max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
HW 1/P1.py
minotaur487/MIT-OCW-Problem-Sets
0
12793151
# Problem 1 def remaining_balance(min_monthly_payment_rate, balance, ann): payment = round(min_monthly_payment_rate*balance, 2) interest_paid = round(ann / 12 * balance, 2) principal_paid = payment - interest_paid return balance - principal_paid, payment, principal_paid bal = float(input("Enter the outstanding balance on your credit card: ")) annual_interest_rate = float(input("Enter the annual credit card interest rate as a decimal: ")) monthly_payment_rate = float(input("Enter the minimum monthly payment rate as a decimal: ")) total_amount_paid = 0 for x in range(12): remaining_bal, min_monthly, prin = remaining_balance(monthly_payment_rate, bal, annual_interest_rate) remaining_bal, min_monthly, prin = round(remaining_bal, 2), round(min_monthly, 2), round(prin, 2) print(f'Month: {x+1}') print(f'Minimum monthly payment: ${min_monthly}') print(f'Principle paid: ${prin}') print(f'Remaining balance: ${remaining_bal}') bal = remaining_bal total_amount_paid += min_monthly print("RESULT") print(f'Total amount paid: ${round(total_amount_paid, 2)}') print(f'Remaining balance: ${bal}')
4.0625
4
pypykatz/kerberos/functiondefs/asn1structs.py
wisdark/pypykatz
1,861
12793152
from asn1crypto import core from minikerberos.protocol.asn1_structs import krb5int32, APOptions, Ticket, EncryptedData, AP_REQ UNIVERSAL = 0 APPLICATION = 1 CONTEXT = 2 TAG = 'explicit' class MechType(core.ObjectIdentifier): _map = { #'': 'SNMPv2-SMI::enterprises.311.2.2.30', '1.3.6.1.4.1.311.2.2.10': 'NTLMSSP - Microsoft NTLM Security Support Provider', '1.2.840.48018.1.2.2' : 'MS KRB5 - Microsoft Kerberos 5', '1.2.840.113554.1.2.2' : 'KRB5 - Kerberos 5', '1.2.840.113554.1.2.2.3': 'KRB5 - Kerberos 5 - User to User', '1.3.6.1.4.1.311.2.2.30': 'NEGOEX - SPNEGO Extended Negotiation Security Mechanism', } class InitialContextToken(core.Sequence): class_ = 1 tag = 0 _fields = [ ('thisMech', MechType, {'optional': False}), ('unk_bool', core.Boolean, {'optional': False}), ('innerContextToken', core.Any, {'optional': False}), ] _oid_pair = ('thisMech', 'innerContextToken') _oid_specs = { 'KRB5 - Kerberos 5': AP_REQ, }
1.773438
2
KitchenMLTest.py
shyampurk/kitchenML
0
12793153
# -*- coding: utf-8 -*- """ Created on Tue Jun 19 12:14:06 2018 @author: Admin """ #from pandas import Series #from statsmodels.graphics.tsaplots import plot_acf #from statsmodels.graphics.tsaplots import plot_pacf #from matplotlib import pyplot #from pandas import DataFrame #from pandas import read_csv #from pandas import datetime # #def parser(x): # return datetime.strptime(x, '%Y-%m-%d') # #series = read_csv('recom_train.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser) ##print(series.head()) # #pyplot.figure(figsize=(30,10)) #pyplot.subplot(211) #plot_acf(series, ax=pyplot.gca()) #pyplot.subplot(212) #plot_pacf(series, ax=pyplot.gca()) #pyplot.show() import warnings #from pandas import Series from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error from math import sqrt from pandas import datetime from pandas import read_csv # evaluate an ARIMA model for a given order (p,d,q) and return RMSE def evaluate_arima_model(X, arima_order): # prepare training dataset X = X.astype('float32') train_size = int(len(X) * 0.50) train, test = X[0:train_size], X[train_size:] history = [x for x in train] # make predictions predictions = list() for t in range(len(test)): model = ARIMA(history, order=arima_order) model_fit = model.fit(disp=0) yhat = model_fit.forecast()[0] predictions.append(yhat) history.append(test[t]) # calculate out of sample error mse = mean_squared_error(test, predictions) rmse = sqrt(mse) return rmse # evaluate combinations of p, d and q values for an ARIMA model def evaluate_models(dataset, p_values, d_values, q_values): dataset = dataset.astype('float32') best_score, best_cfg = float("inf"), None for p in p_values: for d in d_values: for q in q_values: order = (p,d,q) try: mse = evaluate_arima_model(dataset, order) if mse < best_score: best_score, best_cfg = mse, order print('ARIMA%s MSE=%.3f' % (order,mse)) except: continue print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score)) # load dataset def parser(x): return datetime.strptime(x, '%Y-%m-%d') series = read_csv('data/recom_train.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser) # evaluate parameters p_values = range(0,13) d_values = range(0, 4) q_values = range(0, 13) warnings.filterwarnings("ignore") evaluate_models(series.values, p_values, d_values, q_values)
2.765625
3
tf1x/tests/analysis/atas_test.py
dpaiton/DeepSparseCoding
12
12793154
import os import sys ROOT_DIR = os.path.dirname(os.path.dirname(os.getcwd())) if ROOT_DIR not in sys.path: sys.path.append(ROOT_DIR) import numpy as np import tensorflow as tf from DeepSparseCoding.tf1x.analysis.base_analyzer import Analyzer """ Test for activity triggered analysis NOTE: Should be executed from the repository's root directory """ class ActivityTriggeredAverageTest(tf.test.TestCase): def testBasic(self): rand_state = np.random.RandomState(1234) rand_mean = 2.0 rand_var = 10 num_images = 50 num_pixels = 12 num_neurons = 24 base_analyzer = Analyzer() model_weights = rand_state.normal(loc=0.0, scale=1.0, size=(num_pixels, num_neurons)) images = rand_state.normal(loc=rand_mean, scale=rand_var, size=[num_images, num_pixels]) # Batch size is greater than num images (shouldn't use batches) batch_size = 100 atas_1 = base_analyzer.compute_atas(images, np.dot(images, model_weights), batch_size) # Batch size is less than num images, but divides evenly batch_size = 10 atas_2 = base_analyzer.compute_atas(images, np.dot(images, model_weights), batch_size) # Batch size is less than num_images, but does not divide evenly batch_size = 13 atas_3 = base_analyzer.compute_atas(images, np.dot(images, model_weights), batch_size) self.assertAllClose(atas_1, atas_2, rtol=1e-06, atol=1e-06) self.assertAllClose(atas_1, atas_3, rtol=1e-06, atol=1e-06) if __name__ == "__main__": tf.test.main()
2.390625
2
trainer/train_forward.py
deanzadok/finemotions
0
12793155
<gh_stars>0 from __future__ import absolute_import, division, print_function, unicode_literals import sys from tensorflow.python.framework.ops import prepend_name_scope sys.path.append('.') sys.path.append('..') import os import argparse import numpy as np import pandas as pd import tensorflow as tf from data.load import DataManagement from trainer.losses import ForwardKinematicsError, ConfigurationDynamicsError, ForwardDynamicsError from trainer.utils import ConfigManager, wait_for_gpu, initiate_model, set_random_seed import time import subprocess as sp parser = argparse.ArgumentParser() parser.add_argument('--json', '-json', help='name of json file', default='config/mfm/train_mfm_unet_aida_all_us2multikey_debug.json', type=str) args = parser.parse_args() # tf function to train @tf.function def train(timestamps, images, conf_y, dev_x, dev_y, cfg): with tf.GradientTape() as tape: # get predictions if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': pred_confs, pred_devs = model(images) elif cfg.mode == 'us2conf': pred_confs = model(images) else: pred_devs = model(images) # compute task losses if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': q_loss = mse(conf_y, pred_confs) dev_loss = bce(dev_y, pred_devs) loss = 4*q_loss + dev_loss elif cfg.mode == 'us2conf': q_loss = mse(conf_y, pred_confs) loss = q_loss else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' dev_loss = bce(dev_y, pred_devs) loss = dev_loss # add FK loss if cfg.data.use_fk: fk_loss = fke(conf_y, pred_confs) loss += cfg.data.fk * fk_loss train_fk_loss(fk_loss) # add CD loss if cfg.data.use_cd or cfg.data.use_fd: cde.set_time(timestamps) cd_loss = cde(conf_y, pred_confs) if cfg.data.use_cd: loss += cfg.data.cd * cd_loss train_cd_loss(cd_loss) # add FD loss if cfg.data.use_fd: fde.set_time_and_grads(timestamps, cde.y_true_grad, cde.y_pred_grad) fd_loss = fde(conf_y, pred_confs) loss += cfg.data.fd * fd_loss train_fd_loss(fd_loss) # perform optimization step gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': train_c_loss(q_loss) train_dev_loss(dev_loss) elif cfg.mode == 'us2conf': train_c_loss(q_loss) else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' train_dev_loss(dev_loss) # tf function to test @tf.function def test(timestamps, images, conf_y, dev_x, dev_y, cfg): # get predictions if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': pred_confs, pred_devs = model(images) elif cfg.mode == 'us2conf': pred_confs = model(images) else: pred_devs = model(images) # compute task losses if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': q_loss = mse(conf_y, pred_confs) dev_loss = bce(dev_y, pred_devs) elif cfg.mode == 'us2conf': q_loss = mse(conf_y, pred_confs) else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' dev_loss = bce(dev_y, pred_devs) # log tasks losses if cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': test_c_loss(q_loss) test_dev_loss(dev_loss) elif cfg.mode == 'us2conf': test_c_loss(q_loss) else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' test_dev_loss(dev_loss) # log FK loss if cfg.data.use_fk: fk_loss = fke(conf_y, pred_confs) test_fk_loss(fk_loss) # log CD loss if cfg.data.use_cd or cfg.data.use_fd: cde.set_time(timestamps) cd_loss = cde(conf_y, pred_confs) if cfg.data.use_cd: test_cd_loss(tf.cast(cd_loss, q_loss.dtype)) # log FD loss if cfg.data.use_fd: fde.set_time_and_grads(timestamps, cde.y_true_grad, cde.y_pred_grad) fd_loss = fde(conf_y, pred_confs) test_fd_loss(tf.cast(fd_loss, q_loss.dtype)) if __name__ == "__main__": # load config file cfg = ConfigManager(json_name=args.json, retrain=True) # set random seed (do nothing for no random seed) set_random_seed(cfg) # list visible devices and use allow growth - updated for TF 2.7 (CUDA 11 + CUDNN 8.2) gpus = tf.config.experimental.list_physical_devices('GPU') tf.config.set_visible_devices([gpus[cfg.system.gpu]], 'GPU') tf.config.experimental.set_memory_growth(gpus[cfg.system.gpu], True) # check if output folder exists if not os.path.isdir(cfg.output_dir): os.makedirs(cfg.output_dir) # initiate csv of training if asked if cfg.store_csv: metric_df_columns = [] if cfg.use_conf: metric_df_columns += ['train_c_loss','test_c_loss'] if cfg.data.use_fk: metric_df_columns += ['train_fk_loss','test_fk_loss'] if cfg.data.use_fd: metric_df_columns += ['train_fd_loss','test_fd_loss'] if cfg.data.use_cd: metric_df_columns += ['train_cd_loss','test_cd_loss'] if cfg.use_dev: metric_df_columns += ['train_dev_loss','test_dev_loss'] metric_df = pd.DataFrame(columns=metric_df_columns) # load train and test datasets data_mng = DataManagement(cfg=cfg) # wait for gpu if asked wait_for_gpu(gpu=str(cfg.system.gpu), memory_req=cfg.system.memory_req) # create model, loss and optimizer model = initiate_model(cfg=cfg) if cfg.use_conf: mse = tf.keras.losses.MeanSquaredError() if cfg.use_dev: bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) if cfg.data.use_fk: fke = ForwardKinematicsError(cfg=cfg, arm_lengths=data_mng.arm_lengths) if cfg.data.use_cd or cfg.data.use_fd: cde = ConfigurationDynamicsError(cfg=cfg) if cfg.data.use_fd: fde = ForwardDynamicsError(cfg=cfg, arm_lengths=data_mng.arm_lengths) optimizer = tf.keras.optimizers.Adam(learning_rate=cfg.training.learning_rate) # load weights if cfg.model.weights != "": model.load_weights(cfg.model.weights) # define metrics if cfg.use_conf: train_c_loss = tf.keras.metrics.Mean(name='train_c_loss') test_c_loss = tf.keras.metrics.Mean(name='test_c_loss') if cfg.data.use_fk: train_fk_loss = tf.keras.metrics.Mean(name='train_fk_loss') test_fk_loss = tf.keras.metrics.Mean(name='test_fk_loss') if cfg.data.use_cd: train_cd_loss = tf.keras.metrics.Mean(name='train_cd_loss') test_cd_loss = tf.keras.metrics.Mean(name='test_cd_loss') if cfg.data.use_fd: train_fd_loss = tf.keras.metrics.Mean(name='train_fd_loss') test_fd_loss = tf.keras.metrics.Mean(name='test_fd_loss') if cfg.use_dev: train_dev_loss = tf.keras.metrics.Mean(name='train_dev_loss') test_dev_loss = tf.keras.metrics.Mean(name='test_dev_loss') metrics_writer = tf.summary.create_file_writer(cfg.output_dir) # train train_counter = 0 test_counter = 0 print('Start training...') for epoch in range(cfg.training.epochs): for batch in data_mng.train_gen: if cfg.mode == 'us2conf': _, images, conf_y = batch train(timestamps=None, images=images, conf_y=conf_y, dev_x=None, dev_y=None, cfg=cfg) elif cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': timestamps, images, conf_y, dev_y = batch train(timestamps=timestamps, images=images, conf_y=conf_y, dev_x=None, dev_y=dev_y, cfg=cfg) else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' images, dev_y = batch train(timestamps=None, images=images, conf_y=None, dev_x=None, dev_y=dev_y, cfg=cfg) train_counter += 1 with metrics_writer.as_default(): if cfg.use_conf: tf.summary.scalar('Train C loss', train_c_loss.result(), step=test_counter) if cfg.data.use_fk: tf.summary.scalar('Train FK loss', train_fk_loss.result(), step=test_counter) if cfg.data.use_cd: tf.summary.scalar('Train CD loss', train_cd_loss.result(), step=test_counter) if cfg.data.use_fd: tf.summary.scalar('Train FD loss', train_fd_loss.result(), step=test_counter) if cfg.use_dev: tf.summary.scalar('Train Dev loss', train_dev_loss.result(), step=test_counter) for test_batch in data_mng.test_gen: if cfg.mode == 'us2conf': _, test_images, test_conf_y = test_batch test(timestamps=None, images=test_images, conf_y=test_conf_y, dev_x=None, dev_y=None, cfg=cfg) elif cfg.mode == 'us2conf2multimidi' or cfg.mode == 'us2conf2multikey': test_timestamps, test_images, test_conf_y, test_dev_y = test_batch test(timestamps=test_timestamps, images=test_images, conf_y=test_conf_y, dev_x=None, dev_y=test_dev_y, cfg=cfg) else: # cfg.mode == 'us2multimidi' or cfg.mode == 'us2multikey' test_images, test_dev_y = test_batch test(timestamps=None, images=test_images, conf_y=None, dev_x=None, dev_y=test_dev_y, cfg=cfg) test_counter += 1 with metrics_writer.as_default(): if cfg.use_conf: tf.summary.scalar('Test C loss', test_c_loss.result(), step=test_counter) if cfg.data.use_fk: tf.summary.scalar('Test FK loss', test_fk_loss.result(), step=test_counter) if cfg.data.use_cd: tf.summary.scalar('Test CD loss', test_cd_loss.result(), step=test_counter) if cfg.data.use_fd: tf.summary.scalar('Test FD loss', test_fd_loss.result(), step=test_counter) if cfg.use_dev: tf.summary.scalar('Test Dev loss', test_dev_loss.result(), step=test_counter) if cfg.store_csv: row_dict = {} if cfg.use_conf: row_dict['train_c_loss'] = train_c_loss.result().numpy() row_dict['test_c_loss'] = test_c_loss.result().numpy() if cfg.data.use_fk: row_dict['train_fk_loss'] = train_fk_loss.result().numpy() row_dict['test_fk_loss'] = test_fk_loss.result().numpy() if cfg.data.use_fd: row_dict['train_fd_loss'] = train_fd_loss.result().numpy() row_dict['test_fd_loss'] = test_fd_loss.result().numpy() if cfg.data.use_cd: row_dict['train_cd_loss'] = train_cd_loss.result().numpy() row_dict['test_cd_loss'] = test_cd_loss.result().numpy() if cfg.use_dev: row_dict['train_dev_loss'] = train_dev_loss.result().numpy() row_dict['test_dev_loss'] = test_dev_loss.result().numpy() metric_df = metric_df.append(row_dict, ignore_index=True) metric_df.to_csv(path_or_buf=os.path.join(cfg.output_dir, 'metric.csv'), index=False) # printing print('Epoch {},'.format(epoch+1), end=" ") if cfg.use_conf: print('C L: {:.5f}, T C L: {:.5f}.'.format(train_c_loss.result(), test_c_loss.result()), end=" ") if cfg.data.use_fk: print('FK L: {:.5f}, T FK L: {:.5f}.'.format(train_fk_loss.result(), test_fk_loss.result()), end=" ") if cfg.data.use_cd: print('CD L: {:.5f}, T CD L: {:.5f}.'.format(train_cd_loss.result(), test_cd_loss.result()), end=" ") if cfg.data.use_fd: print('FD L: {:.5f}, T FD L: {:.5f}.'.format(train_fd_loss.result(), test_fd_loss.result()), end=" ") if cfg.use_dev: print('Dev L: {:.5f}, T Dev L: {:.5f}.'.format(train_dev_loss.result(), test_dev_loss.result()), end=" ") print(" ") if (epoch+1) % 10 == 0 or epoch == 0: print('GPU: {}, Experiment: {}'.format(cfg.system.gpu,cfg.output_dir)) # save model if (epoch+1) % cfg.training.cp_interval == 0 and epoch > 0: print('Saving weights to {}'.format(cfg.output_dir)) model.save_weights(os.path.join(cfg.output_dir, "model{}.ckpt".format(epoch+1)))
1.9375
2
adept_envs/utils/registration.py
isabella232/DBAP-simulation
2
12793156
""" Copyright 2021 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """Helper methods for Gym environment registration.""" import logging from gym.envs import registration as gym_reg def register(env_id: str, class_path: str, **kwargs): """Registers the given class path as a Gym environment. Args: env_id: The ID to register the environment as. class_path: The fully-qualified class path of the environment. **kwargs: Key-word arguments to pass to gym's register function. """ if env_id in gym_reg.registry.env_specs: # This may happen during test discovery. logging.warning('Re-registering environment %s', env_id) del gym_reg.registry.env_specs[env_id] gym_reg.register(env_id, entry_point=class_path, **kwargs)
2.234375
2
moztrap/settings/default.py
yifanjiang/moztrap
1
12793157
<filename>moztrap/settings/default.py from .base import * try: from .local import * except ImportError: pass CACHES["default"]["VERSION"] = 1 if DEBUG: MIDDLEWARE_CLASSES.insert( 0, "moztrap.debug.middleware.AjaxTracebackMiddleware") try: HMAC_KEYS except NameError: HMAC_KEYS = {"default": SECRET_KEY} LOGGING["handlers"]["null"] = { 'level':'DEBUG', 'class':'django.utils.log.NullHandler', } LOGGING["loggers"]["moztrap"] = { "handlers": ["null"], # replace this in local.py if you want logging "level": "ERROR", "propagate": True, }
1.585938
2
Analysis Scripts/supply_demand_mismatch.py
bonesbb/HASPR
1
12793158
<reponame>bonesbb/HASPR<filename>Analysis Scripts/supply_demand_mismatch.py # HASPR - High-Altitude Solar Power Research # Script to get alleviation of supply/demand mismatch given generation profiles # Version 0.1 # Author: neyring from os import walk import haspr from haspr import Result from haspr import Dataset from numpy import genfromtxt # PARAMETERS # # path to .csv file of supply/demand mismatch data (Wh, UTC, 30min res, no leap days): mismatchPath = "D:\\00_Results\\03_Supply Demand Mismatch\\5_2018 Mismatch - 30min res - UTC time.csv" # directory containing generation profiles (30min res, Wh) to run our analyses on (without leap days): inputDirectory = "D:\\00_Results\\03_Supply Demand Mismatch\\In" # directory to write output to: haspr.outputDirectory = "D:\\00_Results\\03_Supply Demand Mismatch\\Case 5 - 30 to 65 deg winter opt" # OS path delimiter ("\\" for windows, "/" for unix)" haspr.osPathDelimiter = "\\" # extract mismatch data: mismatch = Dataset("mismatch") haspr.get_csv_data(mismatchPath, mismatch) timestamps = [] mismatch_values = [] for p in mismatch.payload: timestamps.append(str(p[0])) mismatch_values.append(float(p[1])) # get all file names in inputDirectory: file_names = [] for (dirpath, dirnames, filenames) in walk(inputDirectory): file_names.extend(filenames) # cycle through files and build result objects: results = [] for f in file_names: file_path = inputDirectory + haspr.osPathDelimiter + f # get generation profile: extracted_array = genfromtxt(file_path, delimiter=',', skip_header=1) gen_values = extracted_array[:, 1] # we only want generation values # calculate import offset: current_import_offset = [] for i in range(17520): total_import = (-1) * mismatch_values[i] # -ve value for mismatch => import generation = gen_values[i] import_offset = 0.0 if total_import > 0: import_offset = min(generation, total_import) # can't offset more than total imports current_import_offset.append(import_offset) # build current result object: result_title = f[0:len(f) - 4] + " - import offset" current_result = Result(result_title) current_result.payload.append("Time (UTC), Reduction in Imports [Wh]") for j in range(17520): str_to_append = str(timestamps[j]) + ", " + str(current_import_offset[j]) current_result.payload.append(str_to_append) results.append(current_result) # dump all results: for r in results: r.dump()
2.734375
3
lambda/exercices/PhotoCollector/getAllSubjectLambda.py
Mythridor/aws-scripting
0
12793159
<gh_stars>0 import boto3 def lambda_handler(event, context): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('<DBName>') result = table.scan( ProjectionExpression='subject', ) return (result['Items'])
2.21875
2
network/tests/test_integration.py
glasser/integrations-core
2
12793160
<reponame>glasser/integrations-core<gh_stars>1-10 # (C) Datadog, Inc. 2019 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import platform import pytest from . import common pytestmark = pytest.mark.integration @pytest.mark.usefixtures("dd_environment") def test_check(aggregator, check, instance): check.check(instance) for metric in common.EXPECTED_METRICS: aggregator.assert_metric(metric) @pytest.mark.skipif(platform.system() != 'Linux', reason="Only runs on Unix systems") @pytest.mark.usefixtures("dd_environment") def test_check_linux(aggregator, check, instance_blacklist): check.check(instance_blacklist) for metric in common.CONNTRACK_METRICS: aggregator.assert_metric(metric)
2.015625
2
counternet/dataset.py
BirkhoffG/counternet
0
12793161
<gh_stars>0 # AUTOGENERATED! DO NOT EDIT! File to edit: nbs/01b_data.ipynb (unless otherwise specified). __all__ = ['dict2json', 'load_configs', 'update_json_file', 'bn_func', 'x1_to_x3', 'x1x2_to_x4', 'bn_gen', 'load_adult_income_dataset', 'load_learning_analytic_data', 'describe'] # Cell from .import_essentials import * # Cell def dict2json(dictionary: Dict[str, Any], file_name: str): with open(file_name, "w") as outfile: json.dump(dictionary, outfile, indent=4) def load_configs(file_name: Path): # if os.path.exists(file_name): # raise FileNotFoundError(f"{file_name} is not found.") with open(file_name) as json_file: return json.load(json_file) def update_json_file(param: dict, file_name: str): if os.path.exists(file_name): old_param = load_configs(file_name) else: old_param = {} # copy to old_param for k in param.keys(): old_param[k] = param[k] dict2json(old_param, file_name) return old_param # Cell def bn_func(x1, x2, x3, x4): def sigmoid(x): return 1 / (1 + np.exp(-x)) return sigmoid(10.5 * ((x1 * x2) / 8100) + 10 - np.random.normal(1, 0.1, 10000) * x3 + 1e-3 * x4) def x1_to_x3(x1): return 1/3 * x1 - 5 def x1x2_to_x4(x1, x2): return x1 * np.log(x2 ** 2) / 10 - 10 def bn_gen(): """ modify code from: https://github.com/divyat09/cf-feasibility/blob/master/generativecf/scripts/simple-bn-gen.py """ x1 = np.random.normal(50, 15, 10000) x2 = np.random.normal(35, 17, 10000) x3 = x1_to_x3(x1) + np.random.normal(0, 1, 10000) x4 = x1x2_to_x4(x1, x2) + np.random.normal(0, 1, 10000) y = bn_func(x1, x2, x3, x4) data = np.zeros((x1.shape[0], 5)) data[:, 0] = x1 data[:, 1] = x2 data[:, 2] = x3 data[:, 3] = x4 data[:, 4] = np.array(y > .5, dtype=np.int) return pd.DataFrame(data, columns=['x1', 'x2', 'x3', 'x4', 'y']) # Cell def load_adult_income_dataset(path=None): """Loads adult income dataset from https://archive.ics.uci.edu/ml/datasets/Adult and prepares the data for data analysis based on https://rpubs.com/H_Zhu/235617 :return adult_data: returns preprocessed adult income dataset. copy from https://github.com/interpretml/DiCE/blob/master/dice_ml/utils/helpers.py """ if path is None: raw_data = np.genfromtxt( 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data', delimiter=', ', dtype=str ) else: raw_data = np.genfromtxt( path, delimiter=', ', dtype=str ) # column names from "https://archive.ics.uci.edu/ml/datasets/Adult" column_names = ['age', 'workclass', 'fnlwgt', 'education', 'educational-num', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'] adult_data = pd.DataFrame(raw_data, columns=column_names) # For more details on how the below transformations are made, please refer to https://rpubs.com/H_Zhu/235617 adult_data = adult_data.astype( {"age": np.int64, "educational-num": np.int64, "hours-per-week": np.int64}) adult_data = adult_data.replace( {'workclass': {'Without-pay': 'Other/Unknown', 'Never-worked': 'Other/Unknown'}}) adult_data = adult_data.replace({'workclass': { 'Federal-gov': 'Government', 'State-gov': 'Government', 'Local-gov': 'Government'}}) adult_data = adult_data.replace( {'workclass': {'Self-emp-not-inc': 'Self-Employed', 'Self-emp-inc': 'Self-Employed'}}) adult_data = adult_data.replace( {'workclass': {'Never-worked': 'Self-Employed', 'Without-pay': 'Self-Employed'}}) adult_data = adult_data.replace({'workclass': {'?': 'Other/Unknown'}}) adult_data = adult_data.replace({'occupation': {'Adm-clerical': 'White-Collar', 'Craft-repair': 'Blue-Collar', 'Exec-managerial': 'White-Collar', 'Farming-fishing': 'Blue-Collar', 'Handlers-cleaners': 'Blue-Collar', 'Machine-op-inspct': 'Blue-Collar', 'Other-service': 'Service', 'Priv-house-serv': 'Service', 'Prof-specialty': 'Professional', 'Protective-serv': 'Service', 'Tech-support': 'Service', 'Transport-moving': 'Blue-Collar', 'Unknown': 'Other/Unknown', 'Armed-Forces': 'Other/Unknown', '?': 'Other/Unknown'}}) adult_data = adult_data.replace({'marital-status': {'Married-civ-spouse': 'Married', 'Married-AF-spouse': 'Married', 'Married-spouse-absent': 'Married', 'Never-married': 'Single'}}) adult_data = adult_data.replace({'race': {'Black': 'Other', 'Asian-Pac-Islander': 'Other', 'Amer-Indian-Eskimo': 'Other'}}) adult_data = adult_data[['age', 'hours-per-week', 'workclass', 'education', 'marital-status', 'occupation', 'race', 'gender', 'income']] adult_data = adult_data.replace({'income': {'<=50K': 0, '>50K': 1}}) adult_data = adult_data.replace({'education': {'Assoc-voc': 'Assoc', 'Assoc-acdm': 'Assoc', '11th': 'School', '10th': 'School', '7th-8th': 'School', '9th': 'School', '12th': 'School', '5th-6th': 'School', '1st-4th': 'School', 'Preschool': 'School'}}) adult_data = adult_data.rename( columns={'marital-status': 'marital_status', 'hours-per-week': 'hours_per_week'}) return adult_data # Cell def load_learning_analytic_data(path='assets/data/oulad'): def weighted_score(x): d = {} total_weight = sum(x['weight']) d['weight'] = total_weight if sum(x['weight']) == 0: d['weighted_score'] = sum(x['score']) / len(x['score']) else: d['weighted_score'] = sum( x['score'] * x['weight']) / sum(x['weight']) return pd.DataFrame(d, index=[0]) def clicks(x): types = x['activity_type'] sum_clicks = x['sum_click'] # for t, c in zip(types, sum_clicks): # x[f"{t}_click"] = c return pd.DataFrame({f"{t}_click": c for t, c in zip(types, sum_clicks)}, index=[0]) print('loading pandas dataframes...') assessment = pd.read_csv(f'{path}/assessments.csv') courses = pd.read_csv(f'{path}/courses.csv') student_assessment = pd.read_csv(f'{path}/studentAssessment.csv') student_info = pd.read_csv(f'{path}/studentInfo.csv') student_regist = pd.read_csv(f'{path}/studentRegistration.csv') student_vle = pd.read_csv(f'{path}/studentVle.csv') vle = pd.read_csv(f'{path}/vle.csv') print('preprocessing assessment...') # note: only count for submitted assessment, not weighted for unsubmitted ones assessment_merged = student_assessment.merge(assessment) assessment_grouped = assessment_merged.groupby( ['code_module', 'code_presentation', 'id_student']).apply(weighted_score) assessment_df = assessment_grouped.reset_index( None).drop(['level_3'], axis=1) print('preprocessing vle...') # vle grouped_vle = student_vle.merge(vle).groupby( ['activity_type', 'code_module', 'code_presentation', 'id_student']) sumed_vle = grouped_vle.sum().drop( ['id_site', 'date', 'week_from', 'week_to'], axis=1).reset_index() grouped_vle = sumed_vle.groupby( ['code_module', 'code_presentation', 'id_student']).apply(clicks) vle_df = grouped_vle.reset_index(None).drop(['level_3'], axis=1) student_df = student_info.merge(assessment_df, on=['code_module', 'code_presentation', 'id_student'], how='left')\ .merge(vle_df, on=['code_module', 'code_presentation', 'id_student'], how='left') return student_df[['num_of_prev_attempts', 'weight', 'weighted_score', 'forumng_click', 'homepage_click', 'oucontent_click', 'resource_click', 'subpage_click', 'url_click', 'dataplus_click', 'glossary_click', 'oucollaborate_click', 'quiz_click', 'ouelluminate_click', 'sharedsubpage_click', 'questionnaire_click', 'page_click', 'externalquiz_click', 'ouwiki_click', 'dualpane_click', 'folder_click', 'repeatactivity_click', 'htmlactivity_click', 'code_module', 'gender', 'region', 'highest_education', 'imd_band', 'age_band', 'studied_credits', 'disability', 'final_result']] # Cell def describe(configs: List[Dict[str, Dict[str, Any]]]): r = {"size": {}, "# of Cont": {}, "# of Cat": {}} for data_name, config in configs: data = pd.read_csv(f"{config['data_dir']}") data_size = len(data) cat_len = len(config['discret_cols']) cont_len = len(config['continous_cols']) r['size'][data_name] = data_size r['# of Cont'][data_name] = cont_len r['# of Cat'][data_name] = cat_len # pd.DataFrame.from_dict(r).to_csv("../results/data_describe.csv") return r
2.296875
2
v1/cs/download.py
imhele/django-example
1
12793162
# -*- coding: utf-8 -*- # API - cs # FileName: download.py # Version: 1.0.0 # Create: 2018-10-27 # Modify: 2018-11-07 import mimetypes from .auth import OSS from .util import Check from act import StoreData from .upload import FolderFile, Source from .exception import CSCommonErr, CSDownloadErr class Download(object): def __init__(self, act=None, app=None): """ :param StoreData act: :param StoreData app: """ self.act = act self.app = app def normal(self, content_type, expires, folder_file, intranet, source_file): """ :param str or None content_type: Content type in headers :param int or None expires: Url expires :param str folder_file: Eg: folder/${FolderId}/.../t=${CreateTime}&n=${FileName}&i=${FileId} :param bool intranet: Return intranet url :param str source_file: Eg: source/${FileId}.source.cs :return: """ headers = None if content_type is not None: if mimetypes.guess_extension(content_type) is not None: headers = {'Content-Type': content_type} if not Check.download_expires(expires): return CSDownloadErr.EXPIRES_LIMIT if not folder_file.startswith('folder/'): return CSCommonErr.INVALID_FOLDER if not source_file.startswith('source/'): return CSCommonErr.INVALID_SOURCE appid = self.act.dict['PassiveParty'] if source_file is not None: source = Source(appid, suffix=source_file) else: source = FolderFile(appid, suffix=folder_file).source oss = OSS(intranet=intranet, extranet=(not intranet)) url = oss.sign_url('GET', source.key, expires, headers, intranet=intranet) return { 'errcode': 0, 'url': url, 'headers': headers, 'source': source.suffix, }
2.40625
2
awspider/servers/data.py
wehriam/awspider
2
12793163
from twisted.internet.defer import Deferred, DeferredList from twisted.web import server from twisted.internet import reactor from .base import BaseServer, LOGGER from ..resources import DataResource class DataServer(BaseServer): def __init__(self, aws_access_key_id, aws_secret_access_key, aws_s3_storage_bucket, aws_sdb_reservation_domain, port=5002, log_file='dataserver.log', log_directory=None, log_level="debug", name=None, max_simultaneous_requests=50): if name == None: name = "AWSpider Data Server UUID: %s" % self.uuid resource = DataResource(self) self.site_port = reactor.listenTCP(port, server.Site(resource)) BaseServer.__init__( self, aws_access_key_id, aws_secret_access_key, aws_s3_storage_bucket=aws_s3_storage_bucket, aws_sdb_reservation_domain=aws_sdb_reservation_domain, log_file=log_file, log_directory=log_directory, log_level=log_level, name=name, max_simultaneous_requests=max_simultaneous_requests, port=port) def clearStorage(self): return self.s3.emptyBucket(self.aws_s3_storage_bucket) def getData(self, uuid): LOGGER.debug("Getting %s from S3." % uuid) d = self.s3.getObject(self.aws_s3_storage_bucket, uuid) d.addCallback(self._getCallback, uuid) d.addErrback(self._getErrback, uuid) return d def _getCallback(self, data, uuid): LOGGER.debug("Got %s from S3." % (uuid)) return cPickle.loads(data["response"]) def _getErrback(self, error, uuid): LOGGER.error("Could not get %s from S3.\n%s" % (uuid, error)) return error def shutdown(self): deferreds = [] LOGGER.debug("%s stopping on main HTTP interface." % self.name) d = self.site_port.stopListening() if isinstance(d, Deferred): deferreds.append(d) if len(deferreds) > 0: d = DeferredList(deferreds) d.addCallback(self._shutdownCallback) return d else: return self._shutdownCallback(None) def _shutdownCallback(self, data): return BaseServer.shutdown(self)
1.9375
2
app/tests/utils/test_utils.py
onap/sdc-dcae-d-tosca-lab
1
12793164
<filename>app/tests/utils/test_utils.py from toscalib.templates.topology import ToscaTopology from toscalib.templates.database import ToscaDB from toscalib.types.node import NodeType from toscalib.types.capability import CapabilityType from toscalib.tosca_builder import ToscaBuilder import os CURR_DIR = os.path.dirname(os.path.abspath(__file__)) meta_model = os.path.join(CURR_DIR, os.pardir, '../data/meta_model/meta_tosca_schema.yaml') policy_model = os.path.join(CURR_DIR, os.pardir, '../data/meta_model/meta_policy_schema.yaml') def init_template(): db = ToscaDB() capability_type = CapabilityType('tosca.capabilities.dummy', {'properties': {'capabilityProperty': {'type': 'string'}}}) sub_capability = CapabilityType('tosca.capabilities.substitute', {'properties': {'capabilityProperty': {'type': 'string'}}}) capability_type._parse_content(db) sub_capability._parse_content(db) db._import_capability_type(capability_type) db._import_capability_type(sub_capability) node_type = NodeType('nodeTypeName', {'id': 'nodeId', 'attributes': {'attributeName': {'type': 'string'}}, 'properties': {'propertyName': {'type': 'string'}}, 'capabilities': {'capabilityName': {'type': 'tosca.capabilities.dummy'}}, 'requirements': [{'dummyRequirement': {'capability': 'tosca.capabilities.dummy'}}]}) sub_node = NodeType('substituteNodeType', {'id': 'subNodeId', 'properties': {'inputName': {'type': 'string'}}, 'capabilities': {'substituteCapability': {'type': 'tosca.capabilities.substitute'}}, 'requirements': [{'substituteRequirement': {'capability': 'tosca.capabilities.substitute'}}]}) node_type._parse_content(db) sub_node._parse_content(db) db._import_node_type(node_type) db._import_node_type(sub_node) template = ToscaTopology('templateName', None, {'inputs': {'inputName': {'type': 'string'}}, 'node_templates': {'nodeName': {'type': 'nodeTypeName'}, 'node2': {'type': 'nodeTypeName', 'requirements': [{'dummyRequirement': 'nodeName'}]}}}) template._parse_content(db) return template def init_sub_template(): db = ToscaDB() sub_capability = CapabilityType('tosca.capabilities.substitute', {'properties': {'capabilityProperty': {'type': 'string'}}}) sub_capability._parse_content(db) db._import_capability_type(sub_capability) sub_node = NodeType('substituteNodeType', {'id': 'subNodeId', 'properties': {'propertyName': {'type': 'string'}}, 'capabilities': {'substituteCapability': {'type': 'tosca.capabilities.substitute'}}, 'requirements': [{'substituteRequirement': {'capability': 'tosca.capabilities.substitute'}}]}) sub_node._parse_content(db) db._import_node_type(sub_node) template = ToscaTopology('subTemplateName', None, {'inputs': {'propertyName': {'type': 'string'}}, 'node_templates': {'nodeName': {'type': 'substituteNodeType'}}}) template._parse_content(db) return template def init_tosca_builder_with_schema_and_spec(): spec = {"self": { "version": "1.1.0", "name": "test_spec_ss", "description": "Collector for receiving VES events through restful interface", "component_type": "docker"}, "streams": { "subscribes": [], "publishes": [{ "format": "VES_specification", "version": "5.28.4", "type": "message router", "config_key": "ves_sipsignaling"}]}, "services": { "provides": [{ "route": "/eventListener/v5", "verb": "POST", "request": { "format": "VES_specification", "version": "5.28.4"}, "response": { "format": "ves.coll.response", "version": "1.0.0"}}]}, "parameters": [{ "name": "collector.service.port", "value": 8080, "description": "standard http port"}, {"name": "collector.service.secure.port", "value": 8443, "description": "secure port "}, {"name": "collector.keystore.file.location", "value": "/opt/app/dcae-certificate/keystore.jks", "description": "fs location of keystore in vm"}], "auxilary": { "healthcheck": { "type": "http", "interval": "15s", "timeout": "1s", "endpoint": "/healthcheck"}}} builder = ToscaBuilder() builder.import_schema(meta_model) builder.import_spec_str(spec) return builder def init_tosca_builder_with_policy_schema_and_spec(): spec = {"self": { "version": "0.1.6", "name": "DcaeSamCollector", "component_type": "docker"}, "parameters": [{ "name": "clliLocationMappingClliFutureUse3", "description": "SAM Collector clli=location ID set", "value": "", "type": "string"}, {"name": "vnfFaultMonProvisionPolicy", "policy_editable": True, "policy_group": "DcaeSamCollector_vnfFaultMonProvisionPolicy", "type": "string", "policy_schema": [{ "name": "vnfTypeSpecificData", "description": "List of objects for vnf type monitorng", "type": "list", "entry_schema": [{ "name": "elementType", "value": ""}, {"name": "monitoringTasks", "type": "list", "entry_schema": [{ "name": "HostGroupSetCommonLinuxSNMP", "type": "boolean", "value": "false"}, {"name": "HostGroupSetNagent_Common_Linux", "type": "boolean", "value": "false"}] } ] }]} ]} builder = ToscaBuilder() builder.import_schema(policy_model) builder.import_spec_str(spec) return builder def init_tosca_builder_with_hello_world_spec_k8(): spec = {"self": {"component_type": "docker", "description": "Hello World mS for subscribing the data from local DMaaP, DR or MR, processing them and publishing them as PM files to local DMaaP DR", "name": "dcae.collectors.vcc.helloworld.pm", "version": "1.0.1"}, "services": {"calls": [], "provides": []}, "streams": {"publishes": [], "subscribes": []}, "parameters": [{"name": "vcc_hello_name", "value": "", "description": "the name entered for specific person","sourced_at_deployment": True, "designer_editable": True, "policy_editable": False}, {"name": "useDtiConfig", "value": False, "description": "component depends on configuration from dti.", "sourced_at_deployment": "false", "designer_editable": "false", "policy_editable": False, "required": True}, {"name": "isSelfServeComponent", "value": "false", "description": "Is this used as self serve component.", "sourced_at_deployment": False, "designer_editable": False, "policy_editable": False, "required": "true"}], "auxilary": {"healthcheck": {"interval": "60s", "timeout": "20s", "script": "/opt/app/vcc/bin/common/HealthCheck_HelloWorld.sh", "type": "docker"}, "volumes": [{"container": {"bind": "/opt/app/dcae-certificate"}, "host": {"path": "/opt/app/dcae-certificate"}}, {"container": {"bind": "/opt/logs/DCAE/dmd/AGENT"}, "host": {"path": "/opt/logs/DCAE/helloworldpm/dmd/AGENT"}}, {"container": {"bind": "/opt/logs/DCAE/dmd/WATCHER"}, "host": {"path": "/opt/logs/DCAE/helloworldpm/dmd/WATCHER"}}, {"container": {"bind": "/opt/app/vcc/logs/DCAE"}, "host": {"path": "/opt/logs/DCAE/helloworldpm/vcc-logs"}}, {"container": {"bind": "/opt/app/vcc/archive/data"}, "host": {"path": "/opt/data/DCAE/helloworldpm/vcc-archive"}}]}, "artifacts": [{"type": "docker image", "uri": "dockercentral.it.att.com:5100/com.att.dcae.controller/dcae-controller-vcc-helloworld-pm:18.02-001"}]} builder = ToscaBuilder() builder.import_schema(meta_model) builder.import_spec_str(spec) return builder
2.03125
2
lmp/util/validate.py
ProFatXuanAll/char-RNN
0
12793165
"""Checking types and values.""" import os from typing import Any, List, Type, Union def raise_if_empty_str(*, val: str, val_name: str) -> None: """Raise if ``val`` is an empty :py:class:`str`. Parameters ---------- val: str Test target. val_name: str Test target name. Mainly used to create error message. Raises ------ ValueError When ``val`` is an empty :py:class:`str`. """ if not val: raise ValueError(f'`{val_name}` must be non-empty `str`.') def raise_if_is_directory(*, path: str) -> None: """Raise if ``path`` exists and is a directory. Parameters ---------- path: str Test path. Raises ------ FileExistsError When ``path`` exists and is a directory. """ if os.path.exists(path) and os.path.isdir(path): raise FileExistsError(f'{path} is a directory.') def raise_if_is_file(*, path: str) -> None: """Raise if ``path`` exists and is a file. Parameters ---------- path: str Test path. Raises ------ FileExistsError When ``path`` exists and is a file. """ if os.path.exists(path) and os.path.isfile(path): raise FileExistsError(f'{path} is a file.') def raise_if_not_in(*, val: Any, val_name: str, val_range: List) -> None: """Raise if ``val`` is not in ``val_range``. Parameters ---------- val: Any Test target. val_name: str Test target name. Mainly used to create error message. val_range: list Expected value range. Raises ------ ValueError When ``val`` is not in ``val_range``. """ if val not in val_range: raise ValueError( f'`{val_name}` must be one of the following values:' + ''.join(map(lambda v: f'\n- {v}', val_range)) ) def raise_if_not_instance(*, val: Any, val_name: str, val_type: Type) -> None: """Raise if ``val`` is not an instance of ``val_type``. Parameters ---------- val: Any Test target. val_name: str Test target name. Mainly used to create error message. val_type: Type Expected target type. Raises ------ TypeError When ``val`` is not an instance of ``val_type``. """ if not isinstance(val, val_type): raise TypeError(f'`{val_name}` must be an instance of `{val_type.__name__}`.') def raise_if_wrong_ordered(*, vals: List[Union[float, int]], val_names: List[str]) -> None: """Raise if there exist some ``i < j`` such that ``vals[i] > vals[j]``. Parameters ---------- vals: list[Union[float, int]] Test targets. val_names: list[str] Test targets' names. Mainly used to create error message. Raises ------ ValueError When there exist some ``i < j`` such that ``vals[i] > vals[j]``. """ for i in range(len(vals) - 1): if vals[i] > vals[i + 1]: raise ValueError(f'Must have `{" <= ".join(val_names)}`.')
3.6875
4
part2.py
AybukeYALCINER/image_classification
9
12793166
<reponame>AybukeYALCINER/image_classification<filename>part2.py from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import tensorflow as tf import numpy as np import torchvision from torchvision import datasets, models, transforms from torch.autograd import Variable import matplotlib.pyplot as plt import time import os import copy import tensorflow as tf # plot the train and validation loss/accuracy plots and save it. # takes array of validation losses, validation accuracy, train losses, train accuracy and number of epochs respectively. def plot_graph(val_loss, val_acc, tr_loss, tr_acc, num_epochs): plt.subplot(211) plt.title("Loss plots vs. Number of Training Epochs") plt.plot(range(1,num_epochs+1),val_loss,label="validation") plt.plot(range(1,num_epochs+1),tr_loss,label="train") plt.xticks(np.arange(1, num_epochs+1, 1.0)) plt.legend() plt.subplot(212) plt.title("Accuracy plots vs. Number of Training Epochs") plt.plot(range(1,num_epochs+1),val_acc,label="validation") plt.plot(range(1,num_epochs+1),tr_acc,label="train") plt.xticks(np.arange(1, num_epochs+1, 1.0)) plt.legend() plt.tight_layout() plt.savefig("plot.png") # train the model # takes the model, dataloaders, criterion, optimizer, device(GPU or CPU) and number of epochs respectively as parameters # returns model, array of validation accuracy, validation loss, train accuracy, train loss respectively def train_model(model, dataloaders, criterion, optimizer, device,num_epochs=25): since = time.time() val_acc_history = [] val_loss_history = [] tr_acc_history = [] tr_loss_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 n_epochs_stop = 5 min_val_loss = np.Inf epochs_no_improve = 0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) #scheduler.step(epoch) #for lr_scheduler # Each epoch has a training and validation phase for phase in ['train', 'validation']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 loader = dataloaders[phase] # Iterate over data. for inputs, labels in loader: inputs = inputs.to(device) labels = labels.to(device) # print("in dataloaders", end=" ") # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) # print("x") _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'validation' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'validation': val_acc_history.append(epoch_acc) val_loss_history.append(epoch_loss) if phase == 'train': tr_acc_history.append(epoch_acc) tr_loss_history.append(epoch_loss) #early stopping if phase == 'validation': if epoch_loss < min_val_loss: epochs_no_improve = 0 min_val_loss = val_loss else: epochs_no_improve += 1 # Check early stopping condition if epochs_no_improve == n_epochs_stop: print('Early stopping!') return model, val_acc_history, val_loss_history, tr_acc_history, tr_loss_history time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_history, val_loss_history, tr_acc_history, tr_loss_history # data augmentation data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'validation': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = "dataset" num_classes = 10 batch_size = 32 image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'validation', 'test']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=2) for x in ['train', 'validation', 'test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'validation', 'test']} class_names = image_datasets['train'].classes model_ft = models.vgg16(pretrained=True) # freeze layers before classifiers for param in model_ft.features.parameters(): # print(param) param.requires_grad = False #different number of layer freeze #model_ft.features[-1].requires_grad = True #model_ft.features[-2].requires_grad = True #model_ft.features[-3].requires_grad = True model_ft.classifier[6] = nn.Linear(4096,10) #modify the last layer # specify loss function criterion = nn.CrossEntropyLoss() # specify optimizer optimizer = torch.optim.Adam(model_ft.parameters(), lr=0.001) #lr_scheduler #scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) #different optimizer #optimizer = torch.optim.SGD(model_ft.parameters(), lr=0.001) #weight_decay #optimizer = torch.optim.Adam(model_ft.parameters(), lr=0.1,weight_decay= 0.001) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_ft = model_ft.to(device) #send the model to the gpu model_ft, val_acc, val_loss, tr_acc, tr_loss = train_model(model_ft, dataloaders, criterion, optimizer,device, num_epochs=30) #train model #test the model correct = 0 topk = 0 total = 0 testloader = dataloaders['test'] with torch.no_grad(): for data in testloader: images, labels = data images = images.to(device) labels = labels.to(device) outputs = model_ft(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() probs, classes = outputs.topk(5, dim=1) labels_size = labels.size(0) for i in range(labels_size): if(labels[i] in classes[i]): topk += 1 print('Accuracy of the model on the test images: %d %%' % (100 * correct / total)) print('Accuracy of the top 5 on the test images: %d %%' % (100 * topk / total)) # val/train loss and accuracy plots plot_graph(val_loss, val_acc, tr_loss, tr_acc, 30)
2.765625
3
submission_broker/submission/submission.py
ebi-ait/submission-broker
0
12793167
<reponame>ebi-ait/submission-broker from enum import Enum from typing import List, Set, KeysView, Dict, ValuesView from submission_broker.submission.entity import Entity class HandleCollision(Enum): UPDATE = 1 OVERWRITE = 2 ERROR = 3 class Submission: def __init__(self, collider: HandleCollision = None): self.__collider = collider if collider else HandleCollision.UPDATE self.__map: Dict[str, Dict[str, Entity]] = {} def has_data(self) -> bool: return len(self.__map) > 0 def map(self, entity_type: str, index: str, attributes: dict) -> Entity: if entity_type in self.__map and index in self.__map[entity_type]: entity = self.__handle_collision(entity_type, index, attributes) else: entity = Entity(entity_type, index, attributes) self.__map.setdefault(entity_type, {})[index] = entity return entity def get_entity_types(self) -> KeysView[str]: return self.__map.keys() def get_entities(self, entity_type: str) -> ValuesView[Entity]: return self.__map.get(entity_type, {}).values() def get_entity(self, entity_type: str, index: str) -> Entity: return self.__map.get(entity_type, {}).get(index, None) def get_all_entities(self) -> Dict[str, ValuesView[Entity]]: all_entities = {} for entity_type in self.get_entity_types(): all_entities[entity_type] = self.get_entities(entity_type) return all_entities def get_linked_entities(self, entity: Entity, entity_type: str) -> Set[Entity]: entities = set() for index in entity.get_linked_indexes(entity_type): entities.add(self.get_entity(entity_type, index)) return entities def get_linked_accessions(self, entity: Entity) -> Dict[str, Set[str]]: accessions: Dict[str, Set[str]] = {} for entity_type in self.get_entity_types(): for linked_entity in self.get_linked_entities(entity, entity_type): for service, accession in linked_entity.get_accessions(): accessions.setdefault(service, set()).add(accession) return accessions def get_all_accessions(self) -> Dict[str, Set[str]]: all_accessions: Dict[str, Set[str]] = {} for entities in self.get_all_entities().values(): for entity in entities: for service, accession in entity.get_accessions(): all_accessions.setdefault(service, set()).add(accession) return all_accessions def has_errors(self) -> bool: for entities in self.get_all_entities().values(): for entity in entities: if entity.has_errors(): return True return False def get_errors(self, entity_type: str) -> Dict[str, Dict[str, List[str]]]: type_errors: Dict[str, Dict[str, List[str]]] = {} for index, entity in self.__map[entity_type].items(): if entity.has_errors(): type_errors[index] = entity.get_errors() return type_errors def get_all_errors(self) -> Dict[str, Dict[str, Dict[str, List[str]]]]: errors: Dict[str, Dict[str, Dict[str, List[str]]]] = {} for entity_type in self.get_entity_types(): type_errors = self.get_errors(entity_type) if type_errors: errors[entity_type] = type_errors return errors def as_dict(self, string_lists: bool = False) -> Dict[str, Dict[str, dict]]: view = {} for entity_type, indexed_entities in self.__map.items(): for index, entity in indexed_entities.items(): view.setdefault(entity_type, {})[index] = entity.as_dict(string_lists=string_lists) return view @staticmethod def link_entities(entity_a: Entity, entity_b: Entity): entity_a.add_link_id(entity_b.identifier) entity_b.add_link_id(entity_a.identifier) def __handle_collision(self, entity_type: str, index: str, attributes: dict) -> Entity: if self.__collider == HandleCollision.ERROR: raise IndexError(f'Index {index} already exists.') existing_entity: Entity = self.__map[entity_type][index] if self.__collider == HandleCollision.OVERWRITE: existing_entity.attributes = attributes else: # Default is UPDATE existing_entity.attributes.update(attributes) return existing_entity
2.109375
2
PythonGlobalOptimizationLib/PythonGlobalOptimizationLib/DataDownload/GetYahooFinanceTimeSeriesData.py
zhenshaoaixixi0507/PythonGlobalOptimizationLib
0
12793168
<gh_stars>0 from yahoofinancials import YahooFinancials import pandas as pd import numpy as np def GetYahooFinanceData(ticker:str,startdate:str,enddate:str,timeinterval:str,datatype:str)->np.ndarray: yahoo_financials = YahooFinancials(ticker) data = yahoo_financials.get_historical_price_data(start_date=startdate, end_date=enddate, time_interval=timeinterval) df = pd.DataFrame(data[ticker]['prices']) return df[datatype].to_numpy()
2.96875
3
leetcode/RansomNote.py
mahendra-rk/coding-interview-prep
0
12793169
<filename>leetcode/RansomNote.py # Leetcode # 383. Ransom Note class Solution: def canConstruct(self, ransomNote: str, magazine: str) -> bool: if len(magazine) < len(ransomNote): return False mag_counter = collections.Counter(magazine) ransom_counter = collections.Counter(ransomNote) for alpha in ransom_counter: if ransom_counter.get(alpha, -1) > mag_counter.get(alpha, 0): return False return True #################################################################### # #Alternate solution # counter = collections.Counter(magazine) # ransomNote = list(ransomNote) # for alpha in list(ransomNote): # ransomNote.remove(alpha) # alpha_count = counter.get(alpha, -1) # if alpha_count > 1: # counter[alpha] = counter.get(alpha) - 1 # elif alpha_count == 1: # counter.pop(alpha) # else: # return False # if not ransomNote: # return True # else: # return False
3.390625
3
Grammys/src/data/run_crawlers.py
kelvingakuo/INCITEFUL-DATA
1
12793170
<reponame>kelvingakuo/INCITEFUL-DATA import subprocess def runCrawler(what): if(what == 'lyrics'): command = 'cd LyricsFreakCrawler/LyricsFreakCrawler/ && scrapy crawl lyricsfreak -o lyrics.json' elif(what == 'artistData'): command = 'cd WikipediaCrawler/WikipediaCrawler/ && scrapy crawl artistInfo -o artist_data.json' process = subprocess.Popen(command.split(), stdout = subprocess.PIPE, shell = True) output, error = process.communicate()
2.265625
2
example/benchmark/counter.py
dendisuhubdy/ijson
0
12793171
<filename>example/benchmark/counter.py from bottle import post, run, request import threading import time count = 0 @post('/') def index(): global count count += int(request.body.read()) return b'' def show(): prev = 0 while True: start = time.time() time.sleep(1) now = time.time() dur = now - start print(int((count - prev) / dur), 'ops') start = now prev = count threading.Thread(target=show).start() run(host='localhost', port=7000, quiet=True)
2.5625
3
django_ancestry_relation/managers.py
aaronmarkey/django-ancestry-relation
2
12793172
<reponame>aaronmarkey/django-ancestry-relation from django.db import models class NodeManager(models.Manager): def create_node(self, *args, **kwargs): ''' Create a Node object. Generates level and path automatically if ones are not supplied in kwargs. RETURNS ------- node: Node The Node object, unsaved. ''' node = self.model(**kwargs) # generate level if 'level' not in kwargs: if node.parent_node_id: node.level = node.parent_node.level + 1 else: node.level = 1 # generate path if 'path' not in kwargs: if node.parent_node: node.path = '{},{}'.format( node.parent_node.path, node.id ) else: node.path = '{}'.format( node.id ) if node.level == 1: node.root_node = node return node def create_tree(self, nodes=[]): ''' Save a list of nodes to the database. ARGS ---- nodes: [Node,] A list of Node objects RETURNS ------- Bool False if nodes is empty or save to DB failed, True if saved to DB successfully ''' if nodes: try: self.bulk_create(nodes) return True except: return False return False def ancestral_nodes(self, node): ''' Get a list of all nodes that are ascendants or descendants of the given node. ARGS ---- node: Node The node. RETURNS ------- QuerySet: A QuerySet of Node Objects, ordered by level. ''' node_ids = node.path.split(',') return self.filter(id__in=node_ids).order_by('level') def descendants(self, node): ''' Get a complete list of all nodes that inheiret from the given node. ARGS ---- node: Node The node. RETURNS ------- QuerySet: A QuerySet of Node Objects, ordered by level. ''' return self.filter( root_node=node.root_node, path__contains=str(node.id) ).order_by('level') def children(self, node): ''' Get the immediate children of the given node. ARGS ---- node: Node The node. RETURNS ------- QuerySet: A QuerySet of Node objects. ''' return self.filter( parent_node=node ).order_by('level') def leaves(self, node): if node.id != node.root_node_id: raise Exception('node must be a root level node.') else: leaves = self.raw( ''' SELECT * FROM django_ancestry_relation_testnode n1 WHERE (SELECT count(*) FROM django_ancestry_relation_testnode n2 WHERE n2.parent_node_id = n1.id) = 0 AND n1.root_node_id = '{}' ORDER BY n1.level ASC '''.format(str(node.id)) ) return leaves def hierarchical_ordered(self, node): ''' Get a structured representation of Nodes. Uses the StructuredNode class found at classes.StructuredNode. ARGS ---- node: Node The root of the tree being requested. This is be the root kStructuredNode. RETURNS ------- tree: StructuredNode A single StructuredNode object. NOTE ---- This is slow. Do not use if descendants_ordered() can be used in any way. ''' from django_ancestry_relation.classes import StructuredNode children_count = self.children(node).count() tree = StructuredNode.StructuredNode( data=node ) if children_count > 0: children = self.children(node) for child in children: tree.children.append( self.hierarchical_structured_tree( child ) ) return tree def descendants_ordered(self, node): ''' Retrieve a flat list of node descendents, ordered according to their placement in the hierarchy. ARGS ---- node: Node The root Node of this tree/subtree. RETURNS ------- nodes: [Node,] A QuerySet of Node objects. ''' nodes = self.descendants(node).order_by('path') return nodes def delete_tree(self, node): ''' Just a wrapper for Django Model .delete method. Will delete a node and all of it's descendents. ''' node.delete()
2.6875
3
download.py
felipefelixarias/a2cat-vn-pytorch
7
12793173
<filename>download.py import requests import io import zipfile from collections import namedtuple import os def _convert_name(name, acc = ''): if len(name) == 0: return acc if name[0].isupper(): acc += ('-' if len(acc) > 0 else '') + name[0].lower() elif name[0] == '_': acc += '-' else: acc += name[0] return _convert_name(name[1:], acc) DownloaderContext = namedtuple('DownloaderContext', ['base_url', 'resources_path', 'store_path']) class Downloader: def __init__(self): self.base_url = 'https://deep-rl.herokuapp.com/resources/' self.resources = dict() self._base_path = None self._all_requirements = [] @property def base_path(self): if self._base_path is None: self._base_path = os.path.expanduser('~/.visual_navigation') return self._base_path @property def resources_path(self): return os.path.join(self.base_path, 'resources') def create_context(self, name): return DownloaderContext(self.base_url, self.resources_path, os.path.join(self.resources_path, name)) def add_resource(self, name, fn): self.resources[name] = fn def require(self, name): self._all_requirements.append(name) def get(self, name): return self.resources[name](self.create_context(name)) def download_all(self): for r in self._all_requirements: self.get(r) downloader = Downloader() def download_resource(name, context): resource_path = os.path.join(context.resources_path, name) if os.path.exists(resource_path): return resource_path url = context.base_url + '%s.zip' % name try: print('Downloading resource %s.' % name) response = requests.get(url) with zipfile.ZipFile(io.BytesIO(response.content)) as z: z.extractall(resource_path) print('Resource %s downloaded.' %name) return resource_path except Exception as e: if os.path.exists(resource_path): os.remove(resource_path) raise e def register_resource(task): if isinstance(task, str): def _thunk(res): downloader.add_resource(task, res) return res return _thunk name = _convert_name(task.__name__) downloader.add_resource(name, task) return task def require_resource(name): downloader.require(name) return lambda x: x def download_resource_task(name): def thunk(context): return download_resource(name, context) return thunk def add_resources(downloader_instance): # Add test resource downloader_instance.add_resource('test', download_resource_task('test')) add_resources(downloader) def resource(name): return downloader.get(name)
2.890625
3
leonardo_form_roudnyresl/models.py
dresl/leonardo-form-roudnyresl
0
12793174
# encoding: utf-8 from leonardo.module.web.models import Widget from leonardo.module.media.fields.image import ImageField from django.db import models from django.conf import settings from django.utils import timezone from django.utils.translation import ugettext_lazy as _ import datetime from django.utils.encoding import python_2_unicode_compatible from leonardo.module.media.fields.multistorage_file import MultiStorageFileField class RoudnyreslOrders(models.Model): jmeno = models.CharField( max_length=255, verbose_name=u"Jméno", default='') slug = models.CharField( verbose_name=u"URL ID", max_length=150, blank=True, null=True) prijmeni = models.CharField( max_length=255, verbose_name=u"Příjmení", default='') email = models.EmailField( verbose_name=u"E-mail", default='') telefon = models.CharField( verbose_name=u"Telefon (ve tvaru: +420 123 456 789)", max_length=100) dorucovaci_adresa = models.CharField( verbose_name=u"Doručovací adresa", help_text="Př.: Pardubice, Benedettiho 709, 530 03", max_length=255) firma = models.CharField( max_length=255, verbose_name=u"Název firmy", default='') ico = models.CharField( verbose_name=u"IČO", max_length=255, default='') dic = models.CharField( verbose_name=u"DIČ", max_length=255, help_text="Vyplňte, jste-li plátce DPH", blank=True, null=True) doprava = models.CharField( verbose_name=u"Doprava", max_length=255) platba = models.CharField( verbose_name=u"Platba", max_length=255) zprava = models.TextField( verbose_name=u"Poznámka", default='', blank=True) pub_date = models.DateTimeField(u'Datum objednávky', auto_now_add=True) def get_absolute_url(self): from leonardo.module.web.widget.application.reverse import app_reverse return app_reverse( 'created_order', 'leonardo_form_roudnyresl.apps.roudnyresl', kwargs={'slug': self.slug}) def get_full_name(self): return str(self.jmeno.encode("utf-8") + " " + self.prijmeni.encode("utf-8")) def __unicode__(self): return self.jmeno class Meta: ordering = ['jmeno', ] verbose_name = u'Objednávka' verbose_name_plural = u'Objednávky' class RoudnyreslProduct(models.Model): objednavka = models.ForeignKey(RoudnyreslOrders, verbose_name=u"Objednávka", related_name="orderproduct_set") produkt = models.CharField( verbose_name=u"Vyberte produkt", max_length=255) tloustka = models.CharField( verbose_name=u"Výška podstavy", max_length=255) vyska = models.CharField( verbose_name=u"Výška reliéfu", max_length=255) rozmer_motivu = models.CharField( verbose_name=u"Rozměr raženého motivu", max_length=255) soubor = models.FileField( u'Nahrání dat', upload_to='documents/%Y/%m/%d/') def __unicode__(self): return self.produkt class Meta: ordering = ['produkt', ] verbose_name = u'Produkt' verbose_name_plural = u'Produkty'
1.710938
2
packages/w3af/w3af/core/data/parsers/tests/test_parser_cache.py
ZooAtmosphereGroup/HelloPackages
3
12793175
<reponame>ZooAtmosphereGroup/HelloPackages """ test_parser_cache.py Copyright 2012 <NAME> This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import unittest from mock import patch, PropertyMock from w3af.core.data.parsers.doc.html import HTMLParser from w3af.core.data.parsers.tests.test_document_parser import _build_http_response from w3af.core.data.parsers.parser_cache import ParserCache from w3af.core.data.parsers.doc.url import URL from w3af.core.data.url.HTTPResponse import HTTPResponse from w3af.core.data.dc.headers import Headers from w3af.core.data.parsers.tests.test_mp_document_parser import DelayedParser from w3af.core.data.parsers.utils.response_uniq_id import get_response_unique_id from w3af.core.controllers.exceptions import BaseFrameworkException class TestParserCache(unittest.TestCase): def setUp(self): self.url = URL('http://w3af.com') self.headers = Headers([(u'content-type', u'text/html')]) self.dpc = ParserCache() def tearDown(self): self.dpc.clear() def test_basic(self): resp1 = HTTPResponse(200, 'abc', self.headers, self.url, self.url) resp2 = HTTPResponse(200, 'abc', self.headers, self.url, self.url) parser1 = self.dpc.get_document_parser_for(resp1) parser2 = self.dpc.get_document_parser_for(resp2) self.assertEqual(id(parser1), id(parser2)) def test_bug_13_Dec_2012(self): url1 = URL('http://w3af.com/foo/') url2 = URL('http://w3af.com/bar/') body = '<a href="?id=1">1</a>' resp1 = HTTPResponse(200, body, self.headers, url1, url1) resp2 = HTTPResponse(200, body, self.headers, url2, url2) parser1 = self.dpc.get_document_parser_for(resp1) parser2 = self.dpc.get_document_parser_for(resp2) self.assertNotEqual(id(parser1), id(parser2)) _, parsed_refs_1 = parser1.get_references() _, parsed_refs_2 = parser2.get_references() self.assertEqual(parsed_refs_1, parsed_refs_2) def test_issue_188_invalid_url(self): # https://github.com/andresriancho/w3af/issues/188 all_chars = ''.join([chr(i) for i in xrange(0, 255)]) response = HTTPResponse(200, all_chars, self.headers, self.url, self.url) self.dpc.get_document_parser_for(response) def test_cache_blacklist_after_timeout(self): # # If the cache tries to parse an HTTP response, that process fails, then we blacklist # the HTTP response so it never gets parsed again. # mmpdp = 'w3af.core.data.parsers.mp_document_parser.%s' kmpdp = mmpdp % 'MultiProcessingDocumentParser.%s' modp = 'w3af.core.data.parsers.document_parser.%s' with patch(kmpdp % 'PARSER_TIMEOUT', new_callable=PropertyMock) as timeout_mock, \ patch(kmpdp % 'MAX_WORKERS', new_callable=PropertyMock) as max_workers_mock, \ patch(modp % 'DocumentParser.PARSERS', new_callable=PropertyMock) as parsers_mock: # # Trigger the timeout # html = '<html>DelayedParser!</html>' http_resp = _build_http_response(html, u'text/html') timeout_mock.return_value = 1 max_workers_mock.return_value = 1 parsers_mock.return_value = [DelayedParser, HTMLParser] try: self.dpc.get_document_parser_for(http_resp) except BaseFrameworkException, bfe: self._is_timeout_exception_message(bfe, http_resp) else: self.assertTrue(False) # # Make sure it is in the blacklist # hash_string = get_response_unique_id(http_resp) self.assertIn(hash_string, self.dpc._parser_blacklist) # # Make sure the blacklist is used # try: self.dpc.get_document_parser_for(http_resp) except BaseFrameworkException, bfe: self.assertIn('Exceeded timeout while parsing', str(bfe)) def _is_timeout_exception_message(self, toe, http_resp): msg = 'Reached timeout parsing "http://w3af.com/".' self.assertEquals(str(toe), msg) def test_get_tags_by_filter_simple(self): html = '<a href="/def">abc</a>' resp1 = HTTPResponse(200, html, self.headers, self.url, self.url) resp2 = HTTPResponse(200, html, self.headers, self.url, self.url) parser1 = self.dpc.get_tags_by_filter(resp1, tags=('a',)) parser2 = self.dpc.get_tags_by_filter(resp2, tags=('a',)) self.assertEqual(id(parser1), id(parser2)) def test_get_tags_by_filter_different_tags(self): html = '<a href="/def">abc</a><b>hello</b>' resp1 = HTTPResponse(200, html, self.headers, self.url, self.url) resp2 = HTTPResponse(200, html, self.headers, self.url, self.url) parser1 = self.dpc.get_tags_by_filter(resp1, tags=('a',)) parser2 = self.dpc.get_tags_by_filter(resp2, tags=('b',)) self.assertNotEqual(id(parser1), id(parser2))
2.046875
2
xtools/main.py
hxler123/tools
2
12793176
import sys import binascii import hashlib from PyQt5.QtWidgets import QApplication,QMainWindow,QFileDialog from xtui import Ui_Form from xtoolsfunc import XToolsFunc base64_method = ["encode","decode"] hash_available = hashlib.algorithms_guaranteed class MainUi(QMainWindow,QFileDialog,Ui_Form): def __init__(self,parent=None): super(MainUi,self).__init__(parent) self.setupUi(self) self.type_ComboBox.addItem("") self.type_ComboBox.addItem("") self.type_ComboBox.setItemText(0,"base64") self.type_ComboBox.setItemText(1,"Hash") self.type_ComboBox.activated.connect(self.enc_type) self.confirm_Button.clicked.connect(self.confirm) self.open_Button.clicked.connect(self.openfile) for i in range(len(base64_method)): self.method_ComboBox.addItem("") self.method_ComboBox.setItemText(i,base64_method[i]) def openfile(self): filedir = self.getOpenFileName(self,"open file","./","All Files (*)")[0] self.input_TextEdit.setText(filedir) def enc_type(self): self.method_ComboBox.clear() if self.type_ComboBox.currentText() == "Hash": hash_available_list = list(hash_available) for i in range(len(hash_available_list)): self.method_ComboBox.addItem("") self.method_ComboBox.setItemText(i,hash_available_list[i]) else: for i in range(len(base64_method)): self.method_ComboBox.addItem("") self.method_ComboBox.setItemText(i,base64_method[i]) def confirm(self): enc_type = self.type_ComboBox.currentText() method = self.method_ComboBox.currentText() value = self.input_TextEdit.toPlainText() if value: if enc_type == "base64": result = XToolsFunc.base64_method(method,value) self.ouput_TextBrowser.setText(result[0]) self.output_label.setText(result[1]) elif enc_type == "Hash": result = XToolsFunc.hash_method(method,value) self.ouput_TextBrowser.setText(result[0]) self.output_label.setText(result[1]) else: self.output_label.setText("无输入") self.ouput_TextBrowser.clear() def main(): app = QApplication(sys.argv) myUi = MainUi() myUi.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
2.484375
2
faucet.py
thecaliconoire/aepp-faucet
0
12793177
<reponame>thecaliconoire/aepp-faucet<filename>faucet.py #!/usr/bin/env python3 import os import sys import logging import argparse # flask from flask import Flask, jsonify, render_template # aeternity from aeternity.epoch import EpochClient from aeternity.signing import KeyPair, is_valid_hash from aeternity.config import Config # also log to stdout because docker root = logging.getLogger() root.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) root.addHandler(ch) app = Flask(__name__) logging.getLogger("aeternity.epoch").setLevel(logging.WARNING) # logging.getLogger("urllib3.connectionpool").setLevel(logging.WARNING) # logging.getLogger("engineio").setLevel(logging.ERROR) @app.after_request def after_request(response): """enable CORS""" header = response.headers header['Access-Control-Allow-Origin'] = '*' return response @app.route('/') def hello(name=None): amount = int(os.environ.get('TOPUP_AMOUNT', 250)) return render_template('index.html', amount=amount) @app.route('/account/<recipient_address>', methods=['POST']) def rest_faucet(recipient_address): """top up an account""" # recipient_address = request.form.get("account") # validate the address if len(recipient_address.strip()) < 3 or not is_valid_hash(recipient_address, prefix='ak'): return jsonify({"message": "bad request"}), 400 # genesys key bank_wallet_key = os.environ.get('BANK_WALLET_KEY') kp = KeyPair.from_private_key_string(bank_wallet_key) # target node Config.set_defaults(Config( external_url=os.environ.get('EPOCH_URL', "https://sdk-testnet.aepp<EMAIL>") )) # amount amount = int(os.environ.get('TOPUP_AMOUNT', 250)) ttl = int(os.environ.get('TX_TTL', 100)) client = EpochClient() tx = client.spend(kp, recipient_address, amount, tx_ttl=ttl) balance = client.get_balance(account_pubkey=recipient_address) logging.info(f"top up accont {recipient_address} of {amount} tx_ttl:{ttl} tx_hash: {tx}") return jsonify({"tx_hash": tx, "balance": balance}) # ______ ____ ____ ______ ______ # .' ___ ||_ \ / _||_ _ `. .' ____ \ # / .' \_| | \/ | | | `. \| (___ \_| # | | | |\ /| | | | | | _.____`. # \ `.___.'\ _| |_\/_| |_ _| |_.' /| \____) | # `.____ .'|_____||_____||______.' \______.' # def cmd_start(args=None): root.addHandler(app.logger) logging.info("faucet service started") app.run(host='0.0.0.0', port=5000) if __name__ == '__main__': cmds = [ { 'name': 'start', 'help': 'start the top up service', 'opts': [] } ] parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() subparsers.required = True subparsers.dest = 'command' # register all the commands for c in cmds: subp = subparsers.add_parser(c['name'], help=c['help']) # add the sub arguments for sa in c.get('opts', []): subp.add_argument(*sa['names'], help=sa['help'], action=sa.get('action'), default=sa.get('default')) # parse the arguments args = parser.parse_args() # call the command with our args ret = getattr(sys.modules[__name__], 'cmd_{0}'.format( args.command.replace('-', '_')))(args)
2.15625
2
src/nirvana/coalesce/coalesce_strategies.py
jimmylchen/nirvana
0
12793178
from statistics import mean # Weighted by api name def coalesce_weighted_mean(api_responses): weights = { "api1": 0.5, "api2": 0.3, "api3": 0.2, } weighted_mean = 0 for api, value in api_responses.items(): weighted_mean += weights[api] * value return weighted_mean/len(api_responses) # Ignoring a particular api response def coalesce_mean_ignore_api1(api_responses): filtered = {k: v for k, v in api_responses.items() if k.find("api1") == -1} return mean(filtered.values())
3.453125
3
src/library/__init__.py
oschusler/libqasm
0
12793179
# Author <NAME> # The import syntax changes slightly between python 2 and 3, so we # need to detect which version is being used: from sys import version_info if version_info[0] == 3: PY3 = True # elif version_info[0] == 2: # PY3 = False else: raise EnvironmentError("sys.version_info refers to a version of " "Python is not 3. This is not permitted. " "sys.version_info = {}".format(version_info)) from .libQasm import libQasm
2.46875
2
kunai/dnsquery.py
vijayanant/kunai
1
12793180
import re import socket pattern = r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)([ (\[]?(\.|dot)[ )\]]?(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3})" ipv4pattern = re.compile(pattern) class DNSQuery: def __init__(self, data): self.data = data self.domain = '' t = (ord(data[2]) >> 3) & 15 # Opcode bits if t == 0: # Standard query ini = 12 lon = ord(data[ini]) while lon != 0: self.domain += data[ini+1:ini+lon+1]+'.' ini += lon+1 lon = ord(data[ini]) def _get_size_hex(self, nb): nb = min(nb, 256*256) d,r = divmod(nb, 256) s = chr(d)+chr(r) return s # We look in the nodes for the good tag def lookup_for_nodes(self, nodes): if not self.domain.endswith('.kunai.'): return [] tag = self.domain[:-len('.kunai.')] print "DNS lookup for tag", tag r = [] for n in nodes.values(): if tag in n['tags']: services = n.get('services', {}) state_id = 0 if tag in services: service = services[tag] state_id = service.get('state_id') print "DNS state_id", state_id if state_id == 0: addr = n['addr'] # If already an ip, add it if ipv4pattern.match(addr): r.append(addr) else: # else try to resolv it first try: addr = socket.gethostbyname(addr) r.append(addr) except socket.gaierror: # not found print 'DNS cannot find the hotname ip', addr # skip this node print "DNS R:", r return r def response(self, r): packet = '' print "DOM", self.domain nb = len(r) if self.domain: packet += self.data[:2] + "\x81\x80" packet += self.data[4:6] + self._get_size_hex(nb) + '\x00\x00\x00\x00' # Questions and Answers Counts packet += self.data[12:] # Original Domain Name Question for ip in r: packet += '\xc0\x0c' # Pointer to domain name packet += '\x00\x01\x00\x01\x00\x00\x00\x3c\x00\x04' # Response type, ttl and resource data length -> 4 bytes packet += str.join('',map(lambda x: chr(int(x)), ip.split('.'))) # 4bytes of IP return packet
2.78125
3
02-Scripting/05-Twitter_Bot/twitter.py
suzynakayama/udemy-python-dev
1
12793181
<filename>02-Scripting/05-Twitter_Bot/twitter.py import tweepy import os import time from dotenv import load_dotenv load_dotenv() consumer_key = os.getenv('consumer_key') consumer_secret = os.getenv('consumer_secret') access_token = os.getenv('access_token') access_token_secret = os.getenv('access_token_secret') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) user = api.me() # print(user.name) # public_tweets = api.home_timeline() # for tweet in public_tweets: # print(tweet.text) # helper function def limit_handler(cursor): try: while True: yield cursor.next() except tweepy.RateLimitError: time.sleep(1000) # it will stay and wait in this line for 1000 ms except StopIteration: return # Generous Bot - follows ppl back # for follower in limit_handler(tweepy.Cursor(api.followers).items()): # print(follower.name) # if follower.name == "<NAME>": # follower.follow() # break # Narcissist Bot search_str = '<NAME>' number_of_tweets = 2 for tweet in limit_handler(tweepy.Cursor(api.search, search_str).items(number_of_tweets)): try: tweet.favorite() # tweet.retweet() print('I liked that tweet') except tweepy.TweepError as e: print(e.reason) except StopIteration: break
2.953125
3
main.py
DeerChen/ip2host
1
12793182
''' Description: ip反查域名 Author: Senkita Date: 2020-10-09 10:23:52 LastEditors: Senkita LastEditTime: 2020-10-09 15:01:39 ''' import os from utils.Query import batch_query if __name__ == "__main__": os.makedirs('./Log', exist_ok=True) filename = 'public.txt' save_filename = 'domain_name.txt' batch_query(filename, save_filename)
2.109375
2
metrics/serializers.py
cybrvybe/AU7OMA7A-BI
0
12793183
from rest_framework import serializers from .models import Metric class MetricSerializer( serializers.ModelSerializer ): class Meta: model = Metric fields = ( "title", "created_at", "metric" )
2.0625
2
fdm-devito-notebooks/02_wave/exer-wave/wave_spectra.py
devitocodes/devito_book
7
12793184
import numpy as np import matplotlib.pyplot as plt def spectrum(f, x): # Discrete Fourier transform A = np.fft.rfft(f(x)) A_amplitude = np.abs(A) # Compute the corresponding frequencies dx = x[1] - x[0] freqs = np.linspace(0, np.pi/dx, A_amplitude.size) plt.plot(freqs[:len(freqs)/2], A_amplitude[:len(freqs)/2]) # Mesh L = 10; Nx = 100 x = np.linspace(0, L, Nx+1) spectrum(lambda x: np.where(x < 5, 1, 0), x) spectrum(lambda x: np.sin(np.pi*x/float(L)) + np.sin(np.pi*20*x/float(L)), x) s = 0.5 spectrum(lambda x: 1./(np.sqrt(2*np.pi)*s)*np.exp(-0.5*((x-L/2.)/s)**2), x) def f(x): r = np.zeros_like(x) r[len(x)/2] = 1 return r spectrum(f, x) figfile = 'tmp' plt.legend(['step', '2sin', 'gauss', 'peak']) plt.savefig(figfile + '.pdf') plt.savefig(figfile + '.png') plt.show()
2.875
3
9term/fipt/P2PLending/reviews/forms.py
nik-sergeson/bsuir-informatics-labs
0
12793185
<reponame>nik-sergeson/bsuir-informatics-labs<gh_stars>0 from django.forms import ModelForm from P2PLending.reviews.models import Review class ReviewForm(ModelForm): class Meta: model = Review fields = ['text']
1.609375
2
cli/src/klio_cli/commands/job/stop.py
gaybro8777/klio
705
12793186
# Copyright 2019-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import logging import time import emoji from googleapiclient import discovery JOB_STATE_MAP = {"cancel": "JOB_STATE_CANCELLED", "drain": "JOB_STATE_DRAINED"} class StopJob(object): def __init__(self, api_version=None): self._set_dataflow_client(api_version) def _set_dataflow_client(self, api_version): if not api_version: api_version = "v1b3" self._client = discovery.build("dataflow", api_version) def _check_job_running(self, job_name, project, region): request = ( self._client.projects() .locations() .jobs() .list(projectId=project, location=region, filter="ACTIVE",) ) try: response = request.execute() except Exception as e: logging.warning( "Could not find running job '{}' in project '{}': {}".format( job_name, project, e ) ) logging.warning( "Continuing to attempt deploying '{}'".format(job_name) ) return job_results = response.get("jobs", []) if job_results: for result in job_results: if result["name"] == job_name: return result def _update_job_state(self, job, req_state=None, retries=None): if retries is None: retries = 0 _req_state = JOB_STATE_MAP.get(req_state, JOB_STATE_MAP["cancel"]) if job.get("requestedState") is not _req_state: job["requestedState"] = _req_state request = ( self._client.projects() .locations() .jobs() .update( jobId=job["id"], projectId=job["projectId"], location=job["location"], body=job, ) ) try: request.execute() except Exception as e: # generic catch if 4xx error - probably shouldn't retry if getattr(e, "resp", None): if e.resp.status < 500: msg = "Failed to {} job '{}': {}".format( req_state, job["name"], e ) logging.error(msg) raise SystemExit(1) if retries > 2: msg = "Max retries reached: could not {} job '{}': {}".format( req_state, job["name"], e ) logging.error(msg) raise SystemExit(1) logging.info( "Failed to {} job '{}'. Trying again after 30s...".format( req_state, job["name"] ) ) retries += 1 time.sleep(30) self._update_job_state(job, req_state, retries) def _watch_job_state(self, job, timeout=600): timeout = datetime.datetime.now() + datetime.timedelta(seconds=timeout) request = ( self._client.projects() .locations() .jobs() .get( jobId=job["id"], projectId=job["projectId"], location=job["location"], ) ) while datetime.datetime.now() < timeout: try: resp = request.execute() except Exception as e: msg = ( "Failed to get current status for job '{}'. Error: {}.\n" "Trying again after 5s...".format(job["name"], e) ) logging.info(msg) time.sleep(5) continue if resp["currentState"] in JOB_STATE_MAP.values(): return else: msg = "Waiting for job '{}' to reach terminal state...".format( job["name"] ) logging.info(msg) time.sleep(5) msg = "Job '{}' did not reach terminal state after '{}' secs.".format( job["name"], timeout ) logging.error(msg) raise SystemExit(1) def stop(self, job_name, project, region, strategy, api_version=None): self._set_dataflow_client(api_version) current_running_job = self._check_job_running( job_name, project, region ) if not current_running_job: return self._update_job_state(current_running_job, req_state=strategy) self._watch_job_state(current_running_job) verb = "cancelled" if strategy == "cancel" else "drained" msg = "Successfully {} job '{}' :smile_cat:".format(verb, job_name) logging.info(emoji.emojize(msg, use_aliases=True))
1.945313
2
VecMap/vec_map.py
matao1984/vec-map
0
12793187
# -*- coding: utf-8 -*- #VecMap0.1 #The first versio of VecMap from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import * from PyQt5.QtCore import * import matplotlib matplotlib.use('Qt5Agg') from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure class Ui_VecMap(QtWidgets.QMainWindow): def __init__(self): super(Ui_VecMap,self).__init__() self.setupUi(self) self.retranslateUi(self) def setupUi(self, VecMap): VecMap.setObjectName("VecMap") VecMap.resize(402, 876) VecMap.setMinimumSize(QtCore.QSize(402, 836)) VecMap.setMaximumSize(QtCore.QSize(1024, 1024)) self.pushButton = QtWidgets.QPushButton(VecMap) self.pushButton.setGeometry(QtCore.QRect(20, 40, 91, 41)) self.pushButton.setObjectName("pushButton") self.checkBox = QtWidgets.QCheckBox(VecMap) self.checkBox.setGeometry(QtCore.QRect(150, 10, 111, 20)) self.checkBox.setObjectName("checkBox") self.line = QtWidgets.QFrame(VecMap) self.line.setGeometry(QtCore.QRect(20, 90, 371, 21)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.label = QtWidgets.QLabel(VecMap) self.label.setGeometry(QtCore.QRect(20, 10, 121, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(VecMap) self.label_2.setGeometry(QtCore.QRect(130, 40, 251, 51)) self.label_2.setTextFormat(QtCore.Qt.AutoText) self.label_2.setScaledContents(False) self.label_2.setWordWrap(True) self.label_2.setObjectName("label_2") self.lineEdit = QtWidgets.QLineEdit(VecMap) self.lineEdit.setGeometry(QtCore.QRect(130, 130, 30, 20)) self.lineEdit.setObjectName("lineEdit") self.label_3 = QtWidgets.QLabel(VecMap) self.label_3.setGeometry(QtCore.QRect(20, 110, 191, 16)) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(VecMap) self.label_4.setGeometry(QtCore.QRect(20, 130, 111, 16)) self.label_4.setObjectName("label_4") self.pushButton_2 = QtWidgets.QPushButton(VecMap) self.pushButton_2.setGeometry(QtCore.QRect(20, 170, 91, 41)) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_3 = QtWidgets.QPushButton(VecMap) self.pushButton_3.setGeometry(QtCore.QRect(20, 230, 91, 41)) self.pushButton_3.setObjectName("pushButton_3") self.label_5 = QtWidgets.QLabel(VecMap) self.label_5.setGeometry(QtCore.QRect(130, 160, 251, 51)) self.label_5.setTextFormat(QtCore.Qt.AutoText) self.label_5.setScaledContents(False) self.label_5.setWordWrap(True) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(VecMap) self.label_6.setGeometry(QtCore.QRect(130, 230, 251, 51)) self.label_6.setTextFormat(QtCore.Qt.AutoText) self.label_6.setScaledContents(False) self.label_6.setWordWrap(True) self.label_6.setObjectName("label_6") self.line_2 = QtWidgets.QFrame(VecMap) self.line_2.setGeometry(QtCore.QRect(20, 280, 371, 21)) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.label_9 = QtWidgets.QLabel(VecMap) self.label_9.setGeometry(QtCore.QRect(20, 300, 191, 16)) self.label_9.setObjectName("label_9") self.checkBox_2 = QtWidgets.QCheckBox(VecMap) self.checkBox_2.setGeometry(QtCore.QRect(20, 330, 111, 20)) self.checkBox_2.setObjectName("checkBox_2") self.checkBox_3 = QtWidgets.QCheckBox(VecMap) self.checkBox_3.setGeometry(QtCore.QRect(150, 330, 131, 20)) self.checkBox_3.setObjectName("checkBox_3") self.pushButton_4 = QtWidgets.QPushButton(VecMap) self.pushButton_4.setGeometry(QtCore.QRect(20, 370, 91, 41)) self.pushButton_4.setObjectName("pushButton_4") self.label_10 = QtWidgets.QLabel(VecMap) self.label_10.setGeometry(QtCore.QRect(130, 360, 251, 51)) self.label_10.setTextFormat(QtCore.Qt.AutoText) self.label_10.setScaledContents(False) self.label_10.setWordWrap(True) self.label_10.setObjectName("label_10") self.checkBox_4 = QtWidgets.QCheckBox(VecMap) self.checkBox_4.setGeometry(QtCore.QRect(260, 10, 111, 20)) self.checkBox_4.setObjectName("checkBox_4") self.line_3 = QtWidgets.QFrame(VecMap) self.line_3.setGeometry(QtCore.QRect(20, 420, 371, 21)) self.line_3.setFrameShape(QtWidgets.QFrame.HLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.label_11 = QtWidgets.QLabel(VecMap) self.label_11.setGeometry(QtCore.QRect(20, 440, 191, 16)) self.label_11.setObjectName("label_11") self.label_12 = QtWidgets.QLabel(VecMap) self.label_12.setGeometry(QtCore.QRect(170, 130, 191, 16)) self.label_12.setObjectName("label_12") self.label_14 = QtWidgets.QLabel(VecMap) self.label_14.setGeometry(QtCore.QRect(20, 510, 381, 16)) self.label_14.setObjectName("label_14") self.lineEdit_4 = QtWidgets.QLineEdit(VecMap) self.lineEdit_4.setGeometry(QtCore.QRect(20, 550, 251, 22)) self.lineEdit_4.setObjectName("lineEdit_4") self.label_15 = QtWidgets.QLabel(VecMap) self.label_15.setGeometry(QtCore.QRect(20, 530, 181, 16)) self.label_15.setObjectName("label_15") self.label_16 = QtWidgets.QLabel(VecMap) self.label_16.setGeometry(QtCore.QRect(20, 580, 381, 16)) self.label_16.setObjectName("label_16") self.label_17 = QtWidgets.QLabel(VecMap) self.label_17.setGeometry(QtCore.QRect(20, 600, 181, 16)) self.label_17.setObjectName("label_17") self.lineEdit_5 = QtWidgets.QLineEdit(VecMap) self.lineEdit_5.setGeometry(QtCore.QRect(20, 620, 251, 22)) self.lineEdit_5.setObjectName("lineEdit_5") self.pushButton_5 = QtWidgets.QPushButton(VecMap) self.pushButton_5.setGeometry(QtCore.QRect(280, 550, 101, 91)) self.pushButton_5.setObjectName("pushButton_5") self.pushButton_6 = QtWidgets.QPushButton(VecMap) self.pushButton_6.setGeometry(QtCore.QRect(20, 680, 80, 41)) self.pushButton_6.setObjectName("pushButton_6") self.label_18 = QtWidgets.QLabel(VecMap) self.label_18.setGeometry(QtCore.QRect(200, 680, 191, 51)) self.label_18.setTextFormat(QtCore.Qt.AutoText) self.label_18.setScaledContents(False) self.label_18.setWordWrap(True) self.label_18.setObjectName("label_18") self.pushButton_7 = QtWidgets.QPushButton(VecMap) self.pushButton_7.setGeometry(QtCore.QRect(290, 460, 91, 51)) self.pushButton_7.setObjectName("pushButton_7") self.line_4 = QtWidgets.QFrame(VecMap) self.line_4.setGeometry(QtCore.QRect(20, 730, 371, 21)) self.line_4.setFrameShape(QtWidgets.QFrame.HLine) self.line_4.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_4.setObjectName("line_4") self.pushButton_8 = QtWidgets.QPushButton(VecMap) self.pushButton_8.setGeometry(QtCore.QRect(20, 780, 120, 28)) self.pushButton_8.setObjectName("pushButton_8") self.label_19 = QtWidgets.QLabel(VecMap) self.label_19.setGeometry(QtCore.QRect(60, 850, 291, 16)) self.label_19.setObjectName("label_19") self.label_20 = QtWidgets.QLabel(VecMap) self.label_20.setGeometry(QtCore.QRect(20, 750, 211, 16)) self.label_20.setObjectName("label_20") self.pushButton_9 = QtWidgets.QPushButton(VecMap) self.pushButton_9.setGeometry(QtCore.QRect(150, 780, 120, 28)) self.pushButton_9.setObjectName("pushButton_9") self.pushButton_10 = QtWidgets.QPushButton(VecMap) self.pushButton_10.setGeometry(QtCore.QRect(20, 810, 120, 28)) self.pushButton_10.setObjectName("pushButton_10") self.pushButton_11 = QtWidgets.QPushButton(VecMap) self.pushButton_11.setGeometry(QtCore.QRect(150, 810, 120, 28)) self.pushButton_11.setObjectName("pushButton_11") self.pushButton_12 = QtWidgets.QPushButton(VecMap) self.pushButton_12.setGeometry(QtCore.QRect(280, 780, 101, 58)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.pushButton_12.setFont(font) self.pushButton_12.setObjectName("pushButton_12") self.radioButton = QtWidgets.QRadioButton(VecMap) self.radioButton.setGeometry(QtCore.QRect(20, 480, 95, 20)) self.radioButton.setChecked(True) self.radioButton.setObjectName("radioButton") self.radioButton_2 = QtWidgets.QRadioButton(VecMap) self.radioButton_2.setGeometry(QtCore.QRect(90, 480, 95, 20)) self.radioButton_2.setObjectName("radioButton_2") self.label_21 = QtWidgets.QLabel(VecMap) self.label_21.setGeometry(QtCore.QRect(20, 460, 171, 16)) self.label_21.setObjectName("label_21") self.pushButton_13 = QtWidgets.QPushButton(VecMap) self.pushButton_13.setGeometry(QtCore.QRect(200, 460, 81, 51)) self.pushButton_13.setObjectName("pushButton_13") self.label_7 = QtWidgets.QLabel(VecMap) self.label_7.setGeometry(QtCore.QRect(20, 650, 41, 16)) self.label_7.setObjectName("label_7") self.lineEdit_2 = QtWidgets.QLineEdit(VecMap) self.lineEdit_2.setGeometry(QtCore.QRect(60, 650, 30, 20)) self.lineEdit_2.setObjectName("lineEdit_2") self.pushButton_14 = QtWidgets.QPushButton(VecMap) self.pushButton_14.setGeometry(QtCore.QRect(110, 680, 80, 41)) self.pushButton_14.setObjectName("pushButton_14") self.lineEdit_3 = QtWidgets.QLineEdit(VecMap) self.lineEdit_3.setGeometry(QtCore.QRect(150, 650, 30, 20)) self.lineEdit_3.setObjectName("lineEdit_3") self.label_13 = QtWidgets.QLabel(VecMap) self.label_13.setGeometry(QtCore.QRect(110, 650, 41, 16)) self.label_13.setObjectName("label_13") self.checkBox_5 = QtWidgets.QCheckBox(VecMap) self.checkBox_5.setGeometry(QtCore.QRect(210, 650, 111, 20)) self.checkBox_5.setChecked(True) self.checkBox_5.setObjectName("checkBox_5") self.retranslateUi(VecMap) QtCore.QMetaObject.connectSlotsByName(VecMap) #=======Connect all the functions============================================= self.pushButton.clicked.connect(self.openfile) self.pushButton_2.clicked.connect(self.ini_atom_position) self.pushButton_3.clicked.connect(self.find_separation) self.pushButton_4.clicked.connect(self.refine_atom_position) self.pushButton_13.clicked.connect(self.cal_disp) self.pushButton_5.clicked.connect(self.vec_ang_dist) self.pushButton_6.clicked.connect(self.show_vec_map) self.pushButton_14.clicked.connect(self.show_O_vec_map) self.pushButton_7.clicked.connect(self.load_from_csv) self.pushButton_8.clicked.connect(self.disclaimer) self.pushButton_9.clicked.connect(self.show_about) self.pushButton_10.clicked.connect(self.acknowledgments) self.pushButton_11.clicked.connect(self.show_contact) self.pushButton_12.clicked.connect(self.donate) def retranslateUi(self, VecMap): _translate = QtCore.QCoreApplication.translate VecMap.setWindowTitle(_translate("VecMap", "VecMap0.1")) #VecMap.setWindowIcon(QtGui.QIcon('icon.png')) self.pushButton.setText(_translate("VecMap", "Load Image")) self.checkBox.setText(_translate("VecMap", "ABF/BF image")) self.label.setText(_translate("VecMap", "Step 1. Load image")) self.label_2.setText(_translate("VecMap", "<html><head/><body><p>Load a HR-STEM image with a perovskite structure. Support [001] and [011] zone axes. Filtered image is preferred.</p><p><br/></p></body></html>")) self.lineEdit.setText(_translate("VecMap", "8")) self.label_3.setText(_translate("VecMap", "Step 2. Initialize atom positions")) self.label_4.setText(_translate("VecMap", "Separation factor")) self.pushButton_2.setText(_translate("VecMap", "Initialize")) self.pushButton_3.setText(_translate("VecMap", "Find \n" "separation")) self.label_5.setText(_translate("VecMap", "<html><head/><body><p>Input an appropriate separation factor to initialize the atom positions for refining. Adding/removing atoms by left-click.</p></body></html>")) self.label_6.setText(_translate("VecMap", "<html><head/><body><p>Try a few separation factors around the given number to determine the best separation factor.</p></body></html>")) self.label_9.setText(_translate("VecMap", "Step 3. Refine atom positions")) self.checkBox_2.setText(_translate("VecMap", "Refine Oxygen")) self.checkBox_3.setText(_translate("VecMap", "Save result plots")) self.pushButton_4.setText(_translate("VecMap", "Refine")) self.label_10.setText(_translate("VecMap", "<html><head/><body><p>Refine atom positions. Check [001] or [011] zone. Only check Refine Oxygen if O columns are visible.</p></body></html>")) self.checkBox_4.setText(_translate("VecMap", "[011] Zone")) self.label_11.setText(_translate("VecMap", "Step 4. Generate a vector map")) self.label_12.setText(_translate("VecMap", "e.g., something around 8-12")) self.label_14.setText(_translate("VecMap", "List of angles (degrees) of vectors that will be colored differently:")) self.lineEdit_4.setText(_translate("VecMap", "45")) self.label_15.setText(_translate("VecMap", "e.g., 45 135 225 315")) self.label_16.setText(_translate("VecMap", "List of colors (should match the angles):")) self.label_17.setText(_translate("VecMap", "e.g., yellow blue red green")) self.lineEdit_5.setText(_translate("VecMap", "yellow")) self.pushButton_5.setText(_translate("VecMap", "Vector angle\n" "distrubution")) self.pushButton_6.setText(_translate("VecMap", "Show \n" "map")) self.label_18.setText(_translate("VecMap", "<html><head/><body><p>Generate a vector map. Set the coloring pattern by checking the vector angle distribution.</p></body></html>")) self.pushButton_7.setText(_translate("VecMap", "Load from csv")) self.pushButton_8.setText(_translate("VecMap", "Disclaimer")) self.label_19.setText(_translate("VecMap", "VecMap 0.1.1 Released: 06/13/2020 by Dr. <NAME>")) self.label_20.setText(_translate("VecMap", "Check here for more information!")) self.pushButton_9.setText(_translate("VecMap", "About")) self.pushButton_10.setText(_translate("VecMap", "Acknoledgments")) self.pushButton_11.setText(_translate("VecMap", "Contact")) self.pushButton_12.setText(_translate("VecMap", "Donate me!")) self.radioButton.setText(_translate("VecMap", "A-site")) self.radioButton_2.setText(_translate("VecMap", "B-site")) self.label_21.setText(_translate("VecMap", "Select which site to calculate")) self.pushButton_13.setText(_translate("VecMap", "Calculate")) self.label_7.setText(_translate("VecMap", "Scale:")) self.lineEdit_2.setText(_translate("VecMap", "10")) self.pushButton_14.setText(_translate("VecMap", "Oxygen\n" " map")) self.lineEdit_3.setText(_translate("VecMap", "6")) self.label_13.setText(_translate("VecMap", "Scale:")) self.checkBox_5.setText(_translate("VecMap", "Scale bar")) #===== Open file and set up global variables such as path etc. ====================== #===== Connected to self.pushButton ================================================= def openfile(self): openfile_name = QFileDialog.getOpenFileName(self,'Select Image','','DigitalMicrograph (*.dm3 , *.dm4);;Image files (*.tif , *.tiff , *.jpg , *.jpeg , *.png ,*.bmp);;All Files (*)') global file, my_path, file_path, title, scale, units, s, image, ABF, img_110 file = openfile_name[0] if self.checkBox.isChecked(): #Set ABF toggle from the checkbox ABF = 1 else: ABF = 0 if self.checkBox_4.isChecked(): img_110 = 1 else: img_110 = 0 if file: print('{} has been loaded!'.format(file)) my_path = getDirectory(file) #Set the working path file_path = getDirectory(file, '/') #Set the parent path if not os.path.exists(my_path): os.makedirs(my_path) s = readImage(file) title = s.metadata.General.title scale = s.axes_manager[0].scale #Read scale data from the image units = s.axes_manager[0].units #Read units s.save(my_path + 'Original image.hspy', overwrite=True) #Save a backup file in hspy format image = s.data if ABF == 1: s.data = np.divide(1, s.data) #Inverse the ABF contrast to make a ADF-like image # Draw an image global f_original_img f_original_img = PlotCanvas() f_original_img.setWindowTitle(file) f_original_img.axes.imshow(image) f_original_img.axes.set_axis_off() f_original_img.axes.set_title('{} \n has been successfully loaded!'.format(title)) f_original_img.show() #==== Initialize atom position module =============================================== #==== Connected to self.pushButton_2 ================================================ def ini_atom_position(self): sep = int(self.lineEdit.text()) try: A_positions_ini = get_atom_positions(s,separation=sep) global A_positions, f_ini A_positions = A_positions_ini.tolist() f_ini = PlotCanvas() f_ini.setWindowTitle('Initial atom positions for refining') f_ini.axes.imshow(s.data) f_ini.axes.set_axis_off() f_ini.axes.set_title('Left click to add or remove atoms') f_ini.show() def onclick(event): if event.inaxes != f_ini.axes: return if event.button == 1: # Left mouse button x = np.float(event.xdata) y = np.float(event.ydata) atom_nearby = closest_node((x,y), A_positions)[0] if distance.euclidean((x,y), A_positions[atom_nearby]) > 5: A_positions.append([x, y]) else: A_positions.pop(atom_nearby) replot(f_ini) def get_xy_pos_lists(atom_lst): return np.asarray(atom_lst)[:,0], np.asarray(atom_lst)[:,1] def replot(f): x_pos, y_pos = get_xy_pos_lists(A_positions) dp.set_xdata(x_pos) dp.set_ydata(y_pos) f.fig.canvas.draw() f.fig.canvas.flush_events() xy_positions = get_xy_pos_lists(A_positions) dp, = f_ini.axes.plot(xy_positions[0], xy_positions[1], marker='o', ms=5, color='r', ls='') cid = f_ini.fig.canvas.mpl_connect('button_press_event', onclick) except NameError: #Pop up an error window msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please load the image file first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #==== Find separation module ======================================================== #==== Connected to self.pushButton_3 ================================================ def find_separation(self): #sep_range = (int(self.lineEdit_2.text()), int(self.lineEdit_3.text())) #s_peaks=am.get_feature_separation(s, separation_range=sep_range) #Range might be changed for different images #s_peaks.metadata.General.title = 'Use Arrow keys to find an appropriate separation factor' #s_peaks.plot(colorbar=False,scalebar=False,axes_off=True) sep = int(self.lineEdit.text()) sep_range = list(range(sep - 4, sep + 5)) # Create canvas for drawing try: global f_sep f_sep = SeparationCanvas() for i in range(9): s_factor = sep - 4 + i f_sep.axes[i].set_aspect('equal') f_sep.axes[i].set_axis_off() if s_factor < 1: continue ini_position = get_atom_positions(s, separation=s_factor) f_sep.axes[i].imshow(s.data) f_sep.axes[i].scatter(np.asarray(ini_position)[:,0], np.asarray(ini_position)[:,1], s=5, color='r') f_sep.axes[i].set_title('Separation = {}'.format(s_factor)) f_sep.show() except NameError: #Pop up an error window msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please load the image file first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #==== Refine atom position module =================================================== #==== Connected to self.pushButton_4 ================================================ def refine_atom_position(self): #Global variables: global ap_A, ap_B, ap_O, Ua, Uc, find_O #Read checkboxes if self.checkBox_2.isChecked(): find_O = 1 else: find_O = 0 if self.checkBox_3.isChecked(): plotpos = 1 else: plotpos = 0 try: #Refine atom positions print('='*50) print('Refining atom positions for A-site atoms...') print('This may take time...') sublattice_A = find_atom(s.data, A_positions, 'A-site atoms') print('Refining A-site atoms done!') ap_A = sublattice_A.atom_positions #Refined atoms positions for A-site. NumPy array. #lattice_list = [] #lattice_list.append(sublattice_A) print('='*50) print('Finding the initial positions for B-site atoms...') sublattice_A.construct_zone_axes() #Find the zone axis for the initial position of B: typically 3 for [001] and 1 for [110] if img_110 == 1: zone_axis = sublattice_A.zones_axis_average_distances[1] else: zone_axis = sublattice_A.zones_axis_average_distances[2] #Calculate lattice parameter z0 = sublattice_A.zones_axis_average_distances[0] z1 = sublattice_A.zones_axis_average_distances[1] Ua = math.sqrt(z0[0]**2 + z0[1]**2) * scale Uc = math.sqrt(z1[0]**2 + z1[1]**2) * scale print('='*50) print('Estimated lattice parameters (average) from the image:') print('a = {:.3f} {}'.format(Ua, units)) print('c = {:.3f} {}'.format(Uc, units)) B_positions = sublattice_A.find_missing_atoms_from_zone_vector(zone_axis) #Reomve A-site atoms from the image print('='*50) print('Subtracting sublattice A from the image using 2D gaussian fit...') print('This may take time...') image_without_A = remove_atoms_from_image_using_2d_gaussian(sublattice_A.image, sublattice_A, show_progressbar=False) #Refine B-site atoms print('='*50) print('Refining atom positions for sublattice B...') print('Almost there...') sublattice_B = find_atom(image_without_A, B_positions, 'B-site atoms', atom_color='blue') ap_B = sublattice_B.atom_positions ##Refined atoms positions for B-site. NumPy array. print('Refining B-site atoms done!') #lattice_list.append(sublattice_B) #Find the position of O atoms if find_O == 1: #Find initial positions for O AB_positions = ap_A.tolist() + ap_B.tolist() sublattice_AB = Sublattice(AB_positions,image=s.data,color='y',name='Sublattice A + B') sublattice_AB.construct_zone_axes() zone_axis_002 = sublattice_AB.zones_axis_average_distances[2]#Only work for [001] currently O_positions = sublattice_AB.find_missing_atoms_from_zone_vector(zone_axis_002) #Initial positions of O print('='*50) print('Subtracting sublattice A and B from the image using 2D gaussian fit...') print('This may take time...') image_without_AB=remove_atoms_from_image_using_2d_gaussian(sublattice_B.image,sublattice_B,show_progressbar=False) #Subtract both A and B from the original image #Refine O positions print('='*50) print('Refining atom positions for sublattice O...') sublattice_O = find_atom(image_without_AB, O_positions, 'O sites', atom_color='g') ap_O = sublattice_O.atom_positions #Refined atoms positions for O. NumPy array. print('Refining O atoms done!') #lattice_list.append(sublattice_O) print('Refining atoms done!') #Construct atom position results with sublattice A and B. #atom_lattice = am.Atom_Lattice(image=image, name='Atoms positions', sublattice_list=lattice_list) #Save the refined positions and original image as hdf5 file. This file can be called later. #atom_lattice.save(my_path + 'atom_position.hdf5', overwrite=True) #======================= #Plot and save figures #======================= if plotpos == 1: print('='*50) print('Saving result plots...') global f_A_site, f_B_site, f_AB #Plot A-site atom positions with the original image overlayed. f_A_site = PlotCanvas() f_A_site.setWindowTitle('VecMap0.1: Refined positions of A-site atoms') f_A_site.axes.imshow(image) f_A_site.axes.scatter(ap_A[:,0], ap_A[:,1], s=2, color='r') f_A_site.axes.set_axis_off() f_A_site.show() f_A_site.fig.savefig(my_path + title + '_A-site atoms' + '.tif',dpi=600,bbox_inches='tight') #Plot B-site atom positions with the original image overlayed. f_B_site = PlotCanvas() f_B_site.setWindowTitle('VecMap0.1: Refined positions of B-site atoms') f_B_site.axes.imshow(image) f_B_site.axes.scatter(ap_B[:,0], ap_B[:,1], s=2, color='b') f_B_site.axes.set_axis_off() f_B_site.show() f_B_site.fig.savefig(my_path + title + '_B-site atoms' + '.tif',dpi=600,bbox_inches='tight') #Plot both A-site and B-site on the image f_AB = PlotCanvas() f_AB.setWindowTitle('VecMap0.1: A-site atoms vs. B-site atoms') f_AB.axes.imshow(image) f_AB.axes.scatter(ap_A[:,0], ap_A[:,1], s=2, color='r') f_AB.axes.scatter(ap_B[:,0], ap_B[:,1], s=2, color='b') f_AB.axes.set_axis_off() f_AB.show() f_AB.fig.savefig(my_path + title + '_A_and_B-site atoms' + '.tif',dpi=600,bbox_inches='tight') #Plot O atoms if available if find_O == 1: global f_O_site, f_all f_O_site = PlotCanvas() f_O_site.setWindowTitle('VecMap0.1: Refined positions of O atoms') f_O_site.axes.imshow(image) f_O_site.axes.scatter(ap_O[:,0], ap_O[:,1], s=2, color='g') f_O_site.axes.set_axis_off() f_O_site.show() f_O_site.fig.savefig(my_path + title + '_O atoms' + '.tif',dpi=600,bbox_inches='tight') #Plot all the atoms on the image f_all = PlotCanvas() f_all.setWindowTitle('VecMap0.1: A-site vs. B-site vs. O atoms') f_all.axes.imshow(image) f_all.axes.scatter(ap_A[:,0], ap_A[:,1], s=2, color='r') f_all.axes.scatter(ap_B[:,0], ap_B[:,1], s=2, color='b') f_all.axes.scatter(ap_O[:,0], ap_O[:,1], s=2, color='g') f_all.axes.set_axis_off() f_all.show() f_all.fig.savefig(my_path + title + '_A_B_O atoms' + '.tif',dpi=600,bbox_inches='tight') if plotpos == 1: print('All figures have been saved to '+ my_path) except NameError: #Pop up an error window msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please initialize the atom positions first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #==================== Calculate displacement module ================================= #==================== Connected to self.pushButton_13 =============================== def cal_disp(self): try: #Global variables global U_avg, disp, disp_O, disp_atom # Read cal_site from the radio button # 0 to calculate A site in relative to B site; 1 to calculate B site in relative to A site if self.radioButton.isChecked(): cal_site = 0 if self.radioButton_2.isChecked(): cal_site = 1 cal_110 = img_110 #If the input image is [110], turn this on. O map is not supported for [110] yet. O_map = find_O #If enabled, will calculate the displacement of O atoms in relation to sublattice B. U_avg = (Ua + Uc)/2 #Unit cell parameter estimated from the image. #========================================================================= #The main scripts start from here if cal_site == 0:#Calculate A site disp_atom = 'A-site' rel_atom = 'B-site' ap_0 = ap_A.tolist() ap_1 = ap_B.tolist() else: disp_atom = 'B-site' rel_atom = 'A-site' ap_0 = ap_B.tolist() ap_1 = ap_A.tolist() print('='*50) print('====Calculate {} in relative to {}===='.format(disp_atom, rel_atom)) ideal_pos, neighbor_pos = find_ideal_pos(ap_0, ap_1, U_avg, scale) disp = find_displacement(ap_0, ideal_pos, scale) #Save the displacement data with open(my_path + title + '-{}-disp.csv'.format(disp_atom),'w') as disp_data: disp_data.write('x (px), y (px), x disp (px), y disp (px), disp (nm), angle (deg)\n') for data in disp: disp_data.write('{}, {}, {}, {}, {}, {}'.format(data[0], data[1], data[2], data[3], data[4], data[5])) disp_data.write('\n') #Save the neigboring atoms as well with open(my_path + 'neighboring atoms.csv','w') as neighbor_data: for data in neighbor_pos: n = len(data) for idx in range(n): neighbor_data.write('{0}, {1}, '.format(*data[idx])) neighbor_data.write('\n') #Calculate O map and save if O_map == 1: ap_2 = ap_O.tolist() ideal_O_pos = find_ideal_O_pos(ap_0, ap_1, U_avg, scale) disp_O = find_displacement(ap_2, ideal_O_pos, scale) with open(my_path + title + '-disp_O_by_{}.csv'.format(disp_atom),'w') as disp_data: disp_data.write('x (px), y (px), x disp (px), y disp (px), disp (nm), angle (deg)\n') for data in disp_O: disp_data.write('{}, {}, {}, {}, {}, {}'.format(data[0], data[1], data[2], data[3], data[4], data[5])) disp_data.write('\n') print('Atomic displacement data saved to ' + my_path + title + '-disp.csv.') except NameError: msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please refine the atom positions first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #======== Display angle distribution of the vectors module =========================== #======== Connected to self.pushButton_5 ============================================= def vec_ang_dist(self): try: disp_angles = [lst[5] for lst in disp] global f_vec_ang_dist f_vec_ang_dist = PlotCanvas() f_vec_ang_dist.setWindowTitle('Histogram of Displacement Directions') f_vec_ang_dist.axes.hist(disp_angles, bins=50) f_vec_ang_dist.axes.set_xlabel('Displacement angles (Degrees)') f_vec_ang_dist.axes.set_xticks(list(range(0,390,30))) f_vec_ang_dist.axes.set_ylabel('Frequency') f_vec_ang_dist.axes.set_title('Put your cursor on the peak(s) to see the\n displacement directions') f_vec_ang_dist.show() except NameError: msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please calculate the displacement first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() print('') #========= Generate vector map module ============================================= #========= Connected to self.pushButton_6 =========================================== def show_vec_map(self): a_len = int(self.lineEdit_2.text()) if self.checkBox_5.isChecked(): s_bar = 1 else: s_bar = 0 try: # Read from lineEdits: ang_lst = str(self.lineEdit_4.text()).split() #A list of displacement directions. This is used to determine the coloring pattern. For single color rendering, just leave it as [0]. ang_lst = [int(a) for a in ang_lst] color_lst = str(self.lineEdit_5.text()).split() #====Plot==== disp_color = set_arrow_color(disp, ang_lst, color_lst) global f_vec_map f_vec_map = PlotCanvas() f_vec_map.setWindowTitle('VecMap0.1: Vector Map') f_vec_map.axes.imshow(image) f_vec_map.axes.set_axis_off() for vec in disp_color: f_vec_map.axes.arrow(vec[0],vec[1],vec[2]*a_len,vec[3]*a_len,color=vec[6], linewidth=1, head_width=a_len/3, head_length=a_len/3) #Add a scale bar if s_bar == 1: scalebar = ScaleBar(scale,'nm',location='lower left',scale_loc='top',sep=2) f_vec_map.axes.add_artist(scalebar) f_vec_map.show() f_vec_map.fig.savefig(my_path + title + "_{}_vec_map.tif".format(disp_atom),dpi=1200,bbox_inches='tight',overwrite=True) print('The vector map has been saved to ' + my_path + title + "_{}_vec_map.tif! Enjoy!".format(disp_atom)) except NameError: msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("Please calculate the displacement first!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() except IndexError: msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("The list of colors should match the list of angles!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #========= Generate O vector map module ============================================= #========= Connected to self.pushButton_14 =========================================== def show_O_vec_map(self): O_len = int(self.lineEdit_3.text()) if self.checkBox_5.isChecked(): s_bar = 1 else: s_bar = 0 try: global f_vec_map_O f_vec_map_O = PlotCanvas() f_vec_map_O.setWindowTitle('VecMap0.1: Vector Map of Oxygen atoms') f_vec_map_O.axes.imshow(image) f_vec_map_O.axes.set_axis_off() for vec in disp_O: f_vec_map_O.axes.arrow(vec[0],vec[1],vec[2]*O_len,vec[3]*O_len,color='red',linewidth=1,head_width=O_len/3,head_length=O_len/3) #Add a scale bar if s_bar == 1: scalebar = ScaleBar(scale,'nm',location='lower left',scale_loc='top',sep=2) f_vec_map_O.axes.add_artist(scalebar) f_vec_map_O.show() f_vec_map_O.fig.savefig(my_path + title + "_O_vec_map_by_{}.tif".format(disp_atom),dpi=1200,bbox_inches='tight',overwrite=True) print('The O vector map has been saved to ' + my_path + title + "_O_vec_map_by_{}.tif! Enjoy!".format(disp_atom)) except NameError: msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText("No O displacement data exist!") msg.setWindowTitle("Hey guys") returnValue = msg.exec() #============ Load displacement from csv module ==================================== #============ Connected to self.pushButton_7 ======================================= def load_from_csv(self): # Load displacement data from the csv file saved previously global s, my_path, title, scale, units, disp, disp_O, image, disp_atom openfile_name = QFileDialog.getOpenFileName(self,'Select the displacement data','','CSV (*.csv);;All Files (*)') file = openfile_name[0] if file: my_path = getDirectory(file,'/') s = readImage(my_path + 'Original image.hspy') title = s.metadata.General.title scale = s.axes_manager[0].scale units = s.axes_manager[0].units image = s.data disp = load_disp_data_from_csv(file) # Look for the O data disp_atom = file[-15:-9] file_O_disp = my_path + title + '-disp_O_by_' + disp_atom + '.csv' if os.path.isfile(file_O_disp): disp_O = load_disp_data_from_csv(file_O_disp) find_O = 1 print('Found O displacement data!') else: find_O = 0 print('No O displacement data was found! Will do {} atom displacement only!'.format(disp_atom)) #============ Disclaimer button ==================================================== #============ Connected to self.pushButton_8 ======================================= def disclaimer(self): msg = QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("<b>Disclaimer</b><br>" \ "This app was designed by Dr <NAME>. Redistribution and use in source, " \ "with or without modification, are permitted. Any redistribution must remain "\ "the above copyright. When a scientific publication is reached through the "\ "app, please add the following reference: <br>"\ "1. Ma, T. et al. <a href=\"https://doi.org/10.1103/PhysRevLett.123.217602\">Phys. Rev. Lett. 123, 217602 (2019).</a>"\ "<br>"\ "2. Ma, T. et al. <a href=\"https://doi.org/10.1063/1.5115039\">Appl. Phys. Lett. 115, 122902 (2019).</a>" "<br>" \ "THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND.<br>") msg.setWindowTitle("VecMap0.1: Disclaimer") def disclaimerButtonClick(): msg = QMessageBox() msg.setText('Thanks for using VecMap') msg.setWindowTitle('Thank you!') returnValue = msg.exec() msg.buttonClicked.connect(disclaimerButtonClick) returnValue = msg.exec() #============ About button ==================================================== #============ Connected to self.pushButton_9 ======================================= def show_about(self): msg = QMessageBox() # msg.setIcon(QMessageBox.Information) msg.setText("VecMap v0.1.1"\ "<br>"\ "Designed by Dr. <NAME>"\ "<br>"\ "06/13/2020"\ "<br>" "First version release!<br>" "Get more information and<br> source code from my <a href=\"http://www-personal.umich.edu/~taoma/VectorMap.html\">website</a>.") msg.setWindowTitle("VecMap0.1: About") returnValue = msg.exec() #============ Acknowledgments button ==================================================== #============ Connected to self.pushButton_10 ======================================= def acknowledgments(self): msg = QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("This program was written with Python 3. The author " \ "acknowledges the HyperSpy and Atomap packages which "\ "are partially incorporated in the program. Please "\ "consider citing/adding acknowledgement for Hyperspy "\ "and Atomap packages in your publication:"\ "<br>" "<NAME> la et al. <a href=\"http://doi.org/10.5281/zenodo.3396791\">hyperspy/hyperspy: HyperSpy v1.5.2 (2019).</a>" \ "<br>" "<NAME>. et al. <a href=\"https://doi.org/10.1186/s40679-017-0042-5\">Adv. Struct. Chem. Imaging 3, 9 (2017).</a>") msg.setWindowTitle("VecMap0.1: Acknowledgments") returnValue = msg.exec() #============ Contact button ==================================================== #============ Connected to self.pushButton_11 ======================================= def show_contact(self): msg = QMessageBox() msg.setText("Ask questions and report bugs to:"\ "<br>" "<a href=\"mailto:<EMAIL>\"><EMAIL></a>") msg.setWindowTitle("VecMap0.1: Contact") returnValue = msg.exec() #============ Donate me button ==================================================== #============ Connected to self.pushButton_12 ======================================= def donate(self): msg = QMessageBox() msg.setText("I will make this app freely available for the society.<br>"\ "If you like this app, show your appreciation by <a href=\"https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=NQTP8WZX9VDRQ&currency_code=USD&source=url\">donating me!</a>"\ "<br>"\ "Your support is my motivation!<br>") msg.setWindowTitle("VecMap0.1: Donate me!") returnValue = msg.exec() #=========== Define figure canvas =================================================== class PlotCanvas(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('VecMap0.1: Plot') self.create_main_frame() def create_main_frame(self): self.main_frame = QWidget() # Create the mpl Figure and FigCanvas objects. # 5x4 inches, 100 dots-per-inch # self.dpi = 100 self.fig = Figure((5.0, 4.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) # Since we have only one plot, we can use add_axes # instead of add_subplot, but then the subplot # configuration tool in the navigation toolbar wouldn't # work. # self.axes = self.fig.add_subplot(111) # Create the navigation toolbar, tied to the canvas # self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) vbox = QVBoxLayout() vbox.addWidget(self.mpl_toolbar) vbox.addWidget(self.canvas) self.main_frame.setLayout(vbox) self.setCentralWidget(self.main_frame) #==================== Find separation canvas ========================================= class SeparationCanvas(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('VecMap0.1: Find separation factors') self.create_main_frame() def create_main_frame(self): self.main_frame = QWidget() # Create the mpl Figure and FigCanvas objects. # 10x10 inches, 100 dots-per-inch # self.dpi = 100 self.fig = Figure((10.0, 10.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) # Add a 9x9 axes layout # self.axes = [self.fig.add_subplot(3,3,n) for n in range(1,10)] self.fig.set_tight_layout(True) # Create the navigation toolbar, tied to the canvas # self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) vbox = QVBoxLayout() vbox.addWidget(self.mpl_toolbar) vbox.addWidget(self.canvas) self.main_frame.setLayout(vbox) self.setCentralWidget(self.main_frame) #==================== Modules and helper functions =================================== from hyperspy.io import load from atomap.atom_finding_refining import get_atom_positions from atomap.sublattice import Sublattice from atomap.tools import remove_atoms_from_image_using_2d_gaussian import os import numpy as np import matplotlib.pyplot as plt import math import copy from scipy.spatial import distance from matplotlib_scalebar.scalebar import ScaleBar #====Helper functions, do not change==== def readImage(file): #Load raw image file for process. #Require Hyperspy package s = load(file) return s def getDirectory(file, s='.'): #Make the working directory and return the path. for idx in range(-1, -len(file), -1): if file[idx] == s: #find the file extension and remove it. '/' for parent path path = file[:idx] + '/' return path def find_atom(img, ini_pos, atom_name, atom_color='r'): #Refine atom positions for a sublattice #img: an array of image data; ini_pos: initial positions; atom_name: a string for name; atom_color: a string for color #img_110: For [110] image sublattice = Sublattice(ini_pos, image=img, color=atom_color, name=atom_name) sublattice.find_nearest_neighbors() sublattice.refine_atom_positions_using_center_of_mass(show_progressbar=False) sublattice.refine_atom_positions_using_2d_gaussian(show_progressbar=False) return sublattice #Return an atomap sublattice object def find_neighboring_atoms(P, A, Ua, tol=1.2): # Define a function to find the neighboring atoms of P(x,y) from a list of atoms A. # P:a given atom (x,y); A: a list of atoms; Ua: A threashold in px, 0.707*a for [001] and 0.5*a for [110] x, y = P N = [a for a in A if (a[0]-x)**2 + (a[1]-y)**2 < (Ua * tol) **2] #A list to store the neighboring atoms N = sorted(N, key=lambda x: (x[0] ** 2 + x[1] ** 2) ** 0.5) return N def closest_node(node, nodes): #A function to find the closest node in an array closest_index = distance.cdist([node], nodes).argmin() return closest_index,nodes[closest_index] def line(p1, p2): #Find a line function from two points A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0]*p2[1] - p2[0]*p1[1]) return A, B, -C def intersection(L1, L2): #A function to find the intersection point of two lines D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x,y else: return False def math_center(a, b, c, d): #Define a function to find the mathematical center of four points, a, b, c, d #Find the diagonal of a M = [b,c,d] diag_idx = distance.cdist([a],M).argmax() L1 = line(a,M[diag_idx]) del M[diag_idx] L2 = line(M[0],M[1]) center = intersection(L1, L2) return center def find_ideal_pos(A, B, Ua, scale, img_110=False): #calculate the ideal atomic positions for A in a un-distorted perovskite structure #A, B are lists of atom coordinates; Ua is the estimated lattice paramter in nm; scale is the image pixel size #return a list of tuples ideal_positions = [] Neighbor_positions = [] if not img_110: #calculate image [001] for atom in A: Neighbor = find_neighboring_atoms(atom,B,Ua / scale * 0.707) if len(Neighbor) == 4: ap_center = math_center(*Neighbor) ideal_positions.append(ap_center) Neighbor_positions.append(Neighbor) #Save neighbors for plotting return ideal_positions, Neighbor_positions for atom in A: Neighbor = find_neighboring_atoms(atom,B,Ua / scale * 0.5) if len(Neighbor) == 2: ap_center = ((Neighbor[0][0]+Neighbor[1][0])/2,(Neighbor[0][1]+Neighbor[1][1])/2) ideal_positions.append(ap_center) Neighbor_positions.append(Neighbor) return ideal_positions, Neighbor_positions def find_ideal_O_pos(A, B, Ua, scale): #calculate the ideal atomic positions for O in a un-distorted perovskite structure #only support [001] images ideal_O_positions = [] for atom in A: Neighbor = find_neighboring_atoms(atom,B,Ua / scale * 0.707) if len(Neighbor) == 4: n_0 = Neighbor.pop(0) n_1 = Neighbor.pop(closest_node(n_0, Neighbor)[0]) n_2 = Neighbor.pop(closest_node(n_0,Neighbor)[0]) n_3 = Neighbor.pop() o_0 = (n_0[0] + n_1[0]) / 2, (n_0[1] + n_1[1]) / 2 ideal_O_positions.append(o_0) o_1 = (n_0[0] + n_2[0]) / 2, (n_0[1] + n_2[1]) / 2 ideal_O_positions.append(o_1) o_2 = (n_1[0] + n_3[0]) / 2, (n_1[1] + n_3[1]) / 2 ideal_O_positions.append(o_2) o_3 = (n_2[0] + n_3[0]) / 2, (n_2[1] + n_3[1]) / 2 ideal_O_positions.append(o_3) ideal_O_positions = list(dict.fromkeys(ideal_O_positions)) return ideal_O_positions def find_displacement(A, A_com, scale): #find atomic displacement of A #A_com, A are lists of atom coordinates; Ua is the estimated lattice paramter in nm; scale is the image pixel size disp = [] for atom in A_com: arrow_end = closest_node(atom,A)[1] vec_len = distance.euclidean(arrow_end,atom) if vec_len > 0.14 / scale: continue dx = arrow_end[0]-atom[0] dy = arrow_end[1]-atom[1] #calculate the displacement vector angle according to dx, dy. if dy >= 0 and dx >= 0: vec_ang = math.degrees(math.atan(dy/dx)) elif dy >= 0 and dx < 0: vec_ang = math.degrees(math.atan(dy/dx)) + 180 elif dx < 0 and dy < 0: vec_ang = math.degrees(math.atan(dy/dx)) + 180 else: vec_ang = 360 + math.degrees(math.atan(dy/dx)) disp.append([atom[0], atom[1], dx, dy, scale*1000*vec_len, vec_ang]) return disp def set_arrow_color(vec_data, ang_lst, color_lst): color_lst = color_lst vec_data_color = copy.deepcopy(vec_data) #Make a copy so it does not modify the original list if len(ang_lst) == 1: for vec in vec_data_color: vec.append(color_lst[0]) #set yellow for single-color rendering return vec_data_color ang_lst_mod = [a - ang_lst[0] for a in ang_lst] ang_bond = [] for idx in range(len(ang_lst_mod)-1): ang_bond.append((ang_lst_mod[idx + 1] - ang_lst_mod[idx]) // 2 + ang_lst_mod[idx]) ang_bond.append((360 - ang_lst_mod[-1]) // 2 + ang_lst_mod[-1]) for vec in vec_data_color: ang = vec[5] - ang_lst[0] if ang < 0: ang = ang + 360 for i in range(len(ang_bond)-1): if round(ang) in range(ang_bond[i], ang_bond[i+1]): vec.append(color_lst[i+1]) for vec in vec_data_color: if len(vec) == 6: vec.append(color_lst[0]) return vec_data_color def load_disp_data_from_csv(file): with open(file,'r') as disp: disp_data = [] lines = disp.readlines() print('Displacement data:\n') print(lines[0]) for lin in lines[1:]: lin_data = lin.strip().split(', ') disp_data.append([float(data) for data in lin_data]) return disp_data #====Application entry================================== def main(): print('='*50) print(''' Welcome to the first version of VecMap --- a convenient tool to calculate atomic displacements in perovskite structures This app was designed by Dr. <NAME>. Address your questions and suggestions to <EMAIL>. Please see the "Disclaimer" before use! Hope you get good results and publications from it! Version 0.1.1 06/13/2020 ''') print('='*50) import sys app = QtWidgets.QApplication(sys.argv) VecMap = QtWidgets.QWidget() ui = Ui_VecMap() ui.setupUi(VecMap) VecMap.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
2.234375
2
count_subset_occurrences.py
will-r-wang/opencv-object-detection
0
12793188
import numpy as np def count_subset_occurrences(array, subset_array): occurrences = 0 for idx in range(len(array) - len(subset_array) + 1): if np.array_equal(array[idx:(idx + len(subset_array))], subset_array): occurrences += 1 return occurrences def test_base_case(): assert count_subset_occurrences( np.array([0, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 3]), np.array([1, 1]) ) == 3 test_base_case()
3.421875
3
output/models/nist_data/list_pkg/name/schema_instance/nistschema_sv_iv_list_name_length_3_xsd/__init__.py
tefra/xsdata-w3c-tests
1
12793189
<reponame>tefra/xsdata-w3c-tests from output.models.nist_data.list_pkg.name.schema_instance.nistschema_sv_iv_list_name_length_3_xsd.nistschema_sv_iv_list_name_length_3 import NistschemaSvIvListNameLength3 __all__ = [ "NistschemaSvIvListNameLength3", ]
0.925781
1
cv2/select-pixels-by-RGB/main.py
whitmans-max/python-examples
140
12793190
<gh_stars>100-1000 #!/usr/bin/env python3 # date: 2019.09.24 # https://stackoverflow.com/questions/58085439/opencv-extract-pixels-with-rbg/ # replaca pixel when `R > G > B` import cv2 import numpy as np img = cv2.imread('/home/furas/Obrazy/images/image.png') # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img[ (img[:,:,2] > img[:,:,1]) & (img[:,:,1] > img[:,:,0]) ] = 0 cv2.imshow('image', img) cv2.waitKey(0)
3.09375
3
src/gui/actions.py
iosetek/CommandRecognition
0
12793191
<gh_stars>0 from src.api import Api from src.gui.appJar.appjar import gui class ActionsUI: def __init__(self, app): self.__app = app def append_its_content(self): """ Creates view designed to create action and attach it to particular command. Action can be defined as executing executable file, python file or using list of bash commands. """ self.__app.addListBox("ACTIONS_COMMAND_LISTBOX", row=1, column=1, rowspan=8, colspan=5) self.__app.addNamedButton("ATTACH COMMAND", "ACTIONS_ATTACH_COMMAND", print("TODO"), row=10, column=1, rowspan=2, colspan=5) self.__app.addNamedButton("DETACH COMMAND", "ACTIONS_DETACH_COMMAND", print("TODO"), row=13, column=1, rowspan=2, colspan=5) self.__app.addListBox("ACTIONS_ACTION_LISTBOX", row=1, column=7, rowspan=5, colspan=5) self.__app.addNamedButton("NEW COMMAND", "ACTIONS_NEW_COMMAND", print("TODO"), row=7, column=7, rowspan=2, colspan=5) self.__app.addNamedButton("EDIT COMMAND", "ACTIONS_EDIT_COMMAND", print("TODO"), row=10, column=7, rowspan=2, colspan=5) self.__app.addNamedButton("REMOVE COMMAND", "ACTIONS_REMOVE_COMMAND", print("TODO"), row=13, column=7, rowspan=2, colspan=5) self.__app.addLabel("ACTIONS_ACTION_NAME_LABEL", "ACTION NAME", row=2, column=13, rowspan=2, colspan=9) self.__app.addEntry("ACTIONS_ACTION_NAME_ENTRY", row=4, column=13, rowspan=2, colspan=9) self.__app.addNamedButton("SET EXE FILE", "ACTIONS_SET_EXE_FILE_BUTTON", print("TODO"), row=7, column=13, rowspan=2, colspan=9) self.__app.addNamedButton("SET PYTHON FILE", "ACTIONS_SET_PY_FILE_BUTTON", print("TODO"), row=10, column=13, rowspan=2, colspan=9) self.__app.addNamedButton("SET BASH COMMAND", "ACTIONS_SET_BASH_COMMAND_BUTTON", print("TODO"), row=13, column=13, rowspan=2, colspan=9) print("TODO")
2.765625
3
PySARibbon/__init__.py
Bllose/SARibbon-pyqt5
3
12793192
# -*- coding: utf-8 -*- """ @Module __init__.py @Author ROOT """ from .SAFramelessHelper import SAFramelessHelper from .SARibbonBar import SARibbonBar from .SARibbonButtonGroupWidget import SARibbonButtonGroupWidget from .SARibbonCategory import SARibbonCategory from .SARibbonCategoryLayout import SARibbonCategoryLayout from .SARibbonContextCategory import SARibbonContextCategory from .SARibbonGallery import SARibbonGallery from .SARibbonMainWindow import SARibbonMainWindow from .SARibbonPannel import SARibbonPannel from .SARibbonPannelLayout import SARibbonPannelLayout from .SARibbonQuickAccessBar import SARibbonQuickAccessBar from .SAWindowButtonGroup import SAWindowButtonGroup
0.992188
1
app/models/user.py
nickobrad/blogs
0
12793193
from .. import db from flask_login import UserMixin, login_manager, LoginManager from werkzeug.security import generate_password_hash, check_password_hash from .. import login_manager from datetime import date, datetime @login_manager.user_loader def load_user(id): return User.query.get(int(id)) class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key = True) firstname = db.Column(db.String(255)) secondname = db.Column(db.String(255)) username = db.Column(db.String(255),unique = True) email = db.Column(db.String(255), unique = True, index = True) profile_picture = db.Column(db.String()) profile_bio = db.Column(db.String(255)) secured_password = db.Column(db.String(255)) blog_posts_by_me = db.relationship('Blog', backref = 'myblogposts', lazy = 'dynamic') blog_comments_by_me = db.relationship('BlogComment', backref = 'myblogcomments', lazy = 'dynamic') @property def password(self): raise AttributeError('You cannot view a users password') @password.setter def password(self, password): self.secured_password = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.secured_password, password) @classmethod def save_user(self): db.session.add(self) db.session.commit()
2.59375
3
sitykelib/modifyer.py
DistinctWind/SITYKE
2
12793194
<filename>sitykelib/modifyer.py from sitykelib.sercher import perfix import os def get_pdf_name(original_name): return perfix(original_name)+'.pdf' def cut_ppt(pptfiles): new_pptfiles = list() arg = ' -fc- -odpi 300 -mode copy -w 1364 -h 1016 -o [Cut]%s ' for pptfile in pptfiles: pdfname = get_pdf_name(pptfile) os.system('k2pdfopt'+arg+'"'+pdfname+'"') new_pptfiles.append('[Cut]'+pdfname) return new_pptfiles def reform_doc(docfiles): new_docfiles = list() arg = ' -fc- -odpi 300 -o [Reformed]%s ' for docfile in docfiles: pdfname = get_pdf_name(docfile) os.system('k2pdfopt'+arg+'"'+pdfname+'"') new_docfiles.append('[Reformed]'+pdfname) return new_docfiles def dark_mode(pdffiles): new_pdffiles = list() arg = ' -fc- -odpi 300 -mode copy -neg -o [Dark]%s ' for file in pdffiles: pdfname = get_pdf_name(file) os.system('k2pdfopt'+arg+'"'+pdfname+'"') new_pdffiles.append('[Dark]'+pdfname) return new_pdffiles
2.671875
3
blog/models.py
bibibricodeur/django-bibi
0
12793195
<gh_stars>0 from django.db import models # https://docs.djangoproject.com/fr/3.1/intro/tutorial02/ # Cette fonction est utilisée pour formater les URL from django.urls import reverse from django.contrib.auth.models import User # Create your models here. class BlogCategory(models.Model): # Fields category_name = models.CharField('Category', max_length=255, unique=True, blank=True, null=True) category_slug = models.SlugField('Slug', max_length=255, unique=True, blank=True, null=True) # https://developer.mozilla.org/fr/docs/Learn/Server-side/Django/Models # Metadata class Meta: verbose_name = 'Post Category' verbose_name_plural = 'Posts Categories' # Methods def get_absolute_url(self): """Cette fonction est requise pas Django, lorsque vous souhaitez détailler le contenu d'un objet.""" return reverse('blog-detail', args=[str(self.id)]) def __str__(self): """Fonction requise par Django pour manipuler les objets dans la base de données.""" return self.category_name class BlogPost(models.Model): # Fields options = ( ('draft', 'Private'), ('published', 'Public'), ) blog_title = models.CharField('Title', max_length=255) blog_slug = models.SlugField('Slug', max_length=255, unique=True, blank=True, null=True) blog_description = models.CharField('Description', max_length=255, blank=True, null=True) blog_picture = models.ImageField('Head picture', blank=True, null=True, upload_to='blog') blog_content = models.TextField('Texte') blog_file = models.FileField('File', blank=True, null=True, upload_to='blog') blog_created = models.DateTimeField('Created', auto_now_add=True) blog_updated = models.DateTimeField('Updated', auto_now=True) seo_title = models.SlugField('Seo title', max_length=60, unique=True, blank=True, null=True) seo_description = models.SlugField('Seo description', max_length=165, unique=True, blank=True, null=True) # https://www.youtube.com/watch?v=_ph8GF84fX4 blog_author = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='Author', blank=True, null=True) # https://www.youtube.com/watch?v=jFqYuWNyLnI blog_category = models.ForeignKey(BlogCategory, on_delete=models.CASCADE, verbose_name='Category', blank=True, null=True) blog_favorite = models.BooleanField('Favorite', default='False') blog_status = models.CharField('Status', max_length=12, choices=options, default='draft') # https://developer.mozilla.org/fr/docs/Learn/Server-side/Django/Models # Metadata class Meta: verbose_name = 'Post' verbose_name_plural = 'Posts' ordering = ('blog_created', ) # Methods def get_absolute_url(self): """Cette fonction est requise pas Django, lorsque vous souhaitez détailler le contenu d'un objet.""" return reverse('blog-detail', args=[str(self.id)]) def __str__(self): """Fonction requise par Django pour manipuler les objets dans la base de données.""" return self.blog_title ### Fin
2.640625
3
packages/pyright-internal/src/tests/samples/paramSpec19.py
kihoonim/pyright
1
12793196
<reponame>kihoonim/pyright # This sample tests the case where a ParamSpec is used within a generic # type alias with a Callable. from typing import Any, Callable, Generic, Protocol from typing_extensions import Concatenate, ParamSpec P = ParamSpec("P") # Example 1: Callable generic type alias CommandHandler1 = Callable[Concatenate[int, P], dict[str, Any]] class Command1(Generic[P]): def __init__(self, handler: CommandHandler1[P]) -> None: ... class Application1: def func1(self, handler: CommandHandler1[P]) -> Command1[P]: return Command1(handler) def func2( self, handler: CommandHandler1[P], ) -> Callable[[CommandHandler1[P]], Command1[P]]: def decorator(handler: CommandHandler1[P]) -> Command1[P]: return self.func1(handler) return decorator # Example 2: Callback Protocol class CommandHandler2(Protocol[P]): def __call__(self, *args: P.args, **kwargs: P.kwargs) -> dict[str, Any]: ... class Command2(Generic[P]): def __init__(self, handler: CommandHandler2[P]) -> None: ... class Application2: def func1(self, handler: CommandHandler2[P]) -> Command2[P]: return Command2(handler) def func2( self, handler: CommandHandler2[P], ) -> Callable[[CommandHandler2[P]], Command2[P]]: def decorator(handler: CommandHandler2[P]) -> Command2[P]: return self.func1(handler) return decorator def handler(arg1: int, arg2: str) -> dict[str, Any]: ... v1: CommandHandler2 = handler
2.59375
3
run.py
Originofamonia/mcan-vqa
0
12793197
# -------------------------------------------------------- # mcan-vqa (Deep Modular Co-Attention Networks) # modify this to our VQA dataset # -------------------------------------------------------- import os from copy import copy import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib import colors from cfgs.base_cfgs import Cfgs from core.exec import Execution import argparse, yaml def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='MCAN Args') parser.add_argument('--run', dest='run_mode', choices=['train', 'val', 'test', 'visualize'], type=str, default='train') parser.add_argument('--model', dest='model', choices=['small', 'large'], default='small', type=str) parser.add_argument('--split', dest='train_split', choices=['train', 'train+val', 'train+val+vg'], help="set training split, " "eg.'train', 'train+val+vg'" "set 'train' can trigger the " "eval after every epoch", type=str) parser.add_argument('--eval_every_epoch', default=False, help='set True to evaluate the ' 'val split when an epoch finished' "(only work when train with " "'train' split)", type=bool) parser.add_argument('--test_save_pred', help='set True to save the ' 'prediction vectors' '(only work in testing)', type=bool) parser.add_argument('--batch_size', default=1, # was 256 help='batch size during training', type=int) parser.add_argument('--max_epoch', help='max training epoch', type=int) parser.add_argument('--preload', help='pre-load the features into memory' 'to increase the I/O speed', type=bool) parser.add_argument('--gpu', default='0,1', help="gpu select, eg.'0, 1, 2'", type=str) parser.add_argument('--seed', default=444, help='fix random seed', type=int) parser.add_argument('--version', help='version control', type=str) parser.add_argument('--resume', help='resume training', type=bool) parser.add_argument('--ckpt_version', help='checkpoint version', type=str) parser.add_argument('--ckpt_epoch', help='checkpoint epoch', type=int) parser.add_argument('--ckpt_path', help='load checkpoint path, we ' 'recommend that you use ' 'ckpt_version and ckpt_epoch ' 'instead', type=str) parser.add_argument('--grad_accu_steps', help='reduce gpu memory usage', type=int) parser.add_argument('--num_workers', help='multithreaded loading', type=int) parser.add_argument('--pin_mem', help='use pin memory', type=bool) parser.add_argument('--verbose', help='verbose print', type=bool) parser.add_argument('--dataset_path', help='vqav2 dataset root path', type=str) parser.add_argument('--feature_path', help='bottom up features root path', type=str) args = parser.parse_args() return args def main(): opt = Cfgs() args = parse_args() args_dict = opt.parse_to_dict(args) cfg_file = "cfgs/{}_model.yml".format(args.model) with open(cfg_file, 'r') as f: yaml_dict = yaml.load(f, Loader=yaml.FullLoader) args_dict = {**yaml_dict, **args_dict} opt.add_args(args_dict) opt.proc() print('Hyper Parameters:') print(opt) opt.check_path() execution = Execution(opt) execution.run(opt.run_mode) def text_layout(): # compute some interesting data x0, x1 = -5, 5 y0, y1 = -3, 3 x = np.linspace(x0, x1, 500) y = np.linspace(y0, y1, 500) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 # Set up a colormap: # use copy so that we do not mutate the global colormap instance palette = copy(plt.cm.gray) palette.set_over('r', 1.0) palette.set_under('g', 1.0) palette.set_bad('b', 1.0) # Alternatively, we could use # palette.set_bad(alpha = 0.0) # to make the bad region transparent. This is the default. # If you comment out all the palette.set* lines, you will see # all the defaults; under and over will be colored with the # first and last colors in the palette, respectively. Zm = np.ma.masked_where(Z > 1.2, Z) # By setting vmin and vmax in the norm, we establish the # range to which the regular palette color scale is applied. # Anything above that range is colored based on palette.set_over, etc. # set up the Axes objects fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 5.4)) # plot using 'continuous' color map im = ax1.imshow(Zm, interpolation='bilinear', cmap=palette, norm=colors.Normalize(vmin=-1.0, vmax=1.0), aspect='auto', origin='lower', extent=[x0, x1, y0, y1]) ax1.set_title('Green=low, Red=high, Blue=masked') cbar = fig.colorbar(im, extend='both', shrink=0.9, ax=ax1) cbar.set_label('uniform') for ticklabel in ax1.xaxis.get_ticklabels(): ticklabel.set_visible(False) # Plot using a small number of colors, with unevenly spaced boundaries. im = ax2.imshow(Zm, interpolation='nearest', cmap=palette, norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1], ncolors=palette.N), aspect='auto', origin='lower', extent=[x0, x1, y0, y1]) ax2.set_title('With BoundaryNorm') cbar = fig.colorbar(im, extend='both', spacing='proportional', shrink=0.9, ax=ax2) cbar.set_label('proportional') fig.suptitle('imshow, with out-of-range and masked data') f1 = os.path.join(os.getcwd(), f'results/val_imgs/dark_mask.jpg') plt.savefig(f1) plt.close() if __name__ == '__main__': main() # text_layout()
2.609375
3
app/core/serializers.py
jblanquicett92/activo-django-docker-postgres
0
12793198
<gh_stars>0 from django.contrib.auth import get_user_model from django.contrib.auth import authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers from .models import Departamento, EstatusUsuario, Historial_Turno, Idioma, Puesto, Scope, Tipo_Rol, Rol from .models import Departamento_Turno, Turno, Puesto, Usuario class DepartamentoSerializer(serializers.ModelSerializer): class Meta: model = Departamento fields = '__all__' class TurnoSerializer(serializers.ModelSerializer): class Meta: model = Turno fields = '__all__' class Tipo_RolSerializer(serializers.ModelSerializer): class Meta: model = Tipo_Rol fields = '__all__' class ScopeSerializer(serializers.ModelSerializer): class Meta: model = Scope fields = '__all__' class EstatusSerializer(serializers.ModelSerializer): class Meta: model = EstatusUsuario fields = '__all__' class IdiomaSerializer(serializers.ModelSerializer): class Meta: model = Idioma fields = '__all__' class RolSerializer(serializers.ModelSerializer): class Meta: model = Rol fields = '__all__' depth = 1 class Departamento_TurnoSerializer(serializers.ModelSerializer): class Meta: model = Departamento_Turno fields = '__all__' depth = 1 class PuestoSerializer(serializers.ModelSerializer): class Meta: model = Puesto fields = '__all__' depth = 2 class UsuarioSerializer(serializers.ModelSerializer): class Meta: model = Usuario fields = '__all__' depth = 2 class UserSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = ('email', 'password', 'username') extra_kwargs = {'password': {'write_only': True, 'min_length': 5}} def create(self, validated_data): return get_user_model().objects.create_user(**validated_data) class AuthTokenSerializer(serializers.Serializer): email = serializers.CharField() password = serializers.CharField( style={'input_type': 'password'}, trim_whitespace=False ) def validate(self, attrs): """Validate and authenticate the user""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authorization') attrs['user'] = user return attrs class Historial_TurnoSerializer(serializers.ModelSerializer): class Meta: model = Historial_Turno fields = '__all__' depth = 4 class Usuario_Lat_Lng_Serializer(serializers.Serializer): lat = serializers.CharField(max_length=40, allow_blank=False) lng = serializers.CharField(max_length=40, allow_blank=False) class Meta: fields = ('Lat', 'lng')
2.15625
2
examples/plot_transport_laws.py
Cgadal/PyDune
0
12793199
r""" =========== Transport laws =========== Create a plot comparing the different transport laws. """ import matplotlib.pyplot as plt import numpy as np from PyDune.physics.sedtransport import transport_laws as TL theta = np.linspace(0, 0.4, 1000) theta_d = 0.035 omega = 8 plt.figure() plt.plot(theta, TL.quadratic_transport_law(theta, theta_d, omega), label='quadratic transport law') plt.plot(theta, TL.cubic_transport_law(theta, theta_d, omega), label='cubic transport law') plt.plot(theta, TL.quartic_transport_law(theta, theta_d), label='cubic transport law') plt.xlabel(r'Shield number, $\theta$') plt.ylabel('Non dimensional saturated flux') plt.legend() plt.tight_layout() plt.show()
3.109375
3
#7 Kelas Dan Object/Decorator/decorator.py
HudaFiqri/belajarPython
5
12793200
''' decorator jadi agar memudahkan dalam pembungkusan fungsi maka python menyediakan yang namanya decorator. sumber referensi: https://www.youtube.com/watch?v=r7Dtus7N4pI direvisi pada: 26-02-2021 ''' ''' membuat fungsi yang akan dipanggil. jadi di decorator pada python harus fungsi rekursif untuk mengembalikan value jika tidak ada rekursif maka python akan menunjukan error TypeError: 'NoneType' object is not callable | ini dikarenakan tidak adanya rekursif pada fungsi. ''' def f1(func): # jika ada variabel yang di keluarkan maka akan menghasilkan output function_data = 'function data' print(function_data) return func # nah ini lah yang unik dari python decorator dilambangkan dengan @ dan ini bertujuan untuk memanggil fungsi @f1 def func_data(): print('hello') # lalu coba panggil fungsi yang baru dan coba output seperti apakah yang akan keluar func_data()
3.734375
4
widgets/tests_list.py
alexoff13/QTpost-machine
1
12793201
<reponame>alexoff13/QTpost-machine from typing import Union from time import time from PyQt5 import QtCore from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QListWidget, QAbstractItemView, QListWidgetItem from widgets.tape import Tape class Data: test: QListWidgetItem state: dict saved_state: dict class TestsList(QListWidget): DEFAULT_NAME = 'test' def __init__(self, tape: Tape, parent: any = None): super().__init__(parent) self.__tape = tape self.__tests = dict() self.__set_list() self.__last_time_dragged = float() @property def last_time_dragged(self) -> float: return self.__last_time_dragged def __set_list(self) -> None: # устанавливает возможность Drag'n'Drop элементов self.setDragDropMode(QAbstractItemView.DragDrop) # устанавливает возможность сразу нескольких элементов self.setSelectionMode(QAbstractItemView.ExtendedSelection) self.setAcceptDrops(True) self.setDropIndicatorShown(True) def get_test_name(self, name: str = DEFAULT_NAME, ignore_name: str = None) -> str: if not name: name = self.DEFAULT_NAME k = 1 new_name = name while new_name in self.__tests and new_name != ignore_name: new_name = f'{name}-{k}' k += 1 return new_name def add_test(self, test_name: str = None, state: dict = None, test: QListWidgetItem = None, reset: bool = True, saved_state: dict = None) -> QListWidgetItem: if test_name is None: test_name = self.get_test_name() if test is None: test = QListWidgetItem() test.setText(test_name) test.last_name = test_name test.setFlags(test.flags() | Qt.ItemIsEditable) self.addItem(test) if reset: self.__tape.reset() self.__tests[test_name] = Data() self.__tests[test_name].test = test self.__tests[test_name].state = state if state is not None else Tape.get_empty_data() self.__tests[test_name].saved_state = saved_state return test def remove_test(self, test: QListWidgetItem, internal_remove: bool = True) -> None: self.takeItem(self.row(test)) if internal_remove: self.__tests.pop(test.text()) def get_last(self) -> Union[QListWidgetItem, None]: return self.item(self.count() - 1) if self.count() > 0 else None def get_state(self, test: QListWidgetItem) -> dict: return self.__tests[test.text()].state def get_saved_state(self, test: QListWidgetItem) -> dict: return self.__tests[test.text()].saved_state def rename(self, test_name: str, new_test_name: str) -> None: self.__tests[new_test_name] = self.__tests.pop(test_name) self.__tests[new_test_name].test.last_name = new_test_name def clear(self) -> None: for test_name in self.__tests: self.takeItem(self.row(self.__tests[test_name].test)) self.__tests.clear() def save_state(self, test: QListWidgetItem, global_: bool = False) -> None: if test.text() in self.__tests: if global_: self.__tests[test.text()].saved_state = self.__tape.get_data() else: self.__tests[test.text()].state = self.__tape.get_data() def get_data(self) -> dict: data = dict() for test_name in self.__tests: data[test_name] = self.__tests[test_name].state return data # TODO: возможно лучше предложить выбор: загрузка с заменой или с добавлением в конец def set_from_file(self, file: dict) -> None: self.clear() for test_name in file: self.add_test(test_name, file[test_name], saved_state=file[test_name]) def has_unsaved_data(self) -> bool: return len(self.__tests) > 0 def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: super().dragEnterEvent(event) def dragMoveEvent(self, event): if event.mimeData().hasUrls(): event.setDropAction(Qt.CopyAction) event.accept() else: super().dragMoveEvent(event) def dropEvent(self, event): if event.mimeData().hasUrls(): event.setDropAction(Qt.CopyAction) event.accept() links = list() for url in event.mimeData().urls(): links.append(str(url.toLocalFile())) else: event.setDropAction(Qt.MoveAction) super().dropEvent(event) def startDrag(self, supported_actions: Union[QtCore.Qt.DropActions, QtCore.Qt.DropAction]) -> None: self.__last_time_dragged = time() super().startDrag(supported_actions)
2.625
3
CSV Chunker & Sorter/utils/folderUtil.py
momoji123/Tools
0
12793202
<gh_stars>0 import os, shutil from datetime import datetime; SOURCE_FOLDER = "./temp"; TARGET_FOLDER = "./RESULT"; BACKUP_FOLDER = "./STAGING"; def printAction(action, fileNames): print("\n" + action + " " + str(len(fileNames)) + " files"); def countFiles(pathToFolder): fileNames = os.listdir(pathToFolder); return len(fileNames); def getFileNameOnly(filePath): splitted = filePath.split("/"); return splitted[len(splitted)-1]; def deleteAllFiles(pathToFolder): fileNames = os.listdir(pathToFolder); printAction("Deleting", fileNames); for filename in fileNames: file_path = os.path.join(pathToFolder, filename); deleteFile(file_path); def deleteFile(filePath): try: if os.path.isfile(filePath) or os.path.islink(filePath): os.unlink(filePath); elif os.path.isdir(filePath): shutil.rmtree(filePath) except Exception as e: raise Exception('Failed to delete %s. Reason: %s' % (filePath, e)); def moveAllFiles(srcFolder, dstFolder): fileNames = os.listdir(srcFolder); printAction("Moving", fileNames); for filename in fileNames: src = os.path.join(srcFolder, filename); dst = os.path.join(dstFolder, filename); moveFile(src, dst); def moveFile(srcFilePath, dstFilePath): try: shutil.move(srcFilePath, dstFilePath); except Exception as e: raise Exception('Failed to move from %s to %s. Reason %s' % (srcFilePath, dstFilePath, e)); def copyAllFiles(srcFolder, dstFolder): fileNames = os.listdir(srcFolder); printAction("Copying", fileNames); for filename in fileNames: src = os.path.join(srcFolder, filename); dst = os.path.join(dstFolder, filename); copyFile(src, dst); def copyFile(srcFilePath, dstFilePath): try: shutil.copyfile(srcFilePath, dstFilePath); except Exception as e: raise Exception('Failed to copy from %s to %s. Reason %s' % (srcFilePath, dstFilePath, e)); def clearTempFolder(gui): gui.consoleInsert("Cleaning Temp Folder"); try: deleteAllFiles(SOURCE_FOLDER); gui.consoleInsert("Temp Folder Cleaned"); except Exception as e: gui.consoleInsert(str(e), "red"); raise e; def clearResultFolder(gui): gui.consoleInsert("Cleaning Result Folder"); try: deleteAllFiles(TARGET_FOLDER); gui.consoleInsert("Result Folder Cleaned"); except Exception as e: gui.consoleInsert(str(e), "red"); raise e; def clearStagingFolder(gui): gui.consoleInsert("Cleaning Staging Folder"); try: deleteAllFiles(BACKUP_FOLDER); gui.consoleInsert("Staging Folder Cleaned"); except Exception as e: gui.consoleInsert(str(e), "red"); raise e; def backupFiles(gui, filenames=[]): gui.consoleInsert("Backing up files..."); fname = []; if(len(filenames)<1): fname=gui.filenames; else: fname=filenames; for f in fname: fileNameOnly = getFileNameOnly(f); gui.consoleInsert("Backing up " + f + " to " + SOURCE_FOLDER); try: copyFile(f, SOURCE_FOLDER+"/"+fileNameOnly); except Exception as e: gui.consoleInsert(str(e), "red"); raise e; gui.consoleInsert("Finish backup files"); def stagingResult(gui=None): if(gui!=None): gui.consoleInsert("Staging result", "blue"); stagingFolder = os.path.join(BACKUP_FOLDER, str(datetime.today().strftime('%d-%m-%Y_%H%M%S')), "stage result"); if not os.path.exists(os.path.dirname(stagingFolder)): os.makedirs(stagingFolder); copyAllFiles(TARGET_FOLDER, stagingFolder);
2.75
3
lib/file_system.py
dhung09/KiteSublime
81
12793203
import sys if sys.platform == 'darwin': from ..lib.platform.darwin.file_system import * elif sys.platform == 'win32': from ..lib.platform.win32.file_system import * elif sys.platform in ('linux', 'linux2'): from ..lib.platform.linux.file_system import * else: from ..lib.platform.unsupported.file_system import * def path_for_url(path): return _path_for_url(path)
2.484375
2
automatization_of_data_mining_project/data_set_loader/exceptions/loader_exceptions.py
Sale1996/automatization_of_data_mining_project
0
12793204
<reponame>Sale1996/automatization_of_data_mining_project<gh_stars>0 class Error(Exception): """Base class for other exceptions""" pass class WrongPathNameFormatError(Error): """Raised when the path name has wrong format""" pass class FileIsNotFoundError(Error): """Raised when the input file from the path name was not found by loader""" pass class MissingImportantColumnsError(Error): """Raised when the loaded data set has missing one or more of the important columns""" pass
2.203125
2
addons/website_event_meet/models/event_event.py
SHIVJITH/Odoo_Machine_Test
0
12793205
<filename>addons/website_event_meet/models/event_event.py # -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models class Event(models.Model): _inherit = "event.event" meeting_room_ids = fields.One2many("event.meeting.room", "event_id", string="Meeting rooms") meeting_room_count = fields.Integer("Room count", compute="_compute_meeting_room_count") meeting_room_allow_creation = fields.Boolean( "Allow Room Creation", compute="_compute_meeting_room_allow_creation", readonly=False, store=True, help="Let Visitors Create Rooms") @api.depends("event_type_id", "website_menu", "community_menu") def _compute_community_menu(self): """ At type onchange: synchronize. At website_menu update: synchronize. """ for event in self: if event.event_type_id and event.event_type_id != event._origin.event_type_id: event.community_menu = event.event_type_id.community_menu elif event.website_menu and (event.website_menu != event._origin.website_menu or not event.community_menu): event.community_menu = True elif not event.website_menu: event.community_menu = False @api.depends("meeting_room_ids") def _compute_meeting_room_count(self): meeting_room_count = self.env["event.meeting.room"].sudo().read_group( domain=[("event_id", "in", self.ids)], fields=["id:count"], groupby=["event_id"], ) meeting_room_count = { result["event_id"][0]: result["event_id_count"] for result in meeting_room_count } for event in self: event.meeting_room_count = meeting_room_count.get(event.id, 0) @api.depends("event_type_id", "community_menu", "meeting_room_allow_creation") def _compute_meeting_room_allow_creation(self): for event in self: if event.event_type_id and event.event_type_id != event._origin.event_type_id: event.meeting_room_allow_creation = event.event_type_id.meeting_room_allow_creation elif event.community_menu and event.community_menu != event._origin.community_menu: event.meeting_room_allow_creation = True elif not event.community_menu or not event.meeting_room_allow_creation: event.meeting_room_allow_creation = False
2.03125
2
build_tiles.py
anthonyrandell-madetech/tiles-builder
0
12793206
<reponame>anthonyrandell-madetech/tiles-builder<filename>build_tiles.py import argparse import sqlite3 import subprocess import multiprocessing as mp from pathlib import Path from itertools import repeat def run(command): proc = subprocess.run(command, capture_output=True, text=True) try: proc.check_returncode() # raise exception on nonz-ero return code except subprocess.CalledProcessError as e: print(f"\n---- STDERR ----\n{proc.stderr}") print(f"\n---- STDOUT ----\n{proc.stdout}") raise e return proc def get_geography_datasets(entity_model_path): conn = sqlite3.connect(entity_model_path) cur = conn.cursor() cur.execute( """ SELECT DISTINCT dataset FROM entity WHERE geojson != "" """ ) geography_datasets = [x[0] for x in cur] conn.close() return geography_datasets def get_dataset_features(entity_model_path, dataset=None): conn = sqlite3.connect(entity_model_path) json_properties = [ "'tippecanoe'", "json_object('layer', entity.dataset)", "'entity'", "entity.entity", "'properties'", "json_patch(" "json_object(" "'name'", "entity.name", "'type'", "entity.dataset", "'organisation'", "oe.name", "'entity'", "entity.entity", "'entry-date'", "entity.entry_date", "'start-date'", "entity.start_date", "'end-date'", "entity.end_date" ")", "IFNULL(entity.json, '{}')" ")", ] query = """ SELECT json_patch(entity.geojson, json_object({properties})) FROM entity LEFT JOIN entity AS oe ON entity.organisation_entity = oe.entity WHERE entity.geojson != '' """.format( properties=",".join(json_properties) ) cur = conn.cursor() if dataset: query += "AND entity.dataset == ?" cur.execute(query, (dataset,)) else: cur.execute(query) results = ",".join(x[0] for x in cur) results = results.rstrip(",") return results def create_geojson_file(features, output_path, dataset): geojson = '{"type":"FeatureCollection","features":[' + features + "]}" with open(f"{output_path}/{dataset}.geojson", "w") as f: f.write(geojson) def build_dataset_tiles(output_path, dataset): build_tiles_cmd = [ "tippecanoe", "-z15", "-Z4", "-r1", "--no-feature-limit", "--no-tile-size-limit", f"--layer={dataset}", f"--output={output_path}/{dataset}.mbtiles", f"{output_path}/{dataset}.geojson", ] run(build_tiles_cmd) def build_tiles(entity_path, output_path, dataset): print(dataset) features = get_dataset_features(entity_path, dataset) if dataset is None: dataset = "dataset_tiles" create_geojson_file(features, output_path, dataset) build_dataset_tiles(output_path, dataset) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Script to build mbtiles databases") parser.add_argument( "--entity-path", type=Path, nargs=1, required=False, default=Path("var/cache/entity.sqlite3"), help="Path to the entity database", ) parser.add_argument( "--output-dir", type=Path, nargs=1, required=False, default=Path("var/cache/"), help="The numbers available to use (six must be provided)", ) cmd_args = parser.parse_args() entity_path = cmd_args.entity_path[0] output_path = cmd_args.output_dir[0] datasets = get_geography_datasets(entity_path) datasets.append(None) with mp.Pool(mp.cpu_count()) as pool: pool.starmap( build_tiles, zip(repeat(entity_path), repeat(output_path), datasets) )
2.40625
2
office365/sharepoint/portal/SPSiteManager.py
stardust85/Office365-REST-Python-Client
0
12793207
from office365.runtime.client_object import ClientObject from office365.runtime.serviceOperationQuery import ServiceOperationQuery from office365.runtime.http.http_method import HttpMethod from office365.runtime.resource_path import ResourcePath from office365.sharepoint.portal.SPSiteCreationResponse import SPSiteCreationResponse class SPSiteManager(ClientObject): def __init__(self, context): super(SPSiteManager, self).__init__(context, ResourcePath("SPSiteManager"), None) def create(self, request): """Create a modern site""" response = SPSiteCreationResponse() qry = ServiceOperationQuery(self, "Create", None, request, "request", response) self.context.add_query(qry) return response def delete(self, site_id): """Deletes a SharePoint site""" payload = { "siteId": site_id } qry = ServiceOperationQuery(self, "Delete", None, payload) self.context.add_query(qry) def get_status(self, url): """Get the status of a SharePoint site""" response = SPSiteCreationResponse() qry = ServiceOperationQuery(self, "Status", None, {'url': url}, None, response) self.context.add_query(qry) self.context.get_pending_request().beforeExecute += self._construct_status_request return response def _construct_status_request(self, request): query = self.context.get_pending_request().current_query request.method = HttpMethod.Get request.url += "?url='{0}'".format(query.parameter_type['url']) self.context.get_pending_request().beforeExecute -= self._construct_status_request
2.1875
2
backend/app/datastores.py
ikumen/notas
0
12793208
<reponame>ikumen/notas from bson import json_util, objectid from pymongo import MongoClient, database from typing import List from backend.app import settings class MongoCollection: """Generic class wrapper around Mongo DB operations around a collection. """ def __init__(self, collection_name: str, db: database.Database = None): self.init(collection_name, db) def init(self, collection_name: str, db: database.Database = None): """Initialize this store, with the given mongo Database or create one if necessary, and create a reference to the underlying collection this store will represent. """ if db is None: mongo_client = MongoClient(settings.MONGO_URI) db = mongo_client.get_database(settings.MONGO_DB_NAME) self.collection = db.get_collection(collection_name) def create(self, **kwargs) -> dict: """Add the given attributes to the collection as a new document. """ id = self.collection.insert_one(kwargs).inserted_id kwargs['_id'] = id return kwargs def update(self, id, **kwargs) -> bool: """Update the document in the collection with the given attributes and identified by the given id. Return True if document was updated. """ rv = self.collection.update_one({'_id': objectid.ObjectId(id)}, {'$set': kwargs}) return rv.matched_count == 1 def get(self, id: str) -> dict: """Return the document in the collection identified by the given id. """ for rv in self.collection.find({"_id": objectid.ObjectId(id)}).limit(1): return rv return None def all(self) -> List[dict]: """Return all documents in collection. """ rv = self.collection.find() return list(rv) def delete(self, id: str) -> bool: """Delete document in collection identified by the given id. Returns True if the document was deleted. """ rv = self.collection.delete_one({'_id': objectid.ObjectId(id)}) return rv.deleted_count == 1
2.734375
3
vision/src/VisionTest/BroadcasterTEST.py
victoriapc/HockusPockus
0
12793209
<reponame>victoriapc/HockusPockus<gh_stars>0 from VisionInterfaces.Broadcaster import Broadcaster import cv2 class BroadcasterTEST(Broadcaster) : def __init__(self): self.m_currentFrame = 0 def broadcastCoordinatesOfPuck(self,i_xPos,i_Ypos): """ This implementation does nothing, as the USB implementation does not need to brodcast this information Args: i_xPos: The X position of the puck i_Ypos: The Y position of the puck """ pass def broadcastVideoOfPuck(self,i_frame): """ "Broadcasts" the video feed of the puck (i.e, displays it on the screen) Args: i_frame: The altered frame to publish """ cv2.imwrite("VisionTest\outputFrames\Outframe%d.jpg" % self.m_currentFrame, i_frame) self.m_currentFrame += 1
2.734375
3
test.py
matchagreen/fkom-inventory-management-system
0
12793210
<gh_stars>0 import numpy as np import pandas as pd staff_planning = [ [[0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [ 15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8]], [[0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [ 15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8]], [[0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [ 15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8]], [[0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [ 15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8]], [[0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [ 15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8]] ] hourlystaff_needed = np.array( [ [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3] ]) hourlystaff_needed = np.array( [[3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3]]) """ hourlystaff_needed = np.array([ [0, 0, 0, 0, 0, 0, 6, 12, 12, 12, 6, 6, 18, 18, 6, 6, 6, 6, 18, 18, 18, 6, 6, 6], [0, 0, 0, 0, 0, 0, 6, 12, 12, 12, 6, 6, 18, 18, 6, 6, 6, 6, 18, 18, 18, 6, 6, 6], [0, 0, 0, 0, 0, 0, 6, 12, 12, 12, 6, 6, 18, 18, 6, 6, 6, 6, 18, 18, 18, 6, 6, 6], [0, 0, 0, 0, 0, 0, 6, 12, 12, 12, 6, 6, 18, 18, 6, 6, 6, 6, 18, 18, 18, 6, 6, 6], [0, 0, 0, 0, 0, 0, 6, 12, 12, 12, 6, 6, 18, 18, 6, 6, 6, 6, 18, 18, 18, 6, 6, 6] ]) """ """ staff_planning = [ [ [0, 0, 10], [1, 0, 10], [2, 0, 10], [3, 0, 10], [4, 0, 10], [5, 0, 10], [6, 0, 10], [7, 0, 10], [8, 0, 10], [9, 0, 10], [10, 0, 10] ], [ [0, 0, 10], [1, 0, 10], [2, 0, 10], [3, 0, 10], [4, 0, 10], [5, 0, 10], [6, 0, 10], [7, 0, 10], [8, 0, 10], [9, 0, 10], [10, 0, 10] ], [ [0, 0, 10], [1, 0, 10], [2, 0, 10], [3, 0, 10], [4, 0, 10], [5, 0, 10], [6, 0, 10], [7, 0, 10], [8, 0, 10], [9, 0, 10], [10, 0, 10] ], [ [0, 0, 10], [1, 0, 10], [2, 0, 10], [3, 0, 10], [4, 0, 10], [5, 0, 10], [6, 0, 10], [7, 0, 10], [8, 0, 10], [9, 0, 10], [10, 0, 10] ], [ [0, 0, 10], [1, 0, 10], [2, 0, 10], [3, 0, 10], [4, 0, 10], [5, 0, 10], [6, 0, 10], [7, 0, 10], [8, 0, 10], [9, 0, 10], [10, 0, 10] ], ] hourlystaff_needed = np.array([ [0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2] ]) """ """ staff_planning = [ [ [0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8] ], [ [0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8] ], [ [0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8] ], [ [0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8] ], [ [0, 0, 8], [1, 0, 8], [2, 0, 8], [3, 0, 8], [4, 0, 8], [5, 0, 8], [6, 0, 8], [7, 0, 8], [8, 0, 8], [9, 0, 8], [10, 0, 8], [11, 0, 8], [12, 0, 8], [13, 0, 8], [14, 0, 8], [15, 0, 8], [16, 0, 8], [17, 0, 8], [18, 0, 8], [19, 0, 8], [20, 0, 8], [21, 0, 8], [22, 0, 8], [23, 0, 8], [24, 0, 8], [25, 0, 8], [26, 0, 8], [27, 0, 8], [28, 0, 8], [29, 0, 8] ] ] hourlystaff_needed = np.array([ [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], [3, 3, 3, 3, 3, 3, 10, 7, 12, 12, 9, 9, 10, 12, 12, 9, 9, 12, 15, 10, 10, 3, 3, 3], ]) """ """ Employee present: analyse whether the employee is present yes or no on a given time based on the time list of 3 (id, start time, duration) //list these 3 things """ def employee_present(employee, time): employee_start_time = employee[1] employee_duration = employee[2] employee_end_time = employee_start_time + employee_duration if (time >= employee_start_time) and (time < employee_end_time): return True return False """ """ def staffplanning_to_hourlyplanning(staff_planning): hourlystaff_week = [] for day in staff_planning: hourlystaff_day = [] for employee in day: employee_present_hour = [] for time in range(0, 24): employee_present_hour.append(employee_present(employee, time)) hourlystaff_day.append(employee_present_hour) hourlystaff_week.append(hourlystaff_day) hourlystaff_week = np.array(hourlystaff_week).sum(axis=1) return hourlystaff_week """ cost is calculated as hours understaffed + hours overstaffed """ def cost(hourlystaff, hourlystaff_needed): errors = hourlystaff - hourlystaff_needed overstaff = abs(errors[errors > 0].sum()) understaff = abs(errors[errors < 0].sum()) overstaff_cost = 1 understaff_cost = 1 cost = overstaff_cost * overstaff + understaff_cost * understaff return cost """ """ def generate_random_staff_planning(n_days, n_staff): period_planning = [] for day in range(n_days): day_planning = [] for employee_id in range(n_staff): start_time = np.random.randint(0, 23) duration = np.random.randint(0, 8) # changehere employee = [employee_id, start_time, duration] day_planning.append(employee) period_planning.append(day_planning) return period_planning """ """ random_staff_planning = generate_random_staff_planning(n_days=5, n_staff=30) random_staff_planning cost(staffplanning_to_hourlyplanning(random_staff_planning), hourlystaff_needed) """ create a parent generation of n parent plannings """ def create_parent_generation(n_parents, n_days=5, n_staff=30): parents = [] for i in range(n_parents): parent = generate_random_staff_planning(n_days=n_days, n_staff=n_staff) parents.append(parent) return parents """ for each iteration, select randomly two parents and make a random combination of those two parents by applying a randomly generated yes/no mask to the two selected parents """ def random_combine(parents, n_offspring): n_parents = len(parents) n_periods = len(parents[0]) n_employees = len(parents[0][0]) offspring = [] for i in range(n_offspring): random_dad = parents[np.random.randint(low=0, high=n_parents - 1)] random_mom = parents[np.random.randint(low=0, high=n_parents - 1)] dad_mask = np.random.randint(0, 2, size=np.array(random_dad).shape) mom_mask = np.logical_not(dad_mask) child = np.add(np.multiply(random_dad, dad_mask), np.multiply(random_mom, mom_mask)) offspring.append(child) return offspring """ mutation """ def mutate_parent(parent, n_mutations): size1 = parent.shape[0] size2 = parent.shape[1] for i in range(n_mutations): rand1 = np.random.randint(0, size1) rand2 = np.random.randint(0, size2) rand3 = np.random.randint(1, 2) parent[rand1, rand2, rand3] = np.random.randint(0, 8) # change here return parent def mutate_gen(parent_gen, n_mutations): mutated_parent_gen = [] for parent in parent_gen: mutated_parent_gen.append(mutate_parent(parent, n_mutations)) return mutated_parent_gen """ selection - feasibility """ def is_acceptable(parent): # work > 10 hours is not ok return np.logical_not((np.array(parent)[:, :, 2:] > 8).any()) def select_acceptable(parent_gen): parent_gen = [parent for parent in parent_gen if is_acceptable(parent)] return parent_gen """ selection - cost (inverse fitness) """ def select_best(parent_gen, hourlystaff_needed, n_best): costs = [] for idx, parent_staff_planning in enumerate(parent_gen): parent_hourly_planning = staffplanning_to_hourlyplanning( parent_staff_planning) parent_cost = cost(parent_hourly_planning, hourlystaff_needed) costs.append([idx, parent_cost]) print('generation best is: {}, generation worst is: {}'.format( pd.DataFrame(costs)[1].min(), pd.DataFrame(costs)[1].max())) costs_tmp = pd.DataFrame(costs).sort_values( by=1, ascending=True).reset_index(drop=True) selected_parents_idx = list(costs_tmp.iloc[:n_best, 0]) selected_parents = [parent for idx, parent in enumerate( parent_gen) if idx in selected_parents_idx] return selected_parents """ overall func """ def gen_algo(hourlystaff_needed, n_iterations): generation_size = 1000 parent_gen = create_parent_generation( n_parents=generation_size, n_days=5, n_staff=30) for it in range(n_iterations): parent_gen = select_acceptable(parent_gen) parent_gen = select_best(parent_gen, hourlystaff_needed, n_best=100) parent_gen = random_combine(parent_gen, n_offspring=generation_size) parent_gen = mutate_gen(parent_gen, n_mutations=1) best_child = select_best(parent_gen, hourlystaff_needed, n_best=1) return best_child best_planning = gen_algo(hourlystaff_needed, n_iterations=100) print(best_planning) print(staffplanning_to_hourlyplanning(best_planning[0])) print(hourlystaff_needed)
1.75
2
wtss_plugin/help/source/conf.py
AbnerErnaniADSFatec/wtss-qgis
1
12793211
""" WTSS QGIS Plugin. Python Client Library for Web Time Series Service. Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/. ------------------- begin : 2019-05-04 git sha : $Format:%H$ copyright : (C) 2020 by INPE email : <EMAIL> This program is free software. You can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. WTSS QGIS Plugin documentation build configuration file, created by sphinx-quickstart on Sun Feb 12 17:11:03 2012. """ import sphinx_rtd_theme from wtss_plugin.version import __version__ # -- Project information ----------------------------------------------------- project = 'WTSS-QGIS' copyright = '2020, INPE.' author = 'Brazil Data Cube Team' # The full version, including alpha/beta/rc tags. release = __version__ # -- General configuration --------------------------------------------------- # Enabled Sphinx extensions. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.napoleon', 'sphinx.ext.todo', 'sphinx_copybutton', 'sphinx_rtd_theme', ] # Paths that contain templates, relative to this directory. templates_path = ['_templates'] # The language for content autogenerated by Sphinx. language = 'en_US' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ '_build', 'Thumbs.db', '.DS_Store', ] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. html_theme = 'sphinx_rtd_theme' html_theme_options = { 'analytics_id': 'XXXXXXXXXX', 'logo_only': False, 'display_version': True, 'prev_next_buttons_location': 'both', 'style_external_links': True, 'style_nav_header_background': '#2980B9', 'collapse_navigation': True, 'sticky_navigation': False, 'navigation_depth': 3, 'includehidden': True, 'titles_only': False } html_title = 'WTSS-QGIS' html_baseurl = 'https://brazil-data-cube.github.io/' html_context = { 'display_github': False, 'github_user': 'brazil-data-cube', 'github_repo': 'wtss-qgis', 'last_updated': False, } html_show_sourcelink = False html_logo = './assets/img/logo-bdc.png' html_favicon = './assets/img/favicon.ico' html_static_path = [ '_static', ] html_css_files = [ ] html_last_updated_fmt = '%b %d, %Y' html_show_sphinx = False html_search_language = 'en' numfig = True numfig_format = { 'figure': 'Figure %s -', 'table': 'Table %s -', 'code-block': 'Code snippet %s -', 'section': 'Section %s.' } copybutton_prompt_text = r'>>> |\.\.\. |\$ |In \[\d*\]: | {2,5}\.\.\.: | {5,8}: ' copybutton_prompt_is_regexp = True master_doc = 'index'
1.515625
2
model/signalgenerator.py
shuaiwng/python
1
12793212
import random import numpy as np import time class Signalgenerator(): def __init__(self): self.Fs = 8000 self.f = 2 self.sample = 8000 self.x = np.arange(1, self.sample+1) self.y = np.empty(self.sample) self.level = 0 self.filename = '' def set_filename(self, name): self.filename = name def configure_device(self, level): self.level = level def measure_signal(self): for i in range(0, self.sample): delta = random.randint(1, self.level * 10) / 10 - self.level self.y[i] = self.level * 10 * np.cos(2* np.pi * self.f * i / self.Fs) + delta def get_signal(self): return self.y def save_signal(self): with open (self.filename, 'w') as f: f.write('Time=' + str(time.asctime(time.localtime(time.time()))) + '\n') f.write('Intensity=' + str(random.randint(1, self.level * 10)) + '\n') f.write('Spectrum:\n') for i in range(0, self.sample): f.write(str(self.x[i]) + '\t' + str(self.y[i]) + '\n')
2.9375
3
server/tests/mod_auth/test_auth.py
Synergize-Southwest-Detroit/api
2
12793213
from server.mod_auth.auth import load_user # , register, login from server.tests.helpers import FlaskTestCase, fixtures class TestAuth(FlaskTestCase): @fixtures('single_user.json') def test_load_existing_user(self): """Test loading a single valid user""" with self.flaskapp.test_request_context(): user = load_user(1) assert user is not None assert user.username == 'ganemone' @fixtures('base.json') def test_load_nonexisting_user(self): """Test loading a user not in the database""" with self.flaskapp.test_request_context(): user = load_user(50) assert user is None
2.375
2
normVirReads.py
gstarrett/oncovirus_tools
2
12793214
<gh_stars>1-10 #!/usr/bin/env python3 import argparse parser = argparse.ArgumentParser() parser.add_argument("g", type=str, help="The virus bedgraph file") parser.add_argument("s", type=str, help="the bamindexstat file") args = parser.parse_args() # this can be simplified by just importing the bam file and then running bedtools and bamindexstat then processing those outputs nums = list(range(1, 23)) chroms = ["chr" + str(num) for num in nums] chroms.extend(["chrX", "chrY", "chrM", "X", "Y", "M", "MT"]) chroms.extend(str(num) for num in nums) huReads = 0 path = args.s.split("/") ext = path[-1].split(".") lengths = {} # stat file for human reads with open(args.s) as statFH: for line in statFH: f = line.split() if str(f[0]) in chroms: huReads += int(f[4]) elif str(f[0]) != 'NoCoordinateCount=': lengths.update({str(f[0]): int(f[2])}) # mcpyv.cov file for coverage of virus virDict = {} with open(args.g) as covFH: for line in covFH: f = line.split() if str(f[0]) in virDict: virDict[str(f[0])][0] += int(f[3]) virDict[str(f[0])][1] += int(f[2]) - int(f[1]) else: virDict.update({str(f[0]): [int(f[3]), int(f[2]) - int(f[1])]}) for key in virDict: cov = virDict[key][0] bases = virDict[key][1] if (cov > 0): avgCov = cov/bases else: avgCov = 0 normCp = (avgCov) / (huReads/1000) # viral genome coverage per 1000 human reads print("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}".format(key, ext[0], normCp, huReads, bases, avgCov, cov, lengths[key]))
2.6875
3
progress/home/migrations/0001_initial.py
Andrew0701/web-coursework
4
12793215
<reponame>Andrew0701/web-coursework # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Group', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('group', models.CharField(max_length=5)), ('course', models.IntegerField()), ], ), migrations.CreateModel( name='Job', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('number', models.IntegerField(null=True, blank=True)), ], ), migrations.CreateModel( name='Log', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('mark', models.IntegerField()), ('date', models.DateField()), ('job', models.ForeignKey(to='home.Job')), ], ), migrations.CreateModel( name='Student', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('patronymic', models.CharField(max_length=100)), ('surname', models.CharField(max_length=100)), ('group', models.ForeignKey(null=True, to='home.Group')), ('jobs', models.ManyToManyField(to='home.Job', through='home.Log')), ], ), migrations.CreateModel( name='Student_Subject', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('student', models.ForeignKey(to='home.Student')), ], ), migrations.CreateModel( name='Subject', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Teacher', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('patronymic', models.CharField(max_length=100)), ('surname', models.CharField(max_length=100)), ('subjects', models.ManyToManyField(to='home.Subject')), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL, null=True)), ], ), migrations.AddField( model_name='student_subject', name='subject', field=models.ForeignKey(to='home.Subject'), ), migrations.AddField( model_name='student_subject', name='teacher', field=models.ForeignKey(to='home.Teacher'), ), migrations.AddField( model_name='student', name='subjects', field=models.ManyToManyField(to='home.Subject', through='home.Student_Subject'), ), migrations.AddField( model_name='student', name='user', field=models.OneToOneField(to=settings.AUTH_USER_MODEL, null=True), ), migrations.AddField( model_name='log', name='student', field=models.ForeignKey(to='home.Student'), ), migrations.AddField( model_name='job', name='subject', field=models.ForeignKey(to='home.Subject'), ), ]
2.015625
2
vireoSNP/utils/vireo_model_v02.py
andr-kun/vireo
0
12793216
# Core functions for Vireo model # Author: <NAME> # Date: 30/08/2019 # http://edwardlib.org/tutorials/probabilistic-pca # https://github.com/allentran/pca-magic import sys import itertools import numpy as np from scipy.stats import entropy from scipy.special import digamma from .vireo_base import normalize, loglik_amplify, beta_entropy def vireo_core(AD, DP, n_donor=None, GT_prior=None, learn_GT=True, theta_prior=None, learn_theta=True, ASE_mode=False, Psi=None, ID_prob_init=None, doublet_prior=None, check_doublet=True, min_iter=20, max_iter=100, min_GP=0.00001, epsilon_conv=1e-2, random_seed=None, verbose=False): """ Vireo core function to cluster the cells into donors. """ if random_seed is not None: np.random.seed(random_seed) if n_donor is None: if len(GT_prior.shape) < 3 or GT_prior.shape[1] < 2: print("Error: no n_donor and GT_prior has < 2 donors.") sys.exit(1) else: n_donor = GT_prior.shape[1] n_var = AD.shape[0] # n_variants ## initialize thete if theta_prior is None: #theta_prior = np.array([[0.3, 29.7], [3, 3], [29.7, 0.3]]) theta_prior = np.array([[0.1, 99.9], [50, 50], [99.9, 0.1]]) theta_shapes = theta_prior.copy() if ASE_mode and len(theta_prior.shape) == 2: theta_prior = np.repeat(np.expand_dims(theta_prior, 2), n_var, axis=2) theta_shapes = np.repeat(np.expand_dims(theta_shapes, 2), n_var, axis=2) n_gt = theta_shapes.shape[0] # number of genotype categories ## initialize Psi if Psi is None: Psi = np.ones(n_donor) / n_donor else: Psi = Psi[:n_donor] / np.sum(Psi[:n_donor]) if ID_prob_init is None: ID_prob = normalize(np.random.rand(AD.shape[1], n_donor)) else: ID_prob = normalize(ID_prob_init.copy()) ## initialize GT if GT_prior is None: GT_prior = normalize(np.ones((n_var, n_donor, n_gt))) GT_prob, logLik_GT = get_GT_prob(AD, DP, ID_prob, theta_shapes, GT_prior) if learn_GT is False: print("As GT_prior is not given, we change learn_GT to True.") learn_GT = True else: GT_prob = GT_prior.copy() GT_prior[GT_prior < min_GP] = min_GP GT_prior[GT_prior > 1 - min_GP] = 1 - min_GP GT_prior = normalize(GT_prior) #TODO: check if there is a better way to deal with GT imcompleteness if GT_prior.shape[1] < n_donor: _add_n = n_donor - GT_prior.shape[1] GT_prior = np.append(GT_prior, normalize(np.ones((n_var, n_gt, _add_n)), axis=1)) GT_prob = GT_prior.copy() if learn_GT is False: print("As GT_prior is not complete, we change learn_GT to True.") learn_GT = True elif GT_prior.shape[1] > n_donor: print("Warning: n_donor is smaller than samples in GT_prior, hence we " "ignore n_donor.") n_donor = GT_prior.shape[1] # check if n_gt is matched to GT_prior if GT_prior.shape[2] != n_gt: print("Error: number of GT categories not matched: theta and GT_prior") sys.exit(1) ## VB interations LB = np.zeros(max_iter) for it in range(max_iter): ID_prob, GT_prob, theta_shapes, LB[it] = update_VB(AD, DP, GT_prob, theta_shapes, theta_prior, GT_prior, Psi, doublet_prior, learn_GT=learn_GT, learn_theta=learn_theta, check_doublet=check_doublet) if it > min_iter: if LB[it] < LB[it - 1]: if verbose: print("Warning: Lower bound decreases!\n") elif it == max_iter - 1: if verbose: print("Warning: VB did not converge!\n") elif LB[it] - LB[it - 1] < epsilon_conv: break ## one-off check doublet if check_doublet: ID_prob2, GT_prob, theta_shapes, LB_doublet = update_VB(AD, DP, GT_prob, theta_shapes, theta_prior, GT_prior, Psi, doublet_prior, learn_GT=True, learn_theta=learn_theta, check_doublet=True) ID_prob = ID_prob2[:, :n_donor] doublet_prob = ID_prob2[:, n_donor:] else: LB_doublet = LB[it] n_donor_doublt = int(n_donor * (n_donor - 1) / 2) doublet_prob = np.zeros((ID_prob.shape[0], n_donor_doublt)) RV = {} RV['ID_prob'] = ID_prob RV['GT_prob'] = GT_prob RV['doublet_prob'] = doublet_prob RV['theta_shapes'] = theta_shapes RV['LB_list'] = LB[: it+1] RV['LB_doublet'] = LB_doublet return RV def update_VB(AD, DP, GT_prob, theta_shapes, theta_prior, GT_prior, Psi, doublet_prior=None, learn_GT=True, learn_theta=True, check_doublet=False): """ Update the parameters of each component of the variantional distribution. The doublet probability can be created by doublet genotypes """ if check_doublet: GT_both = add_doublet_GT(GT_prob) theta_both = add_doublet_theta(theta_shapes) n_doublet_pair = GT_both.shape[1] - GT_prob.shape[1] if doublet_prior is None: doublet_prior = min(0.5, AD.shape[1] / 100000) Psi_both = np.append(Psi * (1 - doublet_prior), (np.ones(n_doublet_pair) / n_doublet_pair * doublet_prior)) else: Psi_both = Psi.copy() GT_both = GT_prob.copy() theta_both = theta_shapes.copy() ID_prob2, logLik_ID = get_ID_prob(AD, DP, GT_both, theta_both, Psi_both) ID_prob = ID_prob2[:, :GT_prob.shape[1]] if learn_GT: GT_prob, logLik_GT = get_GT_prob(AD, DP, ID_prob, theta_shapes, GT_prior) if learn_theta: theta_shapes = get_theta_shapes(AD, DP, ID_prob, GT_prob, theta_prior) ### check how to calculate lower bound for when detecting doublets LB_val = VB_lower_bound(logLik_ID, GT_prob, ID_prob2, theta_shapes, theta_prior, GT_prior, Psi_both) return ID_prob2, GT_prob, theta_shapes, LB_val def get_theta_shapes(AD, DP, ID_prob, GT_prob, theta_prior): """ """ S1_gt = AD * ID_prob SS_gt = DP * ID_prob S2_gt = SS_gt - S1_gt theta_shapes = theta_prior.copy() for ig in range(theta_shapes.shape[0]): _axis = 1 if len(theta_shapes.shape) == 3 else None theta_shapes[ig, 0] += np.sum(S1_gt * GT_prob[:, :, ig], axis=_axis) theta_shapes[ig, 1] += np.sum(S2_gt * GT_prob[:, :, ig], axis=_axis) return theta_shapes def get_ID_prob(AD, DP, GT_prob, theta_shapes, Psi=None): """ """ if Psi is None: Psi = np.ones(GT_prob.shape[1]) / GT_prob.shape[1] BD = DP - AD logLik_ID = np.zeros((AD.shape[1], GT_prob.shape[1])) for ig in range(GT_prob.shape[2]): _digmma1 = digamma(theta_shapes[ig, 0]).reshape(-1, 1) _digmma2 = digamma(theta_shapes[ig, 1]).reshape(-1, 1) _digmmas = digamma(theta_shapes[ig, :].sum(axis=0)).reshape(-1, 1) S1 = AD.transpose() * (GT_prob[:, :, ig] * _digmma1) S2 = BD.transpose() * (GT_prob[:, :, ig] * _digmma2) SS = DP.transpose() * (GT_prob[:, :, ig] * _digmmas) logLik_ID += (S1 + S2 - SS) Psi_norm = np.log(Psi / np.sum(Psi)) ID_prob = np.exp(loglik_amplify(logLik_ID + Psi_norm, axis=1)) ID_prob = normalize(ID_prob, axis=1) return ID_prob, logLik_ID def get_GT_prob(AD, DP, ID_prob, theta_shapes, GT_prior=None): """ """ if GT_prior is None: GT_prior = np.ones((AD.shape[0], ID_prob.shape[1], theta_shapes.shape[0])) GT_prior = GT_prior / theta_shapes.shape[0] S1_gt = AD * ID_prob SS_gt = DP * ID_prob S2_gt = SS_gt - S1_gt logLik_GT = np.zeros(GT_prior.shape) for ig in range(logLik_GT.shape[2]): _digmma1 = digamma(theta_shapes[ig, 0]).reshape(-1, 1) _digmma2 = digamma(theta_shapes[ig, 1]).reshape(-1, 1) _digmmas = digamma(theta_shapes[ig, :].sum(axis=0)).reshape(-1, 1) logLik_GT[:, :, ig] = (S1_gt * _digmma1 + S2_gt * _digmma2 - SS_gt * _digmmas) # += np.log(GT_prior) GT_prob = loglik_amplify(logLik_GT + np.log(GT_prior), axis=2) GT_prob = normalize(np.exp(GT_prob), axis=2) return GT_prob, logLik_GT def VB_lower_bound(logLik_ID, GT_prob, ID_prob, theta_shapes, theta_prior, GT_prior=None, Psi=None): """ """ if GT_prior is None: GT_prior = normalize(np.ones(GT_prob.shape), axis=2) if Psi is None: ID_prior = np.ones(ID_prob.shape) / ID_prob.shape[1] else: ID_prior = np.ones(ID_prob.shape) * np.log(Psi / np.sum(Psi)) LB_p = np.sum(logLik_ID * ID_prob) KL_ID = -np.sum(entropy(ID_prob, ID_prior, axis=1)) KL_GT = -np.sum(entropy(GT_prob, GT_prior, axis=2)) KL_theta = -beta_entropy(theta_shapes, theta_prior) # print(LB_p, KL_ID, KL_GT, KL_theta) return LB_p - KL_ID - KL_GT - KL_theta def add_doublet_theta(theta_shapes): """ calculate theta for doublet genotype: GT=0&1, GT=0&2, and GT=1&2 by averaging thire beta paramters Example ------- theta_shapes = np.array([[0.3, 29.7], [3, 3], [29.7, 0.3]]) add_doublet_theta(theta_shapes) """ # TODO: support reduced GT for relatives combn_iter = itertools.combinations(range(theta_shapes.shape[0]), 2) db_idx = np.array([x for x in combn_iter]) _theta_p1 = theta_shapes[db_idx[:, 0]] _theta_p2 = theta_shapes[db_idx[:, 1]] _theta_mean = (normalize(_theta_p1, axis=1) + normalize(_theta_p2, axis=1)) / 2.0 _theta_sum = np.sqrt(np.sum(_theta_p1, axis=1, keepdims=True) * np.sum(_theta_p2, axis=1, keepdims=True)) theta_shapes_db = _theta_mean * _theta_sum return np.append(theta_shapes, theta_shapes_db, axis=0) def add_doublet_GT(GT_prob): """ Add doublet genotype by summarizing their probability: New GT has five categories: 0, 1, 2, 1.5, 2.5 TODO: New GT has six categories: 0, 1, 2, 0_1, 0_2, 1_2 """ combn_iter = itertools.combinations(range(GT_prob.shape[2]), 2) gt_idx = np.array([x for x in combn_iter]) # GT combination g_idx1 = gt_idx[:, 0] g_idx2 = gt_idx[:, 1] combn_iter = itertools.combinations(range(GT_prob.shape[1]), 2) sp_idx = np.array([x for x in combn_iter]) # sample combination s_idx1 = sp_idx[:, 0] s_idx2 = sp_idx[:, 1] ## GT_prob has three genotypes: 0, 1, 2; n_gt = GT_prob.shape[2] GT_prob2 = np.zeros((GT_prob.shape[0], sp_idx.shape[0], n_gt + gt_idx.shape[0])) GT_prob2[:, :, :n_gt] = (GT_prob[:, s_idx1, :] * GT_prob[:, s_idx2, :]) GT_prob2[:, :, n_gt:] = (GT_prob[:, s_idx1, :][:, :, g_idx1] * GT_prob[:, s_idx2, :][:, :, g_idx2] + GT_prob[:, s_idx1, :][:, :, g_idx2] * GT_prob[:, s_idx2, :][:, :, g_idx1]) GT_prob2 = normalize(GT_prob2, axis=2) GT_prob1 = np.append(GT_prob, np.zeros((GT_prob.shape[0], GT_prob.shape[1], gt_idx.shape[0])), axis=2) return np.append(GT_prob1, GT_prob2, axis=1)
2.375
2
Python/Programming Fundamentals/Exams/05. Contact list.py
teodoramilcheva/softuni-software-engineering
0
12793217
contacts = input().split() while True: line = input() tokens = line.split() command = tokens[0] if command == 'Add': name = tokens[1] index = int(tokens[2]) if name not in contacts: contacts.append(name) else: if 0 <= index < len(contacts): contacts.insert(index, name) elif command == 'Remove': index = int(tokens[1]) if 0 <= index < len(contacts): contacts.pop(index) elif command == 'Export': start_i = int(tokens[1]) count = int(tokens[2]) contacts_to_print = contacts[start_i:start_i + count] print(' '.join(contacts_to_print)) elif command == 'Print': if tokens[1] == 'Reversed': contacts = contacts[::-1] final_contacts = " ".join(contacts) print(f'Contacts: {final_contacts}') break
3.671875
4
__SocialMedia_Sites.py
elithaxxor/pi_repo
0
12793218
<reponame>elithaxxor/pi_repo #import socialmedia #from socialmedia import USERNAME USERNAME = input(f'[sys] Enter Username:' ) # INSTAGRAM instagram = f'https://www.instagram.com/{USERNAME}' # FACEBOOK facebook = f'https://www.facebook.com/{USERNAME}' #TWITTER twitter = f'https://www.twitter.com/{USERNAME}' # YOUTUBE youtube = f'https://www.youtube.com/{USERNAME}' # BLOGGER blogger = f'https://{USERNAME}.blogspot.com' # GOOGLE+ google_plus = f'https://plus.google.com/s/{USERNAME}/top' # REDDIT reddit = f'https://www.reddit.com/user/{USERNAME}' # WORDPRESS wordpress = f'https://{USERNAME}.wordpress.com' # PINTEREST pinterest = f'https://www.pinterest.com/{USERNAME}' # GITHUB github = f'https://www.github.com/{USERNAME}' # TUMBLR tumblr = f'https://{USERNAME}.tumblr.com' # FLICKR flickr = f'https://www.flickr.com/people/{USERNAME}' # STEAM steam = f'https://steamcommunity.com/id/{USERNAME}' # VIMEO vimeo = f'https://vimeo.com/{USERNAME}' # SOUNDCLOUD soundcloud = f'https://soundcloud.com/{USERNAME}' # DISQUS disqus = f'https://disqus.com/by/{USERNAME}' # MEDIUM medium = f'https://medium.com/@{USERNAME}' # DEVIANTART deviantart = f'https://{USERNAME}.deviantart.com' # VK vk = f'https://vk.com/{USERNAME}' # ABOUT.ME aboutme = f'https://about.me/{USERNAME}' # IMGUR imgur = f'https://imgur.com/user/{USERNAME}' # FLIPBOARD flipboard = f'https://flipboard.com/@{USERNAME}' # SLIDESHARE slideshare = f'https://slideshare.net/{USERNAME}' # FOTOLOG fotolog = f'https://fotolog.com/{USERNAME}' # SPOTIFY spotify = f'https://open.spotify.com/user/{USERNAME}' # MIXCLOUD mixcloud = f'https://www.mixcloud.com/{USERNAME}' # SCRIBD scribd = f'https://www.scribd.com/{USERNAME}' # BADOO badoo = f'https://www.badoo.com/en/{USERNAME}' # PATREON patreon = f'https://www.patreon.com/{USERNAME}' # BITBUCKET bitbucket = f'https://bitbucket.org/{USERNAME}' # DAILYMOTION dailymotion = f'https://www.dailymotion.com/{USERNAME}' # ETSY etsy = f'https://www.etsy.com/shop/{USERNAME}' # CASHME cashme = f'https://cash.me/{USERNAME}' # BEHANCE behance = f'https://www.behance.net/{USERNAME}' # GOODREADS goodreads = f'https://www.goodreads.com/{USERNAME}' # INSTRUCTABLES instructables = f'https://www.instructables.com/member/{USERNAME}' # KEYBASE keybase = f'https://keybase.io/{USERNAME}' # KONGREGATE kongregate = f'https://kongregate.com/accounts/{USERNAME}' # LIVEJOURNAL livejournal = f'https://{USERNAME}.livejournal.com' # ANGELLIST angellist = f'https://angel.co/{USERNAME}' # LAST.FM last_fm = f'https://last.fm/user/{USERNAME}' # DRIBBBLE dribbble = f'https://dribbble.com/{USERNAME}' # CODECADEMY codecademy = f'https://www.codecademy.com/{USERNAME}' # GRAVATAR gravatar = f'https://en.gravatar.com/{USERNAME}' # PASTEBIN pastebin = f'https://pastebin.com/u/{USERNAME}' # FOURSQUARE foursquare = f'https://foursquare.com/{USERNAME}' # ROBLOX roblox = f'https://www.roblox.com/user.aspx?USERNAME={USERNAME}' # GUMROAD gumroad = f'https://www.gumroad.com/{USERNAME}' # NEWSGROUND newsground = f'https://{USERNAME}.newgrounds.com' # WATTPAD wattpad = f'https://www.wattpad.com/user/{USERNAME}' # CANVA canva = f'https://www.canva.com/{USERNAME}' # CREATIVEMARKET creative_market = f'https://creativemarket.com/{USERNAME}' # TRAKT trakt = f'https://www.trakt.tv/users/{USERNAME}' # 500PX five_hundred_px = f'https://500px.com/{USERNAME}' # BUZZFEED buzzfeed = f'https://buzzfeed.com/{USERNAME}' # TRIPADVISOR tripadvisor = f'https://tripadvisor.com/members/{USERNAME}' # HUBPAGES hubpages = f'https://{USERNAME}.hubpages.com' # CONTENTLY contently = f'https://{USERNAME}.contently.com' # HOUZZ houzz = f'https://houzz.com/user/{USERNAME}' #BLIP.FM blipfm = f'https://blip.fm/{USERNAME}' # WIKIPEDIA wikipedia = f'https://www.wikipedia.org/wiki/User:{USERNAME}' # HACKERNEWS hackernews = f'https://news.ycombinator.com/user?id={USERNAME}' # CODEMENTOR codementor = f'https://www.codementor.io/{USERNAME}' # REVERBNATION reverb_nation = f'https://www.reverbnation.com/{USERNAME}' # DESIGNSPIRATION designspiration = f'https://www.designspiration.net/{USERNAME}' # BANDCAMP bandcamp = f'https://www.bandcamp.com/{USERNAME}' # COLOURLOVERS colourlovers = f'https://www.colourlovers.com/love/{USERNAME}' # IFTTT ifttt = f'https://www.ifttt.com/p/{USERNAME}' # EBAY ebay = f'https://www.ebay.com/usr/{USERNAME}' # SLACK slack = f'https://{USERNAME}.slack.com' # OKCUPID okcupid = f'https://www.okcupid.com/profile/{USERNAME}' # TRIP trip = f'https://www.trip.skyscanner.com/user/{USERNAME}' # ELLO ello = f'https://ello.co/{USERNAME}' # TRACKY tracky = f'https://tracky.com/user/~{USERNAME}' # BASECAMP basecamp = f'https://{USERNAME}.basecamphq.com/login' # ''' WEBSITE LIST - USE FOR SEARCHING OF USERNAME ''' WEBSITES = [ instagram, facebook, twitter, youtube, blogger, google_plus, reddit, wordpress, pinterest, github, tumblr, flickr, steam, vimeo, soundcloud, disqus, medium, deviantart, vk, aboutme, imgur, flipboard, slideshare, fotolog, spotify, mixcloud, scribd, badoo, patreon, bitbucket, dailymotion, etsy, cashme, behance, goodreads, instructables, keybase, kongregate, livejournal, angellist, last_fm, dribbble, codecademy, gravatar, pastebin, foursquare, roblox, gumroad, newsground, wattpad, canva, creative_market, trakt, five_hundred_px, buzzfeed, tripadvisor, hubpages, contently, houzz, blipfm, wikipedia, hackernews, reverb_nation, designspiration, bandcamp, colourlovers, ifttt, ebay, slack, okcupid, trip, ello, tracky, basecamp] #
2.15625
2
shadowsocks/objects/user.py
PaperDashboard/shadowsocks-vanilla
1
12793219
class User(object): def __init__(self, config): self.port = int(config["port"]) self.password = str(config["password"]) self.method = str(config["method"]) if "_id" in config: self.id = config["_id"]["$oid"] else: self.id = str(self.port) def __eq__(self, other): return (self.port == other.port and self.password == <PASSWORD>.password and self.method == other.method and self.id == other.id)
3.296875
3
tests/test_utilities.py
zachdj/team-crux-p1
1
12793220
<filename>tests/test_utilities.py """ Unit tests for functions in the src.utilities package """ import unittest import warnings from pyspark import SparkContext, SparkConf import src.utilities.preprocess as preprocess import src.utilities.utils as utils class TestPreprocess(unittest.TestCase): def setUp(self): """ This setup function will be called before any test is run. It's a useful place to do initialization that otherwise would have to be repeated for every test function """ pass def test_remove_html_character_references(self): # test that the function performs as expected self.assertEqual(preprocess.remove_html_character_references("&quot;snow"), "snow") self.assertEqual(preprocess.remove_html_character_references("desk&quot;"), "desk") self.assertEqual(preprocess.remove_html_character_references("airplane&amp;"), "airplane") self.assertEqual(preprocess.remove_html_character_references("air&amp;plane"), "airplane") self.assertEqual(preprocess.remove_html_character_references("&quot;government&quot;"), "government") self.assertEqual(preprocess.remove_html_character_references("Desk&quot;"), "Desk") # test that the function has no side effects word = "Investment&quot;" preprocess.remove_html_character_references(word) self.assertEqual(word, "Investment&quot;") def test_strip_punctuation(self): # test that the function performs as expected self.assertEqual(preprocess.strip_punctuation("'snow"), "snow") self.assertEqual(preprocess.strip_punctuation("snow."), "snow") self.assertEqual(preprocess.strip_punctuation("snow!"), "snow") self.assertEqual(preprocess.strip_punctuation("?snow?"), "snow") self.assertEqual(preprocess.strip_punctuation("snow\""), "snow") self.assertEqual(preprocess.strip_punctuation("sn!ow"), "snow") # test that the function has no side effects word = "Investment." preprocess.remove_html_character_references(word) self.assertEqual(word, "Investment.") def test_tokenize(self): # test that the function performs as expected line = "the quick brown \t fox jumps \r\n over the lazy \n dog" tokens = preprocess.tokenize(line) self.assertTrue("the" in tokens) self.assertTrue("quick" in tokens) self.assertTrue("brown" in tokens) self.assertTrue("fox" in tokens) self.assertTrue("jumps" in tokens) self.assertTrue("over" in tokens) self.assertTrue("the" in tokens) self.assertTrue("lazy" in tokens) self.assertTrue("dog" in tokens) def test_split_by_comma(self): line = "the,quick,brown,fox,jumps,over,the,lazy,dog" tokens = preprocess.split_by_comma(line) self.assertTrue("the" in tokens) self.assertTrue("quick" in tokens) self.assertTrue("brown" in tokens) self.assertTrue("fox" in tokens) self.assertTrue("jumps" in tokens) self.assertTrue("over" in tokens) self.assertTrue("the" in tokens) self.assertTrue("lazy" in tokens) self.assertTrue("dog" in tokens) def test_remove_irrelevant_labels(self): labels = ["GCAT", "CCAT", "ECAT", "MCAT", "E12", "E54" "G154", "M13", "GWEA"] filtered = preprocess.remove_irrelevant_labels(labels) self.assertEqual(len(filtered), 4) self.assertTrue("GCAT" in filtered) self.assertTrue("CCAT" in filtered) self.assertTrue("ECAT" in filtered) self.assertTrue("MCAT" in filtered) class TestUtils(unittest.TestCase): def setUp(self): # for some reason, running spark code within a unittest throws a bunch of ResourceWarnings # check out this issue: https://github.com/requests/requests/issues/3912 warnings.filterwarnings(action="ignore", category=ResourceWarning) def test_custom_zip(self): # for this test, we don't want to run on an actual cluster. A local master is sufficient conf = SparkConf().setAppName("Unit Tests").setMaster("local").set('spark.logConf', 'true') sc = SparkContext(conf=conf) sc.setLogLevel("FATAL") nums = list(range(0, 10)) squares = [num**2 for num in nums] pairs = [(num, num**2) for num in nums] # the custom zip function should work on RDDs with different numbers of slices rdd1 = sc.parallelize(nums, 5) rdd2 = sc.parallelize(squares, 3) combined = utils.custom_zip(rdd1, rdd2) combined = combined.sortByKey() combined = list(combined.collect()) for idx, tuple in enumerate(pairs): self.assertEqual(tuple, combined[idx]) if __name__ == '__main__': unittest.main()
3
3
scripts/morphware_data_sizes.py
QuintusTheFifth/telliot-core
9
12793221
<filename>scripts/morphware_data_sizes.py """Print the size of the data returned by a Morphware query (data reported).""" import json import sys import requests from telliot_core.queries.morphware import Morphware def main(): """ Print the size of the data returned by a Morphware query using Morphare-provided data source endpoint: curl --request POST http://167.172.239.133:5000/products-2 -H "Content-Type: application/json" \ -d '{"provider":"amazon","service":"compute","region":"us-east-1"}' Example: $ python scripts/morphware_data_sizes.py """ # Retrieve data from source provided by Morphware headers = { # Already added when you pass json= # 'Content-Type': 'application/json', } json_data = { "provider": "amazon", "service": "compute", "region": "us-east-1", } rsp = requests.post("http://172.16.31.10:5000/products-2", headers=headers, json=json_data) unfiltered_data = json.loads(rsp.text) print("Num products:", len(unfiltered_data)) # Remove unneeded product data data = [] for i in range(len(unfiltered_data)): data.append( json.dumps( { "instanceType": unfiltered_data[i]["Instance Type"], "cudaCores": unfiltered_data[i]["CUDA Cores"], "numCPUs": unfiltered_data[i]["Number of CPUs"], "RAM": unfiltered_data[i]["RAM"], "onDemandPricePerHour": unfiltered_data[i]["On-demand Price per Hour"], } ) ) print("Expample filtered data:") print(json.dumps(data[:2], indent=4)) # Get size of encoded string[] q = Morphware(version=1) submit_value = q.value_type.encode(data) print(f"Size of data being reported: {sys.getsizeof(submit_value)} bytes") # print(submit_value.hex()) if __name__ == "__main__": main()
2.875
3
mtse/model_utils.py
FractalySyn/mtse
1
12793222
<filename>mtse/model_utils.py import torch import torch.nn as nn import torch.nn.functional as F def rmspe(pred, true): """Computes RMSPE""" return torch.mean(((true - pred) / true)**2)**0.5 def rmse(pred, true): """Computes RMSE""" return torch.mean((true - pred)**2)**0.5 def mape(pred, true): """Computes MAPE""" return torch.mean(torch.abs((true - pred) / true)) def acc(pred, true): """Computes Accuracy""" return torch.mean(pred == true) def evaluate_model(model, data_loader, dim, loss, argmax=False, device='cuda'): """Predicts and computes the loss over the provided data Parameters ---------- model : torch.nn.Module model containing the weights to compute the predictions data_loader : torch.utils.data.DataLoader data to evaluate dim : int number of time series loss : torch loss loss function argmax : bool, optional if True, an arg max is applied to predicted values (default is False) device : str, optional 'cuda' or 'cpu', (default is 'cuda') Returns ------- float """ pred = []; true = [] for data_batch, label in data_loader: data_batch, label = data_batch.to(device), label.float().to(device) with torch.no_grad(): out = model(torch.cat((data_batch[:, :, :dim], data_batch[:, :, dim:2*dim]), 2), data_batch[:, :, -1]) if argmax: pred = pred.argmax(1) pred.append(out); true.append(label) pred = torch.cat(pred, 0).squeeze() true = torch.cat(true, 0).squeeze() return loss(pred, true) def predict(test_loader, device, model, model_type, dim): """ Parameters ---------- test_loader : torch.utils.data.DataLoader data to predict on device : str 'cuda' or 'cpu' model : torch.nn.Module model containing the weights to compute the predictions model_type : str 'regression' or 'classification', for the latter an arg max is applied dim : int number of time series Returns ------- torch.tensor """ pred = [] for test_batch in test_loader: test_batch = test_batch.to(device) with torch.no_grad(): out = model(test_batch[:, :, :dim*2], test_batch[:, :, -1]) if model_type=='classification': out = out.argmax(1) pred.append(out) return torch.cat(pred, 0).squeeze() def count_parameters(model): """Returns the number of weights that can be trained in the provided model""" return sum(p.numel() for p in model.parameters() if p.requires_grad) class EarlyStopping(): """ Early stopping to stop the training when the loss does not improve after certain epochs. Attributes ---------- patience : int how many epochs to wait before stopping when loss is not improving min_delta : float minimum difference between new loss and old loss for new loss to be considered as an improvement counter : int number of epochs without improvement best_loss : float or NoneType validation loss of the last epoch for which the counter was equal to 0 early_stop : bool if True, the training will break """ def __init__(self, patience=5, min_delta=0.): """ Parameters --------- patience : int, optional how many epochs to wait before stopping when loss is not improving (default is 5) min_delta : float, optional minimum difference between new loss and old loss for new loss to be considered as an improvement (default is 0.) """ self.patience = patience self.min_delta = min_delta self.counter = 0 self.best_loss = None self.early_stop = False def __call__(self, val_loss): """ Parameters ---------- val_loss : torch loss or float """ if self.best_loss == None: self.best_loss = val_loss elif self.best_loss - val_loss > self.min_delta: self.best_loss = val_loss # reset counter if validation loss improves self.counter = 0 elif self.best_loss - val_loss < self.min_delta: self.counter += 1 if self.counter >= self.patience: print('Early stopping') self.early_stop = True
2.5625
3
train_seg.py
Debatrix/AquulaCam
2
12793223
<filename>train_seg.py<gh_stars>1-10 import os from scipy import stats import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from base_train import train from util import LoadConfig from dataset import HUTDataset from model.network import UNetLike from model.framework import Segmentation from model.loss import * class Config(LoadConfig): def __init__(self) -> None: super(Config, self).__init__() self.info = "" self.train_name = "UNetLike_enhance_Segmentation" self.dataset_path = 'dataset/HutIris-Blur' self.cp_path = "checkpoints/1030_194858_UNetLike/80_2.2903e-03.pth" self.cp_path = "" self.visible = True self.log_interval = 5 self.save_interval = 5 self.less_data = False self.debug = False self.use_dct = False self.model_channel = 16 self.mask_down = 8 self.load_to_ram = False self.batchsize = 32 self.device = [0, 1, 2, 3] self.num_workers = 0 self.seed = np.random.randint(9999) self.max_epochs = 500 self.lr = 8e-4 self.momentum = 0.9 self.weight_decay = 1e-4 self.apply() def get_dataloaders(config): train_data = HUTDataset(path=config['dataset_path'], mode='train', less_data=config['less_data'], lrud_move=True) train_data_loader = DataLoader(train_data, config['batchsize'], drop_last=True, shuffle=True, pin_memory=True, num_workers=config['num_workers']) val_data = HUTDataset(path=config['dataset_path'], mode='val', less_data=False) val_data_loader = DataLoader(val_data, config['batchsize'], shuffle=True, drop_last=True, pin_memory=True, num_workers=config['num_workers']) return train_data_loader, val_data_loader def evaluation(val_save, val_num): pred_loss = val_save['pred_loss'] / val_num mask_loss = val_save['mask_loss'] / val_num position = np.concatenate(val_save['position'], axis=0) offset = np.concatenate(val_save['offset'], axis=0) srocc = stats.spearmanr(offset.reshape(-1), position.reshape(-1))[0] lcc = stats.pearsonr(offset.reshape(-1), position.reshape(-1))[0] return { "Val_pred_loss": pred_loss, "Val_mask_loss": mask_loss, "SROCC": srocc, "LCC": lcc } def val_plot(log_writer, epoch, val_save): idx = torch.randint(val_save['image'].shape[0], (1, )).item() image = nn.functional.interpolate( val_save['image'], (val_save['mask'][idx].shape[-2], val_save['mask'][idx].shape[-1]), mode='bilinear', align_corners=True) mask = val_save['mask'][idx] + image[idx] heatmap = val_save['heatmap'][idx] + image[idx] image = torch.clamp(torch.cat((heatmap, mask, image[idx]), dim=0), 0, 1) log_writer.add_image('Val/image', image, epoch) if __name__ == "__main__": # set config config = Config() # data print('Loading Data') dataloaders = get_dataloaders(config) # model and criterion criterion = SegmentationLoss() model = UNetLike(dct=config['use_dct'], channel=config['model_channel'], downsample=False, trainable={ 'encoder': True, 'decoder': True, 'rnn': False }) model = Segmentation(model, criterion) # optimizer and scheduler optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config['lr']) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, 'min', factor=0.5, patience=config['log_interval'] * 2, verbose=True) optimizers = (optimizer, scheduler) # train train(config, dataloaders, model, optimizers, evaluation, val_plot)
2.078125
2
transistor/persistence/__init__.py
awesome-archive/transistor
232
12793224
# -*- coding: utf-8 -*- """ transistor.persistence ~~~~~~~~~~~~ This module implements classes and methods to aid persistence, including database, spreadsheet export, write to file. :copyright: Copyright (C) 2018 by BOM Quote Limited :license: The MIT License, see LICENSE for more details. ~~~~~~~~~~~~ """ from .exporters import (PprintItemExporter, PickleItemExporter, PythonItemExporter, CsvItemExporter, MarshalItemExporter, BaseItemExporter) from .containers import SplashScraperItems from .item import Item, Field from .newt_db.newt_crud import get_job_results, delete_job __all__ = ['delete_job', 'Field', 'get_job_results', 'Item', 'PprintItemExporter', 'PickleItemExporter', 'PythonItemExporter', 'CsvItemExporter', 'MarshalItemExporter', 'BaseItemExporter', 'SplashScraperItems']
1.992188
2
convolution_matrices/convmat3D.py
zhaonat/RCWA
66
12793225
import numpy as np import matplotlib.pyplot as plt ## preliminary tests #inputs: A, P, Q, R # A is the discrete representation of epsilon #number of spatial harmonics (or orders) P = 6; Q = 6; R = 6; Nx = 20; Ny = 20; Nz = 1; #this is fundamentally 3D...not sure how to make general for 2D N = np.array([Nx, Ny, Nz]); ## generalize two 2D geometries; A = np.ones(N+1) A[2:18, 2:18, 0] = 12; plt.imshow(A[:,:,0]); plt.show() # deal with different dimensionalities if(len(N) == 1): Q = 1; R = 1; elif(len(N) == 2): R = 1; NH = P*Q*R; p = list(range(-int(np.floor(P/2)), int(np.floor(P/2))+1)); print(p) q = list(range(-int(np.floor(Q/2)), int(np.floor(Q/2))+1)); r = list(range(-int(np.floor(R/2)), int(np.floor(R/2))+1)); Af = (1/np.prod(N))*np.fft.fftshift(np.fft.fftn(A)); #central indices; p0 = int(np.floor(Nx/2)); q0 = int(np.floor(Ny/2)); r0 = int(np.floor(Nz/2)); C = np.zeros((NH, NH)) C = C.astype(complex); for rrow in range(R): for qrow in range(Q): for prow in range(P): #first term locates z plane, 2nd locates y column, prow locates x row = (rrow)*Q*P+(qrow)*P + prow; for rcol in range(R): for qcol in range(Q): for pcol in range(P): col = (rcol)*Q*P + (qcol)*P + pcol; pfft = p[prow] - p[pcol]; qfft = q[qrow] - q[qcol]; rfft = r[rrow] - r[rrow] C[row, col] = Af[p0+pfft, q0+qfft, r0+rfft]; plt.imshow(np.abs(Af[:, :, 0])); plt.show() plt.imshow(np.abs(C)); plt.show() plt.plot(np.diag(abs(C))) plt.show()
2.671875
3
pyassim/llock.py
ZoneTsuyoshi/pyassim
0
12793226
<reponame>ZoneTsuyoshi/pyassim<filename>pyassim/llock.py """ ===================================================================== Inference with Local Linear Operator Construction with Kalman Filter ===================================================================== This module implements the Local LOCK for Linear-Gaussian state space models """ from logging import getLogger, StreamHandler, DEBUG logger = getLogger("llock") handler = StreamHandler() handler.setLevel(DEBUG) logger.setLevel(DEBUG) logger.addHandler(handler) logger.propagate = False import os import math import time import multiprocessing as mp import itertools import numpy as np from .utils import array1d, array2d from .util_functions import _parse_observations, _last_dims, \ _determine_dimensionality def _local_calculation(i, j, A, y): local_A = A[i] | A[j] local_node_number_i = len(np.where(local_A[:i])[0]) local_node_number_j = len(np.where(local_A[:j])[0]) global_node_number = np.where(local_A)[0] Gh = y[1:, global_node_number].T \ @ np.linalg.pinv(y[:-1, global_node_number].T) return Gh[local_node_number_i, local_node_number_j] class LocalLOCK(object) : """Implements the Local LOCK. This class implements the LLOCK, for a Linear Gaussian model specified by, .. math:: x_{t+1} &= F_{t} x_{t} + b_{t} + v_{t} \\ y_{t} &= H_{t} x_{t} + d_{t} + w_{t} \\ [v_{t}, w_{t}]^T &\sim N(0, [[Q_{t}, O], [O, R_{t}]]) The LLOCK is an algorithm designed to estimate :math:`P(x_t | y_{0:t})` and :math:`F` in real-time. As all state transitions and observations are linear with Gaussian distributed noise, these distributions can be represented exactly as Gaussian distributions with mean `x_filt[t]` and covariances `V_filt`. Args: observation [n_time, n_dim_obs] {numpy-array, float} also known as :math:`y`. observation value initial_mean [n_dim_sys] {float} also known as :math:`\mu_0`. initial state mean initial_covariance [n_dim_sys, n_dim_sys] {numpy-array, float} also known as :math:`\Sigma_0`. initial state covariance transition_matrix [n_dim_sys, n_dim_sys] or [n_dim_sys, n_dim_sys]{numpy-array, float} also known as :math:`F`. transition matrix from x_{t-1} to x_{t} observation_matrix [n_dim_sys, n_dim_obs] {numpy-array, float} also known as :math:`H`. observation matrix from x_{t} to y_{t} transition_covariance [n_time-1, n_dim_sys, n_dim_sys] or [n_dim_sys, n_dim_sys] {numpy-array, float} also known as :math:`Q`. system transition covariance observation_covariance [n_time, n_dim_obs, n_dim_obs] {numpy-array, float} also known as :math:`R`. observation covariance adjacency_matrix [n_dim_sys, n_dim_sys] {numpy-array, float} also known as :math:`A`. adjacency matrix, if there is a link between i and j, A[i,j]=1, else A[i,j]=0. Besides, you should A[i,i]=1 forall i. method {string} : method for localized calculation "elementwise": calculation for each element of transition matrix "local-average": average calculation for specific two observation dimenstions "all-average": average calculation for each observation dimenstions update_interval {int} interval of update transition matrix F eta (in (0,1]) update rate for update transition matrix F cutoff cutoff distance for update transition matrix F save_dir {str, directory-like} directory for saving transition matrices and filtered states. if this variable is `None`, cannot save them. advance_mode {bool} if True, calculate transition matrix before filtering. if False, calculate the matrix after filtering. n_dim_sys {int} dimension of system transition variable n_dim_obs {int} dimension of observation variable dtype {type} data type of numpy-array use_gpu {bool} wheather use gpu and cupy. if True, you need install package `cupy`. if False, set `numpy` for calculation. num_cpu {int} or `all` number of cpus duaring calculating transition matrix. you can set `all` or positive integer. Attributes: y : `observation` F : `transition_matrix` Q : `transition_covariance` H : `observation_matrix` R : `observation_covariance` """ def __init__(self, observation = None, initial_mean = None, initial_covariance = None, transition_matrix = None, observation_matrix = None, transition_covariance = None, observation_covariance = None, adjacency_matrix = None, method = "elementwise", estimation_length = 10, estimation_interval = 1, eta = 1., cutoff = 10., estimation_mode = "backward", save_dir = None, n_dim_sys = None, n_dim_obs = None, dtype = "float32", use_gpu = False, num_cpu = "all"): """Setup initial parameters. """ if use_gpu: try: import cupy self.xp = cupy self.use_gpu = True except: self.xp = np self.use_gpu = False else: self.xp = np self.use_gpu = False # determine dimensionality self.n_dim_sys = _determine_dimensionality( [(transition_matrix, array2d, -2), (initial_mean, array1d, -1), (initial_covariance, array2d, -2), (observation_matrix, array2d, -1)], n_dim_sys, self.use_gpu ) self.n_dim_obs = _determine_dimensionality( [(observation_matrix, array2d, -2), (observation_covariance, array2d, -2), (adjacency_matrix, array2d, -2)], n_dim_obs, self.use_gpu ) # self.y = _parse_observations(observation) self.y = self.xp.asarray(observation).copy() if initial_mean is None: self.initial_mean = self.xp.zeros(self.n_dim_sys, dtype = dtype) else: self.initial_mean = self.xp.asarray(initial_mean, dtype = dtype) if initial_covariance is None: self.initial_covariance = self.xp.eye(self.n_dim_sys, dtype = dtype) else: self.initial_covariance = self.xp.asarray(initial_covariance, dtype = dtype) if transition_matrix is None: self.F = self.xp.eye(self.n_dim_sys, dtype = dtype) else: self.F = self.xp.asarray(transition_matrix, dtype = dtype) if transition_covariance is not None: self.Q = self.xp.asarray(transition_covariance, dtype = dtype) else: self.Q = self.xp.eye(self.n_dim_sys, dtype = dtype) if observation_matrix is None: self.H = self.xp.eye(self.n_dim_obs, self.n_dim_sys, dtype = dtype) else: self.H = self.xp.asarray(observation_matrix, dtype = dtype) self.HI = self.xp.linalg.pinv(self.H) if observation_covariance is None: self.R = self.xp.eye(self.n_dim_obs, dtype = dtype) else: self.R = self.xp.asarray(observation_covariance, dtype = dtype) if adjacency_matrix is None: self.A = self.xp.eye(dtype=bool) else: self.A = self.xp.asarray(adjacency_matrix, dtype = bool) if method in ["elementwise", "local-average", "all-average"]: self.method = method else: raise ValueError("Variable \"method\" only allows \"elementwise\", \"local-average\" " + "or \"all-average\". So, your setting \"{}\" need to be changed.".format(method)) if estimation_mode in ["forward", "middle", "backward"]: self.estimation_mode = estimation_mode else: raise ValueError("\"estimation_mode\" must be choosen from \"forward\"," + " \"middle\", or \"backward\".") if self.estimation_mode in ["forward", "backward"]: self.tau = int(estimation_length) self.tau2 = int((estimation_length - 1) / 2) else: self.tau2 = int((estimation_length - 1) / 2) self.tau = 2 * self.tau2 + 1 self.I = estimation_interval self.tm_count = 1 if save_dir is None: self.save_change = False else: self.save_change = True self.save_dir = save_dir self.fillnum = len(str(int(self.y.shape[0] / self.I))) self.xp.save(os.path.join(self.save_dir, "transition_matrix_" + str(0).zfill(self.fillnum) + ".npy"), self.F) if num_cpu == "all": self.num_cpu = mp.cpu_count() else: self.num_cpu = num_cpu self.eta = eta self.cutoff = cutoff self.dtype = dtype self.times = self.xp.zeros(5) def forward(self): """Calculate prediction and filter for observation times. Attributes: T {int} : length of data y x_pred [n_time, n_dim_sys] {numpy-array, float} : mean of hidden state at time t given observations from times [0...t-1] V_pred [n_dim_sys, n_dim_sys] {numpy-array, float} : covariance of hidden state at time t given observations from times [0...t-1] x_filt [n_time, n_dim_sys] {numpy-array, float} : mean of hidden state at time t given observations from times [0...t] V_filt [n_dim_sys, n_dim_sys] {numpy-array, float} : covariance of hidden state at time t given observations from times [0...t] """ T = self.y.shape[0] self.x_pred = self.xp.zeros((T, self.n_dim_sys), dtype = self.dtype) self.x_filt = self.xp.zeros((T, self.n_dim_sys), dtype = self.dtype) # calculate prediction and filter for every time for t in range(T): # visualize calculating time print("\r filter calculating... t={}".format(t) + "/" + str(T), end="") if t == 0: # initial setting self.x_pred[0] = self.initial_mean self.V_pred = self.initial_covariance.copy() self._update_transition_matrix(self.tau) else: if t >= 2 and t < T-self.tau+1 and (t-1)%self.I==0 and self.estimation_mode=="forward": self._update_transition_matrix(t+self.tau-1) elif t >= self.tau+1 and (t-self.tau)%self.I==0 and self.estimation_mode=="backward": self._update_transition_matrix(t) elif t >= self.tau2+2 and t < T-self.tau2 and (t-self.tau2-1)%self.I==0 and self.estimation_mode=="middle": self._update_transition_matrix(t+self.tau2) start_time = time.time() self._predict_update(t) self.times[0] += time.time() - start_time if self.xp.any(self.xp.isnan(self.y[t])): self.x_filt[t] = self.x_pred[t] self.V_filt = self.V_pred else : start_time = time.time() self._filter_update(t) self.times[1] += time.time() - start_time if self.save_change: self.xp.save(os.path.join(self.save_dir, "states.npy"), self.x_filt) def _predict_update(self, t): """Calculate fileter update Args: t {int} : observation time """ # extract parameters for time t-1 Q = _last_dims(self.Q, t - 1, 2, self.use_gpu) # calculate predicted distribution for time t self.x_pred[t] = self.F @ self.x_filt[t-1] self.V_pred = self.F @ self.V_filt @ self.F.T + Q def _filter_update(self, t): """Calculate fileter update without noise Args: t {int} : observation time Attributes: K [n_dim_sys, n_dim_obs] {numpy-array, float} : Kalman gain matrix for time t """ # extract parameters for time t R = _last_dims(self.R, t, 2, self.use_gpu) # calculate filter step K = self.V_pred @ ( self.H.T @ self.xp.linalg.inv(self.H @ (self.V_pred @ self.H.T) + R) ) self.x_filt[t] = self.x_pred[t] + K @ ( self.y[t] - (self.H @ self.x_pred[t]) ) self.V_filt = self.V_pred - K @ (self.H @ self.V_pred) def _update_transition_matrix(self, t): """Update transition matrix Args: t {int} : observation time """ G = self.xp.zeros((self.n_dim_obs, self.n_dim_obs), dtype=self.dtype) start_time = time.time() if self.method=="elementwise": # elementwise if self.use_gpu: A = self.A.get() y = self.y[t-self.tau:t+1].get() else: A = self.A y = self.y[t-self.tau:t+1] where_is_A = np.where(A) p = mp.Pool(self.num_cpu) G_local = p.starmap(_local_calculation, zip(where_is_A[0], where_is_A[1], itertools.repeat(A), itertools.repeat(y))) p.close() G[A] = G_local elif self.method=="local-average": # local-average for i in range(self.n_dim_obs): local_node_number = len(self.xp.where(self.A[i][:i])[0]) #LA global_node_number = self.xp.where(self.A[i])[0] Gh = self.y[t-self.tau+1:t+1, global_node_number].T \ @ self.xp.linalg.pinv(self.y[t-self.tau:t, global_node_number].T) G[i, global_node_number] += Gh[local_node_number] #LA G[global_node_number, i] += Gh[:, local_node_number] #LA G /= 2.0 #LA elif self.method=="all-average": #all-average C = self.xp.zeros((self.n_dim_obs, self.n_dim_obs), dtype=self.dtype) #AA for i in range(self.n_dim_obs): global_node_number = self.xp.where(self.A[i])[0] Gh = self.y[t-self.tau+1:t+1, global_node_number].T \ @ self.xp.linalg.pinv(self.y[t-self.tau:t, global_node_number].T) G[self.xp.ix_(global_node_number, global_node_number)] += Gh #AA C[self.xp.ix_(global_node_number, global_node_number)] += 1 #AA C[C==0] = 1 #AA G /= C #AA if self.tm_count==1: self.F = self.HI @ G @ self.H else: self.times[2] += time.time() - start_time Fh = self.HI @ G @ self.H self.times[3] += time.time() - start_time self.times[4] += 1 self.F = self.F - self.eta * self.xp.minimum(self.xp.maximum(-self.cutoff, self.F - Fh), self.cutoff) if self.save_change: self.xp.save(os.path.join(self.save_dir, "transition_matrix_" + str(self.tm_count).zfill(self.fillnum) + ".npy"), self.F) self.tm_count += 1 def get_predicted_value(self, dim = None): """Get predicted value Args: dim {int} : dimensionality for extract from predicted result Returns (numpy-array, float) : mean of hidden state at time t given observations from times [0...t-1] """ # if not implement `forward`, implement `forward` try : self.x_pred[0] except : self.forward() if dim is None: return self.x_pred elif dim <= self.x_pred.shape[1]: return self.x_pred[:, int(dim)] else: raise ValueError('The dim must be less than ' + self.x_pred.shape[1] + '.') def get_filtered_value(self, dim = None): """Get filtered value Args: dim {int} : dimensionality for extract from filtered result Returns (numpy-array, float) : mean of hidden state at time t given observations from times [0...t] """ # if not implement `forward`, implement `forward` try : self.x_filt[0] except : self.forward() if dim is None: return self.x_filt elif dim <= self.x_filt.shape[1]: return self.x_filt[:, int(dim)] else: raise ValueError('The dim must be less than ' + self.x_filt.shape[1] + '.') # def smooth(self): # """Calculate RTS smooth for times. # Args: # T : length of data y # x_smooth [n_time, n_dim_sys] {numpy-array, float} # : mean of hidden state distributions for times # [0...n_times-1] given all observations # V_smooth [n_time, n_dim_sys, n_dim_sys] {numpy-array, float} # : covariances of hidden state distributions for times # [0...n_times-1] given all observations # A [n_dim_sys, n_dim_sys] {numpy-array, float} # : fixed interval smoothed gain # """ # # if not implement `filter`, implement `filter` # try : # self.x_pred[0] # except : # self.filter() # T = self.y.shape[0] # self.x_smooth = self.xp.zeros((T, self.n_dim_sys), dtype = self.dtype) # self.V_smooth = self.xp.zeros((T, self.n_dim_sys, self.n_dim_sys), # dtype = self.dtype) # A = self.xp.zeros((self.n_dim_sys, self.n_dim_sys), dtype = self.dtype) # self.x_smooth[-1] = self.x_filt[-1] # self.V_smooth[-1] = self.V_filt[-1] # # t in [0, T-2] (notice t range is reversed from 1~T) # for t in reversed(range(T - 1)) : # # visualize calculating times # print("\r smooth calculating... t={}".format(T - t) # + "/" + str(T), end="") # # extract parameters for time t # F = _last_dims(self.F, t, 2) # # calculate fixed interval smoothing gain # A = self.xp.dot(self.V_filt[t], self.xp.dot(F.T, self.xp.linalg.pinv(self.V_pred[t + 1]))) # # fixed interval smoothing # self.x_smooth[t] = self.x_filt[t] \ # + self.xp.dot(A, self.x_smooth[t + 1] - self.x_pred[t + 1]) # self.V_smooth[t] = self.V_filt[t] \ # + self.xp.dot(A, self.xp.dot(self.V_smooth[t + 1] - self.V_pred[t + 1], A.T)) # def get_smoothed_value(self, dim = None): # """Get RTS smoothed value # Args: # dim {int} : dimensionality for extract from RTS smoothed result # Returns (numpy-array, float) # : mean of hidden state at time t given observations # from times [0...T] # """ # # if not implement `smooth`, implement `smooth` # try : # self.x_smooth[0] # except : # self.smooth() # if dim is None: # return self.x_smooth # elif dim <= self.x_smooth.shape[1]: # return self.x_smooth[:, int(dim)] # else: # raise ValueError('The dim must be less than ' # + self.x_smooth.shape[1] + '.')
2.140625
2
__init__.py
pslustig/galfitwrap
0
12793227
<gh_stars>0 from .galaxywrap import *
1.21875
1
lib/spot-2.8.1/tests/python/sum.py
AlessandroCaste/SynkrisisJupyter
0
12793228
<filename>lib/spot-2.8.1/tests/python/sum.py # -*- mode: python; coding: utf-8 -*- # Copyright (C) 2017, 2018 Laboratoire de Recherche et Développement de l'Epita # # This file is part of Spot, a model checking library. # # Spot is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Spot is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public # License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import spot import sys import itertools # make sure that we are not allowed to build the sum of two automata with # different dictionaries. aut1 = spot.translate('Xa') aut2 = spot.translate('Xb', dict=spot.make_bdd_dict()) try: spot.sum(aut1, aut2) exit(2) except RuntimeError: pass opts = spot.option_map() opts.set('output', spot.randltlgenerator.LTL) opts.set('tree_size_min', 15) opts.set('tree_size_max', 15) opts.set('wf', False) opts.set('seed', 0) opts.set('simplification_level', 0) spot.srand(0) rg = spot.randltlgenerator(2, opts) dict = spot.make_bdd_dict() def produce_phi(rg, n): phi = [] while len(phi) < n: f = rg.next() if f.is_syntactic_persistence(): phi.append(f) return phi phi1 = produce_phi(rg, 1000) phi2 = produce_phi(rg, 1000) inputres = [] aut = [] for p in zip(phi1, phi2): inputres.append(spot.formula.Or(p)) a1 = spot.ltl_to_tgba_fm(p[0], dict) a2 = spot.ltl_to_tgba_fm(p[1], dict) aut.append(spot.to_generalized_buchi( spot.remove_alternation(spot.sum(a1, a2), True))) for p in zip(aut, inputres): assert p[0].equivalent_to(p[1]) aut = [] inputres = [] for p in zip(phi1, phi2): inputres.append(spot.formula.And(p)) a1 = spot.ltl_to_tgba_fm(p[0], dict) a2 = spot.ltl_to_tgba_fm(p[1], dict) aut.append(spot.to_generalized_buchi( spot.remove_alternation(spot.sum_and(a1, a2), True))) for p in zip(aut, inputres): assert p[0].equivalent_to(p[1])
2.609375
3
server/resources/api/__init__.py
Saakshaat/umass-match
0
12793229
from fastapi import APIRouter main_router = APIRouter() from resources.db import session_dependency session_dep = session_dependency() @main_router.get("/", status_code=200) async def root(): return {"msg": "Welcome to UMass Match!"} from .user import user_router from .match import match_router # add individual routers to top-level router main_router.include_router(user_router) main_router.include_router(match_router)
2.265625
2
attention_model.py
qiaoliuhub/AttnToCrispr
8
12793230
import torch.nn as nn from torch import cat, transpose import torch import torch.nn.functional as F from Layers import EncoderLayer, DecoderLayer from Sublayers import Norm, OutputFeedForward import copy import attention_setting import numpy as np import crispr_attn import math import OT_crispr_attn import sys import importlib import pdb # Setting the correct config file config_path = ".".join(["models", sys.argv[1]]) + "." if len(sys.argv) >= 2 else "" config = importlib.import_module(config_path + "config") attention_setting = importlib.import_module(config_path+"attention_setting") def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): def __init__(self, d_input, d_model, N, heads, dropout): super().__init__() self.N = N self.layers = get_clones(EncoderLayer(d_input, d_model, heads, dropout), N) self.norm = nn.LayerNorm(d_model) def forward(self, src, mask=None): x = src for i in range(self.N): x = self.layers[i](x, mask) return self.norm(x) if attention_setting.attention_layer_norm else x class Decoder(nn.Module): def __init__(self, d_input, d_model, N, heads, dropout): super().__init__() self.N = N self.layers = get_clones(DecoderLayer(d_input, d_model, heads, dropout), N) self.norm = nn.LayerNorm(d_model) def forward(self, trg, e_outputs, src_mask=None, trg_mask=None): x = trg for i in range(self.N): x = self.layers[i](x, e_outputs, src_mask, trg_mask) return self.norm(x) if attention_setting.attention_layer_norm else x class Transformer(nn.Module): def __init__(self, d_input, d_model, n_feature_dim, N, heads, dropout, extra_length): super().__init__() self.encoder = Encoder(n_feature_dim, d_model, N, heads, dropout) self.decoder = Decoder(n_feature_dim, d_model, N, heads, dropout) #self.linear = nn.Linear() self.cnn = customized_CNN() assert not attention_setting.add_seq_cnn or not attention_setting.add_parallel_cnn if attention_setting.add_seq_cnn: d_input = 64 * (((d_input + 2) // 2 + 2) // 2) if attention_setting.analysis == 'deepCrispr': d_model += 4 extra_length = 0 if attention_setting.add_parallel_cnn: d_input_1 = d_input * d_model d_input_2 = ((64 * (((d_input + 2) // 2 + 2) // 2)) * config.embedding_vec_dim) d_input = d_input_1 + d_input_2 d_model = 1 self.out = OutputFeedForward(d_model, d_input, extra_length, d_layers=attention_setting.output_FF_layers, dropout=dropout) def forward(self, src, trg, extra_input_for_FF=None, src_mask=None, trg_mask=None): e_outputs = self.encoder(src, src_mask) # print("DECODER") d_output = self.decoder(trg, e_outputs, src_mask, trg_mask) if attention_setting.add_seq_cnn: if extra_input_for_FF is not None and attention_setting.analysis == 'deepCrispr': bs = extra_input_for_FF.size(0) extra_input_for_FF = extra_input_for_FF.view(bs, -1, 4) d_output = cat((d_output, extra_input_for_FF), dim = 2) d_output = torch.unsqueeze(d_output, 1) d_output = self.cnn(d_output) flat_d_output = d_output.view(-1, d_output.size(-2)*d_output.size(-1)) if attention_setting.add_parallel_cnn: src = torch.unsqueeze(src, 1) inter_output = self.cnn(src).view(src.size(0), -1) flat_d_output = cat((inter_output, flat_d_output),dim=1) if extra_input_for_FF is not None and attention_setting.analysis != 'deepCrispr': flat_d_output = cat((flat_d_output, extra_input_for_FF), dim=1) output = self.out(flat_d_output) return output class customized_CNN(nn.Module): def __init__(self): super().__init__() self.cnn_1 = nn.Conv2d(1, 32, kernel_size=(3,1), padding=(1,0)) self.maxpool_1 = nn.MaxPool2d(kernel_size=(2,1), padding=(1,0)) self.cnn_2 = nn.Conv2d(32, 64, kernel_size=(3,1), padding=(1,0)) if config.seq_len == 22: self.maxpool_2 = nn.MaxPool2d(kernel_size=(2,1), padding=(1,0)) else: self.maxpool_2 = nn.MaxPool2d(kernel_size=(2,1), padding=(1,0)) self.dropout = nn.Dropout(p = attention_setting.cnn_dropout) def forward(self, input): x = self.maxpool_1(self.cnn_1(input)) x = F.relu(x) x = self.maxpool_2(self.cnn_2(x)) x = F.relu(x) x = x.contiguous().view(x.size(0), -1, x.size(-1) * x.size(-2)) return x class OTembeddingTransformer(nn.Module): def __init__(self, embedding_vec_dim, d_model, N, heads, dropout, feature_len_map, classifier=False): super().__init__() self.feature_len_map = feature_len_map extra_length = 0 if self.feature_len_map[-1] is None else self.feature_len_map[-1][1] - self.feature_len_map[-1][0] d_input = self.feature_len_map[0][1] - self.feature_len_map[0][0] self.transformer = Transformer(d_input, d_model, embedding_vec_dim, N, heads, dropout, extra_length) self.embedding = nn.Embedding(config.embedding_voca_size, embedding_vec_dim) self.trg_embedding = nn.Embedding(config.embedding_voca_size, embedding_vec_dim) self.embedding_pos = nn.Embedding(d_input, embedding_vec_dim) self.trg_embedding_pos = nn.Embedding(d_input, embedding_vec_dim) self.dropout = nn.Dropout(p=config.dropout) self.classifier = classifier def forward(self, input, src_mask=None, trg_mask=None): src = input[:,self.feature_len_map[0][0]: self.feature_len_map[0][1]].long() embedded_src = self.embedding(src) bs = src.size(0) pos_len = src.size(1) pos = torch.from_numpy(np.array([[i for i in range(pos_len)] for _ in range(bs)])) pos = pos.to(OT_crispr_attn.device2) embedded_pos = self.embedding_pos(pos) embedded_src = embedded_pos + embedded_src if self.feature_len_map[1] is not None: trg = input[:, self.feature_len_map[1][0]:self.feature_len_map[1][1]].long() else: trg = src embedded_trg = self.trg_embedding(trg) embedded_pos_trg = self.trg_embedding_pos(pos) embedded_trg = embedded_pos_trg + embedded_trg embedded_src = self.dropout(embedded_src) embedded_trg = self.dropout(embedded_trg) extra_input_for_FF = None if self.feature_len_map[2] is not None: extra_input_for_FF = input[:, self.feature_len_map[2][0]: self.feature_len_map[2][1]] output = self.transformer(embedded_src, embedded_trg, extra_input_for_FF=extra_input_for_FF, src_mask=src_mask, trg_mask=trg_mask) if self.classifier: # output = F.log_softmax(output, dim = -1) #output = F.softmax(output, dim = -1) pass return output class EmbeddingTransformer(Transformer): def __init__(self, embedding_vec_dim , d_input, d_model, N, heads, dropout, extra_length): super().__init__(d_input, d_model, embedding_vec_dim, N, heads, dropout, extra_length) self.embedding = nn.Embedding(config.embedding_voca_size, embedding_vec_dim) self.embedding_2 = nn.Embedding(config.embedding_voca_size, embedding_vec_dim) self.trg_embedding = nn.Embedding(config.embedding_voca_size, embedding_vec_dim) self.embedding_pos = nn.Embedding(config.seq_len - config.word_len + 1, embedding_vec_dim) self.trg_embedding_pos = nn.Embedding(config.seq_len - config.word_len + 1, embedding_vec_dim) self.dropout = nn.Dropout(p = config.dropout) def forward(self, src, trg = None, extra_input_for_FF=None, src_mask=None, trg_mask=None): if config.sep_len != 0: src_1 = src[:,:config.sep_len] src_2 = src[:, config.sep_len:] embedded_src = self.embedding(src_1) embedded_src_2 = self.embedding_2(src_2) embedded_src = cat(tuple([embedded_src, embedded_src_2]), dim=1) else: embedded_src = self.embedding(src) bs = src.size(0) pos_length = config.seq_len - config.seq_start - config.word_len + 1 pos = torch.from_numpy(np.array([[i for i in range(pos_length)] for _ in range(bs)])) pos = pos.to(crispr_attn.device2) embedded_src_pos = self.embedding_pos(pos) embedded_src_1 = embedded_src + embedded_src_pos embedded_src_2 = self.dropout(embedded_src_1) if trg is not None: embedded_trg = self.trg_embedding(trg) embedded_trg_pos = self.trg_embedding_pos(pos) embedded_trg_1 = embedded_trg + embedded_trg_pos embedded_trg_2 = self.dropout(embedded_trg_1) else: embedded_trg_2 = embedded_src_2 #embedded_src_2 = transpose(embedded_src_2, 1, 2) output = super().forward(embedded_src_2, embedded_trg_2, extra_input_for_FF) return output def get_OT_model(feature_len_map, classifier = False): assert attention_setting.d_model % attention_setting.attention_heads == 0 assert attention_setting.attention_dropout < 1 if not classifier: model = OTembeddingTransformer(attention_setting.n_feature_dim, attention_setting.d_model, attention_setting.n_layers, attention_setting.attention_heads, attention_setting.attention_dropout, feature_len_map) else: model = OTembeddingTransformer(attention_setting.n_feature_dim, attention_setting.d_model, attention_setting.n_layers, attention_setting.attention_heads, attention_setting.attention_dropout, feature_len_map, classifier = True) for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model def get_model(inputs_lengths=None, d_input = 20): assert attention_setting.d_model % attention_setting.attention_heads == 0 assert attention_setting.attention_dropout < 1 #model = Transformer(d_input, attention_setting.d_model, attention_setting.n_feature_dim, attention_setting.n_layers, attention_setting.attention_heads, attention_setting.attention_dropout) extra_feature_length = len(config.extra_categorical_features + config.extra_numerical_features) model = EmbeddingTransformer(attention_setting.n_feature_dim, d_input, attention_setting.d_model, attention_setting.n_layers, attention_setting.attention_heads, attention_setting.attention_dropout, extra_feature_length) for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) # if attention_setting.device == 0: # model = model.cuda() return model
2.375
2
main_deep_feat_select_mlp_l21norm.py
yifeng-li/DECRES
42
12793231
<gh_stars>10-100 #!/usr/bin/env python """ An example of running DFS for MLP based on L2,1-norm. <NAME> NRC, Ottawa Aug. 06, 2015 Contact: <EMAIL> """ #qsub -l procs=1,pmem=2000mb,walltime=36:00:00 -r n -N main_DFS_feature_selection_l21norm -o main_DFS_feature_selection_l21norm.out -e main_DFS_feature_selection_l21norm.err -M <EMAIL> -m bea main_deep_feat_select_mlp_l21norm.py import os #os.environ['THEANO_FLAGS']='device=cpu,base_compile=/var/tmp' import sys import time import numpy import deep_feat_select_mlp_l21norm import classification as cl from gc import collect as gc_collect numpy.warnings.filterwarnings('ignore') # Theano causes some warnings numpy.set_printoptions(threshold=numpy.nan) numpy.set_printoptions(precision=4) # taking the input parameters #cell=sys.argv[1] # cell type #wid=sys.argv[2] # window size # load data """ A data set includes three files: [1]. A TAB seperated txt file, each row is a sample, each column is a feature. No row and columns allowd in the txt file. If an original sample is a matrix (3-way array), a row of this file is actually a vectorized sample, by concatnating the rows of the original sample. [2]. A txt file including the class labels. Each row is a string (white space not allowed) as the class label of the corresponding row in [1]. [3]. A txt file including the name of features. Each row is a string (white space not allowed) as the feature name of the corresponding column in [1]. """ path="/home/yifengli/prog/my/DECRES/" os.chdir(path) data_dir="/home/yifengli/prog/my/DECRES/data/" result_dir="/home/yifengli/prog/my/DECRES/result/" #cells=["GM12878","HepG2","K562","HelaS3","HUVEC","A549","MCF7","HMEC"] #wids=[200,500,1000,2000,4000] cells=["HelaS3"] wids=[200] for cell in cells: for wid in wids: filename=data_dir + cell + "_" + str(wid) + "bp_Data.txt"; data=numpy.loadtxt(filename,delimiter='\t',dtype='float32') filename=data_dir + cell + "_" + str(wid) + "bp_Classes.txt"; classes=numpy.loadtxt(filename,delimiter='\t',dtype=object) filename=data_dir+ cell + "_Features.txt" features=numpy.loadtxt(filename,delimiter='\t',dtype=object) given=["A-E","I-E","A-P","I-P","A-X","I-X","UK"] #given=["A-E","I-E"] #given=["A-P","I-P"] #given=["A-E","A-P"] #given=["A-E","A-X"] #given=["A-P","A-X"] #given=["A-E","A-P","A-X"] #given=["A-E","I-E","A-P","I-P"] #given=["A-E","I-E","A-P","I-P","A-X","I-X"] #given=["I-E","I-P"] data,classes,_=cl.take_some_classes(data,classes,given=given,others=None) # balance the sample sizes of the classes rng=numpy.random.RandomState(1000) data,classes,others=cl.balance_sample_size(data,classes,others=None,min_size_given=None,rng=rng) print data.shape print numpy.unique(classes) #group=[["A-E"],["I-E"],["A-P"],["I-P"],["A-X"],["I-X"],["UK"]] #group=[["A-E","A-P"],["I-E","I-P","A-X","I-X","UK"]] #group=[["A-E","A-P","A-X"],["I-E","I-P","I-X","UK"]] group=[["A-E"],["A-P"],["I-E","I-P","A-X","I-X","UK"]] #group=[["A-E"],["A-P"],["A-X"],["I-E","I-P","I-X","UK"]] #group=[["A-E"],["I-E"]] #group=[["A-P"],["I-P"]] #group=[["A-E"],["A-P"]] #group=[["A-E"],["A-X"]] #group=[["A-P"],["A-X"]] #group=[["A-E"],["A-P"],["A-X"]] #group=[["A-E","I-E"],["A-P","I-P"]] #group=[["A-E","A-P"],["I-E","I-P"]] #group=[["A-E","I-E"],["A-P","I-P"],["A-X","I-X"]] #group=[["A-E","A-P","A-X"],["I-E","I-P","I-X"]] #group=[["I-E"],["I-P"]] classes=cl.merge_class_labels(classes,group) print numpy.unique(classes) classes_unique,classes=cl.change_class_labels(classes) print numpy.unique(classes) # set random state #numpy.random.seed(1000) rng=numpy.random.RandomState(2000) data,classes,others=cl.balance_sample_size(data,classes,others=None,min_size_given=None,rng=rng) print data.shape print numpy.unique(classes) # partition the data train_set_x_org,train_set_y_org,valid_set_x_org,valid_set_y_org,test_set_x_org,test_set_y_org=cl.partition_train_valid_test(data,classes,ratio=(2,1,1),rng=rng) # normalization train_set_x_org,data_min,data_max=cl.normalize_col_scale01(train_set_x_org,tol=1e-10) valid_set_x_org,_,_=cl.normalize_col_scale01(valid_set_x_org,tol=1e-10,data_min=data_min,data_max=data_max) test_set_x_org,_,_=cl.normalize_col_scale01(test_set_x_org,tol=1e-10,data_min=data_min,data_max=data_max) # train # setting the parameter learning_rate=0.1 alpha=0.1 alpha1=0.01 alpha2=0.0 n_hidden=[128,16]#[256,64,16] n_epochs=1000 batch_size=200 activation_func='relu' if cell=="GM12878": lambda21s=numpy.arange(0.020,-0.0001,-0.0001) if cell=="HepG2": lambda21s=numpy.arange(0.028,-0.0001,-0.0001) if cell=="HelaS3": lambda21s=numpy.arange(0.028,-0.0001,-0.0001) if cell=="K562": lambda1s=numpy.arange(0.025,-0.0001,-0.0001) lambda21s=[0.02]#numpy.arange(0.04,-0.001,-0.001) features_selected=[] weights_selected=[] weights=[] perfs=[] for i in range(len(lambda21s)): lambda21=lambda21s[i] classifier,training_time=deep_feat_select_mlp_l21norm.train_model(train_set_x_org=train_set_x_org, train_set_y_org=train_set_y_org, valid_set_x_org=valid_set_x_org, valid_set_y_org=valid_set_y_org, learning_rate=learning_rate, alpha=alpha, lambda21=lambda21, alpha1=alpha1, alpha2=alpha2, n_hidden=n_hidden, n_epochs=n_epochs, batch_size=batch_size, activation_func=activation_func, rng=rng, max_num_epoch_change_learning_rate=50, max_num_epoch_change_rate=0.8, learning_rate_decay_rate=0.8) param0=classifier.params[0].get_value() param1=classifier.params[1].get_value() row_sum=numpy.sqrt((param0**2).sum(axis=1)) max_param=numpy.max(row_sum) selected=row_sum>(max_param*0.001) features_selected.append(features[selected]) weights_selected.append(row_sum[selected]) print row_sum print 'Number of select variables:', sum(selected) print features[selected] #print param0[selected] #print param0 #numpy.savetxt('param0.txt',param0,delimiter='\t',fmt='%.4e') print abs(param0).sum(axis=1) weights.append(row_sum) # test test_set_y_pred,test_set_y_pred_prob,test_time=deep_feat_select_mlp_l21norm.test_model(classifier, test_set_x_org, batch_size=200) print test_set_y_pred[0:20] print test_set_y_pred_prob[0:20] print test_time perf,conf_mat=cl.perform(test_set_y_org,test_set_y_pred,numpy.unique(train_set_y_org)) perfs.append(perf) print perf print conf_mat perfs=numpy.asarray(perfs) save_dir=result_dir + "_".join(classes_unique) try: os.makedirs(save_dir) except OSError: pass # save the weights filename=save_dir + '/' + cell + "_" + str(wid) + "bp.txt" #cl.write_feature_weight(weights,features,lambda21s,filename) filename=save_dir + '/' + cell + "_" + str(wid) + "bp_unique_yes.txt" # save the features, lambdas, accuracies #cl.write_feature_weight2(weights,features,lambda21s,perfs[:,-3],uniqueness=True,tol=1e-3,filename=filename) filename=save_dir + '/' + cell + "_" + str(wid) + "bp_unique_no.txt" #cl.write_feature_weight2(weights,features,lambda21s,perfs[:,-3],uniqueness=False,tol=1e-3,filename=filename) #save_dir=result_dir + "_".join(classes_unique) #filename=cell + "_" + str(wid) + "bp.txt" #cl.save_perform(save_dir,filename,perf=perf,std=None,conf_mat=conf_mat,classes_unique=classes_unique,training_time=training_time,test_time=test_time) gc_collect()
2.515625
3
client/hotbox.py
odontomachus/hotbox
0
12793232
<filename>client/hotbox.py if __name__ == "__main__": from gui import App app = App() app.mainloop()
1.695313
2
library/example-exceptions.py
kensoi/testcanarybot
0
12793233
import random from testcanarybot import objects from testcanarybot import exceptions # Copyright 2021 kensoi class Main(objects.libraryModule): @objects.priority(commands = ['quit']) # @testcanarybot quit async def second(self, tools: objects.tools, package: objects.package): await tools.api.messages.send( random_id = tools.gen_random(), peer_id = package.peer_id, message = 'выхожу из фреймворка...' ) raise exceptions.Quit("test") # -> to finish your framework (closing all projects that was launched by tppm) @objects.priority(commands = ['lib_reload']) # @testcanarybot lib_reload async def second2(self, tools: objects.tools, package: objects.package): await tools.api.messages.send( random_id = tools.gen_random(), peer_id = package.peer_id, message = 'перезагружаю...' ) raise exceptions.LibraryReload("Reload") # -> framework will reload your library
2.296875
2
src/kivy_garden/qrcode/version.py
kivy-garden/qrcode
7
12793234
__version__ = '2021.0314'
1.0625
1
neuron_models/rvlm_model.py
joetaylor94/reservoir-computing
1
12793235
''' <NAME> (<EMAIL>) Department of Physics University of Bath, UK May 1st, 2020 Conductance model of an RVLM neuron for use with reservoir computing using a modified Hodgkin-Huxley framework of ion channel gating. Model parameters are chosen so as to replicate the behaviour of the thalamocortical relay neuron presented in Huguenard J, McCormick DA, Shepherd GM (1997) 'Electrophysiology of the Neuron'. The neuron model consists of three ionic currents: a passive leak current, a transient sodium current (NaT), and a potassium current (K). The sodium current is controlled by an activation gating variable (m) and an inactivation gating variable (h). The potassium channel is non-inactivating and is controlld by a single activation gating variable (n). The full model state x comprises four state variables - the membrane voltage and the three gating varibales m, h, and n, and is thus described as: x = [V,m,h,n] The only state variable that it is possible to measure experimentally is the membrane voltage. This is the state variable output by the python script. ''' import scipy as sp import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint # Define constants TEMP_C = 35 FARADAY = 96480 PI = 3.14159265359 # Model duration (ms) T = 7400 dt = 0.025 # Generate array of time points, from zero to T t = np.arange(0,T,dt) ############################################################################## # Model Equations of Motion ############################################################################## # Define functions for gating kinetics of ion channels # Effect of temperature is accounted for by the Q10 coeff def mm_inf(VV): return 0.5*(1 + sp.tanh((VV - amV1)/ amV2)) def mm_tau(VV): return (tm0 + epsm*(1 - sp.tanh((VV - amV1)/ amV3)*sp.tanh((VV - amV1)/ amV3))) / 3.0**((TEMP_C-23.5)/10) def hh_inf(VV): return 0.5*(1 + sp.tanh((VV - ahV1)/ ahV2)) def hh_tau(VV): return (th0 + epsh*(1 - sp.tanh((VV - ahV1)/ ahV3)*sp.tanh((VV - ahV1)/ ahV3))) / 3.0**((TEMP_C-23.5)/10) def nn_inf(VV): return 0.5*(1 + sp.tanh((VV - anV1)/ anV2)) def nn_tau(VV): return (tn0 + epsn*(1 - sp.tanh((VV - anV1)/ anV3)*sp.tanh((VV - anV1)/ anV3))) / 3.0**((TEMP_C-23.5)/10) # Define functions for ionic currents (in uA/cm^2) # Currents correspond to passive leak, delayed-rectifier potassium, # and transient sodium currents def I_Leak(VV): return gLeak * (VV - EL) def I_K(VV,nn): return gK * nn**4 * (VV - EK) def I_NaT(VV,mm,hh): return gNaT * mm**3 * hh * (VV - ENa) # Define equations of motion for full neuron state x = [V,m,h,n] # Use idx to read in correct current stimulation data point # Function reads in system state and returns its derivative def dXdt(X,t): VV, mm, hh, nn, idx = X soma_area = soma_len*soma_diam*PI idx = int(t/dt) dVVdt = (-(I_NaT(VV,mm,hh) + I_K(VV,nn) + I_Leak(VV)) + (i_inj(t) + stim[idx])/soma_area) / Cm dmmdt = (mm_inf(VV) - mm)/mm_tau(VV) dhhdt = (hh_inf(VV) - hh)/hh_tau(VV) dnndt = (nn_inf(VV) - nn)/nn_tau(VV) return dVVdt, dmmdt, dhhdt, dnndt, idx ############################################################################## # Model Parameters ############################################################################## # Soma dimensions (cm) soma_len = 0.01 soma_diam = 0.029/PI # Define model parameters # conductances: gX; reversal potentials: EX; # thresholds: aXV1; membrane capacitance: Cm; # time constants: tx0, epsx Cm = 1 gNaT = 69 ENa = 41 gK = 6.9 EK = -100 EL = -65 gLeak = 0.465 amV1 = -39.92 amV2 = 10 amV3 = 23.39 tm0 = 0.143 epsm = 1.099 ahV1 = -65.37 ahV2 = -17.65 ahV3 = 27.22 th0 = 0.701 epsh = 12.90 anV1 = -34.58 anV2 = 22.17 anV3 = 23.58 tn0 = 1.291 epsn = 4.314 ############################################################################## # Preparing current stimulation to be injected into the neuron ############################################################################## # Function for injected a current step (uA/cm^2) # Args: amplitude, init time, final time def i_inj(t): return amp*(t>t_i) - amp*(t>t_f) # Function for loading current injection protocol (uA/cm^2) # Args: file path, amplitude scale (default = 0.02), sample every 'n'th point def load_stim(name, scale, n): stim = [] with open(name, "r") as ins: count = 0 for line in ins: count+=1 if count % n == 0: stim.append(scale*(float(line.rstrip('\n')))) ins.close() return stim # Initialise stim or load external stimulation files # If not loading in external stim, uncomment line below #stim = np.zeros(int(2*T/dt)) stim = load_stim('stim_files/Pstandard_100khz_0.dat', 0.02, 20) stim += load_stim('stim_files/Pstandard_100khz_1.dat', 0.02, 20) stim += load_stim('stim_files/Pstandard_100khz_2.dat', 0.02, 20) stim += load_stim('stim_files/Pstandard_100khz_3.dat', 0.02, 20) stim += load_stim('stim_files/Pstandard_100khz_4.dat', 0.02, 20) # Current step (uA/cm^2) # Define amplitude, init time and end time amp = 0 #0.003 t_i = 100 t_f = 300 ############################################################################## # Initializing the neuron model ############################################################################## # Initialize state variable values for t=0: x(0) = [V(0),m(0),h(0),n(0)] # Default vals correspond to neuron at steady-state resting potential # Final value in the init array is idx (starts at 0) init = [-65,0.00742,0.47258,0.06356,0] ############################################################################## # Running model: forward-integrating the equations of motion ############################################################################## # Integrate model equations # Arguments: state derivative, initial neuron state x(0), time point array X = odeint(dXdt, init, t) # Define variables to simplify analysis VV = X[:,0] mm = X[:,1] hh = X[:,2] nn = X[:,3] # Adding Gaussian error to voltage trace (mV) sigma_obs = 0.1 obs_error = np.random.normal(0, sigma_obs, len(VV)) VV_obs = VV + obs_error ############################################################################## # Plotting and saving model output ############################################################################## # Define total current stimulation = stim[0:len(VV)] + i_inj(t) # Plotting membrane voltage and stimulation time series plt.subplot(2,1,1) plt.plot(t,VV_obs,'k',linewidth=0.8) plt.ylabel("Membrane Potential (mV)") plt.subplot(2,1,2) plt.ylabel("Current (uA)") plt.plot(t,stimulation,'b',linewidth=0.8) plt.show() # Save voltage data (without gaussian noise) f = open('output/voltage_clean.csv', 'w') for i in range(int(len(VV))): f.write('%f \n' % VV[i]) f.close() # Save voltage data (with gaussian noise) f = open('output/voltage.csv', 'w') for i in range(int(len(VV))): f.write('%f \n' % VV_obs[i]) f.close() # Save current stimulation data f = open('output/stimulation.csv', 'w') for i in range(int(len(VV))): f.write('%f\n' % stimulation[i]) f.close()
2.90625
3
firetail/extensions/fleet_up/__init__.py
evidex/Firetail
29
12793236
<filename>firetail/extensions/fleet_up/__init__.py from .fleet_up import FleetUp def setup(bot): bot.add_cog(FleetUp(bot))
1.570313
2
byte-adder.py
sandeshpoudel995/Byte-adder
0
12793237
# byte-adder.py # A simple python program which simulates the behaviour of a digital circuit performing integer addition. # It adds two 8 bit binary numbers using different logical gates. import sys import os #defining input def Input(): upper_bit_int = int(input("Enter \'first integer\' from 0 to 255 : ")) # first input from the user lower_bit_int= int(input("Enter \'second integer\' from 0 to 255 : ")) # second input from the user return(upper_bit_int, lower_bit_int) # defining and gate def andGate(bitOne, bitTwo): return bitOne & bitTwo # defining or gate def orGate(bitOne, bitTwo): return bitOne | bitTwo # defining not gate def compliment(bitValue): return ~bitValue # defining xor gate def xorGate(bitOne, bitTwo): return orGate(andGate(bitOne, compliment(bitTwo)), andGate(compliment(bitOne), bitTwo)) # calculating carry def calculateCarry(a, b, c, d): return orGate(andGate(a,b), andGate(c,d)) # performing bit operation def bitOperation(upper_bit, lower_bit): result = [] carry = 0 for index in range(len(upper_bit)): after_xor_cal = xorGate(upper_bit[index], lower_bit[index]) result.append(xorGate(after_xor_cal, carry)) carry = calculateCarry(upper_bit[index], lower_bit[index], after_xor_cal, carry) result.append(carry) return list(reversed(result)) # Final processing and printing the sum def Output(): upper_bit_int, lower_bit_int = Input() if 255>=upper_bit_int>=0 and 255>=lower_bit_int>=0: #checking the input range min=0 and max=255 print('calculating sum...') else : print('Error: Input is not in range') print('Restarting...') print() del upper_bit_int del lower_bit_int Output() upper_bit = [int(x) for x in list('{:08b}'.format(upper_bit_int))] lower_bit = [int(x) for x in list('{:08b}'.format(lower_bit_int))] # output of bit operation result = bitOperation(list(reversed(upper_bit)), list(reversed(lower_bit))) final_sum_bin = ''.join(str(e) for e in result) final_sum_int = int(''.join(str(e) for e in result),2) print('Integer sum using bit operation = ', final_sum_int ,' In Binary = ',final_sum_bin) print() # loop for adding two integers again and again unless user exits quit = input("Do you want to add again Y/N : ") if quit.lower() == 'n': exit() elif quit.lower() == 'y': print() Output() print('This is a python program which simulates the behaviour of a digital circuit performing integer addition.') print() Output()
4.28125
4
bin/premcce.py
newbooks/Develop-MCCE
0
12793238
#!/usr/bin/env python import sys from pymccelib import * import logging logging.basicConfig(level=logging.DEBUG, format='%(levelname)-s: %(message)s') if __name__ == "__main__": env.init() prot = Protein() prot.load_nativepdb(env.prm["INPDB"]) # identify N and C terminal if env.prm["TERMINALS"].upper() == "T": prot.identify_nc() # remove exposed water # Disulfide bridge lines = prot.pdblines() open(env.fn_step1_out,"w").writelines(lines)
2.15625
2
kunquat/tracker/ui/model/orderlistmanager.py
kagu/kunquat
13
12793239
# -*- coding: utf-8 -*- # # Author: <NAME>, Finland 2015 # # This file is part of Kunquat. # # CC0 1.0 Universal, http://creativecommons.org/publicdomain/zero/1.0/ # # To the extent possible under law, Kunquat Affirmers have waived all # copyright and related or neighboring rights to Kunquat. # class OrderlistManager(): def __init__(self): self._controller = None self._session = None def set_controller(self, controller): self._controller = controller self._session = controller.get_session() def set_orderlist_selection(self, selection): self._session.set_orderlist_selection(selection) def get_orderlist_selection(self): return self._session.get_orderlist_selection()
1.84375
2
src/phat/learn/__init__.py
rskene/phat
2
12793240
from .phatnet import PhatNet, PhatLoss, PhatMetric from .utils import DataSplit
1.070313
1
DeepLearningArchitectures/UNet/models/unet1.py
SCCH-KVS/NuclearSegmentationPipeline
13
12793241
#!/usr/bin/env python import lasagne from lasagne.layers.conv import Conv2DLayer as Conv2DLayer from lasagne.layers import MaxPool2DLayer, ConcatLayer, TransposedConv2DLayer from lasagne.nonlinearities import elu, sigmoid, rectify from lasagne.layers import batch_norm from lasagne_wrapper.network import SegmentationNetwork from lasagne_wrapper.training_strategy import get_binary_segmentation_TrainingStrategy,get_categorical_segmentation_TrainingStrategy from lasagne_wrapper.batch_iterators import get_batch_iterator from lasagne_wrapper.learn_rate_shedules import get_stepwise from lasagne_wrapper.parameter_updates import get_update_momentum Network = SegmentationNetwork INPUT_SHAPE = [1, 256, 256] nonlin = elu def conv_bn(in_layer, num_filters, filter_size, nonlinearity=rectify, pad='same', name='conv'): """ convolution block with with batch normalization """ in_layer = Conv2DLayer(in_layer, num_filters=num_filters, filter_size=filter_size, nonlinearity=nonlinearity, pad=pad, name=name) in_layer = batch_norm(in_layer) return in_layer def build_model(): """ Compile net architecture """ l_in = lasagne.layers.InputLayer(shape=(None, INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]), name='Input') net1 = batch_norm(l_in) # --- preprocessing --- net1 = conv_bn(net1, num_filters=10, filter_size=1, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=1, filter_size=1, nonlinearity=nonlin, pad='same', name='color_deconv_preproc') # number of filters in first layer # decreased by factor 2 in each block nf0 = 16 # --- encoder --- net1 = conv_bn(net1, num_filters=nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=nf0, filter_size=3, nonlinearity=nonlin, pad='same') p1 = net1 net1 = MaxPool2DLayer(net1, pool_size=2, stride=2, name='pool1') net1 = conv_bn(net1, num_filters=2 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=2 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') p2 = net1 net1 = MaxPool2DLayer(net1, pool_size=2, stride=2, name='pool2') net1 = conv_bn(net1, num_filters=4 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=4 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') p3 = net1 net1 = MaxPool2DLayer(net1, pool_size=2, stride=2, name='pool3') net1 = conv_bn(net1, num_filters=8 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=8 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') # --- decoder --- net1 = TransposedConv2DLayer(net1, num_filters=4 * nf0, filter_size=2, stride=2, name='upconv') net1 = ConcatLayer((p3, net1), name='concat') net1 = conv_bn(net1, num_filters=4 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=4 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = TransposedConv2DLayer(net1, num_filters=2 * nf0, filter_size=2, stride=2, name='upconv') net1 = ConcatLayer((p2, net1), name='concat') net1 = conv_bn(net1, num_filters=2 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=2 * nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = TransposedConv2DLayer(net1, num_filters=nf0, filter_size=2, stride=2, name='upconv') net1 = ConcatLayer((p1, net1), name='concat') net1 = conv_bn(net1, num_filters=nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = conv_bn(net1, num_filters=nf0, filter_size=3, nonlinearity=nonlin, pad='same') net1 = Conv2DLayer(net1, num_filters=1, filter_size=1, nonlinearity=sigmoid, pad='same', name='segmentation') return net1 # prepare training strategy train_strategy = get_binary_segmentation_TrainingStrategy(batch_size=2, max_epochs=1000, samples_per_epoch=250, patience=300, ini_learning_rate=0.2, L2=None, use_weights=False, adapt_learn_rate=get_stepwise(k=1000, factor=0.5), update_function=get_update_momentum(0.9), valid_batch_iter=get_batch_iterator(), train_batch_iter=get_batch_iterator())
2.8125
3
pkg/R/late.py
cnk113/ESCAPE
0
12793242
#!/usr/bin/python import sys import os import numpy as np import pandas as pd import argparse import tensorflow as tf from importlib.machinery import SourceFileLoader import math import psutil import time from scipy.sparse import csr_matrix import gc import matplotlib matplotlib.use('Agg') import scimpute def learning_curve_mse(epoch_log, mse_batch_vec, mse_valid_vec, stage, skip=1): '''Save mse curves to csv files Parameters: ----------- skip: epoch_log: mse_batch_vec: mse_valid_vec: stage: step1 or step2 ''' print('> plotting learning curves') scimpute.learning_curve(epoch_log, mse_batch_vec, mse_valid_vec, title="Learning Curve MSE.{}".format(stage), ylabel='MSE (X vs Y, nz)', dir=stage, skip=skip ) _ = np.asarray(list(zip(epoch_log, mse_batch_vec, mse_valid_vec))) _ = pd.DataFrame(data=_, index=epoch_log, columns=['Epoch', 'MSE_batch', 'MSE_valid'] ).set_index('Epoch') _.to_csv("./{}/mse.csv".format(stage)) #def learning_curve_mse_nz(skip=1): def learning_curve_mse_nz(epoch_log, mse_nz_batch_vec, mse_nz_valid_vec, stage, skip=1): '''Save mse curves to csv files Parameters: ----------- skip: epoch_log: mse_nz_batch_vec: mse_nz_valid_vec: stage: ''' print('> plotting learning curves') scimpute.learning_curve(epoch_log, mse_nz_batch_vec, mse_nz_valid_vec, title="Learning Curve MSE_NZ.{}".format(stage), ylabel='MSE_NZ (X vs Y, nz)', dir=stage, skip=skip ) _ = np.asarray(list(zip(epoch_log, mse_nz_batch_vec, mse_nz_valid_vec))) _ = pd.DataFrame(data=_, index=epoch_log, columns=['Epoch', 'MSE_NZ_batch', 'MSE_NZ_valid'] ).set_index('Epoch') _.to_csv("./{}/mse_nz.csv".format(stage)) def fast_imputation(sess, h, X, pIn_holder, pHidden_holder, input_data, gene_ids, cell_ids): '''Calculate /and save/ the snapshot results of the current model on the whole dataset Parameters: ----------- ''' Y_input_arr = sess.run(h, feed_dict={X: input_data, pIn_holder: 1, pHidden_holder: 1}) # save sample imputation Y_input_df = pd.DataFrame(data=Y_input_arr, columns=gene_ids, index=cell_ids) return Y_input_df #def save_whole_imputation: def save_whole_imputation(sess, X, h, a_bottleneck, pIn_holder,pHidden_holder, input_matrix, gene_ids, cell_ids, p, m): ''' calculate and save imputation results for an input matrix at the 'impute' mode. If the number of cells is larger than a threshold (large_size: 1e5), save results of m//p.sample_size 'folds'. Parameters ---------- ''' if m > p.large_size: #impute on small data blocks to avoid high memory cost n_out_batches = m//p.sample_size print('num_out_batches:', n_out_batches) handle2 = open('./{}/latent_code.{}.csv'.format(p.stage, p.stage), 'w') with open('./{}/imputation.{}.csv'.format(p.stage, p.stage), 'w') as handle: for i_ in range(n_out_batches+1): start_idx = i_*p.sample_size end_idx = min((i_+1)*p.sample_size, m) print('saving:', start_idx, end_idx) x_out_batch = input_matrix[start_idx:end_idx, :].todense() y_out_batch = sess.run( h, feed_dict={ X: x_out_batch, pIn_holder: 1, pHidden_holder: 1 } ) df_out_batch = pd.DataFrame( data=y_out_batch, columns=gene_ids, index=cell_ids[range(start_idx, end_idx)] ) latent_code = sess.run( a_bottleneck, feed_dict={ X: x_out_batch, pIn_holder: 1, pHidden_holder: 1 } ) latent_code_df = pd.DataFrame( data=latent_code, index=cell_ids[range(start_idx, end_idx)] ) if i_ == 0: df_out_batch.to_csv(handle, float_format='%.6f') latent_code_df.to_csv(handle2, float_format='%.6f') print('RAM usage during mini-batch imputation and saving output: ', '{} M'.format(usage())) else: df_out_batch.to_csv(handle, header=None) latent_code_df.to_csv(handle2, header=None) handle2.close() else: # if m the # of cells is less than large_size (1e5)) Y_input_arr = sess.run(h, feed_dict={X: input_matrix.todense(), pIn_holder: 1, pHidden_holder: 1}) # save sample imputation Y_input_df = pd.DataFrame(data=Y_input_arr, columns=gene_ids, index=cell_ids) latent_code = sess.run(a_bottleneck, feed_dict={X: input_matrix.todense(), pIn_holder: 1, pHidden_holder: 1}) latent_code_df = pd.DataFrame(data=latent_code, index=cell_ids) print('RAM usage during whole data imputation and saving output: ', '{} M'.format(usage())) scimpute.save_hd5(Y_input_df, "{}/imputation.{}.hd5".format(p.stage, p.stage)) scimpute.save_hd5(latent_code_df, "{}/latent_code.{}.hd5".format(p.stage, p.stage)) def visualize_weight(sess, stage, w_name, b_name): w = eval(w_name) b = eval(b_name) w_arr = sess.run(w) b_arr = sess.run(b) b_arr = b_arr.reshape(len(b_arr), 1) b_arr_T = b_arr.T scimpute.visualize_weights_biases(w_arr, b_arr_T, '{},{}.{}'.format(w_name, b_name, stage), dir=stage) def visualize_weights(sess, stage, en_de_layers): for l1 in range(1, en_de_layers+1): encoder_weight = 'e_w'+str(l1) encoder_bias = 'e_b'+str(l1) visualize_weight(sess, stage, encoder_weight, encoder_bias) decoder_bias = 'd_b'+str(l1) decoder_weight = 'd_w'+str(l1) visualize_weight(sess, stage, decoder_weight, decoder_bias) def save_weights(sess, stage, en_de_layers): print('save weights in npy') for l1 in range(1, en_de_layers+1): encoder_weight_name = 'e_w'+str(l1) encoder_bias_name = 'e_b'+str(l1) decoder_bias_name = 'd_b'+str(l1) decoder_weight_name = 'd_w'+str(l1) np.save('{}/{}.{}'.format(stage, encoder_weight_name, stage), sess.run(eval(encoder_weight_name))) np.save('{}/{}.{}'.format(stage, decoder_weight_name, stage), sess.run(eval(decoder_weight_name))) np.save('{}/{}.{}'.format(stage, encoder_bias_name, stage), sess.run(eval(encoder_bias_name))) np.save('{}/{}.{}'.format(stage, decoder_bias_name, stage), sess.run(eval(decoder_bias_name))) def usage(): process = psutil.Process(os.getpid()) ram = process.memory_info()[0] / float(2 ** 20) ram = round(ram, 1) return ram # sys.path.append('./bin') # print('sys.path', sys.path) #print('python version:', sys.version) #print('tf.__version__', tf.__version__) def late_main(p, log_dir, rand_state=3): ##0. read data and extract gene IDs and cell IDs input_matrix, gene_ids, cell_ids = read_data(p) ##1. split data and save indexes #input p, input_matrix, cell_ids #return cell_ids_train, cell_ids_valid, cell_ids_test m, n = input_matrix.shape input_train, input_valid, input_test, train_idx, valid_idx, test_idx = \ scimpute.split__csr_matrix(input_matrix, a=p.a, b=p.b, c=p.c) cell_ids_train = cell_ids[train_idx] cell_ids_valid = cell_ids[valid_idx] cell_ids_test = cell_ids[test_idx] np.savetxt('{}/train.{}_index.txt'.format(p.stage, p.stage), cell_ids_train, fmt='%s') np.savetxt('{}/valid.{}_index.txt'.format(p.stage, p.stage), cell_ids_valid, fmt='%s') np.savetxt('{}/test.{}_index.txt'.format(p.stage, p.stage), cell_ids_test, fmt='%s') print('RAM usage after splitting input data is: {} M'.format(usage())) # todo: for backward support for older parameter files only # sample_size is 1000 in default; if sample_size is less than the number of cells (m), # we reconstruct the training and validation sets by randomly sampling. try: p.sample_size sample_size = p.sample_size except: sample_size = int(9e4) if sample_size < m: np.random.seed(1) rand_idx = np.random.choice( range(len(cell_ids_train)), min(sample_size, len(cell_ids_train))) sample_train = input_train[rand_idx, :].todense() sample_train_cell_ids = cell_ids_train[rand_idx] rand_idx = np.random.choice( range(len(cell_ids_valid)), min(sample_size, len(cell_ids_valid))) sample_valid = input_valid[rand_idx, :].todense() sample_valid_cell_ids = cell_ids_valid[rand_idx] #?? the following sample_input is a matrix sampled randomly, and should it be a matrix containing # sample_training and sample_valid rand_idx = np.random.choice(range(m), min(sample_size, m)) sample_input = input_matrix[rand_idx, :].todense() sample_input_cell_ids = cell_ids[rand_idx] del rand_idx gc.collect() np.random.seed() else: sample_input = input_matrix.todense() sample_train = input_train.todense() sample_valid = input_valid.todense() sample_input_cell_ids = cell_ids sample_train_cell_ids = cell_ids_train sample_valid_cell_ids = cell_ids_valid print('len of sample_train: {}, sample_valid: {}, sample_input {}'.format( len(sample_train_cell_ids), len(sample_valid_cell_ids), len(sample_input_cell_ids) )) ##2. model training and validation #2.1 init --> keep this in the main tf.reset_default_graph() # define placeholders and variables X = tf.placeholder(tf.float32, [None, n], name='X_input') # input pIn_holder = tf.placeholder(tf.float32, name='p.pIn') #keep_prob for dropout pHidden_holder = tf.placeholder(tf.float32, name='p.pHidden')#keep_prob for dropout #2.2 define layers and variables # input p, X, pIn_holder, pHidden_holder, n # return a_bottleneck, h(d_a1) a_bottleneck, h = build_late(X, pHidden_holder, pIn_holder, p, n, rand_state = 3) #2.3 define loss # input X, h, p # return mse_nz, mse, reg_term mse_nz, mse, reg_term = build_metrics(X, h, p.reg_coef) #2.4 costruct the trainer --> keep this section in the main optimizer = tf.train.AdamOptimizer(p.learning_rate) if p.mse_mode in ('mse_omega', 'mse_nz'): print('training on mse_nz') trainer = optimizer.minimize(mse_nz + reg_term) elif p.mse_mode == 'mse': print('training on mse') trainer = optimizer.minimize(mse + reg_term) else: raise Exception('mse_mode spelled wrong') #2.5 Init a session accoding to the run_flag sess = tf.Session() # restore variables saver = tf.train.Saver() if p.run_flag == 'load_saved': print('*** In TL Mode') saver.restore(sess, "./step1/step1.ckpt") elif p.run_flag == 'rand_init': print('*** In Rand Init Mode') init = tf.global_variables_initializer() sess.run(init) elif p.run_flag == 'impute': print('*** In impute mode loading "step2.ckpt"..') saver.restore(sess, './step2/step2.ckpt') p.max_training_epochs = 0 p.learning_rate = 0.0 ## save_whole_imputation save_whole_imputation(sess, X, h, a_bottleneck, pIn_holder, pHidden_holder, input_matrix, gene_ids, cell_ids, p, m) print('imputation finished') #toc_stop = time.time() #print("reading took {:.1f} seconds".format(toc_stop - tic_start)) exit() else: raise Exception('run_flag err') # define tensor_board writer batch_writer = tf.summary.FileWriter(log_dir + '/batch', sess.graph) valid_writer = tf.summary.FileWriter(log_dir + '/valid', sess.graph) # prep mini-batch, and reporter vectors num_batch = int(math.floor(len(train_idx) // p.batch_size)) # floor epoch_log = [] mse_nz_batch_vec, mse_nz_valid_vec = [], [] #, mse_nz_train_vec = [], [], [] mse_batch_vec, mse_valid_vec = [], [] # mse = MSE(X, h) #msej_batch_vec, msej_valid_vec = [], [] # msej = MSE(X, h), for genej, nz_cells print('RAM usage after building the model is: {} M'.format(usage())) epoch = 0 #2.6. pre-training epoch (0) #save imputation results before training steps print("Evaluation: epoch{}".format(epoch)) epoch_log.append(epoch) mse_train, mse_nz_train = sess.run([mse, mse_nz], feed_dict={X: sample_train,pHidden_holder: 1.0, pIn_holder: 1.0}) mse_valid, mse_nz_valid = sess.run([mse, mse_nz],feed_dict={X: sample_valid,pHidden_holder: 1.0, pIn_holder: 1.0}) print("mse_nz_train=", round(mse_nz_train, 3), "mse_nz_valid=",round(mse_nz_valid, 3)) print("mse_train=", round(mse_train, 3),"mse_valid=", round(mse_valid, 3)) mse_batch_vec.append(mse_train) mse_valid_vec.append(mse_valid) mse_nz_batch_vec.append(mse_nz_train) mse_nz_valid_vec.append(mse_nz_valid) #2.7. training epochs (1-) for epoch in range(1, p.max_training_epochs+1): tic_cpu, tic_wall = time.clock(), time.time() ridx_full = np.random.choice(len(train_idx), len(train_idx), replace=False) #2.7.1 training model on mini-batches for i in range(num_batch): # x_batch indices = np.arange(p.batch_size * i, p.batch_size*(i+1)) ridx_batch = ridx_full[indices] # x_batch = df1_train.ix[ridx_batch, :] x_batch = input_train[ridx_batch, :].todense() sess.run(trainer, feed_dict={X: x_batch, pIn_holder: p.pIn, pHidden_holder: p.pHidden}) toc_cpu, toc_wall = time.clock(), time.time() #2.7.2 save the results of epoch 1 and all display steps (epochs) if (epoch == 1) or (epoch % p.display_step == 0): tic_log = time.time() print('#Epoch {} took: {} CPU seconds; {} Wall seconds'.format( epoch, round(toc_cpu - tic_cpu, 2), round(toc_wall - tic_wall, 2) )) print('num-mini-batch per epoch: {}, till now: {}'.format(i+1, epoch*(i+1))) print('RAM usage: {:0.1f} M'.format(usage())) # debug # print('d_w1', sess.run(d_w1[1, 0:4])) # verified when GradDescent used # training mse and mse_nz of the last batch mse_batch, mse_nz_batch, h_batch = sess.run( [mse, mse_nz, h], feed_dict={X: x_batch, pHidden_holder: 1.0, pIn_holder: 1.0} ) # validation mse and mse_nz of the sample validation set (1000) mse_valid, mse_nz_valid, Y_valid = sess.run( [mse, mse_nz, h], feed_dict={X: sample_valid, pHidden_holder: 1.0, pIn_holder: 1.0} ) toc_log = time.time() print('mse_nz_batch:{}; mse_omage_valid: {}'. format(mse_nz_batch, mse_nz_valid)) print('mse_batch:', mse_batch, '; mse_valid:', mse_valid) print('log time for each epoch: {}\n'.format(round(toc_log - tic_log, 1))) mse_batch_vec.append(mse_batch) mse_valid_vec.append(mse_valid) mse_nz_batch_vec.append(mse_nz_batch) mse_nz_valid_vec.append(mse_nz_valid) epoch_log.append(epoch) #2.7.3 save snapshot step if (epoch % p.snapshot_step == 0) or (epoch == p.max_training_epochs): tic_log2 = time.time() #1.save imputation results #if the input matrix is large (m > p.large_size), only save the #imputation results of a small sample set (sample_input) print("> Impute and save.. ") if m > p.large_size: Y_input_df = fast_imputation(sess, h, X, pIn_holder, pHidden_holder, sample_input, gene_ids, sample_input_cell_ids) scimpute.save_hd5(Y_input_df, "{}/sample_imputation.{}.hd5".format(p.stage, p.stage)) else: Y_input_df = fast_imputation(sess, h, X, pIn_holder, pHidden_holder, input_matrix.todense(), gene_ids, cell_ids) scimpute.save_hd5(Y_input_df, "{}/imputation.{}.hd5".format(p.stage, p.stage)) #2.save model print('> Saving model..') save_path = saver.save(sess, log_dir + "/{}.ckpt".format(p.stage)) print("Model saved in: %s" % save_path) #3.save the training and test curve if p.mse_mode in ('mse_nz', 'mse_omega'): #learning_curve_mse_nz(skip=math.floor(epoch / 5 / p.display_step)) learning_curve_mse_nz(epoch_log, mse_nz_batch_vec, mse_nz_valid_vec, p.stage, skip=math.floor(epoch / 5 / p.display_step)) elif p.mse_mode == 'mse': #learning_curve_mse(skip=math.floor(epoch / 5 / p.display_step)) learning_curve_mse(epoch_log, mse_batch_vec, mse_valid_vec, p.stage, skip=math.floor(epoch / 5 / p.display_step)) #4.save save_bottleneck_representation print("> save bottleneck_representation") code_bottleneck_input = sess.run(a_bottleneck, feed_dict={ X: sample_input, pIn_holder: 1, pHidden_holder: 1}) np.save('{}/code_neck_valid.{}.npy'.format(p.stage, p.stage), code_bottleneck_input) #save_weights() save_weights(sess, p.stage, en_de_layers=p.l) #visualize_weights() visualize_weights(sess, p.stage, en_de_layers=p.l) toc_log2 = time.time() log2_time = round(toc_log2 - tic_log2, 1) min_mse_valid = min(mse_nz_valid_vec) # os.system( # '''for file in {0}/*npy # do python -u weight_clustmap.py $file {0} # done'''.format(p.stage) # ) print('min_mse_nz_valid till now: {}'.format(min_mse_valid)) print('snapshot_step: {}s'.format(log2_time)) batch_writer.close() valid_writer.close() sess.close() def build_late(X, pHidden_holder, pIn_holder, p, n, rand_state = 3): #5.2 define layers and variables # input p, X, pIn_holder, pHidden_holder, n # return a_bottleneck, h(d_a1) tf.set_random_seed(rand_state) # seed global e_w1, e_b1, e_a1, e_w2, e_b2, e_a2, e_w3, e_b3, e_a3 global d_w1, d_b1, d_a1, d_w2, d_b2, d_a2, d_w3, d_b3, d_a3 if p.L == 7: # change with layer with tf.name_scope('Encoder_L1'): e_w1, e_b1 = scimpute.weight_bias_variable('encoder1', n, p.n_hidden_1, p.sd) e_a1 = scimpute.dense_layer('encoder1', X, e_w1, e_b1, pIn_holder) with tf.name_scope('Encoder_L2'): e_w2, e_b2 = scimpute.weight_bias_variable('encoder2', p.n_hidden_1, p.n_hidden_2, p.sd) e_a2 = scimpute.dense_layer('encoder2', e_a1, e_w2, e_b2, pHidden_holder) with tf.name_scope('Encoder_L3'): e_w3, e_b3 = scimpute.weight_bias_variable('encoder3', p.n_hidden_2, p.n_hidden_3, p.sd) e_a3 = scimpute.dense_layer('encoder3', e_a2, e_w3, e_b3, pHidden_holder) # # with tf.name_scope('Encoder_L4'): # # e_w4, e_b4 = scimpute.weight_bias_variable('encoder4', p.n_hidden_3, p.n_hidden_4, p.sd) # # e_a4 = scimpute.dense_layer('encoder4', e_a3, e_w4, e_b4, pHidden_holder) # # with tf.name_scope('Decoder_L4'): # # d_w4, d_b4 = scimpute.weight_bias_variable('decoder4', p.n_hidden_4, p.n_hidden_3, p.sd) # # d_a4 = scimpute.dense_layer('decoder4', e_a4, d_w4, d_b4, pHidden_holder) with tf.name_scope('Decoder_L3'): d_w3, d_b3 = scimpute.weight_bias_variable('decoder3', p.n_hidden_3, p.n_hidden_2, p.sd) d_a3 = scimpute.dense_layer('decoder3', e_a3, d_w3, d_b3, pHidden_holder) with tf.name_scope('Decoder_L2'): d_w2, d_b2 = scimpute.weight_bias_variable('decoder2', p.n_hidden_2, p.n_hidden_1, p.sd) d_a2 = scimpute.dense_layer('decoder2', d_a3, d_w2, d_b2, pHidden_holder) with tf.name_scope('Decoder_L1'): d_w1, d_b1 = scimpute.weight_bias_variable('decoder1', p.n_hidden_1, n, p.sd) d_a1 = scimpute.dense_layer('decoder1', d_a2, d_w1, d_b1, pHidden_holder) # todo: change input activations if model changed # define input/output a_bottleneck = e_a3 elif p.L == 5: # change with layer with tf.name_scope('Encoder_L1'): e_w1, e_b1 = scimpute.weight_bias_variable('encoder1', n, p.n_hidden_1, p.sd) e_a1 = scimpute.dense_layer('encoder1', X, e_w1, e_b1, pIn_holder) with tf.name_scope('Encoder_L2'): e_w2, e_b2 = scimpute.weight_bias_variable('encoder2', p.n_hidden_1, p.n_hidden_2, p.sd) e_a2 = scimpute.dense_layer('encoder2', e_a1, e_w2, e_b2, pHidden_holder) with tf.name_scope('Decoder_L2'): d_w2, d_b2 = scimpute.weight_bias_variable('decoder2', p.n_hidden_2, p.n_hidden_1, p.sd) d_a2 = scimpute.dense_layer('decoder2', e_a2, d_w2, d_b2, pHidden_holder) with tf.name_scope('Decoder_L1'): d_w1, d_b1 = scimpute.weight_bias_variable('decoder1', p.n_hidden_1, n, p.sd) d_a1 = scimpute.dense_layer('decoder1', d_a2, d_w1, d_b1, pHidden_holder) # todo: change input activations if model changed # define input/output a_bottleneck = e_a2 elif p.L == 3: # change with layer with tf.name_scope('Encoder_L1'): e_w1, e_b1 = scimpute.weight_bias_variable('encoder1', n, p.n_hidden_1, p.sd) e_a1 = scimpute.dense_layer('encoder1', X, e_w1, e_b1, pIn_holder) with tf.name_scope('Decoder_L1'): d_w1, d_b1 = scimpute.weight_bias_variable('decoder1', p.n_hidden_1, n, p.sd) d_a1 = scimpute.dense_layer('decoder1', e_a1, d_w1, d_b1, pHidden_holder) # todo: change input activations if model changed # define input/output a_bottleneck = e_a1 else: raise Exception("{} L not defined, only 3, 5, 7 implemented".format(p.L)) h = d_a1 return a_bottleneck, h def build_metrics(X, h, coef): with tf.name_scope("Metrics"): omega = tf.sign(X) # 0 if 0, 1 if > 0; not possibly < 0 in our data mse_nz = tf.reduce_mean( tf.multiply( tf.pow(X-h, 2), omega ) ) mse = tf.reduce_mean(tf.pow(X-h, 2)) reg_term = tf.reduce_mean(tf.pow(h, 2)) * coef tf.summary.scalar('mse_nz__Y_vs_X', mse_nz) mse = tf.reduce_mean(tf.pow(X - h, 2)) # for report tf.summary.scalar('mse__Y_vs_X', mse) return mse_nz, mse, reg_term def load_params(mode, infile): '''load the 'global_params.py' file ''' cwd = os.getcwd() param_file = 'global_params.py' param_name = param_file.rstrip('.py') p = SourceFileLoader(param_name, cwd + '/' + param_file).load_module() p.fname_input = infile p.mode = mode if mode == 'pre-training': # step1/rand_init for pre-training on reference p.stage = 'step1' p.run_flag = 'rand_init' p.learning_rate = 3e-4 # step1: 3e-4 for 3-7L, 3e-5 for 9L elif mode == 'translate': # step2/load_saved from step1, for transfer learning p.stage = 'step2' # step1/step2 (not others) p.run_flag = 'load_saved' # rand_init/load_saved p.learning_rate = 3e-5 # step2: 3e-5 for 3-7L, 3e-6 for 9L elif mode == 'late': # step2/rand_init for one step training p.stage = 'step2' p.run_flag = 'rand_init' p.learning_rate = 3e-4 # step1: 3e-4 for 3-7L, 3e-5 for 9L elif mode == 'impute': # step2/load_saved/learning_rate=0, just impute and output p.stage = 'impute' p.run_flag = 'impute' p.learning_rate = 0.0 elif mode == 'analysis': p.tag = 'Eval' p.stage = 'Eval' else: print('The mode you entered cannot be recognized.') print('Valid mode options: pre-training | late | translate | impute | analysis') p.mode = 'invalid' return p if p.test_flag: p.max_training_epochs = 10 # 3L:100, 5L:1000, 7L:1000, 9L:3000 p.display_step = 1 # interval on learning curve p.snapshot_step = 5 # interval of saving session, imputation p.m = 1000 p.n = 300 p.sample_size = int(240) print('in test mode\n', 'num-genes set to {}, num-cells set to {}\n'.format(p.n, p.m), 'sample size set to {}'.format(p.sample_size)) return p # to do: modify to display based on mode # def display_params(p): # PRINT PARAMETERS print('\nmode:', p.mode) print('\nData:') print('fname_input:', p.fname_input) print('name_input:', p.name_input) print('ori_input:', p.ori_input) print('transformation_input:', p.transformation_input) if (p.mode == 'pre-training') or (p.mode == 'late') or (p.mode == 'translate'): print('data split: [{}/{}/{}]'.format(p.a, p.b, p.c)) print('\nParameters:') print('mse_mode:', p.mse_mode) print('stage:', p.stage) print('init:', p.run_flag) print('test_mode:', p.test_flag) print('total number of layers: {}'.format(p.L)) for l_tmp in range(1, p.l+1): print("n_hidden{}: {}".format(l_tmp, eval('p.n_hidden_'+str(l_tmp)))) print('learning_rate:', p.learning_rate) print('reg_coef:', p.reg_coef) print('batch_size:', p.batch_size) print('sample_zie: ', p.sample_size) print('pIn:', p.pIn) print('pHidden:', p.pHidden) print('max_training_epochs:', p.max_training_epochs) print('display_step', p.display_step) print('snapshot_step', p.snapshot_step) elif p.mode == 'analysis': print('fname_imputation:', p.fname_imputation) print('transformation_imputation', p.transformation_imputation) print('fname_ground_truth: ', p.fname_ground_truth) print('transformation_ground_truth', p.transformation_ground_truth) print('gene_pair_list: ', p.gene_pair_list) print('\n') def read_data(p): '''READ DATA Parameters ------------ p: Return ----------- ''' print('>READING DATA..') print('RAM usage before reading data: {} M'.format(usage())) if p.fname_input.endswith('h5'): # for 10x genomics large h5 files input_obj = scimpute.read_sparse_matrix_from_h5(p.fname_input, p.genome_input, p.ori_input) # gene_be_matrix.matrix = input_obj.matrix.log1p() input_matrix = input_obj.matrix gene_ids = input_obj.gene_ids cell_ids = input_obj.barcodes print('RAM usage after reading sparse matrix: {} M'.format(usage())) gc.collect() # Data Transformation print('> DATA TRANSFORMATION..') input_matrix = scimpute.sparse_matrix_transformation(input_matrix, p.transformation_input) del(input_obj) gc.collect() print('RAM usage after {} transformation: {} M'.format(p.transformation_input, usage())) # Test or not: m*n subset (1000 * 300). Delete later if p.test_flag: print('in test mode') input_matrix = input_matrix[:p.m, :p.n] gene_ids = gene_ids[:p.n] cell_ids = cell_ids[:p.m] gc.collect() else: # For smaller files (hd5, csv, csv.gz) input_df = scimpute.read_data_into_cell_row(p.fname_input, p.ori_input) print('RAM usage after reading input_df: {} M'.format(usage())) # Data Transformation print('> DATA TRANSFORMATION..') input_df = scimpute.df_transformation( input_df.transpose(), transformation=p.transformation_input ).transpose() # [genes, cells] in df_trans() print('pandas input_df mem usage: ') input_df.info(memory_usage='deep') # Test or not if p.test_flag: print('in test mode') input_df = input_df.ix[:p.m, :p.n] gc.collect() # To sparse input_matrix = csr_matrix(input_df) # todo: directly read into csr, get rid of input_df gene_ids = input_df.columns cell_ids = input_df.index print('RAM usage before deleting input_df: {} M'.format(usage())) del(input_df) gc.collect() # working on mac print('RAM usage after deleting input_df: {} M'.format(usage())) # Summary of data print("name_input:", p.name_input) _ = pd.DataFrame(data=input_matrix[:20, :4].todense(), index=cell_ids[:20], columns=gene_ids[:4]) print("input_df:\n", _, "\n") m, n = input_matrix.shape # m: n_cells; n: n_genes print('input_matrix: {} cells, {} genes\n'.format(m, n)) return input_matrix, gene_ids, cell_ids def load_results(p): '''READ DATA Parameters ------------ p: parameters from global_params.py and example.py Return ----------- X: input data matrix; genes in columns (same below) Y: imputed data matrix G: ground truth ''' # print('>READING DATA..') # X = scimpute.read_data_into_cell_row(p.fname_input, p.ori_input) X, gene_ids, cell_ids = read_data(p) X = pd.DataFrame(data=X.todense(), index=cell_ids, columns=gene_ids) Y = scimpute.read_data_into_cell_row(p.fname_imputation, p.ori_imputation) if p.fname_input == p.fname_ground_truth: G = X else: G = scimpute.read_data_into_cell_row(p.fname_ground_truth, p.ori_ground_truth) # print('> DATA TRANSFORMATION..') Y = scimpute.df_transformation(Y.transpose(), transformation=p.transformation_imputation).transpose() # X = scimpute.df_transformation(X.transpose(), transformation=p.transformation_input).transpose() if p.fname_input == p.fname_ground_truth: G = X else: G = scimpute.df_transformation(G.transpose(), transformation=p.transformation_ground_truth).transpose() # subset/sort X, G to match Y # todo: support sparse matrix X = X.loc[Y.index, Y.columns] G = G.loc[Y.index, Y.columns] # TEST MODE OR NOT if p.test_flag: print('in test mode') Y = Y.ix[0:p.m, 0:p.n] G = G.ix[0:p.m, 0:p.n] X = X.ix[0:p.m, 0:p.n] # INPUT SUMMARY print('\nIn this code, matrices should have already been transformed into cell_row') print('Y (imputation):', p.fname_imputation, p.ori_imputation, p.transformation_imputation,'\n', Y.ix[0:20, 0:3]) print('X (input):', p.fname_input, p.ori_input, p.transformation_input,'\n', X.ix[0:20, 0:3]) print('G (ground truth):', p.fname_ground_truth, p.ori_ground_truth, p.transformation_ground_truth,'\n', G.ix[0:20, 0:3]) print('Y.shape', Y.shape) print('X.shape', X.shape) print('G.shape', G.shape) return X, Y, G def calculate_MSEs(X, Y, G): '''calculate MSEs MSE between imputation and input MSE between imputation and ground truth Parameters ------------ X: input data matrix; genes in columns (same below) Y: imputed data matrix G: ground truth Return ----------- 4 MSEs ''' print('\n> MSE Calculation') max_y, min_y = scimpute.max_min_element_in_arrs([Y.values]) print('Max in Y is {}, Min in Y is{}'.format(max_y, min_y)) max_g, min_g = scimpute.max_min_element_in_arrs([G.values]) print('Max in G is {}, Min in G is{}'.format(max_g, min_g)) mse1_nz = scimpute.mse_omega(Y, X) mse1_nz = round(mse1_nz, 7) print('MSE1_NZ between Imputation and Input: ', mse1_nz) mse1 = scimpute.mse(Y, X) mse1 = round(mse1, 7) print('MSE1 between Imputation and Input: ', mse1) mse2_nz = scimpute.mse_omega(Y, G) mse2_nz = round(mse2_nz, 7) print('MSE2_NZ between Imputation and Ground_truth: ', mse2_nz) mse2 = scimpute.mse(Y, G) mse2 = round(mse2, 7) print('MSE2 between Imputation and Ground_truth: ', mse2) return mse1_nz, mse1, mse2_nz, mse2 def analyze_variation_in_genes(X, Y, G, p): '''calculate and visualize standard deviation in each gene write SDs to files plot histograms of SDs Parameters ------------ X: input data matrix; genes in columns (same below) Y: imputed data matrix G: ground truth p: parameters Return ----------- None ''' print('\n calculating standard deviation in each gene for input and imputed matrix') x_std_df, y_std_df = scimpute.nz_std(X, Y) x_std_df, g_std_df = scimpute.nz_std(X, G) # purpose: compare G with Y #std_ratio_yx_df = pd.DataFrame(data= y_std_df.values / x_std_df.values, index=X.columns, columns=['sd_ratio']) #std_ratio_yg_df = pd.DataFrame(data= y_std_df.values / g_std_df.values, index=X.columns, columns=['sd_ratio']) std_ratio_yx_data = [(y/x if x!=0 else None) for y, x in zip(y_std_df.values, x_std_df.values)] std_ratio_yx_df =pd.DataFrame(data = std_ratio_yx_data, index=X.columns, columns=['sd_ratio']) std_ratio_yg_data = [(y/x if x!=0 else None) for y, x in zip(y_std_df.values, g_std_df.values)] std_ratio_yg_df = pd.DataFrame(data= std_ratio_yg_data, index=X.columns, columns=['sd_ratio']) std_min = min(y_std_df.min(), x_std_df.min(), g_std_df.min()) std_max = max(y_std_df.max(), x_std_df.max(), g_std_df.max()) print('generating histograms of standard deviations') scimpute.hist_df( y_std_df, xlab='Standard Deviation', title='Imputation({})'.format(p.name_imputation), range=(std_min, std_max), dir=p.tag) scimpute.hist_df( x_std_df, xlab='Standard Deviation', title='Input({})'.format(p.name_input), range=(std_min, std_max), dir=p.tag) scimpute.hist_df( g_std_df, xlab='Standard Deviation', title='Ground Truth({})'.format(p.name_input), range=(std_min, std_max), dir=p.tag) scimpute.hist_df( std_ratio_yx_df, xlab='Ratio of Imputation SD vs Input SD', title='', range=(std_min, std_max), dir=p.tag) scimpute.hist_df( std_ratio_yg_df, xlab='Ratio of Imputation SD vs Ground Truth SD', title='', range=(std_min, std_max), dir=p.tag) std_ratio_yx_df.to_csv('sd_ratio_imputed_vs_input.csv') std_ratio_yg_df.to_csv('sd_ratio_imputed_vs_groundtruth.csv') def visualize_all_genes(X, Y, G, p): ''' generate plots using all genes Parameters ------------ X: input data matrix; genes in columns (same below) Y: imputed data matrix G: ground truth p: parameters Return ----------- None ''' # histograms of gene expression max_expression = max(G.values.max(), X.values.max(), Y.values.max()) min_expression = min(G.values.min(), X.values.min(), Y.values.min()) print('\n max expression:', max_expression) print('\n min expression:', min_expression) scimpute.hist_df( Y, xlab='Expression', title='Imputation({})'.format(p.name_imputation), dir=p.tag, range=[min_expression, max_expression]) scimpute.hist_df( X, xlab='Expression', title='Input({})'.format(p.name_input), dir=p.tag, range=[min_expression, max_expression]) scimpute.hist_df( G, xlab='Expression', title='Ground Truth({})'.format(p.name_ground_truth), dir=p.tag, range=[min_expression, max_expression]) # histograms of correlations between genes in imputation and ground truth # and of correlations between cells in imputation and ground truth # when ground truth is not provide, # input is used as ground truth print('\n> Correlations between ground truth and imputation') print('ground truth dimension: ', G.shape, 'imputation dimension: ', Y.shape) print('generating histogram for correlations of genes between ground truth and imputation') scimpute.hist_2matrix_corr( G.values, Y.values, title="Correlation for each gene\n(Ground_truth vs Imputation)\n{}\n{}". format(p.name_ground_truth, p.name_imputation), dir=p.tag, mode='column-wise', nz_mode='first' # or ignore ) print('generating histogram for correlations of cells between ground truth and imputation') scimpute.hist_2matrix_corr( G.values, Y.values, title="Correlation for each cell\n(Ground_truth vs Imputation)\n{}\n{}". format(p.name_ground_truth, p.name_imputation), dir=p.tag, mode='row-wise', nz_mode='first' ) # heatmaps of data matrices print('\n> Generating heatmaps of data matrices') range_max, range_min = scimpute.max_min_element_in_arrs([Y.values, G.values, X.values]) print('\nrange:', range_max, ' ', range_min) scimpute.heatmap_vis(Y.values, title='Imputation ({})'.format(p.name_imputation), xlab='Genes', ylab='Cells', vmax=range_max, vmin=range_min, dir=p.tag) scimpute.heatmap_vis(X.values, title='Input ({})'.format(p.name_input), xlab='Genes', ylab='Cells', vmax=range_max, vmin=range_min, dir=p.tag) scimpute.heatmap_vis(G.values, title='Ground_truth ({})'.format(p.name_ground_truth), xlab='Genes', ylab='Cells', vmax=range_max, vmin=range_min, dir=p.tag) # PCA and tSNE plots print('\n> Generating PCA and tSNE plots') if p.cluster_file is not None: cluster_info = scimpute.read_data_into_cell_row(p.cluster_file) # cluster_info = cluster_info.astype('str') else: cluster_info = None scimpute.pca_tsne(df_cell_row=Y, cluster_info=cluster_info, title=p.name_imputation, dir=p.tag) scimpute.pca_tsne(df_cell_row=X, cluster_info=cluster_info, title=p.name_input, dir=p.tag) scimpute.pca_tsne(df_cell_row=G, cluster_info=cluster_info, title=p.name_ground_truth, dir=p.tag) def visualize_selected_genes(X, Y, G, p): ''' generate plots for genes specified by the user Parameters ------------ X: input data matrix; genes in columns (same below) Y: imputed data matrix G: ground truth p: parameters Return ----------- None ''' gene_pair_dir = p.tag+'/pairs' List = p.gene_pair_list print(">n> Scatterplots of selected gene pairs") scimpute.gene_pair_plot(Y, list=List, tag='(Imputation)', dir=gene_pair_dir) scimpute.gene_pair_plot(X, list=List, tag='(Input)', dir=gene_pair_dir) scimpute.gene_pair_plot(G, list=List, tag='(Ground_truth)', dir=gene_pair_dir) print("\n> Scatterplots for selected genes") print("ground truth vs imputation, ground truth vs input") gene_dir = p.tag+'/genes' # genetate a list of genes using the gene_pair_list gene_list = [gene for pair in List for gene in pair] for j in gene_list: try: print('for ', j) Y_j = Y.ix[:, j] G_j = G.ix[:, j] X_j = X.ix[:, j] except KeyError: print('KeyError: gene ID does not exist') continue scimpute.scatterplot2(G_j, Y_j, range='same', title=str(str(j) + '\n(Ground Truth vs Imputation) '), xlabel='Ground Truth', ylabel='Imputation', dir=gene_dir ) scimpute.scatterplot2(G_j, X_j, range='same', title=str(str(j) + '\n(Ground Truth vs Input) '), xlabel='Ground Truth', ylabel='Input', dir=gene_dir ) # Discretize gene expression values # and re-generate pairwise plots Y = scimpute.df_exp_discretize_log10(Y) print('\n> Discrete gene pair relationship in imputation') gene_pair_dir = p.tag+'/pairs_discrete' # List = p.gene_pair_list scimpute.gene_pair_plot(Y, list=List, tag='(Imputation Discrete) ', dir=gene_pair_dir) print("\n> Discrete imputation vs ground truth") gene_dir = p.tag+'/genes_discrete' for j in gene_list: try: print('for ', j) Y_j = Y.ix[:, j] G_j = G.ix[:, j] X_j = X.ix[:, j] except KeyError: print('KeyError: gene ID does not exist') continue scimpute.scatterplot2(G_j, Y_j, range='same', title=str(str(j) + '\n(Ground_truth vs Imputation) '), xlabel='Ground Truth', ylabel='Imputation', dir=gene_dir ) scimpute.scatterplot2(G_j, X_j, range='same', title=str(str(j) + '\n(Ground_truth vs Input) '), xlabel='Ground Truth', ylabel='Input', dir=gene_dir ) def result_analysis_main(p): '''analyzing imputation output Parameters ------------ p: parameters from global_params.py and example.py Return ----------- None ''' # load imputation results and input data X, Y, G = load_results(p) # calculate MSEs mse1_nz, mse1, mse2_nz, mse2 = calculate_MSEs(X, Y, G) # calculate and visualize variation in genes analyze_variation_in_genes(X, Y, G, p) # visualize results using all genes visualize_all_genes(X, Y, G, p) # visualize selected genes visualize_selected_genes(X, Y, G, p) def parse_args(argv): parser = argparse.ArgumentParser(description = 'Help information') parser.add_argument('-mode', help='mode options: pre-training | late | translate | impute | analysis') parser.add_argument('-infile', help='file path of input data') return parser.parse_args(argv) if __name__ == '__main__': ##1. load parameter module and use name 'p' #print("Usage: python late.py -mode <late> -infile <xx.hd5>") argms = parse_args(sys.argv[1:]) p = load_params(argms.mode, argms.infile) if p.mode =='invalid': exit(0) ##2. refresh folder log_dir = './{}'.format(p.stage) scimpute.refresh_logfolder(log_dir) tic_start = time.time() #3. load data input_matrix, gene_ids, cell_ids = read_data(p) #4. call late late_main(input_matrix, gene_ids, cell_ids, p, log_dir, rand_state = 3) toc_stop = time.time() time_finish = round((toc_stop - tic_start), 2) print("Imputation Finished!") print("Wall Time Used: {} seconds".format(time_finish))
2.328125
2
irc/messages/message.py
AlexGustafsson/irc-news-bot
0
12793243
"""IRC message.""" import re from typing import Optional from irc.messages.base import IRCBaseMessage # Regex for matching the individual parts of an IRC message private_message_regex = re.compile("^:([^!]+)!(.*?) (PRIVMSG|NOTICE) ([^ ]+) :(.*)") class IRCMessage(IRCBaseMessage): """An IRC private message.""" def __init__( # pylint: disable=too-many-arguments self, raw_message: str, author: str, hostname: str, is_notice: bool, target: str, message: str ) -> None: super().__init__(raw_message) self.__author = author self.__hostname = hostname self.__is_notice = is_notice self.__target = target self.__message = message @property def author(self) -> str: """The author of the message.""" return self.__author @property def hostname(self) -> str: """The hostname of the message's author.""" return self.__hostname @property def is_notice(self) -> bool: """Whether or not the message is a NOTICE.""" return self.__is_notice @property def target(self) -> str: """The target of the message.""" return self.__target @property def message(self) -> str: """The message itself.""" return self.__message def __str__(self) -> str: """String representation of the message.""" if self.__is_notice: return "NOTICE {} : {}".format(self.__author, self.__message) return "PRIVMSG {} : {}".format(self.__author, self.__message) @staticmethod def parse(line: str) -> Optional["IRCMessage"]: """Parse a message.""" match = private_message_regex.match(line) if not match: return None author, hostname, type, target, message = match.groups() is_notice = type == "NOTICE" return IRCMessage(line, author, hostname, is_notice, target, message)
3.21875
3
main/calendar-module/calendar-module.py
EliahKagan/old-practice-snapshot
0
12793244
#!/usr/bin/env python3 from calendar import day_name, weekday month, day, year = map(int, input().split()) print(day_name[weekday(year, month, day)].upper())
4.125
4
tests/class/method06.py
ktok07b6/polyphony
83
12793245
<reponame>ktok07b6/polyphony<gh_stars>10-100 from polyphony import testbench class C: def __init__(self, x): self.x = x * x def calc(self, x): for i in range(x): self.x += 1 return self.x def method06(x): return C(x).calc(x) @testbench def test(): assert 2 == method06(1) assert 6 == method06(2) assert 12 == method06(3) test()
2.71875
3
plugins/nmap.py
hack654a/w12scan-client
159
12793246
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/1/21 10:05 PM # @Author : w8ay # @File : nmap.py import nmap from lib.data import logger def nmapscan(host, ports): # 接受从masscan上扫描出来的结果 # 为了可以多线程使用,此函数支持多线程调用 nm = nmap.PortScanner() argument = "-sV -sS -Pn --host-timeout 1m -p{}".format(','.join(ports)) try: ret = nm.scan(host, arguments=argument) except nmap.PortScannerError: logger.debug("Nmap PortScannerError host:{}".format(host)) return None except: return None # debug elapsed = ret["nmap"]["scanstats"]["elapsed"] command_line = ret["nmap"]["command_line"] logger.debug("[nmap] successed,elapsed:%s command_line:%s" % (elapsed, command_line)) if host in ret["scan"]: try: result = ret["scan"][host]["tcp"] except KeyError: return None return result return None
2.734375
3
Fig6-splocs/plotenergy.py
YuePengUSTC/AADR
7
12793247
<filename>Fig6-splocs/plotenergy.py<gh_stars>1-10 #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import os from IPython.core.pylabtools import figsize font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 20} font2 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 16} labels = ['', '', '', ''] colors = [] colors.append([0 / 255, 113 / 255, 188 / 255]) # 1 colors.append([216 / 255, 82 / 255, 24 / 255]) # 2 colors.append([236 / 255, 176 / 255, 31 / 255]) # 3 colors.append([125 / 255, 46 / 255, 141 / 255]) # 4 colors.append([118 / 255, 171 / 255, 47 / 255]) # 5 colors.append([76 / 255, 189 / 255, 237 / 255]) # 6 colors.append([255 / 255, 128 / 255, 0 / 255]) # 7 def plot_errmore(data, is_iter, id, is_dr, min_err): len1 = np.shape(data)[0] if is_iter: x = np.linspace(0, len1, len1) else: x = data[:, 0] - data[0, 0] # y = data[:, 2] # /data[0, 1] y = data[:, 2] #/ data[0, 2] if id == 0: label1 = 'ADMM' else: if is_dr: label1 = 'DR m=' + str(id) else: label1 = 'AA m=' + str(id) l1, = plt.semilogy(x, y, label=label1, color=colors[id], linewidth=2.5) # l1, = plt.plot(x, y, label=label1, color=colors[id], linewidth=2) max_t = max(x) return (l1, max_t) def plot_err3(data, is_iter, id, is_dr, cid, min_err, ytype, resetype): len1 = np.shape(data)[0] if is_iter: x = np.linspace(0, len1, len1) else: x = data[:, 0] - data[0, 0] if ytype == 'e': y = data[:, 1] - min_err else: y = data[:, 2] if id == 0: label1 = 'ADMM' else: if is_dr: label1 = 'ours' + resetype else: label1 = 'AA ADMM' + resetype if ytype == 'r': l1, = plt.semilogy(x, y, label=label1, color=colors[cid], linewidth=2.5) else: l1, = plt.semilogy(x, y, label=label1, color=colors[cid], linewidth=2.5) max_t = max(x) return (l1, max_t) def plot_reset(data, is_iter): len1 = np.shape(data)[0] if is_iter: x = np.linspace(0, len1, len1) else: x = data[:, 0] - data[0, 0] y = data[:, 1] / data[0, 1] reset = data[:, 2] nx = [] ny = [] for i in range(1, len(reset)): if reset[i] > reset[i - 1]: nx.append(x[i]) ny.append(y[i]) plt.scatter(nx, ny, color='blue', alpha=0.6, s=20) # max_t = max(x) # return (l1, max_t) ## diff m if 0: for fid in range(1, 11): path = "D:/project/ADMMAA/BasisPursuit/res/" # os.system("mkdir D:\\project\\ADMMAA\\data\\no_noise_fig3\\file" + str(fid)) savepath = "D:/project/ADMMAA/BasisPursuit/fig/" #'D:/project/ADMMAA/data/diffpm/p0.5/fig/2efile' + str(fid) + '_' # for is_iter in (1, 0): is_iter = 1 outer = 0 for is_iter in range(0, 2): for nmid in range(1, 2): # outer = 0 # # nmid = 1 mid = str(nmid) ls = [] maxts = [] res = np.loadtxt(path + str(fid) + 'admm.txt') (l1, maxt) = plot_errmore(res, is_iter, 0, nmid % 3 == 2, 0) ls.append(l1) maxts.append(maxt) # min_err = min(res[:, 3]) for i in range(1, 7): name = path + str(fid) + 'aaadmm' + str(i) + '.txt' res = np.loadtxt(name) # min_err1 = min(res[:, 3]) # min_err = min(min_err, min_err1) (l1, maxt) = plot_errmore(res, is_iter, i, nmid % 3 == 2, 0) ls.append(l1) maxts.append(maxt) # for i in range(1, 7): # name = path + 'aadr' + str(i) + '.txt' # res = np.loadtxt(name) # if is_iter: plt.xlabel("#Iters", font1) plt.xlim(0, 1000) else: plt.xlabel("Time(ms)", font1) plt.xlim(0, max(maxts)) plt.legend(handles=ls, loc='best', prop=font2) # plt.title('file' + str(fid) + ' outer ' + str(outer)) plt.tight_layout() save_name = savepath + str(fid) + "emid_" + mid + str(is_iter) + "_outer_" + str(outer) + ".png" print(save_name) plt.savefig(save_name, transparent=True, dpi=150) plt.clf() # plt.show() # AA-DR if 1: ytype = 'r' for fid in range(1, 4): path = "D:/project/ADMMAA/localdeformation/splocs-master/data/coma_data/coma_data/res/" # os.system("mkdir D:\\project\\ADMMAA\\data\\no_noise_fig3\\file" + str(fid)) savepath = "D:/project/ADMMAA/localdeformation/splocs-master/data/coma_data/coma_data/fig/" # for is_iter in (1, 0): is_iter = 1 outer = 1 nmid = 1 aa_admm_m = 6 aa_dr_m = 6 for is_iter in range(0, 2): mid = str(nmid) ls = [] maxts = [] maxis = [] name = path + str(fid) + '_mid0_outer_0.txt' res1 = np.loadtxt(name) # print(res) name = path + str(fid) + '_mid1_outer_0.txt' res2 = np.loadtxt(name) name = path + str(fid) + '_mid2_outer_0.txt' res3 = np.loadtxt(name) # ADMM min_err=0 (l1, maxt) = plot_err3(res1, is_iter, 0, 0, 0, min_err, ytype, ' ') ls.append(l1) maxts.append(maxt) iter = 0 for eachiter in range(1, len(res1)): if np.isnan([res1[eachiter, 0]]): break # if res3[eachiter, 2] == 0: # break iter = iter + 1 maxis.append(iter) # print(iter) # AA-ADMM (l1, maxt) = plot_err3(res2, is_iter, aa_admm_m, 0, 1, min_err,ytype, ' ') ls.append(l1) maxts.append(maxt) iter = 0 for eachiter in range(1, len(res2)): if np.isnan([res2[eachiter, 0]]): break # if res2[eachiter, 2] == 0: # break iter = iter + 1 maxis.append(iter) # print(iter) ## AA-DR (l1, maxt) = plot_err3(res3, is_iter, aa_dr_m, 1, 2, min_err,ytype, '-PR') ls.append(l1) maxts.append(maxt) iter = 0 for eachiter in range(1, len(res3)): if np.isnan([res3[eachiter, 0]]): break # if res3[eachiter, 2] == 0: # break iter = iter + 1 maxis.append(iter) # print(iter) # plot_err3(data, is_iter, id, is_dr, cid, min_err, ytype, resetype): name = path + str(fid) + '_mid3_outer_0.txt' res3 = np.loadtxt(name) (l1, maxt) = plot_err3(res3, is_iter, aa_dr_m, 1, 3, min_err, ytype, '-DRE') ls.append(l1) maxts.append(maxt) iter = 0 for eachiter in range(1, len(res3)): if np.isnan([res3[eachiter, 0]]): break # if res3[eachiter, 2] == 0: # break iter = iter + 1 maxis.append(iter) if is_iter: plt.xlabel("#Iters", font1) plt.xlim(0, max(maxis)) else: plt.xlabel("Time(s)", font1) plt.xlim(0, max(maxts)) # plt.xlim(0, 50) if ytype == 'r': plt.ylabel("Combined residual", font1) else: plt.ylabel("f(x)+g(z)", font1) # plt.ylabel("f(x)+g(z)", font1) plt.legend(handles=ls, loc='best', prop=font2) # plt.title('file' + str(fid)) plt.tight_layout() save_name = savepath + str(fid) + ytype + "AA" + str(aa_admm_m) + "_DR" + str(aa_dr_m) + "_t" + str(is_iter) + "_outer_" + str( outer) + ".png" print(save_name) plt.savefig(save_name, transparent=True, dpi=600) plt.clf() # AA-DR test mu if 0: for fid in range(1, 5): path = "data/coma_data/res/f" + str(fid) + '_' # os.system("mkdir D:\\project\\ADMMAA\\data\\test_mu\\file" + str(fid)) savepath = 'data/coma_data/fig/file' + str(fid) + '_' # for is_iter in (1, 0): is_iter = 1 outer = 0 nmid = 1 aa_admm_m = 6 aa_dr_m = 6 for mu in (10, 100, 1000, 10000, 100000, 1000000): for is_iter in range(1, 2): mid = str(nmid) ls = [] maxts = [] res = np.loadtxt(path + 'mid0_mu' + str(mu) + '.txt') # ADMM # data, is_iter, id, is_dr, cid, min_err, ytype, resetype (l1, maxt) = plot_err3(res, is_iter, 0, 0, 0, 0, ytype, ' ') ls.append(l1) maxts.append(maxt) # AA-ADMM res = np.loadtxt(path + 'mid1_mu' + str(mu) + '.txt') (l1, maxt) = plot_err3(res, is_iter, 1, 0, 1, 0, ytype, ' ') ls.append(l1) maxts.append(maxt) # plot_reset(res, is_iter) ## AA-DR res = np.loadtxt(path + 'mid2_mu' + str(mu) + '.txt') (l1, maxt) = plot_err3(res, is_iter, 2, 1, 2, 0, ytype, '-PR') ls.append(l1) maxts.append(maxt) # plot_reset(res, is_iter) res = np.loadtxt(path + 'mid3_mu' + str(mu) + '.txt') (l1, maxt) = plot_err3(res, is_iter, 2, 1, 3, 0, ytype, '-DRE') ls.append(l1) maxts.append(maxt) if is_iter: plt.xlabel("#Iters", font1) plt.xlim(0, 100) else: plt.xlabel("Time(ms)", font1) plt.xlim(0, max(maxts)) plt.legend(handles=ls, loc='best', prop=font2) plt.title('file' + str(fid) + ' outer ' + str(outer)) plt.tight_layout() save_name = savepath + "mu" + str(mu) + ".png" print(save_name) plt.savefig(save_name, transparent=True, dpi=100) plt.clf() def find_minerr(path): min_errs = [] name = path + 'mid0_mu10_m' + str(1) + '.txt' # print(name) res = np.loadtxt(name) min_errs.append(min(res[:, 1])) for m in range(1, 7): res = np.loadtxt(path + 'mid1_mu10_m' + str(m) + '.txt') min_errs.append(min(res[:, 1])) res = np.loadtxt(path + 'mid2_mu10_m' + str(m) + '.txt') min_errs.append(min(res[:, 1])) min_err = min(min_errs) return min_err # AA-DR each iters if 0: ytype = 'e' for fid in range(1, 11): # fid = 'monkey' path = "D:/project/ADMMAA/sparseicp/testmu/0_p5.0_f" + str(fid) + '_' savepath = 'D:/project/ADMMAA/sparseicp/figp05nreset/1_f' + str(fid) + '_' # for is_iter in (1, 0): is_iter = 1 outer = 1 nmid = 1 aa_admm_m = 6 aa_dr_m = 6 # for outer in (0, 10, 20, 30, 40, 50, 60, 70, 80, 83): # for outer in (0, 10, 20, 30, 40, 50, 60): # for outer in (0, 5, 10, 15, 20, 25): # for outer in (0, 1, 2, 3, 4, 100, 101, 102, 103, 104, 191, 192, 193, 194, 195): # for outer in (100000, 50000, 10000, 5000, 1000, 500, 100): # for outer in (1000, 5000, 10000, 50000, 100000): for outer in range(10, 11): for is_iter in range(0, 2): mid = str(nmid) ls = [] maxts = [] min_err = find_minerr(path) print(min_err) # min_err = 0 # print(path + 'mid0_outer' + str(outer) + '.txt') res1 = np.loadtxt(path + 'mid0_mu' + str(outer) + '_m1.txt') # print(path + 'mid1_m' + str(aa_admm_m) + '_outer' + str(outer) + '.txt') res2 = np.loadtxt(path + 'mid1_mu' + str(outer) + '_m' + str(aa_admm_m) + '.txt') # print(path + 'res_mid2_m' + str(aa_dr_m) + '_outer' + str(outer) + '.txt') res3 = np.loadtxt(path + 'mid2_mu' + str(outer) + '_m' + str(aa_dr_m) + '.txt') # ADMM (l1, maxt) = plot_err3(res1, is_iter, 0, 0, 0, min_err, ytype, '') ls.append(l1) maxts.append(maxt) # AA-ADMM (l1, maxt) = plot_err3(res2, is_iter, aa_admm_m, 0, 1, min_err, ytype, '') ls.append(l1) maxts.append(maxt) ## AA-DR (l1, maxt) = plot_err3(res3, is_iter, aa_dr_m, 1, 2, min_err, ytype, '') ls.append(l1) maxts.append(maxt) if is_iter: plt.xlabel("#Iters", font1) plt.xlim(0, 1500) else: plt.xlabel("Time(ms)", font1) plt.xlim(0, max(maxts)) if ytype == 'e': plt.ylabel('Energy', font1) else: plt.ylabel('Combined residual', font1) plt.legend(handles=ls, loc='best', prop=font2) plt.title('file' + str(fid) + ' mu ' + str(outer)) plt.tight_layout() save_name = savepath + ytype + "AA" + str(aa_admm_m) + "_DR" + str(aa_dr_m) + "_t" + str( is_iter) + "_outer_" + str(outer) + "_5.png" print(save_name) plt.savefig(save_name, transparent=True, dpi=150) plt.clf() # diff m each iters if 0: fid = 'monkey' # for outer in (0, 10, 20, 30, 40, 50, 60, 70, 80, 83): # for outer in (0, 10, 20, 30, 40, 50, 60): # for outer in (0, 5, 10, 15, 20, 25): for fid in range(1, 11): for outer in range(10, 11): path = "D:/project/ADMMAA/sparseicp/testmu/0_p5.0_f" + str(fid) + '_' savepath = 'D:/project/ADMMAA/sparseicp/figp05nreset/1_f' + str(fid) + '_' # for is_iter in (1, 0): is_iter = 1 for is_iter in range(0, 2): for nmid in range(1, 3): mid = str(nmid) ls = [] maxts = [] # min_err = find_minerr(path, outer) min_err = 0 # if nmid > 3: # res = np.loadtxt(path + 'mid3_m5_outer' + str(outer) + '.txt') # else: res = np.loadtxt(path + 'mid0_mu' + str(outer) + '_m1.txt') (l1, maxt) = plot_errmore(res, is_iter, 0, 0, min_err) ls.append(l1) maxts.append(maxt) for i in range(1, 7): res = np.loadtxt(path + 'mid' + mid + '_mu' + str(outer)+ '_m' + str(i) + '.txt') (l1, maxt) = plot_errmore(res, is_iter, i, nmid % 3 == 2, min_err) ls.append(l1) maxts.append(maxt) if is_iter: plt.xlabel("#Iters", font1) plt.xlim(0, 2000) else: plt.xlabel("Time(ms)", font1) plt.xlim(0, max(maxts)) plt.ylabel("Combined residual", font1) plt.legend(handles=ls, loc='best', prop=font2) plt.title('file' + str(fid) + ' mu ' + str(outer)) plt.tight_layout() save_name = savepath + "mid_" + mid + str(is_iter) + "_outer_" + str(outer) + ".png" print(save_name) plt.savefig(save_name, transparent=True, dpi=150) plt.clf() # plt.show()
2.203125
2
mysite/apps/repo/migrations/0002_auto_20190811_2046.py
lirixiang123/question_repo
0
12793248
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-08-11 12:46 from __future__ import unicode_literals import ckeditor_uploader.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('repo', '0001_initial'), ] operations = [ migrations.CreateModel( name='QuestionsCollection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now=True, verbose_name='收藏/取消时间')), ('status', models.BooleanField(default=True, verbose_name='收藏状态')), ], options={ 'verbose_name': '收藏记录', 'verbose_name_plural': '收藏记录', }, ), migrations.AlterField( model_name='questions', name='answer', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True, verbose_name='题目答案'), ), migrations.AlterField( model_name='questions', name='content', field=ckeditor_uploader.fields.RichTextUploadingField(null=True, verbose_name='题目详情'), ), migrations.AddField( model_name='questionscollection', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='questions_collection_set', to='repo.Questions', verbose_name='问题'), ), migrations.AddField( model_name='questionscollection', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='questions_collection_set', to=settings.AUTH_USER_MODEL, verbose_name='收藏者'), ), ]
1.742188
2
route.py
PeterRyder/EveTradeRoute
0
12793249
<gh_stars>0 class Route: def __init__(self, c, s, e): self.client = c self.start = s self.end = e #self.start = self.get_system(s) #self.end = self.get_system(e) def __repr__(self): return str(self) def __str__(self): system_ids = self.get_distance() return str([self.get_system(id)["name"] for id in system_ids]) def get_system(self, s): result = self.client.Universe.post_universe_names( ids=[s] ).result() return result[0] def get_distance(self): return self.client.Routes.get_route_origin_destination( datasource="tranquility", flag="shortest", origin=self.start, destination=self.end ).result()
2.78125
3
centrality.py
cerebis/MetaCarvel
0
12793250
import tqdm import networkx as nx import argparse import numpy as np import multiprocessing import graph_tool as gt from graph_tool.centrality import betweenness parser = argparse.ArgumentParser() parser.add_argument("-g", "--graph", help='bundled graph') parser.add_argument("-l","--length",help="contig length") parser.add_argument("-o","--output",help="output file") args = parser.parse_args() G = nx.Graph() cpus = multiprocessing.cpu_count() print('Using {} cpus'.format(cpus)) print('Loading bundled graph...') with open(args.graph,'r') as f: for line in tqdm.tqdm(f, desc='Reading bundled'): attrs = line.split() G.add_edge(attrs[0],attrs[2],mean=float(attrs[4]),stdev=float(attrs[5]),bsize=int(attrs[6]),ori=attrs[1]+attrs[3]) node_set = set(G.nodes()) print('Loading contig lengths...') contig_length = {} with open(args.length,'r') as f: for line in tqdm.tqdm(f, desc='Reading lengths'): attrs = line.split() if attrs[0] in node_set: contig_length[attrs[0]] = int(attrs[1]) del node_set nx.set_node_attributes(G,'length',contig_length) repeat_nodes = {} def get_prop_type(value, key=None): """ Performs typing and value conversion for the graph_tool PropertyMap class. If a key is provided, it also ensures the key is in a format that can be used with the PropertyMap. Returns a tuple, (type name, value, key) """ if isinstance(key, unicode): # Encode the key as ASCII key = key.encode('ascii', errors='replace') # Deal with the value if isinstance(value, bool): tname = 'bool' elif isinstance(value, int): tname = 'float' value = float(value) elif isinstance(value, float): tname = 'float' elif isinstance(value, unicode): tname = 'string' value = value.encode('ascii', errors='replace') elif isinstance(value, dict): tname = 'object' else: tname = 'string' value = str(value) return tname, value, key def nx2gt(nxG): """ Converts a networkx graph to a graph-tool graph. """ # Phase 0: Create a directed or undirected graph-tool Graph gtG = gt.Graph(directed=nxG.is_directed()) # Add the Graph properties as "internal properties" for key, value in nxG.graph.items(): # Convert the value and key into a type for graph-tool tname, value, key = get_prop_type(value, key) prop = gtG.new_graph_property(tname) # Create the PropertyMap gtG.graph_properties[key] = prop # Set the PropertyMap gtG.graph_properties[key] = value # Set the actual value # Phase 1: Add the vertex and edge property maps # Go through all nodes and edges and add seen properties # Add the node properties first nprops = set() # cache keys to only add properties once for node, data in nxG.nodes_iter(data=True): # Go through all the properties if not seen and add them. for key, val in data.items(): if key in nprops: continue # Skip properties already added # Convert the value and key into a type for graph-tool tname, _, key = get_prop_type(val, key) prop = gtG.new_vertex_property(tname) # Create the PropertyMap gtG.vertex_properties[key] = prop # Set the PropertyMap # Add the key to the already seen properties nprops.add(key) # Also add the node id: in NetworkX a node can be any hashable type, but # in graph-tool node are defined as indices. So we capture any strings # in a special PropertyMap called 'id' -- modify as needed! gtG.vertex_properties['id'] = gtG.new_vertex_property('string') # Add the edge properties second eprops = set() # cache keys to only add properties once for src, dst, data in nxG.edges_iter(data=True): # Go through all the edge properties if not seen and add them. for key, val in data.items(): if key in eprops: continue # Skip properties already added # Convert the value and key into a type for graph-tool tname, _, key = get_prop_type(val, key) prop = gtG.new_edge_property(tname) # Create the PropertyMap gtG.edge_properties[key] = prop # Set the PropertyMap # Add the key to the already seen properties eprops.add(key) # Phase 2: Actually add all the nodes and vertices with their properties # Add the nodes vertices = {} # vertex mapping for tracking edges later for node, data in nxG.nodes_iter(data=True): # Create the vertex and annotate for our edges later v = gtG.add_vertex() vertices[node] = v # Set the vertex properties, not forgetting the id property data['id'] = str(node) for key, value in data.items(): gtG.vp[key][v] = value # vp is short for vertex_properties # Add the edges for src, dst, data in nxG.edges_iter(data=True): # Look up the vertex structs from our vertices mapping and add edge. e = gtG.add_edge(vertices[src], vertices[dst]) # Add the edge properties for key, value in data.items(): gtG.ep[key][e] = value # ep is short for edge_properties # Done, finally! return gtG def get_centrality(subg): # centralities = nx.betweenness_centrality(subg) # print(centralities) _g = nx2gt(subg) centralities, _ = betweenness(_g) v = centralities.get_array() mean = float(np.mean(v)) stdev = float(np.std(v)) for node in _g.vertices(): if centralities[node] >= mean + 3*stdev: repeat_nodes[_g.vertex_properties['id'][node]] = centralities[node] def centrality_wrapper(graph): n_comp = nx.number_connected_components(graph) print('The graph has {} components'.format(n_comp)) for subg in tqdm.tqdm(nx.connected_component_subgraphs(graph), total=n_comp, desc='Component'): if len(subg.nodes()) >= 50: get_centrality(subg) G_copy = G.copy() print('Writing output...') ofile = open(args.output,'w') for i in xrange(3): centrality_wrapper(G_copy) for node in tqdm.tqdm(repeat_nodes, desc='Checking repeats'): if G_copy.has_node(node): G_copy.remove_node(node) ofile.write(str(node)+'\t'+str(repeat_nodes[node])+'\n') #for u,v,data in G_copy.edges(data=True): # print u +"\t"+data[u][v]['ori'][0]+v+"\t"+data[u][v]['ori'][1]+"\t"+str(data[u][v]["mean"])+"\t"+str(data[u][v]["stdev"])+"\t"+str(data[u][v]["bsize"]) #nx.write_gml(G_copy,args.output)
2.328125
2