max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
plugins/WikiFileTarget.py
seanth/nicecast-trackupdate
2
12793251
# Copyright (c) 2020 <NAME> <www.sean-graham.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from Target import Target import os import sys import configparser import logging import time class WikiFileTarget(Target): pluginName = "Wiki File Writer" enableArchive = True episodeNumber = "XX" showArtist = "" filePath = "" archiveURL = "" wikiFile = None def __init__(self, config, episode, episodeDate): logger = logging.getLogger("wiki updater") self.episodeNumber = episode if(episodeDate): self.episodeDate = episodeDate logger.debug(f"overriding date with {self.episodeDate}") # read config entries try: self.filePath = config.get('ListCommon', 'filePath') self.archiveURL = config.get('ListCommon', 'archiveURL') self.showArtist = config.get('ListCommon', 'showArtist') except configparser.NoSectionError: logger.error("ListCommon: No [ListCommon] section in config") return except configparser.NoOptionError: logger.error("ListCommon: Missing values in config") return # if I gave a shit about non-unix platforms I might # try to use the proper path sep here. exercise left # for the reader. if(self.filePath.endswith("/") != True): self.filePath += "/" self.filePath = os.path.expanduser(self.filePath) fileDate = '{dt:%Y}{dt:%m}{dt:%d}'.format(dt=self.episodeDate) self.archiveURL = f"{self.archiveURL}{fileDate}.mp3" headerText = "" headerText += "\n\n=== " if(self.archiveURL != ""): headerText += "[" + self.archiveURL + " " headerText += "Show #" + self.episodeNumber + " - " headerText += self.getLongDate() if(self.archiveURL != ""): headerText += "]" headerText += " ===\n" headerText += "{| border=1 cellspacing=0 cellpadding=5\n" headerText += "|'''Song'''\n" headerText += "|'''Artist'''\n" headerText += "|'''Album'''\n" self.wikiFile = open(self.filePath + fileDate + "-wiki.txt", 'w+') self.logToFile(self.wikiFile, headerText) return def logTrack(self, track, startTime): if( track.ignore is not True ): trackText = f"|-\n|{track.title}\n|{track.artist}\n|{track.album}\n" self.logToFile(self.wikiFile, trackText) return def close(self): print("Closing Wiki File...") self.logToFile(self.wikiFile, "|}" ) self.wikiFile.close() return
2.1875
2
main.py
thedoctor095/TrustPilotReviews
0
12793252
<reponame>thedoctor095/TrustPilotReviews import time import requests from bs4 import BeautifulSoup query = str(input('Please enter the website for which you wish to know TrustPilot reviews: ')) tp_address = 'https://www.trustpilot.com/review/' tp_query = tp_address + query.lower() response = requests.get(tp_query) soup = BeautifulSoup(response.content, 'html.parser') #function which checks if the query returns a valid(non-404) website on TrustPilot def queryValidator(): webpage_status = soup.find('div', class_='errors_error404__tUqzU') if webpage_status != None: print('Please input a full website domain. (eg. www.google.com or google.com)') else: tpSearch() #scraping function which returns the review info def tpSearch(): website_rating = soup.find('p', class_='typography_typography__QgicV typography_bodysmall__irytL typography_color-gray-7__9Ut3K typography_weight-regular__TWEnf typography_fontstyle-normal__kHyN3') website_rating = website_rating.text time.sleep(1) website_name = soup.find('span', class_='typography_typography__QgicV typography_h1__Xmcta typography_weight-heavy__E1LTj typography_fontstyle-normal__kHyN3 styles_displayName__GElWn') website_name = website_name.text time.sleep(1) rating_overall_review = soup.find('span', class_='typography_typography__QgicV typography_bodysmall__irytL typography_color-gray-7__9Ut3K typography_weight-regular__TWEnf typography_fontstyle-normal__kHyN3 styles_text__W4hWi') overall_review = [] for item in rating_overall_review: overall_review.append(item) time.sleep(1) review_type = soup.findAll('p', class_='typography_typography__QgicV typography_bodysmall__irytL typography_color-gray-7__9Ut3K typography_weight-regular__TWEnf typography_fontstyle-normal__kHyN3 styles_cell__qnPHy styles_labelCell__vLP9S') time.sleep(1) review_percent = soup.findAll('p', class_='typography_typography__QgicV typography_bodysmall__irytL typography_color-gray-7__9Ut3K typography_weight-regular__TWEnf typography_fontstyle-normal__kHyN3 styles_cell__qnPHy styles_percentageCell__cHAnb') time.sleep(1) for review, percent in zip(review_type, review_percent): print(percent.text,'of people reviewed this site as',review.text,'.') print('The overall reviews for',website_name,'is',overall_review[-1], '({}/5) with a total number of'.format(website_rating), overall_review[0], 'reviews.') if __name__=='__main__': queryValidator()
3.203125
3
formulaic/materializers/arrow.py
CamDavidsonPilon/formulaic
0
12793253
from interface_meta import override from .pandas import PandasMaterializer class ArrowMaterializer(PandasMaterializer): REGISTRY_NAME = 'arrow' DEFAULT_FOR = ['pyarrow.lib.Table'] @override def _init(self, sparse=False): super()._init(sparse=sparse) self.__data_context = LazyArrowTableProxy(self.data) @override @property def data_context(self): return self.__data_context class LazyArrowTableProxy: def __init__(self, table): self.table = table self.column_names = set(self.table.column_names) self._cache = {} def __contains__(self, value): return value in self.column_names def __getitem__(self, key): if key not in self.column_names: raise KeyError(key) if key not in self._cache: self._cache[key] = self.table.column(key).to_pandas() return self._cache[key]
2.125
2
my_tsp/evaluation_metrics/loss.py
vmeta42/metaai
0
12793254
<filename>my_tsp/evaluation_metrics/loss.py import numpy as np import torch from torch import nn from ..utils.util import cal_cls_eva_thre DIV_CONSTANT = 1e-5 # 回归损失-均方方差的平方根 class RMSELoss(nn.Module): def __init__(self): super().__init__() self.mse = nn.MSELoss() def forward(self, yhat, y): return torch.sqrt(self.mse(yhat, y)) # 分类损失函数 class CLSLoss(nn.Module): def __init__(self): super().__init__() self.cls_criterion = nn.BCEWithLogitsLoss() def forward(self, cls_ypred, train_Y_labels, min_thre=12.6, max_thre=15.0): train_Y_cls_labels = torch.zeros(size=train_Y_labels.shape) # 将预测的值(回归)转换为二分类是否是异常的的标签 for i in range(train_Y_cls_labels.shape[0]): for j in range(train_Y_cls_labels.shape[1]): # 如果处于异常阈值范围内,label为1 if (train_Y_labels[i, j] <= min_thre) or (train_Y_labels[i, j] >= max_thre): train_Y_cls_labels[i, j] = 1 # 如果处于正常阈值范围内,label为0 elif (min_thre < train_Y_labels[i, j] < max_thre): train_Y_cls_labels[i, j] = 0 else: print('error!!! if语句判断情况没有考虑完全,请检查!!!!') train_Y_cls_labels[i, j] = 0 # 计算分类损失 cls_loss = self.cls_criterion(cls_ypred, train_Y_cls_labels) return cls_loss # 评估方法 def cal_cls_eval_loss(result_dict, min_thre=12.6, max_thre=15, penalty=1.2): rmse_loss = RMSELoss() total_reg_loss_penalty = 0 n_samples = 0 precision_list = [] recall_list = [] accuracy_list = [] f1_score_list = [] for key, values in result_dict.items(): train_seqs = values[0] label_seqs = values[1] pred_seqs = values[2] for i in range(len(label_seqs)): n_samples = n_samples + 1 # print('pred_seqs[i]:', pred_seqs[i]) loss = rmse_loss(torch.from_numpy(pred_seqs[i]), torch.from_numpy(label_seqs[i])).item() # print('loss:', loss) train_seq = train_seqs[i] label_seq = label_seqs[i] pred_seq = pred_seqs[i] # 判断label_seq是否处于异常阈值范围 # 输入训练序列没有故障状态 但是label_seq有故障状态 if (label_seq.min() <= min_thre or label_seq.max() >= max_thre): # if (label_seq.min() <= min_thre or label_seq.max() >= max_thre) and (train_seq.min() > min_thre and train_seq.max() < max_thre): cur_cls_thre, abnormal_index = cal_cls_eva_thre(pred_seq) # print('cur_cls_thre:', cur_cls_thre) TP = 0 FP = 0 TN = 0 FN = 0 for j in range(len(label_seq)): # (TP: 实际为故障,预测为故障) # 实际小于 最低阈值,预测也小于 最低阈值 if (label_seq[j] <= min_thre) and (pred_seq[j] <= cur_cls_thre): TP = TP + 1 # print('label_seq[j]:{}, pred_seq[j]:{} '.format(label_seq[j], pred_seq[j])) # 实际大于 最高阈值,预测也大于 最高阈值 elif (label_seq[j] >= max_thre) and (pred_seq[j] >= max_thre): TP = TP + 1 # print('label_seq[j]:{}, pred_seq[j]:{} '.format(label_seq[j], pred_seq[j])) # (TN: 实际为正常,预测为正常) # 实际处于 正常阈值,预测也处于 正常阈值 elif (min_thre < label_seq[j] < max_thre) and (cur_cls_thre < pred_seq[j] < max_thre): TN = TN + 1 # (FP: 实际为正常,预测为故障) # 实际处于 正常阈值,预测小于 最低阈值 或 大于最高阈值 elif (min_thre < label_seq[j] < max_thre) and \ ((pred_seq[j] <= cur_cls_thre) or (pred_seq[j] >= max_thre)): FP = FP + 1 # (FN: 实际为故障,预测为正常) # 实际大于 最高阈值,预测小于 最高阈值 elif (label_seq[j] >= max_thre) and (cur_cls_thre < pred_seq[j] < max_thre): FN = FN + 1 # 实际小于 最低阈值,预测大于 最低阈值 elif (label_seq[j] <= max_thre) and (cur_cls_thre < pred_seq[j] < max_thre): FN = FN + 1 else: print('出现错误,情况没有考虑完全,请检查!!!!!!!!!!') FN = FN + 1 # 得出混淆矩阵 计算各种评估指标 precision = float(TP/(TP+FP+DIV_CONSTANT)) recall = float(TP/(TP+FN+DIV_CONSTANT)) accuracy = float((TP+TN)/(TP+TN+FP+FN+DIV_CONSTANT)) f1_score = float(2.*(precision*recall)/(precision+recall+DIV_CONSTANT)) precision_list.append(precision) recall_list.append(recall) accuracy_list.append(accuracy) f1_score_list.append(f1_score) # print('TP:{}, FP:{}, TN:{}, FN:{}, precision:{}, recall:{}, accuracy:{}, f1:{}'. # format(TP, FP, TN, FN, precision, recall, accuracy, f1_score)) if precision < 0.8: total_reg_loss_penalty = total_reg_loss_penalty + penalty*loss else: total_reg_loss_penalty = total_reg_loss_penalty + loss else: # TODO: 真实值label故障点一个都没出现,但是预测错误 预测中出现故障点 total_reg_loss_penalty = total_reg_loss_penalty + loss return total_reg_loss_penalty / n_samples, \ sum(precision_list)/len(precision_list), \ sum(recall_list)/len(recall_list), \ sum(accuracy_list)/len(accuracy_list), \ sum(f1_score_list)/len(f1_score_list), class loss: def __init__(self): super(loss, self).__init__() def MSELoss(self, ypred, ytrue): mse_loss = nn.MSELoss(size_average=False) mse_loss_value = mse_loss(ypred, ytrue).item() return mse_loss_value def L1Loss(self, ypred, ytrue): l1_loss = nn.L1Loss(size_average=False) l1_loss_value = l1_loss(ypred, ytrue).item() return l1_loss_value def RSE(ypred, ytrue): rse = np.sqrt(np.square(ypred - ytrue).sum()) / np.sqrt(np.square(ytrue - ytrue.mean()).sum()) return rse def quantile_loss(ytrue, ypred, qs): ''' Quantile loss version 2 Args: ytrue (batch_size, output_horizon) ypred (batch_size, output_horizon, num_quantiles) ''' L = np.zeros_like(ytrue) for i, q in enumerate(qs): yq = ypred[:, :, i] diff = yq - ytrue L += np.max(q * diff, (q - 1) * diff) return L.mean() def SMAPE(ytrue, ypred): ytrue = np.array(ytrue).ravel() ypred = np.array(ypred).ravel() + 1e-4 mean_y = (ytrue + ypred) / 2. return np.mean(np.abs((ytrue - ypred) / mean_y)) def MAPE(ytrue, ypred): ytrue = np.array(ytrue).ravel() + 1e-4 ypred = np.array(ypred).ravel() return np.mean(np.abs((ytrue - ypred) / ytrue)) def gaussian_likelihood_loss(z, mu, sigma): ''' Gaussian Liklihood Loss Args: z (tensor): true observations, shape (num_ts, num_periods) mu (tensor): mean, shape (num_ts, num_periods) sigma (tensor): standard deviation, shape (num_ts, num_periods) likelihood: (2 pi sigma^2)^(-1/2) exp(-(z - mu)^2 / (2 sigma^2)) log likelihood: -1/2 * (log (2 pi) + 2 * log (sigma)) - (z - mu)^2 / (2 sigma^2) ''' negative_likelihood = torch.log(sigma + 1) + (z - mu) ** 2 / (2 * sigma ** 2) + 6 return negative_likelihood.mean() def negative_binomial_loss(ytrue, mu, alpha): ''' Negative Binomial Sample Args: ytrue (array like) mu (array like) alpha (array like) maximuze log l_{nb} = log Gamma(z + 1/alpha) - log Gamma(z + 1) - log Gamma(1 / alpha) - 1 / alpha * log (1 + alpha * mu) + z * log (alpha * mu / (1 + alpha * mu)) minimize loss = - log l_{nb} Note: torch.lgamma: log Gamma function ''' batch_size, seq_len = ytrue.size() likelihood = torch.lgamma(ytrue + 1. / alpha) - torch.lgamma(ytrue + 1) - torch.lgamma(1. / alpha) \ - 1. / alpha * torch.log(1 + alpha * mu) \ + ytrue * torch.log(alpha * mu / (1 + alpha * mu)) return - likelihood.mean()
2.4375
2
tests/test_server/test_grpc/test_init.py
Tomaz-Vieira/tiktorch
8
12793255
import json import os import threading import grpc from tiktorch.proto.inference_pb2 import Empty from tiktorch.proto.inference_pb2_grpc import FlightControlStub from tiktorch.server.grpc import serve from tiktorch.utils import wait def test_serving_on_random_port(tmpdir): conn_file_path = str(tmpdir / "conn.json") def _server(): serve("127.0.0.1", 0, connection_file_path=conn_file_path) srv_thread = threading.Thread(target=_server) srv_thread.start() wait(lambda: os.path.exists(conn_file_path)) with open(conn_file_path, "r") as conn_file: conn_data = json.load(conn_file) assert conn_data["addr"] == "127.0.0.1" assert conn_data["port"] > 0 addr, port = conn_data["addr"], conn_data["port"] chan = grpc.insecure_channel(f"{addr}:{port}") client = FlightControlStub(chan) result = client.Ping(Empty()) assert isinstance(result, Empty) client.Shutdown(Empty())
2.40625
2
CS303_Artifical-Intelligence/NCS/data/data_F12/Rename-Files.py
Eveneko/SUSTech-Courses
4
12793256
<reponame>Eveneko/SUSTech-Courses import os # get the folder name folder_name = os.path.dirname(__file__) # folder_name = input("Input the folder name:") # get all files name file_names = os.listdir(folder_name) print(file_names) for i, name in enumerate(file_names): old_file_name = folder_name + "/" + name # demo1: for http://www.pdfdo.com/pdf-to-image.aspx name1 = (name.split('_')[-1]).split('.')[0] new_file_name = folder_name + "/" + 'p' + name1 + '.png' # for recover demo1 # name1 = name.lower().replace('-', '_') # new_file_name = folder_name + "/" + 'name[1:-4] os.rename(old_file_name, old_file_name.replace('txt', 'csv'))
3.71875
4
app/db.py
vladkhard/learning_fastapi
0
12793257
import os import pymongo DB_NAME = os.getenv("DB_NAME") client = pymongo.MongoClient("mongodb://db:27017") db = client[DB_NAME]
1.953125
2
taiga/projects/migrations/0046_triggers_to_update_tags_colors.py
threefoldtech/Threefold-Circles
1
12793258
<filename>taiga/projects/migrations/0046_triggers_to_update_tags_colors.py # -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-06-07 06:19 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('projects', '0045_merge'), ('userstories', '0011_userstory_tribe_gig'), ('tasks', '0009_auto_20151104_1131'), ('issues', '0006_remove_issue_watchers'), ] operations = [ # Function: Reduce a multidimensional array only on its first level migrations.RunSQL( """ CREATE OR REPLACE FUNCTION public.reduce_dim(anyarray) RETURNS SETOF anyarray AS $function$ DECLARE s $1%TYPE; BEGIN IF $1 = '{}' THEN RETURN; END IF; FOREACH s SLICE 1 IN ARRAY $1 LOOP RETURN NEXT s; END LOOP; RETURN; END; $function$ LANGUAGE plpgsql IMMUTABLE; """ ), # Function: aggregates multi dimensional arrays migrations.RunSQL( """ DROP AGGREGATE IF EXISTS array_agg_mult (anyarray); CREATE AGGREGATE array_agg_mult (anyarray) ( SFUNC = array_cat ,STYPE = anyarray ,INITCOND = '{}' ); """ ), # Function: array_distinct migrations.RunSQL( """ CREATE OR REPLACE FUNCTION array_distinct(anyarray) RETURNS anyarray AS $$ SELECT ARRAY(SELECT DISTINCT unnest($1)) $$ LANGUAGE sql; """ ), # Rebuild the color tags so it's consisten in any project migrations.RunSQL( """ WITH tags_colors AS ( SELECT id project_id, reduce_dim(tags_colors) tags_colors FROM projects_project WHERE tags_colors != '{}' ), tags AS ( SELECT unnest(tags) tag, NULL color, project_id FROM userstories_userstory UNION SELECT unnest(tags) tag, NULL color, project_id FROM tasks_task UNION SELECT unnest(tags) tag, NULL color, project_id FROM issues_issue UNION SELECT unnest(tags) tag, NULL color, id project_id FROM projects_project ), rebuilt_tags_colors AS ( SELECT tags.project_id project_id, array_agg_mult(ARRAY[[tags.tag, tags_colors.tags_colors[2]]]) tags_colors FROM tags LEFT JOIN tags_colors ON tags_colors.project_id = tags.project_id AND tags_colors[1] = tags.tag GROUP BY tags.project_id ) UPDATE projects_project SET tags_colors = rebuilt_tags_colors.tags_colors FROM rebuilt_tags_colors WHERE rebuilt_tags_colors.project_id = projects_project.id; """ ), # Trigger for auto updating projects_project.tags_colors migrations.RunSQL( """ CREATE OR REPLACE FUNCTION update_project_tags_colors() RETURNS trigger AS $update_project_tags_colors$ DECLARE tags text[]; project_tags_colors text[]; tag_color text[]; project_tags text[]; tag text; project_id integer; BEGIN tags := NEW.tags::text[]; project_id := NEW.project_id::integer; project_tags := '{}'; -- Read project tags_colors into project_tags_colors SELECT projects_project.tags_colors INTO project_tags_colors FROM projects_project WHERE id = project_id; -- Extract just the project tags to project_tags_colors IF project_tags_colors != ARRAY[]::text[] THEN FOREACH tag_color SLICE 1 in ARRAY project_tags_colors LOOP project_tags := array_append(project_tags, tag_color[1]); END LOOP; END IF; -- Add to project_tags_colors the new tags IF tags IS NOT NULL THEN FOREACH tag in ARRAY tags LOOP IF tag != ALL(project_tags) THEN project_tags_colors := array_cat(project_tags_colors, ARRAY[ARRAY[tag, NULL]]); END IF; END LOOP; END IF; -- Save the result in the tags_colors column UPDATE projects_project SET tags_colors = project_tags_colors WHERE id = project_id; RETURN NULL; END; $update_project_tags_colors$ LANGUAGE plpgsql; """ ), # Execute trigger after user_story update migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_userstory_update ON userstories_userstory; CREATE TRIGGER update_project_tags_colors_on_userstory_update AFTER UPDATE ON userstories_userstory FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), # Execute trigger after user_story insert migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_userstory_insert ON userstories_userstory; CREATE TRIGGER update_project_tags_colors_on_userstory_insert AFTER INSERT ON userstories_userstory FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), # Execute trigger after task update migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_task_update ON tasks_task; CREATE TRIGGER update_project_tags_colors_on_task_update AFTER UPDATE ON tasks_task FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), # Execute trigger after task insert migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_task_insert ON tasks_task; CREATE TRIGGER update_project_tags_colors_on_task_insert AFTER INSERT ON tasks_task FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), # Execute trigger after issue update migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_issue_update ON issues_issue; CREATE TRIGGER update_project_tags_colors_on_issue_update AFTER UPDATE ON issues_issue FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), # Execute trigger after issue insert migrations.RunSQL( """ DROP TRIGGER IF EXISTS update_project_tags_colors_on_issue_insert ON issues_issue; CREATE TRIGGER update_project_tags_colors_on_issue_insert AFTER INSERT ON issues_issue FOR EACH ROW EXECUTE PROCEDURE update_project_tags_colors(); """ ), ]
2.03125
2
src/algorithms/number_theory/P003_trial_division/solution_01.py
lakshmikanth-tesla/ProgrammingProblems
1
12793259
import logging import math """ 1. Note - Loop from 2 till Square Root of N and keep dividing N at every step. 2. Optimisation(s) - Apart from 2, only ODD numbers are tested for divisiblity. - Only numbers upto SquareRoot(n) are tested for divisibility. 3. Limitation(s) - Do not try with numbers which has more than 15-digit prime factors. """ def prime_factors_using_trial_division(n): """Returns a list of all prime prime_factors of n""" prime_factors = [] # Test for 2 separately so that only ODD numbers can be tested in the loop while n % 2 == 0: factor = 2 prime_factors.append(factor) n = n // 2 # Test only for ODD numbers starting with 3 for i in xrange(3, int(math.sqrt(n)) + 1, 2): # logging.debug("i = {0}".format(i)) while n % i == 0: factor = i prime_factors.append(factor) n = n // i logging.debug("Factor = {0}, N = {1}".format(i, n)) # All factors have been found if N is reduced to 0. if n == 1: break # If no factor has been found then N is PRIME and the only prime factor of itself. if n > 1: prime_factors.append(n) return prime_factors
4.3125
4
preprocesss_lastfm_top50.py
mimbres/train_lastfm
1
12793260
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 14 14:11:07 2019 @author: mimbres """ import pandas as pd import numpy as np from tqdm import trange LASTFM_FILEPATH = './data/final_mapping.json' OUTPUT_FILEPATH1 = './data/lastfm_top50_tagmtx.npy' OUTPUT_FILEPATH2 = './data/lastfm_top50_featmtx.npy' OUTPUT_FILEPATH3 = './data/lastfm_top50_track_ids.npy' OUTPUT_FILEPATH4 = './data/lastfm_top50_tag_avail_cnt.npy' SAVED_SCALER_FILEPATH = './data/std_scaler.sav' TOP50A = ['rock', 'pop', 'alternative', 'indie', 'favorites', 'female vocalists', 'Love', 'alternative rock', 'electronic', 'beautiful', 'jazz', '00s', 'singer-songwriter', 'metal', 'male vocalists', 'Awesome', 'american', 'Mellow', 'classic rock', '90s', 'soul', 'chillout', 'punk', '80s', 'chill', 'indie rock', 'folk', 'dance', 'instrumental', 'hard rock', 'oldies', 'seen live', 'Favorite', 'country', 'blues', 'guitar', 'cool', 'british', 'acoustic', 'electronica', '70s', 'Favourites', 'Hip-Hop', 'experimental', 'easy listening', 'female vocalist', 'ambient', 'punk rock', 'funk', 'hardcore'] _dict = {'major': 1, 'minor': 0} # Load .json file... df=pd.read_json(LASTFM_FILEPATH) num_items = len(df) # Shuffle (we can split train/test later) df = df.sample(frac=1).reset_index(drop=True) # Create an empty result matrix tag_mtx = np.zeros((num_items,50)) feat_mtx = np.zeros((num_items,29)) track_ids = np.ndarray((num_items,), dtype=object) tag_avail_cnt = np.zeros((num_items,)) for i in trange(num_items): item = np.asarray(df[0][i]) # Get one item tag_cnt = 0 for tag in TOP50A: # Check availability of each tag in this item _idx = np.where(tag == item)[0] if len(_idx) is not 0: # If top50-tag available... tag_cnt += 1 column_idx = _idx[0] #print(i, item[column_idx,:]) tag_mtx[i,TOP50A.index(tag)] = item[column_idx,1].astype(np.float) tag_avail_cnt[i] = tag_cnt track_ids[i] = df[1][i][0] if tag_cnt is not 0: _feat = np.asarray(df[1][i]) _feat[20] = _dict.get(_feat[20]) # {'major', 'minor'} --> {0,1} _feat[5] = _feat[5][:4] # '2005-01-01' --> '2005' feat_mtx[i,:] = _feat[[4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]] print('max available tags =', np.max(tag_avail_cnt), '\n', 'avg available tags =', np.mean(tag_avail_cnt[np.where(tag_avail_cnt!=0)]), '\n', 'items with top50 unavailable =', len(np.where(tag_avail_cnt==0)[0]), '\n', 'items with top50 available =', len(np.where(tag_avail_cnt!=0)[0]) ) ''' max available tags = 31.0 avg available tags = 4.705301775916366 items with top50 unavailable = 38595 items with top50 available = 123204 ''' # Reduce top50 unavailable items tag_mtx = tag_mtx[tag_avail_cnt!=0,:] feat_mtx = feat_mtx[tag_avail_cnt!=0,:] track_ids = track_ids[tag_avail_cnt!=0] # Feature normalization import pickle #from sklearn.preprocessing import StandardScaler scaler = pickle.load(open(SAVED_SCALER_FILEPATH, 'rb')) feat_mtx_new = scaler.fit_transform(feat_mtx) feat_mtx_new[:,15] = feat_mtx[:,15] # Save results as .npy np.save(OUTPUT_FILEPATH1, tag_mtx.astype(np.int8)) #np.save(OUTPUT_FILEPATH2, feat_mtx.astype(np.int8)) np.save(OUTPUT_FILEPATH2, feat_mtx_new.astype(np.float32)) np.save(OUTPUT_FILEPATH3, track_ids) np.save(OUTPUT_FILEPATH4, tag_avail_cnt.astype(np.int8))
2.125
2
menu_system.py
frazermills/Conways-Game-of-life
2
12793261
import pygame class StartMenu: def __init__(self, screen, font, text_colour, button_colour): self.__screen = screen self.__font = font self.__text_colour = text_colour self.__button_colour = button_colour self.__click = False self.__button_width = 150 self.__button_height = 75 self.__option = None self.__buttons_xy = None self.__button_objects = None self.__button_command = ["start game", "iterative mode", "quit game"] self.__title = "Conway's Game of Life - by <NAME>" @property def Option(self): return self.__option def setup(self): pygame.display.set_caption(f"{self.__title}") self.__screen.fill((0,0,0)) def draw_text(self, text, x, y): textobj = self.__font.render(text, 1, self.__text_colour) textrect = textobj.get_rect() textrect.center = (x, y) self.__screen.blit(textobj, textrect) def get_button_objects(self): self.__buttons_xy = [ ((self.__screen.get_width() // 2) - (self.__button_width // 2), (self.__screen.get_width() // 2) - i) for i in reversed(range(-100, 200, 100)) ] self.__button_objects = { f"button {i}": pygame.Rect(self.__buttons_xy[i][0], self.__buttons_xy[i][1], self.__button_width, self.__button_height) for i, button in enumerate(self.__buttons_xy) } def check_collisions(self): mousex, mousey = pygame.mouse.get_pos() if self.__button_objects[f"button 0"].collidepoint((mousex, mousey)): if self.__click: self.__option = self.__button_command[0] elif self.__button_objects[f"button 1"].collidepoint((mousex, mousey)): if self.__click: self.__option = self.__button_command[1] elif self.__button_objects[f"button 2"].collidepoint((mousex, mousey)): if self.__click: self.__option = self.__button_command[2] def display_buttons(self): for i, button_object in enumerate(self.__button_objects): pygame.draw.rect(self.__screen, self.__button_colour, self.__button_objects[button_object]) self.draw_text(f"{self.__title}", self.__screen.get_width() // 2, self.__screen.get_height() // 4) self.draw_text(f"{self.__button_command[0]}", self.__buttons_xy[0][0] + 75, self.__buttons_xy[0][1] + 35) self.draw_text(f"{self.__button_command[1]}", self.__buttons_xy[1][0] + 75, self.__buttons_xy[1][1] + 35) self.draw_text(f"{self.__button_command[2]}", self.__buttons_xy[2][0] + 75, self.__buttons_xy[2][1] + 35) pygame.display.update() def is_clicked(self): self.__click = False for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.MOUSEBUTTONDOWN: if event.button == True: self.__click = True
3.453125
3
misc/question2.py
edwintcloud/algorithmPractice
1
12793262
def iterative_quicksort(arr, begin=0, end=None, counter=0): '''iterative_quicksort is a recursive quicksorting algorithm''' # initialize values on first iteration if end is None: end = len(arr)-1 # sort until begin is greater than or equal to end if begin < end: # starting index, counts size of group lesser than pivot i = begin # iterate from begin to end, swaping elements to correct side of pivot(end) for j in range(begin, end): counter += 1 if arr[j] <= arr[end]: arr[i], arr[j] = arr[j], arr[i] i += 1 # smaller elements are in range [begin..i] (inclusive) # larger elements are in range [i+1..end-1] # swap first element in group greater than pivot with the pivot arr[i], arr[end] = arr[end], arr[i] # now pivot is at index i+1 # smaller elements are in range [begin..i] # larger elements are in range [i+2..end] # sort items before partition and after partition counter += iterative_quicksort(arr, begin, i-1) counter += iterative_quicksort(arr, i+1, end) # return total number of iterations it took to sort return counter ## TEST ## arr = [7, 10, 4, 3, 20, 15, 14, 13, 12, 10, 9, 8, 7, 6, 4, 3, 1, 4, 6, 82, 81, 1, 19, 24] arr = arr + arr print("Numbers:", arr) counter = iterative_quicksort(arr) print("Iterations:", counter) print("Sorted:", arr)
4.28125
4
test/__init__.py
theophane-droid/stix2arango
1
12793263
# ensure that we use the current version of the package import sys import os sys.path.insert(0, '/app') from stix2 import IPv4Address, AutonomousSystem, Identity from stix2 import Relationship, Incident, IPv6Address from pyArango.connection import * from pyArango.theExceptions import CreationError from stix2arango.feed import Feed, vaccum from stix2arango.request import Request from stix2arango.storage import GROUPED, GROUPED_BY_MONTH, TIME_BASED, STATIC from stix2arango import stix_modifiers from datetime import datetime, timedelta from test import postgresql from test import request from test import storage from test import utils def get_database(): password = <PASSWORD>['<PASSWORD>'] url = os.environ['ARANGO_URL'] db_conn = Connection(username='root', password=password, arangoURL=url) try: database = db_conn.createDatabase('stix2arango') except CreationError: database = db_conn['stix2arango'] return database if __name__ == "__main__": db_conn = get_database() print('\n\n> Inserting data') # test with time-base paradigm autonomous_system = AutonomousSystem(number=1234, name='Google') ipv4 = IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system.id]) identity = Identity(name='<NAME>', identity_class='individual') relation = Relationship(source_ref=identity.id, target_ref=ipv4.id, relationship_type='attributed-to') ipv4_net = IPv4Address(value='172.16.17.32/24', belongs_to_refs=[autonomous_system.id]) ipv6 = IPv6Address(value='2001:0db8:85a3:0000:0000:8a2e:0370:7334', belongs_to_refs=[autonomous_system.id]) feed = Feed(db_conn, 'timefeed', tags=['paynoattention', 'time_based'], storage_paradigm=TIME_BASED) feed.insert_stix_object_in_arango([ipv4, autonomous_system, identity, relation, ipv4_net, ipv6]) # test with grouped paradigm autonomous_system = AutonomousSystem(number=1234, name='Google') ipv4 = IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system.id]) identity = Identity(name='<NAME>', identity_class='individual') relation = Relationship(source_ref=identity.id, target_ref=ipv4.id, relationship_type='attributed-to') feed = Feed(db_conn, 'groupedfeed', tags=['paynoattention', 'grouped'], storage_paradigm=GROUPED) feed.insert_stix_object_in_arango([ipv4, autonomous_system, identity, relation]) # test with grouped-by-month paradigm feed = Feed(db_conn, 'grouped_by_month_feed', tags=['paynoattention', 'dogstory'], storage_paradigm=GROUPED_BY_MONTH) identity = Identity(name='<NAME>', identity_class='individual') course_of_action = Incident(name='INC 1078', description='My dog barked on neighbors') relation = Relationship(source_ref=course_of_action.id, target_ref=identity.id, relationship_type='attributed-to') feed.insert_stix_object_in_arango([identity, course_of_action, relation]) feeds = Feed.get_last_feeds(db_conn, datetime(2022, 12, 12)) print('OK') print('\n\n> Getting data') request = Request(db_conn, datetime.now()) results = request.request(" [ipv4-addr:x_ip = '192.168.127.12' ] ", tags=['time_based'], max_depth=1) assert(len(results) == 5) request = Request(db_conn, datetime.now()) results = request.request("""[ identity:name = 'My grand mother']""", tags=['time_based']) assert(len(results) == 3) feed = Feed(db_conn, 'patterntestfeed', tags=['patterntestfeed'], storage_paradigm=TIME_BASED, ) ipv4 = IPv4Address(value='172.16.58.3/24') feed.insert_stix_object_in_arango([ipv4]) request = Request(db_conn, datetime.now()) results = request.request("[ipv4-addr:x_ip='172.16.31.10']", tags=['patterntestfeed']) assert(len(results) == 1) results = request.request("[ malware:name = 'Adware' ]", tags=['pattern']) assert(len(results) == 0) print('OK') print('\n\n> Vaccum test') feed = Feed(db_conn, 'vaccumentest', tags=['vaccum'], storage_paradigm=TIME_BASED, vaccum_date=datetime.fromtimestamp(10)) ipv4 = IPv4Address(value='172.16.58.3/24') feed.insert_stix_object_in_arango([ipv4]) vaccum(db_conn) feeds = Feed.get_last_feeds(db_conn, datetime(2022, 12, 12)) for feed in feeds: if feed.feed_name == 'vaccumentest': raise Exception('Vaccum failed') print('OK') print('\n\n> Test index optimisation patch') r = '[ipv4-addr:value = "mushroom" OR ipv4-addr:net != "red hot"]' request = Request(db_conn, datetime.now()) results = request.request(r) assert(len(results)) print('OK') print('\n\n> Test patch #20') feed = Feed(db_conn, 'patch20', tags=['patch20'], storage_paradigm=TIME_BASED) ipv4 = IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system.id]) identity = Identity(name='<NAME>', identity_class='individual') feed.insert_stix_object_in_arango([ipv4, identity]) autonomous_system = AutonomousSystem(number=1234, name='Google') ipv4 = IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system.id]) feed.insert_stix_object_in_arango([ipv4, autonomous_system]) feeds = Feed.get_last_feeds(db_conn, datetime.now()) for f in feeds: if f.feed_name == 'patch20': assert(f.inserted_stix_types == ['ipv4-addr', 'identity', 'autonomous-system']) print('OK') print('\n\n> Test feature static paradigm #21') feed = Feed(db_conn, 'staticfeed', storage_paradigm=STATIC) feed.insert_stix_object_in_arango([ipv4]) col_name = feed.storage_paradigm.get_collection_name(feed) assert(db_conn[col_name].count() == 1) feed = Feed(db_conn, 'staticfeed', storage_paradigm=STATIC) feed.insert_stix_object_in_arango([identity, autonomous_system]) assert(db_conn[col_name].count() == 2) print('OK') print('\n\n> Test grouped search before') request = Request(db_conn, datetime.now() - timedelta(days=1000)) r = request.request("[identity:name = '<NAME>']", tags=['grouped']) assert(len(r)) print('OK')
1.953125
2
pysweep/equations/checker.py
anthony-walker/pysweep
1
12793264
#Programmer: <NAME> #This file contains a test step function for debugging the swept rule import numpy, h5py, mpi4py.MPI as MPI try: import pycuda.driver as cuda from pycuda.compiler import SourceModule except Exception as e: pass def step(state,iidx,arrayTimeIndex,globalTimeStep): """This is the method that will be called by the swept solver. state - 4D numpy array(t,v,x,y (v is variables length)) iidx - an iterable of indexs arrayTimeIndex - the current time step globalTimeStep - a step counter that allows implementation of the scheme """ if scheme: checkerOneStep(state,iidx,arrayTimeIndex,globalTimeStep) else: checkerTwoStep(state,iidx,arrayTimeIndex,globalTimeStep) def checkerOneStep(state,iidx,arrayTimeIndex,globalTimeStep): """Use this function as the one step checker pattern""" vs = slice(0,state.shape[1],1) for idx,idy in iidx: ntidx = (arrayTimeIndex+1,vs,idx,idy) #next step index state[ntidx] = state[arrayTimeIndex,vs,idx+1,idy] state[ntidx] += state[arrayTimeIndex,vs,idx-1,idy] state[ntidx] += state[arrayTimeIndex,vs,idx,idy+1] state[ntidx] += state[arrayTimeIndex,vs,idx,idy-1] state[ntidx] /= 4 def checkerTwoStep(state,iidx,arrayTimeIndex,globalTimeStep): """Use this function as the two step checker pattern""" vs = slice(0,state.shape[1],1) for idx,idy in iidx: ntidx = (arrayTimeIndex+1,vs,idx,idy) #next step index state[ntidx] = state[arrayTimeIndex,vs,idx+1,idy] state[ntidx] += state[arrayTimeIndex,vs,idx-1,idy] state[ntidx] += state[arrayTimeIndex,vs,idx,idy+1] state[ntidx] += state[arrayTimeIndex,vs,idx,idy-1] state[ntidx] /= 4 def createInitialConditions(nv,nx,ny,filename="checkerConditions.hdf5"): """Use this function to create a set of initial conditions in an hdf5 file.""" comm = MPI.COMM_WORLD data = numpy.zeros((nv,nx,ny)) for i in range(0,nx,2): for j in range(0,ny,2): data[:,i,j]=1 for i in range(1,nx,2): for j in range(1,ny,2): data[:,i,j]=1 with h5py.File(filename,"w",driver="mpio",comm=comm) as hf: hf.create_dataset("data",data.shape,data=data) return filename def set_globals(*args,source_mod=None): """Use this function to set cpu global variables""" global dt,dx,dy,scheme #true for one step t0,tf,dt,dx,dy,scheme = args if source_mod is not None: keys = "<KEY>" nargs = args[2:] fc = lambda x:numpy.float64(x) for i,key in enumerate(keys): ckey,_ = source_mod.get_global(key) cuda.memcpy_htod(ckey,fc(nargs[i])) ckey,_ = source_mod.get_global("SCHEME") cuda.memcpy_htod(ckey,bytes(scheme))
2.421875
2
tests/test_reference.py
uwcirg/true_nth_usa_portal
3
12793265
<gh_stars>1-10 """Unit test module for Reference class""" from portal.models.intervention import Intervention from portal.models.questionnaire_bank import QuestionnaireBank from portal.models.reference import Reference from portal.system_uri import US_NPI from tests import TEST_USER_ID, TestCase class TestReference(TestCase): def test_clinician(self): patient = Reference.clinician(TEST_USER_ID) assert patient.as_fhir()['display'] == self.test_user.display_name def test_clinician_parse(self): ref = {'reference': f'api/clinician/{TEST_USER_ID}'} parsed = Reference.parse(ref) assert self.test_user == parsed def test_patient(self): patient = Reference.patient(TEST_USER_ID) assert patient.as_fhir()['display'] == self.test_user.display_name def test_organization(self): org = Reference.organization(0) assert org.as_fhir()['display'] == 'none of the above' def test_org_w_identifier(self): o = self.prep_org_w_identifier() o_ref = Reference.organization(o.id) assert o_ref.as_fhir()['display'] == 'test org' assert (o_ref.as_fhir()['reference'] == 'api/organization/{}'.format(o.id)) def test_org_w_identifier_parse(self): o = self.prep_org_w_identifier() ref = {'reference': 'api/organization/123-45?system={}'.format(US_NPI)} parsed = Reference.parse(ref) assert o == parsed def test_questionnaire(self): q = self.add_questionnaire('epic1000') q_ref = Reference.questionnaire(q.name) assert q_ref.as_fhir()['display'] == 'epic1000' def test_questionnaire_parse(self): q = self.add_questionnaire('epiclife') ref = { 'reference': 'api/questionnaire/{0.value}?system={0.system}'.format( q.identifiers[0])} parsed = Reference.parse(ref) assert q == parsed def test_questionnaire_bank(self): q = QuestionnaireBank(name='testy') q_ref = Reference.questionnaire_bank(q.name) assert q_ref.as_fhir()['display'] == 'testy' def test_questionnaire_response(self): qnr_id = { "system": "https://ae-eproms-test.cirg.washington.edu", "value": "588.0"} qnr_ref = Reference.questionnaire_response(qnr_id) assert qnr_ref.as_fhir() == { 'reference': f"{qnr_id['system']}/QuestionnaireResponse/{qnr_id['value']}" } def test_qnr_parse(self): from tests.test_assessment_status import ( mock_eproms_questionnairebanks, mock_qr ) doc_id = '2084.0' # boilerplate necessary to persist a QNR self.bless_with_basics(make_patient=True) mock_eproms_questionnairebanks() qb = QuestionnaireBank.query.filter( QuestionnaireBank.name == 'localized').one() mock_qr('epic26', doc_id=doc_id, qb=qb) # confirm [system]/QuestionnaireResponse/[value] pulls # the referenced object qnr_reference = ( "https://stg-ae.us.truenth.org/eproms-demo" f"/QuestionnaireResponse/{doc_id}") ref = {'Reference': qnr_reference} parsed = Reference.parse(ref) assert parsed.document['identifier']['value'] == doc_id def test_intervention(self): i = Intervention.query.filter_by(name='self_management').one() i_ref = Reference.intervention(i.id) assert i_ref.as_fhir()['display'] == 'self_management' assert (i_ref.as_fhir()['reference'] == 'api/intervention/self_management') def test_intervention_parse(self): ref = {'reference': 'api/intervention/self_management'} i = Reference.parse(ref) assert i.name == 'self_management' def test_practitioner(self): p = self.add_practitioner() p_ref = Reference.practitioner(p.id) assert p_ref.as_fhir()['display'] == 'first last' assert (p_ref.as_fhir()['reference'] == 'api/practitioner/12345?system={}'.format(US_NPI)) def test_practitioner_parse(self): p = self.add_practitioner() ref = {'reference': 'api/practitioner/12345?system={}'.format(US_NPI)} parsed = Reference.parse(ref) assert p == parsed
2.359375
2
src/ytdl2rss.py
kevinoid/ytdl2rss
1
12793266
<reponame>kevinoid/ytdl2rss<gh_stars>1-10 #!/usr/bin/env python3 """Create podcast RSS from youtube-dl info JSON.""" import argparse import codecs import io import json import os import sys import time import traceback from datetime import datetime from email.utils import formatdate from xml.sax.saxutils import escape, quoteattr # nosec try: from urllib.parse import urljoin, urlparse from urllib.request import pathname2url, url2pathname except ImportError: from urllib import pathname2url, url2pathname from urlparse import urljoin, urlparse __version__ = '0.1.0' _JSON_PATH_KEY = object() _VERSION_MESSAGE = ( '%(prog)s ' + __version__ + ''' Copyright 2020 <NAME> <<EMAIL>> %(prog) is free and unencumbered software released into the public domain. %(prog) is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Unlicense for details.''' ) def _resolve_path(path, src_path, dst_path, dst_base): """Resolve a path in src_path to a URL in dst_path served at dst_base.""" if not path: return path src_dir = os.path.dirname(src_path) cur_path = os.path.join(src_dir, path) dst_dir = os.path.dirname(dst_path) rel_path = os.path.relpath(cur_path, dst_dir) rel_url = pathname2url(rel_path) return urljoin(dst_base, rel_url) def _resolve_url(url, src_path, dst_path, dst_base): """Resolve a URL in src_path to a URL in dst_path served at dst_base.""" url_parts = urlparse(url) if url_parts.scheme: # url is absolute return url if url_parts.netloc: # url is scheme-relative return urljoin(dst_base, url) # Resolve url from containing file url_path = url2pathname(url) return _resolve_path(url_path, src_path, dst_path, dst_base) def _ymd_to_rfc2822(datestr): """Convert a date in YYYYMMDD format to RFC 2822 for RSS.""" tt = time.strptime(datestr, '%Y%m%d') ts = time.mktime(tt) # Convert to UTC so formatted date is midnight with -0000 (unknown) TZ. # https://stackoverflow.com/a/19238551 offset = datetime.fromtimestamp(ts) - datetime.utcfromtimestamp(ts) return formatdate(ts + offset.total_seconds()) def get_entry_media_type(entry): """Get media type (i.e. MIME type) from youtube-dl JSON entry info.""" ext = entry['ext'] acodec = entry.get('acodec') if acodec == 'none': acodec = None vcodec = entry.get('vcodec') if vcodec == 'none': vcodec = None media_type = 'audio/' if acodec and not vcodec else 'video/' if ext == '3g2': media_type += '3gpp2' elif ext == '3gp': media_type += '3gpp' elif ext == 'avi': media_type = 'video/vnd.avi' elif ext in ( 'f4a', 'f4b', 'f4p', 'm4a', 'm4b', 'm4p', 'm4r', ): # These extensions are intended for audio. # If codecs are not known, assume it is audio. if not acodec and not vcodec: media_type = 'audio/mp4' else: media_type += 'mp4' elif ext in ('f4v', 'm4v'): media_type += 'mp4' elif ext == 'flv': media_type = 'video/x-flv' elif ext == 'gif': media_type = 'image/gif' elif ext in ('mk3d', 'mks', 'mkv'): media_type += 'x-matroska' elif ext == 'mka': # This extension is intended for audio. # If codecs are not known, assume it is audio. if not acodec and not vcodec: media_type = 'audio/' media_type += 'x-matroska' elif ext == 'mp3': media_type = 'audio/mpeg' elif ext == 'ogg': # Xiph recommends this extension for (vorbis) audio and ogv for video. # If video codec not known, assume it is audio. if not vcodec: media_type = 'audio/' media_type += 'ogg' elif ext == 'opus': # Note: ext: opus could be used to refer to "raw" audio/opus. # However, this has not been observed on ytdl-supported sites. # Since Xiph recommends .opus for Opus-in-Ogg # https://wiki.xiph.org/index.php/MIMETypesCodecs # and the ytdl extractor for media.ccc.de uses it this way, # unconditionally convert to ogg. # If uses of audio/opus are found, consider how to differentiate. ext = 'ogg' if acodec is None: acodec = 'opus' media_type = 'audio/ogg' elif ext == 'ogv': media_type += 'ogg' elif ext == 'wav': media_type = 'audio/vnd.wave' else: media_type += ext # Add codecs parameter from https://tools.ietf.org/html/rfc6381 if (acodec or vcodec) and ext not in ('flv', 'gif', 'mp3'): # Some extractors (e.g. media.ccc.de) use vcodec: h264 # Section 3.3 of RFC 6381 specifies codecs must be a FOURCC if vcodec == 'h264': vcodec = 'avc1' # Note: Add space after ; as in RFC 6381 section 3.6 Examples media_type += '; codecs=' if acodec and vcodec: # Note: Add space after , as in RFC 6381 section 3.6 Examples # TODO: Apply encoding from RFC 2231 if required, see examples # in RFC 6381 section 3.1 media_type += '"' + vcodec + ', ' + acodec + '"' else: media_type += acodec or vcodec return media_type def entry_to_rss(entry, rss, base=None, indent=None): """Convert youtube-dl entry info object to podcast RSS.""" if indent is None: indent2 = '' indent3 = '' eol = '' else: indent2 = indent * 2 indent3 = indent * 3 eol = '\n' json_path = entry[_JSON_PATH_KEY] rss.write(indent2) rss.write('<item>') rss.write(eol) webpage_url = entry.get('webpage_url') if webpage_url: rss.write(indent3) rss.write('<guid isPermaLink="true">') rss.write(escape(webpage_url)) rss.write('</guid>') rss.write(eol) else: rss.write(indent3) rss.write('<guid>') rss.write(escape(entry['id'])) rss.write('</guid>') rss.write(eol) title = entry.get('title') if title is not None: rss.write(indent3) rss.write('<title>') rss.write(escape(title)) rss.write('</title>') rss.write(eol) upload_date = entry.get('upload_date') if upload_date is not None: rss.write(indent3) rss.write('<pubDate>') rss.write(_ymd_to_rfc2822(upload_date)) rss.write('</pubDate>') rss.write(eol) filename = entry['_filename'] fileurl = _resolve_path(filename, json_path, rss.name, base) filesize = entry.get('filesize') media_type = get_entry_media_type(entry) rss.write(indent3) rss.write('<enclosure') if media_type is not None: rss.write(' type=') rss.write(quoteattr(media_type)) if filesize is not None: rss.write(' length=') rss.write(quoteattr(str(filesize))) rss.write(' url=') rss.write(quoteattr(fileurl)) rss.write('/>') rss.write(eol) thumbnail = entry.get('thumbnail') if thumbnail is not None: thumbnail = _resolve_url(thumbnail, json_path, rss.name, base) rss.write(indent3) rss.write('<itunes:image href=') rss.write(quoteattr(thumbnail)) rss.write('/>') rss.write(eol) duration = entry['duration'] if duration is not None: rss.write(indent3) rss.write('<itunes:duration>') rss.write(str(duration)) rss.write('</itunes:duration>') rss.write(eol) age_limit = entry.get('age_limit') if age_limit is not None: rss.write(indent3) rss.write('<itunes:explicit>') # Note: Spotify wants yes/no/clean for item, yes/clean for channel, # Google wants yes or absent, Apple wants true/false, # W3C Feed Validator wants yes/no/clean rss.write('yes' if age_limit > 0 else 'clean') rss.write('</itunes:explicit>') rss.write(eol) # TODO: <itunes:order> from autonumber (not in .info.json) # or playlist_index (may not be relevant/sequential for single file) # or sorted order? description = entry.get('description') if description is not None: rss.write(indent3) rss.write('<description>') rss.write(escape(description)) rss.write('</description>') rss.write(eol) rss.write(indent2) rss.write('</item>') rss.write(eol) def playlist_to_rss(playlist, rss, base=None, indent=None): """ Convert youtube-dl playlist info object to podcast RSS. Playlist is expected to follow the schema defined in https://github.com/ytdl-org/youtube-dl/pull/21822 Values which are null or missing will be omitted from RSS output where possible. Attempts to comply with guidelines from: https://help.apple.com/itc/podcasts_connect/#/itcb54353390 https://support.google.com/podcast-publishers/answer/9476656 https://podcasters.spotify.com/terms/Spotify_Podcast_Delivery_Specification_v1.6.pdf https://validator.w3.org/feed/ """ if indent is None: indent1 = '' indent2 = '' indent3 = '' eol = '' else: indent1 = indent indent2 = indent * 2 indent3 = indent * 3 eol = '\n' json_path = playlist.get(_JSON_PATH_KEY) rss.write( '<rss version="2.0"' + ' xmlns:atom="http://www.w3.org/2005/Atom"' + ' xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd"' + '>' ) rss.write(eol) rss.write(indent1) rss.write('<channel>') rss.write(eol) title = playlist.get('title') if title is not None: rss.write(indent2) rss.write('<title>') rss.write(escape(title)) rss.write('</title>') rss.write(eol) # Not produced by youtube-dl: description = playlist.get('description') if description is not None: rss.write(indent2) rss.write('<description>') rss.write(escape(description)) rss.write('</description>') rss.write(eol) uploader = playlist.get('uploader') if uploader is not None: rss.write(indent2) rss.write('<itunes:author>') rss.write(escape(uploader)) rss.write('</itunes:author>') rss.write(eol) webpage_url = playlist.get('webpage_url') if webpage_url is not None: rss.write(indent2) rss.write('<link>') rss.write(escape(webpage_url)) rss.write('</link>') rss.write(eol) upload_date = playlist.get('upload_date') if upload_date is None: upload_date = max( entry.get('upload_date') for entry in playlist['entries'] if entry ) if upload_date is not None: rss.write(indent2) rss.write('<pubDate>') rss.write(_ymd_to_rfc2822(upload_date)) rss.write('</pubDate>') rss.write(eol) # Not produced by youtube-dl: # https://github.com/ytdl-org/youtube-dl/issues/16130 thumbnail = playlist.get('thumbnail') if thumbnail is not None: thumbnail = _resolve_url(thumbnail, json_path, rss.name, base) rss.write(indent2) rss.write('<image>') rss.write(eol) rss.write(indent3) rss.write('<url>') rss.write(escape(thumbnail)) rss.write('</url>') rss.write(eol) # "Note, in practice the image <title> and <link> should have the # same value as the channel's <title> and <link>." # https://www.rssboard.org/rss-specification#ltimagegtSubelementOfLtchannelgt if title is not None: rss.write(indent3) rss.write('<title>') rss.write(escape(title)) rss.write('</title>') rss.write(eol) if webpage_url is not None: rss.write(indent3) rss.write('<link>') rss.write(escape(webpage_url)) rss.write('</link>') rss.write(eol) rss.write(indent2) rss.write('</image>') rss.write(eol) # Apple instructs podcasters to use <itunes:image>, doesn't document # standardized <image>. Include both. rss.write(indent2) rss.write('<itunes:image href=') rss.write(quoteattr(thumbnail)) rss.write('/>') rss.write(eol) age_limits = [entry.get('age_limit') for entry in playlist['entries']] if age_limits and None not in age_limits: rss.write(indent2) rss.write('<itunes:explicit>') # Note: Spotify wants yes/no/clean for item, yes/clean for channel, # Google wants yes or absent, Apple wants true/false, # W3C Feed Validator wants yes/no/clean rss.write('yes' if max(age_limits) > 0 else 'clean') rss.write('</itunes:explicit>') rss.write(eol) # Provide self link, as recommended # https://validator.w3.org/feed/docs/warning/MissingAtomSelfLink.html if base: rss.write(indent2) rss.write('<atom:link rel="self" type="application/rss+xml" href=') rss.write(quoteattr(base)) rss.write('/>') rss.write(eol) rss.write(indent2) rss.write('<generator>') rss.write(escape(os.path.basename(__file__) + ' ' + __version__)) rss.write('</generator>') rss.write(eol) for entry in playlist['entries']: entry_to_rss(entry, rss, base=base, indent=indent) rss.write(indent1) rss.write('</channel>') rss.write(eol) rss.write('</rss>\n') def _load_json(json_path): """Load JSON from a file with a given path.""" # Note: Binary so load can detect encoding (as in Section 3 of RFC 4627) with open(json_path, 'rb') as json_file: try: return json.load(json_file) except Exception as ex: if sys.version_info[0] >= 3: ex2 = Exception('Error loading ' + json_path) exec('raise ex2 from ex') # nosec else: ex2 = Exception('Error loading ' + json_path + ': ' + str(ex)) ex2.__cause__ = ex raise ex2 def entries_to_playlist(entries): """Combine youtube-dl entries into a playlist with common metadata.""" # entry playlist metadata keys keys = { 'playlist_id', 'playlist_title', 'playlist_uploader', 'playlist_uploader_id', } # get playlist metadata, if same for all entries entries_playlist = None for entry in entries: entry_playlist = {k: v for k, v in entry.items() if v and k in keys} if entry_playlist: if entries_playlist is None: entries_playlist = entry_playlist elif entry_playlist != entries_playlist: # playlist metadata differs between entries entries_playlist = None break if entries_playlist: # Chop "playlist_" from entry playlist keys for use as playlist keys playlist = {k[9:]: v for k, v in entries_playlist.items()} else: playlist = {} playlist['_type'] = 'playlist' playlist['entries'] = entries return playlist def _load_info(info_paths): """Load youtube-dl JSON info files into a single playlist object.""" entries = [] info_count = 0 last_playlist = None for info_path in info_paths: info_count += 1 if info_path == '-': info = json.load(sys.stdin) else: info = _load_json(info_path) info_entries = info.get('entries') has_entries = isinstance(info_entries, list) has_formats = isinstance(info.get('formats'), list) if has_entries == has_formats: raise ValueError('Unrecognized JSON in ' + info_path) if has_formats: # info for a single video info[_JSON_PATH_KEY] = info_path entries.append(info) else: # info for a playlist last_playlist = info info[_JSON_PATH_KEY] = info_path for entry in info_entries: entry[_JSON_PATH_KEY] = info_path entries.extend(info_entries) # If the user provided a single playlist, use it as-is # This lets users easily specify whatever metadata they'd like if info_count == 1 and last_playlist: return last_playlist return entries_to_playlist(entries) def _parse_indent(indent): """Parse indent argument to indent string.""" try: return ' ' * int(indent) except ValueError: return indent def _parse_args(args, namespace=None): """ Parse command-line arguments. :param args: command-line arguments (usually :py:data:`sys.argv`) :param namespace: object to take the parsed attributes. :return: parsed arguments :rtype: argparse.Namespace """ parser = argparse.ArgumentParser( usage='%(prog)s [options] <JSON file...>', description=__doc__, # Use raw formatter to avoid mangling version text formatter_class=argparse.RawDescriptionHelpFormatter, ) # Note: Match name of wget -B/--base option with similar purpose parser.add_argument( '-B', '--base', help='URL from which files will be served, to resolve relative URLs', ) parser.add_argument( '-i', '--indent', help='XML indent string, or number of spaces to indent', nargs='?', type=_parse_indent, ) parser.add_argument( '-o', '--output', help='Output RSS file.', ) parser.add_argument( '-V', '--version', action='version', help='Output version and license information', version=_VERSION_MESSAGE, ) parser.add_argument( 'json_files', nargs='+', metavar='JSON file...', help='youtube-dl .info.json files', ) return parser.parse_args(args, namespace) def main(*argv): """ Entry point for command-line use. :param argv: command-line arguments (usually :py:data:`sys.argv`) :return: exit code :rtype: int """ args = _parse_args(argv[1:]) if not args.base or not urlparse(args.base).scheme: # Note: Not just a spec compliance issue. Affects real aggregators: # https://github.com/AntennaPod/AntennaPod/issues/2880 sys.stderr.write( 'Warning: URLs in RSS 2.0 must start with a URI scheme per:\n' '- https://www.rssboard.org/rss-specification#comments\n' '- https://cyber.harvard.edu/rss/rss.html#comments\n' 'Use -B,--base to specify an absolute URL at which the RSS will ' 'be served.\n' ) # Note: Could use default locale.getpreferredencoding(). Many users would # "prefer" ISO-8859-1. UTF-8 is a safer default to support more characters # and for wider podcast distributor/aggregator support. # (e.g. Apple instructs podcasters to use UTF-8.) encoding = 'UTF-8' if args.output: writer = io.open(args.output, 'w', encoding=encoding) elif sys.stdout.isatty(): # TTY unlikely to interpret XML declaration. Use Python's encoding. if sys.stdout.encoding is not None: encoding = sys.stdout.encoding writer = sys.stdout else: import locale encoding = locale.getpreferredencoding() writer = codecs.getwriter(encoding)(sys.stdout) elif sys.stdout.encoding and sys.stdout.encoding.upper() == encoding: writer = sys.stdout elif hasattr(sys.stdout, 'buffer'): writer = codecs.getwriter(encoding)(sys.stdout.buffer) else: writer = codecs.getwriter(encoding)(sys.stdout) try: writer.write('<?xml version="1.0" encoding=') writer.write(quoteattr(encoding)) writer.write('?>') if args.indent is not None: writer.write('\n') playlist_to_rss( _load_info(args.json_files), writer, base=args.base, indent=args.indent, ) except UnicodeEncodeError: # FIXME: Should use a proper XML writer which would represent # characters outside the file encoding using XML entities. traceback.print_exc() sys.stderr.write( 'Consider specifying a different encoding in PYTHONIOENCODING.\n' ) return 1 finally: if args.output: writer.close() return 0 if __name__ == '__main__': sys.exit(main(*sys.argv))
2.515625
3
u24_lymphocyte/third_party/treeano/nodes/tests/costs_test.py
ALSM-PhD/quip_classification
45
12793267
import nose.tools as nt import numpy as np import theano import theano.tensor as T import treeano import treeano.nodes as tn fX = theano.config.floatX def test_aggregator_node_serialization(): tn.check_serialization(tn.AggregatorNode("a")) def test_elementwise_cost_node_serialization(): tn.check_serialization(tn.ElementwiseCostNode( "foo", {"pred": tn.IdentityNode("foo"), "target": tn.IdentityNode("bar")})) def test_total_cost_node_serialization(): tn.check_serialization(tn.TotalCostNode( "foo", {"pred": tn.IdentityNode("foo"), "target": tn.IdentityNode("bar")})) def test_auxilliary_cost_node_serialization(): tn.check_serialization(tn.AuxiliaryCostNode( "foo", {"target": tn.IdentityNode("bar")})) def test_total_cost_node(): network = tn.TotalCostNode( "cost", {"pred": tn.InputNode("x", shape=(3, 4, 5)), "target": tn.InputNode("y", shape=(3, 4, 5))}, cost_function=treeano.utils.squared_error).network() fn = network.function(["x", "y"], ["cost"]) x = np.random.rand(3, 4, 5).astype(fX) y = np.random.rand(3, 4, 5).astype(fX) np.testing.assert_allclose(fn(x, y)[0], ((x - y) ** 2).mean(), rtol=1e-5) np.testing.assert_allclose(fn(x, x)[0], 0) np.testing.assert_allclose(fn(y, y)[0], 0) def test_total_cost_node_with_weight(): network = tn.TotalCostNode( "cost", {"pred": tn.InputNode("x", shape=(3, 4, 5)), "weight": tn.InputNode("w", shape=(3, 4, 5)), "target": tn.InputNode("y", shape=(3, 4, 5))}, cost_function=treeano.utils.squared_error).network() fn = network.function(["x", "y", "w"], ["cost"]) x = np.random.rand(3, 4, 5).astype(fX) w = np.random.rand(3, 4, 5).astype(fX) y = np.random.rand(3, 4, 5).astype(fX) np.testing.assert_allclose(fn(x, y, w)[0], (((x - y) ** 2) * w).mean(), rtol=1e-5) np.testing.assert_allclose(fn(x, x, w)[0], 0) np.testing.assert_allclose(fn(y, y, w)[0], 0) def test_auxiliary_cost_node(): network = tn.HyperparameterNode( "hp", tn.SequentialNode( "seq", [tn.InputNode("x", shape=(3, 4, 5)), tn.AuxiliaryCostNode( "cost1", {"target": tn.InputNode("y1", shape=(3, 4, 5))}), tn.AddConstantNode("a1", value=2), tn.AuxiliaryCostNode( "cost2", {"target": tn.InputNode("y2", shape=(3, 4, 5))}), tn.MultiplyConstantNode("m1", value=2), tn.AuxiliaryCostNode( "cost3", {"target": tn.InputNode("y3", shape=(3, 4, 5))}), tn.ConstantNode("const", value=0), tn.InputElementwiseSumNode("cost")] ), cost_reference="cost", cost_function=treeano.utils.squared_error, ).network() fn = network.function(["x", "y1", "y2", "y3"], ["cost"]) x = np.random.rand(3, 4, 5).astype(fX) ys = [np.random.rand(3, 4, 5).astype(fX) for _ in range(3)] def mse(x, y): return ((x - y) ** 2).mean() expected_output = (mse(x, ys[0]) + mse(x + 2, ys[1]) + mse(2 * (x + 2), ys[2])) np.testing.assert_allclose(fn(x, *ys)[0], expected_output, rtol=1e-5)
2.125
2
stubs.min/System/Windows/Forms/__init___parts/ListBindingHelper.py
ricardyn/ironpython-stubs
1
12793268
class ListBindingHelper(object): """ Provides functionality to discover a bindable list and the properties of the items contained in the list when they differ from the public properties of the object to which they bind. """ @staticmethod def GetList(*__args): """ GetList(dataSource: object,dataMember: str) -> object Returns an object,typically a list,from the evaluation of a specified data source and optional data member. dataSource: The data source from which to find the list. dataMember: The name of the data source property that contains the list. This can be null. Returns: An System.Object representing the underlying list if it was found; otherwise, dataSource. GetList(list: object) -> object Returns a list associated with the specified data source. list: The data source to examine for its underlying list. Returns: An System.Object representing the underlying list if it exists; otherwise,the original data source specified by list. """ pass @staticmethod def GetListItemProperties(*__args): """ GetListItemProperties(dataSource: object,dataMember: str,listAccessors: Array[PropertyDescriptor]) -> PropertyDescriptorCollection Returns the System.ComponentModel.PropertyDescriptorCollection that describes the properties of an item type contained in the specified data member of a data source. Uses the specified System.ComponentModel.PropertyDescriptor array to indicate which properties to examine. dataSource: The data source to be examined for property information. dataMember: The optional data member to be examined for property information. This can be null. listAccessors: The System.ComponentModel.PropertyDescriptor array describing which properties of the data member to examine. This can be null. Returns: The System.ComponentModel.PropertyDescriptorCollection describing the properties of an item type contained in a collection property of the specified data source. GetListItemProperties(list: object,listAccessors: Array[PropertyDescriptor]) -> PropertyDescriptorCollection Returns the System.ComponentModel.PropertyDescriptorCollection that describes the properties of an item type contained in a collection property of a data source. Uses the specified System.ComponentModel.PropertyDescriptor array to indicate which properties to examine. list: The data source to be examined for property information. listAccessors: The System.ComponentModel.PropertyDescriptor array describing which properties of the data source to examine. This can be null. Returns: The System.ComponentModel.PropertyDescriptorCollection describing the properties of the item type contained in a collection property of the data source. GetListItemProperties(list: object) -> PropertyDescriptorCollection Returns the System.ComponentModel.PropertyDescriptorCollection that describes the properties of an item type contained in a specified data source,or properties of the specified data source. list: The data source to examine for property information. Returns: The System.ComponentModel.PropertyDescriptorCollection containing the properties of the items contained in list,or properties of list. """ pass @staticmethod def GetListItemType(*__args): """ GetListItemType(dataSource: object,dataMember: str) -> Type Returns the data type of the items in the specified data source. dataSource: The data source to examine for items. dataMember: The optional name of the property on the data source that is to be used as the data member. This can be null. Returns: For complex data binding,the System.Type of the items represented by the dataMember in the data source; otherwise,the System.Type of the item in the list itself. GetListItemType(list: object) -> Type Returns the data type of the items in the specified list. list: The list to be examined for type information. Returns: The System.Type of the items contained in the list. """ pass @staticmethod def GetListName(list,listAccessors): """ GetListName(list: object,listAccessors: Array[PropertyDescriptor]) -> str Returns the name of an underlying list,given a data source and optional System.ComponentModel.PropertyDescriptor array. list: The data source to examine for the list name. listAccessors: An array of System.ComponentModel.PropertyDescriptor objects to find in the data source. This can be null. Returns: The name of the list in the data source,as described by listAccessors,orthe name of the data source type. """ pass __all__=[ 'GetList', 'GetListItemProperties', 'GetListItemType', 'GetListName', ]
2.921875
3
test/test_pro.py
coinplus-sa/coinplus-solo
1
12793269
<reponame>coinplus-sa/coinplus-solo<filename>test/test_pro.py import unittest from coinplus_solo_redeem.pro import secret2_reconstruct_base58, secret1_reconstruct_base58 class TestPro(unittest.TestCase): """test of the bitcoin conversion from private key to wif""" def setUp(self): self.test_vector = [((1, "977TZTQjLNUP1zUn9A5CoPtZ4mAU", "RJTu5AYkaycyxF"), (2, "GbmQxU1SMqnzpYRHC2XBgUfQs8cA", "okSoTKKXdQRDnd"), (3, "Q6RNMUc9PK7cd6MnEtyAZZSGfW3r", "CCRhqU6JfqDTbQ"), ("<KEY>", "2rUzh1myYYpk7s")), ((1, "<KEY>", "<KEY>"), (2, "<KEY>", "<KEY>"), (3 , "<KEY>", "<KEY>"), ("<KEY>", "<KEY>")), ((1, "<KEY>", "<KEY>"), (2, "<KEY>", "<KEY>"), (3, "<KEY>", "ADH2mU73485TeB"), ("ChBXYszLyDjbSzynCKr1puEUB4mh", "gHqichpTAwWjXs")), ] def test_pro_vector_valid(self): for card1, card2, card3, resutl_expected in self.test_vector: s_1_12 = secret1_reconstruct_base58([(card1[0], card1[1]), (card2[0], card2[1])]) s_1_23 = secret1_reconstruct_base58([(card2[0], card2[1]), (card3[0], card3[1])]) s_1_13 = secret1_reconstruct_base58([(card1[0], card1[1]), (card3[0], card3[1])]) s_2_12 = secret2_reconstruct_base58([(card1[0], card1[2]), (card2[0], card2[2])]) s_2_23 = secret2_reconstruct_base58([(card2[0], card2[2]), (card3[0], card3[2])]) s_2_13 = secret2_reconstruct_base58([(card1[0], card1[2]), (card3[0], card3[2])]) self.assertEqual(s_1_12, resutl_expected[0]) self.assertEqual(s_1_23, resutl_expected[0]) self.assertEqual(s_1_13, resutl_expected[0]) self.assertEqual(s_2_12, resutl_expected[1]) self.assertEqual(s_2_23, resutl_expected[1]) self.assertEqual(s_2_13, resutl_expected[1])
2.40625
2
pyblazing/pyblazing/apiv2/context.py
Christian8491/blazingsql
0
12793270
# NOTE WARNING NEVER CHANGE THIS FIRST LINE!!!! NEVER EVER import cudf from collections import OrderedDict from enum import Enum from urllib.parse import urlparse from threading import Lock from weakref import ref from pyblazing.apiv2.filesystem import FileSystem from pyblazing.apiv2 import DataType from .hive import * import time import datetime import socket import errno import subprocess import os import re import pandas import numpy as np import pyarrow from urllib.parse import urlparse from urllib.parse import ParseResult from pathlib import PurePath import cio import pyblazing import cudf import dask_cudf import dask import jpype import dask.distributed import netifaces as ni import random jpype.addClassPath( os.path.join( os.getenv("CONDA_PREFIX"), 'lib/blazingsql-algebra.jar')) jpype.addClassPath( os.path.join( os.getenv("CONDA_PREFIX"), 'lib/blazingsql-algebra-core.jar')) jpype.startJVM(jpype.getDefaultJVMPath(), '-ea', convertStrings=False) ArrayClass = jpype.JClass('java.util.ArrayList') ColumnTypeClass = jpype.JClass( 'com.blazingdb.calcite.catalog.domain.CatalogColumnDataType') dataType = ColumnTypeClass.fromString("GDF_INT8") ColumnClass = jpype.JClass( 'com.blazingdb.calcite.catalog.domain.CatalogColumnImpl') TableClass = jpype.JClass( 'com.blazingdb.calcite.catalog.domain.CatalogTableImpl') DatabaseClass = jpype.JClass( 'com.blazingdb.calcite.catalog.domain.CatalogDatabaseImpl') BlazingSchemaClass = jpype.JClass('com.blazingdb.calcite.schema.BlazingSchema') RelationalAlgebraGeneratorClass = jpype.JClass( 'com.blazingdb.calcite.application.RelationalAlgebraGenerator') def get_np_dtype_to_gdf_dtype_str(dtype): dtypes = { np.dtype('float64'): 'GDF_FLOAT64', np.dtype('float32'): 'GDF_FLOAT32', np.dtype('int64'): 'GDF_INT64', np.dtype('int32'): 'GDF_INT32', np.dtype('int16'): 'GDF_INT16', np.dtype('int8'): 'GDF_INT8', np.dtype('bool_'): 'GDF_BOOL8', np.dtype('datetime64[s]'): 'GDF_DATE64', np.dtype('datetime64[ms]'): 'GDF_DATE64', np.dtype('datetime64[ns]'): 'GDF_TIMESTAMP', np.dtype('datetime64[us]'): 'GDF_TIMESTAMP', np.dtype('datetime64'): 'GDF_DATE64', np.dtype('object_'): 'GDF_STRING', np.dtype('str_'): 'GDF_STRING', np.dtype('<M8[s]'): 'GDF_DATE64', np.dtype('<M8[ms]'): 'GDF_DATE64', np.dtype('<M8[ns]'): 'GDF_TIMESTAMP', np.dtype('<M8[us]'): 'GDF_TIMESTAMP' } ret = dtypes[np.dtype(dtype)] return ret def checkSocket(socketNum): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) socket_free = False try: s.bind(("127.0.0.1", socketNum)) socket_free = True except socket.error as e: if e.errno == errno.EADDRINUSE: socket_free = False else: # something else raised the socket.error exception print("ERROR: Something happened when checking socket " + str(socketNum)) #print(e) s.close() return socket_free def initializeBlazing(ralId=0, networkInterface='lo', singleNode=False, allocator="managed", pool=True,initial_pool_size=None, enable_logging=False): #print(networkInterface) workerIp = ni.ifaddresses(networkInterface)[ni.AF_INET][0]['addr'] ralCommunicationPort = random.randint(10000, 32000) + ralId while checkSocket(ralCommunicationPort) == False: ralCommunicationPort = random.randint(10000, 32000) + ralId cudf.set_allocator(allocator=allocator, pool=pool, initial_pool_size=initial_pool_size,# Default is 1/2 total GPU memory enable_logging=enable_logging) cio.initializeCaller( ralId, 0, networkInterface.encode(), workerIp.encode(), ralCommunicationPort, singleNode) cwd = os.getcwd() return ralCommunicationPort, workerIp, cwd def getNodePartitions(df, client): df = df.persist() workers = client.scheduler_info()['workers'] connectionToId = {} for worker in workers: connectionToId[worker] = workers[worker]['name'] dask.distributed.wait(df) #print(client.who_has(df)) worker_part = client.who_has(df) worker_partitions = {} for key in worker_part: worker = worker_part[key][0] partition = int(key[key.find(",") + 2:(len(key) - 1)]) if connectionToId[worker] not in worker_partitions: worker_partitions[connectionToId[worker]] = [] worker_partitions[connectionToId[worker]].append(partition) #print("worker partitions") #print(worker_partitions) return worker_partitions def collectPartitionsRunQuery( masterIndex, nodes, tables, fileTypes, ctxToken, algebra, accessToken): import dask.distributed worker_id = dask.distributed.get_worker().name for table_name in tables: if(isinstance(tables[table_name].input, dask_cudf.core.DataFrame)): partitions = tables[table_name].get_partitions(worker_id) if (len(partitions) == 0): tables[table_name].input = tables[table_name].input.get_partition( 0).head(0) elif (len(partitions) == 1): tables[table_name].input = tables[table_name].input.get_partition( partitions[0]).compute(scheduler='threads') else: table_partitions = [] for partition in partitions: table_partitions.append( tables[table_name].input.get_partition(partition).compute()) tables[table_name].input = cudf.concat(table_partitions) return cio.runQueryCaller( masterIndex, nodes, tables, fileTypes, ctxToken, algebra, accessToken) # returns a map of table names to the indices of the columns needed. If there are more than one table scan for one table, it merged the needed columns # if the column list is empty, it means we want all columns def mergeTableScans(tableScanInfo): table_names = tableScanInfo.keys() table_columns = {} for table_name in table_names: table_columns[table_name] = [] for table_name in table_names: for index in range(0, len(tableScanInfo[table_name]['table_columns'])): if len(tableScanInfo[table_name]['table_columns'][index]) > 0: table_columns[table_name] = list(set(table_columns[table_name] + tableScanInfo[table_name]['table_columns'][index])) table_columns[table_name].sort() else: # if the column list is empty, it means we want all columns table_columns[table_name] = [] break return table_columns def modifyAlegebraAndTablesForArrowBasedOnColumnUsage(algebra, tableScanInfo, originalTables, table_columns_in_use): newTables={} for table_name in tableScanInfo: if originalTables[table_name].fileType == DataType.ARROW: newTables[table_name] = originalTables[table_name].filterAndRemapColumns(table_columns_in_use[table_name]) for index in range(0,len(tableScanInfo[table_name]['table_scans'])): orig_scan = tableScanInfo[table_name]['table_scans'][index] orig_col_indexes = tableScanInfo[table_name]['table_columns'][index] table_columns_we_want = table_columns_in_use[table_name] new_col_indexes = [] if len(table_columns_we_want) > 0: if orig_col_indexes == table_columns_we_want: new_col_indexes = list(range(0, len(orig_col_indexes))) else: for new_index, merged_col_index in enumerate(table_columns_we_want): if merged_col_index in orig_col_indexes: new_col_indexes.append(new_index) orig_project = 'projects=[' + str(orig_col_indexes) + ']' new_project = 'projects=[' + str(new_col_indexes) + ']' new_scan = orig_scan.replace(orig_project, new_project) algebra = algebra.replace(orig_scan, new_scan) else: newTables[table_name] = originalTables[table_name] return newTables, algebra class BlazingTable(object): def __init__( self, input, fileType, files=None, datasource=[], calcite_to_file_indices=None, num_row_groups=None, args={}, convert_gdf_to_dask=False, convert_gdf_to_dask_partitions=1, client=None, uri_values=[], in_file=[], force_conversion=False, metadata=None): self.fileType = fileType if fileType == DataType.ARROW: if force_conversion: #converts to cudf for querying self.input = cudf.DataFrame.from_arrow(input) self.fileType = DataType.CUDF else: self.input = cudf.DataFrame.from_arrow(input.schema.empty_table()) self.arrow_table = input else: self.input = input self.calcite_to_file_indices = calcite_to_file_indices self.files = files self.datasource = datasource # TODO, cc @percy, @cristian! # num_row_groups: this property is computed in create_table.parse_schema, but not used in run_query. self.num_row_groups = num_row_groups self.args = args if fileType == DataType.CUDF or DataType.DASK_CUDF: if(convert_gdf_to_dask and isinstance(self.input, cudf.DataFrame)): self.input = dask_cudf.from_cudf( self.input, npartitions=convert_gdf_to_dask_partitions) if(isinstance(self.input, dask_cudf.core.DataFrame)): self.dask_mapping = getNodePartitions(self.input, client) self.uri_values = uri_values self.in_file = in_file # slices, this is computed in create table, and then reused in sql method self.slices = None # metadata, this is computed in create table, after call get_metadata self.metadata = metadata # row_groups_ids, vector<vector<int>> one vector of row_groups per file self.row_groups_id = [] # a pair of values with the startIndex and batchSize info for each slice self.offset = (0,0) def has_metadata(self) : if isinstance(self.metadata, dask_cudf.core.DataFrame): return not self.metadata.compute().empty if self.metadata is not None : return not self.metadata.empty return False def filterAndRemapColumns(self,tableColumns): #only used for arrow if len(tableColumns) == 0: # len = 0 means all columns return BlazingTable(self.arrow_table,DataType.ARROW,force_conversion=True) new_table = self.arrow_table columns = [] names = [] i = 0 for column in new_table.itercolumns(): for index in tableColumns: if i == index: names.append(self.arrow_table.field(i).name) columns.append(column) i = i + 1 new_table = pyarrow.Table.from_arrays(columns,names=names) new_table = BlazingTable(new_table,DataType.ARROW,force_conversion=True) return new_table def convertForQuery(self): return BlazingTable(self.arrow_table,DataType.ARROW,force_conversion=True) # until this is implemented we cant do self join with arrow tables # def unionColumns(self,otherTable): def getSlices(self, numSlices): nodeFilesList = [] if self.files is None: for i in range(0, numSlices): nodeFilesList.append(BlazingTable(self.input, self.fileType)) return nodeFilesList remaining = len(self.files) startIndex = 0 for i in range(0, numSlices): batchSize = int(remaining / (numSlices - i)) # #print(batchSize) # #print(startIndex) tempFiles = self.files[startIndex: startIndex + batchSize] uri_values = self.uri_values[startIndex: startIndex + batchSize] if isinstance(self.metadata, cudf.DataFrame) or self.metadata is None: slice_metadata = self.metadata else: slice_metadata = self.metadata.get_partition(i).compute() if self.num_row_groups is not None: bt = BlazingTable(self.input, self.fileType, files=tempFiles, calcite_to_file_indices=self.calcite_to_file_indices, num_row_groups=self.num_row_groups[startIndex: startIndex + batchSize], uri_values=uri_values, args=self.args, metadata=slice_metadata) bt.offset = (startIndex, batchSize) nodeFilesList.append(bt) else: bt = BlazingTable( self.input, self.fileType, files=tempFiles, calcite_to_file_indices=self.calcite_to_file_indices, uri_values=uri_values, args=self.args, metadata=slice_metadata) bt.offset = (startIndex, batchSize) nodeFilesList.append(bt) startIndex = startIndex + batchSize remaining = remaining - batchSize return nodeFilesList def get_partitions(self, worker): return self.dask_mapping[worker] class BlazingContext(object): def __init__(self, dask_client=None, # if None, it will run in single node network_interface=None, allocator="managed", # options are "default" or "managed". Where "managed" uses Unified Virtual Memory (UVM) and may use system memory if GPU memory runs out pool=True, # if True, it will allocate a memory pool in the beginning. This can greatly improve performance initial_pool_size=None, # Initial size of memory pool in bytes (if pool=True). If None, it will default to using half of the GPU memory enable_logging=False): # If set to True the memory allocator logging will be enabled, but can negatively impact perforamance """ :param connection: BlazingSQL cluster URL to connect to (e.g. 172.16.17.32:8889, blazingsql-gateway:7887). """ self.lock = Lock() self.finalizeCaller = ref(cio.finalizeCaller) self.dask_client = dask_client self.nodes = [] self.node_cwds = [] self.finalizeCaller = lambda: NotImplemented if(dask_client is not None): if network_interface is None: network_interface = 'eth0' worker_list = [] dask_futures = [] masterIndex = 0 i = 0 ##print(network_interface) for worker in list(self.dask_client.scheduler_info()["workers"]): dask_futures.append( self.dask_client.submit( initializeBlazing, ralId=i, networkInterface=network_interface, singleNode=False, allocator=allocator, pool=pool, initial_pool_size=initial_pool_size, enable_logging=enable_logging, workers=[worker])) worker_list.append(worker) i = i + 1 i = 0 for connection in dask_futures: ralPort, ralIp, cwd = connection.result() node = {} node['worker'] = worker_list[i] node['ip'] = ralIp node['communication_port'] = ralPort #print("ralport is") #print(ralPort) self.nodes.append(node) self.node_cwds.append(cwd) i = i + 1 else: ralPort, ralIp, cwd = initializeBlazing( ralId=0, networkInterface='lo', singleNode=True, allocator=allocator, pool=pool, initial_pool_size=initial_pool_size, enable_logging=enable_logging) node = {} node['ip'] = ralIp node['communication_port'] = ralPort self.nodes.append(node) self.node_cwds.append(cwd) # NOTE ("//"+) is a neat trick to handle ip:port cases #internal_api.SetupOrchestratorConnection(orchestrator_host_ip, orchestrator_port) self.fs = FileSystem() self.db = DatabaseClass("main") self.schema = BlazingSchemaClass(self.db) self.generator = RelationalAlgebraGeneratorClass(self.schema) self.tables = {} self.logs_initialized = False # waitForPingSuccess(self.client) print("BlazingContext ready") def ready(self, wait=False): if wait: waitForPingSuccess(self.client) return True else: return self.client.ping() def __del__(self): self.finalizeCaller() def __repr__(self): return "BlazingContext('%s')" % (self.connection) def __str__(self): return self.connection # BEGIN FileSystem interface def localfs(self, prefix, **kwargs): return self.fs.localfs(self.dask_client, prefix, **kwargs) # Use result, error_msg = hdfs(args) where result can be True|False def hdfs(self, prefix, **kwargs): return self.fs.hdfs(self.dask_client, prefix, **kwargs) def s3(self, prefix, **kwargs): return self.fs.s3(self.dask_client, prefix, **kwargs) def gs(self, prefix, **kwargs): return self.fs.gs(self.dask_client, prefix, **kwargs) def show_filesystems(self): print(self.fs) # END FileSystem interface def _to_url(self, str_input): url = urlparse(str_input) return url def _to_path(self, url): path = PurePath(url.path) return path # BEGIN SQL interface def explain(self, sql): return str(self.generator.getRelationalAlgebraString(sql)) def add_remove_table(self, tableName, addTable, table=None): self.lock.acquire() try: if(addTable): self.db.removeTable(tableName) self.tables[tableName] = table arr = ArrayClass() order = 0 for column in table.input.columns: if(isinstance(table.input, dask_cudf.core.DataFrame)): dataframe_column = table.input.head(0)._data[column] else: dataframe_column = table.input._data[column] data_sz = len(dataframe_column) dtype = get_np_dtype_to_gdf_dtype_str( dataframe_column.dtype) dataType = ColumnTypeClass.fromString(dtype) column = ColumnClass(column, dataType, order) arr.add(column) order = order + 1 tableJava = TableClass(tableName, self.db, arr) self.db.addTable(tableJava) self.schema = BlazingSchemaClass(self.db) self.generator = RelationalAlgebraGeneratorClass(self.schema) else: self.db.removeTable(tableName) self.schema = BlazingSchemaClass(self.db) self.generator = RelationalAlgebraGeneratorClass(self.schema) del self.tables[tableName] finally: self.lock.release() def create_table(self, table_name, input, **kwargs): table = None extra_columns = [] uri_values = [] file_format_hint = kwargs.get( 'file_format', 'undefined') # See datasource.file_format extra_kwargs = {} in_file = [] if(isinstance(input, hive.Cursor)): hive_table_name = kwargs.get('hive_table_name', table_name) folder_list, uri_values, file_format_hint, extra_kwargs, extra_columns, in_file = get_hive_table( input, hive_table_name) kwargs.update(extra_kwargs) input = folder_list if isinstance(input, str): input = [input, ] if isinstance(input, pandas.DataFrame): input = cudf.DataFrame.from_pandas(input) if isinstance(input, pyarrow.Table): if (self.dask_client is not None): input = cudf.DataFrame.from_arrow(input) else: table = BlazingTable( input, DataType.ARROW) if isinstance(input, cudf.DataFrame): if (self.dask_client is not None): table = BlazingTable( input, DataType.DASK_CUDF, convert_gdf_to_dask=True, convert_gdf_to_dask_partitions=len( self.nodes), client=self.dask_client) else: table = BlazingTable(input, DataType.CUDF) elif isinstance(input, list): parsedSchema = self._parseSchema( input, file_format_hint, kwargs, extra_columns) file_type = parsedSchema['file_type'] table = BlazingTable( parsedSchema['columns'], file_type, files=parsedSchema['files'], datasource=parsedSchema['datasource'], calcite_to_file_indices=parsedSchema['calcite_to_file_indices'], num_row_groups=parsedSchema['num_row_groups'], args=parsedSchema['args'], uri_values=uri_values, in_file=in_file) table.slices = table.getSlices(len(self.nodes)) if parsedSchema['file_type'] == DataType.PARQUET : parsedMetadata = self._parseMetadata(input, file_format_hint, table.slices, parsedSchema, kwargs, extra_columns) if isinstance(parsedMetadata, cudf.DataFrame): table.metadata = parsedMetadata else: table.metadata = parsedMetadata elif isinstance(input, dask_cudf.core.DataFrame): table = BlazingTable( input, DataType.DASK_CUDF, client=self.dask_client) if table is not None: self.add_remove_table(table_name, True, table) return table def drop_table(self, table_name): self.add_remove_table(table_name, False) def _parseSchema(self, input, file_format_hint, kwargs, extra_columns): if self.dask_client: worker = tuple(self.dask_client.scheduler_info()['workers'])[0] connection = self.dask_client.submit( cio.parseSchemaCaller, input, file_format_hint, kwargs, extra_columns, workers=[worker]) return connection.result() else: return cio.parseSchemaCaller( input, file_format_hint, kwargs, extra_columns) def _parseMetadata(self, input, file_format_hint, currentTableNodes, schema, kwargs, extra_columns): if self.dask_client: dask_futures = [] workers = tuple(self.dask_client.scheduler_info()['workers']) worker_id = 0 for worker in workers: file_subset = [ file.decode() for file in currentTableNodes[worker_id].files] connection = self.dask_client.submit( cio.parseMetadataCaller, file_subset, currentTableNodes[worker_id].offset, schema, file_format_hint, kwargs, extra_columns, workers=[worker]) dask_futures.append(connection) worker_id += 1 return dask.dataframe.from_delayed(dask_futures) else: return cio.parseMetadataCaller( input, currentTableNodes[0].offset, schema, file_format_hint, kwargs, extra_columns) def _optimize_with_skip_data(self, masterIndex, table_name, table_files, nodeTableList, scan_table_query, fileTypes): if self.dask_client is None: current_table = nodeTableList[0][table_name] table_tuple = (table_name, current_table) file_indices_and_rowgroup_indices = cio.runSkipDataCaller(masterIndex, self.nodes, table_tuple, fileTypes, 0, scan_table_query, 0) if not file_indices_and_rowgroup_indices.empty: file_and_rowgroup_indices = file_indices_and_rowgroup_indices.to_pandas() files = file_and_rowgroup_indices['file_handle_index'].values.tolist() grouped = file_and_rowgroup_indices.groupby('file_handle_index') actual_files = [] current_table.row_groups_ids = [] for group_id in grouped.groups: row_indices = grouped.groups[group_id].values.tolist() actual_files.append(table_files[group_id]) row_groups_col = file_and_rowgroup_indices['row_group_index'].values.tolist() row_group_ids = [row_groups_col[i] for i in row_indices] current_table.row_groups_ids.append(row_group_ids) current_table.files = actual_files else: dask_futures = [] i = 0 for node in self.nodes: worker = node['worker'] current_table = nodeTableList[i][table_name] table_tuple = (table_name, current_table) dask_futures.append( self.dask_client.submit( cio.runSkipDataCaller, masterIndex, self.nodes, table_tuple, fileTypes, 0, scan_table_query, 0, workers=[worker])) i = i + 1 result = dask.dataframe.from_delayed(dask_futures) for index in range(len(self.nodes)): file_indices_and_rowgroup_indices = result.get_partition(index).compute() if file_indices_and_rowgroup_indices.empty : continue file_and_rowgroup_indices = file_indices_and_rowgroup_indices.to_pandas() files = file_and_rowgroup_indices['file_handle_index'].values.tolist() grouped = file_and_rowgroup_indices.groupby('file_handle_index') actual_files = [] current_table.row_groups_ids = [] for group_id in grouped.groups: row_indices = grouped.groups[group_id].values.tolist() actual_files.append(table_files[group_id]) row_groups_col = file_and_rowgroup_indices['row_group_index'].values.tolist() row_group_ids = [row_groups_col[i] for i in row_indices] current_table.row_groups_ids.append(row_group_ids) current_table.files = actual_files def sql(self, sql, table_list=[], algebra=None): # TODO: remove hardcoding masterIndex = 0 nodeTableList = [{} for _ in range(len(self.nodes))] fileTypes = [] if (algebra is None): algebra = self.explain(sql) if self.dask_client is None: relational_algebra_steps = cio.getTableScanInfoCaller(algebra) else: worker = tuple(self.dask_client.scheduler_info()['workers'])[0] connection = self.dask_client.submit( cio.getTableScanInfoCaller, algebra, workers=[worker]) relational_algebra_steps = connection.result() table_columns = mergeTableScans(relational_algebra_steps) new_tables, algebra = modifyAlegebraAndTablesForArrowBasedOnColumnUsage(algebra, relational_algebra_steps,self.tables, table_columns) for table in new_tables: fileTypes.append(new_tables[table].fileType) ftype = new_tables[table].fileType if(ftype == DataType.PARQUET or ftype == DataType.ORC or ftype == DataType.JSON or ftype == DataType.CSV): currentTableNodes = new_tables[table].getSlices(len(self.nodes)) elif(new_tables[table].fileType == DataType.DASK_CUDF): currentTableNodes = [] for node in self.nodes: currentTableNodes.append(new_tables[table]) elif(new_tables[table].fileType == DataType.CUDF or new_tables[table].fileType == DataType.ARROW): currentTableNodes = [] for node in self.nodes: currentTableNodes.append(new_tables[table]) j = 0 for nodeList in nodeTableList: nodeList[table] = currentTableNodes[j] j = j + 1 if new_tables[table].has_metadata(): scan_table_query = relational_algebra_steps[table]['table_scans'][0] self._optimize_with_skip_data(masterIndex, table, new_tables[table].files, nodeTableList, scan_table_query, fileTypes) ctxToken = random.randint(0, 64000) accessToken = 0 if (len(table_list) > 0): print("NOTE: You no longer need to send a table list to the .sql() funtion") if self.dask_client is None: result = cio.runQueryCaller( masterIndex, self.nodes, nodeTableList[0], fileTypes, ctxToken, algebra, accessToken) else: dask_futures = [] i = 0 for node in self.nodes: worker = node['worker'] dask_futures.append( self.dask_client.submit( collectPartitionsRunQuery, masterIndex, self.nodes, nodeTableList[i], fileTypes, ctxToken, algebra, accessToken, workers=[worker])) i = i + 1 result = dask.dataframe.from_delayed(dask_futures) return result # END SQL interface # BEGIN LOG interface def log(self, query, logs_table_name='bsql_logs'): if not self.logs_initialized: self.logs_table_name = logs_table_name log_files = [self.node_cwds[i] + '/RAL.' + \ str(i) + '.log' for i in range(0, len(self.node_cwds))] #print(log_files) dtypes = [ 'date64', 'int32', 'str', 'int32', 'int16', 'int16', 'str', 'float32', 'str', 'int32', 'str', 'int32'] names = [ 'log_time', 'node_id', 'type', 'query_id', 'step', 'substep', 'info', 'duration', 'extra1', 'data1', 'extra2', 'data2'] t = self.create_table( self.logs_table_name, log_files, delimiter='|', dtype=dtypes, names=names, file_format='csv') #print("table created") #print(t) self.logs_initialized = True return self.sql(query)
1.820313
2
pytato/cmath.py
alexfikl/pytato
0
12793271
from __future__ import annotations __copyright__ = """ Copyright (C) 2020 <NAME> Copyright (C) 2020 <NAME> Copyright (C) 2020 <NAME> Copyright (C) 2021 <NAME> """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # {{{ docs __doc__ = """ .. currentmodule:: pytato .. autofunction:: abs .. autofunction:: sqrt .. autofunction:: sin .. autofunction:: cos .. autofunction:: tan .. autofunction:: arcsin .. autofunction:: arccos .. autofunction:: arctan .. autofunction:: conj .. autofunction:: arctan2 .. autofunction:: sinh .. autofunction:: cosh .. autofunction:: tanh .. autofunction:: exp .. autofunction:: log .. autofunction:: log10 .. autofunction:: isnan .. autofunction:: real .. autofunction:: imag """ # }}} import numpy as np import pymbolic.primitives as prim from typing import Tuple, Optional from pytato.array import Array, ArrayOrScalar, IndexLambda, _dtype_any from pytato.scalar_expr import SCALAR_CLASSES from pymbolic import var def _apply_elem_wise_func(inputs: Tuple[ArrayOrScalar], func_name: str, ret_dtype: Optional[_dtype_any] = None ) -> ArrayOrScalar: if all(isinstance(x, SCALAR_CLASSES) for x in inputs): np_func = getattr(np, func_name) return np_func(*inputs) # type: ignore if not inputs: raise ValueError("at least one argument must be present") shape = None sym_args = [] bindings = {} for index, inp in enumerate(inputs): if isinstance(inp, Array): if inp.dtype.kind not in ["f", "c"]: raise ValueError("only floating-point or complex " "arguments supported") if shape is None: shape = inp.shape elif inp.shape != shape: # FIXME: merge this logic with arithmetic, so that broadcasting # is implemented properly raise NotImplementedError("broadcasting in function application") if ret_dtype is None: ret_dtype = inp.dtype bindings[f"in_{index}"] = inp sym_args.append( prim.Subscript(var(f"in_{index}"), tuple(var(f"_{i}") for i in range(len(shape))))) else: sym_args.append(inp) assert shape is not None assert ret_dtype is not None return IndexLambda( prim.Call(var(f"pytato.c99.{func_name}"), tuple(sym_args)), shape, ret_dtype, bindings) def abs(x: Array) -> ArrayOrScalar: if x.dtype.kind == "c": result_dtype = np.empty(0, dtype=x.dtype).real.dtype else: result_dtype = x.dtype return _apply_elem_wise_func((x,), "abs", ret_dtype=result_dtype) def sqrt(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "sqrt") def sin(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "sin") def cos(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "cos") def tan(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "tan") def arcsin(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "asin") def arccos(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "acos") def arctan(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "atan") def conj(x: Array) -> ArrayOrScalar: if x.dtype.kind != "c": return x return _apply_elem_wise_func((x,), "conj") def arctan2(y: Array, x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((y, x), "atan2") # type:ignore def sinh(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "sinh") def cosh(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "cosh") def tanh(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "tanh") def exp(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "exp") def log(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "log") def log10(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "log10") def isnan(x: Array) -> ArrayOrScalar: return _apply_elem_wise_func((x,), "isnan", np.dtype(np.int32)) def real(x: Array) -> ArrayOrScalar: if x.dtype.kind == "c": result_dtype = np.empty(0, dtype=x.dtype).real.dtype else: return x return _apply_elem_wise_func((x,), "real", ret_dtype=result_dtype) def imag(x: Array) -> ArrayOrScalar: if x.dtype.kind == "c": result_dtype = np.empty(0, dtype=x.dtype).real.dtype else: import pytato as pt return pt.zeros(x.shape, dtype=x.dtype) return _apply_elem_wise_func((x,), "imag", ret_dtype=result_dtype) # vim: fdm=marker
1.609375
2
plagiarism/core.py
u2rafi/python-plagiarism
2
12793272
import numpy as np from io import TextIOWrapper from typing import Iterable, Any, Union, TextIO, List, Optional from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from plagiarism.sources import Source class Output(object): """ Class that format ndarray data to a plain format :parameter data: ndarray mapping: mapping of a target array with data (array) sorted: is soring data array nim_percentage: percentage of minimum marching similarity >>> out = Output(data=...) >>> out.getlist() >>> out.get() """ def __init__( self, data: np.ndarray, *, mapping: Optional[list], sorted: Optional[bool] = True, nim_percentage: Optional[float] = 1.0 ) -> None: self.data = data self.map = mapping self.sorted = sorted self.nim_percentage = nim_percentage @staticmethod def _sorting(d: Iterable[dict], *, reverse=False) -> Iterable: """ Sorting of an array containing dictionary :parameter: d: array of dictionary reverse: is reverse ordering :return: a sorted array """ return sorted(d, key=lambda x: x['score'], reverse=reverse) def getlist(self) -> List: """ Get list of dictionary in a array :return: An array """ return list(self._sorting(self._generate_result()) if self.sorted else list(self._generate_result())) def get(self) -> float: """ Get an array of values if there are no mapping :return: An array """ result = [item[0] * 100 for item in self.data] result.sort(reverse=True) return result[0] def _generate_result(self) -> Iterable: """ Generator that convert ndarray for an array of dictionary """ if self.map: for index, score in enumerate(self.data): _score: float = score[0] * 100 if _score >= self.nim_percentage: yield dict(doc=self.map[index], score="{:.2f}".format(_score)) else: for item in self.data: yield dict(score="{:.2f}".format(item[0] * 100)) def __call__(self, *args, **kwargs): return self.getlist() def __iter__(self): return self.getlist() class Plagiarism(object): """ Find plagiarism in a dataset with the given input using scikit-learn (tf-idf algorithm) cosine similarity :parameter source: `Source` instance having file or file content >>> plg = Plagiarism(source=...) >>> plg.compare(...).get() # get percentage in number (float) >>> plg.compare(...).getlist() """ def __init__( self, source: Source, *, nim_percentage: Optional[float] = 1.0 ) -> None: self._tfidf_vectorizer = TfidfVectorizer() self.source = source self.nim_percentage = nim_percentage def _cosine_similarity(self, x, y) -> Any: """ Compute cosine similarity between samples in x and y. K(x, y) = <Xx, y> / (||x||*||y||) """ return cosine_similarity(x, y) def _get_source(self) -> Union[Iterable, list]: return self.source.get_content() def _compare_transform(self, raw_document) -> Any: tfidf = self._tfidf_vectorizer.fit_transform(list(self._get_source()) + [raw_document]) return (tfidf * tfidf.T).A[0, 1] @staticmethod def _get_input_content(f: Union[bytes, TextIO]) -> str: if type(f) is bytes: return f.decode() return f.read() def compare( self, raw_document: Union[TextIOWrapper, TextIO, bytes, str] ) -> Output: """ Compare cosine similarity between documents :param raw_document: Text file or text contents :return: Instance of Output """ raw_document = raw_document if type(raw_document) == str else self._get_input_content(raw_document) vect_x = self._tfidf_vectorizer.fit_transform(self.source.get_content()) vect_y = self._tfidf_vectorizer.transform([raw_document]) similarity = self._cosine_similarity(vect_x, vect_y) return Output(data=similarity, mapping=self.source.get_mapping(), nim_percentage=self.nim_percentage)
2.765625
3
data_scripts/sony250/read_all_imgs.py
laomao0/AEnet
1
12793273
import cv2 import numpy as np import random import os def imread(path): # print(path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # covert BRG to RGB # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # convert BGR to RGB img = img[:,:,[2, 1, 0]] return img def imsave(path, img): # convert RGB to BGR img = img[:,:,[2, 1, 0]] # save cv2.imwrite(path, img) # dataset_path = '/DATA/wangshen_data/ShortLongDataset/Sony240/full_sharp' dataset_path = '/DATA/wangshen_data/ShortLongDataset/Sony240/test' all_dirs = sorted(os.listdir(dataset_path)) # counter = 0 for dir in all_dirs: list_path = os.path.join(dataset_path, dir) items = sorted(os.listdir(list_path)) # imgs num = len(items) print(list_path, num) for it in items: img_path = os.path.join(list_path, it) # counter = counter + 1 try: # print(img_path) a = imread(img_path) # print(counter) except: print(img_path)
2.65625
3
src/sentry_top/plugin.py
robopsi/sentry-top
10
12793274
import sentry_top from collections import defaultdict from nydus.db import create_cluster from time import time from django.conf import settings from django.core.exceptions import ImproperlyConfigured from sentry.models import Project from sentry.plugins.base import Plugin if not getattr(settings, 'SENTRY_TOP', None): raise ImproperlyConfigured('You need to configure SENTRY_TOP') def get_cluster(hosts=None, router='nydus.db.routers.keyvalue.PartitionRouter'): if hosts is None: hosts = { 0: {} # localhost / default } return create_cluster({ 'engine': 'nydus.db.backends.redis.Redis', 'router': router, 'hosts': hosts, }) redis = get_cluster(**settings.SENTRY_TOP['redis']) MINUTES = settings.SENTRY_TOP.get('total_minutes', 15) class TopPlugin(Plugin): author = 'Sentry Team' author_url = 'https://github.com/getsentry/sentry-top' version = sentry_top.VERSION description = 'Tracks active projects ala `top`' resource_links = [ ('Bug Tracker', 'https://github.com/getsentry/sentry-top/issues'), ('Source', 'https://github.com/getsentry/sentry-top'), ] slug = 'top' title = 'Top' conf_title = title conf_key = 'top' def can_enable_for_projects(self): return False def add_event(self, project, client=redis): minute = int(time() / 60) keys = [ # 'stop:e:{0}:{1}'.format(event.group_id), 'stop:p:{0}'.format(minute), ] with client.map() as conn: for key in keys: conn.zincrby(key, project.id) conn.expire(key, (MINUTES + 1) * 60) def top_projects(self, minutes=15, num=100, client=redis): now = int(time() / 60) keys = [] for minute in xrange(minutes): keys.append('stop:p:{0}'.format(now - minute)) counts = [] with client.map() as conn: for key in keys: counts.append(conn.zrevrange(key, 0, num, withscores=True)) results = defaultdict(int) for countset in counts: for project_id, count in countset: results[int(project_id)] += int(count) sorted_results = sorted( results.items(), key=lambda x: x[1], reverse=True)[:num] project_map = dict( (p.id, p) for p in Project.objects.filter(id__in=[ p_id for p_id, _ in sorted_results ]).select_related('team') ) return [ (project_map[p_id], c) for (p_id, c) in sorted_results if p_id in project_map ] def is_rate_limited(self, project): # TODO(dcramer): we need a way to hook into Sentry at event input # that guarantees this stat self.add_event(project)
1.960938
2
aoc/twenty/day1/day.py
jaehoonhwang/advent-of-code
0
12793275
import os from aoc.utils.file_reader import read_file_line from aoc.utils.file_reader import path_join directory_path = os.path.dirname(os.path.realpath(__file__)) input_filename = "input.txt" target_number = 2020 """ """ def problem_part1(lines): seen = set() answer = None for number in lines: if number in seen: answer = number * (target_number - number) break else: seen.add(target_number - number) return answer """ """ def problem_part2(lines): seen = set() mapping = {} answer = None for index, number in enumerate(lines): for inner_index in range(len(lines)): summation = number + lines[inner_index] seen.add(target_number - summation) mapping[summation] = (number, lines[inner_index]) for number in lines: if number in seen: number1 = mapping[target_number-number][0] number2 = mapping[target_number-number][1] answer = number * number1 * number2 break return answer def day1_main(): print("2020 AOC Challenge Day 1: Report Repair") input_path = path_join(directory_path, input_filename) raw_texts = read_file_line(input_path) lines = [int(number) for number in raw_texts] part1_answer = problem_part1(lines) print("Part 1, Answer: {}".format(part1_answer)) part2_answer = problem_part2(lines) print("Part 2, Answer: {}".format(part2_answer)) if __name__ == "__main__": day1_main()
3.265625
3
2019/12 December/dp12012019.py
vishrutkmr7/DailyPracticeProblemsDIP
5
12793276
<reponame>vishrutkmr7/DailyPracticeProblemsDIP # This problem was recently asked by Google: # Given a nested dictionary, flatten the dictionary, where nested dictionary keys can be represented through dot notation. import collections.abc as collections def flatten_dictionary(d, parent_key="", sep="."): # Fill this in. items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten_dictionary(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) d = {"a": 1, "b": {"c": 2, "d": {"e": 3}}} print(flatten_dictionary(d)) # {'a': 1, 'b.c': 2, 'b.d.e': 3}
4.03125
4
hbos_server/validationbase.py
robscetury/hbos
0
12793277
from abc import abstractmethod class Validation(object): def __init__(self, is_valid:bool, message:str): self._is_valid = is_valid self._message = message @property def is_valid(self) -> bool: return self._is_valid @is_valid.setter def is_valid(self,value:bool): self._is_valid = value @property def message(self)->str: return self._message @message.setter def message(self,value:str): self._message = value class ValidationBase(object): @abstractmethod def validate(self, object) -> Validation: raise NotImplemented
3.515625
4
tests/commands/conftest.py
danpoland/slacktools-interactivity
0
12793278
<reponame>danpoland/slacktools-interactivity from typing import Dict import pytest from interactivity.generics import Payload def make_command_request_data(): return { "token": "token", "command": "/command", "text": "do_work op1 op2", "response_url": "https://testing.commands", "trigger_id": "trigger_id", "user_id": "user_id", "user_name": "user_name", "team_id": "team_id", "team_name": "team_name", "enterprise_id": "enterprise_id", "enterprise_name": "enterprise_name", "channel_id": "channel_id", "channel_name": "channel_name", "team_domain": "CrispyDev", } @pytest.fixture def command_request_data(): return make_command_request_data() @pytest.fixture def make_command_payload(): def _make_command_payload(request_data: Dict = None): command_request_data = make_command_request_data() if request_data: command_request_data = {**command_request_data, **request_data} return Payload(**command_request_data) return _make_command_payload @pytest.fixture def payload(make_command_payload): return make_command_payload()
2.328125
2
machine-learning/ml-algos/logistic_regression.py
teetangh/Kaustav-AI-workspace
0
12793279
#!/usr/bin/env python3 import numpy as np import math import random def compute_z(theta, x): z = 0 for j in range(len(x)): z += theta[j] * x[j] z += theta[len(x)] return z def compute_g(z): return (1)/(1 + math.exp(-z)) def compute_h(z): return compute_g(z) def binary_cross_entropy_loss(Y_train, Y_predict): total = 0 for i in range(len(Y_train)): total -= (Y_train[i] * math.log(Y_predict[i])) + \ ((1 - Y_train[i]) * math.log(1-Y_predict[i])) average = total / len(Y_train) return average def compute_loss_gradients(theta, X_train, Y_train, Y_predict): delta_theta = [] for j in range(len(X_train[0])): grad = 0 for i in range(len(Y_train)): grad += ((Y_predict[i] - Y_train[i]) * X_train[i][j])/len(Y_train) delta_theta.append(grad) return delta_theta def main(): # f = int(input("no of features: ")) n = int(input("no of rows: ")) X_train = [] Y_train = [] for i in range(n): row = [int(r) for r in input().split()] X_train.append(row[0:-1]) Y_train.append(row[-1]) theta = [np.random.randn() for i in range(len(X_train))] print("theta", theta) for i in range(n): print(X_train[i], Y_train[i]) epochs = 5 epsilon = 0.00000000000000001 alpha = 0.001 for e in range(epochs): Y_predict = [] for i in range(n): print(X_train[i]) Y_predict.append(compute_h(compute_z(theta, X_train[i]))) current_loss = binary_cross_entropy_loss(Y_train, Y_predict) print("=========> Epoch number:", e, "Current Loss: ", current_loss) print("Y_predict", Y_predict) if current_loss <= epsilon: break delta_theta = compute_loss_gradients( theta, X_train, Y_train, Y_predict) print("delta_theta", delta_theta) for j in range(len(theta) - 1): theta[j] = theta[j] - alpha * delta_theta[j] if __name__ == "__main__": main()
2.953125
3
1_nas/predictor.py
nuaa-QK/1_NAS
0
12793280
<filename>1_nas/predictor.py import os from info_str import _cur_ver_dir import numpy as np from enumerater import Enumerater from predict_op.label_encoding import decoder, encoder, getClassNum from keras.utils.np_utils import to_categorical from keras.models import model_from_json import time MAX_NETWORK_LENGTH = 71 #model_json_path = './predict_op/model.json' #model_weights_path = './predict_op/model.json.h5' net_data_path = os.path.join(_cur_ver_dir, 'predict_op/data', 'net.npy') label_data_path = os.path.join(_cur_ver_dir, 'predict_op/data', 'label.npy') model_json_path = os.path.join(_cur_ver_dir, 'predict_op', 'model.json') model_weights_path = os.path.join(_cur_ver_dir, 'predict_op', 'model.json.h5') # TODO Predictor.train -> Predictor.train_model (defined in interface.md) # TODO DO NOT overuse @staticmethod. It can be your private function in predictor.py. # TODO Wrtie Predictor.predict & Predictor.train_model discriptions. # TODO Let each functions be less than 30 line and 80 characters per line. class Feature: def __init__(self, graph): self.graph = graph def _feature_links(self): # 从邻接矩阵中提取所有的支链,每一条支链有五个特征,编号,起点,终点,长度,节点编号 g = self.graph link_set = [] endpoint_link_num_set = [] node_link_num_set = [] endpoint = self._find_endpoint() link_id = 0 for i in range(len(endpoint)): if endpoint[i] == 1: for j in range(len(g)): if g[i][j] == 1: link = [link_id, i, 0, 0, []] link = self._find_link(endpoint, j, link, g, node_link_num_set) link_id += 1 link_set.append(link) for i in range(len(endpoint)): if endpoint[i] == 1: i_links_num_set = [] i_links_num_set.append(i) for j in range(len(link_set)): if link_set[j][1] == i or link_set[j][2] == i: i_links_num_set.append(j) endpoint_link_num_set.append(i_links_num_set) return link_set, endpoint_link_num_set, node_link_num_set def _feature_nodes(self): # 对每一个节点提取特征 link_set, endpointLinkNumSet, nodeLinkNumSet = self._feature_links() node_num = len(self.graph) feature_num = 25 node_feature = np.zeros((node_num, feature_num), dtype=float) node_feature[:, 0] = node_num node_feature[:, 1] = len(link_set) max_length, max_link_index = self._find_max_link(link_set) min_length, min_link_index = self._find_min_link(link_set) node_feature[:, 2] = max_length node_feature[:, 3] = max_link_index node_feature[:, 4] = min_length node_feature[:, 5] = min_link_index mean = len(link_set) / node_num link_len = [] for i in range(len(link_set)): link_len.append(link_set[i][3]) var = np.var(link_len) node_feature[:, 6] = mean node_feature[:, 7] = var # 全局特征,端点个数 endpoint_num = len(endpointLinkNumSet) node_feature[:, 8] = endpoint_num global_num = 9 # 局部特征 for i in range(node_num): node_feature[i][global_num] = self._is_endpoint(i, endpointLinkNumSet) node_feature[i][global_num + 1] = i if node_feature[i][global_num] == 1: node_feature[i][global_num + 2] = self._link_num(i, endpointLinkNumSet) links = self._find_endpoint_link_set(i, endpointLinkNumSet, link_set) node_feature[i][global_num + 3] = self._mean_link(links) node_feature[i][global_num + 4] = self._var_link(links) _, max_length = self._find_max_link(links) _, min_length = self._find_min_link(links) node_feature[i][global_num + 5] = max_length node_feature[i][global_num + 6] = min_length else: link = self._find_node_link(i, nodeLinkNumSet, link_set) node_feature[i][global_num + 7] = self._relative_Loc(i, link) node_feature[i][global_num + 8] = link[3] node_feature[i][global_num + 9] = link[1] node_feature[i][global_num + 10] = link[2] links = self._find_node_links(i, nodeLinkNumSet, link_set) node_feature[i][global_num + 11] = self._mean_link(links) node_feature[i][global_num + 12] = self._var_link(links) return node_feature def _find_endpoint(self): g = self.graph endpoint = np.zeros((len(g), 1), dtype=int) endpoint[0] = 1 for i in range(1, len(g)): out_link_num = 0 in_link_num = 0 for j in range(len(g)): if g[i][j] == 1: out_link_num += 1 if g[j][i] == 1: in_link_num += 1 if out_link_num > 1 and in_link_num > 1: break if out_link_num != 1: endpoint[i] = 1 if in_link_num > 1: endpoint[i] = 1 return endpoint def _find_endpoint_link_set(self, id, endpoint_link_num_set, link_set): # 寻找端点的支链集 links = [] for i in range(len(endpoint_link_num_set)): if endpoint_link_num_set[i][0] == id: for e in range(1, len(endpoint_link_num_set[i])): links.append(link_set[endpoint_link_num_set[i][e]]) break return links def _find_node_links(self, id, node_link_num_set, link_set): # 寻找与节点所在支链有相同端点的支链集 links = [] link_num = 0 for i in range(len(node_link_num_set)): if node_link_num_set[i][0] == id: link_num = node_link_num_set[i][1] break for i in range(len(link_set)): if link_set[i][1] == link_set[link_num][1] and link_set[i][2] == link_set[link_num][2]: links.append(link_set[i]) return links def _find_node_link(self, id, node_link_num_set, link_set): # 寻找节点所在的支链 for i in range(len(node_link_num_set)): if node_link_num_set[i][0] == id: link_num = link_set[node_link_num_set[i][1]] return link_num def _is_endpoint(self, node_num, endpoint_link_num_set): # 判断是否为端点 for i in range(len(endpoint_link_num_set)): if endpoint_link_num_set[i][0] == node_num: return 1 return 0 def _link_num(self, node_id, endpoint_link_num_set): # 支链的个数 for i in range(len(endpoint_link_num_set)): if endpoint_link_num_set[i][0] == node_id: e = endpoint_link_num_set[i] return len(e) - 1 return 0 def _mean_link(self, link_set): # 支链长度的期望 links_len = [] for e in link_set: links_len.append(e[3]) return np.mean(links_len) def _var_link(self, link_set): # 支链的方差 links_len = [] for e in link_set: links_len.append(e[3]) return np.var(links_len) def _relative_Loc(self, id, link): # 节点在支链中的相对位置 for i in range(len(link[4])): if link[4][i] == id: return i + 1 def _find_max_link(self, link_set): # 寻找最长支链 max_length = 0 index = 0 for i in range(len(link_set)): if link_set[i][3] > max_length: index = i max_length = link_set[i][3] return index, max_length def _find_min_link(self, link_set): # 寻找最短支链 min_length = 0 index = 0 for i in range(len(link_set)): if link_set[i][3] < min_length: index = i min_length = link_set[i][3] return index, min_length def _find_link(self, endpoint, id, link, G, node_link_num_set): # 递归搜索链上的所有节点 if endpoint[id] == 1: link[2] = id return link else: link[3] += 1 link[4].append(id) node_link_num_set.append([id, link[0]]) for i in range(len(G)): if G[id][i] == 1: link = self._find_link(endpoint, i, link, G, node_link_num_set) break return link class Predictor: def __init__(self): with open(model_json_path, 'r') as file: model_json = file.read() self.model = model_from_json(model_json) self.model.load_weights(model_weights_path) def _list2mat(self, G): # 将领接表转换成邻接矩阵 graph = np.zeros((len(G), len(G)), dtype=int) for i in range(len(G)): e = G[i] if e: for k in e: graph[i][k] = 1 return graph def _graph_concat(self, graphs): if len(graphs) == 1: return graphs[0] elif len(graphs) > 1: new_graph_length = 0 for g in graphs: new_graph_length += len(g) new_graph = np.zeros((new_graph_length, new_graph_length), dtype=int) x_index = 0 # the staring connection position of next graph y_index = 0 for g in graphs: new_graph[x_index:x_index + len(g), y_index:y_index + len(g)] = g if y_index + len(g) < new_graph_length: new_graph[x_index + len(g) - 1][y_index + len(g)] = 1 x_index = x_index + len(g) y_index = y_index + len(g) return new_graph def _get_new_order(self, links, graph_size): # 获得节点在新的编码方式下的顺序 new_order = np.zeros((2, graph_size), dtype=int) for i in range(graph_size): new_order[0][i] = new_order[1][i] = i for l in links: nodes = l[4] if nodes: if nodes[0] > l[2]: for i in range(len(nodes)): new_order[1][nodes[i]] = l[1] + i + 1 new_order = np.argsort(new_order[1, :]) return new_order def _get_new_mat(self, new_order, mat): # 获得在新的编码方式下网络结构的邻接矩阵 size = len(mat) graph = np.zeros((size, size), dtype=int) for i in range(size): e = mat[i] if e: for k in e: pre = int(np.argwhere(new_order == i)) after = int(np.argwhere(new_order == k)) graph[pre][after] = 1 return graph def _padding(self, node_feature, length): # 对输入数据做填充,保证输入数据的一致性 if len(node_feature) < length: add = np.ones((length - len(node_feature), len(node_feature[0]))) add = -add node_feature = np.append(node_feature, add, axis=0) return node_feature def _trans(self, graphs): # 对输入的邻接表重新编码并转换成矩阵的形式提取特征 graphs_mat = [] graphs_orders = [] for g in graphs: g_mat = self._list2mat(g) links, _, _ = Feature(g_mat)._feature_links() order = self._get_new_order(links, len(g_mat)) graph_mat = self._get_new_mat(order, g) graphs_mat.append(graph_mat) graphs_orders.append(order) return graphs_mat, graphs_orders def _class_id_2_parameter(self, order, class_list): # 将最后输出的类别转换成需要预测的操作详细参数 parameters = decoder(class_list) parameters_cp = parameters.copy() for i in range(len(order)): parameters[order[i]] = parameters_cp[i] return parameters[:len(order)] def _save_model(self, model, json_path, weights_path): model_json = model.to_json() with open(json_path, 'w') as file: file.write(model_json) model.save_weights(weights_path) def _my_param_style(self, cell_list): filter_size = [16, 32, 48, 64, 96, 128, 192, 256, 512, 1024] pool_size = [2, 3, 4, 5, 7] labels = [] for cell in cell_list: label = [] if cell[0] == 'conv': for f_size in filter_size: if cell[1] <= f_size: label = [1, [str(cell[2]), str(f_size), 'relu', '0', '0']] else: if cell[1] == 'max' or cell[1] == 'avg': for p_size in pool_size: if cell[2] <= p_size: label = [0, ['pool ' + cell[1], str(p_size)]] elif cell[1] == 'global': label = [0, ['pool avg', 'global']] labels.append(label) return labels def _read_data(self, net_data_path, label_data_path): network_feature = np.load(net_data_path) label = np.load(label_data_path) return network_feature, label def _save_data(self, net, label): np.save(net_data_path, net) np.save(label_data_path, label) def _predict(self, inputs): # 根据输入特征预测操作 inputs = np.array(inputs) inputs = np.reshape(inputs, (1, inputs.shape[0], inputs.shape[1])) # model = load_model(model_json_path, model_weights_path) predict_y = self.model.predict(inputs) predict_y = np.reshape(predict_y, (predict_y.shape[1], predict_y.shape[2])) output = [] for i in range(len(inputs[0])): output.append(np.argmax(predict_y[i])) return output # 模块接口 def predictor(self, pre_block, graph_full): ''' Method for predicting block's operation :param pre_block: Previous block Networkitem_list :param graph_full: Current block Networkitem :return: Operation of each node in the current block,including size and filters ''' graph_list = [] if pre_block: for block in pre_block: graph_list.append(block) graph_list.append(graph_full) graphs_mat, graphs_orders = self._trans(graph_list) new_graph = self._graph_concat(graphs_mat) inputs = Feature(new_graph)._feature_nodes() inputs = self._padding(inputs, MAX_NETWORK_LENGTH) class_list = self._predict(inputs) ops = self._class_id_2_parameter(graphs_orders[-1], class_list[len(new_graph) - len(graph_full):len(new_graph)]) return ops def train_model(self, graph_full, cell_list): ''' Retrain the predictor model with networks that get high accuracy on the validation set :param graph_full: a Network Topology :param cell_list: Cell list :returns: None. ''' x_train = [] y_train = [] net, label = self._read_data(net_data_path, label_data_path) for k in net: x_train.append(k) for k in label: y_train.append(k) graphs_mat, _ = self._trans(graph_full) for graph in graphs_mat: x = Feature(graph)._feature_nodes() x = self._padding(x, MAX_NETWORK_LENGTH) x_train.append(x) x_train = np.array(x_train) for cell in cell_list: cell = self._my_param_style(cell) y = encoder(cell) y = to_categorical(y, getClassNum()) y = self._padding(y, MAX_NETWORK_LENGTH) y_train.append(y) y_train = np.array(y_train) self._save_model(model=self.model, json_path='./predict_op/outdated_model.json', weights_path='./predict_op/outdated_model.json.h5') self.model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) self.model.fit(x_train, y_train, batch_size=32, epochs=500) self._save_model(model=self.model, json_path=model_json_path, weights_path=model_weights_path) self._save_data(x_train, y_train) if __name__ == '__main__': # graph = [[[1], [2], [3], [4], [5], []]] # cell_list = [[('conv', 256, 3, 'relu'), ('conv', 192, 3, 'relu'), ('conv', 512, 1, 'relu'), ('pooling', 'max', 4) # , ('conv', 128, 1, 'relu'), ('conv', 512, 5, 'relu')]] # pred = Predictor() # Blocks = [] # pred.train([], []) enu = Enumerater(depth=6, width=3) network_pool = enu.enumerate() print(len(network_pool)) start = time.time() i = 0 pred = Predictor() for ind in range(2, len(network_pool)): gra = network_pool[ind].graph_part #Blocks = [network_pool[ind - 2].graph_part, network_pool[ind - 1].graph_part] Blocks = [] cell_list = pred.predictor(Blocks, gra) if i%100 == 0: print("iterator:", i) i += 1 print(gra) print(cell_list) end = time.time() print(end-start)
2.359375
2
hisa/capsule/capsule.py
rittikaadhikari/stock-recommendation
0
12793281
<filename>hisa/capsule/capsule.py from six import with_metaclass from abc import ABCMeta class Capsule(with_metaclass(ABCMeta)): pass
1.523438
2
AA.py
BeahIF/ev3
0
12793282
<reponame>BeahIF/ev3 #!/usr/bin/env python3 #coding: utf-8 from ev3dev.ev3 import * from threading import * import time, socket import math m1 = LargeMotor('outD') m2 = LargeMotor('outC') m3 = MediumMotor('outB') m4 = MediumMotor('outA') #Sensor_Cor = [ColorSensor('in1'), ColorSensor('in2')] #Sensor_Cor[0] = ColorSensor('in1') #2 #Sensor_Cor[1] = ColorSensor('in2') #4 #us = UltrasonicSensor('in3') #us2 = UltrasonicSensor('in4') #ir = InfraredSensor('in4') #ir = UltrasonicSensor('in4') # ir2 = InfraredSensor('in1') # tou = TouchSensor('in4') #Sensor_Cor[0].mode = 'COL-COLOR' #Sensor_Cor[1].mode = 'COL-COLOR' #us.mode = 'US-DIST-CM' #us2.mode = 'US-DIST-CM' #ir.mode = 'US-DIST-CM' #ir.mode = 'IR-PROX' # ir2.mode = 'IR-PROX' m1.run_to_rel_pos(position_sp=5000,speed_sp=150,stop_action="brake") m2.run_to_rel_pos(position_sp=5000,speed_sp=150,stop_action="brake")
1.820313
2
tests/diffcalc/scenarios.py
DiamondLightSource/diffcalc-core
1
12793283
### # Copyright 2008-2011 Diamond Light Source Ltd. # This file is part of Diffcalc. # # Diffcalc is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Diffcalc is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the* # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Diffcalc. If not, see <http://www.gnu.org/licenses/>. ### from math import asin, atan2, cos, degrees, radians, sin # from diffcalc.hkl.vlieg.geometry import VliegPosition from diffcalc.hkl.calc import sign from diffcalc.hkl.geometry import Position from diffcalc.ub.reference import Reflection def PosFromI16sEuler(phi, chi, eta, mu, delta, gamma): return Position( mu=mu, delta=delta, nu=gamma, eta=eta, chi=chi, phi=phi, ) def VliegPos(alpha=None, delta=None, gamma=None, omega=None, chi=None, phi=None): """Convert six-circle Vlieg diffractometer angles into 4S+2D You geometry""" sin_alpha = sin(radians(alpha)) cos_alpha = cos(radians(alpha)) sin_delta = sin(radians(delta)) cos_delta = cos(radians(delta)) sin_gamma = sin(radians(gamma)) cos_gamma = cos(radians(gamma)) asin_delta = degrees(asin(sin_delta * cos_gamma)) # Eq.(83) vals_delta = [asin_delta, 180.0 - asin_delta] idx, _ = min( [(i, abs(delta - d)) for i, d in enumerate(vals_delta)], key=lambda x: x[1] ) pos_delta = vals_delta[idx] sgn = sign(cos(radians(pos_delta))) pos_nu = degrees( atan2( sgn * (cos_delta * cos_gamma * sin_alpha + cos_alpha * sin_gamma), sgn * (cos_delta * cos_gamma * cos_alpha - sin_alpha * sin_gamma), ) ) # Eq.(84) return Position(mu=alpha, delta=pos_delta, nu=pos_nu, eta=omega, chi=chi, phi=phi) class SessionScenario: """ A test scenario. The test case must have __name, lattice and bmatrix set and if umatrix is set then so must ref 1 and ref 2. Matrices should be 3*3 python arrays of lists and ref1 and ref2 in the format (h, k, l, position, energy, tag).""" def __init__(self): self.name = None self.lattice = None self.bmatrix = None self.ref1 = None self.ref2 = None self.umatrix = None self.calculations = [] # CalculationScenarios def __str__(self): toReturn = "\nTestScenario:" toReturn += "\n name: " + self.name toReturn += "\n lattice:" + str(self.lattice) toReturn += "\n bmatrix:" + str(self.bmatrix) toReturn += "\n ref1:" + str(self.ref1) toReturn += "\n ref2:" + str(self.ref2) toReturn += "\n umatrix:" + str(self.umatrix) return toReturn class CalculationScenario: """ Used as part of a test scenario. A UB matrix appropriate for this calcaultion will have been calculated or loaded """ def __init__(self, tag, package, mode, energy, modeToTest, modeNumber): self.tag = tag self.package = package self.mode = mode self.energy = energy self.wavelength = 12.39842 / energy self.modeToTest = modeToTest self.modeNumber = modeNumber self.hklList = None # hkl triples self.posList = [] self.paramList = [] def sessions(P=VliegPos): ############################ SESSION0 ############################ # From the dif_init.mat next to dif_dos.exe on Vlieg'session2 cd # session2 = SessionScenario() # session2.name = 'latt1' # session2.lattice = ([4.0004, 4.0004, 2.270000, 90, 90, 90]) # session2.bmatrix = (((1.570639, 0, 0) ,(0.0, 1.570639, 0) , # (0.0, 0.0, 2.767923))) # self.scenarios.append(session2) ############################ SESSION1 ############################ # From b16 on 27June2008 (From <NAME>) session1 = SessionScenario() session1.name = "b16_270608" session1.lattice = (3.8401, 3.8401, 5.43072, 90, 90, 90) session1.bmatrix = ((1.636204, 0, 0), (0, 1.636204, 0), (0, 0, 1.156971)) session1.ref1 = Reflection( 1, 0, 1.0628, P(5.000, 22.790, 0.000, 1.552, 22.400, 14.255), 10, "ref1", ) session1.ref2 = Reflection( 0, 1, 1.0628, P(5.000, 22.790, 0.000, 4.575, 24.275, 101.320), 10, "ref2", ) session1.umatrix = ( (0.997161, -0.062217, 0.042420), (0.062542, 0.998022, -0.006371), (-0.041940, 0.009006, 0.999080), ) session1.ref1calchkl = (1, 0, 1.0628) # Must match the guessed value! session1.ref2calchkl = (-0.0329, 1.0114, 1.04) ############################ SESSION2 ############################ # cubic crystal from bliss tutorial session2 = SessionScenario() session2.name = "cubic_from_bliss_tutorial" session2.lattice = (1.54, 1.54, 1.54, 90, 90, 90) session2.ref1 = Reflection(1, 0, 0, P(0, 60, 0, 30, 0, 0), 12.39842 / 1.54, "ref1") session2.ref2 = Reflection( 0, 1, 0, P(0, 60, 0, 30, 0, -90), 12.39842 / 1.54, "ref2" ) session2.bmatrix = ((4.07999, 0, 0), (0, 4.07999, 0), (0, 0, 4.07999)) session2.umatrix = ((1, 0, 0), (0, -1, 0), (0, 0, -1)) session2.ref1calchkl = (1, 0, 0) # Must match the guessed value! session2.ref2calchkl = (0, 1, 0) # sixc-0a : fixed omega = 0 c = CalculationScenario("sixc-0a", "sixc", "0", 12.39842 / 1.54, "4cBeq", 1) c.alpha = 0 c.gamma = 0 c.w = 0 # c.hklList=((0.7, 0.9, 1.3), (1,0,0), (0,1,0), (1, 1, 0)) c.hklList = ((0.7, 0.9, 1.3),) c.posList.append( P(0.000000, 119.669750, 0.000000, 59.834875, -48.747500, 307.874983651098) ) # c.posList.append(P(0.000000, 60.000000, 0.000000, 30.000, 0.000000, 0.000000)) # c.posList.append(P(0.000000, 60.000000, 0.000000, 30.000, 0.000000, -90.0000)) # c.posList.append(P(0.000000, 90.000000, 0.000000, 45.000, 0.000000, -45.0000)) session2.calculations.append(c) ############################ SESSION3 ############################ # AngleCalc scenarios from SPEC sixc. using crystal and alignment session3 = SessionScenario() session3.name = "spec_sixc_b16_270608" session3.lattice = (3.8401, 3.8401, 5.43072, 90, 90, 90) session3.bmatrix = ((1.636204, 0, 0), (0, 1.636204, 0), (0, 0, 1.156971)) session3.umatrix = ( (0.997161, -0.062217, 0.042420), (0.062542, 0.998022, -0.006371), (-0.041940, 0.009006, 0.999080), ) session3.ref1 = Reflection( 1, 0, 1.0628, P(5.000, 22.790, 0.000, 1.552, 22.400, 14.255), 12.39842 / 1.24, "ref1", ) session3.ref2 = Reflection( 0, 1, 1.0628, P(5.000, 22.790, 0.000, 4.575, 24.275, 101.320), 12.39842 / 1.24, "ref2", ) session3.ref1calchkl = (1, 0, 1.0628) session3.ref2calchkl = (-0.0329, 1.0114, 1.04) # sixc-0a : fixed omega = 0 ac = CalculationScenario("sixc-0a", "sixc", "0", 12.39842 / 1.24, "4cBeq", 1) ac.alpha = 0 ac.gamma = 0 ac.w = 0 ### with 'omega_low':-90, 'omega_high':270, 'phi_low':-180, 'phi_high':180 ac.hklList = [] ac.hklList.append((0.7, 0.9, 1.3)) ac.posList.append(P(0.0, 27.352179, 0.000000, 13.676090, 37.774500, 53.965500)) ac.paramList.append( { "Bin": 8.3284, "Bout": 8.3284, "rho": 36.5258, "eta": 0.1117, "twotheta": 27.3557, } ) ac.hklList.append((1, 0, 0)) ac.posList.append(P(0.0, 18.580230, 0.000000, 9.290115, -2.403500, 3.589000)) ac.paramList.append( { "Bin": -0.3880, "Bout": -0.3880, "rho": -2.3721, "eta": -0.0089, "twotheta": 18.5826, } ) ac.hklList.append((0, 1, 0)) ac.posList.append(P(0.0, 18.580230, 0.000000, 9.290115, 0.516000, 93.567000)) ac.paramList.append( { "Bin": 0.0833, "Bout": 0.0833, "rho": 0.5092, "eta": -0.0414, "twotheta": 18.5826, } ) ac.hklList.append((1, 1, 0)) ac.posList.append(P(0.0, 26.394192, 0.000000, 13.197096, -1.334500, 48.602000)) ac.paramList.append( { "Bin": -0.3047, "Bout": -0.3047, "rho": -1.2992, "eta": -0.0351, "twotheta": 26.3976, } ) session3.calculations.append(ac) ############################ SESSION4 ############################ # test crystal session4 = SessionScenario() session4.name = "test_orth" session4.lattice = (1.41421, 1.41421, 1.00000, 90, 90, 90) session4.system = "Orthorhombic" session4.bmatrix = ((4.44288, 0, 0), (0, 4.44288, 0), (0, 0, 6.28319)) session4.ref1 = Reflection( 0, 1, 2, P(0.0000, 122.4938, 0.0000, 80.7181, 90.0000, -45.0000), 15.0, "ref1", ) session4.ref2 = Reflection( 1, 0, 2, P(0.0000, 122.4938, 0.000, 61.2469, 70.5288, -45.0000), 15, "ref2", ) session4.ref3 = Reflection( 1, 0, 1, P(0.0000, 60.8172, 0.000, 30.4086, 54.7356, -45.0000), 15, "ref3", ) session4.ref4 = Reflection( 1, 1, 2, P(0.0000, 135.0736, 0.000, 67.5368, 63.4349, 0.0000), 15, "ref4", ) session4.reflist = (session4.ref1, session4.ref2, session4.ref3, session4.ref4) session4.umatrix = ( (0.70711, 0.70711, 0.00), (-0.70711, 0.70711, 0.00), (0.00, 0.00, 1.00), ) session4.ref1calchkl = (0, 1, 2) # Must match the guessed value! session4.ref2calchkl = (1, 0, 2) ############################ SESSION5 ############################ # test crystal session5 = SessionScenario() session5.name = "Dalyite" session5.lattice = (7.51, 7.73, 7.00, 106.0, 113.5, 99.5) session5.system = "Triclinic" session5.bmatrix = ( (0.96021, 0.27759, 0.49527), (0, 0.84559, 0.25738), (0, 0, 0.89760), ) session5.ref1 = Reflection( 0, 1, 2, P(0.0000, 23.7405, 0.0000, 11.8703, 46.3100, 43.1304), 12.3984, "ref1", ) session5.ref2 = Reflection( 1, 0, 3, P(0.0000, 34.4282, 0.000, 17.2141, 46.4799, 12.7852), 12.3984, "ref2", ) session5.ref3 = Reflection( 2, 2, 6, P(0.0000, 82.8618, 0.000, 41.4309, 41.5154, 26.9317), 12.3984, "ref3", ) session5.ref4 = Reflection( 4, 1, 4, P(0.0000, 71.2763, 0.000, 35.6382, 29.5042, 14.5490), 12.3984, "ref4", ) session5.ref5 = Reflection( 8, 3, 1, P(0.0000, 97.8850, 0.000, 48.9425, 5.6693, 16.7929), 12.3984, "ref5", ) session5.ref6 = Reflection( 6, 4, 5, P(0.0000, 129.6412, 0.000, 64.8206, 24.1442, 24.6058), 12.3984, "ref6", ) session5.ref7 = Reflection( 3, 5, 7, P(0.0000, 135.9159, 0.000, 67.9579, 34.3696, 35.1816), 12.3984, "ref7", ) session5.reflist = ( session5.ref1, session5.ref2, session5.ref3, session5.ref4, session5.ref5, session5.ref6, session5.ref7, ) session5.umatrix = ( (0.99982, 0.00073, 0.01903), (0.00073, 0.99710, -0.07612), (-0.01903, 0.07612, 0.99692), ) session5.ref1calchkl = (0, 1, 2) # Must match the guessed value! session5.ref2calchkl = (1, 0, 3) ############################ SESSION6 ############################ # test crystal session6 = SessionScenario() session6.name = "Acanthite" session6.lattice = (4.229, 6.931, 7.862, 90, 99.61, 90) session6.system = "Monoclinic" session6.bmatrix = ( (1.50688, 0.00000, 0.13532), (0.00000, 0.90653, 0.00000), (0.00000, 0.00000, 0.79918), ) session6.ref1 = Reflection( 0, 1, 2, P(0.0000, 21.1188, 0.0000, 10.5594, 59.6447, 61.8432), 10.0, "ref1", ) session6.ref2 = Reflection( 1, 0, 3, P(0.0000, 35.2291, 0.000, 62.4207, 87.1516, -90.0452), 10.0, "ref2", ) session6.ref3 = Reflection( 1, 1, 6, P(0.0000, 64.4264, 0.000, 63.9009, 97.7940, -88.8808), 10.0, "ref3", ) session6.ref4 = Reflection( 1, 2, 2, P(0.0000, 34.4369, 0.000, 72.4159, 60.1129, -29.0329), 10.0, "ref4", ) session6.ref5 = Reflection( 2, 2, 1, P(0.0000, 43.0718, 0.000, 21.5359, 8.3873, 29.0230), 10.0, "ref5", ) session6.reflist = ( session6.ref1, session6.ref2, session6.ref3, session6.ref4, session6.ref5, ) session6.umatrix = ( (0.99411, 0.00079, 0.10835), (0.00460, 0.99876, -0.04949), (-0.10825, 0.04969, 0.99288), ) session6.ref1calchkl = (0, 1, 2) # Must match the guessed value! session6.ref2calchkl = (1, 0, 3) ######################################################################## return (session1, session2, session3, session4, session5, session6)
2.203125
2
datasets/__init__.py
yubin1219/Semantic-Seg
0
12793284
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .cityscapes import Cityscapes as cityscapes
1.179688
1
testscripts/RDKB/component/WIFIAgent/TS_WIFIAGENT_ForceDisable_CheckRadioEnable_InBridgeMode.py
rdkcmf/rdkb-tools-tdkb
0
12793285
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2020 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version='1.0' encoding='utf-8'?> <xml> <id></id> <!-- Do not edit id. This will be auto filled while exporting. If you are adding a new script keep the id empty --> <version>3</version> <!-- Do not edit version. This will be auto incremented while updating. If you are adding a new script you can keep the vresion as 1 --> <name>TS_WIFIAGENT_ForceDisable_CheckRadioEnable_InBridgeMode</name> <!-- If you are adding a new script you can specify the script name. Script Name should be unique same as this file name with out .py extension --> <primitive_test_id></primitive_test_id> <!-- Do not change primitive_test_id if you are editing an existing script. --> <primitive_test_name>WIFIAgent_Get</primitive_test_name> <!-- --> <primitive_test_version>1</primitive_test_version> <!-- --> <status>FREE</status> <!-- --> <synopsis>To check if 2.4G and 5G radio gets disabled when WiFi Force Disable is enabled in bridge mode</synopsis> <!-- --> <groups_id /> <!-- --> <execution_time>15</execution_time> <!-- --> <long_duration>false</long_duration> <!-- --> <advanced_script>false</advanced_script> <!-- execution_time is the time out time for test execution --> <remarks></remarks> <!-- Reason for skipping the tests if marked to skip --> <skip>false</skip> <!-- --> <box_types> <box_type>Broadband</box_type> <!-- --> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> <!-- --> </rdk_versions> <test_cases> <test_case_id>TC_WIFIAGENT_128</test_case_id> <test_objective>This test case is to check if 2.4G and 5G radio gets disabled when WiFi Force Disable is enabled in bridge mode</test_objective> <test_type>Positive</test_type> <test_setup>Broadband</test_setup> <pre_requisite>1.Ccsp Components in DUT should be in a running state that includes component under test Cable Modem 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>WIFIAgent_Get WIFIAgent_Set</api_or_interface_used> <input_parameters>Device.WiFi.Radio.1.Enable Device.WiFi.Radio.2.Enable Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable Device.X_CISCO_COM_DeviceControl.LanManagementEntry.1.LanMode</input_parameters> <automation_approch>1.Load the module 2.Get the current lan mode and set the mode to bridge-static 3.Get the current status of Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable,Device.WiFi.Radio.1.Enable and Device.WiFi.Radio.2.Enable 4.Enable Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable 5.Device.WiFi.Radio.1.Enable and Device.WiFi.Radio.2.Enable should be disabled 6.Revert the Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable to previous 7.Verify that Device.WiFi.Radio.1.Enable and Device.WiFi.Radio.2.Enable also go to previous after revert operation 8.Revert the LAN mode to previous state 7.Unload the module</automation_approch> <expected_output>On Enabling Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable 2.4G and 5G radio should be disabled in bridge-mode</expected_output> <priority>High</priority> <test_stub_interface>WIFIAGENT</test_stub_interface> <test_script>TS_WIFIAGENT_ForceDisable_CheckRadioEnable_InBridgeMode</test_script> <skipped>No</skipped> <release_version>M84</release_version> <remarks>None</remarks> </test_cases> <script_tags /> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from time import sleep; #Test component to be tested obj = tdklib.TDKScriptingLibrary("wifiagent","1"); #IP and Port of box, No need to change, #This will be replaced with corresponding DUT Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_WIFIAGENT_ForceDisable_CheckRadioEnable_InBridgeMode'); #result of connection with test component and DUT result =obj.getLoadModuleResult(); loadmodulestatus=obj.getLoadModuleResult(); if "SUCCESS" in loadmodulestatus.upper(): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS"); expectedresult ="SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.X_CISCO_COM_DeviceControl.LanManagementEntry.1.LanMode") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); defaultLANmode = details.split("VALUE:")[1].split(' ')[0]; if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the current LAN mode"; print "EXPECTED RESULT 1: Should get the current LAN mode"; print "ACTUAL RESULT 1: default LAN mode is %s" %defaultLANmode; print "[TEST EXECUTION RESULT] : SUCCESS"; mode = "bridge-static"; tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.X_CISCO_COM_DeviceControl.LanManagementEntry.1.LanMode") tdkTestObj.addParameter("paramValue", mode) tdkTestObj.addParameter("paramType","string") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Change lanmode to %s " %mode print "EXPECTED RESULT 2: Should change lanmode to %s" %mode print "ACTUAL RESULT 2: Details: %s " %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; #sleep to reflect the mode change sleep(90); tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.1.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); defaultRadio1 = tdkTestObj.getResultDetails(); if expectedresult in actualresult: defaultRadio1 = defaultRadio1.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3: Get the Radio Enable status for 2.4GHz"; print "EXPECTED RESULT 3: Should get the Radio Enable status for 2.4GHz"; print "ACTUAL RESULT 3: Radio Enable status for 2.4GHz state is %s" %defaultRadio1; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.2.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); defaultRadio2 = tdkTestObj.getResultDetails(); if expectedresult in actualresult: defaultRadio2 = defaultRadio2.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 4: Get the Radio Enable status for 5GHz"; print "EXPECTED RESULT 4: Should get the Radio Enable status for 5GHz"; print "ACTUAL RESULT 4: Radio Enable status for 5GHz state is %s" %defaultRadio2; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); default = tdkTestObj.getResultDetails(); if expectedresult in actualresult: default = default.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 5: Get the current WiFi Force Disable state"; print "EXPECTED RESULT 5: Should get current WiFi Force Disable state"; print "ACTUAL RESULT 5: current WiFi Force Disable state is %s" %default; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.addParameter("paramValue", "true"); tdkTestObj.addParameter("paramType","boolean") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 6: Enable the WiFi Force Disable"; print "EXPECTED RESULT 6: Should enable Force Disable state"; print "ACTUAL RESULT 6: %s" %details; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.1.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); Radio1 = tdkTestObj.getResultDetails(); if expectedresult in actualresult and "false" in Radio1: Radio1 = Radio1.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 7: Get the Radio Enable status for 2.4GHz as false"; print "EXPECTED RESULT 7: Should get the Radio Enable status for 2.4GHz as false"; print "ACTUAL RESULT 7: Radio Enable status for 2.4GHz state is %s" %Radio1; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.2.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); Radio2 = tdkTestObj.getResultDetails(); if expectedresult in actualresult and "false" in Radio2: Radio2 = Radio2.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 8: Get the Radio Enable status for 5GHz as false"; print "EXPECTED RESULT 8: Should get the Radio Enable status for 5GHz as false"; print "ACTUAL RESULT 8: Radio Enable status for 5GHz state is %s" %Radio2; print "[TEST EXECUTION RESULT] : SUCCESS"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 8: Get the Radio Enable status for 5GHz as false"; print "EXPECTED RESULT 8: Should get the Radio Enable status for 5GHz as false"; print "ACTUAL RESULT 8: Radio Enable status for 5GHz state is %s" %Radio2; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 7: Get the Radio Enable status for 2.4GHz as false"; print "EXPECTED RESULT 7: Should get the Radio Enable status for 2.4GHz as false"; print "ACTUAL RESULT 7: Radio Enable status for 2.4GHz state is %s" %Radio1; print "[TEST EXECUTION RESULT] : FAILURE"; #Revert the value tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.WiFi.X_RDK-CENTRAL_COM_ForceDisable") tdkTestObj.addParameter("paramValue", default); tdkTestObj.addParameter("paramType","boolean") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 9: Revert the WiFi Force Disable status to previous"; print "EXPECTED RESULT 9: Should disable WiFi Force Disable status to %s" %default; print "ACTUAL RESULT 9: %s" %details; print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.1.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult and defaultRadio1 in details: details = details.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 10: Check if Radio enable status for 2.4GHz is in previous state after reverting WiFi Force Disable"; print "EXPECTED RESULT 10: Radio enable status for 2.4GHz should be in previous state after reverting WiFi Force Disable"; print "ACTUAL RESULT 10: default value was :%s and after revertion %s" %(defaultRadio1,details) print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('WIFIAgent_Get'); tdkTestObj.addParameter("paramName","Device.WiFi.Radio.2.Enable") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult and defaultRadio2 in details: details = details.split("VALUE:")[1].split(" ")[0].strip(); tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 11: Check if Radio enable status for 5GHz is in previous state after reverting WiFi Force Disable"; print "EXPECTED RESULT 11: Radio enable status for 5GHz should be in previous state after reverting WiFi Force Disable"; print "ACTUAL RESULT 11: default value was :%s and after revertion %s" %(defaultRadio2,details) print "[TEST EXECUTION RESULT] : SUCCESS"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 11: Check if Radio enable status for 5GHz is in previous state after reverting WiFi Force Disable"; print "EXPECTED RESULT 11: Radio enable status for 5GHz should be in previous state after reverting WiFi Force Disable"; print "ACTUAL RESULT 11: default value was :%s and after revertion %s" %(defaultRadio2,details) print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 10: Check if Radio enable status for 2.4GHz is in previous state after reverting WiFi Force Disable"; print "EXPECTED RESULT 10: Radio enable status for 2.4GHz should be in previous state after reverting WiFi Force Disable"; print "ACTUAL RESULT 10: default value was :%s and after revertion %s" %(defaultRadio1,details) print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 9: Revert the WiFi Force Disable status to previous"; print "EXPECTED RESULT 9: Should disable WiFi Force Disable status to %s" %default; print "ACTUAL RESULT 9: %s" %details; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 6: Enable the WiFi Force Disable"; print "EXPECTED RESULT 6: Should enable Force Disable state"; print "ACTUAL RESULT 6: %s" %details; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 5: Get the current WiFi Force Disable state"; print "EXPECTED RESULT 5: Should get current WiFi Force Disable state"; print "ACTUAL RESULT 5: current WiFi Force Disable state is %s" %default; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 4: Get the Radio Enable status for 5GHz"; print "EXPECTED RESULT 4: Should get the Radio Enable status for 5GHz"; print "ACTUAL RESULT 4: Radio Enable status for 5GHz state is %s" %defaultRadio2; print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3: Get the Radio Enable status for 2.4GHz"; print "EXPECTED RESULT 3: Should get the Radio Enable status for 2.4GHz"; print "ACTUAL RESULT 3: Radio Enable status for 2.4GHz state is %s" %defaultRadio1; print "[TEST EXECUTION RESULT] : FAILURE"; #Revert to previous lan mode tdkTestObj = obj.createTestStep('WIFIAgent_Set'); tdkTestObj.addParameter("paramName","Device.X_CISCO_COM_DeviceControl.LanManagementEntry.1.LanMode") tdkTestObj.addParameter("paramValue", defaultLANmode) tdkTestObj.addParameter("paramType","string") tdkTestObj.executeTestCase("expectedresult"); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 12: Change lanmode to the previous" print "EXPECTED RESULT 12: Should change lanmode to %s" %defaultLANmode print "ACTUAL RESULT 12: Details: %s " %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; #sleep for change in mode reflection sleep(90); else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 12: Change lanmode to the previous" print "EXPECTED RESULT 12: Should change lanmode to %s" %defaultLANmode print "ACTUAL RESULT 12: Details: %s " %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Change lanmode to %s" %mode print "EXPECTED RESULT 2: Should change lanmode to %s" %mode print "ACTUAL RESULT 2: Details: %s " %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1: Get the current LAN mode"; print "EXPECTED RESULT 1: Should get the current LAN mode"; print "ACTUAL RESULT 1: default LAN mode is %s" %defaultLANmode; print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("wifiagent") else: print "Failed to load wifiagent module"; obj.setLoadModuleStatus("FAILURE");
1.617188
2
src/darcyai/file_stream.py
edgeworx/darcyai
0
12793286
<reponame>edgeworx/darcyai<filename>src/darcyai/file_stream.py import threading from darcyai.utils import validate_not_none, validate_type, validate class FileStream: """ A class that represents a stream of data from a file. # Arguments path: The path to the file to write to. append: Whether to append to the file or not. Default is False. Default is `False`. encoding: The encoding to use for the file. Default is "utf-8". Default is `"utf-8"`. buffer_size: The size of the buffer to use. Default is 1024 * 1024. Default is `1024 * 1024`. flush_interval: The frequency to flush the file. Default is 0 (disabled). Default is `0`. # Examples ```python >>> from darcyai.file_stream import FileStream >>> file_stream = FileStream(file_path="output.txt", ... append=True, ... encoding="utf-8", ... buffer_size=1024*1024, ... flush_interval=5) ``` """ def __init__(self, path: str, append: bool = False, encoding: str = "utf-8", buffer_size: int = 1024 * 1024, flush_interval: int = 0) -> None: validate_not_none(path, "path is required") validate_type(path, str, "path must be a string") validate_not_none(append, "append is required") validate_type(append, bool, "append must be a boolean") validate_not_none(encoding, "encoding is required") validate_type(encoding, str, "encoding must be a string") try: _ = "test".encode(encoding) except Exception as e: raise ValueError(f"encoding '{encoding}' is not supported") from e validate_not_none(buffer_size, "buffer_size is required") validate_type(buffer_size, int, "buffer_size must be an integer") validate(buffer_size >= 0, "buffer_size must be greater than or equal to 0") validate_not_none(flush_interval, "flush_interval is required") validate_type(flush_interval, int, "flush_interval must be an integer") validate(flush_interval >= 0, "flush_interval must be greater than or equal to 0") #pylint: disable=consider-using-with self.__file = open(file=path, mode="ab" if append else "wb", buffering=buffer_size) self.__encoding = encoding self.__flush_interval = flush_interval self.__flush() def close(self): """ Closes the file. # Examples ```python >>> from darcyai.file_stream import FileStream >>> file_stream = FileStream(file_path="output.txt", ... append=True, ... encoding="utf-8", ... buffer_size=1024*1024, ... flush_interval=5) >>> file_stream.close() ``` """ self.__file.close() def write_string(self, data: str) -> None: """ Writes the data to the file. # Arguments data: The data to write. # Examples ```python >>> from darcyai.file_stream import FileStream >>> file_stream = FileStream(file_path="output.txt", ... append=True, ... encoding="utf-8", ... buffer_size=1024*1024, ... flush_interval=5) >>> file_stream.write_string("Hello World!") ``` """ self.write_bytes(data.encode(self.__encoding)) def write_bytes(self, data: bytes) -> None: """ Writes the data to the file. # Arguments data: The data to write. # Examples ```python >>> from darcyai.file_stream import FileStream >>> file_stream = FileStream(file_path="output.txt", ... append=True, ... encoding="utf-8", ... buffer_size=1024*1024, ... flush_interval=5) >>> file_stream.write_bytes(b"Hello World!") ``` """ self.__file.write(data) def __flush(self): """ Flushes the file. """ try: self.__file.flush() finally: if self.__flush_interval > 0: threading.Timer(interval=self.__flush_interval, function=self.__flush).start()
2.984375
3
graphene_django_cud/mutations.py
martasd/graphene-django-cud
0
12793287
<gh_stars>0 from collections import OrderedDict import graphene from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist from django.db import models, transaction from graphene import Mutation, InputObjectType from graphene.types.mutation import MutationOptions from graphene.types.utils import yank_fields_from_attrs from graphene.utils.str_converters import to_snake_case from graphene_django.registry import get_global_registry from graphql import GraphQLError from graphql_relay import to_global_id from graphene_django_cud.registry import get_type_meta_registry from .util import disambiguate_id, disambiguate_ids, get_input_fields_for_model, \ get_all_optional_input_fields_for_model, is_many_to_many, get_m2m_all_extras_field_names, \ get_likely_operation_from_name, get_fk_all_extras_field_names, get_filter_fields_input_args meta_registry = get_type_meta_registry() class DjangoCudBase(Mutation): class Meta: abstract = True @classmethod def get_or_create_foreign_obj( cls, field, value, data, info ): field_type = data.get('type', 'ID') if field_type == "ID": return value else: input_type_meta = meta_registry.get_meta_for_type(field_type) # Create new obj related_obj = cls.create_obj( value, info, input_type_meta.get('auto_context_fields', {}), input_type_meta.get('many_to_many_extras', {}), input_type_meta.get('foreign_key_extras', {}), input_type_meta.get('many_to_one_extras', {}), field.related_model ) return related_obj.id @classmethod def get_or_create_m2m_objs( cls, field, values, data, operation, info ): results = [] if not values: return results if isinstance(data, bool): data = {} field_type = data.get('type', 'ID') for value in values: if field_type == "ID": related_obj = field.related_model.objects.get(pk=disambiguate_id(value)) else: # This is something that we are going to create input_type_meta = meta_registry.get_meta_for_type(field_type) # Create new obj related_obj = cls.create_obj( value, info, input_type_meta.get('auto_context_fields', {}), input_type_meta.get('many_to_many_extras', {}), input_type_meta.get('foreign_key_extras', {}), input_type_meta.get('many_to_one_extras', {}), field.related_model ) results.append(related_obj) return results @classmethod def get_or_create_m2o_objs( cls, obj, field, values, data, operation, info, Model ): results = [] if not values: return results field_type = data.get('type', 'auto') for value in values: if field_type == "ID": related_obj = field.related_model.objects.get(pk=disambiguate_id(value)) elif field_type == "auto": # In this case, a new type has been created for us. Let's first find it's name, # then get it's meta, and then create it. We also need to attach the obj as the # foreign key. _type_name = data.get('type_name', f"Create{Model.__name__}{field.name.capitalize()}") input_type_meta = meta_registry.get_meta_for_type(field_type) # .id has to be called here, as the regular input for a foreignkey is ID! value[field.field.name] = obj.id related_obj = cls.create_obj( value, info, input_type_meta.get('auto_context_fields', {}), input_type_meta.get('many_to_many_extras', {}), input_type_meta.get('foreign_key_extras', {}), input_type_meta.get('many_to_one_extras', {}), field.related_model ) else: # This is something that we are going to create input_type_meta = meta_registry.get_meta_for_type(field_type) # Create new obj related_obj = cls.create_obj( value, info, input_type_meta.get('auto_context_fields', {}), input_type_meta.get('many_to_many_extras', {}), input_type_meta.get('foreign_key_extras', {}), input_type_meta.get('many_to_one_extras', {}), field.related_model ) return [] @classmethod def create_obj( cls, input, info, auto_context_fields, many_to_many_extras, foreign_key_extras, many_to_one_extras, Model ): meta_registry = get_type_meta_registry() model_field_values = {} many_to_many_values = {} many_to_many_extras_field_names = get_m2m_all_extras_field_names(many_to_many_extras) many_to_one_extras_field_names = get_m2m_all_extras_field_names(many_to_one_extras) # The layout is the same as for m2m foreign_key_extras_field_names = get_fk_all_extras_field_names(foreign_key_extras) for field_name, context_name in auto_context_fields.items(): if hasattr(info.context, context_name): model_field_values[field_name] = getattr(info.context, context_name) for name, value in super(type(input), input).items(): # Handle these separately if name in many_to_many_extras_field_names or name in foreign_key_extras_field_names or name in many_to_one_extras_field_names: continue field = Model._meta.get_field(name) new_value = value # We have to handle this case specifically, by using the fields # .set()-method, instead of direct assignment field_is_many_to_many = is_many_to_many(field) value_handle_name = "handle_" + name if hasattr(cls, value_handle_name): handle_func = getattr(cls, value_handle_name) assert callable( handle_func ), f"Property {value_handle_name} on {cls.__name__} is not a function." new_value = handle_func(value, name, info) # On some fields we perform some default conversion, if the value was not transformed above. if new_value == value and value is not None: if type(field) in (models.ForeignKey, models.OneToOneField): # Delete auto context field here, if it exists. We have to do this explicitly # as we change the name below if name in auto_context_fields: del model_field_values[name] name = getattr(field, "db_column", None) or name + "_id" new_value = disambiguate_id(value) elif field_is_many_to_many: new_value = disambiguate_ids(value) if field_is_many_to_many: many_to_many_values[name] = new_value else: model_field_values[name] = new_value # We don't have an object yet, and we potentially need to create # parents before proceeding. for name, extras in foreign_key_extras.items(): value = input.get(name, None) field = Model._meta.get_field(name) obj_id = cls.get_or_create_foreign_obj( field, value, extras, info ) model_field_values[name + "_id"] = obj_id # Foreign keys are added, we are ready to create our object obj = Model.objects.create(**model_field_values) for name, values in many_to_many_values.items(): getattr(obj, name).set(values) # Handle extras fields many_to_many_to_add = {} many_to_many_to_remove = {} for name, extras in many_to_many_extras.items(): field = Model._meta.get_field(name) if not name in many_to_many_to_add: many_to_many_to_add[name] = [] many_to_many_to_remove[name] = [] for extra_name, data in extras.items(): field_name = name if extra_name != "exact": field_name = name + "_" + extra_name values = input.get(field_name, None) if isinstance(data, bool): data = {} operation = data.get('operation') or get_likely_operation_from_name(extra_name) objs = cls.get_or_create_m2m_objs( field, values, data, operation, info ) if len(objs) > 0: if operation == "add": many_to_many_to_add[name] += objs else: many_to_many_to_remove[name] += objs many_to_one_to_add = {} many_to_one_to_remove = {} for name, extras in many_to_one_extras.items(): field = Model._meta.get_field(name) if not name in many_to_one_to_add: many_to_one_to_add[name] = [] many_to_one_to_remove[name] = [] for extra_name, data in extras.items(): field_name = name if extra_name != "exact": field_name = name + "_" + extra_name values = input.get(field_name, None) if isinstance(data, bool): data = {} operation = data.get('operation') or get_likely_operation_from_name(extra_name) if operation == "add": objs = cls.get_or_create_m2o_objs( obj, field, values, data, operation, info, Model ) many_to_one_to_add[name] += objs else: many_to_one_to_remove[name] += disambiguate_ids(values) for name, objs in many_to_one_to_add.items(): getattr(obj, name).add(*objs) for name, objs in many_to_one_to_remove.items(): # Only nullable foreign key reverse rels have the remove method, # so we use this method instead getattr(obj, name).filter(id__in=objs).delete() for name, objs in many_to_many_to_add.items(): getattr(obj, name).add(*objs) for name, objs in many_to_many_to_remove.items(): getattr(obj, name).remove(*objs) return obj @classmethod def update_obj( cls, obj, input, info, auto_context_fields, many_to_many_extras, foreign_key_extras, many_to_one_extras, Model ): many_to_many_values = {} many_to_many_add_values = {} many_to_many_remove_values = {} many_to_many_extras_field_names = get_m2m_all_extras_field_names(many_to_many_extras) many_to_one_extras_field_names = get_m2m_all_extras_field_names(many_to_one_extras) # The layout is the same as for m2m foreign_key_extras_field_names = get_fk_all_extras_field_names(foreign_key_extras) for field_name, context_name in auto_context_fields.items(): if hasattr(info.context, context_name): setattr(obj, field_name, getattr(info.context, context_name)) for name, value in super(type(input), input).items(): # Handle these separately if name in many_to_many_extras_field_names or name in foreign_key_extras_field_names or name in many_to_one_extras_field_names: continue field = Model._meta.get_field(name) new_value = value # We have to handle this case specifically, by using the fields # .set()-method, instead of direct assignment field_is_many_to_many = is_many_to_many(field) value_handle_name = "handle_" + name if hasattr(cls, value_handle_name): handle_func = getattr(cls, value_handle_name) assert callable( handle_func ), f"Property {value_handle_name} on {cls.__name__} is not a function." new_value = handle_func(value, name, info) # On some fields we perform some default conversion, if the value was not transformed above. if new_value == value and value is not None: if type(field) in (models.ForeignKey, models.OneToOneField): # Delete auto context field here, if it exists. We have to do this explicitly # as we change the name below if name in auto_context_fields: setattr(obj, name, None) name = getattr(field, "db_column", None) or name + "_id" new_value = disambiguate_id(value) elif field_is_many_to_many: new_value = disambiguate_ids(value) if field_is_many_to_many: many_to_many_values[name] = new_value else: setattr(obj, name, new_value) # Handle extras fields for name, extras in foreign_key_extras.items(): value = input.get(name, None) field = Model._meta.get_field(name) obj_id = cls.get_or_create_foreign_obj( field, value, extras, info ) setattr(obj, name + "_id", obj_id) many_to_many_to_add = {} many_to_many_to_remove = {} for name, extras in many_to_many_extras.items(): field = Model._meta.get_field(name) if not name in many_to_many_to_add: many_to_many_to_add[name] = [] many_to_many_to_remove[name] = [] for extra_name, data in extras.items(): field_name = name if extra_name != "exact": field_name = name + "_" + extra_name values = input.get(field_name, None) if isinstance(data, bool): data = {} operation = data.get('operation') or get_likely_operation_from_name(extra_name) objs = cls.get_or_create_m2m_objs( field, values, data, operation, info ) if operation == "add": many_to_many_to_add[name] += objs else: many_to_many_to_remove[name] += objs many_to_one_to_add = {} many_to_one_to_remove = {} for name, extras in many_to_one_extras.items(): field = Model._meta.get_field(name) if not name in many_to_one_to_add: many_to_one_to_add[name] = [] many_to_one_to_remove[name] = [] for extra_name, data in extras.items(): field_name = name if extra_name != "exact": field_name = name + "_" + extra_name values = input.get(field_name, None) if isinstance(data, bool): data = {} operation = data.get('operation') or get_likely_operation_from_name(extra_name) if operation == "add": objs = cls.get_or_create_m2o_objs( obj, field, values, data, operation, info, Model ) many_to_one_to_add[name] += objs else: many_to_one_to_remove[name] += disambiguate_ids(values) for name, objs in many_to_one_to_add.items(): getattr(obj, name).add(*objs) for name, objs in many_to_one_to_remove.items(): # Only nullable foreign key reverse rels have the remove method, # so we use this method instead getattr(obj, name).filter(id__in=objs).delete() for name, objs in many_to_many_to_add.items(): getattr(obj, name).add(*objs) for name, objs in many_to_many_to_remove.items(): getattr(obj, name).remove(*objs) return obj class DjangoUpdateMutationOptions(MutationOptions): model = None only_fields = None exclude_fields = None return_field_name = None permissions = None login_required = None auto_context_fields = None optional_fields = () required_fields = None nested_fields = None type_name = None many_to_many_extras = None many_to_one_extras=None foreign_key_extras = None class DjangoUpdateMutation(DjangoCudBase): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, only_fields=(), exclude_fields=(), auto_context_fields={}, optional_fields=(), required_fields=(), return_field_name=None, many_to_many_extras=None, many_to_one_extras=None, foreign_key_extras=None, type_name="", **kwargs, ): registry = get_global_registry() meta_registry = get_type_meta_registry() model_type = registry.get_type_for_model(model) assert model_type, f"Model type must be registered for model {model}" if not return_field_name: return_field_name = to_snake_case(model.__name__) if many_to_one_extras is None: many_to_one_extras = {} if foreign_key_extras is None: foreign_key_extras = {} if many_to_many_extras is None: many_to_many_extras = {} input_type_name = type_name or f"Update{model.__name__}Input" model_fields = get_input_fields_for_model( model, only_fields, exclude_fields, optional_fields=tuple(auto_context_fields.keys()) + optional_fields, required_fields=required_fields, many_to_many_extras=many_to_many_extras, foreign_key_extras=foreign_key_extras, many_to_one_extras=many_to_one_extras, parent_type_name=input_type_name ) InputType = type( input_type_name, (InputObjectType,), model_fields ) # Register meta-data meta_registry.register( input_type_name, { 'auto_context_fields': auto_context_fields or {}, 'optional_fields': optional_fields, 'required_fields': required_fields, 'many_to_many_extras': many_to_many_extras or {}, 'many_to_one_extras': many_to_one_extras or {}, 'foreign_key_extras': foreign_key_extras or {} } ) registry.register_converted_field( input_type_name, InputType ) arguments = OrderedDict( id=graphene.ID(required=True), input=InputType(required=True) ) output_fields = OrderedDict() output_fields[return_field_name] = graphene.Field(model_type) _meta = DjangoUpdateMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.return_field_name = return_field_name _meta.permissions = permissions _meta.auto_context_fields = auto_context_fields or {} _meta.optional_fields = optional_fields _meta.required_fields = required_fields _meta.InputType = InputType _meta.input_type_name = input_type_name _meta.many_to_many_extras = many_to_many_extras _meta.many_to_one_extras = many_to_one_extras _meta.foreign_key_extras = foreign_key_extras _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) def get_queryset(self): Model = self._meta.model return Model.objects @classmethod def mutate(cls, root, info, id, input): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") id = disambiguate_id(id) Model = cls._meta.model queryset = cls.get_queryset(Model) obj = queryset.get(pk=id) auto_context_fields = cls._meta.auto_context_fields or {} obj = cls.update_obj( obj, input, info, auto_context_fields, cls._meta.many_to_many_extras, cls._meta.foreign_key_extras, cls._meta.many_to_one_extras, Model ) obj.save() kwargs = {cls._meta.return_field_name: obj} return cls(**kwargs) class DjangoPatchMutationOptions(MutationOptions): model = None only_fields = None exclude_fields = None return_field_name = None permissions = None login_required = None auto_context_fields = None many_to_many_extras = None many_to_one_extras = None foreign_key_extras = None type_name = None class DjangoPatchMutation(DjangoCudBase): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, only_fields=(), exclude_fields=(), return_field_name=None, auto_context_fields={}, many_to_one_extras = None, many_to_many_extras = None, foreign_key_extras = None, type_name=None, **kwargs, ): registry = get_global_registry() meta_registry = get_type_meta_registry() model_type = registry.get_type_for_model(model) assert model_type, f"Model type must be registered for model {model}" if not return_field_name: return_field_name = to_snake_case(model.__name__) if many_to_one_extras is None: many_to_one_extras = {} if foreign_key_extras is None: foreign_key_extras = {} if many_to_many_extras is None: many_to_many_extras = {} input_type_name = type_name or f"Patch{model.__name__}Input" model_fields = get_all_optional_input_fields_for_model( model, only_fields, exclude_fields, many_to_many_extras=many_to_many_extras, foreign_key_extras=foreign_key_extras, many_to_one_extras=many_to_one_extras, parent_type_name=type_name, ) InputType = type( input_type_name, (InputObjectType,), model_fields ) # Register meta-data meta_registry.register( input_type_name, { 'auto_context_fields': auto_context_fields or {}, 'many_to_many_extras': many_to_many_extras or {}, 'many_to_one_extras': many_to_one_extras or {}, 'foreign_key_extras': foreign_key_extras or {} } ) registry.register_converted_field( input_type_name, InputType ) arguments = OrderedDict( id=graphene.ID(required=True), input=InputType(required=True) ) output_fields = OrderedDict() output_fields[return_field_name] = graphene.Field(model_type) _meta = DjangoPatchMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.return_field_name = return_field_name _meta.permissions = permissions _meta.auto_context_fields = auto_context_fields or {} _meta.InputType = InputType _meta.input_type_name = input_type_name _meta.many_to_many_extras = many_to_many_extras _meta.many_to_one_extras = many_to_one_extras _meta.foreign_key_extras = foreign_key_extras _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) def get_queryset(self): Model = self._meta.model return Model.objects @classmethod def mutate(cls, root, info, id, input): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") id = disambiguate_id(id) Model = cls._meta.model queryset = cls.get_queryset(Model) obj = queryset.get(pk=id) auto_context_fields = cls._meta.auto_context_fields or {} obj = cls.update_obj( obj, input, info, auto_context_fields, cls._meta.many_to_many_extras, cls._meta.foreign_key_extras, cls._meta.many_to_one_extras, Model ) obj.save() kwargs = {cls._meta.return_field_name: obj} return cls(**kwargs) class DjangoCreateMutationOptions(MutationOptions): model = None only_fields = None exclude_fields = None return_field_name = None permissions = None login_required = None auto_context_fields = None optional_fields = () required_fields = () many_to_many_extras = None many_to_one_extras = None foreign_key_extras = None type_name = None class DjangoCreateMutation(DjangoCudBase): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, only_fields=(), exclude_fields=(), optional_fields=(), required_fields=(), auto_context_fields={}, return_field_name=None, many_to_many_extras=None, foreign_key_extras = None, many_to_one_extras = None, type_name=None, **kwargs, ): registry = get_global_registry() meta_registry = get_type_meta_registry() model_type = registry.get_type_for_model(model) if many_to_one_extras is None: many_to_one_extras = {} if foreign_key_extras is None: foreign_key_extras = {} if many_to_many_extras is None: many_to_many_extras = {} assert model_type, f"Model type must be registered for model {model}" if not return_field_name: return_field_name = to_snake_case(model.__name__) input_type_name = type_name or f"Create{model.__name__}Input" model_fields = get_input_fields_for_model( model, only_fields, exclude_fields, tuple(auto_context_fields.keys()) + optional_fields, required_fields, many_to_many_extras, foreign_key_extras, many_to_one_extras, parent_type_name=input_type_name, ) InputType = type( input_type_name, (InputObjectType,), model_fields ) # Register meta-data meta_registry.register( input_type_name, { 'auto_context_fields': auto_context_fields or {}, 'optional_fields': optional_fields, 'required_fields': required_fields, 'many_to_many_extras': many_to_many_extras or {}, 'foreign_key_extras': foreign_key_extras or {} } ) registry.register_converted_field( input_type_name, InputType ) arguments = OrderedDict(input=InputType(required=True)) output_fields = OrderedDict() output_fields[return_field_name] = graphene.Field(model_type) _meta = DjangoCreateMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.return_field_name = return_field_name _meta.optional_fields = optional_fields _meta.required_fields = required_fields _meta.permissions = permissions _meta.auto_context_fields = auto_context_fields or {} _meta.many_to_many_extras = many_to_many_extras or {} _meta.foreign_key_extras = foreign_key_extras _meta.many_to_one_extras = many_to_one_extras or {} _meta.InputType = InputType _meta.input_type_name = input_type_name _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) @classmethod def mutate(cls, root, info, input): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") Model = cls._meta.model model_field_values = {} auto_context_fields = cls._meta.auto_context_fields or {} obj = cls.create_obj( input, info, auto_context_fields, cls._meta.many_to_many_extras, cls._meta.foreign_key_extras, cls._meta.many_to_one_extras, Model ) kwargs = {cls._meta.return_field_name: obj} return cls(**kwargs) class DjangoBatchCreateMutationOptions(MutationOptions): model = None only_fields = None exclude_fields = None return_field_name = None permissions = None login_required = None auto_context_fields = None optional_fields = () required_fields = () many_to_many_extras = None many_to_one_extras = None foreign_key_extras = None type_name = None use_type_name = None class DjangoBatchCreateMutation(DjangoCudBase): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, only_fields=(), exclude_fields=(), optional_fields=(), required_fields=(), auto_context_fields={}, return_field_name=None, many_to_many_extras=None, foreign_key_extras = None, many_to_one_extras = None, type_name=None, use_type_name=None, **kwargs, ): registry = get_global_registry() meta_registry = get_type_meta_registry() model_type = registry.get_type_for_model(model) if many_to_one_extras is None: many_to_one_extras = {} if foreign_key_extras is None: foreign_key_extras = {} if many_to_many_extras is None: many_to_many_extras = {} assert model_type, f"Model type must be registered for model {model}" if not return_field_name: # Pluralize return_field_name = to_snake_case(model.__name__) + "s" if use_type_name: input_type_name = use_type_name InputType = registry.get_converted_field( input_type_name ) if not InputType: raise GraphQLError(f"Could not find input type with name {input_type_name}") else: input_type_name = type_name or f"BatchCreate{model.__name__}Input" model_fields = get_input_fields_for_model( model, only_fields, exclude_fields, tuple(auto_context_fields.keys()) + optional_fields, required_fields, many_to_many_extras, foreign_key_extras, many_to_one_extras, parent_type_name=input_type_name, ) InputType = type( input_type_name, (InputObjectType,), model_fields ) # Register meta-data meta_registry.register( input_type_name, { 'auto_context_fields': auto_context_fields or {}, 'optional_fields': optional_fields, 'required_fields': required_fields, 'many_to_many_extras': many_to_many_extras or {}, 'foreign_key_extras': foreign_key_extras or {} } ) registry.register_converted_field( input_type_name, InputType ) arguments = OrderedDict(input=graphene.List(InputType, required=True)) output_fields = OrderedDict() output_fields[return_field_name] = graphene.List(model_type) _meta = DjangoBatchCreateMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.return_field_name = return_field_name _meta.optional_fields = optional_fields _meta.required_fields = required_fields _meta.permissions = permissions _meta.auto_context_fields = auto_context_fields or {} _meta.many_to_many_extras = many_to_many_extras or {} _meta.foreign_key_extras = foreign_key_extras _meta.many_to_one_extras = many_to_one_extras or {} _meta.InputType = InputType _meta.input_type_name = input_type_name _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) @classmethod def mutate(cls, root, info, input): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") Model = cls._meta.model model_field_values = {} auto_context_fields = cls._meta.auto_context_fields or {} created_objs = [] with transaction.atomic(): for data in input: obj = cls.create_obj( data, info, auto_context_fields, cls._meta.many_to_many_extras, cls._meta.foreign_key_extras, cls._meta.many_to_one_extras, Model ) created_objs.append(obj) kwargs = {cls._meta.return_field_name: created_objs} return cls(**kwargs) class DjangoDeleteMutationOptions(MutationOptions): model = None permissions = None login_required = None class DjangoDeleteMutation(Mutation): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, only_fields=(), exclude_fields=(), return_field_name=None, **kwargs, ): registry = get_global_registry() if not return_field_name: return_field_name = to_snake_case(model.__name__) arguments = OrderedDict(id=graphene.ID(required=True)) output_fields = OrderedDict() output_fields["found"] = graphene.Boolean() output_fields["deleted_id"] = graphene.ID() _meta = DjangoDeleteMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.return_field_name = return_field_name _meta.permissions = permissions _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) @classmethod def mutate(cls, root, info, id): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") Model = cls._meta.model id = disambiguate_id(id) try: obj = Model.objects.get(pk=id) obj.delete() return cls(found=True, deleted_id=id) except ObjectDoesNotExist: return cls(found=False) class DjangoBatchDeleteMutationOptions(MutationOptions): model = None filter_fields = None filter_class = None permissions = None login_required = None class DjangoBatchDeleteMutation(Mutation): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, model=None, permissions=None, login_required=None, filter_fields=(), filter_class=None, **kwargs, ): registry = get_global_registry() model_type = registry.get_type_for_model(model) assert model_type, f"Model type must be registered for model {model}" assert ( len(filter_fields) > 0 ), f"You must specify at least one field to filter on for deletion." input_arguments = get_filter_fields_input_args( filter_fields, model ) InputType = type( f"BatchDelete{model.__name__}Input", (InputObjectType,), input_arguments ) arguments = OrderedDict(input=InputType(required=True)) output_fields = OrderedDict() output_fields["deletion_count"] = graphene.Int() output_fields["deleted_ids"] = graphene.List(graphene.ID) _meta = DjangoBatchDeleteMutationOptions(cls) _meta.model = model _meta.fields = yank_fields_from_attrs(output_fields, _as=graphene.Field) _meta.filter_fields = filter_fields _meta.permissions = permissions _meta.login_required = _meta.login_required or ( _meta.permissions and len(_meta.permissions) > 0 ) super().__init_subclass_with_meta__(arguments=arguments, _meta=_meta, **kwargs) @classmethod def mutate(cls, root, info, input): if cls._meta.login_required and not info.context.user.is_authenticated: raise GraphQLError("Must be logged in to access this mutation.") if cls._meta.permissions and len(cls._meta.permissions) > 0: if not info.context.user.has_perms(cls._meta.permissions): raise GraphQLError("Not permitted to access this mutation.") Model = cls._meta.model model_field_values = {} for name, value in super(type(input), input).items(): filter_field_split = name.split("__", 1) field_name = filter_field_split[0] try: field = Model._meta.get_field(field_name) except FieldDoesNotExist: # This can happen with nested selectors. In this case we set the field to none. field = None filter_field_is_list = False if len(filter_field_split) > 1: # If we have an "__in" final part of the filter, we are now dealing with # a list of things. Note that all other variants can be coerced directly # on the filter-call, so we don't really have to deal with other cases. filter_field_is_list = filter_field_split[-1] == "in" new_value = value value_handle_name = "handle_" + name if hasattr(cls, value_handle_name): handle_func = getattr(cls, value_handle_name) assert callable( handle_func ), f"Property {value_handle_name} on {cls.__name__} is not a function." new_value = handle_func(value, name, info) # On some fields we perform some default conversion, if the value was not transformed above. if new_value == value and value is not None: if type(field) in (models.ForeignKey, models.OneToOneField): name = getattr(field, "db_column", None) or name + "_id" new_value = disambiguate_id(value) elif type(field) in ( models.ManyToManyField, models.ManyToManyRel, models.ManyToOneRel, ) or filter_field_is_list: new_value = disambiguate_ids(value) model_field_values[name] = new_value filter_qs = Model.objects.filter(**model_field_values) ids = [ to_global_id(get_global_registry().get_type_for_model(Model).__name__, id) for id in filter_qs.values_list("id", flat=True) ] deletion_count, _ = filter_qs.delete() return cls(deletion_count=deletion_count, deleted_ids=ids)
1.789063
2
src/poliastro/frames/enums.py
sundeshgupta/poliastro
634
12793288
"""Coordinate frames definitions. """ from enum import Enum class Planes(Enum): EARTH_EQUATOR = "Earth mean Equator and Equinox of epoch (J2000.0)" EARTH_ECLIPTIC = "Earth mean Ecliptic and Equinox of epoch (J2000.0)" BODY_FIXED = "Rotating body mean Equator and node of date"
2.4375
2
run.py
DongDong-123/zgg_test
0
12793289
<filename>run.py<gh_stars>0 import os import time from readConfig import ReadConfig from db import DbOperate import random class Operate: # def __init__(self): # self.dboperate = DbOperate() def create(self): # from New_place_order import Execute # from test_one import Execute # from test_point import Execute # from trademark import Execute from copyright import Execute # from patent import Execute response = Execute() for callback_label in range(response.__FuncCount__): callback = response.__Func__[callback_label] print("开始执行:", callback) response.execute_function(callback) self.execute_log(callback, "execute") time.sleep(1) print("{}执行完毕".format(callback)) def execute_log(self, param, name): report_path = ReadConfig().save_report() error_log_path = os.path.join(report_path, "{}_log{}.log".format(name, time.strftime("%Y-%m-%d", time.localtime()))) with open(error_log_path, "a", encoding="utf-8") as f: f.write("{}: ".format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) + param + "\n") def read_exe_log(self, path): with open(path, 'r', encoding="utf-8") as f: f.read() def send_clue(self): from send_clue import Execute # from test_clue import Execute response = Execute() for callback_label in range(response.__FuncCount__): callback = response.__Func__[callback_label] print("开始执行:", callback) response.execute_function(callback) self.execute_log(callback, "send_clue") time.sleep(1) print("{}发送完毕".format(callback)) # 删除 def delete(): from delete_unpay_case import Execute test = Execute() num = test.get_code_num() for i in range(num): test.delete_order() print("删除完毕,共删除{}个".format(num)) # 随机获取类型 def random_list(num, lis): res = [] for num in range(num): index = random.randint(1, 34) res.append(lis[index]) return res def run(): qq = Operate() qq.create() print("下单完毕") def send_clue(): # ==================================== # all_type = ReadConfig().get_clue_type() # # 随机数量 # num = 5 # all_type = random_list(num, all_type) # DbOperate().add("clue", all_type) # ================================= qq = Operate() qq.send_clue() print("线索发送完毕") if __name__ == '__main__': # run() send_clue() # delete()
2.40625
2
dcor/_fast_dcov_mergesort.py
lemiceterieux/dcor
98
12793290
''' Functions to compute fast distance covariance using mergesort. ''' import warnings from numba import float64, int64, boolean import numba import numpy as np from ._utils import CompileMode, _transform_to_2d def _compute_weight_sums(y, weights): n_samples = len(y) weight_sums = np.zeros((n_samples,) + weights.shape[1:], dtype=y.dtype) # Buffer that contains the indexes of the current and # last iterations indexes = np.arange(2 * n_samples).reshape((2, n_samples)) indexes[1] = 0 # Remove this previous_indexes = indexes[0] current_indexes = indexes[1] weights_cumsum = np.zeros( (n_samples + 1,) + weights.shape[1:], dtype=weights.dtype) merged_subarray_len = 1 # For all lengths that are a power of two while merged_subarray_len < n_samples: gap = 2 * merged_subarray_len indexes_idx = 0 # Numba does not support axis, nor out parameter. for var in range(weights.shape[1]): weights_cumsum[1:, var] = np.cumsum( weights[previous_indexes, var]) # Select the subarrays in pairs for subarray_pair_idx in range(0, n_samples, gap): subarray_1_idx = subarray_pair_idx subarray_2_idx = subarray_pair_idx + merged_subarray_len subarray_1_idx_last = min( subarray_1_idx + merged_subarray_len - 1, n_samples - 1) subarray_2_idx_last = min( subarray_2_idx + merged_subarray_len - 1, n_samples - 1) # Merge the subarrays while (subarray_1_idx <= subarray_1_idx_last and subarray_2_idx <= subarray_2_idx_last): previous_index_1 = previous_indexes[subarray_1_idx] previous_index_2 = previous_indexes[subarray_2_idx] if y[previous_index_1].item() >= y[previous_index_2].item(): current_indexes[indexes_idx] = previous_index_1 subarray_1_idx += 1 else: current_indexes[indexes_idx] = previous_index_2 subarray_2_idx += 1 weight_sums[previous_index_2] += ( weights_cumsum[subarray_1_idx_last + 1] - weights_cumsum[subarray_1_idx]) indexes_idx += 1 # Join the remaining elements of one of the arrays (already sorted) if subarray_1_idx <= subarray_1_idx_last: n_remaining = subarray_1_idx_last - subarray_1_idx + 1 indexes_idx_next = indexes_idx + n_remaining current_indexes[indexes_idx:indexes_idx_next] = ( previous_indexes[subarray_1_idx:subarray_1_idx_last + 1]) indexes_idx = indexes_idx_next elif subarray_2_idx <= subarray_2_idx_last: n_remaining = subarray_2_idx_last - subarray_2_idx + 1 indexes_idx_next = indexes_idx + n_remaining current_indexes[indexes_idx:indexes_idx_next] = ( previous_indexes[subarray_2_idx:subarray_2_idx_last + 1]) indexes_idx = indexes_idx_next merged_subarray_len = gap # Swap buffer previous_indexes, current_indexes = (current_indexes, previous_indexes) return weight_sums _compute_weight_sums_compiled = numba.njit( float64[:, :](float64[:, :], float64[:, :]), cache=True)(_compute_weight_sums) def _generate_compute_aijbij_term(compiled): def _compute_aijbij_term(x, y): compute_weight_sums = (_compute_weight_sums_compiled if compiled else _compute_weight_sums) # x must be sorted n = len(x) weights = np.hstack((np.ones_like(y), y, x, x * y)) weight_sums = compute_weight_sums(y, weights) x = x.ravel() y = y.ravel() term_1 = (x * y).T @ weight_sums[:, 0].ravel() term_2 = x.T @ weight_sums[:, 1].ravel() term_3 = y.T @ weight_sums[:, 2].ravel() term_4 = np.sum(weight_sums[:, 3]) # First term in the equation sums_term = term_1 - term_2 - term_3 + term_4 # Second term in the equation sum_x = np.sum(x) sum_y = np.sum(y) cov_term = n * x.T @ y - np.sum(sum_x * y + sum_y * x) + sum_x * sum_y d = 4 * sums_term - 2 * cov_term return d.item() return _compute_aijbij_term _compute_aijbij_term = _generate_compute_aijbij_term(compiled=False) _compute_aijbij_term_compiled = numba.njit( float64(float64[:, :], float64[:, :]), cache=True)( _generate_compute_aijbij_term(compiled=True)) def _compute_row_sums(x): # x must be sorted x = x.ravel() n_samples = len(x) term_1 = (2 * np.arange(1, n_samples + 1) - n_samples) * x sums = np.cumsum(x) term_2 = sums[-1] - 2 * sums return term_1 + term_2 _compute_row_sums_compiled = numba.njit( float64[:](float64[:]), cache=True)(_compute_row_sums) def _generate_distance_covariance_sqr_mergesort_generic_impl( compiled): def _distance_covariance_sqr_mergesort_generic_impl(x, y, unbiased): compute_aijbij_term = (_compute_aijbij_term_compiled if compiled else _compute_aijbij_term) compute_row_sums = (_compute_row_sums_compiled if compiled else _compute_row_sums) n = len(x) # Sort x in ascending order ordered_indexes = np.argsort(x.ravel()) x = x[ordered_indexes] y = y[ordered_indexes] aijbij = compute_aijbij_term(x, y) a_i = compute_row_sums(x.ravel()) ordered_indexes_y = np.argsort(y.ravel()) b_i_perm = compute_row_sums(y.ravel()[ordered_indexes_y]) b_i = np.empty_like(b_i_perm) b_i[ordered_indexes_y] = b_i_perm a_dot_dot = np.sum(a_i) b_dot_dot = np.sum(b_i) sum_ab = a_i.ravel().T @ b_i.ravel() if unbiased: d3 = (n - 3) d2 = (n - 2) d1 = (n - 1) else: d3 = d2 = d1 = n d_cov = (aijbij / n / d3 - 2 * sum_ab / n / d2 / d3 + a_dot_dot / n * b_dot_dot / d1 / d2 / d3) return d_cov return _distance_covariance_sqr_mergesort_generic_impl _distance_covariance_sqr_mergesort_generic_impl = ( _generate_distance_covariance_sqr_mergesort_generic_impl( compiled=False)) _distance_covariance_sqr_mergesort_generic_impl_compiled = numba.njit( float64(float64[:, :], float64[:, :], boolean), cache=True)( _generate_distance_covariance_sqr_mergesort_generic_impl( compiled=True)) impls_dict = { CompileMode.AUTO: ( _distance_covariance_sqr_mergesort_generic_impl_compiled, _distance_covariance_sqr_mergesort_generic_impl), CompileMode.NO_COMPILE: (_distance_covariance_sqr_mergesort_generic_impl,), CompileMode.COMPILE_CPU: ( _distance_covariance_sqr_mergesort_generic_impl_compiled,) } def _distance_covariance_sqr_mergesort_generic(x, y, *, exponent=1, unbiased=False, compile_mode=CompileMode.AUTO): if exponent != 1: raise ValueError(f"Exponent should be 1 but is {exponent} instead.") x = _transform_to_2d(x) y = _transform_to_2d(y) if compile_mode not in (CompileMode.AUTO, CompileMode.COMPILE_CPU, CompileMode.NO_COMPILE): return NotImplementedError( f"Compile mode {compile_mode} not implemented.") for impl in impls_dict[compile_mode]: try: return impl(x, y, unbiased) except TypeError as e: if compile_mode is not CompileMode.AUTO: raise e warnings.warn(f"Falling back to uncompiled MERGESORT fast " f"distance covariance because of TypeError " f"exception raised: {e}. Rembember: only floating " f"point values can be used in the compiled " f"implementations.")
2.5
2
rotation_averaging/so3.py
nishant34/RotationAveraging
0
12793291
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2014-10-28 04:41:23 # @Last Modified by: marinheiro # @Last Modified time: 2014-12-08 23:30:01 """ Auxiliary functions to convert between different rotation representations. """ import numpy import numpy.linalg import scipy import math # Axis-Angle <-> Log Conversion def axis_angle_to_log(n, theta): """Converts from the axis-angle representation to the log representation """ return n*theta def log_to_axis_angle(w): """OI """ theta = numpy.linalg.norm(w) n = numpy.zeros((3,)) if theta != 0.0: n = w/theta return (n, theta) # Quaternion <-> Axis-Angle conversion def quaternion_to_axis_angle(quat): """OI """ theta = 2.0*math.atan2(numpy.linalg.norm(quat[1:]), quat[0]) n = numpy.zeros((3,1)) if theta != 0.0: n = quat[1:]/math.sin(theta/2) return (n, theta) def axis_angle_to_quaternion(n, theta): """OI """ c = math.cos(theta/2) s = math.sin(theta/2) quat = numpy.zeros((4,1)) quat[0] = c quat[1:] = n*s return quat # Matrix <-> Quaternion conversion def matrix_to_quaternion(rot): """OI """ s = math.sqrt(numpy.trace(rot) + 1.0)/2 quat = numpy.array([[s], [(rot[2, 1]-rot[1, 2])/(4*s)], [(rot[0, 2]-rot[2, 0])/(4*s)], [(rot[1, 0]-rot[0, 1])/(4*s)], ]) return quat def quaternion_to_matrix(quat): """OI """ qw = quat[0][0] qx = quat[1][0] qy = quat[2][0] qz = quat[3][0] rot = numpy.array([[1 - 2*qy*qy - 2*qz*qz, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw], [2*qx*qy + 2*qz*qw, 1 - 2*qx*qx - 2*qz*qz, 2*qy*qz - 2*qx*qw], [2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx*qx - 2*qy*qy]]) return rot # Matrix <-> Axis-Angle conversion def matrix_to_axis_angle(rot): """OI """ return quaternion_to_axis_angle(matrix_to_quaternion(rot)) def axis_angle_to_matrix(n, theta): """OI """ # print n.shape, theta return quaternion_to_matrix(axis_angle_to_quaternion(n, theta))
3.578125
4
biblebot/api/intranet.py
yongki150/biblebot-scraper
0
12793292
from abc import ABCMeta, abstractmethod from typing import Optional, Dict, List, Tuple import re from .base import ( HTTPClient, IParser, APIResponseType, ILoginFetcher, ISemesterFetcher, ResourceData, ErrorData, ParserPrecondition, SemesterData, ) from ..reqeust import Response from ..exceptions import ParsingError from .common import ( httpdate_to_unixtime, extract_alerts, extract_hidden_tags, urlencode, parse_table, ) __all__ = ( "IParserPrecondition", "Login", "StudentPhoto", "Chapel", "Timetable", "Course", ) DOMAIN_NAME: str = "https://kbuis.bible.ac.kr" # with protocol _SEMESTER_KEY: str = "ctl00$ContentPlaceHolder1$cbo_YearHg" class IParserPrecondition(metaclass=ABCMeta): @staticmethod @abstractmethod def is_blocking(response: Response) -> Optional[ErrorData]: """ 진행할 수 없는 사전조건인 경우 ErrorData, 그렇지 않은 경우 None """ pass _ParserPrecondition = ParserPrecondition(IParserPrecondition) class _SessionExpiredChecker(IParserPrecondition): @staticmethod def is_blocking(response: Response) -> Optional[ErrorData]: alerts = extract_alerts(response.soup) for alert in alerts: if "세션" in alert or "수업평가" in alert: return ErrorData( error={"title": alert, "alert_messages": alerts}, link=response.url ) return None def _extract_semester(response: Response) -> SemesterData: select_tag = response.soup.find("select", attrs={"name": _SEMESTER_KEY}) if not select_tag: raise ParsingError("학기 셀렉트 태그를 찾을 수 없습니다.", response) options = select_tag.find_all("option", selected=True) if not options: raise ParsingError("학기 옵션 태그를 찾을 수 없습니다.", response) try: selectables: List[str] = [ opt.attrs["value"] for opt in select_tag.find_all("option") ] selected: str = select_tag.find("option", selected=True).attrs["value"] except (KeyError, AttributeError): raise ParsingError("학기 옵션 태그를 정상적으로 선택할 수 없습니다.", response) return SemesterData(selected=selected, selectable=selectables) async def _post_with_semester( url, cookies: Dict[str, str], semester: Optional[str] = None, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: """ 인트라넷에서 특정 학기의 정보 조회를 위한 메서드 특정 학기 조회를 위해서는 POST 메서드로 정보를 전송해야하는데, 그 전에 hidden 태그를 함께 보내야함. 1. GET 요청, 해당 페이지를 불러와서 form hidden-tag 의 (name,key) 쌍을 얻는다. - 여기서 얻는 정보는 학교에서 미리 지정해놓은터 학기, 일반적으로 최신 학기 2. POST 요청, hidden-tag와 학기를 body에 담아 전송한다. """ response = await HTTPClient.connector.get( url, cookies=cookies, headers=headers, timeout=timeout, **kwargs ) if _SessionExpiredChecker.is_blocking(response): return response semester_info: SemesterData = _extract_semester(response) if ( semester and semester != semester_info.selected and semester in semester_info.selectable ): body = extract_hidden_tags(response.soup) body[_SEMESTER_KEY] = semester body["ctl00$ContentPlaceHolder1$hidActionMode"] = "S" response = await HTTPClient.connector.post( url, body=body, cookies=cookies, headers=headers, timeout=timeout, **kwargs ) semester_info: SemesterData = _extract_semester(response) response.etc["semester"] = semester_info return response class Login(ILoginFetcher, IParser): # TODO: URL 변경 유의 URL: str = DOMAIN_NAME + "/ble_login2.aspx" @classmethod async def fetch( cls, user_id: str, user_pw: str, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: form = {"Txt_1": user_id, "Txt_2": user_pw, "use_type": "2"} return await HTTPClient.connector.post( cls.URL, headers=headers, body=form, timeout=timeout, **kwargs ) @classmethod def parse(cls, response: Response) -> APIResponseType: """ 로그인 성공: status 302, location header 포함, 리다이렉트 메시지를 body에 포함 로그인 실패: status 200, location header 미포함, alert 메시지룰 body에 포함 """ # Login 성공 if response.status == 302: iat = httpdate_to_unixtime(response.headers["date"]) return ResourceData( data={"cookies": response.cookies, "iat": iat}, link=response.url ) # TODO: 현 인트라넷 서버 과부하 상황이 없애지면 더 자세한 조건 추가할 예정 # Login 실패: 인트라넷 서버 과부하 elif response.status == 503: return ErrorData( error={ "title": response.soup.find("h2").get_text(), "error_message": response.soup.find("p").get_text() }, link=response.url ) # Login 실패: Common 한 오류 else: alerts: List[str] = extract_alerts(response.soup) alert = alerts[0] if alerts else "" return ErrorData( error={"title": alert, "alert_messages": alerts}, link=response.url ) class StudentPhoto(IParser): URL: str = DOMAIN_NAME + "/SchoolRegMng/SR015.aspx" @classmethod async def fetch( cls, cookies: Dict[str, str], sid: str, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: query: Dict[str, str] = {"schNo": sid} query_string = urlencode(query) url = f"{cls.URL}?{query_string}" return await HTTPClient.connector.get( url, cookies=cookies, headers=headers, timeout=timeout, **kwargs ) @classmethod @_ParserPrecondition def parse(cls, response: Response) -> APIResponseType: """ 사진을 불러온 경우: headers= {'transfer-encoding': 'chunked', 'content-type': 'image/jpeg', 'content-disposition': 'attachment;filename=image.jpeg'} 사진을 불러오지 못한 경우: headers= {'transfer-encoding': 없음, 'content-type': 'text/html; charset=ks_c_5601-1987', 'content-disposition': 없음} """ if response.headers["content-type"][:5] == "image": return ResourceData(data={"raw_image": response.raw}, link=response.url) else: return ErrorData(error={"title": "이미지를 불러올 수 없습니다."}, link=response.url) class Chapel(ISemesterFetcher, IParser): URL: str = DOMAIN_NAME + "/StudentMng/SM050.aspx" @classmethod async def fetch( cls, cookies: Dict[str, str], semester: Optional[str] = None, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: return await _post_with_semester( cls.URL, cookies, semester, headers=headers, timeout=timeout, **kwargs ) @classmethod def _parse_summary(cls, response: Response) -> Dict[str, str]: soup = response.soup tbody = soup.find("tbody", attrs={"class": "viewbody"}) if not tbody: raise ParsingError("채플 요약 테이블을 찾을 수 없습니다.", response) summary: Dict[str, str] = {} for th, td in zip(tbody.find_all("th"), tbody.find_all("td")): key = th.get_text(strip=True) value = td.get_text(strip=True) day_count = re.search(r"\d+", value) summary[key] = str(day_count.group()) if day_count else "" return summary @classmethod def _parse_main_table(cls, response: Response) -> Tuple[List, List]: soup = response.soup thead = soup.find("thead", attrs={"class": "mhead"}) tbody = soup.find("tbody", attrs={"class": "mbody"}) return parse_table(response, thead, tbody) @classmethod @_ParserPrecondition def parse(cls, response: Response) -> APIResponseType: summary = cls._parse_summary(response) head, body = cls._parse_main_table(response) return ResourceData( data={"summary": summary, "head": head, "body": body,}, link=response.url, meta={ "selected": response.etc["semester"].selected, "selectable": response.etc["semester"].selectable, }, ) class Timetable(ISemesterFetcher, IParser): URL: str = DOMAIN_NAME + "/GradeMng/GD160.aspx" @classmethod async def fetch( cls, cookies: Dict[str, str], semester: Optional[str] = None, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: return await _post_with_semester( cls.URL, cookies, semester, headers=headers, timeout=timeout, **kwargs ) @staticmethod def _parse_contents(td: str, response: Response) -> Tuple: matching = re.match( r"(.+)?\(([^(]*)?\)(\d{2}:\d{2})\s*~\s*([0-9:]{,5})", td ) or re.match(r"(.+)?()(\d{2}:\d{2})\s*~\s*([0-9:]{,5})", td) if not matching: ParsingError("시간표 상세정보를 해석할 수 없습니다.", response) return matching.groups() @classmethod def _parse_main_table(cls, response: Response) -> Tuple[List, List]: soup = response.soup thead = soup.find("thead", attrs={"class": "mhead"}) tbody = soup.find("tbody", attrs={"class": "mbody"}) result = [[], [], [], [], []] head, body = parse_table(response, thead, tbody) for row in body: for i, each in enumerate(row): if each: result[i].append(cls._parse_contents(each, response)) return head, result @classmethod @_ParserPrecondition def parse(cls, response: Response) -> APIResponseType: head, body = cls._parse_main_table(response) return ResourceData( data={"head": head, "body": body}, link=response.url, meta={ "selected": response.etc["semester"].selected, "selectable": response.etc["semester"].selectable, }, ) class Course(ISemesterFetcher, IParser): URL: str = DOMAIN_NAME + "/GradeMng/GD095.aspx" @classmethod async def fetch( cls, cookies: Dict[str, str], semester: Optional[str] = None, *, headers: Optional[Dict[str, str]] = None, timeout: Optional[float] = None, **kwargs, ) -> Response: return await _post_with_semester( cls.URL, cookies, semester, headers=headers, timeout=timeout, **kwargs ) @classmethod def _parse_main_table(cls, response: Response) -> Tuple[List, List]: soup = response.soup thead = soup.find("thead", attrs={"class": "mhead"}) tbody = soup.find("tbody", attrs={"class": "mbody"}) return parse_table(response, thead, tbody) @classmethod @_ParserPrecondition def parse(cls, response: Response) -> APIResponseType: head, body = cls._parse_main_table(response) return ResourceData( data={"head": head, "body": body}, link=response.url, meta={ "selected": response.etc["semester"].selected, "selectable": response.etc["semester"].selectable, }, )
2.578125
3
calorie/signals.py
clarametto/calorieTracker
3
12793293
from django.db.models.signals import post_save from django.contrib.auth.models import User from .models import Profile from django.dispatch import receiver # Create your models here. @receiver(post_save, sender=User) def create_profile(sender,instance,created,**kwargs): if created: Profile.objects.create(person_of=instance) print("profile created") post_save.connect(create_profile,sender=User) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(person_of=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
2.3125
2
terrascript/tls/d.py
amlodzianowski/python-terrascript
0
12793294
<reponame>amlodzianowski/python-terrascript # terrascript/tls/d.py import terrascript class tls_public_key(terrascript.Data): pass
1.289063
1
paper/fig_max_speed_ac/fig_max_histo.py
npmurphy/CRNSynthesisFigures
0
12793295
<filename>paper/fig_max_speed_ac/fig_max_histo.py import pandas as pd import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import os import numpy as np plt.style.use('paper/figstyle.mpl') dpi = 300 import sys sys.path += ["python"] from figure_util import cm2inch def get_dataset(workdir, filename="summary_archetype.tsv"): score_df = pd.read_csv(os.path.join(workdir, filename), sep="\t") print("All CRNs", len(score_df)) unique = score_df[score_df["unique"]].copy() print("role isomorphic", len(unique)) return unique max_df = get_dataset("paper/maximum_out_S4_R3/") plt.rc('xtick', labelsize="x-small") fig, ax = plt.subplots(1, 1) colorcyc = plt.rcParams['axes.prop_cycle'].by_key()['color'] # max_df.plot.bar(y=["score"], x=["CRN"], ax=ax, width=0.6, color="lightblue", label="Optimized") # max_df.plot.bar(y=["one"], x=["CRN"], ax=ax, width=0.6, color="orange", label="Rate 1") max_df.plot.bar(y=["score"], x=["CRN"], ax=ax, width=0.7, color=colorcyc[0], label="Optimized") max_df.plot.bar(y=["one"], x=["CRN"], ax=ax, width=0.7, color=colorcyc[1], label="Rate 1") ax.legend(["Optimized", "Rate 1.0"]) ax.set_ylabel("Accuracy") ax.set_xlabel("CRN Number: Max$_{4,3}$ #") #labels = ax.get_xticklabels() labels = ax.get_xticklabels() for i, l in enumerate(labels): x, y = l.get_position() #print(type(l)) if i % 2 == 0: y += 0.03 else : y -= 0.03 l.set_rotation(0) l.set_position((x,y)) #print(x,y) #print(l.position) #print(labels) #ax[0].set_ylim(bottom=0, top=1.0) #ax[0].tick_params(axis='x', which='both', length=0) #plt.setp(labels, rotation=90) fig.set_size_inches(cm2inch(7.9, 3.5)) #fig.tight_layout() fig.subplots_adjust(left= 0.12, # the left side of the subplots of the figure right = 0.99, # the right side of the subplots of the figure bottom = 0.26, # the bottom of the subplots of the figure top = 0.99, # the top of the subplots of the figure wspace = 0.2, # the amount of width reserved for blank space between subplots, # expressed as a fraction of the average axis width hspace = 0.2) # the amount of height reserved for white space between subplots, fig.savefig("max_overview.pdf", dpi=dpi)#bbox_inches="tight") fig.savefig("max_overview.png", dpi=dpi)#bbox_inches="tight")
2.25
2
dataset/change_image.py
zza584231732/face-master
0
12793296
from scipy.misc import imread,imresize,imsave import os path = '/home/zhang/tm/insightface_for_face_recognition-master/dataset/8631_align_train/' out_path = '/home/zhang/tm/insightface_for_face_recognition-master/dataset/8631_112_align_train/' img_lists = os.listdir(path) for img_list in img_lists: imgpaths = os.path.join(path,img_list) out_imgpaths = os.path.join(out_path,img_list) if not os.path.exists(out_imgpaths): os.mkdir(out_imgpaths) img_names = os.listdir(imgpaths) for i in img_names: img_name = os.path.join(imgpaths,i) out_img_name = os.path.join(out_imgpaths,i) img = imread(img_name) img = imresize(img,(112,96)) imsave(out_img_name,img)
2.546875
3
train.py
youngstudent2/flappy-bird-for-learn
0
12793297
import flappybird as fb import random import time from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD import numpy as np import copy SCALE_FACTOR = 200 class GeneticBrain(fb.Brain): def __init__(self,n_input,n_hidden): ''' self.model = Sequential() self.model.add(Dense(n_hidden,activation='sigmoid',input_shape=(n_input,))) self.model.add(Dense(1,activation='sigmoid')) #print(self.getModel()) ''' self.model = NeuralNetwork([n_input,n_hidden],'logistic') def decideFlap(self,params): #print(params) distance = params['distance'] + params['pipeWidth'] deltaHeight = (params['bottomPipeHeight'] + params['topPipeHeight'])/2 - params['height'] velY = params['velY'] data = [distance * SCALE_FACTOR, deltaHeight * SCALE_FACTOR] pred = self.model.predict(data) #print(pred) return pred[0] > 0.5 def getModel(self): return self.model.getWeights() def setModel(self,weights): self.model.setWeights(weights) return True class GeneticAlgorithm(): def __init__(self,max_units,top_units): self.max_units = max_units self.top_units = top_units if max_units < top_units: self.top_units = max_units self.population = [] self.best_brain = None def reset(self): self.iteration = 1 self.mutateRate = 1 self.best_population = 0 self.best_fitness = 0 self.best_score = 0 def createPopulation(self): self.population = [] for i in range(self.max_units): newUnit = GeneticBrain(2,6) newUnit.index = i newUnit.fitness = 0 newUnit.score = 0 newUnit.isWinner = False self.population.append(newUnit) return self.population def evolvePopulation(self,results): winners = self.selection(results) for w in winners: print("%d: fitness = %f score = %d" %(w.index,w.fitness,w.score)) if self.mutateRate == 1 and winners[0].fitness < 0: # all is bad # create another population print("recreate popultation") return self.createPopulation() else: self.mutateRate = 0.2 if winners[0].fitness > self.best_fitness: self.best_fitness = winners[0].fitness self.best_score = winners[0].score winners[0].model.save('best.h5') for i in range(self.top_units,self.max_units): if i == self.top_units: parantA = winners[0].getModel() parantB = winners[1].getModel() offspring = self.crossOver(parantA,parantB) elif i < self.max_units - 2: parantA = self.getRandomUnit(winners).getModel() parantB = self.getRandomUnit(winners).getModel() offspring = self.crossOver(parantA,parantB) else: offspring = winners[0].getModel() offspring = self.mutation(offspring) newUnit = self.population[i] newUnit.setModel(offspring) newUnit.score = 0 newUnit.isWinner = False return self.population def selection(self,results): for i in range(self.top_units): self.population[results[i].index].isWinner = True return results[:self.top_units] def crossOver(self,parantA,parantB): length = np.size(parantA[1],0) cutPoint = random.randint(0,length-1) for i in range(cutPoint,length): tmp = parantA[1][0][i] parantA[1][0][i] = parantB[1][0][i] parantB[1][0][i] = tmp if random.randint(0,1): return parantA else: return parantB def mutation(self,offspring): for i in offspring[1]: for bias in i: bias = self.mutate(bias) for i in offspring[0]: for weight in i: weight = self.mutate(weight) return offspring def mutate(self,gene): if random.random() < self.mutateRate: mutateFactor = 1 + (random.random() - 0.5) * 3 + (random.random() - 0.5) gene *= mutateFactor return gene def getRandomUnit(self,array): return array[random.randint(0,len(array)-1)] def normalize(self,value,maxValue): if value < -maxValue: value = -maxValue elif value > maxValue: value = maxValue return value/maxValue def saveBestBird(self): pass import pygame class PlayerBrain(fb.Brain): # 玩家大脑 def decideFlap(self,params): #print(params) return params['playerClick'] class HappyBrain(fb.Brain): def __init__(self): random.seed(2000) def decideFlap(self,params): #print(params) pygame.event.get() if params['height'] < 40: return False r = random.randint(0,1000) return r > 940 def train(): bird_num = 10 GA = GeneticAlgorithm(bird_num,4) GA.reset() brains = GA.createPopulation() #brains = [HappyBrain()] * bird_num g = fb.FlappyBirdGame(30,bird_num,brains) train_time = 200 for i in range(train_time): g.run() results = g.result() print("Generation %d:" %(i)) sorted_brains = [] for r in results[::-1]: b = r[0].brain b.fitness = (r[1]['score']) * r[1]['interval'] - r[1]['distance'] b.score = r[1]['score'] sorted_brains.append(b) brains = GA.evolvePopulation(sorted_brains) print("best score = %d best fitness = %d" % (GA.best_score,GA.best_fitness)) g.reset(bird_num,brains) GA.saveBestBird() print("GA end!") from simpleNeuralNetwork import NeuralNetwork class simpleNNBrain(fb.Brain): def __init__(self): self.model = NeuralNetwork([2,6,1],'logistic') print(self.model.getWeights()) def decideFlap(self,params): distance = params['distance'] + params['pipeWidth'] deltaHeight = (params['bottomPipeHeight'] + params['topPipeHeight'])/2 - params['height'] velY = params['velY'] data = [distance * SCALE_FACTOR, deltaHeight * SCALE_FACTOR] pred = self.model.predict(data) #print(pred) print(pred) return pred[0] > 0.5 def train_test(): bird_num = 10 brains = [] for i in range(bird_num): brains.append(simpleNNBrain()) g = fb.FlappyBirdGame(30,bird_num,brains) for i in range(10): g.run() result = g.result() brains = [] for i in range(bird_num): brains.append(simpleNNBrain()) g.reset(10,brains) if __name__ == '__main__': train()
2.5
2
angular_flask/utils.py
rsom777/Blog
7
12793298
<filename>angular_flask/utils.py """ Helper functions for controllers.py """ import os, boto3, uuid, io from PIL import Image from flask.ext.httpauth import HTTPBasicAuth from flask import request, abort from angular_flask.models import * auth = HTTPBasicAuth() @auth.verify_password def verify_password(username_or_token, password): """ Check passwords validity against token or username :param username_or_token: :param password: :return: """ # first try to authenticate by token user = User.verify_auth_token(username_or_token) if not user: # try to authenticate with username/password user = User.query.filter_by(username=username_or_token).first() if not user: return abort(400, 'username') elif not user.verify_password(password): return abort(400, 'password') return True def allowed_file(filename): """ Check if file extension is in allowed extensions :param filename: Name of the file to be checked :return: True or False """ return '.' in filename and \ filename.rsplit('.', 1)[1] in app.config['ALLOWED_EXTENSIONS'] def save_image(img_type, elem): """ Save post cover or user avatar to local filesystem in dev or to S3 in prod :param img_type: 'avatars' or 'covers' :param elem: post or user obj on which to save the image :return: name of the file to be saved """ image = request.files['file'] if elem: filename = elem.photo.rsplit('/', 1)[-1] # Do not overwrite default image but generate unique file name instead if filename == 'default.jpg': filename = str(uuid.uuid4()) + '.' + image.filename.rsplit('.', 1)[1] elem.photo = app.config['IMG_FOLDER'] + img_type + '/' + filename else: filename = str(uuid.uuid4()) + '.' + image.filename.rsplit('.', 1)[1] img = Image.open(image) if img_type == 'avatars': size = 512 else: size = 1024 maxsize = (size, size) img.thumbnail(maxsize, Image.ANTIALIAS) if 'DYNO' in os.environ: # check if the app is running on Heroku server s3 = boto3.resource('s3') output = io.BytesIO() img.save(output, format='JPEG') s3.Object('theeblog', img_type + '/' + filename).put(Body=output.getvalue()) else: # Otherwise save to local filesystem img.save(os.path.join(app.config['UPLOAD_FOLDER'] + img_type, filename)) return filename
3.046875
3
python/count_primes.py
anishLearnsToCode/leetcode-algorithms
17
12793299
from typing import List class Solution: def _get_prime_sieve(self, size: int) -> List[int]: sieve = [1] * (max(size, 2)) sieve[0], sieve[1] = 0, 0 for number in range(2, len(sieve)): if sieve[number]: for dividend in range(number ** 2, len(sieve), number): sieve[dividend] = 0 return sieve def countPrimes(self, n: int) -> int: return sum(self._get_prime_sieve(n))
3.53125
4
tests/test_eotile.py
CS-SI/eotile
7
12793300
<reponame>CS-SI/eotile # -*- coding: utf-8 -*- # # Copyright (c) 2021 CS GROUP - France. # # This file is part of EOTile. # See https://github.com/CS-SI/eotile for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ :author: mgerma :organization: CS GROUP - France :copyright: 2021 CS GROUP - France. All rights reserved. :license: see LICENSE file. """ import logging import unittest from pathlib import Path from eotile.eotile_module import main as eomain from eotile.eotiles.eotiles import create_tiles_list_eo, get_tile, write_tiles_bb from eotile.eotiles.get_bb_from_tile_id import get_tiles_from_tile_id, tile_id_matcher from eotile.eotiles.utils import build_nominatim_request, input_matcher class TestEOTile(unittest.TestCase): def test_tile_list_utils_s2(self): aux_data_dirpath = Path("eotile/data/aux_data") filename_tiles_s2 = aux_data_dirpath / "s2_no_overlap.gpkg" ls2 = create_tiles_list_eo( filename_tiles_s2, Path("tests/test_data/illinois.shp"), ) self.assertEqual(len(ls2), 33) self.assertTrue(get_tile(ls2, "15TXH") is not None) self.assertTrue(get_tile(ls2, "15TXF") is not None) def test_tile_list_utils_l8(self): aux_data_dirpath = Path("eotile/data/aux_data") filename_tiles_l8 = aux_data_dirpath / "l8_tiles.gpkg" l8 = create_tiles_list_eo( filename_tiles_l8, Path("tests/test_data/illinois.shp"), ) self.assertEqual(len(l8), 18) self.assertTrue(get_tile(l8, "25030") is not None) def test_read_write_tiles_bb(self): aux_data_dirpath = Path("eotile/data/aux_data") filename_tiles_l8 = aux_data_dirpath / "l8_tiles.gpkg" ll8 = create_tiles_list_eo( filename_tiles_l8, Path("tests/test_data/illinois.shp"), ) write_tiles_bb(ll8, Path("/tmp/test_read_write.shp")) self.assertTrue(get_tile(ll8, "25030") is not None) def test_input_matcher(self): polygon = "POLYGON((1 1,5 1,5 5,1 5,1 1))" mpoly = "MULTIPOLYGON(((1 1,5 1,5 5,1 5,1 1),(2 2,2 3,3 3,3 2,2 2)),((6 3,9 2,9 4,6 3)))" bbox1 = "['36.9701313', '42.5082935', '-91.5130518', '-87.0199244']" bbox2 = "'36.9701313', '42.5082935', '-91.5130518', '-87.0199244'" bbox3 = "'36.9701313','42.5082935','-91.5130518','-87.0199244'" location1 = "Toulouse" location2 = "Nowhere" location3 = "France" tile_id1 = "31TCJ" tile_id2 = "199030" file1 = "/tmp" file2 = "/dev/null" test_list = [ polygon, mpoly, bbox1, bbox2, bbox3, location1, location3, tile_id1, tile_id2, file1, file2, ] with self.assertRaises(ValueError): input_matcher(location2) out_list = [] for elt in test_list: out_list.append(input_matcher(elt)) self.assertListEqual( out_list, [ "wkt", "wkt", "bbox", "bbox", "bbox", "location", "location", "tile_id", "tile_id", "file", "file", ], ) def test_tile_id_list_test(self): tile_id_list_2 = "31TCJ, 31TCF" tile_id_list_3 = "199030, 199029, 197031" out_list = [] for elt in [tile_id_list_2, tile_id_list_3]: out_list.append(input_matcher(elt)) self.assertListEqual(out_list, ["tile_id", "tile_id"]) def test_id_matcher(self): test_id_srtm = "N02W102" test_id_cop = "S02W102" test_id_s2 = "18SWJ" test_id_l8 = "12033" test_id_srtm5x5 = "srtm_37_04" self.assertEqual(tile_id_matcher(test_id_l8), [False, True, False, False]) self.assertEqual(tile_id_matcher(test_id_s2), [True, False, False, False]) self.assertEqual(tile_id_matcher(test_id_cop), [False, False, True, False]) self.assertEqual(tile_id_matcher(test_id_srtm), [False, False, True, False]) self.assertEqual(tile_id_matcher(test_id_srtm5x5), [False, False, False, True]) def test_get_tiles_from_tile_id(self): aux_data_dirpath = Path("eotile/data/aux_data") output_s2, output_l8, output_dem, output_srtm5x5 = get_tiles_from_tile_id( ["31TCJ"], aux_data_dirpath, False, False, dem=True, srtm5x5=True ) self.assertEqual(len(output_s2), 1) self.assertEqual(len(output_l8), 4) self.assertEqual(len(output_dem), 4) self.assertEqual(len(output_srtm5x5), 1) output_s2, output_l8, output_dem, output_srtm5x5 = get_tiles_from_tile_id( ["200035"], aux_data_dirpath, False, False, dem=True, srtm5x5=True ) self.assertEqual(len(output_s2), 8) self.assertEqual(len(output_l8), 1) def test_main_module(self): output_s2, output_l8, output_dem, output_srtm5x5 = eomain( "-74.657, 39.4284, -72.0429, 41.2409", no_l8=False, no_s2=False, dem=True, srtm5x5=True, ) self.assertEqual(len(output_s2), 12) self.assertEqual(len(output_l8), 9) self.assertEqual(len(output_dem), 7) self.assertEqual(len(output_srtm5x5), 2) def test_main_module_2(self): output_s2, output_l8, output_dem, output_srtm5x5 = eomain( "tests/test_data/illinois.shp", no_l8=False, no_s2=False, dem=True, srtm5x5=True, ) self.assertEqual(len(output_s2), 33) self.assertEqual(len(output_l8), 18) self.assertEqual(len(output_dem), 27) self.assertEqual(len(output_srtm5x5), 4) def test_main_module_3(self): output_s2, output_l8, output_dem, output_srtm5x5 = eomain( "Toulouse", no_l8=False, no_s2=False, dem=True, srtm5x5=True, threshold=0.1, ) self.assertEqual(len(output_s2), 1) self.assertEqual(len(output_l8), 2) self.assertEqual(len(output_dem), 1) self.assertEqual(len(output_srtm5x5), 1) def test_main_module_4(self): output_s2, output_l8, output_dem, output_srtm5x5 = eomain( "31TCJ", no_l8=False, no_s2=False, dem=True, srtm5x5=True, min_overlap=0.1, ) self.assertEqual(len(output_s2), 1) self.assertEqual(len(output_l8), 3) self.assertEqual(len(output_dem), 4) self.assertEqual(len(output_srtm5x5), 0) def test_build_nominatim_request(self): self.assertTrue( abs( build_nominatim_request(None, "Toulouse", "0.1").area - 0.013155945340939995 ) < 0.005 ) if __name__ == "__main__": logging.basicConfig(filename="test_eotile.log", level=logging.INFO) unittest.main()
1.953125
2
core/models.py
aashish01/FYP-Project
0
12793301
<filename>core/models.py from django.db import models from django.contrib.auth.models import User from django_countries.fields import CountryField from django.core.validators import MinValueValidator, MaxValueValidator # Create your models here. from django.shortcuts import reverse from django.db.models.signals import pre_save from Ecommerce.utils import unique_slug_generator CATEGORY_CHOICES = ( ('S', 'Shirt'), ('T', 'T-Shirt'), ('H', 'Hoodies'), ('P', 'Pants'), ('SW', 'Sport wear') ) LABEL_CHOICES = ( ('P', 'primary'), ('S', 'secondary'), ('D', 'danger') ) ADDRESS_CHOICES = ( ('B', 'Billing'), ('S', 'Shipping'), ) AVAILABILITY_PRODUCT = ( ('S', 'In Stock'), ('0', 'Out Of Range') ) class Post(models.Model): title1 = models.CharField(max_length=120) title2 = models.CharField(max_length=100, blank=True, null=True) description = models.TextField() image = models.ImageField() def __str__(self): return self.title1 class Item(models.Model): title = models.CharField(max_length=100) price = models.FloatField() discount_price = models.FloatField(blank=True, null=True) category = models.CharField(choices=CATEGORY_CHOICES, max_length=2) label = models.CharField(choices=LABEL_CHOICES, max_length=1) availabily = models.CharField( choices=AVAILABILITY_PRODUCT, max_length=1, blank=True, null=True) slug = models.SlugField(blank=True, null=True) description = models.TextField() image = models.ImageField() def __str__(self): return self.title def slug_generator(sender, instance, *args, **kwargs): if not instance.slug: instance.slug = unique_slug_generator(instance) pre_save.connect(slug_generator, sender=Item) class OrderItem(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) item = models.ForeignKey(Item, on_delete=models.CASCADE) quantity = models.IntegerField(default=1) ordered = models.BooleanField(default=False) def __str__(self): return f"{self.quantity} of {self.item.title}" def get_total_item_price(self): return self.quantity * self.item.price def get_total_discount_item_price(self): return self.quantity * self.item.discount_price def get_amount_saved(self): return self.get_total_item_price() - self.get_total_discount_item_price() def get_final_price(self): if self.item.discount_price: return self.get_total_discount_item_price() return self.get_total_item_price() class Coupon(models.Model): code = models.CharField(max_length=15) amount = models.FloatField() def __str__(self): return self.code class Order(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) ref_code = models.CharField(max_length=20, blank=True, null=True) ordered = models.BooleanField(default=False) items = models.ManyToManyField(OrderItem) start_date = models.DateTimeField(auto_now_add=True) ordered_date = models.DateTimeField() billing_address = models.ForeignKey( 'Address', related_name='billing_address', on_delete=models.SET_NULL, blank=True, null=True) shipping_address = models.ForeignKey( 'Address', related_name='shipping_address', on_delete=models.SET_NULL, blank=True, null=True) payment = models.ForeignKey( 'Payment', on_delete=models.SET_NULL, blank=True, null=True) coupon = models.ForeignKey( 'Coupon', on_delete=models.SET_NULL, blank=True, null=True) being_received = models.BooleanField(default=False) received = models.BooleanField(default=False) refund_requested = models.BooleanField(default=False) refund_granted = models.BooleanField(default=False) ''' add comment ''' def __str__(self): return self.user.username def get_total(self): total = 0 for order_item in self.items.all(): total += order_item.get_final_price() if self.coupon: total -= self.coupon.amount return total class Address(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) street_address = models.CharField(max_length=100) apartment_address = models.CharField(max_length=100) country = CountryField(multiple=False) zip = models.CharField(max_length=100) address_type = models.CharField(max_length=1, choices=ADDRESS_CHOICES) default = models.BooleanField(default=False) def __str__(self): return self.user.username class Payment(models.Model): stripe_charge_id = models.CharField(max_length=50) user = models.ForeignKey( User, on_delete=models.SET_NULL, blank=True, null=True) amount = models.FloatField() timestamp = models.DateTimeField(auto_now_add=True) def __str__(self): return self.user.username class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) one_click_purchasing = models.BooleanField(default=False) def __str__(self): return self.user.username class Refund(models.Model): order = models.ForeignKey(Order, on_delete=models.CASCADE) reason = models.TextField() accepted = models.BooleanField(default=False) email = models.EmailField() def __str__(self): return f"{self.pk}"
2.109375
2
solutions/python3/116.py
sm2774us/amazon_interview_prep_2021
42
12793302
<reponame>sm2774us/amazon_interview_prep_2021 class Solution: def connect(self, root: "Node") -> "Node": if root == None: return root q, prev = [(root, 1)], None while q: curr, pos = q.pop(0) if prev != None and prev[1] == pos: prev[0].next = curr prev = [curr, pos] if curr.left: q.append((curr.left, pos + 1)) if curr.right: q.append((curr.right, pos + 1)) return root
3.5625
4
dataAnalysis.py
RyanRasi/Stock-Market-Predictor
0
12793303
import matplotlib.pyplot as plt import pandas as pd #Data from source stockData = './stock_market_data-AAPL' df = pd.read_csv (stockData+".csv") # Sort DataFrame by date df = df.sort_values('Date') # Gets all of the rows df.head() #Plots figure plt.figure(figsize = (18,9)) plt.plot(range(df.shape[0]),(df['Low']+df['High'])/2.0) plt.xticks(range(0,df.shape[0],500),df['Date'].loc[::500],rotation=45) plt.title(stockData.replace("./stock_market_data-", ""),fontsize=18) plt.xlabel('Date',fontsize=18) plt.ylabel('Mid Price',fontsize=18) plt.show()
3.34375
3
App.py
RRFreitas/Projeto_APS
0
12793304
<reponame>RRFreitas/Projeto_APS from Sistema import Sistema def main(): sistema = Sistema() sistema.menuPrincipal() if __name__ == '__main__': main()
1.460938
1
src/visualization/__init__.py
vvrahul11/sentiment_analysis
0
12793305
from .visualize import plot_confusion_matrix
1.023438
1
azplugins/test-py/test_mpcd_sinusoidal_channel.py
astatt/azplugins
10
12793306
<filename>azplugins/test-py/test_mpcd_sinusoidal_channel.py # Copyright (c) 2018-2020, <NAME> # Copyright (c) 2021-2022, Auburn University # This file is part of the azplugins project, released under the Modified BSD License. # Maintainer: astatt import unittest import numpy as np import hoomd from hoomd import md from hoomd import mpcd try: from hoomd import azplugins import hoomd.azplugins.mpcd except ImportError: import azplugins import azplugins.mpcd import unittest # compute MPI ranks for skipping some tests hoomd.context.initialize() num_ranks = hoomd.comm.get_num_ranks() # unit tests for sinusoidal_channel geometry class mpcd_sinusoidal_channel_test(unittest.TestCase): def setUp(self): hoomd.context.initialize() # set the decomposition in z for mpi builds if hoomd.comm.get_num_ranks() > 1: hoomd.comm.decomposition(nz=2) # default testing configuration hoomd.init.read_snapshot(hoomd.data.make_snapshot(N=0, box=hoomd.data.boxdim(L=20.))) # initialize the system from the starting snapshot # test vertical, diagonal, and horizontal collisions to wall snap = mpcd.data.make_snapshot(N=3) snap.particles.position[:] = [[0.,-3.0,5.85],[1.55,0.,5.5],[0.0,0.0,2.2]] snap.particles.velocity[:] = [[0,0.,1.],[1.,0.,0.],[-1.,-1.,-1.]] self.s = mpcd.init.read_snapshot(snap) mpcd.integrator(dt=0.1) # test creation can happen (with all parameters set) def test_create(self): azplugins.mpcd.sinusoidal_channel(A=4., h=2., p=1,boundary="no_slip") # test for setting parameters def test_set_params(self): channel = azplugins.mpcd.sinusoidal_channel(A=4.,h=2., p=1) self.assertAlmostEqual(channel.A, 4.) self.assertEqual(channel.boundary, "no_slip") self.assertAlmostEqual(channel._cpp.geometry.getAmplitude(), 4.) self.assertEqual(channel._cpp.geometry.getBoundaryCondition(), mpcd._mpcd.boundary.no_slip) # change H and also ensure other parameters stay the same channel.set_params(A=2.) self.assertAlmostEqual(channel.A, 2.) self.assertEqual(channel.boundary, "no_slip") self.assertAlmostEqual(channel._cpp.geometry.getAmplitude(), 2.) self.assertEqual(channel._cpp.geometry.getBoundaryCondition(), mpcd._mpcd.boundary.no_slip) # change BCs channel.set_params(boundary="slip") self.assertEqual(channel.boundary, "slip") self.assertEqual(channel._cpp.geometry.getBoundaryCondition(), mpcd._mpcd.boundary.slip) # test for invalid boundary conditions being set def test_bad_boundary(self): channel = azplugins.mpcd.sinusoidal_channel(A=4., h=2., p=1) channel.set_params(boundary="no_slip") channel.set_params(boundary="slip") with self.assertRaises(ValueError): channel.set_params(boundary="invalid") # test that setting the cosine size too large raises an error def test_validate_box(self): # initial configuration is invalid channel = azplugins.mpcd.sinusoidal_channel(A=10.,h=2., p=1) with self.assertRaises(RuntimeError): hoomd.run(1) # now it should be valid channel.set_params(A=4.,h=2. ,p=1) hoomd.run(2) # make sure we can invalidate it again channel.set_params(A=10.,h=2. ,p=1) with self.assertRaises(RuntimeError): hoomd.run(1) # test that particles out of bounds can be caught def test_out_of_bounds(self): channel = azplugins.mpcd.sinusoidal_channel(A=2., h=1., p=1) with self.assertRaises(RuntimeError): hoomd.run(1) channel.set_params(A=5.,h=2. ,p=1) hoomd.run(1) # test basic stepping behavior with no slip boundary conditions def test_step_noslip(self): azplugins.mpcd.sinusoidal_channel(A=4.,h=2., p=1, boundary='no_slip') # take one step, particle 1 hits the wall hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[0], [0,-3.0,5.95]) np.testing.assert_array_almost_equal(snap.particles.position[1], [1.567225,0.0,5.5]) np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.1,-0.1,2.1]) np.testing.assert_array_almost_equal(snap.particles.velocity[0], [0,0,1.]) np.testing.assert_array_almost_equal(snap.particles.velocity[1], [-1,0,0]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [-1,-1,-1]) # particle 0 hits the highest spot and is reflected back hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[0], [0,-3.0,5.95]) np.testing.assert_array_almost_equal(snap.particles.position[1], [1.467225,0.0,5.5]) np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.2,-0.2,2.0]) np.testing.assert_array_almost_equal(snap.particles.velocity[0], [0,0,-1.]) np.testing.assert_array_almost_equal(snap.particles.velocity[1], [-1,0,0]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [-1,-1,-1]) # particle 2 collides diagonally hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[0], [0,-3.0,5.85]) np.testing.assert_array_almost_equal(snap.particles.position[1], [1.367225,0.0,5.5]) np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.11717,-0.11717,2.08283]) np.testing.assert_array_almost_equal(snap.particles.velocity[0], [0,0,-1.]) np.testing.assert_array_almost_equal(snap.particles.velocity[1], [-1,0,0]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [1,1,1]) #same as test above except for slip -> velcities differ def test_step_slip(self): azplugins.mpcd.sinusoidal_channel(A=4.,h=2. ,p=1, boundary="slip") # take one step, particle 1 hits the wall hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[0], [0,-3.0,5.95]) np.testing.assert_array_almost_equal(snap.particles.position[1], [1.62764,0,5.463246]) np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.1,-0.1,2.1]) np.testing.assert_array_almost_equal(snap.particles.velocity[0], [0,0,1.]) np.testing.assert_array_almost_equal(snap.particles.velocity[1], [0.459737,0,-0.888055]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [-1,-1,-1]) # take one step, particle 0 hits the wall (same as for no_slip, because it's vertical) hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[0], [0,-3.0,5.95]) np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.2,-0.2,2.0]) np.testing.assert_array_almost_equal(snap.particles.velocity[0], [0,0,-1.]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [-1,-1,-1]) # take another step, particle 2 hits the wall hoomd.run(1) snap = self.s.take_snapshot() if hoomd.comm.get_rank() == 0: np.testing.assert_array_almost_equal(snap.particles.position[2], [-0.313714,-0.3,2.066657]) np.testing.assert_array_almost_equal(snap.particles.velocity[2], [-1.150016, -1.,0.823081]) # test that virtual particle filler can be attached, removed, and updated @unittest.skipIf(num_ranks > 1,"MPI not supported") def test_filler(self): # initialization of a filler channel = azplugins.mpcd.sinusoidal_channel(A=4.,h=2. ,p=1) channel.set_filler(density=5., kT=1.0, seed=42, type='A') self.assertTrue(channel._filler is not None) # run should be able to setup the filler, although this all happens silently hoomd.run(1) # changing filler should be allowed channel.set_filler(density=10., kT=1.5, seed=7) self.assertTrue(channel._filler is not None) hoomd.run(1) # assert an error is raised if we set a bad particle type with self.assertRaises(RuntimeError): channel.set_filler(density=5., kT=1.0, seed=42, type='B') # assert an error is raised if we set a bad density with self.assertRaises(RuntimeError): channel.set_filler(density=-1.0, kT=1.0, seed=42) # removing the filler should still allow a run channel.remove_filler() self.assertTrue(channel._filler is None) hoomd.run(1) def tearDown(self): del self.s if __name__ == '__main__': unittest.main(argv = ['test.py', '-v'])
2.09375
2
ftp.py
wuzhanghui/postrate
0
12793307
from ftplib import FTP import time import tarfile import shutil import os def ftpconnect(host, username, password): ftp = FTP() ftp.set_pasv(0) ftp.set_debuglevel(2) ftp.connect(host, 21) ftp.login(username, password) ftp.encoding = "utf-8" return ftp def downloadfile(ftp, remotepath, localpath): bufsize = 1024 fp = open(localpath, 'wb') ftp.retrbinary('RETR ' + remotepath, fp.write, bufsize) # 接受服务器上文件并写入文本 ftp.set_debuglevel(0) # 关闭调试 fp.close() # 关闭文件 def uploadfile(ftp, remotepath, localpath): bufsize = 1024 fp = open(localpath, 'rb') ftp.storbinary('STOR ' + remotepath, fp, bufsize) # 上传文件 ftp.set_debuglevel(0) # fp.seek(0) fp.close() if __name__ == "__main__": path = './rate/' f0, f1, f2, f3, f4, f5 = 0, 0, 0, 0, 0, 0 print(f1) try: ftp0 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp0, "./下赢用上模型局前预估/" + "下赢用上模型局前预估" + str(time.time()) + ".csv", path + "下赢用上模型局前预估.csv") ftp0.quit() except: f0 = 1 try: ftp2 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp2, "./地上赢时局前预估/" + "地上赢时局前预估" + str(time.time()) + ".csv", path + "地上赢时局前预估.csv") ftp2.quit() except: f2 = 1 try: ftp1 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp1, "./地主赢时叫牌胜率/" + "地主赢时叫牌胜率" + str(time.time()) + ".csv", path + "地主赢时叫牌胜率.csv") ftp1.quit() except: f1 = 1 try: ftp3 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp3, "./地主赢时局前预估/" + "地主赢时局前预估" + str(time.time()) + ".csv", path + "地主赢时局前预估.csv") ftp3.quit() except: f3 = 1 try: ftp4 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp4, "./地主输时叫牌胜率/" + "地主输时叫牌胜率" + str(time.time()) + ".csv", path + "地主输时叫牌胜率.csv") ftp4.quit() except: f4 = 1 try: ftp5 = ftpconnect("[240b:250:280:cb00:8171:63df:dae6:187b]", "rate", "") uploadfile(ftp5, "./地主输时局前预估/" + "地主输时局前预估" + str(time.time()) + ".csv", path + "地主输时局前预估.csv") ftp5.quit() except: f5 = 1 if f0 != 1 and f1 != 1 and f2 != 1 and f3 != 1 and f4 != 1 and f5 != 1: shutil.rmtree("./rate/") print(f0,f1,f2,f3,f4,f5) #os.system("pause") shutil.copytree("./sample", "./rate/")
2.921875
3
hermes_fix/message_lib/FIX_4_2/fix_messages.py
yabov/hermes_fix
2
12793308
from ... import fix_message from . import fields from . import field_types BEGINSTRING = 'FIX.4.2' MESSAGE_TYPES = {} class Header(fix_message.MessageBase): def __init__(self): super().__init__() register_StandardHeader_component(self) class Trailer(fix_message.MessageBase): def __init__(self): super().__init__() register_StandardTrailer_component(self) ##############Begin Repeating Groups############### class NoIOIQualifiersGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.IOIQualifier, False) class NoRoutingIDsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.RoutingType, False) self.register_field(fields.RoutingID, False) class NoContraBrokersGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.ContraBroker, False) self.register_field(fields.ContraTrader, False) self.register_field(fields.ContraTradeQty, False) self.register_field(fields.ContraTradeTime, False) class NoMsgTypesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.RefMsgType, False) self.register_field(fields.MsgDirection, False) class NoRelatedSymGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.RelatdSym, False) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) class LinesOfTextGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.Text, True) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) class NoAllocsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.AllocAccount, False) self.register_field(fields.AllocShares, False) class NoTradingSessionsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.TradingSessionID, False) class NoOrdersGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.ClOrdID, True) self.register_field(fields.ListSeqNo, True) self.register_field(fields.SettlInstMode, False) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.Account, False) self.register_group(fields.NoAllocs, NoAllocsGroup, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.HandlInst, False) self.register_field(fields.ExecInst, False) self.register_field(fields.MinQty, False) self.register_field(fields.MaxFloor, False) self.register_field(fields.ExDestination, False) self.register_group(fields.NoTradingSessions, NoTradingSessionsGroup, False) self.register_field(fields.ProcessCode, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.PrevClosePx, False) self.register_field(fields.Side, True) self.register_field(fields.SideValueInd, False) self.register_field(fields.LocateReqd, False) self.register_field(fields.TransactTime, False) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.OrdType, False) self.register_field(fields.Price, False) self.register_field(fields.StopPx, False) self.register_field(fields.Currency, False) self.register_field(fields.ComplianceID, False) self.register_field(fields.SolicitedFlag, False) self.register_field(fields.IOIid, False) self.register_field(fields.QuoteID, False) self.register_field(fields.TimeInForce, False) self.register_field(fields.EffectiveTime, False) self.register_field(fields.ExpireDate, False) self.register_field(fields.ExpireTime, False) self.register_field(fields.GTBookingInst, False) self.register_field(fields.Commission, False) self.register_field(fields.CommType, False) self.register_field(fields.Rule80A, False) self.register_field(fields.ForexReq, False) self.register_field(fields.SettlCurrency, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.FutSettDate2, False) self.register_field(fields.OrderQty2, False) self.register_field(fields.OpenClose, False) self.register_field(fields.CoveredOrUncovered, False) self.register_field(fields.CustomerOrFirm, False) self.register_field(fields.MaxShow, False) self.register_field(fields.PegDifference, False) self.register_field(fields.DiscretionInst, False) self.register_field(fields.DiscretionOffset, False) self.register_field(fields.ClearingFirm, False) self.register_field(fields.ClearingAccount, False) class NoExecsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.LastShares, False) self.register_field(fields.ExecID, False) self.register_field(fields.LastPx, False) self.register_field(fields.LastCapacity, False) class NoMiscFeesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.MiscFeeAmt, False) self.register_field(fields.MiscFeeCurr, False) self.register_field(fields.MiscFeeType, False) class NoMDEntryTypesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.MDEntryType, True) class NoMDEntriesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.MDEntryType, True) self.register_field(fields.MDEntryPx, True) self.register_field(fields.Currency, False) self.register_field(fields.MDEntrySize, False) self.register_field(fields.MDEntryDate, False) self.register_field(fields.MDEntryTime, False) self.register_field(fields.TickDirection, False) self.register_field(fields.MDMkt, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.QuoteCondition, False) self.register_field(fields.TradeCondition, False) self.register_field(fields.MDEntryOriginator, False) self.register_field(fields.LocationID, False) self.register_field(fields.DeskID, False) self.register_field(fields.OpenCloseSettleFlag, False) self.register_field(fields.TimeInForce, False) self.register_field(fields.ExpireDate, False) self.register_field(fields.ExpireTime, False) self.register_field(fields.MinQty, False) self.register_field(fields.ExecInst, False) self.register_field(fields.SellerDays, False) self.register_field(fields.OrderID, False) self.register_field(fields.QuoteEntryID, False) self.register_field(fields.MDEntryBuyer, False) self.register_field(fields.MDEntrySeller, False) self.register_field(fields.NumberOfOrders, False) self.register_field(fields.MDEntryPositionNo, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) class NoQuoteEntriesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.UnderlyingSymbol, False) class NoQuoteSetsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.QuoteSetID, False) self.register_field(fields.UnderlyingSymbol, False) self.register_field(fields.UnderlyingSymbolSfx, False) self.register_field(fields.UnderlyingSecurityID, False) self.register_field(fields.UnderlyingIDSource, False) self.register_field(fields.UnderlyingSecurityType, False) self.register_field(fields.UnderlyingMaturityMonthYear, False) self.register_field(fields.UnderlyingMaturityDay, False) self.register_field(fields.UnderlyingPutOrCall, False) self.register_field(fields.UnderlyingStrikePrice, False) self.register_field(fields.UnderlyingOptAttribute, False) self.register_field(fields.UnderlyingContractMultiplier, False) self.register_field(fields.UnderlyingCouponRate, False) self.register_field(fields.UnderlyingSecurityExchange, False) self.register_field(fields.UnderlyingIssuer, False) self.register_field(fields.EncodedUnderlyingIssuerLen, False) self.register_field(fields.EncodedUnderlyingIssuer, False) self.register_field(fields.UnderlyingSecurityDesc, False) self.register_field(fields.EncodedUnderlyingSecurityDescLen, False) self.register_field(fields.EncodedUnderlyingSecurityDesc, False) self.register_field(fields.TotQuoteEntries, False) self.register_group(fields.NoQuoteEntries, NoQuoteEntriesGroup, False) class NoBidDescriptorsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.BidDescriptorType, False) self.register_field(fields.BidDescriptor, False) self.register_field(fields.SideValueInd, False) self.register_field(fields.LiquidityValue, False) self.register_field(fields.LiquidityNumSecurities, False) self.register_field(fields.LiquidityPctLow, False) self.register_field(fields.LiquidityPctHigh, False) self.register_field(fields.EFPTrackingError, False) self.register_field(fields.FairValue, False) self.register_field(fields.OutsideIndexPct, False) self.register_field(fields.ValueOfFutures, False) class NoBidComponentsGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.ListID, False) self.register_field(fields.Side, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.NetGrossInd, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.Account, False) class NoStrikesGroup(fix_message.FIXGroup): def __init__(self, value = None): super().__init__(value) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.PrevClosePx, False) self.register_field(fields.ClOrdID, False) self.register_field(fields.Side, False) self.register_field(fields.Price, True) self.register_field(fields.Currency, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) ##############End Repeating Groups############### ##############Begin Componenets############### def register_StandardHeader_component(self): self.register_field(fields.BeginString, True) self.register_field(fields.BodyLength, True) self.register_field(fields.MsgType, True) self.register_field(fields.SenderCompID, True) self.register_field(fields.TargetCompID, True) self.register_field(fields.OnBehalfOfCompID, False) self.register_field(fields.DeliverToCompID, False) self.register_field(fields.SecureDataLen, False) self.register_field(fields.SecureData, False) self.register_field(fields.MsgSeqNum, True) self.register_field(fields.SenderSubID, False) self.register_field(fields.SenderLocationID, False) self.register_field(fields.TargetSubID, False) self.register_field(fields.TargetLocationID, False) self.register_field(fields.OnBehalfOfSubID, False) self.register_field(fields.OnBehalfOfLocationID, False) self.register_field(fields.DeliverToSubID, False) self.register_field(fields.DeliverToLocationID, False) self.register_field(fields.PossDupFlag, False) self.register_field(fields.PossResend, False) self.register_field(fields.SendingTime, True) self.register_field(fields.OrigSendingTime, False) self.register_field(fields.XmlDataLen, False) self.register_field(fields.XmlData, False) self.register_field(fields.MessageEncoding, False) self.register_field(fields.LastMsgSeqNumProcessed, False) self.register_field(fields.OnBehalfOfSendingTime, False) def register_StandardTrailer_component(self): self.register_field(fields.SignatureLength, False) self.register_field(fields.Signature, False) self.register_field(fields.CheckSum, True) ##############End Componenets############### class Heartbeat(fix_message.MessageBase): _msgtype = '0' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.TestReqID, False) MESSAGE_TYPES['0'] = Heartbeat class TestRequest(fix_message.MessageBase): _msgtype = '1' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.TestReqID, True) MESSAGE_TYPES['1'] = TestRequest class ResendRequest(fix_message.MessageBase): _msgtype = '2' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.BeginSeqNo, True) self.register_field(fields.EndSeqNo, True) MESSAGE_TYPES['2'] = ResendRequest class Reject(fix_message.MessageBase): _msgtype = '3' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.RefSeqNum, True) self.register_field(fields.RefTagID, False) self.register_field(fields.RefMsgType, False) self.register_field(fields.SessionRejectReason, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['3'] = Reject class SequenceReset(fix_message.MessageBase): _msgtype = '4' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.GapFillFlag, False) self.register_field(fields.NewSeqNo, True) MESSAGE_TYPES['4'] = SequenceReset class Logout(fix_message.MessageBase): _msgtype = '5' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['5'] = Logout class IOI(fix_message.MessageBase): _msgtype = '6' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.IOIid, True) self.register_field(fields.IOITransType, True) self.register_field(fields.IOIRefID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) self.register_field(fields.IOIShares, True) self.register_field(fields.Price, False) self.register_field(fields.Currency, False) self.register_field(fields.ValidUntilTime, False) self.register_field(fields.IOIQltyInd, False) self.register_field(fields.IOINaturalFlag, False) self.register_group(fields.NoIOIQualifiers, NoIOIQualifiersGroup, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.TransactTime, False) self.register_field(fields.URLLink, False) self.register_group(fields.NoRoutingIDs, NoRoutingIDsGroup, False) self.register_field(fields.SpreadToBenchmark, False) self.register_field(fields.Benchmark, False) MESSAGE_TYPES['6'] = IOI class Advertisement(fix_message.MessageBase): _msgtype = '7' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.AdvId, True) self.register_field(fields.AdvTransType, True) self.register_field(fields.AdvRefID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.AdvSide, True) self.register_field(fields.Shares, True) self.register_field(fields.Price, False) self.register_field(fields.Currency, False) self.register_field(fields.TradeDate, False) self.register_field(fields.TransactTime, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.URLLink, False) self.register_field(fields.LastMkt, False) self.register_field(fields.TradingSessionID, False) MESSAGE_TYPES['7'] = Advertisement class ExecutionReport(fix_message.MessageBase): _msgtype = '8' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrderID, True) self.register_field(fields.SecondaryOrderID, False) self.register_field(fields.ClOrdID, False) self.register_field(fields.OrigClOrdID, False) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_group(fields.NoContraBrokers, NoContraBrokersGroup, False) self.register_field(fields.ListID, False) self.register_field(fields.ExecID, True) self.register_field(fields.ExecTransType, True) self.register_field(fields.ExecRefID, False) self.register_field(fields.ExecType, True) self.register_field(fields.OrdStatus, True) self.register_field(fields.OrdRejReason, False) self.register_field(fields.ExecRestatementReason, False) self.register_field(fields.Account, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.OrdType, False) self.register_field(fields.Price, False) self.register_field(fields.StopPx, False) self.register_field(fields.PegDifference, False) self.register_field(fields.DiscretionInst, False) self.register_field(fields.DiscretionOffset, False) self.register_field(fields.Currency, False) self.register_field(fields.ComplianceID, False) self.register_field(fields.SolicitedFlag, False) self.register_field(fields.TimeInForce, False) self.register_field(fields.EffectiveTime, False) self.register_field(fields.ExpireDate, False) self.register_field(fields.ExpireTime, False) self.register_field(fields.ExecInst, False) self.register_field(fields.Rule80A, False) self.register_field(fields.LastShares, False) self.register_field(fields.LastPx, False) self.register_field(fields.LastSpotRate, False) self.register_field(fields.LastForwardPoints, False) self.register_field(fields.LastMkt, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.LastCapacity, False) self.register_field(fields.LeavesQty, True) self.register_field(fields.CumQty, True) self.register_field(fields.AvgPx, True) self.register_field(fields.DayOrderQty, False) self.register_field(fields.DayCumQty, False) self.register_field(fields.DayAvgPx, False) self.register_field(fields.GTBookingInst, False) self.register_field(fields.TradeDate, False) self.register_field(fields.TransactTime, False) self.register_field(fields.ReportToExch, False) self.register_field(fields.Commission, False) self.register_field(fields.CommType, False) self.register_field(fields.GrossTradeAmt, False) self.register_field(fields.SettlCurrAmt, False) self.register_field(fields.SettlCurrency, False) self.register_field(fields.SettlCurrFxRate, False) self.register_field(fields.SettlCurrFxRateCalc, False) self.register_field(fields.HandlInst, False) self.register_field(fields.MinQty, False) self.register_field(fields.MaxFloor, False) self.register_field(fields.OpenClose, False) self.register_field(fields.MaxShow, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.FutSettDate2, False) self.register_field(fields.OrderQty2, False) self.register_field(fields.ClearingFirm, False) self.register_field(fields.ClearingAccount, False) self.register_field(fields.MultiLegReportingType, False) MESSAGE_TYPES['8'] = ExecutionReport class OrderCancelReject(fix_message.MessageBase): _msgtype = '9' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrderID, True) self.register_field(fields.SecondaryOrderID, False) self.register_field(fields.ClOrdID, True) self.register_field(fields.OrigClOrdID, True) self.register_field(fields.OrdStatus, True) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.ListID, False) self.register_field(fields.Account, False) self.register_field(fields.TransactTime, False) self.register_field(fields.CxlRejResponseTo, True) self.register_field(fields.CxlRejReason, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['9'] = OrderCancelReject class Logon(fix_message.MessageBase): _msgtype = 'A' _msgcat = 'admin' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.EncryptMethod, True) self.register_field(fields.HeartBtInt, True) self.register_field(fields.RawDataLength, False) self.register_field(fields.RawData, False) self.register_field(fields.ResetSeqNumFlag, False) self.register_field(fields.MaxMessageSize, False) self.register_group(fields.NoMsgTypes, NoMsgTypesGroup, False) MESSAGE_TYPES['A'] = Logon class News(fix_message.MessageBase): _msgtype = 'B' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrigTime, False) self.register_field(fields.Urgency, False) self.register_field(fields.Headline, True) self.register_field(fields.EncodedHeadlineLen, False) self.register_field(fields.EncodedHeadline, False) self.register_group(fields.NoRoutingIDs, NoRoutingIDsGroup, False) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, False) self.register_group(fields.LinesOfText, LinesOfTextGroup, True) self.register_field(fields.URLLink, False) self.register_field(fields.RawDataLength, False) self.register_field(fields.RawData, False) MESSAGE_TYPES['B'] = News class Email(fix_message.MessageBase): _msgtype = 'C' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.EmailThreadID, True) self.register_field(fields.EmailType, True) self.register_field(fields.OrigTime, False) self.register_field(fields.Subject, True) self.register_field(fields.EncodedSubjectLen, False) self.register_field(fields.EncodedSubject, False) self.register_group(fields.NoRoutingIDs, NoRoutingIDsGroup, False) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, False) self.register_field(fields.OrderID, False) self.register_field(fields.ClOrdID, False) self.register_group(fields.LinesOfText, LinesOfTextGroup, True) self.register_field(fields.RawDataLength, False) self.register_field(fields.RawData, False) MESSAGE_TYPES['C'] = Email class OrderSingle(fix_message.MessageBase): _msgtype = 'D' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ClOrdID, True) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.Account, False) self.register_group(fields.NoAllocs, NoAllocsGroup, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.HandlInst, True) self.register_field(fields.ExecInst, False) self.register_field(fields.MinQty, False) self.register_field(fields.MaxFloor, False) self.register_field(fields.ExDestination, False) self.register_group(fields.NoTradingSessions, NoTradingSessionsGroup, False) self.register_field(fields.ProcessCode, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.PrevClosePx, False) self.register_field(fields.Side, True) self.register_field(fields.LocateReqd, False) self.register_field(fields.TransactTime, True) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.OrdType, True) self.register_field(fields.Price, False) self.register_field(fields.StopPx, False) self.register_field(fields.Currency, False) self.register_field(fields.ComplianceID, False) self.register_field(fields.SolicitedFlag, False) self.register_field(fields.IOIid, False) self.register_field(fields.QuoteID, False) self.register_field(fields.TimeInForce, False) self.register_field(fields.EffectiveTime, False) self.register_field(fields.ExpireDate, False) self.register_field(fields.ExpireTime, False) self.register_field(fields.GTBookingInst, False) self.register_field(fields.Commission, False) self.register_field(fields.CommType, False) self.register_field(fields.Rule80A, False) self.register_field(fields.ForexReq, False) self.register_field(fields.SettlCurrency, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.FutSettDate2, False) self.register_field(fields.OrderQty2, False) self.register_field(fields.OpenClose, False) self.register_field(fields.CoveredOrUncovered, False) self.register_field(fields.CustomerOrFirm, False) self.register_field(fields.MaxShow, False) self.register_field(fields.PegDifference, False) self.register_field(fields.DiscretionInst, False) self.register_field(fields.DiscretionOffset, False) self.register_field(fields.ClearingFirm, False) self.register_field(fields.ClearingAccount, False) MESSAGE_TYPES['D'] = OrderSingle class OrderList(fix_message.MessageBase): _msgtype = 'E' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.BidID, False) self.register_field(fields.ClientBidID, False) self.register_field(fields.ProgRptReqs, False) self.register_field(fields.BidType, True) self.register_field(fields.ProgPeriodInterval, False) self.register_field(fields.ListExecInstType, False) self.register_field(fields.ListExecInst, False) self.register_field(fields.EncodedListExecInstLen, False) self.register_field(fields.EncodedListExecInst, False) self.register_field(fields.TotNoOrders, True) self.register_group(fields.NoOrders, NoOrdersGroup, True) MESSAGE_TYPES['E'] = OrderList class OrderCancelRequest(fix_message.MessageBase): _msgtype = 'F' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrigClOrdID, True) self.register_field(fields.OrderID, False) self.register_field(fields.ClOrdID, True) self.register_field(fields.ListID, False) self.register_field(fields.Account, False) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) self.register_field(fields.TransactTime, True) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.ComplianceID, False) self.register_field(fields.SolicitedFlag, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['F'] = OrderCancelRequest class OrderCancelReplaceRequest(fix_message.MessageBase): _msgtype = 'G' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrderID, False) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.OrigClOrdID, True) self.register_field(fields.ClOrdID, True) self.register_field(fields.ListID, False) self.register_field(fields.Account, False) self.register_group(fields.NoAllocs, NoAllocsGroup, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.HandlInst, True) self.register_field(fields.ExecInst, False) self.register_field(fields.MinQty, False) self.register_field(fields.MaxFloor, False) self.register_field(fields.ExDestination, False) self.register_group(fields.NoTradingSessions, NoTradingSessionsGroup, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) self.register_field(fields.TransactTime, True) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.OrdType, True) self.register_field(fields.Price, False) self.register_field(fields.StopPx, False) self.register_field(fields.PegDifference, False) self.register_field(fields.DiscretionInst, False) self.register_field(fields.DiscretionOffset, False) self.register_field(fields.ComplianceID, False) self.register_field(fields.SolicitedFlag, False) self.register_field(fields.Currency, False) self.register_field(fields.TimeInForce, False) self.register_field(fields.EffectiveTime, False) self.register_field(fields.ExpireDate, False) self.register_field(fields.ExpireTime, False) self.register_field(fields.GTBookingInst, False) self.register_field(fields.Commission, False) self.register_field(fields.CommType, False) self.register_field(fields.Rule80A, False) self.register_field(fields.ForexReq, False) self.register_field(fields.SettlCurrency, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.FutSettDate2, False) self.register_field(fields.OrderQty2, False) self.register_field(fields.OpenClose, False) self.register_field(fields.CoveredOrUncovered, False) self.register_field(fields.CustomerOrFirm, False) self.register_field(fields.MaxShow, False) self.register_field(fields.LocateReqd, False) self.register_field(fields.ClearingFirm, False) self.register_field(fields.ClearingAccount, False) MESSAGE_TYPES['G'] = OrderCancelReplaceRequest class OrderStatusRequest(fix_message.MessageBase): _msgtype = 'H' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrderID, False) self.register_field(fields.ClOrdID, True) self.register_field(fields.ClientID, False) self.register_field(fields.Account, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) MESSAGE_TYPES['H'] = OrderStatusRequest class Allocation(fix_message.MessageBase): _msgtype = 'J' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.AllocID, True) self.register_field(fields.AllocTransType, True) self.register_field(fields.RefAllocID, False) self.register_field(fields.AllocLinkID, False) self.register_field(fields.AllocLinkType, False) self.register_group(fields.NoOrders, NoOrdersGroup, False) self.register_group(fields.NoExecs, NoExecsGroup, False) self.register_field(fields.Side, True) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Shares, True) self.register_field(fields.LastMkt, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.AvgPx, True) self.register_field(fields.Currency, False) self.register_field(fields.AvgPrxPrecision, False) self.register_field(fields.TradeDate, True) self.register_field(fields.TransactTime, False) self.register_field(fields.SettlmntTyp, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.GrossTradeAmt, False) self.register_field(fields.NetMoney, False) self.register_field(fields.OpenClose, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.NumDaysInterest, False) self.register_field(fields.AccruedInterestRate, False) self.register_group(fields.NoAllocs, NoAllocsGroup, False) MESSAGE_TYPES['J'] = Allocation class ListCancelRequest(fix_message.MessageBase): _msgtype = 'K' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.TransactTime, True) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['K'] = ListCancelRequest class ListExecute(fix_message.MessageBase): _msgtype = 'L' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.ClientBidID, False) self.register_field(fields.BidID, False) self.register_field(fields.TransactTime, True) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['L'] = ListExecute class ListStatusRequest(fix_message.MessageBase): _msgtype = 'M' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['M'] = ListStatusRequest class ListStatus(fix_message.MessageBase): _msgtype = 'N' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.ListStatusType, True) self.register_field(fields.NoRpts, True) self.register_field(fields.ListOrderStatus, True) self.register_field(fields.RptSeq, True) self.register_field(fields.ListStatusText, False) self.register_field(fields.EncodedListStatusTextLen, False) self.register_field(fields.EncodedListStatusText, False) self.register_field(fields.TransactTime, False) self.register_field(fields.TotNoOrders, True) self.register_group(fields.NoOrders, NoOrdersGroup, True) MESSAGE_TYPES['N'] = ListStatus class AllocationInstructionAck(fix_message.MessageBase): _msgtype = 'P' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.AllocID, True) self.register_field(fields.TradeDate, True) self.register_field(fields.TransactTime, False) self.register_field(fields.AllocStatus, True) self.register_field(fields.AllocRejCode, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['P'] = AllocationInstructionAck class DontKnowTrade(fix_message.MessageBase): _msgtype = 'Q' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.OrderID, True) self.register_field(fields.ExecID, True) self.register_field(fields.DKReason, True) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, True) self.register_field(fields.OrderQty, False) self.register_field(fields.CashOrderQty, False) self.register_field(fields.LastShares, False) self.register_field(fields.LastPx, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['Q'] = DontKnowTrade class QuoteRequest(fix_message.MessageBase): _msgtype = 'R' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteReqID, True) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, True) MESSAGE_TYPES['R'] = QuoteRequest class Quote(fix_message.MessageBase): _msgtype = 'S' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteReqID, False) self.register_field(fields.QuoteID, True) self.register_field(fields.QuoteResponseLevel, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.BidPx, False) self.register_field(fields.OfferPx, False) self.register_field(fields.BidSize, False) self.register_field(fields.OfferSize, False) self.register_field(fields.ValidUntilTime, False) self.register_field(fields.BidSpotRate, False) self.register_field(fields.OfferSpotRate, False) self.register_field(fields.BidForwardPoints, False) self.register_field(fields.OfferForwardPoints, False) self.register_field(fields.TransactTime, False) self.register_field(fields.FutSettDate, False) self.register_field(fields.OrdType, False) self.register_field(fields.FutSettDate2, False) self.register_field(fields.OrderQty2, False) self.register_field(fields.Currency, False) MESSAGE_TYPES['S'] = Quote class SettlementInstructions(fix_message.MessageBase): _msgtype = 'T' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.SettlInstID, True) self.register_field(fields.SettlInstTransType, True) self.register_field(fields.SettlInstRefID, True) self.register_field(fields.SettlInstMode, True) self.register_field(fields.SettlInstSource, True) self.register_field(fields.AllocAccount, True) self.register_field(fields.SettlLocation, False) self.register_field(fields.TradeDate, False) self.register_field(fields.AllocID, False) self.register_field(fields.LastMkt, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.Side, False) self.register_field(fields.SecurityType, False) self.register_field(fields.EffectiveTime, False) self.register_field(fields.TransactTime, True) self.register_field(fields.ClientID, False) self.register_field(fields.ExecBroker, False) self.register_field(fields.StandInstDbType, False) self.register_field(fields.StandInstDbName, False) self.register_field(fields.StandInstDbID, False) self.register_field(fields.SettlDeliveryType, False) self.register_field(fields.SettlDepositoryCode, False) self.register_field(fields.SettlBrkrCode, False) self.register_field(fields.SettlInstCode, False) self.register_field(fields.SecuritySettlAgentName, False) self.register_field(fields.SecuritySettlAgentCode, False) self.register_field(fields.SecuritySettlAgentAcctNum, False) self.register_field(fields.SecuritySettlAgentAcctName, False) self.register_field(fields.SecuritySettlAgentContactName, False) self.register_field(fields.SecuritySettlAgentContactPhone, False) self.register_field(fields.CashSettlAgentName, False) self.register_field(fields.CashSettlAgentCode, False) self.register_field(fields.CashSettlAgentAcctNum, False) self.register_field(fields.CashSettlAgentAcctName, False) self.register_field(fields.CashSettlAgentContactName, False) self.register_field(fields.CashSettlAgentContactPhone, False) MESSAGE_TYPES['T'] = SettlementInstructions class MarketDataRequest(fix_message.MessageBase): _msgtype = 'V' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.MDReqID, True) self.register_field(fields.SubscriptionRequestType, True) self.register_field(fields.MarketDepth, True) self.register_field(fields.MDUpdateType, False) self.register_field(fields.AggregatedBook, False) self.register_group(fields.NoMDEntryTypes, NoMDEntryTypesGroup, True) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, True) MESSAGE_TYPES['V'] = MarketDataRequest class MarketDataSnapshotFullRefresh(fix_message.MessageBase): _msgtype = 'W' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.MDReqID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.FinancialStatus, False) self.register_field(fields.CorporateAction, False) self.register_field(fields.TotalVolumeTraded, False) self.register_group(fields.NoMDEntries, NoMDEntriesGroup, True) MESSAGE_TYPES['W'] = MarketDataSnapshotFullRefresh class MarketDataIncrementalRefresh(fix_message.MessageBase): _msgtype = 'X' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.MDReqID, False) self.register_group(fields.NoMDEntries, NoMDEntriesGroup, True) MESSAGE_TYPES['X'] = MarketDataIncrementalRefresh class MarketDataRequestReject(fix_message.MessageBase): _msgtype = 'Y' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.MDReqID, True) self.register_field(fields.MDReqRejReason, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['Y'] = MarketDataRequestReject class QuoteCancel(fix_message.MessageBase): _msgtype = 'Z' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteReqID, False) self.register_field(fields.QuoteID, True) self.register_field(fields.QuoteCancelType, True) self.register_field(fields.QuoteResponseLevel, False) self.register_field(fields.TradingSessionID, False) self.register_group(fields.NoQuoteEntries, NoQuoteEntriesGroup, True) MESSAGE_TYPES['Z'] = QuoteCancel class QuoteStatusRequest(fix_message.MessageBase): _msgtype = 'a' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Side, False) self.register_field(fields.TradingSessionID, False) MESSAGE_TYPES['a'] = QuoteStatusRequest class QuoteAcknowledgement(fix_message.MessageBase): _msgtype = 'b' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteReqID, False) self.register_field(fields.QuoteID, False) self.register_field(fields.QuoteAckStatus, True) self.register_field(fields.QuoteRejectReason, False) self.register_field(fields.QuoteResponseLevel, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.Text, False) self.register_group(fields.NoQuoteSets, NoQuoteSetsGroup, False) MESSAGE_TYPES['b'] = QuoteAcknowledgement class SecurityDefinitionRequest(fix_message.MessageBase): _msgtype = 'c' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.SecurityReqID, True) self.register_field(fields.SecurityRequestType, True) self.register_field(fields.Symbol, False) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Currency, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_field(fields.TradingSessionID, False) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, False) MESSAGE_TYPES['c'] = SecurityDefinitionRequest class SecurityDefinition(fix_message.MessageBase): _msgtype = 'd' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.SecurityReqID, True) self.register_field(fields.SecurityResponseID, True) self.register_field(fields.SecurityResponseType, False) self.register_field(fields.TotalNumSecurities, True) self.register_field(fields.Symbol, False) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Currency, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) self.register_group(fields.NoRelatedSym, NoRelatedSymGroup, False) MESSAGE_TYPES['d'] = SecurityDefinition class SecurityStatusRequest(fix_message.MessageBase): _msgtype = 'e' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.SecurityStatusReqID, True) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Currency, False) self.register_field(fields.SubscriptionRequestType, True) self.register_field(fields.TradingSessionID, False) MESSAGE_TYPES['e'] = SecurityStatusRequest class SecurityStatus(fix_message.MessageBase): _msgtype = 'f' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.SecurityStatusReqID, False) self.register_field(fields.Symbol, True) self.register_field(fields.SymbolSfx, False) self.register_field(fields.SecurityID, False) self.register_field(fields.IDSource, False) self.register_field(fields.SecurityType, False) self.register_field(fields.MaturityMonthYear, False) self.register_field(fields.MaturityDay, False) self.register_field(fields.PutOrCall, False) self.register_field(fields.StrikePrice, False) self.register_field(fields.OptAttribute, False) self.register_field(fields.ContractMultiplier, False) self.register_field(fields.CouponRate, False) self.register_field(fields.SecurityExchange, False) self.register_field(fields.Issuer, False) self.register_field(fields.EncodedIssuerLen, False) self.register_field(fields.EncodedIssuer, False) self.register_field(fields.SecurityDesc, False) self.register_field(fields.EncodedSecurityDescLen, False) self.register_field(fields.EncodedSecurityDesc, False) self.register_field(fields.Currency, False) self.register_field(fields.TradingSessionID, False) self.register_field(fields.UnsolicitedIndicator, False) self.register_field(fields.SecurityTradingStatus, False) self.register_field(fields.FinancialStatus, False) self.register_field(fields.CorporateAction, False) self.register_field(fields.HaltReason, False) self.register_field(fields.InViewOfCommon, False) self.register_field(fields.DueToRelated, False) self.register_field(fields.BuyVolume, False) self.register_field(fields.SellVolume, False) self.register_field(fields.HighPx, False) self.register_field(fields.LowPx, False) self.register_field(fields.LastPx, False) self.register_field(fields.TransactTime, False) self.register_field(fields.Adjustment, False) MESSAGE_TYPES['f'] = SecurityStatus class TradingSessionStatusRequest(fix_message.MessageBase): _msgtype = 'g' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.TradSesReqID, True) self.register_field(fields.TradingSessionID, False) self.register_field(fields.TradSesMethod, False) self.register_field(fields.TradSesMode, False) self.register_field(fields.SubscriptionRequestType, True) MESSAGE_TYPES['g'] = TradingSessionStatusRequest class TradingSessionStatus(fix_message.MessageBase): _msgtype = 'h' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.TradSesReqID, False) self.register_field(fields.TradingSessionID, True) self.register_field(fields.TradSesMethod, False) self.register_field(fields.TradSesMode, False) self.register_field(fields.UnsolicitedIndicator, False) self.register_field(fields.TradSesStatus, True) self.register_field(fields.TradSesStartTime, False) self.register_field(fields.TradSesOpenTime, False) self.register_field(fields.TradSesPreCloseTime, False) self.register_field(fields.TradSesCloseTime, False) self.register_field(fields.TradSesEndTime, False) self.register_field(fields.TotalVolumeTraded, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['h'] = TradingSessionStatus class MassQuote(fix_message.MessageBase): _msgtype = 'i' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.QuoteReqID, False) self.register_field(fields.QuoteID, True) self.register_field(fields.QuoteResponseLevel, False) self.register_field(fields.DefBidSize, False) self.register_field(fields.DefOfferSize, False) self.register_group(fields.NoQuoteSets, NoQuoteSetsGroup, True) MESSAGE_TYPES['i'] = MassQuote class BusinessMessageReject(fix_message.MessageBase): _msgtype = 'j' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.RefSeqNum, False) self.register_field(fields.RefMsgType, True) self.register_field(fields.BusinessRejectRefID, False) self.register_field(fields.BusinessRejectReason, True) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['j'] = BusinessMessageReject class BidRequest(fix_message.MessageBase): _msgtype = 'k' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.BidID, False) self.register_field(fields.ClientBidID, True) self.register_field(fields.BidRequestTransType, True) self.register_field(fields.ListName, False) self.register_field(fields.TotalNumSecurities, True) self.register_field(fields.BidType, True) self.register_field(fields.NumTickets, False) self.register_field(fields.Currency, False) self.register_field(fields.SideValue1, False) self.register_field(fields.SideValue2, False) self.register_group(fields.NoBidDescriptors, NoBidDescriptorsGroup, False) self.register_group(fields.NoBidComponents, NoBidComponentsGroup, False) self.register_field(fields.LiquidityIndType, False) self.register_field(fields.WtAverageLiquidity, False) self.register_field(fields.ExchangeForPhysical, False) self.register_field(fields.OutMainCntryUIndex, False) self.register_field(fields.CrossPercent, False) self.register_field(fields.ProgRptReqs, False) self.register_field(fields.ProgPeriodInterval, False) self.register_field(fields.IncTaxInd, False) self.register_field(fields.ForexReq, False) self.register_field(fields.NumBidders, False) self.register_field(fields.TradeDate, False) self.register_field(fields.TradeType, True) self.register_field(fields.BasisPxType, True) self.register_field(fields.StrikeTime, False) self.register_field(fields.Text, False) self.register_field(fields.EncodedTextLen, False) self.register_field(fields.EncodedText, False) MESSAGE_TYPES['k'] = BidRequest class BidResponse(fix_message.MessageBase): _msgtype = 'l' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.BidID, False) self.register_field(fields.ClientBidID, False) self.register_group(fields.NoBidComponents, NoBidComponentsGroup, True) MESSAGE_TYPES['l'] = BidResponse class ListStrikePrice(fix_message.MessageBase): _msgtype = 'm' _msgcat = 'app' def __init__(self): self.Header = Header() self.Trailer = Trailer() super().__init__() self.register_field(fields.ListID, True) self.register_field(fields.TotNoStrikes, True) self.register_group(fields.NoStrikes, NoStrikesGroup, True) MESSAGE_TYPES['m'] = ListStrikePrice
2.125
2
src/envs/__init__.py
ewanlee/mackrl
26
12793309
<reponame>ewanlee/mackrl<gh_stars>10-100 from functools import partial def env_fn(env, **kwargs): return env(**kwargs) REGISTRY = {} from .starcraft2 import StarCraft2Env REGISTRY["sc2"] = partial(env_fn, env=StarCraft2Env)
2.078125
2
experiments/experiments_utils.py
anirbanl/Reason-SCAN
14
12793310
<reponame>anirbanl/Reason-SCAN<filename>experiments/experiments_utils.py import argparse import logging import os import torch import sys sys.path.append(os.path.join(os.path.dirname("__file__"), '../multimodal_seq2seq_gSCAN/')) import random import copy import torch import torch.nn as nn import torch.nn.functional as F import logging from typing import Iterator import time import json from seq2seq.gSCAN_dataset import GroundedScanDataset from seq2seq.model import Model from seq2seq.train import train from seq2seq.predict import predict_and_save from tqdm import tqdm, trange from GroundedScan.dataset import GroundedScan from typing import List from typing import Tuple from collections import defaultdict from collections import Counter import json import numpy as np from seq2seq.gSCAN_dataset import Vocabulary from seq2seq.helpers import sequence_accuracy FORMAT = "%(asctime)-15s %(message)s" logging.basicConfig(format=FORMAT, level=logging.DEBUG, datefmt="%Y-%m-%d %H:%M") logger = logging.getLogger(__name__) def isnotebook(): try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter use_cuda = True if torch.cuda.is_available() and not isnotebook() else False device = "cuda" if use_cuda else "cpu" if use_cuda: logger.info("Using CUDA.") logger.info("Cuda version: {}".format(torch.version.cuda)) def get_gSCAN_parser(): parser = argparse.ArgumentParser(description="Sequence to sequence models for Grounded SCAN") # General arguments parser.add_argument("--mode", type=str, default="run_tests", help="train, test or predict", required=True) parser.add_argument("--output_directory", type=str, default="output", help="In this directory the models will be " "saved. Will be created if doesn't exist.") parser.add_argument("--resume_from_file", type=str, default="", help="Full path to previously saved model to load.") # Data arguments parser.add_argument("--split", type=str, default="test", help="Which split to get from Grounded Scan.") parser.add_argument("--data_directory", type=str, default="data/uniform_dataset", help="Path to folder with data.") parser.add_argument("--input_vocab_path", type=str, default="training_input_vocab.txt", help="Path to file with input vocabulary as saved by Vocabulary class in gSCAN_dataset.py") parser.add_argument("--target_vocab_path", type=str, default="training_target_vocab.txt", help="Path to file with target vocabulary as saved by Vocabulary class in gSCAN_dataset.py") parser.add_argument("--generate_vocabularies", dest="generate_vocabularies", default=False, action="store_true", help="Whether to generate vocabularies based on the data.") parser.add_argument("--load_vocabularies", dest="generate_vocabularies", default=True, action="store_false", help="Whether to use previously saved vocabularies.") # Training and learning arguments parser.add_argument("--training_batch_size", type=int, default=50) parser.add_argument("--k", type=int, default=0, help="How many examples from the adverb_1 split to move to train.") parser.add_argument("--test_batch_size", type=int, default=1, help="Currently only 1 supported due to decoder.") parser.add_argument("--max_training_examples", type=int, default=None, help="If None all are used.") parser.add_argument("--learning_rate", type=float, default=0.001) parser.add_argument('--lr_decay', type=float, default=0.9) parser.add_argument('--lr_decay_steps', type=float, default=20000) parser.add_argument("--adam_beta_1", type=float, default=0.9) parser.add_argument("--adam_beta_2", type=float, default=0.999) parser.add_argument("--print_every", type=int, default=100) parser.add_argument("--evaluate_every", type=int, default=1000, help="How often to evaluate the model by decoding the " "test set (without teacher forcing).") parser.add_argument("--max_training_iterations", type=int, default=100000) parser.add_argument("--weight_target_loss", type=float, default=0.3, help="Only used if --auxiliary_task set.") # Testing and predicting arguments parser.add_argument("--max_testing_examples", type=int, default=None) parser.add_argument("--splits", type=str, default="test", help="comma-separated list of splits to predict for.") parser.add_argument("--max_decoding_steps", type=int, default=30, help="After 30 decoding steps, the decoding process " "is stopped regardless of whether an EOS token " "was generated.") parser.add_argument("--output_file_name", type=str, default="predict.json") # Situation Encoder arguments parser.add_argument("--simple_situation_representation", dest="simple_situation_representation", default=True, action="store_true", help="Represent the situation with 1 vector per grid cell. " "For more information, read grounded SCAN documentation.") parser.add_argument("--image_situation_representation", dest="simple_situation_representation", default=False, action="store_false", help="Represent the situation with the full gridworld RGB image. " "For more information, read grounded SCAN documentation.") parser.add_argument("--cnn_hidden_num_channels", type=int, default=50) parser.add_argument("--cnn_kernel_size", type=int, default=7, help="Size of the largest filter in the world state " "model.") parser.add_argument("--cnn_dropout_p", type=float, default=0.1, help="Dropout applied to the output features of the " "world state model.") parser.add_argument("--auxiliary_task", dest="auxiliary_task", default=False, action="store_true", help="If set to true, the model predicts the target location from the joint attention over the " "input instruction and world state.") parser.add_argument("--no_auxiliary_task", dest="auxiliary_task", default=True, action="store_false") # Command Encoder arguments parser.add_argument("--embedding_dimension", type=int, default=25) parser.add_argument("--num_encoder_layers", type=int, default=1) parser.add_argument("--encoder_hidden_size", type=int, default=100) parser.add_argument("--encoder_dropout_p", type=float, default=0.3, help="Dropout on instruction embeddings and LSTM.") parser.add_argument("--encoder_bidirectional", dest="encoder_bidirectional", default=True, action="store_true") parser.add_argument("--encoder_unidirectional", dest="encoder_bidirectional", default=False, action="store_false") # Decoder arguments parser.add_argument("--num_decoder_layers", type=int, default=1) parser.add_argument("--attention_type", type=str, default='bahdanau', choices=['bahdanau', 'luong'], help="Luong not properly implemented.") parser.add_argument("--decoder_dropout_p", type=float, default=0.3, help="Dropout on decoder embedding and LSTM.") parser.add_argument("--decoder_hidden_size", type=int, default=100) parser.add_argument("--conditional_attention", dest="conditional_attention", default=True, action="store_true", help="If set to true joint attention over the world state conditioned on the input instruction is" " used.") parser.add_argument("--no_conditional_attention", dest="conditional_attention", default=False, action="store_false") # Other arguments parser.add_argument("--seed", type=int, default=42) parser.add_argument("--corrupt_methods", type=str, default="random") parser.add_argument("--save_eval_result_dict", default=False, action="store_true") return parser def predict_single(example: dict, model: nn.Module, max_decoding_steps: int, pad_idx: int, sos_idx: int, eos_idx: int, device: str) -> torch.Tensor: """ Loop over all data in data_iterator and predict until <EOS> token is reached. :param example: single example to play with :param model: a trained model from model.py :param max_decoding_steps: after how many steps to abort decoding :param pad_idx: the padding idx of the target vocabulary :param sos_idx: the start-of-sequence idx of the target vocabulary :param eos_idx: the end-of-sequence idx of the target vocabulary """ # Disable dropout and other regularization. model.eval() input_sequence = example["input_tensor"] target_sequence = example["target_tensor"] input_lengths = [example["input_tensor"].size(1)] target_lengths = [example["target_tensor"].size(1)] situation = example["situation_tensor"] situation_spec = [example["situation_representation"]] derivation_spec = [example["derivation_representation"]] agent_positions = example["agent_position"] target_positions = example["target_position"] input_sequence = input_sequence.to(device) target_sequence = target_sequence.to(device) situation = situation.to(device) # Encode the input sequence. encoded_input = model.encode_input(commands_input=input_sequence, commands_lengths=input_lengths, situations_input=situation) # For efficiency projected_keys_visual = model.visual_attention.key_layer( encoded_input["encoded_situations"]) # [bsz, situation_length, dec_hidden_dim] projected_keys_textual = model.textual_attention.key_layer( encoded_input["encoded_commands"]["encoder_outputs"]) # [max_input_length, bsz, dec_hidden_dim] # Iteratively decode the output. output_sequence = [] contexts_situation = [] hidden = model.attention_decoder.initialize_hidden( model.tanh(model.enc_hidden_to_dec_hidden(encoded_input["hidden_states"]))) token = torch.tensor([sos_idx], dtype=torch.long, device=device) decoding_iteration = 0 attention_weights_commands = [] attention_weights_situations = [] while token != eos_idx and decoding_iteration <= max_decoding_steps: (output, hidden, context_situation, attention_weights_command, attention_weights_situation) = model.decode_input( target_token=token, hidden=hidden, encoder_outputs=projected_keys_textual, input_lengths=input_lengths, encoded_situations=projected_keys_visual) output = F.log_softmax(output, dim=-1) token = output.max(dim=-1)[1] output_sequence.append(token.data[0].item()) attention_weights_commands.append(attention_weights_command.tolist()) attention_weights_situations.append(attention_weights_situation.tolist()) contexts_situation.append(context_situation.unsqueeze(1)) decoding_iteration += 1 if output_sequence[-1] == eos_idx: output_sequence.pop() attention_weights_commands.pop() attention_weights_situations.pop() if model.auxiliary_task: target_position_scores = model.auxiliary_task_forward(torch.cat(contexts_situation, dim=1).sum(dim=1)) auxiliary_accuracy_target = model.get_auxiliary_accuracy(target_position_scores, target_positions) else: auxiliary_accuracy_agent, auxiliary_accuracy_target = 0, 0 return (input_sequence, derivation_spec, situation_spec, output_sequence, target_sequence, attention_weights_commands, attention_weights_situations, auxiliary_accuracy_target) def make_corrupt_example(raw_example, corrupt_methods="systematic"): if corrupt_methods == "systematic": ret_example = copy.deepcopy(raw_example) new_command = ret_example['input_command'] if "while" in ret_example['input_command'][-1]: # we move while into the front new_command = ret_example['input_command'][-1:] + ret_example['input_command'][:-1] elif ret_example['input_command'][-1][-2:] == "ly": # this is the adv new_command = ret_example['input_command'][-1:] + ret_example['input_command'][:-1] # we can also switch words in the middle # circle, square, cylinder # use a as a maker start_index = new_command.index('a') if "circle" in new_command: end_index = new_command.index('circle') elif "square" in new_command: end_index = new_command.index('square') elif "cylinder" in new_command: end_index = new_command.index('cylinder') if end_index - start_index > 2: # there are two adj then new_command[start_index+1:end_index] = new_command[start_index+1:end_index][::-1] ret_example['input_command'] = new_command elif corrupt_methods == "random": ret_example = copy.deepcopy(raw_example) random.shuffle(ret_example['input_command']) return ret_example def levenshteinDistance(s1, s2): """ The Levenshtein distance allows deletion, insertion and substitution: https://en.wikipedia.org/wiki/Edit_distance Implementation reference: https://stackoverflow.com/questions/2460177/edit-distance-in-python """ if len(s1) > len(s2): s1, s2 = s2, s1 distances = range(len(s1) + 1) for i2, c2 in enumerate(s2): distances_ = [i2+1] for i1, c1 in enumerate(s1): if c1 == c2: distances_.append(distances[i1]) else: distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) distances = distances_ norm_dist = distances[-1]/max(len(s1), len(s2)) return norm_dist class DummyGroundedScanDataset(object): """ Loads a GroundedScan instance from a specified location. """ def __init__(self, path_to_data: str, save_directory: str, k: int, split="train", input_vocabulary_file="", target_vocabulary_file="", generate_vocabulary=False): logger.info("Initializing dummy gSCAN dataset for adverserial experiments...") assert os.path.exists(path_to_data), "Trying to read a gSCAN dataset from a non-existing file {}.".format( path_to_data) if not generate_vocabulary: assert os.path.exists(os.path.join(save_directory, input_vocabulary_file)) and os.path.exists( os.path.join(save_directory, target_vocabulary_file)), \ "Trying to load vocabularies from non-existing files." if split == "test" and generate_vocabulary: logger.warning("WARNING: generating a vocabulary from the test set.") # self.dataset = GroundedScan.load_dataset_from_file(path_to_data, save_directory=save_directory, k=k) # pre-load just to get the grid size with open(path_to_data, 'r') as infile: all_data = json.load(infile) self.image_dimensions = all_data["grid_size"] self.image_channels = 3 self.split = split self.directory = save_directory # Keeping track of data. self._examples = np.array([]) self._input_lengths = np.array([]) self._target_lengths = np.array([]) if generate_vocabulary: logger.info("Generating vocabularies...") self.input_vocabulary = Vocabulary() self.target_vocabulary = Vocabulary() self.read_vocabularies() logger.info("Done generating vocabularies.") else: logger.info("Loading vocabularies...") self.input_vocabulary = Vocabulary.load(os.path.join(save_directory, input_vocabulary_file)) self.target_vocabulary = Vocabulary.load(os.path.join(save_directory, target_vocabulary_file)) logger.info("Done loading vocabularies.") def read_vocabularies(self) -> {}: """ Loop over all examples in the dataset and add the words in them to the vocabularies. """ logger.info("Populating vocabulary...") for i, example in enumerate(self.dataset.get_examples_with_image(self.split)): self.input_vocabulary.add_sentence(example["input_command"]) self.target_vocabulary.add_sentence(example["target_command"]) def save_vocabularies(self, input_vocabulary_file: str, target_vocabulary_file: str): self.input_vocabulary.save(os.path.join(self.directory, input_vocabulary_file)) self.target_vocabulary.save(os.path.join(self.directory, target_vocabulary_file)) def get_vocabulary(self, vocabulary: str) -> Vocabulary: if vocabulary == "input": vocab = self.input_vocabulary elif vocabulary == "target": vocab = self.target_vocabulary else: raise ValueError("Specified unknown vocabulary in sentence_to_array: {}".format(vocabulary)) return vocab def shuffle_data(self) -> {}: """ Reorder the data examples and reorder the lengths of the input and target commands accordingly. """ random_permutation = np.random.permutation(len(self._examples)) self._examples = self._examples[random_permutation] self._target_lengths = self._target_lengths[random_permutation] self._input_lengths = self._input_lengths[random_permutation] def get_data_iterator(self, batch_size=10) -> Tuple[torch.Tensor, List[int], torch.Tensor, List[dict], torch.Tensor, List[int], torch.Tensor, torch.Tensor]: """ Iterate over batches of example tensors, pad them to the max length in the batch and yield. :param batch_size: how many examples to put in each batch. :param auxiliary_task: if true, also batches agent and target positions (flattened, so agent row * agent columns = agent_position) :return: tuple of input commands batch, corresponding input lengths, situation image batch, list of corresponding situation representations, target commands batch and corresponding target lengths. """ for example_i in range(0, len(self._examples), batch_size): if example_i + batch_size > len(self._examples): batch_size = len(self._examples) - example_i examples = self._examples[example_i:example_i + batch_size] input_lengths = self._input_lengths[example_i:example_i + batch_size] target_lengths = self._target_lengths[example_i:example_i + batch_size] max_input_length = np.max(input_lengths) max_target_length = np.max(target_lengths) input_batch = [] target_batch = [] situation_batch = [] situation_representation_batch = [] derivation_representation_batch = [] agent_positions_batch = [] target_positions_batch = [] for example in examples: to_pad_input = max_input_length - example["input_tensor"].size(1) to_pad_target = max_target_length - example["target_tensor"].size(1) padded_input = torch.cat([ example["input_tensor"], torch.zeros(int(to_pad_input), dtype=torch.long, device=device).unsqueeze(0)], dim=1) # padded_input = torch.cat([ # torch.zeros_like(example["input_tensor"], dtype=torch.long, device=device), # torch.zeros(int(to_pad_input), dtype=torch.long, device=devicedevice).unsqueeze(0)], dim=1) # TODO: change back padded_target = torch.cat([ example["target_tensor"], torch.zeros(int(to_pad_target), dtype=torch.long, device=device).unsqueeze(0)], dim=1) input_batch.append(padded_input) target_batch.append(padded_target) situation_batch.append(example["situation_tensor"]) situation_representation_batch.append(example["situation_representation"]) derivation_representation_batch.append(example["derivation_representation"]) agent_positions_batch.append(example["agent_position"]) target_positions_batch.append(example["target_position"]) yield (torch.cat(input_batch, dim=0), input_lengths, derivation_representation_batch, torch.cat(situation_batch, dim=0), situation_representation_batch, torch.cat(target_batch, dim=0), target_lengths, torch.cat(agent_positions_batch, dim=0), torch.cat(target_positions_batch, dim=0)) def process(self, example): empty_example = {} input_commands = example["input_command"] target_commands = example["target_command"] #equivalent_target_commands = example["equivalent_target_command"] situation_image = example["situation_image"] self.image_dimensions = situation_image.shape[0] self.image_channels = situation_image.shape[-1] situation_repr = example["situation_representation"] input_array = self.sentence_to_array(input_commands, vocabulary="input") target_array = self.sentence_to_array(target_commands, vocabulary="target") #equivalent_target_array = self.sentence_to_array(equivalent_target_commands, vocabulary="target") empty_example["input_tensor"] = torch.tensor(input_array, dtype=torch.long, device=device).unsqueeze( dim=0) empty_example["target_tensor"] = torch.tensor(target_array, dtype=torch.long, device=device).unsqueeze( dim=0) #empty_example["equivalent_target_tensor"] = torch.tensor(equivalent_target_array, dtype=torch.long, # device=device).unsqueeze(dim=0) empty_example["situation_tensor"] = torch.tensor(situation_image, dtype=torch.float, device=device ).unsqueeze(dim=0) empty_example["situation_representation"] = situation_repr empty_example["derivation_representation"] = example["derivation_representation"] empty_example["agent_position"] = torch.tensor( (int(situation_repr["agent_position"]["row"]) * int(situation_repr["grid_size"])) + int(situation_repr["agent_position"]["column"]), dtype=torch.long, device=device).unsqueeze(dim=0) empty_example["target_position"] = torch.tensor( (int(situation_repr["target_object"]["position"]["row"]) * int(situation_repr["grid_size"])) + int(situation_repr["target_object"]["position"]["column"]), dtype=torch.long, device=device).unsqueeze(dim=0) return empty_example def read_dataset(self, max_examples=None, simple_situation_representation=True) -> {}: """ Loop over the data examples in GroundedScan and convert them to tensors, also save the lengths for input and target sequences that are needed for padding. :param max_examples: how many examples to read maximally, read all if None. :param simple_situation_representation: whether to read the full situation image in RGB or the simplified smaller representation. """ logger.info("Converting dataset to tensors...") for i, example in enumerate(self.dataset.get_examples_with_image(self.split, simple_situation_representation)): if max_examples: if len(self._examples) > max_examples: return empty_example = {} input_commands = example["input_command"] target_commands = example["target_command"] #equivalent_target_commands = example["equivalent_target_command"] situation_image = example["situation_image"] if i == 0: self.image_dimensions = situation_image.shape[0] self.image_channels = situation_image.shape[-1] situation_repr = example["situation_representation"] input_array = self.sentence_to_array(input_commands, vocabulary="input") target_array = self.sentence_to_array(target_commands, vocabulary="target") #equivalent_target_array = self.sentence_to_array(equivalent_target_commands, vocabulary="target") empty_example["input_tensor"] = torch.tensor(input_array, dtype=torch.long, device=device).unsqueeze( dim=0) empty_example["target_tensor"] = torch.tensor(target_array, dtype=torch.long, device=device).unsqueeze( dim=0) #empty_example["equivalent_target_tensor"] = torch.tensor(equivalent_target_array, dtype=torch.long, # device=device).unsqueeze(dim=0) empty_example["situation_tensor"] = torch.tensor(situation_image, dtype=torch.float, device=device ).unsqueeze(dim=0) empty_example["situation_representation"] = situation_repr empty_example["derivation_representation"] = example["derivation_representation"] empty_example["agent_position"] = torch.tensor( (int(situation_repr["agent_position"]["row"]) * int(situation_repr["grid_size"])) + int(situation_repr["agent_position"]["column"]), dtype=torch.long, device=device).unsqueeze(dim=0) empty_example["target_position"] = torch.tensor( (int(situation_repr["target_object"]["position"]["row"]) * int(situation_repr["grid_size"])) + int(situation_repr["target_object"]["position"]["column"]), dtype=torch.long, device=device).unsqueeze(dim=0) self._input_lengths = np.append(self._input_lengths, [len(input_array)]) self._target_lengths = np.append(self._target_lengths, [len(target_array)]) self._examples = np.append(self._examples, [empty_example]) def sentence_to_array(self, sentence: List[str], vocabulary: str) -> List[int]: """ Convert each string word in a sentence to the corresponding integer from the vocabulary and append a start-of-sequence and end-of-sequence token. :param sentence: the sentence in words (strings) :param vocabulary: whether to use the input or target vocabulary. :return: the sentence in integers. """ vocab = self.get_vocabulary(vocabulary) sentence_array = [vocab.sos_idx] for word in sentence: sentence_array.append(vocab.word_to_idx(word)) sentence_array.append(vocab.eos_idx) return sentence_array def array_to_sentence(self, sentence_array: List[int], vocabulary: str) -> List[str]: """ Translate each integer in a sentence array to the corresponding word. :param sentence_array: array with integers representing words from the vocabulary. :param vocabulary: whether to use the input or target vocabulary. :return: the sentence in words. """ vocab = self.get_vocabulary(vocabulary) return [vocab.idx_to_word(word_idx) for word_idx in sentence_array] @property def num_examples(self): return len(self._examples) @property def input_vocabulary_size(self): return self.input_vocabulary.size @property def target_vocabulary_size(self): return self.target_vocabulary.size
2.015625
2
djangoproj/djangoapp/crawler/b_crawler.py
pbarton666/buzz_bot
0
12793311
<reponame>pbarton666/buzz_bot #!/usr/bin/env python from __future__ import with_statement import logging # Library path import os import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) # Standard libraries import atexit import random import re import socket import threading import time import traceback import weakref import xmlrpclib import Queue import SimpleXMLRPCServer #import multiprocessing # Import third-party libraries import turbogears # Custom libraries #import buzzbot.searcher #import buzzbot.visitor #import buzzbot.model #import buzzbot.bot #import buzzbot.botUtilities import buzzbot try: from buzzbot import * print "importing all buzzbot modules" except: from buzzbot import cpu_core_counter from buzzbot import searcher from buzzbot import visitor from buzzbot import model from buzzbot import bot from buzzbot import botUtilities from buzzbot import commands myBotRoutines = bot.BotRoutines() myBotUtilities = botUtilities.Utilities() print "importing some buzzbot modules" try: myBotRoutines = buzzbot.bot.BotRoutines() myBotUtilities = buzzbot.botUtilities.Utilities() except: pass #I haven't quite grokked the differences in namespaces between the dev and production box # this insures the visitor module is available try: import bot import botUtilities import visitor myBotRoutines = bot.BotRoutines() myBotUtilities = botUtilities.Utilities() except: pass DEBUG_RUN_SERIALLY = False import logging class CrawlerBase(object): """ Methods provided to CrawlerClient and CrawlerServer. """ def host(self): """ Return the connection host. """ return turbogears.config.get("crawler.socket_host", "localhost") def port(self): """ Return the connection port. """ return int(turbogears.config.get("crawler.socket_port", 50015)) def logger(self): import logging name = 'crawler' fname = '/var/log/buzz/crawler.log' logger = logging.getLogger(name) logger.setLevel(logging.INFO) handler = logging.handlers.RotatingFileHandler( fname, maxBytes=100000, backupCount=5) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") logger.addHandler(handler) return logger cb = CrawlerBase() logger = cb.logger() def has_fork(): """ Does this OS have the `fork` system call? """ return "fork" in os.__dict__ class CrawlerServerFunctions(object): """ Set of functions exposed by the CrawlerServer to the CrawlerClient. In English: the crawler server is a simple xmlrpc server. We have a proxy server attached to the smlrpc server that we're passing these methods to. Things are a little strange because not everything can get passed between the proxy and the real server. For instance, you can easily pass xml or html, but not objects (they could be repr-ed or pickled, of course) So, for instance, we can ask the proxy server to "enqueue" a request. This involves passing the proxy server a dict holding the search_id and other stuff like a deletion flag. The proxy is supposed to relay that to the real server, which is supposed to process it. The processing involves doing the search, visit, scoring processes/threads and reporting the results """ def enqueue(self, item): """ Enqueue the item into the Crawler. """ #print "enqueue method of class CrawlerServerFunctions called" # NOTE: The XML-RPC proxy can't accept a bare **kwargs, so it's passed in as a `dict`. global server server.crawler.enqueue(**item) def stop(self): """ Stop the Crawler. """ global server server.keep_running = False def prepare_results(self): """ Prepare scored results. """ global server server.crawler.prepare_results() def results_for(self, search_id): """ Return list of scored results for the `search_id`. """ global server return server.crawler.results_for(search_id) def evaluate(self, code): """ Return the result of eval'ing the string of `code`. """ global server if self.allow_dangerous_operations(): return eval(code) else: raise SecurityError("Dangerous operations not allowed on server") def execute(self, code): """ Pass `code` to Python's `exec`. """ global server if self.allow_dangerous_operations(): exec code else: raise SecurityError("Dangerous operations not allowed on server") def allow_dangerous_operations(self): """ Does this server allow dangerous operations? Returns true if the `DANGEROUS` environmental variable has a value. """ global server if os.environ.has_key('DANGEROUS'): return True else: return False def ping(self): """ Respond with true, to indicate server is alive. """ print "pinging crawlerServiceFunctions.ping" return server.crawler.ping() def dogma(self): return "hello from crawlerServiceFunctions.dogma" def dogmaFromServer(self): return server.crawler.dogma() class proxyServerError(StandardError): pass class SecurityError(StandardError): pass class WrapperError(StandardError): pass class CrawlerServer(CrawlerBase): def __init__(self, items_completed=True, concurrency_library=None, run_as_cron = False): """ Instantiate a server that hosts a Crawler. """ #added option to change the xmlrpc port if the crawler is running as an independent # process, as in the case of a nightly cron job logger.debug( "crawler.CrawlerServer.__init__ xmlrpc server initiated on %s:%s" % (str(self.host()), str(self.port()) )) self.service = SimpleXMLRPCServer.SimpleXMLRPCServer(addr=(self.host(), self.port()), logRequests=False, allow_none=True) self.service.register_instance(CrawlerServerFunctions()) #keep_running = True turns it on; keep_running = False shuts it down) self.keep_running = True #this instansiates a crawler process manager and its processes logger.debug("crawler.CrawlerServer.__init__ instansiating a crawler process server") self.crawler = Crawler(items_completed=items_completed, concurrency_library=concurrency_library) logger.debug("crawler.CrawlerServer.__init__ Success in instansiating a crawler process server") def start(self): """ Start the server. """ logger.debug( "starting the crawler process server") self.crawler.start() while self.keep_running: self.service.handle_request() self.stop() logger.debug("crawler_runner (crawler/proxy thread) stopped") def stop(self): """ Stop the server. """ self.keep_running = False self.crawler.stop() class ResilentXmlRpcServerProxy(object): """ Provides a wrapper around the XmlRpc proxy that retries the connection. """ def __init__(self, proxy, timeout_seconds=5.0, pause_seconds=0.25): #logger.debug("ResilentXmlRpcServerProxy __init--") self.proxy = proxy #logger.debug("proxy is of type %s" % type (proxy)) self.timeout_seconds = timeout_seconds self.pause_seconds = pause_seconds def __getattr__(self, name): DEBUG = False if DEBUG: print "GA: %s" % name proxy = self.proxy def wrapper(*args): init_time = time.time() deadline = init_time + self.timeout_seconds while deadline > time.time(): try: #logger.debug("returning function %s from the xmlrpc proxy wrapper with args: %s" %( name, repr(args) )) return proxy.__getattr__(name)(*args) except Exception, e: if DEBUG: print "WA: retry" logger.error("xmlrpc server returned error: %s" %e) time.sleep(self.pause_seconds) #if this process is too slow, give it a bit more priority (nice is the priority -20 = highest +20 = lowest ) #if time.time() > init_time + 3: ##TODO: fix this niceness thing ;it's a good idea, but too quickly sets *something* to -20 which freezes the system #try: #nice = os.nice(0) #os.nice(nice-1) #newnice = os.nice(0) #print "changed nice from %i to %i" %(nice, newnice) #except: # pass logger.info("gave up trying to connect to the XML-RPC server") raise TimeoutError("Couldn't connect to XML-RPC server, no response after %s seconds" % str(self.timeout_seconds)) return wrapper class CrawlerClient(CrawlerBase): """ Client that connects to the CrawlerServer. """ def __init__(self, run_as_cron = False): """ Instantiate a client. """ #note, don't use a logger in __init__ unless its installed in __init__ self.raw_service = xmlrpclib.ServerProxy(uri="http://%s:%s/" % (self.host(), self.port()), allow_none=True) self.service = ResilentXmlRpcServerProxy(proxy=self.raw_service) def enqueue(self, **item): """ Enqueue an item for crawling. The `item` is a dict with the same parameters accepted by `Crawler.enqueue`. """ str(item['search_id']) logger.debug( "crawler client method enqueue called for item: %s" % str(item['search_id']) ) # NOTE: The XML-RPC proxy can't accept a bare **kwargs, so pass them as a `dict`. testme = self.service.enqueue(item) return self.service.enqueue(item) def stop(self): """ Stop the CrawlerServer. """ print "stopping the xmlrpc server proxy" try: self.raw_service.stop() except: pass return self.raw_service.stop() def dogma(self): #print "hello from CrawlerClient.dogma" pass def evaluate(self, code): """ Return the result of evaluating the code on the server. """ #print "evaluating " + code return self.service.evaluate(code) def execute(self, code): """ Pass `code` to Python's `exec`. """ self.service.execute(code) def prepare_results(self): """ Prepare scored results. """ #logger.debug( "initiating CrawlerClient prepare results process") self.service.prepare_results() def results_for(self, search_id): """ Return list of scored results for the `search_id`. """ #logger.debug( "initiating CrawlerClient results for search id %s" %str(search_id)) return self.service.results_for(search_id) def ping(self): """ Is the server responding? """ try: print "pinging crawler client" return self.raw_service.ping() except: return False class Crawler(object): '''sentinal to flag workers to stop''' STOP = 'STOP' def __init__(self, items_completed=True, searchers_count=None, visitors_count=None, scorers_count=None, concurrency_library=None): self.debug = False self.debug_run_serially = DEBUG_RUN_SERIALLY cb = CrawlerBase() self.logger = cb.logger() #get the concurrency library ##TODO: set this in the turbogears.config files self._concurrency_library = concurrency_library #import the library exec "import %s" % self._concurrency_library #this returns the *object* representing the concurrency library self._concurrency_library_module = eval("%s" % self._concurrency_library) #figure out how many CPUs we have to work with try: self.cpu_core_count = self._concurrency_library_module.cpu_count() #works with multiprocessing except: try: self.cpu_core_count = cpu_core_counter.cpu_core_count() # works with threading and pyprocessing except: self.cpu_core_count = 1 ''' the manager herds the cats (processes), providing locks, semaphores and the such; it runs on its own process ''' self.manager = self._concurrency_library_module.Manager() self.lock = self.manager.Lock() ''' These objects are queues to be managed within - you guessed it - the manager; it runs on its own process. If we ever switch to a theading library, these would just be Queue.Queue() objects. ''' self.items_to_search = self.manager.Queue() self.items_to_visit= self.manager.Queue() self.items_to_score= self.manager.Queue() self.items_to_finalize= self.manager.Queue() self.items_completed = None if items_completed: self.items_completed = self.manager.dict() ''' the following is a bit convoluted but produces a dict (queue) with three items (searcher, visitor, scorer); Each of these three items is in itself a dict with the same two items (input, output). searcher = queue.get('searcher') evaluates to: { input : AutoProxy[Queue], output : AutoProxy[Queue] myinput = searcher.get('input') evaluates to: AutoProxy[Queue] object ''' self.queue = {} self.queue['searcher'] = {} self.queue['searcher']['input'] = self.items_to_search self.queue['searcher']['output'] = self.items_to_visit self.queue['visitor'] = {} self.queue['visitor']['input'] = self.items_to_visit self.queue['visitor']['output'] = self.items_to_score self.queue['scorer'] = {} self.queue['scorer']['input'] = self.items_to_score self.queue['scorer']['output'] = self.items_to_finalize ''' Figure out how many processes to spawn as a function of the CPUs available; the optimal number is at least partly a function of the real time performance desired - a smaller number provides faster response ''' # Worker counts self.searchers_count = searchers_count or max(2, self.cpu_core_count) #TODO: experiment with the visitor counts self.visitors_count = visitors_count or min(5, self.cpu_core_count * 5) self.scorers_count = scorers_count or min(2, self.cpu_core_count) # Workers pools self.searchers = [] self.visitors = [] self.scorers = [] def __del__(self): #this is the destructor method called after object is killed, so we need to re-import logger try: print ("trying to stop crawler process manager") self.stop() except Exception, e: print ("crawler.Crawler failed to stop normally: %s" % e) pass finally: #logger.debug("destroyed") pass def start(self, kind=None): """ Start the crawler. It will begin processing any entries in the queues immediately. This starts all types of processes, unless we ask it only to run one (kind = "searcher", say) """ #this logic is to run the program serially for debugging purposes (independent # processes are hideous to work with). if not DEBUG_RUN_SERIALLY: if kind: logger.info ("crawler start method called for kind = " + kind) ''' the following statements use strange pythonic syntax to dig evaluate variables; compact but arcane. self__dict__ is a dict of object:value pair known to self (i.e., this class) the term ['%ss' % kind] uses text formatting strings: %s is replaced with the value for kind self.__dict__['%ss' % kind], then pulls the value for "kind" from the dictionary ... so, say "kind" is searcher so, count = searcher_count and workers = searcher ... this makes it work with any type of process. but *who cares*? ''' count = self.__dict__['%ss_count' % kind] #this is dict of all objects known to self workers = self.__dict__['%ss' % kind] for i in range(count): worker = None ''' Here, the "target" i.e., the thing executed by the process; this will be a search process, a visitor processs, or whatever TBD by the process_wrapper routine. The list of "workers" gets the process appended to it. The last step is to actually run the process(using the start method). ''' if self._concurrency_library == "processing": worker = self._concurrency_library_module.Process(target=self._processes_wrapper, args=[kind]) elif self._concurrency_library == "threading": worker = self._concurrency_library_module.Thread(target=self._processes_wrapper, args=[kind]) elif self._concurrency_library == "multiprocessing": worker = self._concurrency_library_module.Process(target=self._processes_wrapper, args=[kind]) else: raise NotImplementedError("Unknown concurrency_library: %s" % self._concurrency_library) workers.append(worker) logger.info("starting %s process" % (kind)) worker.start() logger.info("started as %s " % (worker.name)) a=1 a=2 else: ''' Recursively calls the logic above to initaite "worker processes" for the requested number of searchers, visitors, and scorers (invoked when no worker type is specified in the call). ''' logger.info( "starting processes for all - searcher, visitor, and scorer") self.start("searcher") self.start("visitor") self.start("scorer") else: logger.debug("running serially for debugging") def dogma(self): return "hello from Crawler.dogma" def testQueues(self): #having an issue with being able to add items to the queues pass def _processes_wrapper(self, kind): #line 449 """ This routine serves as a container for the worker (searcher, visitor, scorer) processes. The idea is that the calling routine can iterate over all processes using the same logic, because the statement in the calling routine can be agnostic as to exactly which proces it's calling. The calling routine has loaded up a set of queues, one each for the searchers, visitors, and scorers. These queues are stored in a dict structure called queue. The "queue" dict has three objects, each of which is another dict: searcher, visitor, and scorer. Each of these secondary objects has two entries: input and output (both Queues). The logic uses the input argument "kind" to find the correct input/output queue combination, and also to figure out which processing routine to pass control to. For instance, if the "kind" argument is "searcher", it digs out the searcher input and output queues from the "queue" dict object. Then, using the self._worker_name routine, discovers that it needs to pass control to the self._searcher_process method embedded in a Process object. Then, by invoking the "target" method, it launches the process, passing along the specifications for this particular search and the right output queue (in this case "scorer" input queue dug out of the "queue" dict mentioned above) """ #discern the name of the process to be invoked from the "kind" input argument tagline = "%s %s:" % (kind, self._worker_name()) #creat an alias for the actual Process object target = self.__getattribute__('%s_process' % kind) #create aliases for the correct input/output Queue objects to be used input = self.queue[kind]['input'] output = self.queue[kind]['output'] logger.debug("process wrapper processing a %s queue; currently " %kind) logger.debug("input queue is %s long; output queue is %s long" %(str(input.qsize()), str(output.qsize()))) #self.debug_run_serially is used for debugging only logger.info("self.debug_run_serially is set to : %s" %str(self.debug_run_serially) ) if not self.debug_run_serially: #iterate over the input queue ... for item in iter(input.get, self.STOP): logger.debug("input dict to %s is: %s" %(kind, repr(item))) stop_requested = False ##TODO: implement graceful stop for runaway bots using search.stop_requested try: search_id = item.get('search_id') search = model.Search.get(int(search_id)) stop_requested = search.stoprequested except: logger.error("process_wrapper failed to get search_id for handoff to %s" %kind) logger.error(traceback.print_stack()) if not stop_requested: #result = None logger.info("launching process: %s" %kind) result = target(item=item, output=output) if result: logger.debug("process %s found a result" %kind) else: logger.debug("process %s result is None" %kind) if not output: logger.debug("output is %s" %repr(output)) if result and output != None: output.put(result) if kind == 'scorer': logger.info ("outputting %s to results_for" %result) else: try: logger.debug("couldn't place item in queue; this would clear queue") #logger.debug(traceback.print_stack()) input.queue.clear() except: pass else: logger.debug("stop requested in processes_wrapper") def _worker_name(self): """ Returns string name uniquely identifying this worker. Actual name will depend on the underlying concurrency library. """ if self._concurrency_library == "processing": return self._concurrency_library_module.currentProcess().getName() elif self._concurrency_library == "threading": return self._concurrency_library_module.currentThread().getName() elif self._concurrency_library == "multiprocessing": return self._concurrency_library_module.current_process().name else: raise NotImplementedError("Unknown concurrency_library: %s" % self._concurrency_library) def searcher_process(self, item, output=None): """ This process is invoked by the _process_wrapper routine. It runs the search engine queries via the routine "searcher.SearcherRunner". It's run as a self-contained process/thread. It's important that any changes be thoroughly vetted because if it has problems, it will likely die silently. """ #check to see if we're running serially for debugging if item.has_key('debug_run_serially'): self.debug_run_serially=item.get('debug_run_serially') serial_return = [] logger.info( "running searcher process for item %s" % repr(item)) #PB if user requested stop, don't bother search = model.Search.get(item['search_id']) stop_requested = search.stoprequested #logger.debug("checked stoprequested") targetword = search.targetword #logger.debug("entering stoprequested loop") if not stop_requested: print "deploying searcher.SearchRunner" myresult = searcher.SearchRunner( #each "result" is a raw url returned from a search engine delete_existing = item['delete_existing'], search_id = item['search_id'], max_results = item['max_results'], debug_run_serially = self.debug_run_serially ) logger.debug("myresult is %s" % repr(myresult)) for result in searcher.SearchRunner( #each "result" is a raw url returned from a search engine delete_existing = item['delete_existing'], search_id = item['search_id'], max_results = item['max_results']): urlid = None logger.debug("searcher_process found: %s" % repr(result)) ##TODO: move this processing logic outside the crawler #clean the url up (first-order validity checks, etc.) Below returns a list or nothing logger.debug("evaluating %s" %result) fixedUrl = myBotUtilities.fixUrls(targetword, urlList = [result]) #logger.info("fixed url is %s" %fixedUrl) cleanResult = "" if len(fixedUrl)>0: #cleanResult is null if the url failed our tests cleanResult= fixedUrl[0] #logger.debug("checking if url %s is sponsor site %s" %(str(fixedUrl), str(targetword))) if myBotUtilities.isTargetWordSite(cleanResult, targetword): #sponsor site cleanResult = "" logger.debug("%s is from the sponsor site" % str(fixedUrl)) if not myBotUtilities.goodUrl(cleanResult): #known junk, videos, etc cleanResult = "" logger.debug("%s is known junk" % str(fixedUrl)) if len(cleanResult) > 0: #if we have this id for this search, we'll grab its id (content specs may have changed) dupReturn = myBotUtilities.isDupUrl(item['search_id'], cleanResult) #returns 0 or the ID of thedup if dupReturn > 0: urlid = dupReturn logger.debug("we already have url %s" %str(fixedUrl)) else: try: urlid = myBotUtilities.addUrl(item['search_id'], cleanResult) except: logger.debug("tried but failed to have botUtilites add this url %s" %cleanResult) if urlid: logger.debug("attempting to output this url to visitor process queue: %s" %str(cleanResult)) subitem = dict( delete_existing = item['delete_existing'], search_id = item['search_id'], max_results = item['max_results'], url_id = urlid, parseFast = item['parseFast'] or True ) output.put(subitem) logger.debug("visitor process queue fed searchid: %s and urlid: %s " %(str(item['search_id']), str(urlid))) if self.debug_run_serially: return serial_return def visitor_process(self, item, output=None): ''' This process is invoked by the _process_wrapper routine. It runs the visitors (they read the web sites) engine queries via the routine "visitor.Visitor". It's run as a self-contained process/thread. It's important that any changes be thoroughly vetted because if it has problems, it will likely die silently. logger.debug ("visitor process started") ''' logger.debug("visitor_process invoked ... working on item: %s" %repr(item)) return_dict = None; search = None #check to see if we're running serially for debugging if item.has_key('debug_run_serially'): self.debug_run_serially=item.get('debug_run_serially') serial_return=[] if item.has_key('parseFast'): parseFast = item.get('parseFast') else: parseFast = True logger.debug("trying to retrieve search " + str(item['search_id'])) #make sure we can find the search in the database try: search = model.Search.get(item['search_id']) stop_requested = search.stoprequested except: logger.error("crawler.visitor_process couldn't load search") pass if not search: logger.error("visitor_process can't find a search") else: #we *do have a valid search logger.debug( "visitor process checking for URLs to visit") visitorContent = None; url_record = None try: url_record = model.URLS.get(item['url_id']) except: pass #visitor.Visitor returns a list object containing model.Content objects logger.debug("pinging visitor.Visitor") if url_record: visitorContent = visitor.Visitor(search, url_record, parseFast) if visitorContent: logger.debug("**enqueing a visitor.Visitor object") for content in visitorContent: logger.debug("crawler.visitor_process viewing content: %s" %repr(content)) try: logger.info("we have content for search %s : content: %s" %(str(item['search_id']), str(content.id))) subitem = dict( delete_existing = item['delete_existing'], search_id = item['search_id'], max_results = item['max_results'], content_id = content.id, parseFast = parseFast ) except: logger.warn("crawler.visitor_process couldn't parse the input dict") #debug_run_serially is for debugging - allows serial processing if self.debug_run_serially and subitem: serial_return.append(subitem) #for production - passes this on to the scorer else: try: output.put(subitem) except: logger.error("scorer not loaded for urlid %s, content %s" %(str(urlid), str(content.id))) return None def enqueue(self, search_id, max_results=8, delete_existing=False, queue_name="items_to_search", **kwargs): """ Add a job to the crawler. Keyword arguments: * search_id: Crawl this search record. * max_results: Return approximately this many results. Default is to let the searcher decide how many to return. * delete_existing: Delete existing records for this search record? Defaults to False. * queue_name: Name of queue to use. Defaults to "items_to_search". """ queue = self.__getattribute__(queue_name) item = kwargs item['search_id'] = search_id item['max_results'] = max_results item['delete_existing'] = delete_existing logger.debug("enqueued into `%s`: %s" % (queue_name, item)) queue.put(item) def scorer_process(self, item, output=None): """ Score a single item. """ logger.info( "scorer process started") content = None; stop_requested = None; search = None try: search_id = item['search_id'] content_id = item['content_id'] except Exception, e: logger.error("bad item passed to crawler.scorer") try: #these may be null or placeholder objects search = model.Search.get(item['search_id']) except: logger.debug("scorer couldn't retrieve search") try: content = model.Content.get(content_id) #a search object (db record) except: logger.info("scorer couldn't retrieve content") try: stop_requested = search.stoprequested except: logger.debug("scorer couldn't retrieve stop_requested") #TODO: implement the "stop_requested" feature to kill runaway bots if content: try: myBotRoutines.addScoreToContent(content) logger.info("adding score to content %s" %content) except Exception, e: logger.debug( "bot.addScoreToContent has a problem") logger.error(traceback.format_exc(e)) raise return item def prepare_results(self): """ load the scored results from the output of the scorer process (a Queue object called items_to_finalize) into a dict called items completed """ while True: item = None try: item = self.items_to_finalize.get_nowait() except Queue.Empty: pass # Handle below if not item: #logger.debug("results_for: no items") break leaf = None self.lock.acquire() if self.items_completed.has_key(item['search_id']): leaf = self.items_completed[item['search_id']] else: #logger.debug("results_for: creating array for item:" % repr(item)) leaf = [] #logger.debug("results_for: appending Search#%s/Content#%s" % (item['search_id'], item['content_id'])) try: leaf.append(item['content_id']) self.items_completed[item['search_id']] = leaf #logger.debug("leaf (items completed list) is %s" %repr(leaf)) except: pass self.lock.release() def results_for(self, search_id): """ Calls the prepare_results method to unload the scorer output queue. When finished, it calls the destructor for items_completed """ #logger.debug("results_for called") #logger.debug("prepare_results search %s" %str(search_id)) self.prepare_results() #logger.debug("prepare_results returned") #logger.debug("self.items_completed: %s" %repr(self.items_completed)) if self.items_completed.has_key(search_id): results = self.items_completed[search_id] del self.items_completed[search_id] #logger.debug("results_for: returning results for Search#%s: %s" % (str(search_id), repr(results))) return results else: #logger.debug("results_for returned no results for Search#%s" % str(search_id)) return [] def ping(self): """ Is the server alive? Yes, always because this is a local object. """ return True def stop(self, kind=None): """ This is a generic routine to stop processes. If no "kind" argument is provided, it iterates over the top block of logic for searcher, visitor and scorer process types. The syntax is a bit convoluted here and noted in the comments """ print ("crawler.Crawler.stop called") cb = CrawlerBase() logger = cb.logger() if kind: #this aliases the variable called <kind>s_count e.g., count = searchers_count count = self.__dict__['%ss_count' % kind] #alias for the input queue associated with this process queue = self.queue[kind]['input'] stopped = False #throws a "stop" sentinal into the queue for i in range(count): try: logger.info("stopping queue %s" %kind) #traceback() queue.put(self.STOP) except Exception, e: # Ignore if the queue is already stopped pass """ The next equation assigns an alias for the variable that represents the "kind" of process we're going to stop. If we passed in "scorer", the variable workers would be set to "scorers". """ workers = self.__dict__['%ss' % kind] for worker in workers: try: #tell it to stop accepting new work until done with what it's doing worker.join() except Exception, e: # Ignore if worker is already dead pass #clear the stack of active workers while len(workers) != 0: logger.debug("clearing worker stack in crawler.stop") workers.pop() stopped = True if stopped: try: import logging cb = CrawlerBase() logger = cb.logger() logger.info("stopped %i %s processes" % (count, kind)) except: # Logging and logger aren't available otherwise if stop() is called from destructor. print ("Crawler: stopped %i %s processes" % (count, kind)) pass else: """ If this routine is called without a "kind" it recursively calls itself to stop each type of active process; this is sort of the main loop for the method. """ self.stop("searcher") self.stop("visitor") self.stop("scorer") class CrawlerRunner(object): """ This is the main entry point for the crawler module. """ _instance = None _instance_lock = threading.Lock() #grab the logger from the server base # TODO collapse container_location and concurrency_library to single value def __init__(self, concurrency_library=None, container_location=None, manager=True, run_as_cron = False, **kwargs): #note, don't use a logger in __init__ unless its installed in __init__ self._concurrency_library = self._get_concurrency_library(concurrency_library) self._container_location = self._get_container_location(container_location) self._manager = self._container_location == "local" or manager self._lock = threading.Lock() #run_as_cron will spawn a completely new instance of the crawler, hosted on a different # xmlrpc server than the mainline web app crawler_kwargs = dict( concurrency_library=self._concurrency_library ) crawler_kwargs.update(kwargs) self.crawler_kwargs = crawler_kwargs if self._container_location == "local": crawler_kwargs.update(run_as_cron = run_as_cron) self.crawler = Crawler( run_as_cron = run_as_cron, **crawler_kwargs) elif self._container_location == "remote": self.crawler = CrawlerClient(run_as_cron = run_as_cron) else: raise NotImplementedError("Unknown container_location: %s" % self._container_location) def __del__(self): """ The destructor method for a CrawlerRunner object """ self._crawler = None self._lock = None def run_visitor_serially(self, **kwargs): self.run_serially = True self.crawler = Crawler( run_as_cron = run_as_cron, **self.crawler_kwargs) item = kwargs item.update(debug_run_serially = True) visitReturn = self.crawler.visitor_process(kwargs) if visitReturn: aFewMore = 3 for j in range(0, min(len(visitReturn), aFewMore-1)): v = visitReturn[j] v.update(debug_run_serially = True) scoreReturn = self.crawler.scorer_process(v) def run_serially(self, **kwargs): ''' this is or debugging, and is used the same as enqueue. Instead of directing processing to the process queues, it runs them serially i.e. the searcher routine hands off to the visitor routine then the scorer routine. It's much slower, but allows access to the running code. ''' self.run_serially = True self.crawler = Crawler(**self.crawler_kwargs) item = kwargs item.update(debug_run_serially = True) searchReturn = self.crawler.searcher_process(item) #a list if searchReturn: #try one to see if it works generally s =searchReturn[0] s.update(debug_run_serially = True) s.update(parseFast = kwargs['parseFast']) visitReturn = self.crawler.visitor_process(s) if len(visitReturn) >0 : #visitReturn.update(debug_run_serially = True) v=visitReturn[0] v.update(debug_run_serially = True) scoreReturn = self.crawler.scorer_process(v) #try a few more aFewMore = 10 if searchReturn: for i in range(0, min(len(searchReturn), aFewMore-1)): s=searchReturn[i] s.update(debug_run_serially = True) visitReturn = self.crawler.visitor_process(s) if visitReturn: for j in range(0, min(len(visitReturn), aFewMore-1)): v = visitReturn[j] v.update(debug_run_serially = True) scoreReturn = self.crawler.scorer_process(v) def start(self): print "%s.start" % self if self._manager: """ The next line signs up this object for garbage collection if (and only if) the program terminates normally. If it crashes, or is stopped during debugging there may be an orphaned process. If so, to process may need to be killed manually; use sudo netstat - tap to look for network connections (host/port specifications are set in CrawlerBase). """ atexit.register(self.stop) #sets up to kill be object upon normal termination if self._container_location == "remote": pass ''' *** We'll start the crawler server from a terminal window - at least for debugging; when the main (client) program shuts down ungracefully, it doesn't kill the server. This means we have to kill it manually. killing_crawler = False try: pause_seconds = 0.5 #pat - why are we trying to kill the xmlrpc proxy server? killCrawler= False if killCrawler: while True: logger.debug("stopping crawler (this is normal)") logger.debug("for debugging, don't stop the server") #self.crawler.stop() # Will throw exception when down to end loop #logger.info("CrawlerRunner.start: killing stale remote crawler...") killing_crawler = True time.sleep(pause_seconds) except Exception, e: if killing_crawler: print "killing crawler" logger.info("CrawlerRunner.start: killed stale remote crawler") pass # Ignore because service may not be running already logger.info("CrawlerRunner.start: launching remote xmlrpc server in os") filename = re.sub("\.pyc$", ".py", __file__, 1) # TODO safely quote paths cmd = "'%s' --server --config '%s'" % (filename, commands.configuration) logger.info(cmd) #logger.debug("not starting the server from crawler - relying on externally-started one") os.system("%s &" % cmd) ''' elif self._container_location == "local": logger.info("CrawlerRunner.start: launching local crawler") return self.crawler.start() else: raise NotImplementedError("Unknown container_location: %s" % self._container_location) def stop(self): print "%s.stop" % self if self._manager: with self._lock: if self.crawler: try: return self.crawler.stop() except Exception, e: print "CrawlerRunner.stop failed: %s" % e def enqueue(self, **item): #logger.debug("CrawlerRunner enqueueing item %s into a %s object" %(repr(item), type(self.crawler))) return self.crawler.enqueue(**item) def results_for(self, search_id): #logger.debug("CrawlerRunner.results_for for search %s" % str(search_id)) return self.crawler.results_for(search_id) def ping(self): return self.crawler.ping() @classmethod def _get_concurrency_library(self, kind=None): if kind: return kind else: return turbogears.config.get("crawler.concurrency_library", has_fork() and "processing" or "threading") @classmethod def _get_container_location(self, kind=None): if kind: return kind else: return turbogears.config.get("crawler.container_location", has_fork() and "remote" or "local") @classmethod def get_instance(self): with self._instance_lock: if not self._instance: self._instance = self() self._instance.start() return self._instance class SearcherError(StandardError): pass class TypeError(StandardError): pass class TimeoutError(StandardError): """ Raised when a timeout is reached. """ pass if __name__ == "__main__": import logging cb = CrawlerBase() logger = cb.logger() from optparse import OptionParser parser = OptionParser() parser.add_option("-f", "--config", dest="configfile", help="Optional configuration file", metavar="FILE") parser.add_option("-c", "--client", action="store_true", dest="client", help="Start client") parser.add_option("-s", "--server", action="store_true", dest="server", help="Start server") #parser.add_option("-n", "--nightly", action="store_true", dest="run_as_cron", help="Run as cron") parser.add_option("-k", "--concurrency", dest="concurrency_library", help="threading OR processing OR multiprocessing", metavar="LIBRARY") (options, args) = parser.parse_args() #set up two possibilites for logging so contemporaneously-executing real-time # and chron files won't step on each other. Simultaneaty shouldn't be a problem with # the stuff running as processes because each is on its own thread cb = CrawlerBase() logger = cb.logger() logger.debug("booting configfile") if options.configfile: commands.boot(options.configfile) else: logger.debug("booting commands") commands.boot() if options.client: logger.info("Starting client...") client = CrawlerClient(run_as_cron = run_as_cron) try: from ipdb import set_trace except: from pdb import set_trace #set_trace() # TODO figure out how to make session exit without exceptions else: logger.info("Starting server from crawler.__main__") global server logger.debug("forcing concurrency library to be multiprocessing") server = CrawlerServer(concurrency_library='multiprocessing') #server = CrawlerServer(concurrency_library=options.concurrency_library) try: # pat - don't need to start the server here server.start() server.start() pass except KeyboardInterrupt: logger.info("Shutting down crawler process server due to keyboard interrupt...") server.stop() logger.debug("crawler process server shut down succesfully") logger.info("Stopped server")
2.03125
2
trybox_django/tutorial.py
sophilabs/trybox-django
0
12793312
<reponame>sophilabs/trybox-django # -*- coding: utf-8 -*- from trybox.model import Tutorial from step_01 import step as step01 tutorial = Tutorial( title='Django', description='Build a web application step by step using an awesome interactive tutorial for Django', steps=[ step01, ] )
1.679688
2
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/mca/core/cmd/cprpc/data/dsz/__init__.py
bidhata/EquationGroupLeaks
9
12793313
<reponame>bidhata/EquationGroupLeaks # uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: __init__.py import dsz import dsz.cmd import dsz.data import dsz.lp class CpRpc(dsz.data.Task): def __init__(self, cmd=None): dsz.data.Task.__init__(self, cmd) def _LoadData(self): try: self.Rpc = CpRpc.Rpc(dsz.cmd.data.Get('Rpc', dsz.TYPE_OBJECT)[0]) except: self.Rpc = None try: self.Result = CpRpc.Result(dsz.cmd.data.Get('Result', dsz.TYPE_OBJECT)[0]) except: self.Result = None return class Rpc(dsz.data.DataBean): def __init__(self, obj): try: self.Id = dsz.cmd.data.ObjectGet(obj, 'Id', dsz.TYPE_INT)[0] except: self.Id = None return class Result(dsz.data.DataBean): def __init__(self, obj): try: self.Id = dsz.cmd.data.ObjectGet(obj, 'Id', dsz.TYPE_INT)[0] except: self.Id = None try: self.GroupTag = dsz.cmd.data.ObjectGet(obj, 'GroupTag', dsz.TYPE_INT)[0] except: self.GroupTag = None try: self.Status = dsz.cmd.data.ObjectGet(obj, 'Status', dsz.TYPE_INT)[0] except: self.Status = None try: self.StatusString = dsz.cmd.data.ObjectGet(obj, 'StatusString', dsz.TYPE_STRING)[0] except: self.StatusString = None try: self.Address = dsz.cmd.data.ObjectGet(obj, 'Address', dsz.TYPE_STRING)[0] except: self.Address = None try: self.Output = CpRpc.Result.Output(dsz.cmd.data.ObjectGet(obj, 'Output', dsz.TYPE_OBJECT)[0]) except: self.Output = None return class Output(dsz.data.DataBean): def __init__(self, obj): try: self.Length = dsz.cmd.data.ObjectGet(obj, 'Length', dsz.TYPE_INT)[0] except: self.Length = None try: self.Data = dsz.cmd.data.ObjectGet(obj, 'Data', dsz.TYPE_STRING)[0] except: self.Data = None return dsz.data.RegisterCommand('CpRpc', CpRpc) CPRPC = CpRpc cprpc = CpRpc
2.203125
2
connection_speed.py
r-xela/lm_connection_speed
2
12793314
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import requests import speedtest requests.packages.urllib3.disable_warnings() speedtester = speedtest.Speedtest() best_server = speedtester.get_best_server() DL = speedtester.download() UL = speedtester.upload() dl_rate = "DL {:.2f}".format(DL / 1000 / 1000) dl_icon = "i402" ul_rate = "UL {:.2f}".format(UL / 1000 / 1000) ul_icon = "i120" access_token = "YOUR <PASSWORD>" url = "ENDPOINT_URL" headers = {'Accept': 'application/json', 'Cache-Control': 'no-cache', 'X-Access-Token': access_token} data = { 'frames': [ { 'index': 0, 'text': dl_rate, 'icon': dl_icon }, { 'index': 1, 'text': ul_rate, 'icon': ul_icon } ] } r = requests.post(url, headers=headers, data=json.dumps(data), verify=False)
2.3125
2
src/blockchain/data/mempool.py
ParisNeo/blockchain
0
12793315
<reponame>ParisNeo/blockchain """ File : mempool.py Author : ParisNeo Description : Here are stored the pending transactions """ import pickle import time from blockchain.data import transaction class MemPool(): def __init__(self): self.transactions=[]
2.21875
2
src/broAnalyzer/plots/subjectalternatenames.py
maveeee/passive-tls
0
12793316
from os.path import join import pandas as pd import matplotlib.pyplot as plt from util.plot import Plot, plotDataFrame, formatXAxisDate class SubjectAlternateNamesPlot(Plot): def __init__(self): super(SubjectAlternateNamesPlot, self).__init__('Subject Alternate Names', 'SubjectAlternateNames.csv', 'subjectAltNames') self.__output_file_name = "SubjectAlternateNames.png" def add_args(self, parser): parser.add_argument('-san', '--subjectAltNames', action='store_true', help='Plot subject alternate names from certificates') def parse_args(self, args): pass def plot(self, input_file, output_folder): df = pd.read_csv(input_file, sep='\x09', usecols=[0, 1, 2], parse_dates=[0], converters={"SubjectAltNames": lambda x: x.strip("[]").split(", ")}) df.dropna(inplace=True) df['SANLength'] = df['SubjectAltNames'].apply(lambda x:len(x) if isinstance(x, list) else None) df = df.groupby('Day')['SANLength'].agg(['mean', 'median', 'max', 'min']) df.columns.name = None df.index.name = None fig = plotDataFrame(df, "Length of Subject Alternate Name List") fig.legend(loc='center left', bbox_to_anchor=(1, 0.5)) formatXAxisDate(fig) plt.tight_layout() plt.savefig(join(output_folder, self.__output_file_name), bbox_inches='tight')
2.828125
3
FewShotPreprocessing.py
ahirsharan/MTL_Segmentation
9
12793317
import os import os.path as osp from PIL import Image PATH='../Fewshot/Fewshot/' classes= os.listdir(PATH) trainp='../Fewshot/train/' valp='../Fewshot/val/' testp='../Fewshot/test/' for classv in classes: if classv[0]=='.': continue pathn=osp.join(PATH,classv) pathn=pathn+'/' folders=os.listdir(pathn) path1=osp.join(trainp,'images/') path1=osp.join(path1,classv) os.mkdir(path1) path1 =path1 +'/' path2=osp.join(trainp,'labels/') path2=osp.join(path2,classv) os.mkdir(path2) path2=path2+'/' for i in range(0,8,1): p=osp.join(pathn,folders[i]) im=Image.open(p) if(i%2==0): p1=osp.join(path1,folders[i]) im.save(p1) else: p2=osp.join(path2,folders[i]) im.save(p2) path1=osp.join(valp,'images/') path1=osp.join(path1,classv) os.mkdir(path1) path1 =path1 +'/' path2=osp.join(valp,'labels/') path2=osp.join(path2,classv) os.mkdir(path2) path2=path2+'/' for i in range(8,16,1): p=osp.join(pathn,folders[i]) im=Image.open(p) if(i%2==0): p1=osp.join(path1,folders[i]) im.save(p1) else: p2=osp.join(path2,folders[i]) im.save(p2) path1=osp.join(testp,'images/') path1=osp.join(path1,classv) os.mkdir(path1) path1=path1+'/' path2=osp.join(testp,'labels/') path2=osp.join(path2,classv) os.mkdir(path2) path2=path2+'/' for i in range(16,20,1): p=osp.join(pathn,folders[i]) im=Image.open(p) if(i%2==0): p1=osp.join(path1,folders[i]) im.save(p1) else: p2=osp.join(path2,folders[i]) im.save(p2)
2.53125
3
distributed_dp/dme_run.py
garyxcheng/federated
330
12793318
<filename>distributed_dp/dme_run.py # Copyright 2021, Google LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run script for distributed mean estimation.""" import os import pprint from absl import app from absl import flags import matplotlib.pyplot as plt import numpy as np import scipy.stats import tensorflow as tf import tensorflow_privacy as tfp from distributed_dp import accounting_utils from distributed_dp import ddpquery_utils from distributed_dp import dme_utils flags.DEFINE_boolean('show_plot', False, 'Whether to plot the results.') flags.DEFINE_boolean('print_output', False, 'Whether to print the outputs.') flags.DEFINE_integer( 'run_id', 1, 'ID of the run, useful for identifying ' 'the run when parallelizing this script.') flags.DEFINE_integer('repeat', 5, 'Number of times to repeat (sequentially).') flags.DEFINE_string('output_dir', '/tmp/ddp_dme_outputs', 'Output directory.') flags.DEFINE_string('tag', '', 'Extra subfolder for the output result files.') flags.DEFINE_enum('mechanism', 'ddgauss', ['ddgauss'], 'DDP mechanism to use.') flags.DEFINE_float('norm', 10.0, 'Norm of the randomly generated vectors.') flags.DEFINE_integer( 'k_stddevs', 2, 'Number of standard deviations of the ' 'noised, quantized, aggregated siginal to bound.') flags.DEFINE_boolean( 'sqrtn_norm_growth', False, 'Whether to assume the bound ' 'norm(sum_i x_i) <= sqrt(n) * c.') FLAGS = flags.FLAGS def experiment(bits, clip, beta, client_data, epsilons, delta, mechanism, k_stddevs=2, sqrtn_norm_growth=False): """Run a distributed mean estimation experiment. Args: bits: A list of compression bits to use. clip: The initial L2 norm clip. beta: A hyperparameter controlling the concentration inequality for the probabilistic norm bound after randomized rounding. client_data: A Python list of `n` np.array vectors, each with shape (d,). epsilons: A list of target epsilon values for comparison (serve as x-axis). delta: The delta for approximate DP. mechanism: A string specifying the mechanism to compare against Gaussian. k_stddevs: The number of standard deviations to keep for modular clipping. Defaults to 2. sqrtn_norm_growth: Whether to assume the norm of the sum of the vectors grow at a rate of `sqrt(n)` (i.e. norm(sum_i x_i) <= sqrt(n) * c). If `False`, we use the upper bound `norm(sum_i x_i) <= n * c`. Returns: Experiment results as lists of MSE. """ def mse(a, b): assert a.shape == b.shape return np.square(a - b).mean() # Initial fixed params. num_clients = len(client_data) d = len(client_data[0]) padded_dim = np.math.pow(2, np.ceil(np.log2(d))) client_template = tf.zeros_like(client_data[0]) # `client_data` has shape (n, d). true_avg_vector = np.mean(client_data, axis=0) # 1. Baseline: central continuous Gaussian. gauss_mse_list = [] for eps in epsilons: # Analytic Gaussian. gauss_stddev = accounting_utils.analytic_gauss_stddev(eps, delta, clip) gauss_query = tfp.GaussianSumQuery(l2_norm_clip=clip, stddev=gauss_stddev) gauss_avg_vector = dme_utils.compute_dp_average( client_data, gauss_query, is_compressed=False, bits=None) gauss_mse_list.append(mse(gauss_avg_vector, true_avg_vector)) # 2. Distributed DP: try each `b` separately. ddp_mse_list_per_bit = [] for bit in bits: discrete_mse_list = [] for eps in epsilons: if mechanism == 'ddgauss': gamma, local_stddev = accounting_utils.ddgauss_params( q=1, epsilon=eps, l2_clip_norm=clip, bits=bit, num_clients=num_clients, dim=padded_dim, delta=delta, beta=beta, steps=1, k=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth) scale = 1.0 / gamma else: raise ValueError(f'Unsupported mechanism: {mechanism}') ddp_query = ddpquery_utils.build_ddp_query( mechanism, local_stddev, l2_norm_bound=clip, beta=beta, padded_dim=padded_dim, scale=scale, client_template=client_template) distributed_avg_vector = dme_utils.compute_dp_average( client_data, ddp_query, is_compressed=True, bits=bit) discrete_mse_list.append(mse(distributed_avg_vector, true_avg_vector)) ddp_mse_list_per_bit.append(discrete_mse_list) # Convert to np arrays and do some checks gauss_mse_list = np.array(gauss_mse_list) ddp_mse_list_per_bit = np.array(ddp_mse_list_per_bit) assert gauss_mse_list.shape == (len(epsilons),) assert ddp_mse_list_per_bit.shape == (len(bits), len(epsilons)) return gauss_mse_list, ddp_mse_list_per_bit def experiment_repeated(bits, clip, beta, client_data_list, repeat, epsilons, delta, mechanism, k_stddevs=2, sqrtn_norm_growth=False): """Sequentially repeat the experiment (see `experiment()` for parameters).""" assert len(client_data_list) == repeat n, d = len(client_data_list[0]), len(client_data_list[0][0]) print(f'Sequentially repeating the experiment {len(client_data_list)} times ' f'for n={n}, d={d}, mechanism={mechanism}, c={clip}, bits={bits}, beta=' f'{beta:.3f}, eps={epsilons}, k={k_stddevs}, sng={sqrtn_norm_growth}') repeat_results = [] for client_data in client_data_list: repeat_results.append( experiment( bits=bits, clip=clip, beta=beta, client_data=client_data, epsilons=epsilons, delta=delta, mechanism=mechanism, k_stddevs=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth)) repeat_gauss_mse_list, repeat_ddp_mse_list_per_bit = zip(*repeat_results) repeat_gauss_mse_list = np.array(repeat_gauss_mse_list) repeat_ddp_mse_list_per_bit = np.array(repeat_ddp_mse_list_per_bit) assert len(repeat_results) == repeat assert repeat_gauss_mse_list.shape == (repeat, len(epsilons)) assert (repeat_ddp_mse_list_per_bit.shape == (repeat, len(bits), len(epsilons))) return repeat_gauss_mse_list, repeat_ddp_mse_list_per_bit def mean_confidence_interval(data, confidence=0.95): # `data` should have shape (repeat, len(x-axis)). n = len(data) m, se = np.mean(data, axis=0), scipy.stats.sem(data, axis=0) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1) return m, m - h, m + h def plot_curve(subplot, epsilons, data, label): assert len(data.shape) == 2, 'data should be (repeat, len(x-axis))' means, lower, upper = mean_confidence_interval(data) subplot.plot(epsilons, means, label=label) subplot.fill_between(epsilons, lower, upper, alpha=0.2, edgecolor='face') def main(_): """Run distributed mean estimation experiments.""" clip = FLAGS.norm delta = 1e-5 use_log = True # Whether to use log-scale for y-axis. k_stddevs = FLAGS.k_stddevs sqrtn_norm_growth = FLAGS.sqrtn_norm_growth repeat = FLAGS.repeat # Parallel subplots for different n=num_clients and d=dimension. nd_zip = [(100, 250), (1000, 250)] # nd_zip = [(10000, 2000)] # Curves within a subplot. bits = [10, 12, 14, 16] # bits = [14, 16, 18, 20] # X-axis: epsilons. epsilons = [0.75] + list(np.arange(1, 6.5, 0.5)) _, ax = plt.subplots(1, max(2, len(nd_zip)), figsize=(20, 5)) results = [] for j, (n, d) in enumerate(nd_zip): client_data_list = [ dme_utils.generate_client_data(d, n, l2_norm=clip) for _ in range(repeat) ] beta = np.exp(-0.5) # Run experiment with repetition. rep_gauss_mse_list, rep_ddp_mse_list_per_bit = experiment_repeated( bits, clip, beta, client_data_list, repeat, epsilons, delta, mechanism=FLAGS.mechanism, k_stddevs=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth) # Generate some basic plots here. Use the saved results to generate plots # with custom style if needed. if FLAGS.show_plot: subplot = ax[j] # Continuous Gaussian. plot_curve( subplot, epsilons, rep_gauss_mse_list, label='Continuous Gaussian') # Distributed DP. for index, bit in enumerate(bits): plot_curve( subplot, epsilons, rep_ddp_mse_list_per_bit[:, index], label=f'{FLAGS.mechanism} (B = {bit})') subplot.set(xlabel='Epsilon', ylabel='MSE') subplot.set_title(f'(n={n}, d={d}, k={k_stddevs})') subplot.set_yscale('log' if use_log else 'linear') subplot.legend() result_dic = { 'n': n, 'd': d, 'rep': repeat, 'c': clip, 'bits': bits, 'k_stddevs': k_stddevs, 'epsilons': epsilons, 'mechanism': FLAGS.mechanism, 'sqrtn_norm_growth': sqrtn_norm_growth, 'gauss': rep_gauss_mse_list, FLAGS.mechanism: rep_ddp_mse_list_per_bit, } results.append(result_dic) if FLAGS.print_output: print(f'n={n}, d={d}:') pprint.pprint(result_dic) # Save to file. fname = f'rp={repeat},rid={FLAGS.run_id}.txt' fname = fname.replace(' ', '') result_str = pprint.pformat(results) dirname = os.path.join(FLAGS.output_dir, FLAGS.tag) if not os.path.exists(dirname): os.makedirs(dirname) out_path = os.path.join(dirname, fname) with open(out_path, 'w') as f: f.write(result_str) print('Results saved to', out_path) if FLAGS.print_output: print('*' * 80) print(fname) print('*' * 10 + 'Results (copy and `eval()` in Python):') print(result_str) print('*' * 80) print('Copy the above results and `eval()` them as a string in Python.') if FLAGS.show_plot: plt.show() print(f'Run {FLAGS.run_id} done.') if __name__ == '__main__': app.run(main)
2.078125
2
zasim/cagen/compatibility.py
timo/zasim
2
12793319
"""The compatibility module offers a way for `StepFuncVisitor` objects to express, what combinations are acceptable and what combinations are going to break, allowing the constructor of the `StepFunc` to bail out soon instead of causing an unexpected result during execution. Each `StepFuncVisitor` has three attributes: - requires_features A list of compatibility features, that are required for operation. - provides_features A list of features, that are offered by this class. - incompatible_features A list of features that are incompatible with this class. """ # This file is part of zasim. zasim is licensed under the BSD 3-clause license. # See LICENSE.txt for details. class CompatibilityException(Exception): def __init__(self, conflicts, missing): self.conflicts = conflicts self.missing = missing #def __repr__(self): #return "<CompatibilityException(conflicts=%s, missing=%s)>" % (self.conflicts, self.missing) def __str__(self): return """\ <Compatibility Exception: feature conflicts: %s missing features: %s >""" % ("\n ".join(map(str, self.conflicts)), "\n ".join(map(str, self.missing))) class NoCodeGeneratedException(Exception): """When both the no_python_code and the no_weave_code feature are present, no valid code has actually been generated.""" one_dimension = "one_dimension" """The configuration has one dimension.""" two_dimensions = "two_dimensions" """The configuration has two dimensions.""" beta_async_neighbourhood = "beta_async_neighbourhood" beta_async_accessor = "beta_async_accessor" histogram = "histogram" """This StepFunc has a histogram.""" activity = "activity" """This StepFunc calculates the Activity.""" no_python_code = "no_python_code" """This StepFunc doesn't generate pure python code.""" no_weave_code = "no_weave_code" """This StepFunc doesn't generate weave code.""" random_generator = "random_generator"
2.625
3
Bin/init.py
mfneirae/GrupLAC-Complete
0
12793320
# # # ############################################################################# # Copyright (c) 2018 Universidad Nacional de Colombia All Rights Reserved. # # This work was made as a development to improve data collection # for self-assessment and accreditation processes in the Vicedeanship # of academic affairs in the Engineering Faculty of the Universidad # Nacional de Colombia and is licensed under a Creative Commons # Attribution-NonCommercial - ShareAlike 4.0 International License # and MIT Licence. # # by <NAME>. # # For more information write me to <EMAIL> # Or visit my webpage at https://mfneirae.com/ # ############################################################################# # # def inicio(): global GP_DATOS_BASE global GP_DATOS_BASE_CSV global GP_DATOS_INSTITUCIONES global GP_DATOS_INSTITUCIONES_CSV global GP_DATOS_LINEAS global GP_DATOS_LINEAS_CSV global GP_DATOS_SECTORES global GP_DATOS_SECTORES_CSV global GP_DATOS_INTEGRANTES global GP_DATOS_INTEGRANTES_CSV global REL_GRUPO_PRODUCTO global REL_GRUPO_PRODUCTO_CSV global GP_PROD_BIB global GP_PROD_BIB_CSV global GP_PROD_TEC global GP_PROD_TEC_CSV global GP_APROPIACION global GP_APROPIACION_CSV global GP_OBRAS global GP_OBRAS_CSV global GP_ACTIVIDADES global GP_ACTIVIDADES_CSV global v_colciencias_tipo_producto global inv_colciencias_tipo_producto GP_DATOS_BASE = [] GP_DATOS_INSTITUCIONES = [] GP_DATOS_LINEAS = [] GP_DATOS_SECTORES = [] GP_DATOS_INTEGRANTES = [] REL_GRUPO_PRODUCTO = [] GP_PROD_BIB = [] GP_PROD_TEC = [] GP_APROPIACION = [] GP_OBRAS = [] GP_ACTIVIDADES = [] GP_PROD_BIB_CSV=["CODGP_PROD_BIB; \ CODGP_PROD:\ Revista; \ Autor Original; \ Nombre Libro; \ ISBN/ISSN; \ Medio de Divulgación; \ URL; \ Fasciculos; \ Idioma Original; \ Idioma Traduccion; \ Edición; \ Serie; \ Página Inicial; \ Página Final ; \ \n"] GP_PROD_TEC_CSV=["CODGP_PROD_TEC; \ CODGP_PROD; \ Tema; \ Nombre Comerial; \ Nombre Proyecto; \ Tipo de Ciclo; \ NIT; \ Fecha de Registro; \ Tiene Productos; \ Disponibilidad; \ Objeto; \ Fecha Publicación; \ Número de Contrato; \ Acto Administrativo; \ \n"] GP_APROPIACION_CSV=["CODGP_PROD_APROPIACION; \ CODGP_PROD; \ Tipos de Participación; \ Fecha Inicio; \ Fecha Fin; \ Proyecto de Inv; \ Medio de publicación; \ Emisora; \ Número de Participantes; \ \n"] GP_OBRAS_CSV=["CODGP_PROD_OBRAS; \ CODGP_PROD; \ Fecha Creación; \ Disiplina de origen; \ Institución Licencia; \ Fecha Licencia; \ Distinciones; \ Selección Distinción; \ Productos Asociados; \ Número Derechos Autor/NIT; \ \n"] GP_ACTIVIDADES_CSV=["CODGP_PROD_FORM; \ CODGP_PROD; \ Nombre de Ferias; \ Fecha Inicio Curso; \ Tipo Orientación; \ Nombre Estudiante; \ Programa Académico; \ Valoración; \ Fecha fin Curso; \ Finalidad; \ Duración; \ \n"] REL_GRUPO_PRODUCTO_CSV =["CODGP_PROD; \ CODGP; \ GP_TIPO_PROD; \ Nombre Producto; \ Lugar; \ Año; \ Idioma; \ Páginas; \ Volumen; \ Editorial; \ Ambito; \ DOI; \ Descripción; \ Instituciones; \ Tipo Vincula Institu; \ Autores\n"] GP_DATOS_BASE_CSV = ["CODGP;\ Año Formación;\ Mes Formación;\ Lugar;\ Nombre Lider;\ Información Certificada;\ Página Web;\ Correo;\ Clasificación;\ Área del Conocimiento;\ Programa Nacional;\ Programa Nacional 2;\ Plan de trabajo;\ Estado del Arte;\ Objetivos;\ Retos;\ Visión\n"] GP_DATOS_INSTITUCIONES_CSV = ["CODGP_INSTI;\ CODGP;\ Nombre Institución\n"] GP_DATOS_LINEAS_CSV = ["CODGP_LINEA;\ CODGP;\ Línea de Investigación\n"] GP_DATOS_SECTORES_CSV = ["CODGP_SECTOR;\ CODGP;\ Sector\n"] GP_DATOS_INTEGRANTES_CSV = ["CODGP_INTEGRANTE;\ CODGP;\ COD_RG;\ CVLAC;\ NOMBRE COMPLETO;\ Tipo Vinculación;\ Horas de Dedicación;\ Duración Vinculación;\ Inicio Vinculación;\ Fin Vinculación;\ Fin Vinculación\n"] v_colciencias_tipo_producto = [ "COD_TIPO_PRODUCTO; \ TIPO_PRODUCTO_COL; \ SUB_TIPO_PRODUCTO_COL; \ TIPO_UAPA\n\ 0; \ Evento sin producto asociado; \ Evento sin producto asociado; \ Evento sin producto asociado\n\ 1; \ Redes de conocimiento; \ Redes de conocimiento; \ Redes de conocimiento\n\ 2; \ Producción bibliográfica - Trabajos en eventos (Capítulos de memoria) - Completo; \ Capítulos de memoria; \ Capítulos de memoria\n\ 3; \ Producción técnica - Presentación de trabajo - Comunicación; \ Presentación de trabajo; \ Trabajo de Comunicación\n\ 4; \ Demás trabajos - Demás trabajos - Póster; \ Demás trabajos; \ Poster\n\ 5; \ Producción técnica - Presentación de trabajo - Conferencia; \ Presentación de trabajo; \ Conferencia\n\ 6; \ Producción técnica - Presentación de trabajo - Ponencia; \ Presentación de trabajo; \ Ponencia\n\ 7; \ Estrategias pedagógicas para el fomento a la CTI; \ Estrategias pedagógicas; \ Estrategias pedagógicas\n\ 8; \ Producción bibliográfica - Artículo - Publicado en revista especializada; \ Publicado en revista especializada; \ Artículo\n\ 9; \ Producción bibliográfica - Artículo - Corto (Resumen); \ Corto (Resumen); \ Artículo\n\ 10; \ Estrategias pedagógicas para el fomento a la CTI; \ Estrategias pedagógicas; \ Estrategias pedagógicas\n\ 11; \ Producción bibliográfica - Artículo - Caso clínico; \ Caso Clínico; \ Artículo\n\ 12; \ Producción bibliográfica - Trabajos en eventos (Capítulos de memoria) - Resumen; \ Capítulo de Memoria; \ Resumen\n\ 13; \ Producción técnica - Presentación de trabajo - Congreso; \ Congreso; \ Congreso\n\ 14; \ Producción técnica - Presentación de trabajo - Simposio; \ Simposio; \ Simposio\n\ 15; \ Producción técnica - Presentación de trabajo - Seminario; \ Seminario; \ Seminario\n\ 16; \ Producción técnica - Presentación de trabajo - Otro; \ Otro; \ Otro\n\ 17; \ Producción bibliográfica - Libro - Libro resultado de investigación; \ Libro resultado de investigación; \ Libro\n\ 18; \ Producción bibliográfica - Libro - Otro libro publicado; \ Otro libro publicado; \ Libro - Otro\n\ 19; \ Producción bibliográfica - Libro - Libro pedagógico y/o de divulgación; \ Libro pedagógico y/o de divulgación; \ Libro - pedagógico\n\ 20; \ Otro capítulo de libro publicado; \ Otro capítulo de libro; \ Capítulo de libro - Otro\n\ 21; \ Capítulo de libro; \ Capítulo de libro; \ Capítulo de libro\n\ 22; \ Producción bibliográfica - Otro artículo publicado - Periódico de noticias; \ Periódico de noticias; \ Otro\n\ 23; \ Producción bibliográfica - Otro artículo publicado - Revista de divulgación; \ Revista de divulgación; \ Otro\n\ 24; \ Producción bibliográfica - Otro artículo publicado - Cartas al editor; \ Cartas al editor; \ Otro\n\ 25; \ Producción bibliográfica - Otro artículo publicado - Reseñas de libros; \ Reseñas de libros; \ Otro\n\ 26; \ Producción bibliográfica - Otro artículo publicado - Columna de opinión; \ Columnas de opinión; \ Otro\n\ 27; \ Producción bibliográfica - Documento de trabajo (Working Paper); \ Documento de trabajo (Working Paper); \ Otro\n\ 28; \ Producción bibliográfica - Traducciones - Artículo; \ Traducciones - Artículo; \ Traducciones\n\ 29; \ Producción bibliográfica - Traducciones - Libro; \ Traducciones - Libro; \ Traducciones\n\ 30; \ Producción bibliográfica - Traducciones - Otra; \ Traducciones - Otra; \ Traducciones\n\ 31; \ Producción bibliográfica - Otra producción bibliográfica - Introducción; \ Introducción; \ Otro\n\ 32; \ Producción bibliográfica - Otra producción bibliográfica - Prólogo; \ Prólogo; \ Otro\n\ 33; \ Producción bibliográfica - Otra producción bibliográfica - Epílogo; \ Epílogo; \ Otro\n\ 34; \ Producción bibliográfica - Otra producción bibliográfica - Otra; \ Otra; \ Otro\n\ 35; \ Producción técnica - Softwares - Computacional; \ Software; \ Software\n\ 36; \ Producción técnica - Productos tecnológicos - Gen Clonado; \ Productos tecnológicos - Gen Clonado; \ Productos tecnológicos\n\ 37; \ Producción técnica - Productos tecnológicos - Coleccion biologica de referencia con informacion sistematizada; \ Productos tecnológicos - Coleccion biologica de referencia con informacion sistematizada; \ Productos tecnológicos\n\ 38; \ Producción técnica - Productos tecnológicos - Otro; \ Productos tecnológicos - Otro; \ Productos tecnológicos\n\ 39; \ Producción técnica - Productos tecnológicos - Base de datos de referencia para investigación; \ Productos tecnológicos - Base de datos de referencia para investigación; \ Productos tecnológicos\n\ 40; \ Producción técnica - Diseño Industrial; \ Diseño Industrial; \ Otro\n\ 41; \ Producción técnica - Esquema de circuito integrado; \ Esquema de circuito integrado; \ Otro\n\ 42; \ Producción técnica - Innovaciones generadas de producción empresarial - Organizacional; \ Innovaciones generadas de producción empresarial - Organizacional; \ Innovaciones\n\ 43; \ Producción técnica - Innovaciones generadas de producción empresarial - Empresarial; \ Innovaciones generadas de producción empresarial - Empresarial; \ Innovaciones\n\ 44; \ Producción técnica - Variedad animal; \ Variedad animal; \ Otro\n\ 45; \ Producción técnica - Innovación de proceso o procedimiento; \ Innovación de proceso o procedimiento; \ Innovación\n\ 46; \ Producción técnica - Cartas, mapas o similares - Aerofotograma; \ Aerofotograma; \ Otro\n\ 47; \ Producción técnica - Cartas, mapas o similares - Carta; \ Carta; \ Otro\n\ 48; \ Producción técnica - Cartas, mapas o similares - Fotograma; \ Fotograma; \ Otro\n\ 49; \ Producción técnica - Cartas, mapas o similares - Mapa; \ Mapa; \ Otro\n\ 50; \ Producción técnica - Cartas, mapas o similares - Otra; \ Otra; \ Otro\n\ 51; \ Producción técnica - Variedad vegetal; \ Variedad vegetal; \ Otro\n\ 52; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Servicios de proyectos de IDI; \ Servicios de proyectos de IDI; \ Otro\n\ 53; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Comercialización de tecnología; \ Comercialización de tecnología; \ Otro\n\ 54; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Análisis de competitividad; \ Análisis de competitividad; \ Otro\n\ 55; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Informe técnico; \ Informe técnico; \ Otro\n\ 56; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Otro; \ Otro; \ Otro\n\ 57; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Acciones de transferencia tecnológica; \ Acciones de transferencia tecnológica; \ Otro\n\ 58; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Desarrollo de productos; \ Desarrollo de productos; \ Otro\n\ 59; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Implementación de sistemas de análisis; \ Implementación de sistemas de análisis; \ Otro\n\ 60; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Consultoría en artes,arquitectura y diseño; \ Consultoría en artes,arquitectura y diseño; \ Otro\n\ 61; \ Producción técnica - Regulación, norma, reglamento o legislación - Ambiental o de Salud; \ Regulación, norma, reglamento o legislación - Ambiental o de Salud; \ Otro\n\ 62; \ Producción técnica - Regulación, norma, reglamento o legislación - Educativa; \ Regulación, norma, reglamento o legislación - Educativa; \ Otro\n\ 63; \ Producción técnica - Regulación, norma, reglamento o legislación - Social; \ Regulación, norma, reglamento o legislación - Social; \ Otro\n\ 64; \ Producción técnica - Regulación, norma, reglamento o legislación - Técnica; \ Regulación, norma, reglamento o legislación - Técnica; \ Otro\n\ 65; \ Producción técnica - Regulación, norma, reglamento o legislación - Guía de práctica clínica; \ Regulación, norma, reglamento o legislación - Guía de práctica clínica; \ Otro\n\ 66; \ Producción técnica - Regulación, norma, reglamento o legislación - Proyecto de ley; \ Regulación, norma, reglamento o legislación - Proyecto de ley; \ Otro\n\ 67; \ Producción técnica - Reglamento Técnico; \ Reglamento Técnico; \ Otro\n\ 68; \ Producción técnica - Empresa de base tecnológica - Spin-off; \ Empresa de base tecnológica - Spin-off; \ Otro\n\ 69; \ Producción técnica - Empresa de base tecnológica - Start-up; \ Empresa de base tecnológica - Start-up; \ Otro\n\ 70; \ Demás trabajos - Demás trabajos; \ Demás trabajos; \ Otro\n\ 71; \ Producción técnica - Signos; \ Signos; \ Otro\n\ 72; \ Producción técnica - Softwares - Multimedia; \ Multimedia; \ Software\n\ 73; \ Producción técnica - Softwares - Otra; \ Softwares - Otra; \ Software\n\ 74; \ Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Básica; \ Técnica - Básica; \ Otro\n\ 75; \ Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Ensayo; \ Técnica - Ensayo; \ Otro\n\ 76; \ Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Servicios de Proyectos de I+D+I; \ Servicios de Proyectos de I+D+I; \ Otro\n\ 77; \ Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Proceso; \ Técnica - Proceso; \ Otro\n\ 78; \ Datos complementarios - Participación en comités de evaluación - Profesor titular; \ Participación en comités de evaluación - Profesor titular; \ Comités\n\ 79; \ Datos complementarios - Participación en comités de evaluación - Concurso docente; \ Participación en comités de evaluación - Concurso docente; \ Comités\n\ 80; \ Datos complementarios - Participación en comités de evaluación - Jefe de cátedra; \ Participación en comités de evaluación - Jefe de cátedra; \ Comités\n\ 81; \ Datos complementarios - Participación en comités de evaluación - Evaluación de cursos; \ Participación en comités de evaluación - Evaluación de cursos; \ Comités\n\ 82; \ Datos complementarios - Participación en comités de evaluación - Acreditación de programas; \ Participación en comités de evaluación - Acreditación de programas; \ Comités\n\ 83; \ Datos complementarios - Participación en comités de evaluación - Asignación de becas; \ Participación en comités de evaluación - Asignación de becas; \ Comités\n\ 84; \ Datos complementarios - Participación en comités de evaluación - Otra; \ Participación en comités de evaluación - Otra; \ Comités\n\ 85; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Pregrado; \ Jurado Pregrado; \ Comités\n\ 86; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Especialización; \ Jurado Especialización; \ Comités\n\ 87; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Especialidad Médica; \ Jurado Especialidad Médica; \ Comités\n\ 88; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Maestría; \ Jurado Maestría; \ Comités\n\ 89; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Doctorado; \ Jurado Doctorado; \ Comités\n\ 90; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Otra; \ Jurado Otra; \ Comités\n\ 91; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Curso de perfeccionamiento/especialización; \ Jurado Especializaciones; \ Comités\n\ 96; \ Producción técnica - Signos Distintivos - Nombres comerciales; \ Signos Distintivos - Nombres comerciales; \ Nombres comerciales\n\ 92; \ Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Curso de perfeccionamiento/especialización; \ Jurado Especializaciones; \ Comités\n\ 93; \ Producción técnica - Plantas piloto - Planta piloto; \ Plantas piloto - Planta piloto; \ Planta piloto\n\ 94; \ Producción técnica - Prototipo - Industrial; \ Prototipo - Industrial; \ Industrial\n\ 95; \ Producción técnica - Signos Distintivos - Marcas; \ Signos Distintivos - Marcas; \ Marcas\n\ 96; \ Producción técnica - Signos Distintivos - Nombres comerciales; \ Signos Distintivos - Nombres comerciales; \ Nombres comerciales\n\ 97; \ Apropiación social y circularción del conocimiento - Ediciones - Anales; \ Ediciones - Anales; \ Analess\n\ 98; \ Apropiación social y circularción del conocimiento - Ediciones - Libro; \ Ediciones - Libro; \ Libro\n\ 92; \ Producción técnica - Prototipo - Servicios; \ Prototipo - Servicios; \ Servicios\n"] #*************************************************************************** #Insert #*************************************************************************** inv_colciencias_tipo_producto = [ "REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `cod_tipo_producto`,\ `tipo_producto_col`,\ `sub_tipo_producto_col`,\ `tipo_uapa`) VALUES (\ 0,\ 'Evento sin producto asociado',\ 'Evento sin producto asociado',\ 'Evento sin producto asociado');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 1,\ 'Redes de conocimiento',\ 'Redes de conocimiento',\ 'Redes de conocimiento');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 2,\ 'Producción bibliográfica - Trabajos en eventos (Capítulos de memoria) - Completo',\ 'Capítulos de memoria',\ 'Capítulos de memoria');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 3,\ 'Producción técnica - Presentación de trabajo - Comunicación',\ 'Presentación de trabajo',\ 'Trabajo de Comunicación');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 4,\ 'Demás trabajos - Demás trabajos - Póster',\ 'Demás trabajos',\ 'Poster');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 5,\ 'Producción técnica - Presentación de trabajo - Conferencia',\ 'Presentación de trabajo',\ 'Conferencia');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 6,\ 'Producción técnica - Presentación de trabajo - Ponencia',\ 'Presentación de trabajo',\ 'Ponencia');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 7,\ 'Estrategias pedagógicas para el fomento a la CTI',\ 'Estrategias pedagógicas',\ 'Estrategias pedagógicas');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 8,\ 'Producción bibliográfica - Artículo - Publicado en revista especializada',\ 'Publicado en revista especializada',\ 'Artículo');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 9,\ 'Producción bibliográfica - Artículo - Corto (Resumen)',\ 'Corto (Resumen)',\ 'Artículo');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 10,\ 'Estrategias pedagógicas para el fomento a la CTI',\ 'Estrategias pedagógicas',\ 'Estrategias pedagógicas');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 11,\ 'Producción bibliográfica - Artículo - Caso clínico',\ 'Caso Clínico',\ 'Artículo');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 12,\ 'Producción bibliográfica - Trabajos en eventos (Capítulos de memoria) - Resumen',\ 'Capítulo de Memoria',\ 'Resumen');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 13,\ 'Producción técnica - Presentación de trabajo - Congreso',\ 'Congreso',\ 'Congreso');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 14,\ 'Producción técnica - Presentación de trabajo - Simposio',\ 'Simposio',\ 'Simposio');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 15,\ 'Producción técnica - Presentación de trabajo - Seminario',\ 'Seminario',\ 'Seminario');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 16,\ 'Producción técnica - Presentación de trabajo - Otro',\ 'Otro',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 17,\ 'Producción bibliográfica - Libro - Libro resultado de investigación',\ 'Libro resultado de investigación',\ 'Libro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 18,\ 'Producción bibliográfica - Libro - Otro libro publicado',\ 'Otro libro publicado',\ 'Libro - Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 19,\ 'Producción bibliográfica - Libro - Libro pedagógico y/o de divulgación',\ 'Libro pedagógico y/o de divulgación',\ 'Libro - pedagógico');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 20,\ 'Otro capítulo de libro publicado',\ 'Otro capítulo de libro',\ 'Capítulo de libro - Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 21,\ 'Capítulo de libro',\ 'Capítulo de libro',\ 'Capítulo de libro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 22,\ 'Producción bibliográfica - Otro artículo publicado - Periódico de noticias',\ 'Periódico de noticias',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 23,\ 'Producción bibliográfica - Otro artículo publicado - Revista de divulgación',\ 'Revista de divulgación',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 24,\ 'Producción bibliográfica - Otro artículo publicado - Cartas al editor',\ 'Cartas al editor',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 25,\ 'Producción bibliográfica - Otro artículo publicado - Reseñas de libros',\ 'Reseñas de libros',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 26,\ 'Producción bibliográfica - Otro artículo publicado - Columna de opinión',\ 'Columnas de opinión',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 27,\ 'Producción bibliográfica - Documento de trabajo (Working Paper)',\ 'Documento de trabajo (Working Paper)',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 28,\ 'Producción bibliográfica - Traducciones - Artículo',\ 'Traducciones - Artículo',\ 'Traducciones');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 29,\ 'Producción bibliográfica - Traducciones - Libro',\ 'Traducciones - Libro',\ 'Traducciones');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 30,\ 'Producción bibliográfica - Traducciones - Otra',\ 'Traducciones - Otra',\ 'Traducciones');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 31,\ 'Producción bibliográfica - Otra producción bibliográfica - Introducción',\ 'Introducción',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 32,\ 'Producción bibliográfica - Otra producción bibliográfica - Prólogo',\ 'Prólogo',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 33,\ 'Producción bibliográfica - Otra producción bibliográfica - Epílogo',\ 'Epílogo',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 34,\ 'Producción bibliográfica - Otra producción bibliográfica - Otra',\ 'Otra',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 35,\ 'Producción técnica - Softwares - Computacional',\ 'Software',\ 'Software');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 36,\ 'Producción técnica - Productos tecnológicos - Gen Clonado',\ 'Productos tecnológicos - Gen Clonado',\ 'Productos tecnológicos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 37,\ 'Producción técnica - Productos tecnológicos - Coleccion biologica de referencia con informacion sistematizada',\ 'Productos tecnológicos - Coleccion biologica de referencia con informacion sistematizada',\ 'Productos tecnológicos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 38,\ 'Producción técnica - Productos tecnológicos - Otro',\ 'Productos tecnológicos - Otro',\ 'Productos tecnológicos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 39,\ 'Producción técnica - Productos tecnológicos - Base de datos de referencia para investigación',\ 'Productos tecnológicos - Base de datos de referencia para investigación',\ 'Productos tecnológicos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 40,\ 'Producción técnica - Diseño Industrial',\ 'Diseño Industrial',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 41,\ 'Producción técnica - Esquema de circuito integrado',\ 'Esquema de circuito integrado',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 42,\ 'Producción técnica - Innovaciones generadas de producción empresarial - Organizacional',\ 'Innovaciones generadas de producción empresarial - Organizacional',\ 'Innovaciones');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 43,\ 'Producción técnica - Innovaciones generadas de producción empresarial - Empresarial',\ 'Innovaciones generadas de producción empresarial - Empresarial',\ 'Innovaciones');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 44,\ 'Producción técnica - Variedad animal',\ 'Variedad animal',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 45,\ 'Producción técnica - Innovación de proceso o procedimiento',\ 'Innovación de proceso o procedimiento',\ 'Innovación');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 46,\ 'Producción técnica - Cartas, mapas o similares - Aerofotograma',\ 'Aerofotograma',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 47,\ 'Producción técnica - Cartas, mapas o similares - Carta',\ 'Carta',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 48,\ 'Producción técnica - Cartas, mapas o similares - Fotograma',\ 'Fotograma',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 49,\ 'Producción técnica - Cartas, mapas o similares - Mapa',\ 'Mapa',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 50,\ 'Producción técnica - Cartas, mapas o similares - Otra',\ 'Otra',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 51,\ 'Producción técnica - Variedad vegetal',\ 'Variedad vegetal',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 52,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Servicios de proyectos de IDI',\ 'Servicios de proyectos de IDI',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 53,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Comercialización de tecnología',\ 'Comercialización de tecnología',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 54,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Análisis de competitividad',\ 'Análisis de competitividad',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 55,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Informe técnico',\ 'Informe técnico',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 56,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Otro',\ 'Otro',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 57,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Acciones de transferencia tecnológica',\ 'Acciones de transferencia tecnológica',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 58,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Desarrollo de productos',\ 'Desarrollo de productos',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 59,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Implementación de sistemas de análisis',\ 'Implementación de sistemas de análisis',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 60,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Consultoría en artes,arquitectura y diseño',\ 'Consultoría en artes,arquitectura y diseño',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 61,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Ambiental o de Salud',\ 'Regulación, norma, reglamento o legislación - Ambiental o de Salud',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 62,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Educativa',\ 'Regulación, norma, reglamento o legislación - Educativa',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 63,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Social',\ 'Regulación, norma, reglamento o legislación - Social',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 64,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Técnica',\ 'Regulación, norma, reglamento o legislación - Técnica',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 65,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Guía de práctica clínica',\ 'Regulación, norma, reglamento o legislación - Guía de práctica clínica',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 66,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Proyecto de ley',\ 'Regulación, norma, reglamento o legislación - Proyecto de ley',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 67,\ 'Producción técnica - Reglamento Técnico',\ 'Reglamento Técnico',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 68,\ 'Producción técnica - Empresa de base tecnológica - Spin-off',\ 'Empresa de base tecnológica - Spin-off',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 69,\ 'Producción técnica - Empresa de base tecnológica - Start-up',\ 'Empresa de base tecnológica - Start-up',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 70,\ 'Demás trabajos - Demás trabajos',\ 'Demás trabajos',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 71,\ 'Producción técnica - Signos',\ 'Signos',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 72,\ 'Producción técnica - Softwares - Multimedia',\ 'Multimedia',\ 'Software');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 73,\ 'Producción técnica - Softwares - Otra',\ 'Softwares - Otra',\ 'Software');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 74,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Básica',\ 'Técnica - Básica',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 75,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Ensayo',\ 'Técnica - Ensayo',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 76,\ 'Producción técnica - Consultoría Científico Tecnológica e Informe Técnico - Servicios de Proyectos de I+D+I',\ 'Servicios de Proyectos de I+D+I',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 77,\ 'Producción técnica - Regulación, norma, reglamento o legislación - Técnica - Proceso',\ 'Técnica - Proceso',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 78,\ 'Datos complementarios - Participación en comités de evaluación - Profesor titular',\ 'Participación en comités de evaluación - Profesor titular',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 79,\ 'Datos complementarios - Participación en comités de evaluación - Concurso docente',\ 'Participación en comités de evaluación - Concurso docente',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 80,\ 'Datos complementarios - Participación en comités de evaluación - Jefe de cátedra',\ 'articipación en comités de evaluación - Jefe de cátedra',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 81,\ 'Datos complementarios - Participación en comités de evaluación - Evaluación de cursos',\ 'Participación en comités de evaluación - Evaluación de cursos',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 82,\ 'Datos complementarios - Participación en comités de evaluación - Acreditación de programas',\ 'Participación en comités de evaluación - Acreditación de programas',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 83,\ 'Datos complementarios - Participación en comités de evaluación - Asignación de becas',\ 'Participación en comités de evaluación - Asignación de becas',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 84,\ 'Datos complementarios - Participación en comités de evaluación - Otra',\ 'Participación en comités de evaluación - Otra',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 85,\ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Pregrado',\ 'Jurado Pregrado',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 86,\ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Especialización',\ 'Jurado Especialización',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 87,\ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Especialidad Médica',\ 'Jurado Especialidad Médica',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 88,\ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Maestría',\ 'Jurado Maestría',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 89,\ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Doctorado',\ 'Jurado Doctorado',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 90, \ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Otra',\ '<NAME>',\ 'Comités');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 92, \ 'Producción técnica - Prototipo - Servicios',\ 'Prototipo - Servicios',\ 'Servicios');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 93, \ 'Producción técnica - Plantas piloto - Planta piloto',\ 'Plantas piloto - Planta piloto',\ 'Planta piloto');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 94, \ 'Producción técnica - Prototipo - Industrial',\ 'Prototipo - Industrial',\ 'Industrial');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 95, \ 'Producción técnica - Signos Distintivos - Marcas',\ 'Signos Distintivos - Marcas',\ 'Marcas');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 96, \ 'Producción técnica - Signos Distintivos - Nombres comerciales',\ 'Signos Distintivos - Nombres comerciales',\ 'Nombres comerciales');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 97, \ 'Apropiación - Eventos Cientificos - Otro',\ 'Eventos Cientificos - Otro',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 98, \ 'Apropiación - Eventos Cientificos - Taller',\ 'Eventos Cientificos - Taller',\ 'Taller');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 99, \ 'Apropiación - Eventos Cientificos - Congreso',\ 'Eventos Cientificos - Congreso',\ 'Congreso');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 100, \ 'Apropiación - Eventos Cientificos - Encuentro',\ 'Eventos Cientificos - Encuentro',\ 'Encuentro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 101, \ 'Apropiación - Eventos Cientificos - Seminario',\ 'Eventos Cientificos - Seminario',\ 'Seminario');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 102, \ 'Apropiación - Eventos Cientificos - Simposio',\ 'Eventos Cientificos - Simposio',\ 'Simposio');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 103, \ 'Apropiación - Eventos Cientificos - Informes de investigación',\ 'Eventos Cientificos - Informes de investigación',\ 'Informes de investigación');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 104, \ 'Apropiación - Impresos - Manual',\ 'Impresos - Manual',\ 'Manual');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 105, \ 'Apropiación - Impresos - Boletín',\ 'Impresos - Boletín',\ 'Boletín');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 106, \ 'Apropiación - Contenido Multimedia - Comentario',\ 'Contenido Multimedia - Comentario',\ 'Comentario');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 107, \ 'Apropiación - Contenido Multimedia - Entrevista',\ 'Contenido Multimedia - Entrevista',\ 'Entrevista');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 108, \ 'Apropiación - Contenido Virtual - Página Web',\ 'Contenido Virtual - Página Web',\ 'Página Web');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 109, \ 'Apropiación - Estrategias de Comunicación - Estrategias de Comunicación',\ 'Estrategias de Comunicación - Estrategias de Comunicación',\ 'Estrategias de Comunicación');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 110, \ 'Apropiación - Estrategias Pedagógicas - Estrategias Pedagógicas para el fomento a la CTI',\ 'Estrategias Pedagógicas - Estrategias Pedagógicas para el fomento a la CTI',\ 'Estrategias Pedagógicas para el fomento a la CTI');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 111, \ 'Apropiación - Participación Ciudadana - Participación Ciudadana en Proyectos de CTI',\ 'Participación Ciudadana - Participación Ciudadana en Proyectos de CTI',\ 'Participación Ciudadana en Proyectos de CTI');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 112, \ 'Apropiación - Participación Ciudadana - Espacios de Participación Ciudadana',\ 'Participación Ciudadana - Espacios de Participación Ciudadana',\ 'Espacios de Participación Ciudadana');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 113, \ 'Producción en arte, arquitectura y diseño - Obras o productos - Obras o productos',\ 'Obras o productos - Obras o productos',\ 'Obras o productos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 114, \ 'Actividades de Formación - Actividades de Formación - Asesorías al Programa Ondas',\ 'Actividades de Formación - Asesorías al Programa Ondas',\ 'Asesorías al Programa Ondas');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 115, \ 'Actividades de Formación - Curso de Corta Duración Dictados - Perfeccionamiento',\ 'Curso de Corta Duración Dictados - Perfeccionamiento',\ 'Perfeccionamiento');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 116, \ 'Actividades de Formación - Curso de Corta Duración Dictados - Extensión Extracurricular',\ 'Curso de Corta Duración Dictados - Extensión Extracurricular',\ 'Extensión Extracurricular');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 117, \ 'Actividades de Formación - Trabajos dirigidos/turorías - Monografía de conclusión de curso',\ 'Trabajos dirigidos/turorías - Monografía de conclusión de curso',\ 'Monografía de conclusión de curso');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 118, \ 'Actividades de Formación - Curso de Corta Duración Dictados - Otro',\ 'Curso de Corta Duración Dictados - Otro',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 119, \ 'Proyectos - Investigación, desarrollo e innovación - Proyectos',\ 'Investigación, desarrollo e innovación - Proyectos',\ 'Proyectos');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 120, \ 'Apropiación social y circularción del conocimiento - Revista',\ 'Investigación, desarrollo e innovación - Revista',\ 'Revista');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 121, \ 'Apropiación social y circularción del conocimiento - Cartilla',\ 'Contenidos Impresos - Cartilla',\ 'Cartilla');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 122, \ 'Actividades de Formación - Cursos de Corta Duración - Especialización',\ 'Cursos de Corta Duración - Especialización',\ 'Especialización');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 123, \ 'Apropiación - Contenidos Multimedia - Otro',\ 'Contenidos Multimedia - Otro',\ 'Otro');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 124, \ 'Apropiación - Contenidos Virtuales - Blog',\ 'Contenidos Virtuales - Blog',\ 'Blog');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 125, \ 'Apropiación - Contenidos Virtuales - Aplicativo',\ 'Contenidos Virtuales - Aplicativo',\ 'Aplicativo');\n\ REPLACE INTO `uapa_db`.`v_colciencias_tipo_producto` ( \ `COD_TIPO_PRODUCTO`,\ `TIPO_PRODUCTO_COL`,\ `SUB_TIPO_PRODUCTO_COL`,\ `TIPO_UAPA`) VALUES (\ 91, \ 'Datos complementarios - Jurado/Comisiones evaluadoras de trabajo de grado - Curso de perfeccionamiento/especialización',\ 'Jurado Especial',\ 'Comités');\n"]
1.742188
2
src/models/scraping_session.py
magnublo/msc-darkweb-scraping
0
12793321
<gh_stars>0 import datetime from sqlalchemy import Column, Integer, DateTime, CHAR, Boolean, String from definitions import MARKET_NAME_COLUMN_LENGTH, Base TABLE_NAME = 'scraping_session' PRIMARY_KEY = 'id' TABLE_NAME_AND_PRIMARY_KEY = TABLE_NAME+"."+PRIMARY_KEY class ScrapingSession(Base): __tablename__ = TABLE_NAME id = Column(PRIMARY_KEY, Integer, primary_key=True) market = Column(CHAR(MARKET_NAME_COLUMN_LENGTH)) duplicates_encountered = Column(Integer) nr_of_threads = Column(Integer) initial_queue_size = Column(Integer) time_started = Column(DateTime, default=datetime.datetime.utcnow) time_finished = Column(DateTime) exited_gracefully = Column(Boolean, default=False, index=True) host_system_fqdn = Column(String(32))
2.40625
2
autoio-interfaces/autorun/pac99.py
lpratalimaffei/autoio
0
12793322
<gh_stars>0 """ Runners for PAC99 program """ import os import automol import pac99_io.reader from autorun._run import from_input_string # Read the new groups file stored with src def _new_groups_str(): """ Read the new groups string """ src_path = os.path.dirname(os.path.realpath(__file__)) new_groups_path = os.path.join(src_path, 'aux', NEW_GROUPS_NAME) with open(new_groups_path) as fobj: new_groups_str = fobj.read() return new_groups_str NEW_GROUPS_NAME = 'new.groups' INPUT_NAME = '{}.i97' OUTPUT_NAMES = ('{}.o97', '{}.c97') # Specialized runner def nasa_polynomial(script_str, run_dir, input_str, name, formula, convert=False): """ Generates NASA polynomial from run :param convert: convert the polynomial to more standard CHEMKIN :type convert """ # Run PAC99 to get the output file formula_str = automol.formula.string(formula) output_strs = direct(script_str, run_dir, input_str, formula_str) # Obtain the NASA polynomial, convert if necessary if output_strs is not None: c97_str = output_strs[1] poly_str = pac99_io.reader.nasa_polynomial(c97_str) if convert: poly_str = pac99_io.pac2ckin_poly(name, formula, poly_str) else: poly_str = None return poly_str # Generalized runners def direct(script_str, run_dir, input_str, formula_str): """ Generates an input file for a ThermP job runs it directly. Need formula input to run the script :param input_str: string of input file with .i97 suffix """ aux_dct = {NEW_GROUPS_NAME: _new_groups_str()} input_name = INPUT_NAME.format(formula_str) output_names = tuple(name.format(formula_str) for name in OUTPUT_NAMES) output_strs = from_input_string( script_str, run_dir, input_str, aux_dct=aux_dct, input_name=input_name, output_names=output_names) if not _check(output_strs): output_strs = None return output_strs def _check(output_strs): """ assess the output (.o97, .c97 fileS) """ o97_output_str, c97_output_str = output_strs success = True if 'INSUFFICIENT DATA' in o97_output_str: print('*ERROR: PAC99 fit failed, maybe increase temperature ranges?') success = False if not c97_output_str: print('No polynomial produced from PAC99 fits, check for errors') success = False return success
2.515625
3
main.py
Kerono4ka/modified-genetic-algorithm-for-calculating-the-chromatic-number-of-a-graph
0
12793323
<filename>main.py from random import choice, randint from time import perf_counter from time import sleep import operator import json from genetic.gene import Gene from genetic.population import Population from graph.graph import Graph from util.Stats import Stats from util.params import Params from util.util import get_random_points, get_random_edges from graph.point import Point from graph.edge import Edge # graph = None # это функция из population.py ее можно и не дублировать # в population.py используется для другой внутренней ф-ции, а тут для своей def get_random_parent(no_points, colors_used): sample_numbers = [0] for i in range(no_points - 1): sample_numbers.append(randint(0, colors_used - 1)) return Gene(sample_numbers) def initialize_population(graph, colors_used): # n = Params.initial_population_size population = [] for i in range(Params.initial_population_size): population.append(get_random_parent(graph.no_points, colors_used)) return Population(population) def do_genetic(population, graph, colors_used): """ крутится цикл создания потомства, оценки, опять. Пока не будет stop_genetic_after_count повторов """ iterations = 0 last_n = [float('Inf')] * Params.stop_genetic_after_count # список из stop_genetic_after_count элементов, # заполненный inf-ами best_gene = None while True: iterations += 1 max_evaluation = population.get_max_evaluation(graph) # наибольший счет фит.ф-ции last_n.pop(0) # выкидываем из списка первый элемент last_n.append(max_evaluation) # вставляем в конец списка мах счет фит.ф-ции flag = False # флаг будет false только если все score (а их stop_genetic_after_count) будут одинаковыми # и тогда цикл прервется, будет считаться, что ГА добился наилучшего результата for i in range(len(last_n)): if i != 0 and last_n[i] != last_n[i - 1]: # если значения двух последних фит.ф-ций одинаковы flag = True # то заканчиваем цикл if not flag: break print(max_evaluation) best_gene = population.best_n(1, graph)[0] # возвращает одну лучшую хромосому # print(best_gene) new_population = population_propogation_default(population, graph, colors_used) population = Population(new_population) Graph.no_colours = len(set(best_gene.array)) eval = best_gene.evaluate(graph) no_colors = len(set(best_gene.array)) conflicts = -1 * (eval + (no_colors * Params.penalty_per_color_used)) / Params.penalty_same_color return iterations, best_gene, conflicts def population_propogation_default(population, graph, colors_used): """создание популяции детишек из популяции родителей""" parents_crossover = population.best_n(Params.crossover_parents, graph) parents_mutation = population.best_n(Params.mutation_parents, graph) new_population = [] new_population.extend(population.best_n(Params.propogation_count, graph)) new_population.extend(population.crossover(parents_crossover)) new_population.extend(population.mutate(parents_mutation, graph)) new_population.extend(population.random(Params.random_count, graph.no_points, colors_used)) return new_population def find_out_chorom_num(graph): diction = {} for i in range(graph.no_points): diction.update({i: 0}) for edge in graph.edges: diction[edge.start] += 1 diction[edge.end] += 1 return max(diction.items(), key=operator.itemgetter(1))[1] def work(points, edges): t1 = perf_counter() graph = Graph(points, edges) chrom_num = find_out_chorom_num(graph) min = 1 save_result = None iterations_sum = 0 while chrom_num > min: result = int((chrom_num + min) / 2) population = initialize_population(graph, result) iterations, best_gene, conflicts = do_genetic(population, graph, result) colors_used = len(set(best_gene.array)) iterations_sum += iterations time = perf_counter() - t1 Stats(iterations, time, colors_used, best_gene, conflicts, graph) if conflicts == 0: chrom_num = result save_result = result else: min = result + 1 time = perf_counter() - t1 print("result: ") print("colors: ", save_result, " time ", time, "iterations ", iterations_sum) def in_file(): no_points = 178 no_edges = 1484 if no_edges > no_points * (no_points - 1) / 2: raise ValueError('There are too many edges {}'.format(no_edges)) points, points_list = get_random_points(no_points) edges, edges_list = get_random_edges(no_points, no_edges) with open('points', 'w') as f: json.dump(points_list, f) with open('edges', 'w') as f: json.dump(edges_list, f) def out_file(): with open('points', 'r') as f: points_list = json.load(f) with open('edges', 'r') as f: edges_list = json.load(f) points = [] for point in points_list: x = point[0] y = point[1] new_point = Point(x, y) points.append(new_point) edges = [] for edge in edges_list: start = edge[0] end = edge[1] new_edge = Edge(start, end) edges.append(new_edge) work(points, edges) #in_file() out_file()
2.78125
3
mikidown/sandbox.py
ckolumbus/mikidown
0
12793324
<gh_stars>0 import os import shutil from PyQt4.QtCore import QSettings from PyQt4.QtGui import QApplication from .mikiwindow import MikiWindow from .mikibook import Mikibook from .config import Setting class Sandbox(): def __init__(self): path = os.path.join(os.getcwd(), "test_notebook") Mikibook.initialise("test", path) settings = Setting([["test", path]]) self.window = MikiWindow(settings) self.window.show() print("...Create notebook works") self.newPage() self.setText() self.pageLink() self.delPage() self.window.readmeHelp() print("Start manual testing in sandbox") def newPage(self): self.window.notesTree.newPage('pageOne') self.window.notesTree.newSubpage('subpageOne') itemOne = self.window.notesTree.pageToItem('pageOne') self.window.notesTree.setCurrentItem(itemOne) self.window.notesTree.newPage('pageTwo') print("...newPage works") def setText(self): self.window.liveView(True) self.window.notesEdit.setText("# head1\n\n" "## head2\n" "[subpageOne](pageOne/subpageOne)") self.window.saveCurrentNote() self.window.notesView.updateView() #self.window.notesView.setVisible(True) elemCol = self.window.notesView.page( ).mainFrame().findAllElements("a") element = elemCol.at(2) element.evaluateJavaScript("this.click()") noteName = self.window.notesTree.currentItem().text(0) assert(noteName == "subpageOne") print("...setText works") def pageLink(self): self.window.notesEdit.setText("[head2](pageTwo#head2)") self.window.saveCurrentNote() self.window.notesView.updateView() element = self.window.notesView.page( ).mainFrame().findFirstElement("a") element.evaluateJavaScript("this.click()") noteName = self.window.notesTree.currentItem().text(0) assert(noteName == "pageTwo") print("...pageLink works") def delPage(self): # This will delete both pageOne and subpageOne item = self.window.notesTree.pageToItem('pageOne') self.window.notesTree.delPage(item) item = self.window.notesTree.pageToItem('pageTwo') self.window.notesTree.delPage(item) print("...delPage works") def cleanUp(self): """ When quitting mikidown, the whooshProcess may take time to finish. Terminate whooshProcess to ensure shutil.rmtree success. """ shutil.rmtree("test_notebook") print("...Cleaned up")
2.328125
2
projecteuler/p0012_test.py
mccxj/online-judge-code-example
2
12793325
import unittest import code_helper class Test0012(unittest.TestCase): def test_problem(self): primes = list(code_helper.range_prime(10000)) triangle_number = -1 for n in range(7000, 20000): triangle_number = n * (n + 1) / 2 divisors = 1 s = triangle_number for prime in primes: if s < prime: break if s % prime == 0: time = 1 while s % prime == 0: s /= prime time += 1 divisors *= time if divisors > 500: break self.assertEqual(triangle_number, 76576500)
3.25
3
ds-sdk-mini/DeepSecurity/antimalware.py
zachwhaley/thus
24
12793326
<filename>ds-sdk-mini/DeepSecurity/antimalware.py # Copyright (c) 2020. <NAME>. All Rights Reserved. #import connect #import config class Antimalware: def __init__(self, config, connection): self._config=config self._connection = connection ##Antimalware config def list(self): return self._connection.get(url='/antimalwareconfigurations') def create(self, payload): return self._connection.post(url='/antimalwareconfigurations', data=payload) def describe(self, antimalwareID): return self._connection.get(url='/antimalwareconfigurations/{antiMalwareID}'.format(antiMalwareID=antimalwareID)) def modify(self, antimalwareID, payload): return self._connection.post(url='/antimalwareconfigurations/{antiMalwareID}'.format(antiMalwareID=antimalwareID), data=payload) def delete(self, antimalwareID): return self._connection.delete(url='/antimalwareconfigurations/{antiMalwareID}'.format(antiMalwareID=antimalwareID)) def search(self, payload): return self._connection.post(url='/antimalwareconfigurations/search', data=payload) ##Directory lists def listdirectorylists(self): return self._connection.get(url='/directorylists') def createdirectorylist(self, payload): return self._connection.post(url='/directorylists', data=payload) def describedirectorylist(self, directoryListID): return self._connection.get(url='/directorylists/{directoryListID}'.format(directoryListID=directoryListID)) def modifydirectorylist(self, directoryListID, payload): return self._connection.post(url='/directorylists/{directoryListID}'.format(directoryListID=directoryListID), data=payload) def deletedirectorylist(self, directoryListID): return self._connection.delete(url='/directorylists/{directoryListID}'.format(directoryListID=directoryListID)) def searchdirectorylist(self, payload): return self._connection.post(url='/directorylists/search', data=payload) ##File Extension def listfileExtensionlists(self): return self._connection.get(url='/fileextensionlists') def createdfileExtensionlist(self, payload): return self._connection.post(url='/fileextensionlists', data=payload) def describefileExtensionlist(self, fileExtensionListID): return self._connection.get(url='/fileextensionlists/{fileExtensionListID}'.format(fileExtensionListID=fileExtensionListID)) def modifyfileExtensionlist(self, fileExtensionListID, payload): return self._connection.post(url='/fileextensionlists/{fileExtensionListID}'.format(fileExtensionListID=fileExtensionListID), data=payload) def deletefileExtensionlist(self, fileExtensionListID): return self._connection.delete(url='/fileextensionlists/{fileExtensionListID}'.format(fileExtensionListID=fileExtensionListID)) def searchfileExtensionlist(self, payload): return self._connection.post(url='/fileextensionlists/search', data=payload) ##File def listfilelists(self): return self._connection.get(url='/filelists') def createdfilelist(self, payload): return self._connection.post(url='/filelists', data=payload) def describefilelist(self, fileListID): return self._connection.get(url='/filelists/{fileListID}'.format(fileListID=fileListID)) def modifyfilelist(self, fileListID, payload): return self._connection.post(url='/filelists/{fileListID}'.format(fileListID=fileListID), data=payload) def deletefilelist(self, fileListID): return self._connection.delete(url='/filelists/{fileListID}'.format(fileListID=fileListID)) def searchfilelist(self, payload): return self._connection.post(url='/filelists/search', data=payload) ##Schedules def listschedules(self): return self._connection.get(url='/schedules') def createdschedules(self, payload): return self._connection.post(url='/schedules', data=payload) def describeschedule(self, schedulesID): return self._connection.get(url='/schedules/{scheduleID}'.format(scheduleID=schedulesID)) def modifyschedule(self, schedulesID, payload): return self._connection.post(url='/schedules/{scheduleID}'.format(scheduleID=schedulesID), data=payload) def deleteschedule(self, schedulesID): return self._connection.delete(url='/schedules/{scheduleID}'.format(scheduleID=schedulesID)) def searchschedule(self, payload): return self._connection.post(url='/schedules/search', data=payload)
2.390625
2
setup.py
espdev/scikit-curve
3
12793327
<filename>setup.py<gh_stars>1-10 # -*- coding: utf-8 -*- import pathlib from setuptools import setup, find_packages ROOT_DIR = pathlib.Path(__file__).parent ROOT_PKG = 'skcurve' def get_version(): version_info = {} version_file = ROOT_DIR / ROOT_PKG / '_version.py' with version_file.open() as f: exec(f.read(), version_info) return version_info['__version__'] def get_long_description(): readme_file = ROOT_DIR / 'README.md' return readme_file.read_text(encoding='utf-8') setup( name='scikit-curve', version=get_version(), python_requires='>=3.6, <4', install_requires=[ 'numpy', 'scipy', 'networkx', 'csaps >=0.9.0, <1', 'cached_property', 'typing-extensions', ], extras_require={ 'plot': [ 'matplotlib', ], 'docs': [ 'sphinx >=2.3', 'numpydoc', 'matplotlib', ], 'examples': [ 'jupyter', 'matplotlib', ], 'tests': [ 'pytest', 'coverage', ], }, packages=find_packages(exclude=['tests', 'examples']), url='https://github.com/espdev/scikit-curve', project_urls={ 'Documentation': 'https://scikit-curve.readthedocs.io', 'Code': 'https://github.com/espdev/scikit-curve', 'Issue tracker': 'https://github.com/espdev/scikit-curve/issues', }, license='BSD 3-Clause', author='<NAME>', author_email='<EMAIL>', description='A toolkit to manipulate n-dimensional geometric curves in Python', long_description=get_long_description(), long_description_content_type='text/markdown', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', ], )
1.554688
2
config.py
Utekhin/cats_bot
0
12793328
<gh_stars>0 # Api key for developers giphy api GIPHY_API_KEY = '<KEY>' # BOT_API_TOKEN = '<KEY>' # Text blocks WELCOME_TEXT = "Hi there!\nI'm catlover bot\nUse buttons or type anything to get your cats" RENDER_TEXT = "Input your text to place it over random cat pic for your gif" RENDER_TEXT_WAIT = 'Wait while the cats are preparing your a gif for you' ABOUT_TEXT = 'Get a cat gif using cataas.com' RENDER_TEXT_URL = 'https://cataas.com/cat/gif/says/{text}?filter=sepia&color=orange&size=40&type=or'
2.234375
2
impute/decomposition/tests/conftest.py
nimily/low-rank-impute
0
12793329
<filename>impute/decomposition/tests/conftest.py import numpy as np import numpy.linalg as npl import numpy.random as npr import pytest @pytest.fixture(params=[ (1, 50, 40, 2), (2, 90, 100, 5), (3, 1500, 1000, 10), ], name='low_rank_matrix') def low_rank_matrix_fixture(request): seed, n, m, r = request.param npr.seed(seed) u = npl.qr(npr.randn(n, r))[0] s = np.sort(npr.uniform(0, 1, r))[::-1] v = npl.qr(npr.randn(m, r))[0] b = u @ np.diag(s) @ v.T return b, r, u, s, v
2.046875
2
paginator/paginators.py
pydanny/dj-paginator
30
12793330
from django.conf import settings DEFAULT_WINDOW = getattr(settings, 'PAGINATOR_DEFAULT_WINDOW', 4) def paginate(context, window=DEFAULT_WINDOW, hashtag=''): """ Renders the ``pagination/pagination.html`` template, resulting in a Digg-like display of the available pages, given the current page. If there are too many pages to be displayed before and after the current page, then elipses will be used to indicate the undisplayed gap between page numbers. Requires one argument, ``context``, which should be a dictionary-like data structure and must contain the following keys: ``paginator`` A ``Paginator`` or ``QuerySetPaginator`` object. ``page_obj`` This should be the result of calling the page method on the aforementioned ``Paginator`` or ``QuerySetPaginator`` object, given the current page. This same ``context`` dictionary-like data structure may also include: ``getvars`` A dictionary of all of the **GET** parameters in the current request. This is useful to maintain certain types of state, even when requesting a different page. """ try: paginator = context['paginator'] page_obj = context['page_obj'] page_suffix = context.get('page_suffix', '') page_range = paginator.page_range # Calculate the record range in the current page for display. records = {'first': 1 + (page_obj.number - 1) * paginator.per_page} records['last'] = records['first'] + paginator.per_page - 1 if records['last'] + paginator.orphans >= paginator.count: records['last'] = paginator.count # First and last are simply the first *n* pages and the last *n* pages, # where *n* is the current window size. first = set(page_range[:window]) last = set(page_range[-window:]) # Now we look around our current page, making sure that we don't wrap # around. current_start = page_obj.number-1-window if current_start < 0: current_start = 0 current_end = page_obj.number-1+window if current_end < 0: current_end = 0 current = set(page_range[current_start:current_end]) pages = [] # If there's no overlap between the first set of pages and the current # set of pages, then there's a possible need for elusion. if len(first.intersection(current)) == 0: first_list = list(first) first_list.sort() second_list = list(current) second_list.sort() pages.extend(first_list) diff = second_list[0] - first_list[-1] # If there is a gap of two, between the last page of the first # set and the first page of the current set, then we're missing a # page. if diff == 2: pages.append(second_list[0] - 1) # If the difference is just one, then there's nothing to be done, # as the pages need no elusion and are correct. elif diff == 1: pass # Otherwise, there's a bigger gap which needs to be signaled for # elusion, by pushing a None value to the page list. else: pages.append(None) pages.extend(second_list) else: unioned = list(first.union(current)) unioned.sort() pages.extend(unioned) # If there's no overlap between the current set of pages and the last # set of pages, then there's a possible need for elusion. if len(current.intersection(last)) == 0: second_list = list(last) second_list.sort() diff = second_list[0] - pages[-1] # If there is a gap of two, between the last page of the current # set and the first page of the last set, then we're missing a # page. if diff == 2: pages.append(second_list[0] - 1) # If the difference is just one, then there's nothing to be done, # as the pages need no elusion and are correct. elif diff == 1: pass # Otherwise, there's a bigger gap which needs to be signaled for # elusion, by pushing a None value to the page list. else: pages.append(None) pages.extend(second_list) else: differenced = list(last.difference(current)) differenced.sort() pages.extend(differenced) to_return = { 'MEDIA_URL': settings.MEDIA_URL, 'request': context['request'], 'pages': pages, 'records': records, 'page_obj': page_obj, 'paginator': paginator, 'hashtag': hashtag, 'is_paginated': paginator.count > paginator.per_page, 'page_suffix': page_suffix, } if 'request' in context: getvars = context['request'].GET.copy() if 'page%s' % page_suffix in getvars: del getvars['page%s' % page_suffix] if len(getvars.keys()) > 0: to_return['getvars'] = "&%s" % getvars.urlencode() else: to_return['getvars'] = '' return to_return except (KeyError, AttributeError): return {}
3.15625
3
aux/backend.py
bischjer/auxiliary
0
12793331
from twisted.internet import reactor, threads import threading import functools import aux.protocol as protocol_module class Backend(object): def __init__(self): self.thread = None self.reactor = reactor self.event = threading.Event() self.protocols = protocols_module def start(self): self.thread = threading.Thread(name='BackendThread', target=self.start_reactor) self.thread.start() #The event.set is called when the reactor #is completely initialized. self.event.wait() def stop(self): self.reactor.callFromThread(self.reactor.stop) while self.thread.is_alive(): # Do not just do .join() as this will block the mainthread # in such a way that C-c will not work. self.thread.join(timeout=0.01) def start_reactor(self): self.reactor.callWhenRunning(lambda: self.event.set()) self.reactor.run(installSignalHandlers=0) def make_proxy(self, obj): if isinstance(obj, Proxy): raise AssertionError('Wrapping a Proxy in a Proxy will deadlock') return Proxy(obj) class Proxy(object): def __init__(self, wrapped_obj): self.__dict__['wrapped_obj'] = wrapped_obj def __getattr__(self, attr): if attr in ['wrapped_obj']: return self.__dict__['wrapped_obj'] if hasattr(self.wrapped_obj, attr): attr = getattr(self.wrapped_obj, attr) if callable(attr): return self.create_blocking_wrapper(attr) return attr raise KeyError('%s does not exist in %s' % (attr, self)) def __setattr__(self, attr, value): setattr(self.wrapped_obj, attr, value) def create_blocking_wrapper(self, callable_): @functools.wraps(callable_) def _blocked(*args, **kwargs): return threads.blockingCallFromThread(reactor, callable_, *args, **kwargs) return _blocked
2.59375
3
PyNeuralNetwork/PyNet/old/LoadNetwork.py
mattkjames7/PyNeuralNetwork
0
12793332
<filename>PyNeuralNetwork/PyNet/old/LoadNetwork.py import numpy as np import os from .NeuralNetwork import NeuralNetwork def LoadNetwork(FileName): if os.path.isfile(FileName) == False: print('file not found') return None f = open(FileName,'rb') Trained = np.fromfile(f,dtype='bool8',count=1)[0] L = np.fromfile(f,dtype='int32',count=1)[0] s = np.fromfile(f,dtype='int32',count=L) Lambda = np.fromfile(f,dtype='float32',count=1)[0] Range = np.fromfile(d,dtype='float32',count=1)[0] mt = np.fromfile(f,dtype='int32',count=1)[0] mcv = np.fromfile(f,dtype='int32',count=1)[0] if mt > 0: Xt = np.fromfile(f,dtype='float32',count=mt*(s[0]+1)).reshape((mt,s[0]+1)) yt = np.fromfile(f,dtype='float32',count=mt) else: Xt = np.array([],dtype='float32') yt = np.array([],dtype='float32') if mcv > 0: Xcv = np.fromfile(f,dtype='float32',count=mcv*(s[0]+1)).reshape((mcv,s[0]+1)) ycv = np.fromfile(f,dtype='float32',count=mcv) else: Xcv = np.array([],dtype='float32') ycv = np.array([],dtype='float32') Theta = [] for i in range(0,L-1): dim = [s[i+1],s[i]+1] Theta.append(np.fromfile(f,dtype='float32',count=dim[0]*dim[1]).reshape((dim[0],dim[1]))) nSteps = np.fromfile(f,dtype='int32',count=1)[0] nJ = np.fromfile(f,dtype='int32',count=1)[0] if nSteps > 0: Jt = np.fromfile(f,dtype='float32',count=nJ) Jcv = np.fromfile(f,dtype='float32',count=nJ) Acct = np.fromfile(f,dtype='float32',count=nJ) Acccv = np.fromfile(f,dtype='float32',count=nJ) else: Jt = np.array([],dtype='float32') Jcv = np.array([],dtype='float32') Acct = np.array([],dtype='float32') Acccv= np.array([],dtype='float32') f.close() net = NeuralNetwork(s,Lambda) net.Trained = Trained net.mt = mt net.mcv = m net.Xt = Xt net.yt = yt net.Xcv = Xcv net.ycv = ycv net.Theta = Theta net.Jt = Jt net.Jcv = Jcv net.Acct = Acct net.Acccv = Acccv return net
2.4375
2
python/models/apps.py
thejoeejoee/UPA-MIT-VUT-2020-2021
0
12793333
from django.apps import AppConfig class ModelsAppConfig(AppConfig): name = 'models' __all__ = ['ModelsAppConfig']
1.367188
1
scripts/numerics/test_fixedpoint_1D.py
jhwnkim/nanopores
8
12793334
<reponame>jhwnkim/nanopores<gh_stars>1-10 """test (linearized) Scharfetter-Gummel-inspired fixed point PNP. surprising conclusion: linearized is more robust numerically, probably due to the exponential terms in nonlinear version. for small applied voltage (bV=-0.1), both versions almost coincide. the linear version converges for bV < 1.0. """ from nanopores import * from nanopores.physics.simplepnps import * add_params( bV = -0.1, # [V] rho = -0.0, bulkcon = 300., imax = 10, linearize = True, inewton = 10, ) # --- create 1D geometry --- h = 20. hmem = 3. domain = Interval(-h/2, h/2) membrane = Interval(-hmem/2, hmem/2) lowerb = domain.boundary("left") upperb = domain.boundary("right") domain.addsubdomains( fluid = domain - membrane, membrane = membrane ) domain.addboundaries( lowerb = lowerb, upperb = upperb, chargedmembraneb = membrane.boundary(), ) domain.params["lscale"] = 1e9 domain.synonymes = dict( solid = "membrane", bulkfluid = "fluid", pore = set() ) geo = domain.create_geometry(lc=.1) phys_params = dict( Membraneqs = rho, bulkcon = bulkcon, v0 = dict(upperb = 0., lowerb = bV), ) phys = Physics("pore", geo, **phys_params) # --- define and solve PDE --- PNP = PNPFixedPoint if linearize else PNPFixedPointNonlinear pnp = PNP(geo, phys, inewton=inewton, ipicard=imax, tolnewton=1e-4, verbose=True, nverbose=True) #t = Timer("solve") pnp.solve() #print "CPU time (solve): %s [s]" % (t.stop(),) #pnp.visualize() v, cp, cm = pnp.solutions() plot1D({"potential": v}, (-h/2, h/2, 101), "x", dim=1, axlabels=("z [nm]", "potential [V]")) plot1D({"c+": cp, "c-":cm}, (hmem/2, h/2, 101), "x", dim=1, axlabels=("z [nm]", "concentrations [mol/m^3]")) showplots()
2.109375
2
examples/select.py
dduong42/gzuro
0
12793335
<reponame>dduong42/gzuro from gzuro import Grid, SelectList, Text root = Grid(cols=2) select_list = SelectList(choices=['blue', 'black', 'grey'], default='blue') text = Text('Selected: blue') root.append(select_list) root.append(text) @select_list.on_selection def change_text(): text.content = f'Selected: {select_list.selected}' root.run()
2.765625
3
lunr/storage/helper/utils/jobs.py
PythonGirlSam/lunr
6
12793336
# Copyright (c) 2011-2016 Rackspace US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import logging import os import resource as unix import threading from lunr.common import logger from lunr.storage.helper.utils.worker import SaveFailedInvalidCow log = logger.get_logger() def spawn(resource, job, *args, **kwargs): """ Attempt to start job_name if not already running for those args. param job: job to run param args: args for job's run method keyword callback: callback function to pass to job keyword error_callback: error_callback function to pass to job """ callback = kwargs.pop('callback', None) error_callback = kwargs.pop('error_callback', None) interruptible = kwargs.pop('interruptible', False) # If we asked to skip fork for testing if kwargs.pop('skip_fork', False): return run(resource, job, callback, error_callback, args) # Fork Once to create a child pid = os.fork() if pid: # wait on the child to fork and exit to prevent zombie os.waitpid(pid, 0) # Our child now owns the resource, this avoids resource # file clean up when we the controller returns 200 resource.owned = False return # Fork Twice to orphan the child pid = os.fork() if pid: # exit to orphan child, and release waiting parent os._exit(0) # Lock resource prior to read/write with resource: if interruptible: # Add the interruptible flag if process can be interrupted resource.acquire({'pid': os.getpid(), 'interruptible': True}) else: # Re-assign the owner of the resource to us resource.acquire({'pid': os.getpid()}) # NOTE: explict close of syslog handler to force reconnect and suppress # traceback when the next log message goes and finds it's sockets fd is # inexplictly no longer valid, this is obviously jank # Manually nuking the logging global lock is the best thing ever. logging._lock = threading.RLock() log = logger.get_logger() root = getattr(log, 'logger', log).root for handler in root.handlers: try: # Re-create log handlers RLocks incase we forked during a locked # write operation; Not doing this may result in a deadlock the # next time we write to a log handler handler.createLock() handler.close() except AttributeError: pass # Become Session leader os.setsid() # chdir root os.chdir('/') # Prevent GC close() race condition gc.collect() # close fd for api server's socket os.closerange(3, unix.getrlimit(unix.RLIMIT_NOFILE)[1]) # Run the job and exit os._exit(run(resource, job, callback, error_callback, args)) def run(lock, job, callback, error_callback, args): # Start the Job try: log.info("starting job '%s'" % job.__name__) try: job(*args) except SaveFailedInvalidCow: log.exception("Save job failed!") if error_callback: try: error_callback() except Exception, e: log.exception("unknown exception '%s' while executing " "error_callback for '%s'" % (e, job.__name__)) return 1 except Exception, e: log.exception("unknown exception '%s' while " "executing job '%s'" % (e, job.__name__)) return 1 # If callback defined, execute the callback if callback: log.info("executing callback for '%s'" % job.__name__) try: callback() except Exception, e: log.exception("unknown exception '%s' while executing " "callback for '%s'" % (e, job.__name__)) return 1 return 0 finally: log.info('finished %s' % job.__name__) lock.remove()
1.976563
2
Codewars/7kyu/form-the-largest/Python/solution1.py
RevansChen/online-judge
7
12793337
# Python - 3.6.0 max_number = lambda n: int(''.join(sorted(str(n), reverse = True)))
2.796875
3
project/data/make_features.py
Sanger2000/Predicting-Lung-Cancer-Disease-Progression-from-CT-reports
0
12793338
<reponame>Sanger2000/Predicting-Lung-Cancer-Disease-Progression-from-CT-reports import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer import project.data.preprocess_data as preprocess import torch from sklearn.preprocessing import LabelEncoder from pytorch_pretrained_bert import BertTokenizer def tokenize_input(baseline_text, context_text, split, tokenizer=None, max_len=509): if tokenizer == None: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') baseline = tokenizer.tokenize(baseline_text) context = tokenizer.tokenize(context_text) baseline_size = int(split*max_len) context_size = max_len - baseline_size baseline = preprocess.preprocess_tokens(baseline, baseline_size) context = preprocess.preprocess_tokens(context, context_size) final_tokens = ["[CLS]"] classifications = [0, 0] for token in baseline: final_tokens.append(token) classifications.append(0) final_tokens.append("[SEP]") classifications.append(1) for token in context: final_tokens.append(token) classifications.append(1) final_tokens.append("[SEP]") for i in range(max_len-(len(context) + len(baseline))): final_tokens.append("[MASK]") classifications.append(0) return tokenizer.convert_tokens_to_ids(final_tokens), classifications def one_hot_encode(labels): out = np.zeros((labels.shape[0], 4)) out[np.arange(labels.shape[0]), labels] = 1 return out def learn_bow(reports, min_df=1, ngram_range=(1, 3), max_features=5000): stopwords = ['mm', 'dd', '2017', '2016', '2015', '2014', '2013', '2012', 'date', 'md'] countVec = CountVectorizer(min_df = min_df, \ ngram_range = ngram_range, \ max_features = max_features, \ stop_words = stopwords) countVec.fit(reports) return countVec.transform(reports) def prepare_y(data_y): label_enc = LabelEncoder() label_enc_y = label_enc.fit(data_y) return label_enc_y.transform(data_y) def createTextFeatures(reports, max_base_feats, max_prog_feats): baseline_text, progress_text, _, __ = reports baseline_bow = np.array(learn_bow(baseline_text['clean_report_text'].tolist(), max_features=max_base_feats).todense()) progress_bow = np.array(learn_bow(progress_text['clean_report_text'].tolist(), max_features=max_prog_feats).todense()) print(baseline_bow.shape) print(progress_bow.shape) overallTextFeatures = np.hstack([baseline_bow, progress_bow]) return overallTextFeatures def make_id(patient_id): if patient_id < 10: return "MSK_00" + str(patient_id) elif patient_id < 100: return "MSK_0" + str(patient_id) else: return "MSK_" + str(patient_id) def pad_vectors(feats, max_len, feat_lens): for val in (True, False): for i in range(len(feats[val])): for j in range(max_len): if j >= len(feats[val][i]): feats[val][i].append(np.zeros(feat_lens)) return feats def setupFeatureVectors(df, desired_features, max_before, max_after): FEAT_LENS = len(desired_features) + max_before + max_after patients = df.groupby("Patient ID") max_len = 0 train_feats = {True: [], False: []} train_labels = [] id_list = set() count = -1 before_text = np.array(learn_bow(df["before_text"], max_features = max_before).todense()) after_text = np.array(learn_bow(df["after_text"], max_features = max_after).todense()) train_features = {True: [], False: []} for patient_id in sorted([int(key[-3:]) for key in patients.groups.keys()]): count += 1 patient = make_id(patient_id) context = {True: [], False: []} checker = {True: False, False: False} len_counter = {True: 0, False: 0} count2 = -1 for i in patients.groups[patient]: count2 += 1 checker[df["is_baseline"][i]] = True len_counter[df["is_baseline"][i]] += 1 context[df["is_baseline"][i]].append(np.concatenate((np.array([df[desired_feat][i] for desired_feat in desired_features]), \ before_text[i], after_text[i]))) if not(checker[True] or checker[False]): continue elif not checker[True]: context[True].append(np.zeros(FEAT_LENS)) elif not checker[False]: context[False].append(np.zeros(FEAT_LENS)) max_len = max(max_len, len_counter[True], len_counter[False]) id_list.add(patient) for val in (True, False): train_features[val].append(context[val]) train_labels.append(df["labels"][i]) train_features = pad_vectors(train_features, max_len, FEAT_LENS) return np.array(train_features[False]), np.array(train_features[True]), one_hot_encode(prepare_y(train_labels)), id_list def create_data(max_base, max_prog, max_before, max_after, desired_features): df = preprocess.load_reports() df_extraction = preprocess.extractFeatures(df) baseX, progX, labs, id_list = setupFeatureVectors(df_extraction, desired_features, max_before, max_after) reports = preprocess.extractText(df, id_list) df_text = createTextFeatures(reports, max_base, max_prog) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") id_vals = torch.tensor(list(map(lambda x: tokenize_input(x[0], x[1], split=0.4, tokenizer=tokenizer), zip(reports[2]['bert_text'], \ reports[3]['bert_text'])))) return torch.from_numpy(baseX), torch.from_numpy(progX), torch.from_numpy(df_text), torch.from_numpy(labs), id_vals[:,0,:], id_vals[:, 1,:]
2.765625
3
datetoken/objects.py
sonirico/datetoken
5
12793339
<filename>datetoken/objects.py from functools import reduce from .ast import get_utc_now from .ast import NowExpression, ModifierExpression, SnapExpression class Token(object): def __init__(self, nodes=None, at=None): self._at = at if not nodes: self._nodes = [NowExpression()] elif not isinstance(nodes[0], NowExpression): self._nodes = nodes self._nodes.insert(0, NowExpression()) else: self._nodes = nodes @property def is_snapped(self): """ :rtype: bool :return: Whether the token has been snapped, either to the beginning or end. """ return any((isinstance(node, SnapExpression) for node in self._nodes)) @property def is_calculated(self): """ :rtype: bool :return: Whether the token is modified, meaning it suffers from additions or subtractions. """ return any((isinstance(node, ModifierExpression) for node in self._nodes)) def refresh_at(self, new_at=None): self._at = new_at or get_utc_now() @property def at(self): return self._at def to_date(self): """ Evaluate ast nodes sequentially, starting with the current value of `_at` :return: """ return reduce( lambda accumulated, node: node.get_value(accumulated), self._nodes, self._at ) def __str__(self): return "".join([str(node) for node in self._nodes])
2.875
3
stack/eb.py
engineervix/aws-web-stacks
83
12793340
<filename>stack/eb.py from awacs import ecr from awacs.aws import Allow, Policy, Principal, Statement from awacs.sts import AssumeRole from troposphere import FindInMap, GetAtt, Join, Output, Ref, iam from troposphere.elasticbeanstalk import ( Application, Environment, OptionSettings ) from troposphere.iam import InstanceProfile, Role from . import USE_NAT_GATEWAY from .assets import assets_management_policy from .certificates import application as application_certificate from .containers import container_instance_type from .environment import environment_variables from .logs import logging_policy from .security_groups import ( container_security_group, load_balancer_security_group ) from .template import template from .utils import ParameterWithDefaults as Parameter from .vpc import ( private_subnet_a, private_subnet_b, public_subnet_a, public_subnet_b, vpc ) solution_stack = template.add_parameter( Parameter( "SolutionStack", Description="Elastic Beanstalk solution stack name (do NOT change after " "stack creation). You most likely want to copy the italicized " "text from: http://docs.aws.amazon.com/elasticbeanstalk/latest" "/dg/concepts.platforms.html#concepts.platforms.mcdocker", Type="String", Default="", ), group="Application Server", label="Solution Stack", ) key_name = template.add_parameter( Parameter( "KeyName", Description="Name of an existing EC2 KeyPair to enable SSH access to " "the AWS Elastic Beanstalk instance", Type="AWS::EC2::KeyPair::KeyName", ConstraintDescription="must be the name of an existing EC2 KeyPair." ), group="Application Server", label="SSH Key Name", ) template.add_mapping("Region2Principal", { 'ap-northeast-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'ap-southeast-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'ap-southeast-2': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'cn-north-1': { 'EC2Principal': 'ec2.amazonaws.com.cn', 'OpsWorksPrincipal': 'opsworks.amazonaws.com.cn'}, 'eu-central-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'eu-west-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'sa-east-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'us-east-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'us-west-1': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'}, 'us-west-2': { 'EC2Principal': 'ec2.amazonaws.com', 'OpsWorksPrincipal': 'opsworks.amazonaws.com'} } ) web_server_role = Role( "WebServerRole", template=template, AssumeRolePolicyDocument=Policy( Statement=[ Statement( Effect=Allow, Action=[AssumeRole], Principal=Principal( "Service", [ FindInMap( "Region2Principal", Ref("AWS::Region"), "EC2Principal") ] ) ) ] ), Path="/", Policies=[ assets_management_policy, logging_policy, iam.Policy( PolicyName="EBBucketAccess", PolicyDocument=dict( Statement=[dict( Effect="Allow", Action=[ "s3:Get*", "s3:List*", "s3:PutObject", ], Resource=[ "arn:aws:s3:::elasticbeanstalk-*", "arn:aws:s3:::elasticbeanstalk-*/*", ], )], ), ), iam.Policy( PolicyName="EBXRayAccess", PolicyDocument=dict( Statement=[dict( Effect="Allow", Action=[ "xray:PutTraceSegments", "xray:PutTelemetryRecords", ], Resource="*", )], ), ), iam.Policy( PolicyName="EBCloudWatchLogsAccess", PolicyDocument=dict( Statement=[dict( Effect="Allow", Action=[ "logs:PutLogEvents", "logs:CreateLogStream", ], Resource="arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk*", )], ), ), iam.Policy( PolicyName="ECSManagementPolicy", PolicyDocument=dict( Statement=[dict( Effect="Allow", Action=[ "ecs:*", "elasticloadbalancing:*", ], Resource="*", )], ), ), iam.Policy( PolicyName='ECRManagementPolicy', PolicyDocument=dict( Statement=[dict( Effect='Allow', Action=[ ecr.GetAuthorizationToken, ecr.GetDownloadUrlForLayer, ecr.BatchGetImage, ecr.BatchCheckLayerAvailability, ], Resource="*", )], ), ), ] ) web_server_instance_profile = InstanceProfile( "WebServerInstanceProfile", template=template, Path="/", Roles=[Ref(web_server_role)], ) eb_application = Application( "EBApplication", template=template, Description="AWS Elastic Beanstalk Application" ) # eb_application_version = ApplicationVersion( # "EBApplicationVersion", # template=template, # Description="Version 1.0", # ApplicationName=Ref(eb_application), # SourceBundle=SourceBundle( # S3Bucket=Join("-", ["elasticbeanstalk-samples", Ref("AWS::Region")]), # S3Key="nodejs-sample.zip" # ) # ) template.add_resource(Environment( "EBEnvironment", Description="AWS Elastic Beanstalk Environment", ApplicationName=Ref(eb_application), SolutionStackName=Ref(solution_stack), OptionSettings=[ # VPC settings OptionSettings( Namespace="aws:ec2:vpc", OptionName="VPCId", Value=Ref(vpc), ), OptionSettings( Namespace="aws:ec2:vpc", OptionName="AssociatePublicIpAddress", # instances need a public IP if we're not using a NAT gateway Value=str(not USE_NAT_GATEWAY).lower(), ), OptionSettings( Namespace="aws:ec2:vpc", OptionName="Subnets", Value=Join(",", [ Ref(private_subnet_a), Ref(private_subnet_b), ]), ), OptionSettings( Namespace="aws:ec2:vpc", OptionName="ELBSubnets", Value=Join(",", [ Ref(public_subnet_a), Ref(public_subnet_b), ]), ), # Launch config settings OptionSettings( Namespace="aws:autoscaling:launchconfiguration", OptionName="InstanceType", Value=container_instance_type, ), OptionSettings( Namespace="aws:autoscaling:launchconfiguration", OptionName="EC2KeyName", Value=Ref(key_name), ), OptionSettings( Namespace="aws:autoscaling:launchconfiguration", OptionName="IamInstanceProfile", Value=Ref(web_server_instance_profile), ), OptionSettings( Namespace="aws:autoscaling:launchconfiguration", OptionName="SecurityGroups", Value=Join(",", [ Ref(container_security_group), ]), ), # Load balancer settings OptionSettings( Namespace="aws:elb:loadbalancer", OptionName="SecurityGroups", Value=Join(",", [ Ref(load_balancer_security_group), ]), ), # HTTPS Listener (note, these will not appear in the console -- only # the deprecated options which we are not using will appear there). OptionSettings( Namespace="aws:elb:listener:443", OptionName="ListenerProtocol", Value="HTTPS", ), OptionSettings( Namespace="aws:elb:listener:443", OptionName="SSLCertificateId", Value=application_certificate, ), OptionSettings( Namespace="aws:elb:listener:443", OptionName="InstanceProtocol", Value="HTTP", ), OptionSettings( Namespace="aws:elb:listener:443", OptionName="InstancePort", Value="80", ), # OS management options # OptionSettings( # Namespace="aws:elasticbeanstalk:environment", # # allows AWS to reboot our instances with security updates # OptionName="ServiceRole", # # should be created by EB by default # Value="${aws_iam_role.eb_service_role.name),", # ), # OptionSettings( # Namespace="aws:elasticbeanstalk:healthreporting:system", # OptionName="SystemType", # required for managed updates # Value="enhanced", # ), # OptionSettings( # Namespace="aws:elasticbeanstalk:managedactions", # # required for managed updates # OptionName="ManagedActionsEnabled", # Value="true", # ), # OptionSettings( # Namespace="aws:elasticbeanstalk:managedactions", # OptionName="PreferredStartTime", # Value="Sun:02:00", # ), # OptionSettings( # Namespace="aws:elasticbeanstalk:managedactions:platformupdate", # OptionName="UpdateLevel", # Value="minor", # or "patch", ("minor", provides more updates) # ), # OptionSettings( # Namespace="aws:elasticbeanstalk:managedactions:platformupdate", # OptionName="InstanceRefreshEnabled", # Value="true", # refresh instances weekly # ), # Logging configuration OptionSettings( Namespace="aws:elasticbeanstalk:cloudwatch:logs", OptionName="StreamLogs", Value="true", ), OptionSettings( Namespace="aws:elasticbeanstalk:cloudwatch:logs", OptionName="DeleteOnTerminate", Value="false", ), OptionSettings( Namespace="aws:elasticbeanstalk:cloudwatch:logs", OptionName="RetentionInDays", Value="365", ), # Environment variables OptionSettings( Namespace="aws:elb:listener:443", OptionName="InstancePort", Value="80", ), ] + [ OptionSettings( Namespace="aws:elasticbeanstalk:application:environment", OptionName=k, Value=v, ) for k, v in environment_variables ], )) template.add_output( Output( "URL", Description="URL of the AWS Elastic Beanstalk Environment", Value=Join("", ["http://", GetAtt("EBEnvironment", "EndpointURL")]) ) )
2.09375
2
hypertrack/tests/tests.py
hypertrack/hypertrack-python
9
12793341
<filename>hypertrack/tests/tests.py import os import unittest from hypertrack.rest import Client from hypertrack.exceptions import HyperTrackException DEVICE_ID = os.getenv("HT_EXISTING_DEVICE_ID") ACCOUNT_ID = os.getenv("HT_ACCOUNT_ID") SECRET_KEY = os.getenv("HT_SECRET_KEY") hypertrack = Client(ACCOUNT_ID, SECRET_KEY) class TestDevicesAPI(unittest.TestCase): def test_get_device(self): device = hypertrack.devices.get(DEVICE_ID) self.assertTrue('device_id' in device) self.assertTrue(isinstance(device, dict)) def test_not_existing_device(self): try: hypertrack.devices.get('AAAAAAAA-AAAA-AAAA-AAAA-AAAAAAAAAAAA') # Should not go to the next line print("Devices API did not throw exception.") self.assertTrue(False) except HyperTrackException as e: self.assertEqual(e.status, 404) def test_get_all_device(self): pass # AEK: 05/14/2020 # We will make it work once needed by a customer # - the plan is to make the API paginate response # devices = hypertrack.devices.get_all() # self.assertTrue(isinstance(devices, list)) def test_start_tracking(self): response = hypertrack.devices.start_tracking(DEVICE_ID) self.assertTrue(response is None) def test_stop_tracking(self): response = hypertrack.devices.stop_tracking(DEVICE_ID) self.assertTrue(response is None) def test_change_name(self): device = hypertrack.devices.get(DEVICE_ID) # Save initial device name old_name = device['device_info']['name'] response = hypertrack.devices.change_name(DEVICE_ID, 'Test Name') self.assertTrue(response is None) device = hypertrack.devices.get(DEVICE_ID) self.assertEqual(device['device_info']['name'], 'Test Name') # Change name back response = hypertrack.devices.change_name(DEVICE_ID, old_name) self.assertTrue(response is None) # Check that name was changed back device = hypertrack.devices.get(DEVICE_ID) self.assertEqual(device['device_info']['name'], old_name) class TestTripsAPI(unittest.TestCase): def test_get_create_complete_trip(self): # Create trip trip = hypertrack.trips.create({ 'device_id': DEVICE_ID, 'geofences': [{ "geometry": { "type": "Point", "coordinates": [ 35.105761016637075, 47.856801319070776 ] }, "radius": 65, "metadata": {"id": "dec43d3c-766c-4f6a-bd78-dfe873556782"} }, { "geometry": { "type": "Point", "coordinates": [ 35.10460766676067, 47.85663214471151 ] }, "radius": 55, "metadata": {"id": "f2e56252-53e3-4194-8d53-d946716618e7"} }] }) self.assertEqual(trip['status'], 'active') self.assertEqual(len(trip['geofences']), 2) # Get trip geofences geofence_id = trip['geofences'][0]['geofence_id'] geofence = hypertrack.trips.get_geofence(trip['trip_id'], geofence_id) self.assertEqual(geofence['radius'], 65) self.assertEqual(geofence['metadata']['id'], 'dec43d3c-766c-4f6a-bd78-dfe873556782') # Change geofence metadata hypertrack.trips.patch_geofence_metadata(trip['trip_id'], geofence_id, {'id': '123'}) geofence = hypertrack.trips.get_geofence(trip['trip_id'], geofence_id) self.assertEqual(geofence['metadata']['id'], '123') # Complete Trip hypertrack.trips.complete(trip['trip_id']) # Get Trip get_trip = hypertrack.trips.get(trip['trip_id']) self.assertTrue(get_trip['status'] in ['completed', 'processing_completion']) def test_get_all_trips(self): trips = hypertrack.trips.get_all() self.assertTrue(isinstance(trips, dict)) self.assertTrue('data' in trips) if __name__ == '__main__': unittest.main()
2.484375
2
removepii.py
p-zach/Remove-PII
1
12793342
# Author: <NAME> # Python 3.9 import argparse import nltk import re import os import pathlib def extract(filePath): """Extracts the textual information from a file. Args: filePath (str): The path to the file to extract text from. Raises: ValueError: If the information could not be extracted due to unsupported file type. Returns: str: The text in the provided file. """ # get the file extension ext = pathlib.Path(filePath).suffix # extract all data from pure text files if ext == ".txt" or ext == ".md": text = None with open(filePath) as file: text = file.read() return text # get the text from PDFs if ext == ".pdf": from pdfminer.high_level import extract_text return extract_text(filePath) # get the text minus tags from HTML files if ext == ".html" or ext == ".htm": from bs4 import BeautifulSoup with open(filePath) as file: soup = BeautifulSoup(file, "html.parser") return soup.get_text() raise ValueError(f"Text from file {filePath} could not be extracted. Supported types are TXT, PDF, HTML.") def getNE(text, piiNE): """Gets the named entities classified as PII in the text. Args: text (str): The text to analyze. piiNE (list): The types of named entities classified as PII that should be removed. Options: PERSON, ORGANIZATION, GPE, LOCATIOn. Returns: set: The set of strings holding named entity PII. """ # search for NLTK required data in this directory so the user doesn't need to download it separately nltk.data.path.append(os.getcwd()) # gets all of the named entities in the text ne = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(text))) pii = [] # checks if a subtree contains PII (i.e. it should be removed) def filterPII(x): return x.label() in piiNE # loops through all subtrees with a PII label for sub in ne.subtrees(filter = filterPII): # gets the PII's full text string from the subtree's leaves # ex: [('Google', 'NNP'), ('Science', 'NNP'), ('Fair', 'NNP')] -> Google Science Fair piiStr = " ".join(pair[0] for pair in sub.leaves()) # adds the PII string to the list if piiStr not in pii: pii.append(piiStr) # converts to a set before returning to remove duplicates return set(pii) def getIDInfo(text, types): """Gets the ID info classified as PII in the text. Args: text (str): The text to analyze. types (list): The types of ID info classified as PII that should be removed. Options: EMAIL, PHONE, SSN Returns: set: The set of strings holding ID info PII. """ # gets whether each ID info type should be removed. phone = "PHONE" in types email = "EMAIL" in types ssn = "SSN" in types # return an empty set if we're not looking for any ID info PII if not(phone or email or ssn): return set([]) # initialize the phone number regex if phone: phoneRegex = re.compile(r'''( (\d{3}|\(\d{3}\))? # area code (\s|-|\.)? # separator (\d{3}) # first 3 digits (\s|-|\.) # separator (\d{4}) # last 4 digits (\s*(ext|x|ext.)\s*(\d{2,5}))? # optional extension )''', re.VERBOSE) # initialize the email address regex if email: emailRegex = re.compile(r'''( [a-zA-Z0-9._%+-] + # username @ # @symbol [a-zA-Z0-9.-] + # domain (\.[a-zA-Z]{2,4}) # .something )''', re.VERBOSE) # initialize the social security number regex if ssn: ssnRegex = re.compile(r'''( (?!666|000|9\d{2})\d{3} # SSN can't begin with 666, 000 or anything between 900-999 - # explicit dash (separating Area and Group numbers) (?!00)\d{2} # don't allow the Group Number to be "00" - # another dash (separating Group and Serial numbers) (?!0{4})\d{4} # don't allow last four digits to be "0000" )''', re.VERBOSE) pii = [] # utility method for getting PII matches def getMatches(pattern, t): # for each match, return the match itself if it is a string or the first member of a tuple match # this is because matches are sometimes tuples of multiple groups, like a phone number match being: # ("800-999-2222", "800", "-", "999", "-", "2222") # However, sometimes the matches are just strings (no groups), so accessing the element at [0] would get the first char, which is not desirable. return [(match if type(match) is str else match[0]) for match in pattern.findall(t)] # adds the found phone #s, emails, and SSNs to the PII list if phone: pii += getMatches(phoneRegex, text) if email: pii += getMatches(emailRegex, text) if ssn: pii += getMatches(ssnRegex, text) # converts to a set before returning to remove duplicates return set(pii) def writeFile(text, path): """Writes text to the file path. Args: text (str): The text to write. path (str): The path to write the file to. """ with open(path, "w") as file: file.write(text) def cleanString(text, verbose = False, piiNE = ["PERSON", "ORGANIZATION", "GPE", "LOCATION"], piiNums = ["PHONE", "EMAIL", "SSN"]): """Cleans a string of PII. Args: text (str): The text to clean. verbose (bool, optional): Whether status updates should be printed to the console. Defaults to False. piiNE (list, optional): The types of named entity PII to remove. Defaults to all types: ["PERSON", "ORGANIZATION", "GPE", "LOCATION"]. piiNums (list, optional): The types of ID info PII to remove. Defaults to all types: ["PHONE", "EMAIL", "SSN"]. Returns: str: The cleaned text string with PII replaced with XXXXX values. """ if verbose: print("Cleaning text: getting named entities and identifiable information...") # combines the NE and ID info PII string sets piiSet = set.union(getNE(text, piiNE), getIDInfo(text, piiNums)) if verbose: print(str(len(piiSet)) + " PII strings found.") if verbose: print("Removing PII.") # replaces PII with XXXXX values cleaned = text for pii in piiSet: cleaned = cleaned.replace(pii, "XXXXX") # return the cleaned text string return cleaned def cleanFile(filePath, outputPath, verbose = False, piiNE = ["PERSON", "ORGANIZATION", "GPE", "LOCATION"], piiNums = ["PHONE", "EMAIL", "SSN"]): """Reads a file with PII and saves a copy of that file with PII removed. Args: filePath (str): The path to the file with PII. outputPath (str): The path to the cleaned file to be saved. verbose (bool, optional): Whether status updates should be printed to the console. Defaults to False. piiNE (list, optional): The types of named entity PII to remove. Defaults to all types: ["PERSON", "ORGANIZATION", "GPE", "LOCATION"]. piiNums (list, optional): The types of ID info PII to remove. Defaults to all types: ["PHONE", "EMAIL", "SSN"]. """ if verbose: print("Extracting text from " + filePath + "...") # gets the file's text text = extract(filePath) if verbose: print("Text extracted.") # gets the text without PII cleaned = cleanString(text, verbose, piiNE, piiNums) if verbose: print("Writing clean text to " + outputPath + ".") # write the cleaned text to the output file writeFile(cleaned, outputPath) # if this file is being executed on the command line, parse arguments and process the user's file or text if __name__ == "__main__": parser = argparse.ArgumentParser("Removes personally identifiable information (PII) like names and phone numbers from text strings and files.") parser.add_argument("-f", nargs=2, dest="path", default=[], metavar=("inputPath","outputPath"), help="the file to remove PII from and the clean output file path") parser.add_argument("-s", dest="text", default=None, help="input a text string to clean") args = parser.parse_args() # cleans the user's provided file if len(args.path) == 2: cleanFile(args.path[0], args.path[1], verbose=True) # cleans the user's provided text elif args.text is not None: s = cleanString(args.text, verbose=True) print("Text with PII removed:\n" + s) else: print("No action specified.")
3.3125
3
tests/test_flask_cdn.py
local-projects/flask-cdn
0
12793343
<reponame>local-projects/flask-cdn import unittest import os from flask import Flask, render_template_string from flask.ext.cdn import CDN class DefaultsTest(unittest.TestCase): def setUp(self): self.app = Flask(__name__) self.app.testing = True CDN(self.app) def test_domain_default(self): """ Tests CDN_DOMAIN default value is correctly set. """ self.assertEquals(self.app.config['CDN_DOMAIN'], None) def test_debug_default(self): """ Tests CDN_DEBUG default value is correctly set. """ self.assertEquals(self.app.config['CDN_DEBUG'], False) def test_https_default(self): """ Tests CDN_HTTPS default value is correctly set. """ self.assertEquals(self.app.config['CDN_HTTPS'], False) def test_timestamp_default(self): """ Tests CDN_TIMESTAMP default value is correctly set. """ self.assertEquals(self.app.config['CDN_TIMESTAMP'], True) class UrlTests(unittest.TestCase): def setUp(self): self.app = Flask(__name__) self.app.testing = True self.app.config['CDN_DOMAIN'] = 'mycdnname.cloudfront.net' self.app.config['CDN_TIMESTAMP'] = False @self.app.route('/<url_for_string>') def a(url_for_string): return render_template_string(url_for_string) @self.app.route('/') def b(): return render_template_string("{{ url_for('b') }}") def client_get(self, ufs): CDN(self.app) client = self.app.test_client() return client.get('/%s' % ufs) def test_url_for(self): """ Tests static endpoint correctly affects generated URLs. """ # non static endpoint url_for in template self.assertEquals(self.client_get('').data, '/') # static endpoint url_for in template ufs = "{{ url_for('static', filename='bah.js') }}" exp = 'http://mycdnname.cloudfront.net/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) def test_url_for_debug(self): """ Tests CDN_DEBUG correctly affects generated URLs. """ self.app.debug = True ufs = "{{ url_for('static', filename='bah.js') }}" self.app.config['CDN_DEBUG'] = True exp = 'http://mycdnname.cloudfront.net/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) self.app.config['CDN_DEBUG'] = False exp = '/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) def test_url_for_https(self): """ Tests CDN_HTTPS correctly affects generated URLs. """ ufs = "{{ url_for('static', filename='bah.js') }}" self.app.config['CDN_HTTPS'] = True exp = 'https://mycdnname.cloudfront.net/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) self.app.config['CDN_HTTPS'] = False exp = 'http://mycdnname.cloudfront.net/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) def test_url_for_timestamp(self): """ Tests CDN_TIMESTAMP correctly affects generated URLs. """ ufs = "{{ url_for('static', filename='bah.js') }}" self.app.config['CDN_TIMESTAMP'] = True path = os.path.join(self.app.static_folder, 'bah.js') ts = int(os.path.getmtime(path)) exp = 'http://mycdnname.cloudfront.net/static/bah.js?t={}'.format(ts) self.assertEquals(self.client_get(ufs).data, exp) self.app.config['CDN_TIMESTAMP'] = False exp = 'http://mycdnname.cloudfront.net/static/bah.js' self.assertEquals(self.client_get(ufs).data, exp) if __name__ == '__main__': unittest.main()
2.6875
3
experiments/generator.py
usc-sail/mica-violence-ratings-predictions-from-movie-scripts
3
12793344
<filename>experiments/generator.py import os import threading from random import Random from glob import iglob as glob from keras.utils import Sequence class Generator(Sequence): def __init__(self, batch_dir, feat_func, shuffle = True, shuffler = Random(42)): self.batch_dir = batch_dir self.shuffler = shuffler self.shuffle = shuffle self.feat_func = feat_func self.files = list(glob(os.path.join(self.batch_dir, "*_labels.npz"))) self.shuffler.shuffle(self.files) self.length = len(self.files) self.on_epoch_end() # print('generator initiated') def on_epoch_end(self): if self.shuffle: self.shuffler.shuffle(self.files) def __getitem__(self, index): """Generates one batch of data""" # print(f'generator: {index}') label_f = self.files[index % self.length] return self.feat_func(label_f, self.batch_dir) def __len__(self): return self.length
2.578125
3
FirebaseManager.py
ksolanoj/GenderAge-Recognition
0
12793345
import pyrebase import time from FaceRecognitionManager import * firebaseConfig = { "apiKey": "<KEY>", "authDomain": "iaproject-29018.firebaseapp.com", "projectId": "iaproject-29018", "storageBucket": "iaproject-29018.appspot.com", "messagingSenderId": "817053540910", "appId": "1:817053540910:web:423251c3f6691e27fd75bf", "databaseURL" : "" } email = '<EMAIL>' password = '<PASSWORD>' firebase = pyrebase.initialize_app(firebaseConfig) auth = firebase.auth() storage = firebase.storage() user = auth.sign_in_with_email_and_password(email, password) def uploadImage(imageName): globalPath = "detected/{0}.jpg".format(imageName) storage.child(globalPath).put(globalPath) url = storage.child(globalPath).get_url(user['idToken']) return url def downloadImage(imageName): globalPath = "uploaded/{0}.jpg".format(imageName) downloadPath = 'downloaded/{0}.jpg'.format(imageName) storage.child(globalPath).download(downloadPath) return detectImage(downloadPath, imageName)
2.4375
2
tests/core/test_base_types.py
balancap/arrowbic
4
12793346
<reponame>balancap/arrowbic import numpy as np import pyarrow as pa import pytest import arrowbic.extensions from arrowbic.core.base_types import ( from_arrow_to_numpy_dtype, from_arrow_to_python_class, from_numpy_to_arrow_type, is_supported_base_type, ) def test__is_supported_base_type__proper_result() -> None: assert not is_supported_base_type(arrowbic.extensions.IntEnumType()) assert not is_supported_base_type(arrowbic.extensions.TensorType()) def test__from_numpy_to_arrow_type__np_dtype__proper_coverage() -> None: assert from_numpy_to_arrow_type(None) == pa.null() assert from_numpy_to_arrow_type(type(None)) == pa.null() assert from_numpy_to_arrow_type(np.bool_) == pa.bool_() assert from_numpy_to_arrow_type(np.int8) == pa.int8() assert from_numpy_to_arrow_type(np.float32) == pa.float32() assert from_numpy_to_arrow_type(np.dtype(str)) == pa.string() assert from_numpy_to_arrow_type(np.dtype(bytes)) == pa.binary(-1) assert from_numpy_to_arrow_type(np.dtype("datetime64[s]")) == pa.timestamp("s") assert from_numpy_to_arrow_type(np.dtype("timedelta64[ns]")) == pa.duration("ns") with pytest.raises(TypeError): from_numpy_to_arrow_type(np.dtype("O")) def test__from_numpy_to_arrow_type__python_class__proper_coverage() -> None: assert from_numpy_to_arrow_type(None) == pa.null() assert from_numpy_to_arrow_type(type(None)) == pa.null() assert from_numpy_to_arrow_type(bool) == pa.bool_() assert from_numpy_to_arrow_type(int) == pa.int64() assert from_numpy_to_arrow_type(float) == pa.float64() assert from_numpy_to_arrow_type(str) == pa.string() assert from_numpy_to_arrow_type(bytes) == pa.binary(-1) def test__from_arrow_to_numpy_dtype__proper_coverage() -> None: assert from_arrow_to_numpy_dtype(None) == type(None) # noqa: E721 assert from_arrow_to_numpy_dtype(type(None)) == type(None) # noqa: E721 assert from_arrow_to_numpy_dtype(pa.null()) == type(None) # noqa: E721 assert from_arrow_to_numpy_dtype(pa.bool_()) == np.bool_ assert from_arrow_to_numpy_dtype(pa.uint8()) == np.uint8 assert from_arrow_to_numpy_dtype(pa.float32()) == np.float32 assert from_arrow_to_numpy_dtype(pa.string()) == np.dtype(str) assert from_arrow_to_numpy_dtype(pa.binary(-1)) == np.dtype(bytes) assert from_arrow_to_numpy_dtype(pa.timestamp("us")) == np.dtype("datetime64[us]") assert from_arrow_to_numpy_dtype(pa.duration("ns")) == np.dtype("timedelta64[ns]") def test__from_arrow_to_python_class__proper_coverage() -> None: assert from_arrow_to_python_class(pa.null()) == type(None) # noqa: E721 assert from_arrow_to_python_class(pa.float32()) == float # noqa: E721 assert from_arrow_to_python_class(pa.int32()) == int # noqa: E721 assert from_arrow_to_python_class(pa.string()) == str # noqa: E721 assert from_arrow_to_python_class(pa.binary(-1)) == bytes # noqa: E721 assert from_arrow_to_python_class(pa.timestamp("us")) == np.dtype("datetime64[us]") assert from_arrow_to_python_class(pa.duration("ns")) == np.dtype("timedelta64[ns]")
2.28125
2
gallery/migrations/0008_shopitem.py
jeffykle/kf-public
0
12793347
<filename>gallery/migrations/0008_shopitem.py # Generated by Django 3.1 on 2020-09-06 15:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('gallery', '0007_auto_20200905_1239'), ] operations = [ migrations.CreateModel( name='ShopItem', fields=[ ], options={ 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('gallery.galleryitem',), ), ]
1.40625
1
metadata-ingestion/src/datahub/metadata/com/linkedin/pegasus2avro/timeseries/__init__.py
zhoxie-cisco/datahub
1
12793348
# flake8: noqa # This file is autogenerated by /metadata-ingestion/scripts/avro_codegen.py # Do not modify manually! # fmt: off from .....schema_classes import CalendarIntervalClass from .....schema_classes import PartitionSpecClass from .....schema_classes import TimeWindowClass from .....schema_classes import TimeWindowSizeClass CalendarInterval = CalendarIntervalClass PartitionSpec = PartitionSpecClass TimeWindow = TimeWindowClass TimeWindowSize = TimeWindowSizeClass # fmt: on
1.414063
1
hnn_core/parallel_backends.py
chenghuzi/hnn-core
0
12793349
"""Parallel backends""" # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> import os import sys import re import multiprocessing import shlex import pickle import base64 from warnings import warn from subprocess import Popen, PIPE, TimeoutExpired import binascii from queue import Queue, Empty from threading import Thread, Event from .cell_response import CellResponse from .dipole import Dipole from .network_builder import _simulate_single_trial _BACKEND = None def _thread_handler(event, out, queue): while not event.isSet(): line = out.readline() if line == '': break queue.put(line) def _gather_trial_data(sim_data, net, n_trials, postproc): """Arrange data by trial To be called after simulate(). Returns list of Dipoles, one for each trial, and saves spiking info in net (instance of Network). """ dpls = [] # Create array of equally sampled time points for simulating currents cell_type_names = list(net.cell_types.keys()) cell_response = CellResponse(times=sim_data[0]['times'], cell_type_names=cell_type_names) net.cell_response = cell_response for idx in range(n_trials): # cell response net.cell_response._spike_times.append(sim_data[idx]['spike_times']) net.cell_response._spike_gids.append(sim_data[idx]['spike_gids']) net.cell_response.update_types(net.gid_ranges) net.cell_response._vsoma.append(sim_data[idx]['vsoma']) net.cell_response._isoma.append(sim_data[idx]['isoma']) # extracellular array for arr_name, arr in net.rec_arrays.items(): # voltages is a n_trials x n_contacts x n_samples array arr._data.append(sim_data[idx]['rec_data'][arr_name]) arr._times = sim_data[idx]['rec_times'][arr_name] # dipole dpl = Dipole(times=sim_data[idx]['times'], data=sim_data[idx]['dpl_data']) N_pyr_x = net._params['N_pyr_x'] N_pyr_y = net._params['N_pyr_y'] dpl._baseline_renormalize(N_pyr_x, N_pyr_y) # XXX cf. #270 dpl._convert_fAm_to_nAm() # always applied, cf. #264 if postproc: window_len = net._params['dipole_smooth_win'] # specified in ms fctr = net._params['dipole_scalefctr'] if window_len > 0: # param files set this to zero for no smoothing dpl.smooth(window_len=window_len) if fctr > 0: dpl.scale(fctr) dpls.append(dpl) return dpls def _get_mpi_env(): """Set some MPI environment variables.""" my_env = os.environ.copy() if 'win' not in sys.platform: my_env["OMPI_MCA_btl_base_warn_component_unused"] = '0' if 'darwin' in sys.platform: my_env["PMIX_MCA_gds"] = "^ds12" # open-mpi/ompi/issues/7516 my_env["TMPDIR"] = "/tmp" # open-mpi/ompi/issues/2956 return my_env def run_subprocess(command, obj, timeout, proc_queue=None, *args, **kwargs): """Run process and communicate with it. Parameters ---------- command : list of str | str Command to run as subprocess (see subprocess.Popen documentation). obj : object The object to write to stdin after starting child process with MPI command. timeout : float The number of seconds to wait for a process without output. *args, **kwargs : arguments Additional arguments to pass to subprocess.Popen. Returns ------- child_data : object The data returned by the child process. """ proc_data_bytes = b'' # each loop while waiting will involve two Queue.get() timeouts, each # 0.01s. This caclulation will error on the side of a longer timeout # than is specified because more is done each loop that just Queue.get() timeout_cycles = timeout / 0.02 pickled_obj = base64.b64encode(pickle.dumps(obj)) # non-blocking adapted from https://stackoverflow.com/questions/375427/non-blocking-read-on-a-subprocess-pipe-in-python#4896288 # noqa: E501 out_q = Queue() err_q = Queue() threads_started = False try: proc = Popen(command, stdin=PIPE, stdout=PIPE, stderr=PIPE, *args, **kwargs) # now that the process has started, add it to the queue # used by MPIBackend.terminate() if proc_queue is not None: proc_queue.put(proc) # set up polling first so all of child's stdout/stderr # gets captured event = Event() out_t = Thread(target=_thread_handler, args=(event, proc.stdout, out_q)) err_t = Thread(target=_thread_handler, args=(event, proc.stderr, err_q)) out_t.start() err_t.start() threads_started = True data_received = False sent_network = False count_since_last_output = 0 # loop while the process is running the simulation while True: child_terminated = proc.poll() is not None if not data_received: if _echo_child_output(out_q): count_since_last_output = 0 else: count_since_last_output += 1 # look for data in stderr and print child stdout data_len, proc_data_bytes = _get_data_from_child_err(err_q) if data_len > 0: data_received = True _write_child_exit_signal(proc.stdin) elif child_terminated: # child terminated early, and we already # captured output left in queues warn("Child process failed unexpectedly") kill_proc_name('nrniv') break if not sent_network: # Send network object to child so it can start try: _write_net(proc.stdin, pickled_obj) except BrokenPipeError: # child failed during _write_net(). get the # output and break out of loop on the next # iteration warn("Received BrokenPipeError exception. " "Child process failed unexpectedly") continue else: sent_network = True # This is not the same as "network received", but we # assume it was successful and move on to waiting for # data in the next loop iteration. if child_terminated and data_received: # both exit conditions have been met (also we know that # the network has been sent) break if not child_terminated and \ count_since_last_output > timeout_cycles: warn("Timeout exceeded while waiting for child process output" ". Terminating...") kill_proc_name('nrniv') break except KeyboardInterrupt: warn("Received KeyboardInterrupt. Stopping simulation process...") if threads_started: # stop the threads event.set() # close signal out_t.join() err_t.join() # wait for the process to terminate. we need use proc.communicate to # read any output at its end of life. try: outs, errs = proc.communicate(timeout=1) except TimeoutExpired: proc.kill() # wait for output again after kill signal outs, errs = proc.communicate(timeout=1) sys.stdout.write(outs) sys.stdout.write(errs) if proc.returncode is None: # It's theoretically possible that we have received data # and exited the loop above, but the child process has not # yet terminated. This is unexpected unless KeyboarInterrupt # is caught proc.terminate() try: proc.wait(1) # wait maximum of 1s except TimeoutExpired: warn("Could not kill python subprocess: PID %d" % proc.pid) if not proc.returncode == 0: # simulation failed with a numeric return code raise RuntimeError("MPI simulation failed. Return code: %d" % proc.returncode) child_data = _process_child_data(proc_data_bytes, data_len) # clean up the queue try: proc_queue.get_nowait() except Empty: pass return proc, child_data def _process_child_data(data_bytes, data_len): """Process the data returned by child process. Parameters ---------- data_bytes : str The data bytes Returns ------- data_unpickled : object The unpickled data. """ if not data_len == len(data_bytes): # This is indicative of a failure. For debugging purposes. warn("Length of received data unexpected. Expecting %d bytes, " "got %d" % (data_len, len(data_bytes))) if len(data_bytes) == 0: raise RuntimeError("MPI simulation didn't return any data") # decode base64 byte string try: data_pickled = base64.b64decode(data_bytes, validate=True) except binascii.Error: # This is here for future debugging purposes. Unit tests can't # reproduce an incorrectly padded string, but this has been an # issue before raise ValueError("Incorrect padding for data length %d bytes" % len(data_len) + " (mod 4 = %d)" % (len(data_len) % 4)) # unpickle the data return pickle.loads(data_pickled) def _echo_child_output(out_q): out = '' while True: try: out += out_q.get(timeout=0.01) except Empty: break if len(out) > 0: sys.stdout.write(out) return True return False def _get_data_from_child_err(err_q): err = '' data_length = 0 data_bytes = b'' while True: try: err += err_q.get(timeout=0.01) except Empty: break # check for data signal extracted_data = _extract_data(err, 'data') if len(extracted_data) > 0: # _extract_data only returns data when signals on # both sides were seen err = err.replace('@start_of_data@', '') err = err.replace(extracted_data, '') data_length = _extract_data_length(err, 'data') err = err.replace('@end_of_data:%d@\n' % data_length, '') data_bytes = extracted_data.encode() # print the rest of the child's stderr to our stdout sys.stdout.write(err) return data_length, data_bytes def _has_mpi4py(): """Determine if mpi4py is present.""" try: import mpi4py # noqa except ImportError: return False else: return True def _has_psutil(): """Determine if psutil is present.""" try: import psutil # noqa except ImportError: return False else: return True def requires_mpi4py(function): """Decorator for testing functions that require MPI.""" import pytest try: import mpi4py assert hasattr(mpi4py, '__version__') skip = False except (ImportError, ModuleNotFoundError) as err: if "TRAVIS_OS_NAME" not in os.environ: skip = True else: raise ImportError(err) reason = 'mpi4py not available' return pytest.mark.skipif(skip, reason=reason)(function) def requires_psutil(function): """Decorator for testing functions that require psutil.""" import pytest try: import psutil assert hasattr(psutil, '__version__') skip = False except (ImportError, ModuleNotFoundError) as err: if "TRAVIS_OS_NAME" not in os.environ: skip = True else: raise ImportError(err) reason = 'psutil not available' return pytest.mark.skipif(skip, reason=reason)(function) def _extract_data_length(data_str, object_name): data_len_match = re.search('@end_of_%s:' % object_name + r'(\d+)@', data_str) if data_len_match is not None: return int(data_len_match.group(1)) else: raise ValueError("Couldn't find data length in string") def _extract_data(data_str, object_name): start_idx = 0 end_idx = 0 start_match = re.search('@start_of_%s@' % object_name, data_str) if start_match is not None: start_idx = start_match.end() else: # need start signal return '' end_match = re.search('@end_of_%s:' % object_name + r'\d+@', data_str) if end_match is not None: end_idx = end_match.start() return data_str[start_idx:end_idx] # Next 3 functions are from HNN. Will move here. They require psutil def _kill_procs(procs): """Tries to terminate processes in a list before sending kill signal""" from psutil import wait_procs, NoSuchProcess # try terminate first for p in procs: try: p.terminate() except NoSuchProcess: pass _, alive = wait_procs(procs, timeout=3) # now try kill for p in alive: p.kill() _, alive = wait_procs(procs, timeout=3) return alive def _get_procs_running(proc_name): """Return a list of processes currently running""" from psutil import process_iter process_list = [] for p in process_iter(attrs=["name", "exe", "cmdline"]): if proc_name == p.info['name'] or \ (p.info['exe'] is not None and os.path.basename(p.info['exe']) == proc_name) or \ (p.info['cmdline'] and p.info['cmdline'][0] == proc_name): process_list.append(p) return process_list def kill_proc_name(proc_name): """Make best effort to kill processes Parameters ---------- proc_name : str A string to match process names against and kill all matches Returns ------- killed_procs : bool True if any processes were killed """ killed_procs = False procs = _get_procs_running(proc_name) if len(procs) > 0: running = _kill_procs(procs) if len(running) > 0: if len(running) < len(procs): killed_procs = True pids = [str(proc.pid) for proc in running] warn("Failed to kill nrniv process(es) %s" % ','.join(pids)) else: killed_procs = True return killed_procs def _write_net(stream, pickled_net): stream.flush() stream.write('@start_of_net@') stream.write(pickled_net.decode()) stream.write('@end_of_net:%d@\n' % len(pickled_net)) stream.flush() def _write_child_exit_signal(stream): stream.flush() stream.write('@data_received@\n') stream.flush() class JoblibBackend(object): """The JoblibBackend class. Parameters ---------- n_jobs : int | None The number of jobs to start in parallel. If None, then 1 trial will be started without parallelism Attributes ---------- n_jobs : int The number of jobs to start in parallel """ def __init__(self, n_jobs=1): self.n_jobs = n_jobs print("joblib will run over %d jobs" % (self.n_jobs)) def _parallel_func(self, func): if self.n_jobs != 1: try: from joblib import Parallel, delayed except ImportError: warn('joblib not installed. Cannot run in parallel.') self.n_jobs = 1 if self.n_jobs == 1: my_func = func parallel = list else: parallel = Parallel(self.n_jobs) my_func = delayed(func) return parallel, my_func def __enter__(self): global _BACKEND self._old_backend = _BACKEND _BACKEND = self return self def __exit__(self, type, value, traceback): global _BACKEND _BACKEND = self._old_backend def simulate(self, net, tstop, dt, n_trials, postproc=False): """Simulate the HNN model Parameters ---------- net : Network object The Network object specifying how cells are connected. n_trials : int Number of trials to simulate. tstop : float The simulation stop time (ms). dt : float The integration time step of h.CVode (ms) postproc : bool If False, no postprocessing applied to the dipole Returns ------- dpl: list of Dipole The Dipole results from each simulation trial """ parallel, myfunc = self._parallel_func(_simulate_single_trial) sim_data = parallel(myfunc(net, tstop, dt, trial_idx) for trial_idx in range(n_trials)) dpls = _gather_trial_data(sim_data, net=net, n_trials=n_trials, postproc=postproc) return dpls class MPIBackend(object): """The MPIBackend class. Parameters ---------- n_procs : int | None The number of MPI processes requested by the user. If None, then will attempt to detect number of cores (including hyperthreads) and start parallel simulation over all of them. mpi_cmd : str The name of the mpi launcher executable. Will use 'mpiexec' (openmpi) by default. Attributes ---------- n_procs : int The number of processes MPI will actually use (spread over cores). If 1 is specified or mpi4py could not be loaded, the simulation will be run with the JoblibBackend mpi_cmd : list of str The mpi command with number of procs and options to be passed to Popen expected_data_length : int Used to check consistency between data that was sent and what MPIBackend received. proc_queue : threading.Queue A Queue object to hold process handles from Popen in a thread-safe way. There will be a valid process handle present the queue when a MPI åsimulation is running. """ def __init__(self, n_procs=None, mpi_cmd='mpiexec'): self.expected_data_length = 0 self.proc = None self.proc_queue = Queue() n_logical_cores = multiprocessing.cpu_count() if n_procs is None: self.n_procs = n_logical_cores else: self.n_procs = n_procs # did user try to force running on more cores than available? oversubscribe = False if self.n_procs > n_logical_cores: oversubscribe = True hyperthreading = False if _has_mpi4py() and _has_psutil(): import psutil n_physical_cores = psutil.cpu_count(logical=False) # detect if we need to use hwthread-cpus with mpiexec if self.n_procs > n_physical_cores: hyperthreading = True else: packages = list() if not _has_mpi4py(): packages += ['mpi4py'] if not _has_psutil(): packages += ['psutil'] packages = ' and '.join(packages) warn(f'{packages} not installed. Will run on single processor') self.n_procs = 1 self.mpi_cmd = mpi_cmd if self.n_procs == 1: print("Backend will use 1 core. Running simulation without MPI") return else: print("MPI will run over %d processes" % (self.n_procs)) if hyperthreading: self.mpi_cmd += ' --use-hwthread-cpus' if oversubscribe: self.mpi_cmd += ' --oversubscribe' self.mpi_cmd += ' -np ' + str(self.n_procs) self.mpi_cmd += ' nrniv -python -mpi -nobanner ' + \ sys.executable + ' ' + \ os.path.join(os.path.dirname(sys.modules[__name__].__file__), 'mpi_child.py') # Split the command into shell arguments for passing to Popen if 'win' in sys.platform: use_posix = True else: use_posix = False self.mpi_cmd = shlex.split(self.mpi_cmd, posix=use_posix) def __enter__(self): global _BACKEND self._old_backend = _BACKEND _BACKEND = self return self def __exit__(self, type, value, traceback): global _BACKEND _BACKEND = self._old_backend # always kill nrniv processes for good measure if self.n_procs > 1: kill_proc_name('nrniv') def simulate(self, net, tstop, dt, n_trials, postproc=False): """Simulate the HNN model in parallel on all cores Parameters ---------- net : Network object The Network object specifying how cells are connected. tstop : float The simulation stop time (ms). dt : float The integration time step of h.CVode (ms) n_trials : int Number of trials to simulate. postproc: bool If False, no postprocessing applied to the dipole Returns ------- dpl: list of Dipole The Dipole results from each simulation trial """ # just use the joblib backend for a single core if self.n_procs == 1: return JoblibBackend(n_jobs=1).simulate(net, tstop=tstop, dt=dt, n_trials=n_trials, postproc=postproc) print("Running %d trials..." % (n_trials)) dpls = [] env = _get_mpi_env() self.proc, sim_data = run_subprocess( command=self.mpi_cmd, obj=[net, tstop, dt, n_trials], timeout=30, proc_queue=self.proc_queue, env=env, cwd=os.getcwd(), universal_newlines=True) dpls = _gather_trial_data(sim_data, net, n_trials, postproc) return dpls def terminate(self): """Terminate running simulation on this MPIBackend Safe to call from another thread from the one `simulate_dipole` was called from. """ proc = None try: proc = self.proc_queue.get(timeout=1) except Empty: warn("No currently running process to terminate") if proc is not None: proc.terminate() try: proc.wait(5) # wait maximum of 5s except TimeoutExpired: warn("Could not kill python subprocess: PID %d" % proc.pid)
2.15625
2
Platforms/Web/Processing/Api/Discord/Commands/main.py
HeapUnderfl0w/Phaazebot
0
12793350
from typing import TYPE_CHECKING if TYPE_CHECKING: from Platforms.Discord.main_discord import PhaazebotDiscord from Platforms.Web.index import WebIndex from aiohttp.web import Response, Request from .get import apiDiscordCommandsGet from .create import apiDiscordCommandsCreate from .list import apiDiscordCommandsList from .delete import apiDiscordCommandsDelete from .edit import apiDiscordCommandsEdit from Platforms.Web.Processing.Api.errors import apiMissingValidMethod, apiNotAllowed async def apiDiscordCommands(cls:"WebIndex", WebRequest:Request) -> Response: """ Default url: /api/discord/commands """ PhaazeDiscord:"PhaazebotDiscord" = cls.Web.BASE.Discord if not PhaazeDiscord: return await apiNotAllowed(cls, WebRequest, msg="Discord module is not active") method:str = WebRequest.match_info.get("method", "") if not method: return await apiMissingValidMethod(cls, WebRequest) elif method == "get": return await apiDiscordCommandsGet(cls, WebRequest) elif method == "delete": return await apiDiscordCommandsDelete(cls, WebRequest) elif method == "create": return await apiDiscordCommandsCreate(cls, WebRequest) elif method == "edit": return await apiDiscordCommandsEdit(cls, WebRequest) elif method == "list": return await apiDiscordCommandsList(cls, WebRequest) else: return await apiMissingValidMethod(cls, WebRequest, msg=f"'{method}' is not a known method")
2.59375
3