir, vcf_file) output_vcf_file = os.path.join(annovar_file_dir, '{}.annovar.vcf'.format(base_name)) if not os.path.isfile(output_vcf_file): file_command = '{} {} > {}'.format(conv_com, full_vcf_file, output_vcf_file) subprocess.call(file_command, shell=True) # Annotate annovar formatted files with given databases for annovar_file in os.listdir(annovar_file_dir): base_name = annovar_file.split('.')[0] full_annov_file = os.path.join(annovar_file_dir, annovar_file) annotated_vcf_file = os.path.join(annotated_file_dir, '{}.annotated'.format(base_name)) if not os.path.isfile(annotated_vcf_file): file_command = 'perl {} {} modules/annovar/humandb -buildver hg19 ' \ '-out {} -verbose -otherinfo -remove -protocol ' \ 'refGene,cosmic70,gnomad_exome,dbnsfp30a ' \ '-operation g,f,f,f -nastring . -csvout ' \ '-polish'.format(table_annovar, full_annov_file, annotated_vcf_file) subprocess.call(file_command, shell=True)
2.46875
2
Week 3/Actual answer.py
JustCodeIt729/Coding-Challenges
3
12793013
def get_max_profit(stock_prices): if len(stock_prices) < 2: raise ValueError('Getting a profit requires at least 2 prices') # We'll greedily update min_price and max_profit, so we initialize # them to the first price and the first possible profit min_price = stock_prices[0] max_profit = stock_prices[1] - stock_prices[0] # Start at the second (index 1) time # We can't sell at the first time, since we must buy first, # and we can't buy and sell at the same time! # If we started at index 0, we'd try to buy *and* sell at time 0. # This would give a profit of 0, which is a problem if our # max_profit is supposed to be *negative*--we'd return 0. for current_time in range(1, len(stock_prices)): current_price = stock_prices[current_time] # See what our profit would be if we bought at the # min price and sold at the current price potential_profit = current_price - min_price # Update max_profit if we can do better max_profit = max(max_profit, potential_profit) # Update min_price so it's always # the lowest price we've seen so far min_price = min(min_price, current_price) return max_profit
4.15625
4
halfpipe/io/__init__.py
fossabot/Halfpipe-1
0
12793014
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from .file import ( DictListFile, AdaptiveLock, loadpicklelzma, dumppicklelzma, make_cachefilepath, cacheobj, uncacheobj, ) from .parse import ( parse_condition_file, parse_design, loadspreadsheet, loadmatrix, ) from .index import BidsDatabase, ExcludeDatabase, Database from .metadata import ( canonicalize_direction_code, direction_code_str, MetadataLoader, SidecarMetadataLoader, slice_timing_str, str_slice_timing, ) from .signals import meansignals __all__ = [ "DictListFile", "AdaptiveLock", "IndexedFile", "parse_condition_file", "parse_design", "loadspreadsheet", "loadmatrix", "loadpicklelzma", "dumppicklelzma", "make_cachefilepath", "cacheobj", "uncacheobj", "BidsDatabase", "ExcludeDatabase", "Database", "canonicalize_direction_code", "direction_code_str", "MetadataLoader", "SidecarMetadataLoader", "slice_timing_str", "str_slice_timing", "meansignals", ]
1.671875
2
generator_utils.py
sciatti/mazesolving
0
12793015
import numpy as np #TODO: #1. create a streamlined and replicable gif creation set of functions in this file. #2. implement these functions into the generation algorithms available. def convert_2d(index, cols): return (index // cols, index % cols) def bounds_check(index, rows, cols): if index[0] < 0 or index[0] > rows - 1: return True if index[1] < 0 or index[1] > cols - 1: return True return False def neighborCheck(grid, curr, rows, cols): #order: Left, Right, Top, Down ops = [(0,-1), (0,1), (-1,0), (1,0)] #short for operations ret = [] for i in range(4): #bounds checking x = curr.index[1] + ops[i][1] y = curr.index[0] + ops[i][0] if bounds_check((y,x), rows, cols): continue if grid[y][x].visited == False: if curr.walls[i] != 'X': ret.append(i) return ret def nbr_index(index, dir): if dir == 'L': return (index[0], index[1] - 1) elif dir == 'R': return (index[0], index[1] + 1) elif dir == 'T': return (index[0] - 1, index[1]) return (index[0] + 1, index[1]) def conv_nbr_wall(dir): if dir == 'L': return 1 elif dir == 'R': return 0 elif dir == 'T': return 2 return 3 def conv_idx_dir(index, nbr_index): y = index[0] - nbr_index[0] x = index[1] - nbr_index[1] if x == 1: return 'R' if x == -1: return 'L' if y == 1: return 'T' if y == -1: return 'D' def print_grid(grid): for i in range(len(grid)): print("[", end="") for j in range(len(grid[i])): print(grid[i][j].walls, end=", ") print("]") def print_index(grid): for i in range(len(grid)): print("[", end="") for j in range(len(grid[i])): print(grid[i][j].index, end=", ") print("]") def print_visited(grid): for i in range(len(grid)): print("[", end="") for j in range(len(grid[i])): if grid[i][j].visited == True: print('X', end=", ") else: print('O', end=", ") print("]") def maze_index(index, dir): if dir == 0: return (index[0], index[1] - 1) elif dir == 1: return (index[0], index[1] + 1) elif dir == 2: return (index[0] - 1, index[1]) return (index[0] + 1, index[1]) def create_snapshot(new_image, index, direction, color=None): # set marking color to 255 (white) if none provided if color == None: color = 255 # assign the given color to the cell to mark it as active new_image[index[0], index[1]] = color if direction < 0: return new_image # find the index of the wall to break remove mark_as_white = maze_index(index, direction) # remove the wall (set it to the provided color) new_image[mark_as_white[0], mark_as_white[1]] = color return new_image def grid_to_image(index): return (index[0] * 2 + 1, index[1] * 2 + 1) def mark_change(idx, gif_arr, wall_idx, secondIdx = None, color = None): # mark one or two changes, algorithm specific if secondIdx == None: newIMG = create_snapshot(gif_arr[-1].copy(), idx, wall_idx, color) else: newIMG = create_snapshot(gif_arr[-1].copy(), idx, wall_idx, color) newIMG = create_snapshot(newIMG, secondIdx, -1, color) if not np.array_equal(newIMG, gif_arr[-1]): gif_arr.append(newIMG) def mark_node(idx, gif_arr, secondIdx = None, color = None): if secondIdx == None: newIMG = create_snapshot(gif_arr[-1].copy(), idx, -1, color) else: newIMG = create_snapshot(gif_arr[-1].copy(), idx, -1, color) newIMG = create_snapshot(newIMG, secondIdx, -1, color) if not np.array_equal(newIMG, gif_arr[-1]): gif_arr.append(newIMG) def getNeighbor(grid, curr, rows, cols, previous): #order: Left, Right, Top, Down ops = [(0,-1), (0,1), (-1,0), (1,0)] #short for operations ret = [] for i in range(4): #bounds checking x = curr.index[1] + ops[i][1] y = curr.index[0] + ops[i][0] if bounds_check((y,x), rows, cols) or (y,x) == previous.index: continue ret.append(grid[y][x]) return ret def print_maze(grid): maze = np.chararray((len(grid) * 2 + 1, len(grid[0]) * 2 + 1)) maze[:,:] = '@' for i in range(len(grid)): for j in range(len(grid[i])): for k in range(4): idx = maze_index((i * 2 + 1,j * 2 + 1), k) maze[i * 2 + 1, j * 2 + 1] = '+' if grid[i][j].walls[k] == 'X': if k == 0 or k == 1: maze[idx[0], idx[1]] = '-' else: maze[idx[0], idx[1]] = '|' for i in range(maze.shape[0]): for j in range(maze.shape[1]): print(maze[i,j].decode('utf-8'), end=" ") print() def countNeighbors(grid, index, rows, cols): #order: Left, Right, Top, Down, Top Left, Bottom Left, Top Right, Bottom Right ops = [(0,-1), (0,1), (-1,0), (1,0), (-1,-1), (1,-1), (-1,1), (1,1)] #short for operations count = 0 for i in range(8): #bounds checking x = index[1] + ops[i][1] y = index[0] + ops[i][0] if bounds_check((y,x), rows, cols): continue if grid[y,x] == 255: count += 1 return count def checkRules(grid, index, rule): c = countNeighbors(grid, index, grid.shape[0], grid.shape[1]) for character in rule: if c == int(character): return True return False def start_cells(grid, y, x, random, visited, unvisited): ops = [(0,-1), (0,1), (-1,0), (1,0), (-1,-1), (1,-1), (-1,1), (1,1)] dirs = random.sample(ops, k=len(ops)) count = 0 for index in dirs: if count == len(dirs): break if not bounds_check((y + index[0], x + index[1]), grid.shape[0], grid.shape[1]): if y + index[0] == 0 or grid.shape[0] - 1 == y + index[0] or x + index[1] == 0 or grid.shape[1] - 1 == x + index[1]: continue grid[y + index[0], x + index[1]] = 255 visited.add((y + index[0], x + index[1])) update_set(y + index[0], x + index[1], visited, grid, unvisited) count += 1 if count == 0: return False return True def check_visited(y, x, visited): ops = [(0,-1), (0,1), (-1,0), (1,0), (-1,-1), (1,-1), (-1,1), (1,1)] for index in ops: if (y + index[0], x + index[1]) in visited: return True return False def update_set(y, x, all_nodes, grid, unvisited): ops = [(0,-1), (0,1), (-1,0), (1,0), (-1,-1), (1,-1), (-1,1), (1,1)] for index in ops: if y + index[0] == 0 or grid.shape[0] - 1 == y + index[0] or x + index[1] == 0 or grid.shape[1] - 1 == x + index[1]: continue all_nodes.add((y,x)) if (y,x) in unvisited: unvisited.remove((y,x))
3.171875
3
main.py
Hsuirad/Hemorrhagic-Volume-Assessment
0
12793016
<reponame>Hsuirad/Hemorrhagic-Volume-Assessment import cv2 as c import numpy as np import tkinter as tk from sklearn.neighbors import KNeighborsClassifier from tkinter import filedialog from PIL import ImageTk, Image l = tk.Tk() l.geometry('300x300') def select(): global name name = filedialog.askopenfilename(initialdir = "/Users/Dariush/Desktop/python_code/mri_machine_learning",title = "Select file",filetypes = (("jpeg files","*.jpg"),("all files","*.*"))) img = c.imread(name, 0) icon = ImageTk.PhotoImage(Image.open(name)) label = tk.Label(l, image = icon).pack() analyze(name) def analyze(image): values_xy = [5*3, 2*1, 9*5, 9*9] values_g = [1, 0, 5, 10] image l.title('MRI Analysis tool') lbl = tk.Label(l, text = "Please select an image to by analyzed").pack() btn = tk.Button(l, text = "import", width = 10, command=select).pack() l.mainloop() #TODO: ALL THIS HERE # # # # # # # # # # # # # # # # # # # # # # # # # # # USE KNN FOR A THREE DIMENSIONAL # # PLANE IN WHICH YOU USE DISTANCE # # AND GRAYSCALE AS CLASSIFICATION # # VALUES, AND THEN RECEIVE A POINT # # WITH ITS GRAYSCALE AND CLASSIFY # # OR DO SECTIONS LIKE 10x10 GRIDS # # # # # # # # # # # # # # # # # # # # # # # # # # # ''' Notes: - maybe use old algorithm to define exact points - have user select roi again - use x, y, and grayscale as three point in knn classification '''
3.296875
3
pasta para baixar/netcha/exr47 contagem de pares.py
vany-oss/python
0
12793017
<reponame>vany-oss/python<filename>pasta para baixar/netcha/exr47 contagem de pares.py for c in range(2, 51, 2): print(c, end=' ') print('Acabou') #pg que faz uma contagem de 2 em 2 ebtre 1 a 50
2.484375
2
src/datafinder/core/configuration/properties/property_type.py
schlauch/DataFinder
9
12793018
# $Filename$ # $Authors$ # Last Changed: $Date$ $Committer$ $Revision-Id$ # # Copyright (c) 2003-2011, German Aerospace Center (DLR) # All rights reserved. # #Redistribution and use in source and binary forms, with or without # #modification, are permitted provided that the following conditions are #met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the German Aerospace Center nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Provides the supported property types. A property type allows validation of property values against defined restrictions and performs transformation of values for the persistence layer. """ from copy import deepcopy from datetime import datetime from decimal import Decimal import logging from datafinder.core.configuration.properties import constants from datafinder.core.configuration.properties import domain from datafinder.core.configuration.properties.validators import base_validators from datafinder.core.configuration.properties.validators import type_validators from datafinder.core.error import ConfigurationError __version__ = "$Revision-Id:$" _log = logging.getLogger() class BasePropertyType(object): """ Base class for all property types. """ name = "" def __init__(self, notNull): """ @param notNull: Indicates if a values may be C{None} or not. @type notNull: C{bool} """ self.restrictions = dict() self.notNull = notNull def validate(self, value): """ Performs validation of the value against the defined restrictions. Calls C{_validate} to perform concrete validation. @raise ValueError: indicates validation errors. """ if not value is None: self._validate(value) else: if self.notNull: raise ValueError("Value must not be None.") def _validate(self, value): """ Template method for concrete validation within a sub class. """ pass def fromPersistenceFormat(self, persistedValue): """ Restores the value from the persistence layer format. @raise ValueError: Indicates problems during value transformation. """ self = self # silent pylint return persistedValue def toPersistenceFormat(self, value): """ Transforms the value to the persistence layer format. @raise ValueError: Indicates problems during value transformation. """ self = self # silent pylint return value class StringType(BasePropertyType): """ Represents string values. """ name = constants.STRING_TYPE def __init__(self, minimum=None, maximum=None, pattern=None, options=None, optionsMandatory=None, notNull=False): """ @see L{StringValidator.__init__<datafinder.core.configuration. properties.validators.type_validators.StringValidator.__init__>} for details on restriction parameters. """ BasePropertyType.__init__(self, notNull) self.restrictions[constants.MINIMUM_LENGTH] = minimum self.restrictions[constants.MAXIMUM_LENGTH] = maximum self.restrictions[constants.PATTERN] = pattern self.restrictions[constants.OPTIONS] = options self.restrictions[constants.OPTIONS_MANDATORY] = optionsMandatory self._validate = type_validators.StringValidator(minimum, maximum, pattern, options, optionsMandatory) class BooleanType(BasePropertyType): """ Represents a boolean values. """ name = constants.BOOLEAN_TYPE def __init__(self, notNull=False): BasePropertyType.__init__(self, notNull) self._validate = type_validators.BooleanValidator() class NumberType(BasePropertyType): """ Represents numeric values. """ name = constants.NUMBER_TYPE def __init__(self, minimum=None, maximum=None, minDecimalPlaces=None, maxDecimalPlaces=None, options=None, optionsMandatory=None, notNull=False): """ @see L{NumberType.__init__<datafinder.core.configuration. properties.validators.type_validators.NumberType.__init__>} for details on restriction parameters. """ BasePropertyType.__init__(self, notNull) self.restrictions[constants.MINIMUM_VALUE] = minimum self.restrictions[constants.MAXIMUM_VALUE] = maximum self.restrictions[constants.MINIMUM_NUMBER_OF_DECIMAL_PLACES] = minDecimalPlaces self.restrictions[constants.MAXIMUM_NUMBER_OF_DECIMAL_PLACES] = maxDecimalPlaces self.restrictions[constants.OPTIONS] = options self.restrictions[constants.OPTIONS_MANDATORY] = optionsMandatory self._validate = type_validators.NumberValidator(minimum, maximum, minDecimalPlaces, maxDecimalPlaces, options, optionsMandatory) class DatetimeType(BasePropertyType): """ Represents date and time values. """ name = constants.DATETIME_TYPE def __init__(self, minimum=None, maximum=None, options=None, optionsMandatory=None, notNull=False): """ @see L{DatetimeType.__init__<datafinder.core.configuration. properties.validators.type_validators.DatetimeType.__init__>} for details on restriction parameters. """ BasePropertyType.__init__(self, notNull) self.restrictions[constants.MINIMUM_VALUE] = minimum self.restrictions[constants.MAXIMUM_VALUE] = maximum self.restrictions[constants.OPTIONS] = options self.restrictions[constants.OPTIONS_MANDATORY] = optionsMandatory self._validate = type_validators.DatetimeValidator(minimum, maximum, options, optionsMandatory) class ListType(BasePropertyType): """ Represents list of primitive values. """ name = constants.LIST_TYPE def __init__(self, allowedSubtypes=None, minimum=None, maximum=None, notNull=False): """ @see L{ListType.__init__<datafinder.core.configuration. properties.validators.type_validators.ListType.__init__>} for details on restriction parameters. """ BasePropertyType.__init__(self, notNull) self.restrictions[constants.MINIMUM_LENGTH] = minimum self.restrictions[constants.MAXIMUM_LENGTH] = maximum self.restrictions[constants.ALLOWED_SUB_TYPES] = list() if allowedSubtypes is None: self._allowedSubtypes = list() self._allowedSubtypes.append(StringType()) self._allowedSubtypes.append(NumberType()) self._allowedSubtypes.append(BooleanType()) self._allowedSubtypes.append(DatetimeType()) self._allowedSubtypes.append(DomainObjectType()) else: self._allowedSubtypes = allowedSubtypes subValidators = list() for subtype in self._allowedSubtypes: subValidators.append(subtype.validate) self.restrictions[constants.ALLOWED_SUB_TYPES].append(subtype.name) self._validate = type_validators.ListValidator(minimum, maximum, subValidators) def toPersistenceFormat(self, value): """ Ensures that the transformation for every list item is performed. """ if not value is None: result = list() for item in value: transformationSucceeded = False for subType in self._allowedSubtypes: try: subType.validate(item) result.append(subType.toPersistenceFormat(item)) transformationSucceeded = True break except ValueError: continue if not transformationSucceeded: raise ValueError("Cannot transform value '%s' to persistence format." % repr(item)) return result def fromPersistenceFormat(self, persistedValue): """ Ensures that the transformation for every list item is performed. """ if not persistedValue is None: result = list() for item in persistedValue: transformationSucceeded = False for subType in self._allowedSubtypes: try: value = subType.fromPersistenceFormat(item) subType.validate(value) result.append(value) transformationSucceeded = True break except ValueError: continue if not transformationSucceeded: raise ValueError("Cannot restore value '%s' from persistence format." % repr(item)) return result def __deepcopy__(self, _): return ListType(deepcopy(self._allowedSubtypes), self.restrictions[constants.MINIMUM_LENGTH], self.restrictions[constants.MAXIMUM_LENGTH], self.notNull) class AnyType(BasePropertyType): """ Represents an unspecific property type. """ name = constants.ANY_TYPE def __init__(self, allowedTypes=None, notNull=False): """ Constructor. """ BasePropertyType.__init__(self, notNull) if allowedTypes is None: self._allowedTypes = list() self._allowedTypes.append(BooleanType()) self._allowedTypes.append(NumberType()) self._allowedTypes.append(DatetimeType()) self._allowedTypes.append(StringType()) self._allowedTypes.append(DomainObjectType()) self._allowedTypes.append(ListType()) else: self._allowedTypes = allowedTypes self.restrictions[constants.ALLOWED_SUB_TYPES] = list() subValidators = list() for subtype in self._allowedTypes: subValidators.append(subtype.validate) self.restrictions[constants.ALLOWED_SUB_TYPES].append(subtype.name) self.validate = base_validators.OrValidator(subValidators) def toPersistenceFormat(self, value): """ Ensures that the transformation for every supported type is tried. """ if not value is None: result = None transformationSucceeded = False for subType in self._allowedTypes: try: subType.validate(value) result = subType.toPersistenceFormat(value) transformationSucceeded = True break except ValueError: continue if not transformationSucceeded: raise ValueError("Cannot transform value '%s' to persistence format." % repr(value)) return result def fromPersistenceFormat(self, persistedValue): """ Ensures that the transformation for every supported type is tried. """ if not persistedValue is None: result = None transformationSucceeded = False for subType in self._allowedTypes: try: value = subType.fromPersistenceFormat(persistedValue) subType.validate(value) result = value transformationSucceeded = True break except ValueError: continue if not transformationSucceeded: raise ValueError("Cannot restore value '%s' from persistence format." % repr(persistedValue)) return result def __deepcopy__(self, _): return AnyType(deepcopy(self._allowedTypes), self.notNull) class UnknownDomainObject(domain.DomainObject): """ Used to represent values of domain object types whose class could not be loaded. """ # Used to have a nice representation of the dictionary representation = domain.DomainProperty(StringType()) def __init__(self, theDict): domain.DomainObject.__init__(self) self.theDict = theDict # Used to allow access to the properties self.representation = str(theDict) class DomainObjectType(BasePropertyType): """ Represents a object values. """ name = "" # Here you find the concrete class identifier after initialization def __init__(self, cls=None, notNull=False): """ Constructor. @param cls: Full dotted class name (consists of package, module, and class name) or a class object. @type cls: C{unicode} or class object """ BasePropertyType.__init__(self, notNull) if cls is None: cls = UnknownDomainObject if isinstance(cls, basestring): self.name = cls self._cls = self._importClass(cls) else: self.name = "%s.%s" % (cls.__module__, cls.__name__) self._cls = cls @property def _isValid(self): """ Indicates whether the domain class has been correctly loaded or not. """ return self._cls != UnknownDomainObject def _importClass(self, fullDottedClassName): """ Tries to import the associated class and raises a configuration error if something goes wrong. """ fullDottedModuleName = fullDottedClassName[:fullDottedClassName.rfind(".")] className = fullDottedClassName[fullDottedClassName.rfind(".") + 1:] try: moduleInstance = __import__(fullDottedModuleName, globals(), dict(), [""]) cls = getattr(moduleInstance, className) except (ImportError, AttributeError, ValueError), error: return self._handleImportError(str(error.args)) if cls.__name__ != className: cls = self._handleImportError("Failed to import class '%s'! Got '%s' instead!" \ % (fullDottedClassName, cls.__name__)) return cls def _handleImportError(self, reason): """ Common procedure to handle failed domain object imports. """ message = "Cannot import '%s'. Reason: '%s'" % (self.name, reason) _log.warning(message) return UnknownDomainObject def _validate(self, value): """ Delegates the validation to the actual instance. """ if self._cls != value.__class__: raise ValueError("The value '%s' has not the required type '%s'." \ % (str(value), str(self._cls))) try: value.validate() except AttributeError, error: raise ValueError("Cannot validate property value. Reason '%s'" % str(error.args)) except ValueError, error: raise ValueError("Invalid property value found: '%s'" % str(error.args)) def toPersistenceFormat(self, value): """ Transform the domain object into a dictionary. """ if not self._isValid: raise ValueError("The domain class could not be found. Please " \ + "correct the configuration.") if not value is None: if self._cls != value.__class__: raise ValueError("The value '%s' has not the required type '%s'." \ % (str(value), str(self._cls))) result = dict() try: for _, name, descriptor, subValue in value.walk(): result[name] = descriptor.type.toPersistenceFormat(subValue) except AttributeError: raise ValueError("The value '%s' is no valid domain object." % str(value)) return result def fromPersistenceFormat(self, persistedValue): """ Restores the domain object from the given dictionary. """ if not persistedValue is None: if not isinstance(persistedValue, dict): raise ValueError("The persisted value '%s' is no dictionary." % str(persistedValue)) if not self._isValid: return UnknownDomainObject(persistedValue) try: instance = self._cls() except TypeError: raise ValueError("Cannot create domain object '%s' using empty constructor." % self.name) else: for instance, name, descriptor, value in instance.walk(): try: value = descriptor.type.fromPersistenceFormat(persistedValue[name]) except KeyError: raise ValueError( "Persisted domain object '%s' does not fit defined domain class '%s'." % (self.name, str(persistedValue))) else: setattr(instance, name, value) return instance _propertyNameClassMap = {StringType.name: StringType, BooleanType.name: BooleanType, NumberType.name: NumberType, DatetimeType.name: DatetimeType, ListType.name: ListType, AnyType.name: AnyType} PROPERTY_TYPE_NAMES = _propertyNameClassMap.keys()[:] def createPropertyType(propertyTypeName, restrictions=dict()): """ Factory method for property type creation. @param propertyTypeName: Name of the property type. @type propertyTypeName: C{unicode} @param restrictions: Map of restriction parameters and corresponding values. @type restrictions: C{dict} keys: C{unicode}, C{object} W0142: Here the */** magic is useful to simplify the property type creation. Other approaches would "blow up" the code here. """ # pylint: disable=W0142 if propertyTypeName in _propertyNameClassMap: try: return _propertyNameClassMap[propertyTypeName](**restrictions) except TypeError: raise ConfigurationError("Restrictions for property type '%s' are invalid." % propertyTypeName) else: return DomainObjectType(propertyTypeName) _typeConstantsPythonTypeMap = {constants.BOOLEAN_TYPE: [bool], constants.DATETIME_TYPE: [datetime], constants.LIST_TYPE: [list], constants.NUMBER_TYPE: [int, float, Decimal], constants.STRING_TYPE: [str, unicode]} def determinePropertyTypeConstant(value): """ Helper function to determine the property type constant of the given value. If the no constant matches the full dotted class name is returned. @see: L{constants<datafinder.core.configuration.properties.constants>} for property type constants. @param value: Python object. @type value: C{object} @return: Property type constant. @rtype: C{string} """ typeDisplayName = None valueType = type(value) for typeName, availableTypes in _typeConstantsPythonTypeMap.iteritems(): if valueType in availableTypes: typeDisplayName = typeName break if typeDisplayName is None: typeDisplayName = \ "%s.%s" % (value.__class__.__module__, value.__class__.__name__) return typeDisplayName
1.554688
2
pysnmp-with-texts/LAN.py
agustinhenze/mibs.snmplabs.com
8
12793019
# # PySNMP MIB module LAN (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/LAN # Produced by pysmi-0.3.4 at Wed May 1 14:05:04 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") ModuleIdentity, Gauge32, TimeTicks, Counter64, MibIdentifier, NotificationType, Bits, Integer32, iso, ObjectIdentity, IpAddress, Unsigned32, enterprises, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "Gauge32", "TimeTicks", "Counter64", "MibIdentifier", "NotificationType", "Bits", "Integer32", "iso", "ObjectIdentity", "IpAddress", "Unsigned32", "enterprises", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32") MacAddress, DisplayString, TextualConvention, RowStatus, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "MacAddress", "DisplayString", "TextualConvention", "RowStatus", "TruthValue") pepwave = MibIdentifier((1, 3, 6, 1, 4, 1, 27662)) productMib = MibIdentifier((1, 3, 6, 1, 4, 1, 27662, 200)) generalMib = MibIdentifier((1, 3, 6, 1, 4, 1, 27662, 200, 1)) lanMib = MibIdentifier((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3)) lanInfo = ModuleIdentity((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3, 1)) if mibBuilder.loadTexts: lanInfo.setLastUpdated('201305220000Z') if mibBuilder.loadTexts: lanInfo.setOrganization('PEPWAVE') if mibBuilder.loadTexts: lanInfo.setContactInfo('') if mibBuilder.loadTexts: lanInfo.setDescription('MIB module for LAN.') class PortSpeedType(TextualConvention, Integer32): description = 'Describe the port speed and type.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7)) namedValues = NamedValues(("unknown", 0), ("auto", 1), ("fullDulplex10", 2), ("halfDulplex10", 3), ("fullDulplex100", 4), ("halfDulplex100", 5), ("fullDulplex1000", 6), ("halfDulplex1000", 7)) lanStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3, 1, 1)) lanIp = MibScalar((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3, 1, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: lanIp.setStatus('current') if mibBuilder.loadTexts: lanIp.setDescription('LAN IP address.') lanSubnetMask = MibScalar((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3, 1, 1, 2), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: lanSubnetMask.setStatus('current') if mibBuilder.loadTexts: lanSubnetMask.setDescription('LAN subnet mask.') lanSpeed = MibScalar((1, 3, 6, 1, 4, 1, 27662, 200, 1, 3, 1, 1, 3), PortSpeedType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lanSpeed.setStatus('current') if mibBuilder.loadTexts: lanSpeed.setDescription('LAN speed status (Auto/10baseT-FD/ 10baseT-HD/100baseTx-FD/100baseTx-HD/1000baseTx-FD/ 1000baseTx-HD.') mibBuilder.exportSymbols("LAN", pepwave=pepwave, PYSNMP_MODULE_ID=lanInfo, lanStatus=lanStatus, lanInfo=lanInfo, lanIp=lanIp, lanSpeed=lanSpeed, lanMib=lanMib, PortSpeedType=PortSpeedType, generalMib=generalMib, productMib=productMib, lanSubnetMask=lanSubnetMask)
1.585938
2
faravdms/account/views.py
samcodesio/faravdms_active
0
12793020
<reponame>samcodesio/faravdms_active from django.shortcuts import redirect, render from django.http import HttpResponse from django.contrib.auth.models import User, auth from django.contrib import messages from django.contrib.auth.forms import UserCreationForm from .forms import CreateUserForm from django.contrib.auth.decorators import login_required # Create your views here. def login(request): if request.method == "POST": username = request.POST['username'] password = request.POST['password'] user = auth.authenticate(username=username, password=password) if user is not None: # User is authenticated auth.login(request,user) return redirect("/") else: messages.info(request, "invalid credentials") print("Error") return redirect("login") else: return render(request,"login.html") def logout(request): auth.logout(request) return redirect('login') # ADD USERS def add_users(request): if request.method == "POST": form = CreateUserForm(request.POST) if form.is_valid(): form.save() return redirect('add_users') else: form = CreateUserForm() return render(request,'add_users.html',{'form':form})
2.28125
2
171_excel_sheet_column_number.py
jsingh41/cs_jatin
1
12793021
""" 171 Excel Sheet Column Number https://leetcode.com/problems/excel-sheet-column-number/description/ Related to question Excel Sheet Column Title Given a column title as appear in an Excel sheet, return its corresponding column number. For example: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 """ class Solution(object): def titleToNumber(self, s): """ :type s: str :rtype: int """ column_num = 0 for i,letter in enumerate(s): column_num = 26 * column_num + ord(letter) - 64 return column_num
3.65625
4
musiclist_v2.py
tolgaerdonmez/music-list-lastfm
1
12793022
<reponame>tolgaerdonmez/music-list-lastfm from PyQt5 import QtCore, QtGui, QtWidgets import sqlite3 import sys import requests import os import urllib.request class song(): def __init__(self,name,artist,album): self.name = name self.artist = artist self.album = album def __str__(self): return "{} by {} | Album: {}".format(self.name,self.artist,self.album) class App_Musiclist(QtWidgets.QWidget): def __init__(self): super().__init__() self.setupUi() self.connectdb() self.countbtn = 0 def connectdb(self): try: os.remove("musiclist.db") except FileNotFoundError: pass self.connection = sqlite3.connect("musiclist.db") self.cursor = self.connection.cursor() self.cursor.execute("CREATE TABLE musiclist (song_name TEXT,song_artist TEXT,song_album TEXT)") self.connection.commit() def setupUi(self): #CREATING WIDGETS self.save_list_txt = QtWidgets.QPushButton("Save List to TXT") self.delete_list = QtWidgets.QPushButton("Delete Current List") self.add_song = QtWidgets.QPushButton("Add Song") self.add_song.setObjectName('add_song_btn') self.add_song_field = QtWidgets.QLineEdit() #STYLE self.save_list_txt.setStyleSheet("color: rgb(162, 16, 26);") self.delete_list.setStyleSheet("color: rgb(162, 16, 26);") self.add_song.setStyleSheet("color: rgb(162, 16, 26);") #SETTING LAYOUT h_box = QtWidgets.QHBoxLayout() h_box.addWidget(self.add_song) h_box.addWidget(self.add_song_field) h_box.addWidget(self.delete_list) h_box.addWidget(self.save_list_txt) self.v_box_2 = QtWidgets.QVBoxLayout() self.v_box = QtWidgets.QVBoxLayout() self.v_box.addLayout(h_box) self.v_box.addLayout(self.v_box_2) self.v_box.addStretch() #EVENTS self.add_song.clicked.connect(self.event_add_song) self.delete_list.clicked.connect(self.event_delete_list) self.save_list_txt.clicked.connect(self.event_save_list_to_txt) #WINDOW PROPERTIES self.setLayout(self.v_box) #self.setGeometry(700,100,750,500) #icon = QtGui.QIcon() #icon.addPixmap(QtGui.QPixmap("music.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) #self.setWindowTitle("Music List") def get_song_from_lastfm(self,song_name): try: # GETTING TRACK & ARTIST track_url = "http://ws.audioscrobbler.com/2.0/?method=track.search&track={}&api_key=31873cc90c27539710b2e41cf3a7ef24&format=json".format( song_name) track_val = requests.get(track_url).json() # GETTING ALBUM FROM TRACK album_url = "http://ws.audioscrobbler.com/2.0/?method=track.getInfo&api_key=31873cc90c27539710b2e41cf3a7ef24&artist={}&track={}&format=json".format(track_val["results"]["trackmatches"]["track"][0]["artist"],track_val["results"]["trackmatches"]["track"][0]["name"]) album_val = requests.get(album_url).json() song_info = [album_val["track"]["name"], album_val["track"]["artist"]["name"],album_val["track"]["album"]["title"]] return song_info except: return False def event_add_song(self): from_who = self.sender().objectName() if from_who == 'add_song_btn': get_input = self.add_song_field.text() song_info = self.get_song_from_lastfm(get_input) elif from_who == 'file_add_song': text, okPressed = QtWidgets.QInputDialog.getText(self, "Add Song","Song Name: ", QtWidgets.QLineEdit.Normal, "") song_info = self.get_song_from_lastfm(text) if song_info == False: pass else: track = song(song_info[0],song_info[1],song_info[2]) self.cursor.execute("INSERT INTO musiclist Values(?,?,?)",(song_info[0],song_info[1],song_info[2])) self.connection.commit() self.add_label = QtWidgets.QLabel(str(track)) self.add_label.setObjectName(song_info[0]) #Create Widgets & Layout self.new_h_box = QtWidgets.QHBoxLayout() self.new_h_box.setObjectName("delhbox|{}".format(self.countbtn)) new_del_btn = QtWidgets.QPushButton("X") new_del_btn.setObjectName("delbtn|{}".format(self.countbtn)) new_img = QtWidgets.QLabel() #Getting img and create img #getting url track_url = "http://ws.audioscrobbler.com/2.0/?method=track.getInfo&api_key=31873cc90c27539710b2e41cf3a7ef24&artist={}&track={}&format=json".format(song_info[1],song_info[0]) track_val = requests.get(track_url).json() url = track_val['track']['album']['image'][1]['#text'] if url == '': new_img.setPixmap(QtGui.QPixmap('music.ico').scaled(64, 64, QtCore.Qt.KeepAspectRatio)) else: data = urllib.request.urlopen(url).read() image = QtGui.QImage() image.loadFromData(data) new_img.setPixmap(QtGui.QPixmap(image)) #Add items to layout & setting to v_box_2 self.new_h_box.addWidget(new_img) self.new_h_box.addWidget(self.add_label) self.new_h_box.addStretch() self.new_h_box.addWidget(new_del_btn) self.v_box_2.addLayout(self.new_h_box) self.countbtn += 1 new_del_btn.clicked.connect(self.del_selected_item) self.add_song_field.clear() def del_selected_item(self): btn = self.sender().objectName() number = btn.split("|")[1] layout = self.findChild(QtCore.QObject, "delhbox|{}".format(number)) song_name = layout.itemAt(1).widget().objectName() self.cursor.execute("DELETE FROM musiclist WHERE song_name = ?",(song_name,)) self.connection.commit() self.clearLayout(layout) def event_save_list_to_txt(self): self.cursor.execute("SELECT * FROM musiclist") current_songs = self.cursor.fetchall() if len(current_songs) == 0: msg_box = QtWidgets.QMessageBox.warning(self, 'Empty List!', "Empty List!", QtWidgets.QMessageBox.Ok) else: save_to_where = QtWidgets.QFileDialog.getSaveFileName(self, "Save Your List to ?", os.getenv("HOME"),"Text Files (*.txt)") try: with open(save_to_where[0],"w",encoding = "utf-8") as file: for i in current_songs: add_this = song(i[0],i[1],i[2]) file.write(str(add_this) + '\n') msg_box = QtWidgets.QMessageBox.warning(self, 'List Saved !', "List Saved !", QtWidgets.QMessageBox.Ok) except FileNotFoundError: pass def event_delete_list(self): self.clearLayout(self.v_box_2) self.countbtn = 0 self.cursor.execute("DELETE FROM musiclist") def clearLayout(self, layout): if layout is not None: while layout.count(): item = layout.takeAt(0) widget = item.widget() if widget is not None: widget.deleteLater() else: self.clearLayout(item.layout()) # app = QtWidgets.QApplication(sys.argv) # ui = App_Musiclist() # sys.exit(app.exec_())
2.96875
3
cfg.py
CharlesPikachu/DeepDream
15
12793023
'''config file''' MEANS = [0.485, 0.456, 0.406] STDS = [0.229, 0.224, 0.225] MAX_JITTER = 32 MAX_ITERS = 50 LEARNING_RATE = 2e-2 NUM_OCTAVES = 6 OCTAVE_SCALE = 1.4 SAVE_INTERVAL = 10 SAVEDIR = 'results'
1.164063
1
tensorbay/dataset/dataset.py
YiweiLi4/tensorbay-python-sdk
0
12793024
<reponame>YiweiLi4/tensorbay-python-sdk #!/usr/bin/env python3 # # Copyright 2021 Graviti. Licensed under MIT License. # """Notes, DatasetBase, Dataset and FusionDataset. :class:`Notes` contains the basic information of a :class:`DatasetBase`. :class:`DatasetBase` defines the basic concept of a dataset, which is the top-level structure to handle your data files, labels and other additional information. It represents a whole dataset contains several segments and is the base class of :class:`Dataset` and :class:`FusionDataset`. :class:`Dataset` is made up of data collected from only one sensor or data without sensor information. It consists of a list of :class:`~tensorbay.dataset.segment.Segment`. :class:`FusionDataset` is made up of data collected from multiple sensors. It consists of a list of :class:`~tensorbay.dataset.segment.FusionSegment`. """ import json from typing import Any, Dict, Iterable, KeysView, Optional, Sequence, Type, TypeVar, Union, overload from ..label import Catalog from ..utility import EqMixin, NameMixin, NameSortedList, ReprMixin, ReprType, common_loads from .segment import FusionSegment, Segment _T = TypeVar("_T", FusionSegment, Segment) class Notes(ReprMixin, EqMixin): """This is a class stores the basic information of :class:`DatasetBase`. Arguments: is_continuous: Whether the data inside the dataset is time-continuous. bin_point_cloud_fields: The field names of the bin point cloud files in the dataset. """ _T = TypeVar("_T", bound="Notes") _repr_attrs = ("is_continuous", "bin_point_cloud_fields") def __init__( self, is_continuous: bool = False, bin_point_cloud_fields: Optional[Iterable[str]] = None ) -> None: self.is_continuous = is_continuous self.bin_point_cloud_fields = bin_point_cloud_fields def __getitem__(self, key: str) -> Any: try: return getattr(self, key) except AttributeError as error: raise KeyError(key) from error def _loads(self, contents: Dict[str, Any]) -> None: self.is_continuous = contents["isContinuous"] self.bin_point_cloud_fields = contents.get("binPointCloudFields") @classmethod def loads(cls: Type[_T], contents: Dict[str, Any]) -> _T: """Loads a :class:`Notes` instance from the given contents. Arguments: contents: The given dict containing the dataset notes:: { "isContinuous": <boolean> "binPointCloudFields": [ <array> or null <field_name>, <str> ... ] } Returns: The loaded :class:`Notes` instance. """ return common_loads(cls, contents) def keys(self) -> KeysView[str]: """Return the valid keys within the notes. Returns: The valid keys within the notes. """ return KeysView(self._repr_attrs) # type: ignore[arg-type] def dumps(self) -> Dict[str, Any]: """Dumps the notes into a dict. Returns: A dict containing all the information of the Notes:: { "isContinuous": <boolean> "binPointCloudFields": [ <array> or null <field_name>, <str> ... ] } """ contents: Dict[str, Any] = {"isContinuous": self.is_continuous} if self.bin_point_cloud_fields: contents["binPointCloudFields"] = self.bin_point_cloud_fields return contents class DatasetBase(NameMixin, Sequence[_T]): # pylint: disable=too-many-ancestors """This class defines the concept of a basic dataset. DatasetBase represents a whole dataset contains several segments and is the base class of :class:`Dataset` and :class:`FusionDataset`. A dataset with labels should contain a :class:`~tensorbay.label.catalog.Catalog` indicating all the possible values of the labels. Arguments: name: The name of the dataset. Attributes: catalog: The :class:`~tensorbay.label.catalog.Catalog` of the dataset. notes: The :class:`Notes` of the dataset. """ _repr_type = ReprType.SEQUENCE def __init__(self, name: str) -> None: super().__init__(name) self._segments: NameSortedList[_T] = NameSortedList() self._catalog: Catalog = Catalog() self._notes = Notes() def __len__(self) -> int: return self._segments.__len__() @overload def __getitem__(self, index: int) -> _T: ... @overload def __getitem__(self, index: slice) -> Sequence[_T]: ... def __getitem__(self, index: Union[int, slice]) -> Union[Sequence[_T], _T]: return self._segments.__getitem__(index) @property def catalog(self) -> Catalog: """Return the catalog of the dataset. Returns: The :class:`~tensorbay.label.catalog.Catalog` of the dataset. """ return self._catalog @property def notes(self) -> Notes: """Return the notes of the dataset. Returns: The class:`Notes` of the dataset. """ return self._notes def load_catalog(self, filepath: str) -> None: """Load catalog from a json file. Arguments: filepath: The path of the json file which contains the catalog information. """ with open(filepath, "r") as fp: contents = json.load(fp) self._catalog = Catalog.loads(contents) def get_segment_by_name(self, name: str) -> _T: """Return the segment corresponding to the given name. Arguments: name: The name of the request segment. Returns: The segment which matches the input name. """ return self._segments.get_from_name(name) def add_segment(self, segment: _T) -> None: """Add a segment to the dataset. Arguments: segment: The segment to be added. """ self._segments.add(segment) class Dataset(DatasetBase[Segment]): """This class defines the concept of dataset. Dataset is made up of data collected from only one sensor or data without sensor information. It consists of a list of :class:`~tensorbay.dataset.segment.Segment`. """ def create_segment(self, segment_name: str = "") -> Segment: """Create a segment with the given name. Arguments: segment_name: The name of the segment to create, which default value is an empty string. Returns: The created :class:`~tensorbay.dataset.segment.Segment`. """ segment = Segment(segment_name) self._segments.add(segment) return segment class FusionDataset(DatasetBase[FusionSegment]): """This class defines the concept of fusion dataset. FusionDataset is made up of data collected from multiple sensors. It consists of a list of :class:`~tensorbay.dataset.segment.FusionSegment`. """ def create_segment(self, segment_name: str = "") -> FusionSegment: """Create a fusion segment with the given name. Arguments: segment_name: The name of the fusion segment to create, which default value is an empty string. Returns: The created :class:`~tensorbay.dataset.segment.FusionSegment`. """ segment = FusionSegment(segment_name) self._segments.add(segment) return segment
2.3125
2
osdu_commons/services/delivery_service.py
binderjoe/sdu-commons
0
12793025
<gh_stars>0 import logging import time from functools import partial from itertools import islice from typing import List, Optional, Iterable import attr from attr.validators import instance_of, optional from pampy import match from osdu_commons.clients.delivery_client import DeliveryClient, GetResourcesResponseSuccess, \ GetResourcesResponseNotFound, GetResourcesResultItem from osdu_commons.model.aws import S3Location from osdu_commons.utils import convert from osdu_commons.utils.srn import SRN from osdu_commons.utils.validators import list_of logger = logging.getLogger(__name__) MAX_RESOURCES_FETCHING_ATTEMPTS = 5 @attr.s(frozen=True) class DeliveredResource: srn: SRN = attr.ib(validator=instance_of(SRN), converter=convert.srn) exists: bool = attr.ib(validator=instance_of(bool)) data: Optional[dict] = attr.ib(validator=optional(instance_of(dict)), default=None) s3_location: Optional[S3Location] = attr.ib(validator=optional(instance_of(S3Location)), default=None) temporary_credentials: Optional[dict] = attr.ib(validator=optional(instance_of(dict)), default=None) @classmethod def from_json(cls, json_object, credentials, exists=True): return cls( srn=json_object['SRN'], data=json_object.get('Data'), s3_location=json_object.get('S3Location'), temporary_credentials=credentials, exists=exists ) @classmethod def from_get_resource_result_item(cls, item: GetResourcesResultItem, credentials, exists=True): return cls( srn=item.srn, data=item.data, s3_location=item.s3_location, temporary_credentials=credentials, exists=exists, ) @attr.s(frozen=True) class DeliveredResponse: delivery_resources: List[DeliveredResource] = attr.ib(validator=list_of(instance_of(DeliveredResource))) not_found_resources: List[DeliveredResource] = attr.ib(validator=list_of(instance_of(DeliveredResource))) unprocessed_srn: List[SRN] = attr.ib(validator=list_of(instance_of(SRN))) class DeliveryServiceException(object): pass class DeliveryService: MAX_GET_RESOURCES_BATCH_SIZE = 100 def __init__(self, delivery_client: DeliveryClient): self._delivery_client = delivery_client def get_resources(self, resource_ids: Iterable[SRN]) -> Iterable[DeliveredResource]: resource_ids = iter(resource_ids) srns_to_fetch = list(islice(resource_ids, self.MAX_GET_RESOURCES_BATCH_SIZE)) while len(srns_to_fetch) > 0: yield from self.get_resources_batch_unordered(srns_to_fetch) srns_to_fetch = list(islice(resource_ids, self.MAX_GET_RESOURCES_BATCH_SIZE)) def get_resources_batch_unordered(self, resource_ids: List[SRN]) -> Iterable[DeliveredResource]: srns_to_fetch = set(resource_ids) for i in range(MAX_RESOURCES_FETCHING_ATTEMPTS): delivered_response = self.get_resources_batch_unordered_response(srns_to_fetch) yield from delivered_response.delivery_resources yield from delivered_response.not_found_resources srns_to_fetch = delivered_response.unprocessed_srn if len(srns_to_fetch) == 0: break logger.debug(f'Unprocessed srns: {delivered_response.unprocessed_srn} after {i} attempt') if i < MAX_RESOURCES_FETCHING_ATTEMPTS - 1: time.sleep(2 ** i) if len(srns_to_fetch) > 0: raise Exception(f'Cannot fetch srns: {srns_to_fetch}') def get_resources_batch_unordered_response(self, resource_ids: Iterable[SRN]) -> DeliveredResponse: srns_to_fetch = list(resource_ids) get_resources_response = self._delivery_client.get_resources(srns_to_fetch) return match( get_resources_response, GetResourcesResponseSuccess, self.handle_get_resources_success, GetResourcesResponseNotFound, partial(self.handle_get_resources_not_found, srn_to_fetch=srns_to_fetch), ) @staticmethod def handle_get_resources_success(get_resources_response: GetResourcesResponseSuccess) -> DeliveredResponse: result = get_resources_response.result credentials = get_resources_response.temporary_credentials delivery_resources = [ DeliveredResource.from_get_resource_result_item(res_item, credentials) for res_item in result] return DeliveredResponse( delivery_resources=delivery_resources, not_found_resources=[], unprocessed_srn=get_resources_response.unprocessed_srn ) @staticmethod def handle_get_resources_not_found(get_resources_response: GetResourcesResponseNotFound, srn_to_fetch: List[SRN]) -> DeliveredResponse: not_found_srns = get_resources_response.not_found_resource_ids not_found_delivery_resources = [DeliveredResource(srn=srn, exists=False) for srn in not_found_srns] unprocessed_srn = list(set(srn_to_fetch) - set(not_found_srns)) return DeliveredResponse( delivery_resources=[], not_found_resources=not_found_delivery_resources, unprocessed_srn=unprocessed_srn ) def get_resource(self, resource_id: SRN) -> DeliveredResource: get_resources_result = list(self.get_resources([resource_id])) assert len(get_resources_result) == 1 return get_resources_result[0] def check_if_resources_exist(self, resource_ids: Iterable[SRN]) -> bool: resources = self.get_resources(resource_ids) return all(resource.exists for resource in resources) def get_components_of_type(self, resource_id: SRN, component_type: str) -> Iterable[DeliveredResource]: resource = self.get_resource(resource_id) components_ids = [SRN.from_string(item) for item in resource.data['GroupTypeProperties']['Components']] components_ids_with_requested_type = [ component_id for component_id in components_ids if component_id.type == component_type ] return self.get_resources(components_ids_with_requested_type) def get_component_of_type(self, resource_id: SRN, component_type: str) -> DeliveredResource: get_components_of_type_result = list(self.get_components_of_type(resource_id, component_type)) assert len(get_components_of_type_result) == 1 return get_components_of_type_result[0]
1.953125
2
src/bxgateway/messages/ont/ont_message_factory.py
doubleukay/bxgateway
21
12793026
<filename>src/bxgateway/messages/ont/ont_message_factory.py from typing import Type from bxcommon.messages.abstract_message import AbstractMessage from bxcommon.messages.abstract_message_factory import AbstractMessageFactory from bxgateway.messages.ont.addr_ont_message import AddrOntMessage from bxgateway.messages.ont.block_ont_message import BlockOntMessage from bxgateway.messages.ont.consensus_ont_message import OntConsensusMessage from bxgateway.messages.ont.get_addr_ont_message import GetAddrOntMessage from bxgateway.messages.ont.get_blocks_ont_message import GetBlocksOntMessage from bxgateway.messages.ont.get_data_ont_message import GetDataOntMessage from bxgateway.messages.ont.get_headers_ont_message import GetHeadersOntMessage from bxgateway.messages.ont.headers_ont_message import HeadersOntMessage from bxgateway.messages.ont.inventory_ont_message import InvOntMessage from bxgateway.messages.ont.notfound_ont_message import NotFoundOntMessage from bxgateway.messages.ont.ont_message import OntMessage from bxgateway.messages.ont.ont_message_type import OntMessageType from bxgateway.messages.ont.ping_ont_message import PingOntMessage from bxgateway.messages.ont.pong_ont_message import PongOntMessage from bxgateway.messages.ont.tx_ont_message import TxOntMessage from bxgateway.messages.ont.ver_ack_ont_message import VerAckOntMessage from bxgateway.messages.ont.version_ont_message import VersionOntMessage class _OntMessageFactory(AbstractMessageFactory): _MESSAGE_TYPE_MAPPING = { OntMessageType.VERSION: VersionOntMessage, OntMessageType.VERACK: VerAckOntMessage, OntMessageType.GET_ADDRESS: GetAddrOntMessage, OntMessageType.ADDRESS: AddrOntMessage, OntMessageType.PING: PingOntMessage, OntMessageType.PONG: PongOntMessage, OntMessageType.CONSENSUS: OntConsensusMessage, OntMessageType.INVENTORY: InvOntMessage, OntMessageType.GET_DATA: GetDataOntMessage, OntMessageType.GET_HEADERS: GetHeadersOntMessage, OntMessageType.GET_BLOCKS: GetBlocksOntMessage, OntMessageType.BLOCK: BlockOntMessage, OntMessageType.HEADERS: HeadersOntMessage, OntMessageType.TRANSACTIONS: TxOntMessage, OntMessageType.NOT_FOUND: NotFoundOntMessage } def __init__(self): super(_OntMessageFactory, self).__init__() self.message_type_mapping = self._MESSAGE_TYPE_MAPPING def get_base_message_type(self) -> Type[AbstractMessage]: return OntMessage ont_message_factory = _OntMessageFactory()
1.421875
1
src/modules/resnet18.py
lkm2835/ELimNet
6
12793027
<gh_stars>1-10 import torch from torch import nn as nn from src.modules.base_generator import GeneratorAbstract from torchvision import models class Resnet18(nn.Module): def __init__(self, in_channel: int, out_channel: int, pretrained: bool): """ Args: in_channel: input channels. out_channel: output channels. """ super().__init__() self.out_channel = out_channel self.model = models.resnet18(pretrained=pretrained) del self.model.fc del self.model.avgpool if self.out_channel == 512: pass elif self.out_channel == 256: del self.model.layer4 elif self.out_channel == 128: del self.model.layer4 del self.model.layer3 elif self.out_channel == 64: del self.model.layer4 del self.model.layer3 del self.model.layer2 else: raise Exception("out_channel: 512, 256, 128 or 64") def forward(self,x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) if self.out_channel >= 128: x = self.model.layer2(x) if self.out_channel >= 256: x = self.model.layer3(x) if self.out_channel >= 512: x = self.model.layer4(x) return x class Resnet18Generator(GeneratorAbstract): """ Resnet18 (torchvision.models) module generator for parsing.""" def __init__(self, *args, **kwargs): """Initailize.""" super().__init__(*args, **kwargs) @property def out_channel(self) -> int: """Get out channel size.""" return self.args[0] def __call__(self, repeat: int = 1): # TODO: Apply repeat pretrained = self.args[1] if len(self.args) > 1 else True return self._get_module( Resnet18(self.in_channel, self.out_channel, pretrained=pretrained) )
2.328125
2
src/adorn/data/parameter.py
pyadorn/adorn
3
12793028
<gh_stars>1-10 # Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """State from the constructor for a parameter from the constructor.""" from typing import Any from typing import Dict from typing import TYPE_CHECKING if TYPE_CHECKING: # pragma: no cover from adorn.unit.complex import _UnitT class Parameter: """State for a parameter from a given :class:`~adorn.data.constructor.Constructor` ``Parameter`` allows for information outside of its ``obj``, to be utilized, to perform some action. Examples of constructs that utilize the information contained in ``Parameter`` include: - :class:`~adorn.unit.parameter_value.DependentTypeCheck` - :class:`~adorn.unit.parameter_value.DependentFromObj` - :class:`~adorn.unit.parameter_value.DependentUnion` Attributes: cls (_UnitT): the type of the underlying parameter parent (_UnitT): The type of object whose constructor requires an object of type ``cls`` local_state (Dict[str, Any]): Information about other arguments provided to the given constructor parameter_name (str): name of the parameter in the constructor """ def __init__( self, cls: "_UnitT", parent: "_UnitT", local_state: Dict[str, Any], parameter_name: str, ): self.cls = cls self.parent = parent self.local_state = local_state self.parameter_name = parameter_name self.origin = getattr(self.cls, "__origin__", None) self.args = getattr(self.cls, "__args__", None) def __eq__(self, o: object) -> bool: # noqa: C901 # Literal.__eq__ doesn't support dict's so # we force the check # prevent circular import from adorn.unit.parameter_value import Dependent if not isinstance(o, Parameter): return False normal_args = all( i for i in [ self.parent == o.parent, self.local_state == o.local_state, self.parameter_name == o.parameter_name, ] ) if not normal_args: return False eq_cls = False if issubclass(getattr(self.cls, "__origin__", int), Dependent): eq_cls = str(self.cls) == str(o.cls) else: eq_cls = self.cls == o.cls return eq_cls def __str__(self): return str(self.cls)
2.578125
3
fibonacci.py
shiny13/algorithm-problems-python
1
12793029
#use python3 import sys def getNthFib(n): if n == 2: return 1 elif n == 1: return 0 previous = 0 current = 1 for _ in range(n-2): previous, current = current, previous + current return current if __name__ == '__main__': # Expected only one integer as input input = sys.stdin.read() n = int(input) print(getNthFib(n))
3.953125
4
examples/diffraction/hole_crossed_grating.py
benvial/gyptis
0
12793030
<filename>examples/diffraction/hole_crossed_grating.py # -*- coding: utf-8 -*- """ 3D Checkerboard Grating ======================= Example of a dielectric bi-periodic diffraction grating. """ # sphinx_gallery_thumbnail_number = 2 from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np import gyptis as gy gy.dolfin.parameters["form_compiler"]["quadrature_degree"] = 5 # gy.dolfin.parameters["ghost_mode"] = "shared_facet" gy.dolfin.set_log_level(7) ############################################################################## # Structure is the same as in :cite:p:`Demesy2010`. # # The units of lengths are in nanometers here, and we first define some # geometrical and optical parameters: lambda0 = 0.5 dx = dy = 1 # 5 * lambda0 * 2 ** 0.5 / 4 # periods of the grating h = 0.05 theta0 = 0 phi0 = 0 psi0 = gy.pi / 4 eps_diel = 2.25 eps_layer = 0.8125 - 5.2500j ############################################################################## # The thicknesses of the different layers are specified with an # ``OrderedDict`` object **from bottom to top**: thicknesses = OrderedDict( { "pml_bottom": lambda0, "substrate": lambda0 / 1, "groove": 1 * h, "superstrate": lambda0 / 1, "pml_top": lambda0, } ) ############################################################################## # Here we set the mesh refinement parameters, in order to be able to have # ``parmesh`` cells per wavelength of the field inside each subdomain degree = 2 pmesh = 3 pmesh_hole = pmesh * 1 mesh_param = dict( { "pml_bottom": 1 * pmesh * eps_diel ** 0.5, "substrate": pmesh * eps_diel ** 0.5, "groove": pmesh * abs(eps_layer) ** 0.5, "hole": pmesh_hole, "superstrate": pmesh, "pml_top": 1 * pmesh, } ) ############################################################################## # Let's create the geometry using the :class:`~gyptis.Layered` # class: geom = gy.Layered(3, (dx, dy), thicknesses) z0 = geom.z_position["groove"] # + h/10 # l_pillar = 0.9 * dx * 2 ** 0.5 / 2 R_hole = 0.25 hole = geom.add_cylinder(0, 0, z0, 0, 0, h, R_hole) # pillar = geom.add_box(-l_pillar / 2, -l_pillar / 2, z0, l_pillar, l_pillar, h) # geom.rotate(pillar, (0, 0, 0), (0, 0, 1), np.pi / 4) groove = geom.layers["groove"] sub = geom.layers["substrate"] sup = geom.layers["superstrate"] sub, sup, hole, groove = geom.fragment([sub, sup, groove], hole) geom.add_physical(hole, "hole") geom.add_physical(groove, "groove") geom.add_physical(sub, "substrate") geom.add_physical(sup, "superstrate") mesh_size = {d: lambda0 / param for d, param in mesh_param.items()} geom.set_mesh_size(mesh_size) # geom.remove_all_duplicates() geom.build(interactive=0) # geom.build(interactive=1) ###################################################################### # Set the permittivity and permeabilities for the various domains # using a dictionary: epsilon = {d: 1 for d in geom.domains} mu = {d: 1 for d in geom.domains} epsilon["groove"] = eps_layer # epsilon["groove"] = eps_diel epsilon["hole"] = 1 epsilon["substrate"] = eps_diel ###################################################################### # Now we can create an instance of the simulation class # :class:`~gyptis.Grating`, pw = gy.PlaneWave(lambda0, (theta0, phi0, psi0), dim=3, degree=degree) grating = gy.Grating(geom, epsilon, mu, source=pw, degree=degree, periodic_map_tol=1e-8) # pp = gy.utils.project_iterative(pw.expression,grating.formulation.real_function_space) # gy.dolfin.File("test.pvd") << pp.real # us = grating.formulation.annex_field["as_subdomain"]["stack"] # pp = gy.utils.project_iterative(us,grating.formulation.real_function_space) # # gy.dolfin.File("test.pvd") << pp.real # # import os # os.system("paraview test.pvd") # xsx grating.solve() effs = grating.diffraction_efficiencies(2, orders=True) print(effs) xssx E = grating.solution["total"] # E = grating.solution["diffracted"] # E = grating.solution["periodic"] # E = grating.formulation.annex_field["as_subdomain"]["stack"] pp = gy.utils.project_iterative(E, grating.formulation.real_function_space) # Vplot = gy.dolfin.FunctionSpace(geom.mesh,"CG",degree) # # E = grating.formulation.phasor # pp = gy.utils.project_iterative(E, Vplot) gy.dolfin.File("test.pvd") << pp.real import os os.system("paraview test.pvd") xs ### reference T_ref = dict(TM=[0.2070, 1.0001], TE=[0.8187, 1.0001]) T = 0.04308 T = 0.12860 T = 0.06196 T = 0.12860 T = 0.17486 T = 0.12860 T = 0.06196 T = 0.12860 T = 0.04308 fmm = {} print("Transmission coefficient") print(" order ref calc") print("--------------------------------") print(f" 0 {T_ref['TM'][0]:.4f} {effs_TE['T'][1]:.4f} ") print(f" sum {T_ref['TM'][1]:.4f} {effs_TE['B']:.4f} ") ###################################################################### # We switch to TE polarization gratingTM = gy.Grating(geom, epsilon, mu, source=pw, polarization="TE", degree=2) gratingTM.solve() effs_TM = gratingTM.diffraction_efficiencies(1, orders=True) H = gratingTM.solution["total"] ###################################################################### # Let's visualize the fields fig, ax = plt.subplots(1, 2) ylim = geom.y_position["substrate"], geom.y_position["pml_top"] gratingTE.plot_field(ax=ax[0]) gratingTE.plot_geometry(ax=ax[0]) ax[0].set_ylim(ylim) ax[0].set_axis_off() ax[0].set_title("$E_z$ (TM)") gratingTM.plot_field(ax=ax[1]) gratingTM.plot_geometry(ax=ax[1]) ax[1].set_ylim(ylim) ax[1].set_axis_off() ax[1].set_title("$H_z$ (TE)") fig.tight_layout() fig.show() ###################################################################### # Results are in good agreement with the reference print("Transmission coefficient") print(" order ref calc") print("--------------------------------") print(f" 0 {T_ref['TE'][0]:.4f} {effs_TM['T'][1]:.4f} ") print(f" sum {T_ref['TE'][1]:.4f} {effs_TM['B']:.4f} ")
2.53125
3
pyteslaapi/__main__.py
tyamell/pytesla
2
12793031
<filename>pyteslaapi/__main__.py #!/usr/bin/python """ Tesla CLI """ from client import TeslaApiClient from exceptions import TeslaException import logging _LOGGER = logging.getLogger('pyteslaapi_cli') def setup_logging(log_level=logging.INFO): """Set up the logging.""" logging.basicConfig(level=log_level) fmt = ("%(asctime)s %(levelname)s (%(threadName)s) " "[%(name)s] %(message)s") colorfmt = "%(log_color)s{}%(reset)s".format(fmt) datefmt = '%Y-%m-%d %H:%M:%S' logging.getLogger('requests').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) try: from colorlog import ColoredFormatter logging.getLogger().handlers[0].setFormatter(ColoredFormatter( colorfmt, datefmt=datefmt, reset=True, log_colors={ 'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red', } )) except ImportError: pass logger = logging.getLogger('') logger.setLevel(log_level) def call(): """Execute command line helper.""" log_level = logging.DEBUG setup_logging(log_level) try: api = TeslaApiClient("<EMAIL>","T1aB2stsp!ez142215") vehicles = api.vehicles for v in vehicles: if not v.wake_up(): _LOGGER.error("Unable to wake up vehicle") continue v.update() _LOGGER.info(v.drive.attributes) _LOGGER.info(v.climate.attributes) _LOGGER.info(v.charge.attributes) _LOGGER.info(v.gui_settings.attributes) _LOGGER.info(v.locked) except TeslaException as exc: _LOGGER.error(exc.message) def main(): """Execute from command line.""" call() if __name__ == '__main__': main()
2.359375
2
Organization/player.py
kkuba91/turnament_organizer
1
12793032
"""player.py Chess player class. All data related to Player, which can b set at the begining and during the game. """ # Global package imports: from datetime import date # Local package imports: CATEGORY = { "male":{ "m": 2400, "im": 2400, "k++": 2300, "k+": 2300, "k": 2200, "I++": 2100, "I+": 2100, "I": 2000, "II+": 1900, "II": 1800, "III": 1600, "IV": 1400, "V": 1200, "bk": 1000, "wc": 1000 }, "female":{ "m": 2200, "iwm": 2200, "k++": 2100, "k+": 2100, "k": 2000, "I++": 1900, "I+": 1900, "I": 1800, "II+": 1700, "II": 1600, "III": 1400, "IV": 1250, "V": 1100, "bk": 1000, "wc": 1000 } } class Player(object): def __init__(self) -> None: # Static Player data: self._name = "" self._surname = "" self._sex = "" self._birth_date: date self._city = "" self._category = "bk" self._elo = 0 self._rank = 1000 self._club = "" # Dynamic Player data: self._place = 0 self._idnt = 0 self._paused = False self._points = 0.0 self._progress = 0.0 self._bucholz = 0.0 self._achieved_rank = 0 self._last_played_white = False self._rounds = None self._oponents = list() self._results = list() self._set = False # For setting round flag self._round_done = False def __repr__(self): ret = f'\n#({self._idnt})' ret += self.dump() return ret def set_name(self, name): self._name = name return self def set_surname(self, surname): self._surname = surname return self def set_sex(self, sex): self._sex = sex return self def set_birthdate(self, birthdate): self._birth_date = birthdate return self def set_city(self, city): self._city = city return self def set_category(self, category): self._category = category return self def set_elo(self, elo): self._elo = elo return self def set_club(self, club): self._club = club return club def get_name(self): return self._name def get_surname(self): return self._surname def get_by_ident(self, ident): if ident == self._idnt: return f'{self._surname} {self._name}' else: return None def calculate_rank(self): if self._elo > 0: self._rank = self._elo else: self._rank = CATEGORY[self._sex][self._category] return self def exist(self, name, surname): _exist = False if self.get_name() == name and self.get_surname() == surname: _exist = True else: _exist = False return _exist def dump(self): _dump = f"\nPLAYER (#{self._idnt}): {self._name} {self._surname}\n" _dump += f"Sex: {self._sex}\n" # _dump += f"Birth: {self._birth_date}\n" _dump += f"City: {self._city}\n" _dump += f"Category: {self._category}\n" _dump += f"Elo rating: {self._elo}\n" _dump += f"Turnament rating: {self._rank}\n" return _dump
3.125
3
chainer/utils/argument.py
takeratta/chainer
2
12793033
<filename>chainer/utils/argument.py def check_unexpected_kwargs(kwargs, **unexpected): for key, message in unexpected.items(): if key in kwargs: raise ValueError(message) def parse_kwargs(kwargs, *name_and_values): values = [kwargs.pop(name, default_value) for name, default_value in name_and_values] if kwargs: args = ', '.join(["'%s'" % arg for arg in kwargs.keys()]) raise TypeError('got unexpected keyword argument(s) %s' % args) return tuple(values) def assert_kwargs_empty(kwargs): # It only checks if kwargs is empty. parse_kwargs(kwargs)
3.0625
3
hfs_creation.py
karamarielynch/hfs-sim
0
12793034
<reponame>karamarielynch/hfs-sim from math import sqrt from math import factorial from operator import * from numpy import * ### Defining the DeltaJ function that will be used in Wigner6J def DeltaJ(a, b, c): Total = 0 while True: if (a+b-c) < 0: break elif (a-b+c) < 0: break elif (-a+b+c) < 0: break elif (a+b+c+1) < 0: break Total = sqrt( float(factorial(a+b-c)*factorial(a-b+c)*factorial(-a+b+c)) / float(factorial(a+b+c+1)) ) #print "Total: ", Total break return Total ### Defining Wigner 6J function def Wigner6J(j1, j2, j3, j4, j5, j6): # Wigner 6J angular momentum coupling # {j1 j2 j3} = {J_upper F_upper I} # {j4 j5 j6} {F_lower J_lower 1} Delta_Total = DeltaJ(j1, j2, j3)*DeltaJ(j1, j5, j6)*DeltaJ(j4, j2, j6)*DeltaJ(j4, j5, j3) Wigner_Total = 0 z = 0 while True: if (j1+j2+j4+j5-z) < 0: break elif (j2+j3+j5+j6-z) < 0: break elif (j3+j1+j6+j4-z) < 0: break while True: if (z-j1-j2-j3) < 0: break elif (z-j1-j5-j6) < 0: break elif (z-j4-j2-j6) < 0: break elif (z-j4-j5-j3) < 0: break Wigner1 = float(factorial(z-j1-j2-j3)) Wigner2 = float(factorial(z-j1-j5-j6)) Wigner3 = float(factorial(z-j4-j2-j6)) Wigner4 = float(factorial(z-j4-j5-j3)) Wigner5 = float(factorial(j1+j2+j4+j5-z)) Wigner6 = float(factorial(j2+j3+j5+j6-z)) Wigner7 = float(factorial(j3+j1+j6+j4-z)) Wigner_Denominator = Wigner1*Wigner2*Wigner3*Wigner4*Wigner5*Wigner6*Wigner7 Wigner_Total = Wigner_Total + (float(-1)**z*factorial(float(z+1)))/Wigner_Denominator z = z+1 if (j1+j2+j4+j5-z) <= 0: break elif (j2+j3+j5+j6-z) <= 0: break elif (j3+j1+j6+j4-z) <= 0: break z = z+1 Total = float(Delta_Total*Wigner_Total) return Total ### Defining the Gaussian function for the HF spectrum def Gaussian(x, HFS_frequency, FWHM, intensity): return float(intensity)*exp(- 0.5*((HFS_frequency-x)/(FWHM/2.355))**2) # Gaussian function ### Defining the Lorentzian function for the HF spectrum def Lorentzian(x, HFS_frequency, gamma, intensity): return intensity*(gamma**2/((x-HFS_frequency)**2 + gamma**2)) # Lorentzian function ### Defining the Voigt function for the HF spectrum def pseudoVoigt(x, HFS_frequency, FWHM, intensity, eta): Gauss = exp(-0.6931*((x-HFS_frequency)/(FWHM/2))**2) Lorentz = 1/(1+((x-HFS_frequency)/(FWHM/2))**2) Voigt = eta*Lorentz + (1-eta)*Gauss return intensity*Voigt # Voigt function ### Defining the Crystalball function def Crystalball(x_array, x0, N, sigma, alpha, n): y_array = [] for i in range(len(x_array)): x = x_array[i] t = (x-x0)/sigma if (alpha < 0): t = -t if (t >= -abs(alpha)): y = exp(-0.5*t*t) else: a = ((n/abs(alpha))**n)*exp(-0.5*abs(alpha)*abs(alpha)) b = n/abs(alpha) - abs(alpha) y = a/(b - t)**n y_array.append(N*y) return array(y_array) ### Defining an exponential pseudoVoigt function def expoVoigt(x_array, x0, intensity, FWHM, alpha, eta): y_array = [] for i in range(len(x_array)): x = x_array[i] t = (x-x0)/FWHM if (alpha < 0): t = -t if (t >= -abs(alpha)): y = pseudoVoigt(x, x0, FWHM, intensity, eta)*exp(-0.5*t*t) else: y = pseudoVoigt(x, x0, FWHM, intensity, eta) y_array.append(y) return array(y_array) ### Defining the HF function which simulates the HF spectrum def HF_function(I, J_lower, J_upper, centroid_frequency, A_lower, A_upper, B_lower, B_upper): # Calculates the F values for a J_lower to J_upper transition HFS_frequency = []; HF_intensity = [] F_lower_min = pos(I - J_lower) F_lower_max = pos(I + J_lower) F_upper_min = pos(I - J_upper) F_upper_max = pos(I + J_upper) while F_lower_min < (F_lower_max +1) : F_upper_min = pos(I - J_upper) while F_upper_min < (F_upper_max +1) : F_lower = F_lower_min F_upper = F_upper_min F_delta = F_upper - F_lower if (-1 <= F_delta <= 1): K_lower = F_lower*(F_lower+1)-I*(I+1)-J_lower*(J_lower+1) alpha_lower = K_lower/2 if I <= 0.5 : beta_lower = 0 elif J_lower <= 0.5 : beta_lower = 0 else: beta_lower = (3*K_lower*(K_lower+1)-4*I*(I+1)*J_lower*(J_lower+1))/(8*I*(2*I-1)*J_lower*(2*J_lower-1)) K_upper = F_upper*(F_upper+1)-I*(I+1)-J_upper*(J_upper+1) alpha_upper = K_upper/2 if I <= 0.5 : beta_upper = 0 elif J_upper <= 0.5 : beta_upper = 0 else: beta_upper = (3*K_upper*(K_upper+1)-4*I*(I+1)*J_upper*(J_upper+1))/(8*I*(2*I-1)*J_upper*(2*J_upper-1)) HFS_frequency.append(centroid_frequency + alpha_upper*A_upper + beta_upper*B_upper - alpha_lower*A_lower - beta_lower*B_lower) HF_intensity.append((2*F_lower+1)*(2*F_upper+1)*Wigner6J(F_lower, F_upper, 1, J_upper, J_lower, I)**2) F_upper_min = F_upper_min +1 F_lower_min = F_lower_min +1 return HFS_frequency, HF_intensity ### Defining the intensity for each of the HF peaks def HF_intensity(I, J_lower, J_upper, F_lower, F_upper): # Intensity ratio = (2F_lower+1)(2F_upper+1){F_lower F_upper 1} # {J_upper J_lower I} Intensity = (2*F_lower+1)*(2*F_upper+1)*Wigner6J(F_lower, F_upper, 1, J_upper, J_lower, I)**2 if Intensity == 0: print("Intensity = 0") return Intensity ### Defining Doppler correction from lab frame to rest frame def Doppler_correction(freq_range_lab, mass, iscool_voltage): alpha = iscool_voltage/(mass*931.494061*10**6) freq_range_rest = freq_range_lab*( 1 + alpha - sqrt(2*alpha + alpha*alpha)) return freq_range_rest ### Defining wavenumber to frequency conversion def Frequency_conversion(wavenumber, mass, iscool_voltage, harmonic, frequency_correction): frequency_rest_frame = array([]); frequency_lab_frame = array([]) c = 299792458.0 # Speed of light [ms-1] in a vacuum e = 2.7182818284 # Maths constant alpha = iscool_voltage/(mass*931.494061*10**6) # alpha = eV/mc*c - in units of e/c**2 # Convert from wavenumber to frequency in lab frame frequency_lab_frame = harmonic*wavenumber*c/10**4 # Wavenumber doubled as reading taken at fundamental frequency (calculate in MHz) # Convert frequency from lab frame to rest frame frequency_rest_frame = frequency_lab_frame*( 1 + alpha - sqrt(2*alpha + alpha*alpha)) # Convert to relative frequency frequency_relative = frequency_rest_frame - frequency_correction return frequency_relative ### Defining the HF structure def HFS(I, J_lower, J_upper, CF, A_lower, A_upper, B_lower, B_upper, FWHM, Int, Bkgnd, x): for i in range(len(HF_function(I, J_lower, J_upper, CF, A_lower, A_upper, B_lower, B_upper)[0])): HFS_frequency = HF_function(I, J_lower, J_upper, CF, A_lower, A_upper, B_lower, B_upper)[0][i] intensity_1 = HF_function(I, J_lower, J_upper, CF, A_lower, A_upper, B_lower, B_upper)[1][i] intensity_1 = intensity_1*Int Bkgnd = Bkgnd + Gaussian(x, HFS_frequency, FWHM, intensity_1) return Bkgnd
2.8125
3
get_styles.py
big-skim-milk/Quetzal
2
12793035
IFS = """ """ def STYLES(): with open('style.qss') as main_styles: with open('customizable_styles.qss') as custom_styles: all_styles = main_styles.read() + IFS + custom_styles.read() return all_styles
2.171875
2
graphs_trees/bst_validate/test_bst_validate.py
filippovitale/interactive-coding-challenges
0
12793036
<reponame>filippovitale/interactive-coding-challenges from nose.tools import assert_equal class TestBstValidate(object): def test_bst_validate(self): node = Node(5) insert(node, 8) insert(node, 5) insert(node, 6) insert(node, 4) insert(node, 7) assert_equal(validate_bst(node), True) root = Node(5) left = Node(5) right = Node(8) invalid = Node(20) root.left = left root.right = right root.left.right = invalid assert_equal(validate_bst(root), False) print('Success: test_bst_validate') def main(): test = TestBstValidate() test.test_bst_validate() if __name__ == '__main__': main()
3.5625
4
noxfile.py
tdmorello/imagecatalog
0
12793037
<reponame>tdmorello/imagecatalog """Nox sessions.""" import shutil import sys import tempfile from pathlib import Path import nox from nox import Session, session python_versions = ["3.10", "3.9", "3.8", "3.7"] @nox.session(python=python_versions) def tests(session: Session) -> None: """Run the test suite.""" _install_via_pip(session) session.install("pytest", "pytest-cov", "xdoctest") session.run("pytest") @nox.session def lint(session: Session) -> None: """Run linting.""" pass @session(python=python_versions[0]) def docs(session: Session) -> None: """Build and serve the documentation with live reloading on file changes.""" args = session.posargs or [ "--open-browser", "docs", "docs/_build", ] _install_via_pip(session) session.install("-r", "docs/requirements.txt") session.install("sphinx", "sphinx-autobuild") build_dir = Path("docs", "_build") if build_dir.exists(): shutil.rmtree(build_dir) session.run("sphinx-autobuild", *args) def _install_via_pip(session: Session) -> None: with tempfile.NamedTemporaryFile() as requirements: if sys.platform == "win32": requirements_path = "requirements.txt" else: requirements_path = requirements.name session.run( "poetry", "export", "--without-hashes", "-o", requirements_path, external=True, ) session.install("-r", requirements_path) session.install(".")
2.125
2
src/moodlesheet/contactsheet/__init__.py
fstwn/moodlesheet
10
12793038
# -*- coding: utf-8 -*- """Top-level package for contactsheet.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.1.0'
0.941406
1
knot_a_rumor/story.py
rubyyot/knot-a-rumor
0
12793039
from os.path import join import yaml class Story: def __init__(self, path): self.path = path self.author = None self.title = None self.scene = None self.synopsis = None def load(self): f = open(self.filename(), 'r') text = f.read() f.close() data = yaml.load(text) if data == None: return False else: self.__dict__ = data return True def filename(self): return join(self.path, "story.yaml") class Scene(): def __init__(self, path, state): scene_file = state["current_scene"] self.load(path, scene_file) def load(self, path, scene_file): f = open(self.filename(path, scene_file), 'r') text = f.read() f.close() data = yaml.load(text) if data == None: return False else: self.__dict__ = data self.__dict__["scene_map"] = self.__dict__["scene_map"].strip("\n") return True def filename(self, path, scene_file): return join(path, "{0}.yaml".format(scene_file)) def disassemble_map(self): rows = list(reversed(self.scene_map.split("\n"))) disassembled = [] for row in rows: disassembled.append(list(row)) return disassembled def reassemble_map(self, grid): rows = [] for row in grid: rows.append(''.join(row)) reassembled = "\n".join(list(reversed(rows))) return reassembled def build_map(self, state): x = state["location"]["x"] y = state["location"]["y"] grid = self.disassemble_map() grid[y][x] = "@" if self.level in state["seen"]: for item in self.items.values(): grid[item["y"]][item["x"]] = item["char"] reassembled = self.reassemble_map(grid) return reassembled def valid_move(self, location, direction, times): start_x = location["x"] start_y = location["y"] # validate direction and times if not type(times) is int: return False if not type(direction) is str: return False if times < 1 or times > 100: return False if len(direction) > 1: return False if not direction in "nsew": return False # find new postion x = start_x y = start_y rows = list(reversed(self.scene_map.split("\n"))) for i in range (0, times): if direction == "n": y += 1 elif direction == "s": y -= 1 elif direction == "e": x += 1 elif direction == "w": x -= 1 if len(rows) <= y: return False if x < 0 or y < 0: return False tiles = list(rows[y]) if len(tiles) <= x: return False if tiles[x] != "#": return False return True def view(self, location): x = location["x"] y = location["y"] narration = None for pview in self.views.values(): if pview["x"] == x and pview["y"] == y: narration = pview["narration"] return narration def look(self, state): seen = "\n".join(self.items.keys()) if self.level not in state["seen"]: state["seen"].append(self.level) return state, seen def describe(self, state, char): if self.level not in state["seen"]: return state, None items = self.items.values() item_list = list(filter(lambda x: x["char"] == char, items)) if len(item_list) == 0: return state, None return state, item_list[0]["description"]
3.03125
3
pysite/mixins.py
schwartzadev/site
0
12793040
<reponame>schwartzadev/site<filename>pysite/mixins.py # coding=utf-8 from flask import Blueprint from rethinkdb.ast import Table from _weakref import ref from pysite.database import RethinkDB class DBMixin(): """ Mixin for classes that make use of RethinkDB. It can automatically create a table with the specified primary key using the attributes set at class-level. This class is intended to be mixed in alongside one of the other view classes. For example: >>> class MyView(APIView, DBMixin): ... name = "my_view" # Flask internal name for this route ... path = "/my_view" # Actual URL path to reach this route ... table_name = "my_table" # Name of the table to create ... table_primary_key = "username" # Primary key to set for this table This class will also work with Websockets: >>> class MyWebsocket(WS, DBMixin): ... name = "my_websocket" ... path = "/my_websocket" ... table_name = "my_table" ... table_primary_key = "username" You may omit `table_primary_key` and it will be defaulted to RethinkDB's default column - "id". """ table_name = "" # type: str table_primary_key = "id" # type: str @classmethod def setup(cls: "DBMixin", manager: "pysite.route_manager.RouteManager", blueprint: Blueprint): """ Set up the view by creating the table specified by the class attributes - this will also deal with multiple inheritance by calling `super().setup()` as appropriate. :param manager: Instance of the current RouteManager (used to get a handle for the database object) :param blueprint: Current Flask blueprint """ if hasattr(super(), "setup"): super().setup(manager, blueprint) # pragma: no cover if not cls.table_name: raise RuntimeError("Routes using DBViewMixin must define `table_name`") cls._db = ref(manager.db) manager.db.create_table(cls.table_name, primary_key=cls.table_primary_key) @property def table(self) -> Table: return self.db.query(self.table_name) @property def db(self) -> RethinkDB: return self._db()
2.78125
3
python/AnalysisLaunchers/get_analysis.py
FabricGenomics/omicia_api_examples
2
12793041
<filename>python/AnalysisLaunchers/get_analysis.py<gh_stars>1-10 """Get an analysis, or all analyses in the workspace. Example usages: python get_analysis.py --id 1802 python get_analysis.py """ import os import requests from requests.auth import HTTPBasicAuth import sys import simplejson as json import argparse # Load environment variables for request authentication parameters if "FABRIC_API_PASSWORD" not in os.environ: sys.exit("FABRIC_API_PASSWORD environment variable missing") if "FABRIC_API_LOGIN" not in os.environ: sys.exit("FABRIC_API_LOGIN environment variable missing") FABRIC_API_LOGIN = os.environ['FABRIC_API_LOGIN'] FABRIC_API_PASSWORD = os.environ['FABRIC_API_PASSWORD'] FABRIC_API_URL = os.environ.get('FABRIC_API_URL', 'https://api.fabricgenomics.com') auth = HTTPBasicAuth(FABRIC_API_LOGIN, FABRIC_API_PASSWORD) def get_analysis(analysis_id=None, genome_id=None): """Use the Omicia API to get an analysis """ # Construct request if analysis_id: url = "{}/analysis/{}/" url = url.format(FABRIC_API_URL, analysis_id) else: url = "{}/analysis" url = url.format(FABRIC_API_URL, analysis_id) if genome_id: url = '{}?genome_id={}'.format(url, genome_id) sys.stdout.flush() result = requests.get(url, auth=auth) return result.json() def main(): """Main function. Get analyses or one analysis by ID. """ parser = argparse.ArgumentParser(description='Fetch a Variant, VAAST or Phevor Report') parser.add_argument('--id', metavar='analysis_id', type=int) parser.add_argument('--genome_id', metavar='genome_id', type=int) args = parser.parse_args() analysis_id = args.id genome_id = args.genome_id json_response = get_analysis(analysis_id=analysis_id, genome_id=genome_id) sys.stdout.write(json.dumps(json_response, indent=4)) if __name__ == "__main__": main()
2.921875
3
hp_transfer_aa_experiments/run.py
hp-transfer/htaa_experiments
1
12793042
import contextlib import logging import logging.config import random import time from pathlib import Path import hp_transfer_benchmarks # pylint: disable=unused-import import hp_transfer_optimizers # pylint: disable=unused-import import hydra import numpy as np import yaml from gitinfo import gitinfo from hp_transfer_optimizers.core import nameserver as hpns from hp_transfer_optimizers.core import result as result_utils from hp_transfer_optimizers.core.worker import Worker from omegaconf import OmegaConf from hp_transfer_aa_experiments.analyse.read_results import get_batch_result_row logger = logging.getLogger("hp_transfer_aa_experiments.run") def _read_reference_losses(args): reference_losses = None if args.runtype.type.startswith("eval_reference"): reference_losses_path = hydra.utils.to_absolute_path(args.reference_losses_path) with Path(reference_losses_path).open("r") as stream: reference_losses = yaml.safe_load(stream) reference_losses = reference_losses[args.benchmark.name] reference_losses = reference_losses[str(args.benchmark.benchmark.trajectory_id)] reference_losses = reference_losses[str(args.benchmark.benchmark.adjustment_id)] return reference_losses def _get_trial_parameters(args, reference_losses, step): if step == 1 and args.runtype.type in ["eval_dim", "eval_reference"]: trials_per_task = args.runtype.dim_factor_pre_adjustment else: trials_per_task = args.runtype.dim_factor logger.info(f"Using {trials_per_task} trials per task") if step > 1 and args.runtype.type.startswith("eval_reference"): trials_until_loss = reference_losses[step][f"{args.runtype.dim_factor}_loss"] logger.info( f"Also performing trials until loss {trials_until_loss :.4f}" f" (max {10 * trials_per_task})" ) else: trials_until_loss = None return trials_per_task, trials_until_loss def _write_batch_result(args, result_batch): batch_result_row = get_batch_result_row( args.benchmark.name, args.runtype.dim_factor_pre_adjustment, args.approach.name, args.benchmark.benchmark.trajectory_id, args.benchmark.benchmark.adjustment_id, args.run_id, result_batch, ) result_path = Path( hydra.utils.to_absolute_path("results"), args.experiment_group, f"results/{args.experiment_name.replace('/', ',')}.csv", ) result_path.parent.mkdir(exist_ok=True, parents=True) with result_path.open("a") as result_stream: result_stream.write("\t".join([str(value) for value in batch_result_row]) + "\n") def _run_on_task_batch( optimizer, task_batch, configspace, step, result_trajectory, trials_per_task, trials_until_loss, args, ): do_transfer = args.approach.name.startswith("transfer") previous_results = result_trajectory if do_transfer else None result_batch = result_utils.BatchResult(step, configspace) for task in task_batch: logger.info(f"Running on task {task.identifier}") task_result = optimizer.run( configspace=configspace, task=task, n_iterations=trials_per_task, trials_until_loss=trials_until_loss, previous_results=previous_results, ) result_batch.insert(task_result, task) if step > 1: _write_batch_result(args, result_batch) return result_batch def _train_and_eval(optimizer, benchmark, args): reference_losses = _read_reference_losses(args) result_trajectory = result_utils.TrajectoryResult() for step, (train_batch, configspace) in enumerate( zip(benchmark.dev_trajectory, benchmark.configspace_trajectory), 1 ): if args.runtype.type == "reference" and step == 1: continue logger.info(f"Step ------- {step :04d}") trials_per_task, trials_until_loss = _get_trial_parameters( args, reference_losses, step ) logger.info(f"Using configspace\n{configspace}".rstrip()) batch_result = _run_on_task_batch( optimizer, train_batch, configspace, step, result_trajectory, trials_per_task, trials_until_loss, args, ) result_trajectory.insert(batch_result) class _HPOWorker(Worker): def __init__(self, benchmark, **kwargs): super().__init__(**kwargs) # Only read task once self._benchmark = benchmark self._previous_task_identifier = None self._previous_development_stage = None self._task = None # pylint: disable=unused-argument def compute( self, config_id, config, budget, working_directory, *args, **kwargs, ): task_identifier = kwargs["task_identifier"] development_stage = kwargs["development_stage"] task_changed = ( development_stage != self._previous_development_stage or self._previous_task_identifier != task_identifier ) if task_changed: # Only read task once self._previous_task_identifier = task_identifier self._previous_development_stage = development_stage self._task = self._benchmark.get_task_from_identifier( task_identifier, development_stage ) if "development_step" in config: del config["development_step"] return self._task.evaluate(config) def _run_worker(args, benchmark, working_directory): time.sleep(5) # short artificial delay to make sure the nameserver is already running host = hpns.nic_name_to_host(args.nic_name) w = _HPOWorker( benchmark, run_id=args.run_id, host=host, logger=logging.getLogger("worker"), ) w.load_nameserver_credentials(working_directory=str(working_directory)) w.run(background=False) def _run_master(args, benchmark, working_directory): nameserver = hpns.NameServer( run_id=args.run_id, working_directory=str(working_directory), nic_name=args.nic_name, ) ns_host, ns_port = nameserver.start() # Start a background worker for the master node w = _HPOWorker( benchmark, run_id=args.run_id, host=ns_host, nameserver=ns_host, nameserver_port=ns_port, logger=logging.getLogger("worker"), ) w.run(background=True) # Create an optimizer optimizer = hydra.utils.instantiate( args.approach.approach, host=ns_host, nameserver=ns_host, nameserver_port=ns_port, logger=logging.getLogger("master"), ) # Train and evaluate the optimizer try: _train_and_eval(optimizer, benchmark, args) finally: optimizer.shutdown(shutdown_workers=True) nameserver.shutdown() def _set_seeds(seed): random.seed(seed) np.random.seed(seed) # torch.backends.cudnn.benchmark = False # torch.backends.cudnn.deterministic = True # torch.manual_seed(seed) # tf.random.set_seed(seed) @hydra.main(config_path="configs", config_name="run") def run(args): _set_seeds(args.seed) working_directory = Path().cwd() # Log general information logger.info(f"Using working_directory={working_directory}") with contextlib.suppress(TypeError): git_info = gitinfo.get_git_info() logger.info(f"Commit hash: {git_info['commit']}") logger.info(f"Commit date: {git_info['author_date']}") logger.info(f"Arguments:\n{OmegaConf.to_yaml(args)}") # Construct benchmark if "data_path" in args.benchmark.benchmark: args.benchmark.benchmark.data_path = hydra.utils.to_absolute_path( args.benchmark.benchmark.data_path ) benchmark = hydra.utils.instantiate(args.benchmark.benchmark) # Actually run if args.worker_id == 0: _run_master(args, benchmark, working_directory) else: _run_worker(args, benchmark, working_directory) logger.info(f"Run finished") if __name__ == "__main__": run() # pylint: disable=no-value-for-parameter
1.96875
2
process_ez.py
UrbanInstitute/nccs-public
7
12793043
from process_co_pc import * import logging # Code by <NAME> (<EMAIL>), 2016-2017 def ez_dup_criteria(dups): dups['val'] = dups['TOTREV'].abs() + dups['ASS_EOY'].abs() + dups['EXPS'].abs() return dups, ['FISYR', 'val', 'STYEAR', 'rnd'] class ProcessEZ(ProcessCOPC): """ Creates columns found only in the EZ dataframe """ def ez_calculate(self): """ Base method for calling all of the methods to calculate the columns for the 990 EZ form. ARGUMENTS None RETURNS None """ main = self.main ez = main.data_dict['EZ'] main.logger.info('Calculating new columns for EZ.') ez['TOTREV'] = self.ez_totrev(ez) ez['GRREC'] = self.ez_grrec(ez) ez['PROGREV'] = self.ez_progrev(ez) ez['SPEVTG'] = self.ez_spevtg(ez) ez['NETGNLS'] = self.ez_netgnls(ez) ez['FILENAME'] = self.ez_filename(ez) ez['EPOSTCARD'] = self.copc_epostcard(ez) ez['STYEAR'] = self.copc_styear(ez) ez['SOIYR'] = self.copc_soiyr(ez) ez['SUBCD'] = self.copc_subcd(ez) def ez_grrec(self, ez): """ Calculates the GRREC column. Note that the same column has a different calculation for EINs from the Full 990 and EINS from the 990 EZ. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ assert(ez['TOTREV'].dtype.type in [np.int64, np.float64]) assert(ez['SALEOTHG'].dtype.type in [np.int64, np.float64]) assert(ez['DIREXP'].dtype.type in [np.int64, np.float64]) assert(ez['GOODS'].dtype.type in [np.int64, np.float64]) return ez['TOTREV'] + ez['SALEOTHG'] + ez['DIREXP'] + ez['GOODS'] def ez_progrev(self, ez): """ Calculates the PROGREV column. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ assert(ez['DUESASSESMNTS'].dtype.type in [np.int64, np.float64]) assert(ez['PRGMSERVREV'].dtype.type in [np.int64, np.float64]) return ez['DUESASSESMNTS'] + ez['PRGMSERVREV'] def ez_spevtg(self, ez): """ Calculates the SPEVTG column. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ assert(ez['GRSINCFNDRSNG'].dtype.type in [np.int64, np.float64]) assert(ez['GRSINCGAMING'].dtype.type in [np.int64, np.float64]) return ez['GRSINCFNDRSNG'] + ez['GRSINCGAMING'] def ez_totrev(self, ez): """ Calculates the PROGREV column. Note that TOTREV2 is taken from 990EZ part I, 9, while TOTREV is calculated from the expense and income subtotals. This is the only column like this, and usually any discrepencies between stated and calculated values are tested in the validation steps. However, it was always done this way before, so it continues. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ return ez['EXPS'] + ez['NETINC'] def ez_netgnls(self, ez): """ Returns the SALEOTHN column exactly. Redundant holdover from the old SQL process. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ return ez['SALEOTHN'] def ez_filename(self, ez): """ Assembles the FILENAME column from the EIN and TAXPER columns, which is used to build the URL to the PDF of the 990 filing on the Foundation Center's website. The full construction is: http://990s.foundationcenter.org/990_pdf_archive/<FIRST THREE DIGITS OF EIN>/<FULL EIN>/<FILENAME>.pdf for 990 Full or EZ filings, or http://990s.foundationcenter.org/990pf_pdf_archive/<FIRST THREE DIGITS OF EIN>/<FULL EIN>/<FILENAME>.pdf for 990 PF filings. ARGUMENTS ez (DataFrame) : Core file dataframe RETURNS Series """ return ez.index + '_' + ez['TAXPER'] + '_990EZ' def ez_manual(self): """ Applies any manual, one-time fixes to the EZ data. This is usually defined as a change to a single EIN from a single year, in a non-generalizable way, e.g. a mistyped EIN in the raw IRS data. ARGUMENTS None RETURNS None """ try: entry = self.main.data_dict['EZ'].loc['580623603'] if entry['SOURCE'] == '16eofinextractez.dat' and entry['NAME'] == 'UNITED WAY OF THE COASTAL EMPIRE INC': self.main.data_dict['EZ'].drop('580623603', inplace=True) except KeyError: pass
2.40625
2
elfinder/exceptions.py
vikifox/CMDB
16
12793044
<gh_stars>10-100 from django.utils.translation import ugettext as _ class ElfinderErrorMessages: """ Standard error message codes, the text message of which is handled by the elFinder client """ ERROR_UNKNOWN = 'errUnknown' ERROR_UNKNOWN_CMD = 'errUnknownCmd' ERROR_CONF = 'errConf' ERROR_CONF_NO_JSON = 'errJSON' ERROR_CONF_NO_VOL = 'errNoVolumes' ERROR_INV_PARAMS = 'errCmdParams' ERROR_OPEN = 'errOpen' ERROR_DIR_NOT_FOUND = 'errFolderNotFound' ERROR_FILE_NOT_FOUND = 'errFileNotFound' #'File not found.' ERROR_TRGDIR_NOT_FOUND = 'errTrgFolderNotFound' #'Target folder "$1" not found.' ERROR_NOT_DIR = 'errNotFolder' ERROR_NOT_FILE = 'errNotFile' ERROR_PERM_DENIED = 'errPerm' ERROR_LOCKED = 'errLocked' #'"$1" is locked and can not be renamed, moved or removed.' ERROR_EXISTS = 'errExists' #'File named "$1" already exists.' ERROR_INVALID_NAME = 'errInvName' #'Invalid file name.' ERROR_MKDIR = 'errMkdir' ERROR_MKFILE = 'errMkfile' ERROR_RENAME = 'errRename' ERROR_COPY = 'errCopy' ERROR_MOVE = 'errMove' ERROR_COPY_FROM = 'errCopyFrom' ERROR_COPY_TO = 'errCopyTo' ERROR_COPY_ITSELF = 'errCopyInItself' ERROR_REPLACE = 'errReplace' #'Unable to replace "$1".' ERROR_RM = 'errRm' #'Unable to remove "$1".' ERROR_RM_SRC = 'errRmSrc' #'Unable remove source file(s)' ERROR_UPLOAD = 'errUpload' #'Upload error.' ERROR_UPLOAD_FILE = 'errUploadFile' #'Unable to upload "$1".' ERROR_UPLOAD_NO_FILES = 'errUploadNoFiles' #'No files found for upload.' ERROR_UPLOAD_TOTAL_SIZE = 'errUploadTotalSize' #'Data exceeds the maximum allowed size.' ERROR_UPLOAD_FILE_SIZE = 'errUploadFileSize' #'File exceeds maximum allowed size.' ERROR_UPLOAD_FILE_MIME = 'errUploadMime' #'File type not allowed.' ERROR_UPLOAD_TRANSFER = 'errUploadTransfer' #'"$1" transfer error.' ERROR_ACCESS_DENIED = 'errAccess' ERROR_NOT_REPLACE = 'errNotReplace' #Object "$1" already exists at this location and can not be replaced with object of another type. ERROR_SAVE = 'errSave' ERROR_EXTRACT = 'errExtract' ERROR_ARCHIVE = 'errArchive' ERROR_NOT_ARCHIVE = 'errNoArchive' ERROR_ARCHIVE_TYPE = 'errArcType' ERROR_ARC_SYMLINKS = 'errArcSymlinks' ERROR_ARC_MAXSIZE = 'errArcMaxSize' ERROR_RESIZE = 'errResize' ERROR_UNSUPPORT_TYPE = 'errUsupportType' ERROR_NOT_UTF8_CONTENT = 'errNotUTF8Content' ERROR_NETMOUNT = 'errNetMount' ERROR_NETMOUNT_NO_DRIVER = 'errNetMountNoDriver' ERROR_NETMOUNT_FAILED = 'errNetMountFailed' class VolumeNotFoundError(Exception): def __init__(self): super(VolumeNotFoundError, self).__init__(_("Volume could not be found")) class FileNotFoundError(Exception): def __init__(self): super(FileNotFoundError, self).__init__(ElfinderErrorMessages.ERROR_FILE_NOT_FOUND) class DirNotFoundError(Exception): def __init__(self): super(DirNotFoundError, self).__init__(ElfinderErrorMessages.ERROR_DIR_NOT_FOUND) class PermissionDeniedError(Exception): def __init__(self): super(PermissionDeniedError, self).__init__(ElfinderErrorMessages.ERROR_PERM_DENIED) class NamedError(Exception): """ Elfinder-specific exception. `msg` contains the error code `name` holds the path for which operation failed """ def __init__(self, msg, name): self.name = name super(NamedError, self).__init__(msg) class NotAnImageError(Exception): def __init__(self): super(NotAnImageError, self).__init__(_('This is not a valid image file'))
2
2
app1/utils/image_url.py
xieyu-aa/news
0
12793045
from qiniu import Auth, put_data #需要填写你的 Access Key 和 Secret Key access_key = '<KEY>' secret_key = '<KEY>' def image_url(image_data): #构建鉴权对象 q = Auth(access_key, secret_key) #要上传的空间 bucket_name = 'new3333' #上传后保存的文件名 key = None # 处理上传结果 token = q.upload_token(bucket_name, key, 3600) ret, info = put_data(token, key, image_data) print(ret) print(info) if info.status_code == 200: return ret.get('key') else: return None if __name__ == '__main__': with open('./滑稽.jpg', 'rb') as f: image_data = f.read() image_url(image_data)
2.765625
3
kiyoshi_ni_shokuhatsu/tools/png_to_palette.py
grokit/grokit.github.io
10
12793046
<filename>kiyoshi_ni_shokuhatsu/tools/png_to_palette.py #!/usr/bin/python3 """ # Links - https://stackoverflow.com/questions/31386096/importing-png-files-into-numpy """ import scipy import scipy.misc import sys def load_gimp_palette(filename): """ For simplicity's sake, a palette is just an array of RGB values: palette = [ [r,g,b], [r,g,b], ... ] """ lines = open(filename, 'r').readlines() palette = [] for line in lines: if '#' in line: line = line.split('#')[1] try: r = int('0x'+line[0:2], 0) g = int('0x'+line[2:4], 0) b = int('0x'+line[4:6], 0) rgb = [r,g,b] palette.append(rgb) except: #print('Ignore %s' % line) pass return palette def filter_to_red(rgba): return [rgba[0], 0, 0, rgba[3]] def filter_to_closest_in_palette(rgba, palette): best = None dist = 1e9 for prgb in palette: assert len(prgb) == 3 diff = abs(rgba[0]-prgb[0]) + abs(rgba[1]-prgb[1]) + abs(rgba[2]-prgb[2]) if diff < dist: dist = diff best = prgb[:] # rgba[3] is transparency, which we don't touch. best.append(rgba.tolist()[3]) return best img_file = './test_input.png' if len(sys.argv) >= 2: img_file = sys.argv[1] # Expected format: # #0080fc # ... # This is the format using Gimp -> export as .txt. palette = load_gimp_palette('./palette.txt') img = scipy.misc.imread(img_file) for i in range(len(img)): for j in range(len(img[i])): rgba = img[i][j] #print('Bef: %s' % rgba) rgba = filter_to_closest_in_palette(rgba, palette) #print('Aft: %s' % rgba) img[i][j] = rgba scipy.misc.imsave(img_file.replace('input', 'output'), img) #scipy.misc.imsave('xxx_'+img_file, img)
3.453125
3
src/0059.spiral-matrix-ii/spiral-matrix-ii.py
lyphui/Just-Code
782
12793047
<reponame>lyphui/Just-Code class Solution: def generateMatrix(self, n: int) -> List[List[int]]: if not n: return [] A, lo = [[n*n]], n*n while lo > 1: lo, hi = lo - len(A), lo A = [[ i for i in range(lo, hi)]] + [list(j) for j in zip(*A[::-1])] return A
3.015625
3
game/environment.py
lucascampello/wumpus-cli
0
12793048
<reponame>lucascampello/wumpus-cli<filename>game/environment.py from random import randrange class Environment(object): def __init__(self, dimension:int, n_pits:int, n_golds:int=1, n_wumpus:int=1): # Itens Possíves de Perceber no Mapa self.perceptions = { "pit": "breeze", "gold": "glitter", "wumpus": "stench", } # Tamanho da largua da matrix self.dimension = dimension # Array de Coordenadas dos Elementos do Jogo (Poço | Wumpus | Ouro) self.coordinate = { "pit":[], "wumpus":[], "gold":[] } valid_environment = False while(not valid_environment): self.matrix = [['empty' for column in range(dimension)] for line in range(dimension)] self.matrix[0][0] = 'start' self.matrix_perceptions = [[ [] for column in range(dimension)] for line in range(dimension)] self.generate({'name': 'gold','amount':n_golds}) # Gera um Logal para o Ouro self.generate({'name': 'pit','amount':n_pits}) # Gera um local para os poços self.generate({'name': 'wumpus','amount':n_wumpus}) # Gera um local para o Wumpus self.screamTrigger = False self.n_pits = n_pits valid_environment = self.validEnvironment() def generate(self, obj: dict) -> None: for _ in range(obj['amount']): x = y = 0 if(obj['name'] == 'gold'): x = self.dimension-1 y = self.dimension-1 else: self.coordinate[obj["name"]].append((x,y)) x,y = self.randomCoordinate() self.matrix[x][y] = obj['name'] # Constroi as matrizes de adjascências if obj['name'] == 'gold': self.matrix_perceptions[x][y].append(self.perceptions[obj['name']]) else: # verifica se estar na primeira linha if x == 0: self.matrix_perceptions[x + 1][y].append(self.perceptions[obj['name']]) # verifica se estar na primeira coluna if y == 0: self.matrix_perceptions[x][y + 1].append(self.perceptions[obj['name']]) #verifica se estar na ultima coluna elif y == (self.dimension-1): self.matrix_perceptions[x][y - 1].append(self.perceptions[obj['name']]) #verifica se estar nas colunas do meio else: self.matrix_perceptions[x][y+1].append(self.perceptions[obj['name']]) self.matrix_perceptions[x][y-1].append(self.perceptions[obj['name']]) # verifica se estar na ultima linha elif x == (self.dimension - 1): self.matrix_perceptions[x - 1][y].append(self.perceptions[obj['name']]) # verifica se estar na primeira coluna if y == 0: self.matrix_perceptions[x][y + 1].append(self.perceptions[obj['name']]) # verifica se estar na ultima coluna if y == (self.dimension - 1): self.matrix_perceptions[x][y - 1].append(self.perceptions[obj['name']]) # verifica se estar nas colunas do meio else: self.matrix_perceptions[x][y + 1].append(self.perceptions[obj['name']]) self.matrix_perceptions[x][y - 1].append(self.perceptions[obj['name']]) # verifica se estar nas linhas do meio else: self.matrix_perceptions[x + 1][y].append(self.perceptions[obj['name']]) self.matrix_perceptions[x - 1][y].append(self.perceptions[obj['name']]) # verifica se estar na primeira coluna if y == 0: self.matrix_perceptions[x][y + 1].append(self.perceptions[obj['name']]) # verifica se estar na ultima coluna if y == (self.dimension - 1): self.matrix_perceptions[x][y - 1].append(self.perceptions[obj['name']]) # verifica se estar nas colunas do meio else: self.matrix_perceptions[x][y + 1].append(self.perceptions[obj['name']]) self.matrix_perceptions[x][y - 1].append(self.perceptions[obj['name']]) def printMatrix(self, coordinate: tuple): output = '' #print(coordinate) for line in range(self.dimension -1, -1, -1): for column in range(self.dimension): if coordinate == (line, column): output += '|A' else: if self.matrix[line][column] == 'wumpus': output += '|W' elif self.matrix[line][column] == 'gold': output += '|G' elif self.matrix[line][column] == 'pit': output += '|P' else : output += '| ' output += '|\n' print(output) return output def getPerceptions(self, coordinate:tuple)->list: perceptions = [] if self.isPerception(coordinate, 'breeze'): perceptions.append('breeze') if self.isPerception(coordinate, 'stench'): perceptions.append('stench') if self.isPerception(coordinate, 'glitter'): perceptions.append('glitter') if self.screamTrigger: perceptions.append('scream') self.screamTrigger = False return perceptions def isPerception(self, coordinate, perception)-> bool: x,y = coordinate if not self.isValid(coordinate): return False return perception in self.matrix_perceptions[x][y] def isPit(self, coordinate:tuple)->bool: x, y = coordinate if not self.isValid(coordinate): return False return self.matrix[x][y] == 'pit' def isWumpus(self, coordinate:tuple)->bool: x, y = coordinate if not self.isValid(coordinate): return False return self.matrix[x][y] == 'wumpus' def isGold(self, coordinate:tuple)->bool: x, y = coordinate if not self.isValid(coordinate): return False return self.matrix[x][y] == 'gold' def isExit(self, coordinate:tuple)->bool: return coordinate == (0,0) def removeWumpus(self, coordinate:tuple)->None: self.screamTrigger = True x, y = coordinate if not self.isValid(coordinate): return self.matrix[x][y] = 'empty' def removeGold(self, coordinate:tuple)->None: x, y = coordinate if not self.isValid(coordinate): return self.matrix[x][y] = 'empty' self.matrix_perceptions[x][y].remove('glitter') # Gera uma Coordenada Vazia qualquer de X e Y que não seja (0,0) def randomCoordinate(self, )->tuple: x,y = (0,0) while( ((x,y) == (0,0)) or (self.matrix[x][y] != 'empty') ): x, y = randrange(self.dimension), randrange(self.dimension) return (x,y) def isValid(self, coordinate) -> bool: x , y = coordinate if x >= self.dimension or y >= self.dimension: return False if x < 0 or y < 0: return False return True def getObjectCoord(self, name: str): return self.coordinate[name] def getGraph(self, )->dict: grafo = {} n = self.dimension for i in range(n): for j in range(n): cima, baixo, direita, esquerda = (i+1,j), (i-1,j), (i,j+1), (i,j-1) nodes = [] if i == 0: # 1° LINHA if self.matrix[cima[0]][cima[1]] != 'pit': nodes.append(cima) if j == 0: # MAIS A ESQUERDA (apenas testar a direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) elif j == n-1: # MAIS A DIREITA (apenas testar a esquerda) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) else: # NO MEIO (testar a esquerda e direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) elif i == n-1: # ULTIMA LINHA if self.matrix[baixo[0]][baixo[1]] != 'pit': nodes.append(baixo) if j == 0: # MAIS A ESQUERDA (apenas testar a direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) elif j == n-1: # MAIS A DIREITA (apenas testar a esquerda) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) else: # NO MEIO (testar a esquerda e direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) else: # NAS LINHS DO MEIO (estar CIMA e BAIXO) if self.matrix[baixo[0]][baixo[1]] != 'pit': nodes.append(baixo) if self.matrix[cima[0]][cima[1]] != 'pit': nodes.append(cima) if j == 0: # MAIS A ESQUERDA (apenas testar a direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) elif j == n-1: # MAIS A DIREITA (apenas testar a esquerda) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) else: # NO MEIO (testar a esquerda e direita) if self.matrix[direita[0]][direita[1]] != 'pit': nodes.append(direita) if self.matrix[esquerda[0]][esquerda[1]] != 'pit': nodes.append(esquerda) grafo.update({(i,j):nodes}) return grafo def depthSearch(self, start:object): graph = self.getGraph() visiteds = [start] not_visiteds = [start] while not_visiteds: current = not_visiteds.pop() for neighbor in graph[current]: if neighbor not in visiteds: visiteds.append(neighbor) not_visiteds.append(neighbor) x,y=neighbor if self.matrix[x][y] == 'gold': return True return False def validEnvironment(self, )-> bool: return self.depthSearch((0,0))
3.296875
3
tests/unit/dataactvalidator/test_fabsreq9_detached_award_financial_assistance.py
brianherman/data-act-broker-backend
0
12793049
from tests.unit.dataactcore.factories.staging import DetachedAwardFinancialAssistanceFactory from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'fabsreq9_detached_award_financial_assistance' def test_column_headers(database): expected_subset = {'row_number', 'awardee_or_recipient_legal', 'correction_delete_indicatr', 'uniqueid_AssistanceTransactionUniqueKey'} actual = set(query_columns(_FILE, database)) assert expected_subset == actual def test_success(database): """ Test AwardeeOrRecipientLegalEntityName is required for all submissions except delete records. """ det_award = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='C', awardee_or_recipient_legal='REDACTED') det_award_2 = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='', awardee_or_recipient_legal='Name') # Test ignoring for D records det_award_3 = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='d', awardee_or_recipient_legal=None) det_award_4 = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='D', awardee_or_recipient_legal='') det_award_5 = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='d', awardee_or_recipient_legal='Name') errors = number_of_errors(_FILE, database, models=[det_award, det_award_2, det_award_3, det_award_4, det_award_5]) assert errors == 0 def test_failure(database): """ Test fail AwardeeOrRecipientLegalEntityName is required for all submissions except delete records. """ det_award = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr='c', awardee_or_recipient_legal=None) det_award_2 = DetachedAwardFinancialAssistanceFactory(correction_delete_indicatr=None, awardee_or_recipient_legal='') errors = number_of_errors(_FILE, database, models=[det_award, det_award_2]) assert errors == 2
2.375
2
colin-api/tests/unit/api/test_program_account.py
leksmall/lear
0
12793050
# Copyright © 2022 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests to assure the ProgramAccount end-point. Test-Suite to ensure that the /programAccount endpoint is working as expected. """ from tests import oracle_integration @oracle_integration def test_get_program_account_no_results(client): """Assert that the program account info.""" rv = client.get('/api/v1/programAccount/FM0000001/BNTZLDLBBE3') assert 404 == rv.status_code assert None is not rv.json['message']
1.703125
2