max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
python/generator_conf.py
chakpongchung/katana
64
12793451
<reponame>chakpongchung/katana import re from abc import ABCMeta from collections import namedtuple NON_IDENTIFIER_CHAR_RE = re.compile(r"[^a-zA-Z0-9]") def identifier_for_string(s): return NON_IDENTIFIER_CHAR_RE.sub("_", s) class TypeInstantiation(metaclass=ABCMeta): element_c_type: str element_py_type: str by_pointer: bool fixed_dtype: str or None type_key: str def dtype(self, dynamic): return "np.dtype({})".format(self.fixed_dtype or dynamic) @property def type_scab(self): return identifier_for_string(self.element_c_type) class PrimitiveTypeInstantiation( namedtuple("PrimitiveTypeInstantiation", ["element_c_type", "element_py_type",]), TypeInstantiation, ): @property def fixed_dtype(self): return self.element_py_type @property def by_pointer(self): return False @property def type_key(self): return self.element_py_type primitive_type_instantiations = [ PrimitiveTypeInstantiation("uint64_t", "np.uint64"), PrimitiveTypeInstantiation("int64_t", "int"), PrimitiveTypeInstantiation("uint32_t", "np.uint32"), PrimitiveTypeInstantiation("int32_t", "np.int32"), PrimitiveTypeInstantiation("double", "float"), PrimitiveTypeInstantiation("float", "np.float32"), ] class OpaqueTypeInstantiation(namedtuple("OpaqueTypeInstantiation", ["size"]), TypeInstantiation): @property def fixed_dtype(self): return None @property def element_c_type(self): return "Opaque{}".format(self.size) @property def element_py_type(self): return "StructInstance" @property def by_pointer(self): return True @property def type_key(self): return self.size opaque_type_instantiations = [OpaqueTypeInstantiation(s) for s in [8, 16, 32, 48, 64, 128]] type_instantiations = primitive_type_instantiations + opaque_type_instantiations type_instantiation_imports = """ import numpy as np from libc.stdint cimport int64_t, uint64_t, int32_t, uint32_t """ exports = dict( primitive_type_instantiations=primitive_type_instantiations, opaque_type_instantiations=opaque_type_instantiations, type_instantiations=type_instantiations, type_instantiation_imports=type_instantiation_imports, )
2.640625
3
aspen_ssh/parser/exceptions.py
thinkwelltwd/aspen_ssh
1
12793452
<reponame>thinkwelltwd/aspen_ssh class SSHCertificateParserError(Exception): pass class UnsupportedKeyTypeError(SSHCertificateParserError): """This key has a type which we do not know how to parse""" class InputTooShortError(SSHCertificateParserError): pass
2.4375
2
src/auto_change.py
yoland68/junit-auto-migrate
0
12793453
<reponame>yoland68/junit-auto-migrate #!/usr/bin/env python import parser import chrome_convert_agents import webview_convert_agents import instrumentation_convert_agents import test_base_convert_agent import content_convert_agents import logging import argparse import os import sys _TEST_AGENT_DICT = { "chrome-base-test-case": chrome_convert_agents.ChromeActivityBaseCaseAgent, "chrome-permission-test": chrome_convert_agents.PermissionTestAgent, "chrome-tabbed-test": chrome_convert_agents.ChromeTabbedTestAgent, "instrumentation": instrumentation_convert_agents.InstrumentationTestCaseAgent, "multiactivity-test": chrome_convert_agents.MultiActivityTestAgent, "vr-test": chrome_convert_agents.ChromeVrTestAgent, "payment-test": chrome_convert_agents.PaymentRequestAgent, "mojo-test": chrome_convert_agents.MojoTestAgent, "cast-test": chrome_convert_agents.CastTestAgent, "provider-test": chrome_convert_agents.ProviderTestAgent, "customtabs-test": chrome_convert_agents.CustomTabActivityTestAgent, "notification-test": chrome_convert_agents.NotificationTestAgent, #"download-test": chrome_convert_agents.DownloadTestAgent, "bottom-sheet-test": chrome_convert_agents.BottomSheetTestAgent, "connectivity-checker-test": content_convert_agents.ConnectivityCheckerTestAgent, "tab-model-selector-observer-test": content_convert_agents.SelectorObserverTest, "native-library-test": content_convert_agents.NativeLibraryTestAgent, "content-shell-test": content_convert_agents.ContentShellTestAgent, "dialog-overlay-impl-test": content_convert_agents.DialogOverlayImplTestAgent, "webview-test": webview_convert_agents.WebViewTestAgent, "cronet-test": chrome_convert_agents.CronetTestAgent, "partner-unit-test": chrome_convert_agents.PartnerUnitTestAgent, "sync-test": chrome_convert_agents.SyncTestAgent, "partner-integration-test": chrome_convert_agents.PartnerIntegrationTestAgent, "crash-test": chrome_convert_agents.CrashTestAgent, } _AGENT_DICT = _TEST_AGENT_DICT.copy() _AGENT_DICT.update({"base-class": test_base_convert_agent.BaseCaseAgent}) def ConvertDirectory(directory, java_parser, agent_strings, save_as_new=False, logging_level=logging.WARNING, use_base_class=False): agent = None for (dirpath, _, filenames) in os.walk(directory): for filename in filenames: whole_path = os.path.join(dirpath, filename) agent = ConvertFile( java_parser, agent_strings, whole_path, save_as_new, previous_agent=agent, logging_level=logging_level, use_base_class=use_base_class) def ConvertFile(java_parser, agent_strings, whole_path, save_as_new, previous_agent=None, logging_level=logging.WARNING, use_base_class=False): logger = SetLogger(logging_level, whole_path) agent = previous_agent for agent_class in [_AGENT_DICT[i] for i in agent_strings if _AGENT_DICT[i].filename_match(whole_path)]: agent = agent_class(java_parser, whole_path, logger=logger, agent=agent, save_as_new=save_as_new, use_base_class=use_base_class) if agent._failed_to_parse: continue if use_base_class or not agent.skip(): agent.actions() return agent logger.error('Failed to match to any agent') def SetLogger(logging_level, filepath): log = logging.getLogger() filename = filepath.split('/')[-1] f = logging.Formatter( filename + ':%(levelname)s:%(module)s:%(lineno)s: %(message)s') fh = logging.StreamHandler() fh.setLevel(logging_level) fh.setFormatter(f) log.propagate = False if len(log.handlers) > 0: log.removeHandler(log.handlers[0]) log.setLevel(logging_level) log.addHandler(fh) return log def CreateJavaParser(logging_level=logging.ERROR): logger = logging.getLogger('parser_logger') logger.setLevel(logging_level) return parser.Parser(logger) def main(): argument_parser = argparse.ArgumentParser() argument_parser.add_argument( '-u', '--use-base-class', help='Use another base class to convert', default=False, action='store_true') argument_parser.add_argument( '--no-skip', help='Do not skip the specified file', action='store_true', default=False) argument_parser.add_argument('-f', '--java-file', help='Java file') argument_parser.add_argument('-d', '--directory', help='Directory where all java file lives') argument_parser.add_argument('-v', '--verbose', help='Log info', action='store_true') argument_parser.add_argument( '-l', '--list-agents', help='List all available agents', action='store_true', default=False) argument_parser.add_argument('-n', '--save-as-new', default=False, action='store_true', help='Save as a new file') argument_parser.add_argument( '-a', '--agent', help='Specify the agent for the current file', default='all') arguments = argument_parser.parse_args(sys.argv[1:]) logging_level = logging.INFO if arguments.verbose: logging_level = logging.DEBUG if arguments.list_agents: print('Available agents and description:\n') for agent, agent_class in _AGENT_DICT.iteritems(): print("%25s:\t%s" % (agent, agent_class.__doc__.strip())) return if arguments.java_file and arguments.directory: raise Exception( 'Can not specify --jave-file and --directory at the same time') if arguments.agent == 'all': agents = _TEST_AGENT_DICT.keys() else: agents = [arguments.agent] java_parser = CreateJavaParser() if arguments.java_file: ConvertFile(java_parser, agents, arguments.java_file, arguments.save_as_new, logging_level=logging_level, use_base_class=arguments.use_base_class) else: ConvertDirectory( arguments.directory, java_parser, agents, save_as_new=arguments.save_as_new, logging_level=logging_level, use_base_class=arguments.use_base_class) if __name__ == '__main__': main()
1.9375
2
jshbot/plugins.py
AmberHarris/Shaco
0
12793454
import asyncio import logging import importlib.util import os.path import sys # Debug import traceback from jshbot import commands from jshbot.exceptions import ErrorTypes, BotException EXCEPTION = 'Plugins' def add_plugins(bot): """ Gets a list of all of the plugins and stores them as a key/value pair of the plugin name and the module itself (renamed to plugin for the user). In addition, this also sets the commands given by each plugin. """ directory = '{}/plugins'.format(bot.path) data_directory = '{}/plugins/plugin_data'.format(bot.path) if os.path.isdir(data_directory): logging.debug("Setting plugin_data as plugin import path.") sys.path.append(data_directory) try: plugins_list = os.listdir(directory) except FileNotFoundError: raise BotException( EXCEPTION, "Plugins directory not found", error_type=ErrorTypes.STARTUP) valid_plugins = {} # Add base plugin from jshbot import base plugin_commands = base.get_commands() commands.add_commands(bot, plugin_commands, base) valid_plugins['base'] = [base, plugin_commands] # Get plugin commands for plugin in plugins_list: if (plugin[0] in ('.', '_') or plugin == 'base' or not plugin.endswith('.py')): continue try: spec = importlib.util.spec_from_file_location( plugin, '{}/{}'.format(directory, plugin)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) plugin_commands = module.get_commands() commands.add_commands(bot, plugin_commands, module) except Exception as e: traceback.print_exc() raise BotException( EXCEPTION, "Failed to import external plugin", plugin, e=e, error_type=ErrorTypes.STARTUP) else: logging.debug("Adding plugin {}".format(plugin)) valid_plugins[plugin] = [module, plugin_commands] if len(valid_plugins): logging.debug("Loaded {} plugin(s)".format(len(valid_plugins))) bot.plugins = valid_plugins def broadcast_event(bot, event, *args, **kwargs): """ Loops through all of the plugins and looks to see if the event index specified is associated it. If it is, call that function with args. """ for plugin in bot.plugins.values(): function = getattr(plugin[0], event, None) if function: try: asyncio.ensure_future(function(bot, *args, **kwargs)) except TypeError as e: logging.error(traceback.format_exc()) logging.error("Bypassing event error: " + e)
2.296875
2
DailyProgrammer/DP20131128C.py
DayGitH/Python-Challenges
2
12793455
<gh_stars>1-10 """ [11/28/13] Challenge #137 [Intermediate / Hard] Banquet Planning https://www.reddit.com/r/dailyprogrammer/comments/1rnrs2/112813_challenge_137_intermediate_hard_banquet/ # [](#IntermediateIcon) *(Intermediate)*: Banquet Planning You and your friends are planning a big banquet, but need to figure out the order in which food will be served. Some food, like a turkey, have to be served after appetizers, but before desserts. Other foods are more simple, like a pecan pie, which can be eaten any time after the main meal. Given a list of foods and the order-relationships they have, print the banquet schedule. If a given food item cannot be placed in this schedule, write an error message for it. # Formal Inputs & Outputs ## Input Description On standard console input, you will be given two space-delimited integers, N and M. N is the number of food items, while M is the number of food-relationships. Food-items are unique single-word lower-case names with optional underscores (the '_' character), while food-relationships are two food items that are space delimited. All food-items will be listed first on their own lines, then all food-relationships will be listed on their own lines afterwards. A food-relationship is where the first item must be served before the second item. Note that in the food-relationships list, some food-item names can use the [wildcard-character](http://en.wikipedia.org/wiki/Wildcard_character) '\*'. You must support this by expanding the rule to fulfill any combination of strings that fit the wildcard. For example, using the items from Sample Input 2, the rule "turkey\* \*_pie" expands to the following four rules: turkey almond_pie turkey_stuffing almond_pie turkey pecan_pie turkey_stuffing pecan_pie A helpful way to think about the wildcard expansion is to use the phrase "any item A must be before any item B". An example would be the food-relationship "\*pie coffee", which can be read as "any pie must be before coffee". Some orderings may be ambiguous: you might have two desserts before coffee, but the ordering of desserts may not be explicit. In such a case, group the items together. ## Output Description Print the correct order of food-items with a preceding index, starting from 1. If there are ambiguous ordering for items, list them together on the same line as a comma-delimited array of food-items. Any items that do not have a relationship must be printed with a warning or error message. # Sample Inputs & Outputs ## Sample Input 1 3 3 salad turkey dessert salad dessert turkey dessert salad turkey ## Sample Output 1 1. salad 2. turkey 3. dessert ## Sample Input 2 8 5 turkey pecan_pie salad crab_cakes almond_pie rice coffee turkey_stuffing turkey_stuffing turkey turkey* *_pie *pie coffee salad turkey* crab_cakes salad ## Sample Output 2 1. crab_cakes 2. salad 3. turkey_stuffing 4. turkey 5. almond_pie, pecan_pie 6. coffee Warning: Rice does not have any ordering. # Author's Note: This challenge has some subtle ordering logic that might be hard to understand at first. Work through sample data 2 by hand to better understand the ordering rules before writing code. Make sure to expand all widecard rules as well. """ def main(): pass if __name__ == "__main__": main()
3.9375
4
z3py/examples/fixedpoint.3.py
rainoftime/rainoftime.github.io
1
12793456
fp = Fixedpoint() fp.set(engine='datalog') s = BitVecSort(3) edge = Function('edge', s, s, BoolSort()) path = Function('path', s, s, BoolSort()) a = Const('a',s) b = Const('b',s) c = Const('c',s) fp.register_relation(path,edge) fp.declare_var(a,b,c) fp.rule(path(a,b), edge(a,b)) fp.rule(path(a,c), [edge(a,b),path(b,c)]) v1 = BitVecVal(1,s) v2 = BitVecVal(2,s) v3 = BitVecVal(3,s) v4 = BitVecVal(4,s) fp.fact(edge(v1,v2)) fp.fact(edge(v1,v3)) fp.fact(edge(v2,v4)) print "current set of rules", fp print fp.query(path(v1,v4)), "yes we can reach v4 from v1" print fp.query(path(v3,v4)), "no we cannot reach v4 from v3"
2.53125
3
src/neon/frontend/utils.py
MUTTERSCHIFF/ngraph-neon
13
12793457
<filename>src/neon/frontend/utils.py from __future__ import absolute_import import neon as ng from .axis import ax def make_convolution_placeholder(shape=None): """ Create a placeholder op for inputs to a convolution layer Arguments: shape (tuple): The desired shape of the placeholder, with axes in the order of C, D, H, W, N Returns: 5-D placeholder op """ H = ng.make_axis(name="H", docstring="Height") W = ng.make_axis(name="W", docstring="Width") D = ng.make_axis(name="D", docstring="Depth") C = ng.make_axis(name="C", docstring="Channel") x = ng.placeholder(axes=ng.make_axes([C, D, H, W, ax.N])) if shape is not None: x.axes.set_shape(shape) return x def get_function_or_class_name(obj): if hasattr(obj, "__name__"): name = obj.__name__ elif callable(obj): name = type(obj).__name__ else: name = None return name
2.9375
3
wildlifecompliance/migrations/0125_auto_20190228_1127.py
preranaandure/wildlifecompliance
1
12793458
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2019-02-28 03:27 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('wildlifecompliance', '0124_auto_20190228_1035'), ] operations = [ migrations.RemoveField( model_name='application', name='proposed_decline_status', ), migrations.RemoveField( model_name='application', name='proposed_issuance_licence', ), ]
1.273438
1
environments/inmoov/inmoov_client.py
BillChan226/Robotic
3
12793459
import zmq from zmq import ssh import numpy as np from environments.inmoov.inmoov_p2p_client_ready import InmoovGymEnv from .inmoov_server import server_connection, client_ssh_connection, client_connection SERVER_PORT = 7777 HOSTNAME = 'localhost' def send_array(socket, A, flags=0, copy=True, track=False): """send a numpy array with metadata""" md = dict( dtype = str(A.dtype), shape = A.shape, ) socket.send_json(md, flags|zmq.SNDMORE) return socket.send(A, flags, copy=copy, track=track) def test_inmoov_gym(): while True: k = input() try: # time.sleep(0.5) action = np.zeros(shape=(joints_num,)) signal = k.split() joint, move = int(signal[0]), float(signal[1]) action[joint] = move robot.step(action) except: continue # robot.step() if __name__ == "__main__": socket = server_connection() robot = InmoovGymEnv(debug_mode=True, positional_control=True) init_pose = robot._inmoov.get_joints_pos() joints_num = len(init_pose) while True: msg = socket.recv_json() command = msg["command"] if command == "position": data = robot.server_step(msg[command]) joint_state, reward, done, infos, px, end_position = data send_array(socket, joint_state, flags=0, copy=True, track=False) send_array(socket, np.array(reward), flags=0, copy=True, track=False) send_array(socket, np.array(done), flags=0, copy=True, track=False) send_array(socket, px, flags=0, copy=True, track=False) send_array(socket, end_position, flags=0, copy=True, track=False) print("message sent") elif command == "action": print(1) elif command == "done": print(2) elif command == "reset": print(3)
2.296875
2
PHY407/gaussxw.py
ngrisouard/TenureApplicationCode
1
12793460
<filename>PHY407/gaussxw.py from pylab import * def gaussxw(N): # Initial approximation to roots of the Legendre polynomial a = linspace(3,4*N-1,N)/(4*N+2) x = cos(pi*a+1/(8*N*N*tan(a))) # Find roots using Newton's method epsilon = 1e-15 delta = 1.0 while delta>epsilon: p0 = ones(N,float) p1 = copy(x) for k in range(1,N): p0,p1 = p1,((2*k+1)*x*p1-k*p0)/(k+1) dp = (N+1)*(p0-x*p1)/(1-x*x) dx = p1/dp x -= dx delta = max(abs(dx)) # Calculate the weights w = 2*(N+1)*(N+1)/(N*N*(1-x*x)*dp*dp) return x,w def gaussxwab(N,a,b): x,w = gaussxw(N) return 0.5*(b-a)*x+0.5*(b+a),0.5*(b-a)*w
2.609375
3
第11章/program/baidu/pipelines.py
kingname/SourceCodeOfBook
274
12793461
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrapy.conf import settings class BaiduPipeline(object): def __init__(self): host = settings['MONGODB_HOST'] port = settings['MONGODB_PORT'] db_name = settings['MONGODB_DBNAME'] client = pymongo.MongoClient(host=host, port=port) db = client[db_name] self.post = db[settings['MONGODB_DOCNAME']] def process_item(self, item, spider): person_info = dict(item) self.post.insert(person_info) return item
2.390625
2
surftrace/execCmd.py
aliyun/surftrace
32
12793462
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: execCmd Description : Author : liaozhaoyan date: 2022/3/19 ------------------------------------------------- Change Activity: 2022/3/19: ------------------------------------------------- """ __author__ = 'liaozhaoyan' import os import sys import shlex from subprocess import PIPE, Popen from threading import Thread import select from .surfException import FileNotExistException ON_POSIX = 'posix' in sys.builtin_module_names class CasyncPipe(Thread): def __init__(self, f, func): if not os.path.exists(f): FileNotExistException("%s is not exist." % f) self.__callBack = func super(CasyncPipe, self).__init__() self.daemon = True # thread dies with the program self.__pipe = open(f, 'r') self.__loop = True self.start() def newCb(self, func): self.__callBack = func def run(self): while self.__loop: line = self.__pipe.readline().strip() self.__callBack(line) def terminate(self): self.__loop = False self.join(1) class CexecCmd(object): def __init__(self): pass def cmd(self, cmds): p = Popen(shlex.split(cmds), stdout=PIPE) if sys.version_info.major == 2: return p.stdout.read().strip() else: return p.stdout.read().decode().strip() def system(self, cmds): cmds = cmds.replace('\0', '').strip() return os.popen(cmds).read(8192) class CasyncCmdQue(object): def __init__(self, cmd): super(CasyncCmdQue, self).__init__() self.daemon = True # thread dies with the program self.__p = Popen(shlex.split(cmd), stdout=PIPE, stdin=PIPE, close_fds=ON_POSIX) self.__e = select.epoll() self.__e.register(self.__p.stdout.fileno(), select.EPOLLIN) def __del__(self): self.__p.kill() def write(self, cmd): try: self.__p.stdin.write(cmd.encode()) self.__p.stdin.flush() except IOError: return -1 def writeLine(self, cmd): self.write(cmd + "\n") def read(self, tmout=0.2, l=16384): while True: es = self.__e.poll(tmout) if not es: return "" for f, e in es: if e & select.EPOLLIN: if sys.version_info.major == 2: s = os.read(f, l) else: s = os.read(f, l).decode() return s def readw(self, want, tries=100): i = 0 r = "" while i < tries: line = self.read() if want in line: return r + line r += line i += 1 raise Exception("get want args %s overtimes" % want) def terminate(self): self.__p.terminate() return self.__p.wait() if __name__ == "__main__": pass
2.484375
2
models/validation/OneOfValidator.py
meguia/virtualroom
1
12793463
<reponame>meguia/virtualroom from .Validator import Validator class OneOfValidator(Validator): def __init__(self, *options): self.options = set(options) def validate(self, value): if value not in self.options: raise ValueError(f'Expected {value!r} to be one of {self.options!r}')
2.96875
3
reactivated/apps.py
silviogutierrez/reactivated
178
12793464
import importlib import json import logging import os import subprocess from typing import Any, Dict, NamedTuple, Tuple from django.apps import AppConfig from django.conf import settings from . import ( definitions_registry, extract_views_from_urlpatterns, global_types, template_registry, type_registry, value_registry, ) from .serialization import create_schema logger = logging.getLogger("django.server") def get_urls_schema() -> Dict[str, Any]: urlconf = importlib.import_module(settings.ROOT_URLCONF) urlpatterns = urlconf.urlpatterns # type: ignore[attr-defined] from django.urls import converters from django.urls.resolvers import RoutePattern converter_mapping = { converters.IntConverter: "number", converters.StringConverter: "string", converters.UUIDConverter: "string", converters.SlugConverter: "string", converters.PathConverter: "string", } urls = extract_views_from_urlpatterns(urlpatterns) # type: ignore[no-untyped-call] reverse = {} for _, regex, name, pattern in urls: if not isinstance(pattern, RoutePattern): continue reverse[name or regex] = { "route": f"/{regex}", "args": { arg_name: converter_mapping.get(arg_converter.__class__, "string") for arg_name, arg_converter in pattern.converters.items() }, } return reverse def get_types_schema() -> Any: """ The package json-schema-to-typescript does expose a way to automatically export any interface it sees. However, this can bloat our generated files. Instead, while creating the schema, we occasionally run into types that we want available globally but are not directly referenced by templates. These aren't exported by `json-schem-to-typescript` because they're referenced using `tsType`, so the libraary is unaware of their usage. So we register them in `globals` and force `json-schema-to-typescript` to expose them. We can't just add these types to the `type_registry` because that's only parsed once when generating the parent tuple. We could explore doing two passes in the future. See `unreachableDefinitions` in json-schema-to-typescript """ type_registry["globals"] = Any # type: ignore[assignment] context_processors = [] from .serialization.context_processors import create_context_processor_type for engine in settings.TEMPLATES: if engine["BACKEND"] == "reactivated.backend.JSX": context_processors.extend(engine["OPTIONS"]["context_processors"]) # type: ignore[index] type_registry["Context"] = create_context_processor_type(context_processors) ParentTuple = NamedTuple("ParentTuple", type_registry.items()) # type: ignore[misc] parent_schema, definitions = create_schema(ParentTuple, definitions_registry) definitions_registry.update(definitions) return { "definitions": definitions, **{ **definitions["reactivated.apps.ParentTuple"], "properties": { **definitions["reactivated.apps.ParentTuple"]["properties"], "globals": { "type": "object", "additionalProperties": False, "required": list(global_types.keys()), "properties": global_types, }, }, }, } def get_templates() -> Dict[str, Tuple[Any]]: return template_registry def get_values() -> Dict[str, Any]: return value_registry def get_schema() -> str: schema = { "urls": get_urls_schema(), "templates": get_templates(), "types": get_types_schema(), "values": get_values(), } return json.dumps(schema, indent=4) class ReactivatedConfig(AppConfig): name = "reactivated" def ready(self) -> None: """ Django's dev server actually starts twice. So we prevent generation on the first start. TODO: handle noreload. """ schema = get_schema() if ( os.environ.get("WERKZEUG_RUN_MAIN") == "true" or os.environ.get("RUN_MAIN") == "true" ): # Triggers for the subprocess of the dev server after restarts or initial start. pass is_server_started = "DJANGO_SEVER_STARTING" in os.environ if is_server_started is False: os.environ["DJANGO_SEVER_STARTING"] = "true" return generate_schema(schema) def generate_schema(schema: str, skip_cache: bool = False) -> None: """ For development usage only, this requires Node and Python installed You can use this function for your E2E test prep. """ logger.info("Generating interfaces and client side code") encoded_schema = schema.encode() import hashlib digest = hashlib.sha1(encoded_schema).hexdigest().encode() if skip_cache is False and os.path.exists("client/generated/index.tsx"): with open("client/generated/index.tsx", "r+b") as existing: already_generated = existing.read() if digest in already_generated: logger.info("Skipping generation as nothing has changed") return #: Note that we don't pass the file object to stdout, because otherwise # webpack gets confused with the half-written file when we make updates. # Maybe there's a way to force it to be a single atomic write? I tried # open('w+b', buffering=0) but no luck. process = subprocess.Popen( ["node", "./node_modules/reactivated/generator.js"], stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) out, error = process.communicate(encoded_schema) os.makedirs("client/generated", exist_ok=True) with open("client/generated/index.tsx", "w+b") as output: output.write(b"// Digest: %s\n" % digest) output.write(out) logger.info("Finished generating.")
2.140625
2
tests/keypresses.py
nateonguitar/PythonConsoleGameEngine
1
12793465
import threading from pynput import keyboard class KeyPresses(): def __init__(self): self.keep_from_dying_thread = None self.holding_shift = False self.key_listener = keyboard.Listener(on_press=self.on_keydown, on_release=self.on_keyup) self.key_listener.start() def on_keydown(self, key: keyboard.Key): char = hasattr(key, 'char') if char: if self.holding_shift and key.char.lower() == 'b': print('Shift B') else: if key == keyboard.Key.esc: self.key_listener.stop() self.keep_from_dying_thread.cancel() if key == keyboard.Key.shift: self.holding_shift = True def on_keyup(self, key: keyboard.Key): if key == keyboard.Key.shift: self.holding_shift = False def keep_from_dying(self): self.keep_from_dying_thread = threading.Timer(1000000, lambda : None) self.keep_from_dying_thread.start() k = KeyPresses() k.keep_from_dying()
3.25
3
Plot3D.py
MohFarahani/dance_generator
1
12793466
<filename>Plot3D.py import dataclasses from typing import List, Mapping, Optional, Tuple, Union from model_setup import Model_Setup import matplotlib.pyplot as plt import pandas as pd import imageio from pathlib import Path import os import cv2 NUM_COORDS = 33 WHITE_COLOR = (224, 224, 224) BLACK_COLOR = (0, 0, 0) RED_COLOR = (0, 0, 255) GREEN_COLOR = (0, 128, 0) BLUE_COLOR = (255, 0, 0) _PRESENCE_THRESHOLD = 0.5 _VISIBILITY_THRESHOLD = 0.5 _RGB_CHANNELS = 3 class Landmark: def __init__(self, x=None, y=None, z=None, visibility=None): self.x = None self.y = None self.z = None self.visibility = None class Landmark_list: def __init__(self, config): self.config = config self.list_size = self.config.NUM_COORDS self.landmark_list = [] for i in range(self.list_size): obj = Landmark() self.landmark_list.append(obj) self.Min_Max_axis = { "x_min": None, "x_max": None, "y_min": None, "y_max": None, "z_min": None, "z_max": None, } def load_xyz(self, x, y, z, visibility=None): for i, landmark in enumerate(self.landmark_list): self.landmark_list[i].x = x[i] self.landmark_list[i].y = y[i] self.landmark_list[i].z = z[i] if visibility != None: self.landmark_list[i].visibility = visibility[i] def load_df(self, df): x = df.loc[:, df.columns.str.startswith("x")].to_numpy().flatten() y = df.loc[:, df.columns.str.startswith("y")].to_numpy().flatten() z = df.loc[:, df.columns.str.startswith("z")].to_numpy().flatten() if df.columns.str.startswith("v").any() != False: visibility = df.loc[:, df.columns.str.startswith("v")].to_numpy().flatten() self.Min_Max_axis["x_min"] = min(x) self.Min_Max_axis["x_max"] = max(x) self.Min_Max_axis["y_min"] = min(y) self.Min_Max_axis["y_max"] = max(y) self.Min_Max_axis["z_min"] = min(z) self.Min_Max_axis["z_max"] = max(z) if df.columns.str.startswith("v").any(): self.load_xyz(x, y, z, visibility) else: self.load_xyz(x, y, z) def load_csv(self, RESULT_CSV): df = pd.read_csv(RESULT_CSV) self.load_df(df) return df def save_image(config, csv_file, IMAGE_PATH): landmark_list_all = Landmark_list(config) df = landmark_list_all.load_csv(csv_file) landmark_list_all.load_df(df) # Plot every frame index = 0 counter = 0 for i in range(480,len(df)): if index % 1 == 0: landmark_list = Landmark_list(config) df_temp = df.iloc[i, :] x = df_temp[df.columns.str.startswith("x")].to_numpy().flatten() y = df_temp[df.columns.str.startswith("y")].to_numpy().flatten() z = df_temp[df.columns.str.startswith("z")].to_numpy().flatten() visibility = df_temp[df.columns.str.startswith("v")].to_numpy().flatten() landmark_list.load_xyz(x, y, z, visibility) plot_landmarks( landmark_list, config.POSE_CONNECTIONS, counter=counter, IMAGE_PATH=IMAGE_PATH, Min_Max_axis=landmark_list_all.Min_Max_axis, ) counter += 1 index += 1 # Adopt the plot_landmarks from MediaPipe # https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/drawing_utils.py @dataclasses.dataclass class DrawingSpec: # Color for drawing the annotation. Default to the white color. color: Tuple[int, int, int] = WHITE_COLOR # Thickness for drawing the annotation. Default to 2 pixels. thickness: int = 2 # Circle radius. Default to 2 pixels. circle_radius: int = 2 def _normalize_color(color): return tuple(v / 255.0 for v in color) def plot_landmarks( landmark_list, connections: Optional[List[Tuple[int, int]]] = None, counter=None, IMAGE_PATH=None, Min_Max_axis=None, landmark_drawing_spec: DrawingSpec = DrawingSpec(color=RED_COLOR, thickness=5), connection_drawing_spec: DrawingSpec = DrawingSpec(color=BLACK_COLOR, thickness=5), elevation: int = 10, azimuth: int = 10, ): """Plot the landmarks and the connections in matplotlib 3d. Args: landmark_list: A normalized landmark list proto message to be plotted. connections: A list of landmark index tuples that specifies how landmarks to be connected. landmark_drawing_spec: A DrawingSpec object that specifies the landmarks' drawing settings such as color and line thickness. connection_drawing_spec: A DrawingSpec object that specifies the connections' drawing settings such as color and line thickness. elevation: The elevation from which to view the plot. azimuth: the azimuth angle to rotate the plot. Raises: ValueError: If any connetions contain invalid landmark index. """ if not landmark_list: return fig = plt.figure(figsize=(10, 10)) ax = plt.axes(projection="3d") if Min_Max_axis: ax.set_xlim3d(-1 * Min_Max_axis["z_max"], -1 * Min_Max_axis["z_min"]) ax.set_ylim3d(Min_Max_axis["x_min"], Min_Max_axis["x_max"]) ax.set_zlim3d(-1 * Min_Max_axis["y_max"], -1 * Min_Max_axis["y_min"]) ax.view_init(elev=elevation, azim=azimuth) plotted_landmarks = {} for idx, landmark in enumerate(landmark_list.landmark_list): if landmark.visibility and landmark.visibility < _VISIBILITY_THRESHOLD: continue ax.scatter3D( xs=[-landmark.z], ys=[landmark.x], zs=[-landmark.y], color=_normalize_color(landmark_drawing_spec.color[::-1]), linewidth=landmark_drawing_spec.thickness, ) plotted_landmarks[idx] = (-landmark.z, landmark.x, -landmark.y) if connections: num_landmarks = landmark_list.list_size # Draws the connections if the start and end landmarks are both visible. for connection in connections: start_idx = connection[0] end_idx = connection[1] if not (0 <= start_idx < num_landmarks and 0 <= end_idx < num_landmarks): raise ValueError( f"Landmark index is out of range. Invalid connection " f"from landmark #{start_idx} to landmark #{end_idx}." ) if start_idx in plotted_landmarks and end_idx in plotted_landmarks: landmark_pair = [ plotted_landmarks[start_idx], plotted_landmarks[end_idx], ] ax.plot3D( xs=[landmark_pair[0][0], landmark_pair[1][0]], ys=[landmark_pair[0][1], landmark_pair[1][1]], zs=[landmark_pair[0][2], landmark_pair[1][2]], color=_normalize_color(connection_drawing_spec.color[::-1]), linewidth=connection_drawing_spec.thickness, ) plt.savefig(os.path.join(IMAGE_PATH, "fram_sec_{}.png".format(counter)), dpi=50) def save_gif(IMAGE_PATH): # https://medium.com/swlh/python-animated-images-6a85b9b68f86 image_path = Path(IMAGE_PATH) images = list(image_path.glob("*.png")) images.sort(key=lambda x: int(x.split("_")[2].split(".")[0]), reverse=False) image_list = [] for file_name in images: image_list.append(imageio.imread(file_name)) imageio.mimwrite("animated_from_images.gif", image_list) """ from pygifsicle import optimize gif_path = 'animated_from_video.gif'# create a new one optimize(gif_path, 'animated_from_video_optimized.gif')# overwrite the original one optimize(gif_path) """ def save_video(IMAGE_PATH): image_folder = IMAGE_PATH video_name = "video.avi" images = [img for img in os.listdir(image_folder) if img.endswith(".png")] images.sort(key=lambda x: int(x.split("_")[2].split(".")[0]), reverse=False) frame = cv2.imread(os.path.join(image_folder, images[0])) height, width, layers = frame.shape fps = 24 video = cv2.VideoWriter( video_name, cv2.VideoWriter_fourcc(*"DIVX"), fps=fps, frameSize=(width, height) ) for image in images: video.write(cv2.imread(os.path.join(image_folder, image))) cv2.destroyAllWindows() video.release()
2.578125
3
examples/sync_cmdclass_pyproject/sync_cmdclass_pyproject/__init__.py
linshoK/pysen
423
12793467
from typing import Any, Callable, Optional, Sequence, Set, Tuple def foo( a: Any, b: Callable[[], Tuple[int, int, str]], c: Set[str], d: Optional[Sequence[int]] = None, e: Any = None, ) -> None: pass print("Hello world") foo(a=1, b=lambda: (1, 2, "hoge"), c=set(), d=None, e=None)
3.1875
3
tenseal/enc_context.py
rand0musername/TenSEAL
0
12793468
<gh_stars>0 """The Context manages everything related to the encrypted computation, including keys, which optimization should be enabled, and how many threads should run for a parallel computation. """ import multiprocessing from enum import Enum from typing import List, Union from abc import ABC import tenseal as ts class ENCRYPTION_TYPE(Enum): ASYMMETRIC = ts._ts_cpp.ENCRYPTION_TYPE.ASYMMETRIC SYMMETRIC = ts._ts_cpp.ENCRYPTION_TYPE.SYMMETRIC class SCHEME_TYPE(Enum): NONE = ts._ts_cpp.SCHEME_TYPE.NONE BFV = ts._ts_cpp.SCHEME_TYPE.BFV CKKS = ts._ts_cpp.SCHEME_TYPE.CKKS class Key(ABC): """Wrapper class for encryption keys""" def __init__(self, data): self.data = data @property def data( self, ) -> Union[ ts._ts_cpp.PublicKey, ts._ts_cpp.SecretKey, ts._ts_cpp.GaloisKeys, ts._ts_cpp.RelinKeys ]: """Get the wrapped low level key object""" return self._data @data.setter def data( self, value: Union[ ts._ts_cpp.PublicKey, ts._ts_cpp.SecretKey, ts._ts_cpp.GaloisKeys, ts._ts_cpp.RelinKeys ], ): """Set the wrapped low level key object""" native_type = getattr(ts._ts_cpp, self.__class__.__name__) if not isinstance(value, native_type): raise TypeError(f"value must be of type {native_type}") self._data = value @classmethod def _wrap( cls, data: Union[ ts._ts_cpp.PublicKey, ts._ts_cpp.SecretKey, ts._ts_cpp.GaloisKeys, ts._ts_cpp.RelinKeys ], ): """Return a new key object wrapping the low level key object""" return cls(data) # We have a class for every key type, to differentiate between them only class SecretKey(Key): pass class PublicKey(Key): pass class GaloisKeys(Key): pass class RelinKeys(Key): pass class Context: def __init__( self, scheme: SCHEME_TYPE = None, poly_modulus_degree: int = None, plain_modulus: int = None, coeff_mod_bit_sizes: List[int] = [], encryption_type: ENCRYPTION_TYPE = ENCRYPTION_TYPE.ASYMMETRIC, n_threads: int = None, data: ts._ts_cpp.TenSEALContext = None, ): """Construct a context that holds keys and parameters needed for operating encrypted tensors using either BFV or CKKS scheme. Args: scheme : define the scheme to be used, either SCHEME_TYPE.BFV or SCHEME_TYPE.CKKS. poly_modulus_degree: The degree of the polynomial modulus, must be a power of two. plain_modulus: The plaintext modulus. Should not be passed when the scheme is CKKS. coeff_mod_bit_sizes: List of bit size for each coeffecient modulus. Can be an empty list for BFV, a default value will be given. encryption_type : define the encryption type to be used, either ENCRYPTION_TYPE.ASYMMETRIC, or ENCRYPTION_TYPE.SYMMETRIC. n_threads: define number of threads that shall be later used for parallel computation. data: A TenSEALContext to wrap. We won't construct a new object if it's passed. Returns: A Context object. """ # wrapping if data is not None: self.data = data return # constructing a new object if scheme == SCHEME_TYPE.BFV: if plain_modulus is None: raise ValueError("plain_modulus must be provided") elif scheme == SCHEME_TYPE.CKKS: # must be int, but the value doesn't matter for ckks plain_modulus = 0 else: raise ValueError("Invalid scheme type, use either SCHEME_TYPE.BFV or SCHEME_TYPE.CKKS") # We can't pass None here, everything should be set prior to this call if not (isinstance(n_threads, int) and n_threads > 0): n_threads = multiprocessing.cpu_count() self.data = ts._ts_cpp.TenSEALContext.new( scheme.value, poly_modulus_degree, plain_modulus, coeff_mod_bit_sizes, encryption_type.value, n_threads, ) @property def data(self) -> ts._ts_cpp.TenSEALContext: """Get the wrapped low level TenSEALContext object""" return self._data @data.setter def data(self, value: ts._ts_cpp.TenSEALContext): """Set the wrapped low level TenSEALContext object""" native_type = ts._ts_cpp.TenSEALContext if not isinstance(value, native_type): raise TypeError(f"value must be of type {native_type}") self._data = value def copy(self) -> "Context": return self._wrap(self.data.copy()) def __copy__(self) -> "Context": return self.copy() @classmethod def load(cls, data: bytes, n_threads: int = None) -> "Context": """Construct a context from a serialized buffer. Args: data : bytes buffer from the original context. n_threads: define number of threads that shall be later used for parallel computation. Returns: A Context object. """ if n_threads: return cls._wrap(ts._ts_cpp.TenSEALContext.deserialize(data, n_threads)) return cls._wrap(ts._ts_cpp.TenSEALContext.deserialize(data)) def serialize( self, save_public_key: bool = True, save_secret_key: bool = False, save_galois_keys: bool = True, save_relin_keys: bool = True, ) -> bytes: """Serialize the context into a stream of bytes.""" return self.data.serialize( save_public_key, save_secret_key, save_galois_keys, save_relin_keys ) @property def global_scale(self) -> float: return self.data.global_scale @global_scale.setter def global_scale(self, value: float): self.data.global_scale = value @classmethod def _wrap(cls, data: ts._ts_cpp.TenSEALContext) -> "Context": """Return a new Context object wrapping the low level TenSEALContext object""" return cls(data=data) @property def auto_mod_switch(self) -> bool: return self.data.auto_mod_switch @auto_mod_switch.setter def auto_mod_switch(self, value: bool): self.data.auto_mod_switch = value @property def auto_relin(self) -> bool: return self.data.auto_relin @auto_relin.setter def auto_relin(self, value: bool): self.data.auto_relin = value @property def auto_rescale(self) -> bool: return self.data.auto_rescale @auto_rescale.setter def auto_rescale(self, value: bool): self.data.auto_rescale = value def has_galois_keys(self) -> bool: return self.data.has_galois_keys() def galois_keys(self) -> GaloisKeys: return GaloisKeys(self.data.galois_keys()) def generate_galois_keys(self, secret_key: SecretKey = None): if secret_key is None: self.data.generate_galois_keys() elif isinstance(secret_key, SecretKey): self.data.generate_galois_keys(secret_key.data) else: raise TypeError(f"incorrect type: {type(secret_key)} != SecretKey") def has_relin_keys(self) -> bool: return self.data.has_relin_keys() def relin_keys(self) -> RelinKeys: return RelinKeys(self.data.relin_keys()) def generate_relin_keys(self, secret_key: SecretKey = None): if secret_key is None: self.data.generate_relin_keys() elif isinstance(secret_key, SecretKey): self.data.generate_relin_keys(secret_key.data) else: raise TypeError(f"incorrect type: {type(secret_key)} != SecretKey") def has_secret_key(self) -> bool: return self.data.has_secret_key() def secret_key(self) -> SecretKey: return SecretKey(self.data.secret_key()) def has_public_key(self) -> bool: return self.data.has_public_key() def public_key(self) -> PublicKey: return PublicKey(self.data.public_key()) def is_private(self) -> bool: return self.data.is_private() def is_public(self) -> bool: return self.data.is_public() def make_context_public( self, generate_galois_keys: bool = False, generate_relin_keys: bool = False ): """Drop secret part from the context. This is useful before sending the context for remote computation, as we don't want to send the secret-key that can be used to decrypt values. Args: generate_galois_keys: should we generate galois-keys before dropping the secret-key? generate_relin_keys: should we generate relin-keys before dropping the secret-key? """ self.data.make_context_public( generate_galois_keys=generate_galois_keys, generate_relin_keys=generate_relin_keys )
2.46875
2
AmbieNet/users/tests/test_login.py
sansuaza/Backend-AmbieNet
0
12793469
<filename>AmbieNet/users/tests/test_login.py #django from django.test import TestCase from django.urls import reverse, path # Django REST Framework from rest_framework import status from rest_framework.test import APITestCase #Model from AmbieNet.users.models import User, Profile from AmbieNet.posts.models import Post class LoginAPITestCase(APITestCase): """User login test case.""" def setUp(self): """Test case setup, building de instances that are needes in the test case.""" self.user = User.objects.create( username= 'saenzavs', email= '<EMAIL>', password= '<PASSWORD>', phone_number= '31212231232', first_name= 'steven', last_name= 'saenz', ) self.profile = Profile.objects.create( user= self.user, latitude= '1.23', longitude= '1.22' ) self.post = Post.objects.create( user= self.user, profile = self.profile, photo='string', title='Stunami en la casa de saenz', description='se les creció el rio calarca', type_catastrophe='maremoto', latitude='3.2', longitude= '3.4' ) self.data = { 'username' : 'saenzavs', 'password' : '<PASSWORD>' } self.url = '/posts/' def test_persist_user(self): listUser = User.objects.all() self.assertEqual(len(listUser), 1) def test_persist_profile(self): listUser = Profile.objects.all() self.assertEqual(len(listUser), 1) def test_persistence_post(self): post = Post.objects.filter(user= self.user) self.assertIsNotNone(post) def test_filter_post_for_ubication(self): post = Post.objects.filter (latitude = 3.2, longitude= 3.4) self.assertIsNotNone(post) def test_search_users_home (self): post = Post.objects.filter(latitude = 3.2, longitude= 3.4) self.assertIsNotNone(post) def test_search_post_for_type_catastrophe(self): post = Post.objects.filter (type_catastrophe='maremoto') self.assertIsNotNone(post) def test_search_user_for_username(self): user = User.objects.filter(username='saenzavs') self.assertIsNotNone(user) def test_search_post_for_user(self): user = User.objects.get(username='saenzavs') post = Post.objects.get(user=user)
2.796875
3
tests/_testsite/dummyapp01/dummymodule01.py
bastiedotorg/django-precise-bbcode
30
12793470
from precise_bbcode.bbcode.tag import BBCodeTag from precise_bbcode.tag_pool import tag_pool class LoadDummyTag(BBCodeTag): name = 'loaddummy01' definition_string = '[loaddummy01]{TEXT}[/loaddummy01]' format_string = '<loaddummy>{TEXT}</loaddummy>' tag_pool.register_tag(LoadDummyTag)
1.960938
2
importify/__init__.py
litcoderr/loadit
1
12793471
# Copyright 2020 by <NAME>. # Github: https://github.com/litcoderr # All rights reserved. # This file is released under the "MIT License Agreement". # Please see the LICENSE file. from .interface import Serializable
0.902344
1
main.py
Vrim/TicTacToe
0
12793472
<reponame>Vrim/TicTacToe """ Tic Tac Toe Author: <NAME> Date: Oct. 11, 2019 """ from __future__ import annotations from typing import Any, List from Player import Player from TicTac import TicTac import os from AI import AI as ai board: TicTac def main(): mode = _selectMode() if mode == 0: p1 = Player('X', _askName("P1: ")) p2 = Player('O', "AI") elif mode == 1: p1 = Player('X', _askName("P1: ")) p2 = Player('O', _askName("P2: ")) else: p1 = Player('X', "AI 1") p2 = Player('O', "AI 2") board = TicTac(mode, p1, p2) a = False c = '' players = [p1, p2] curr = 0 print(board) while not a: _playTurn(board, mode, players, curr) print(board) a, c = board.checkWin() curr = abs(curr - 1) print("{} Wins".format("Nooone" if c is None else c.name)) def _playTurn(board: TicTac, mode: int, players: List, curr: int) -> None: if mode == 0: if curr == 0: a = False while not a: a = board.place(players[0], _askPlace()) else: x, y = ai(board, players[1]) board.place(players[1], y * 3 + x + 1) elif mode == 1: a = False while not a: a = board.place(players[curr], _askPlace()) else: x, y = ai(board, players[curr]) board.place(players[curr], y * 3 + x + 1) def _askPlace() -> int: a = '' while not a.isdigit() or not int(a) in range(1, 9 + 1): a = input("Spot #: ") return int(a) def _selectMode() -> int: a = '' while not a.isnumeric() or not int(a) in range(3): _clear() a = input("Select gamemode:\n\ 0. One-Player\n\ 1. Two-Player\n\ 2. AI vs AI\n") return int(a) def _askName(prompt: str) -> str: a = '' while len(a) < 1: a = input(prompt) return a def _clear() -> None: """ Clears the console """ os.system('cls' if os.name == 'nt' else 'clear') if __name__ == "__main__": main()
3.453125
3
apps/log_extract/models.py
yiqiwang-17/bk-log
0
12793473
# coding=utf-8 """ Tencent is pleased to support the open source community by making BK-LOG 蓝鲸日志平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-LOG 蓝鲸日志平台 is licensed under the MIT License. License for BK-LOG 蓝鲸日志平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import operator from datetime import datetime from functools import reduce from typing import List from django.db import models from django.db.models import Q from django.utils.translation import ugettext_lazy as _ from apps.utils.log import logger from apps.models import ( OperateRecordModel, SoftDeleteModel, JsonField, MultiStrSplitByCommaFieldText, OperateRecordModelManager, EncryptionField, ) from apps.log_extract.constants import ExtractLinkType, PIPELINE_TIME_FORMAT from pipeline.service import task_service class Strategies(SoftDeleteModel): """用户策略表""" strategy_id = models.AutoField(_("策略ID"), primary_key=True, default=None) bk_biz_id = models.IntegerField(_("业务ID"), db_index=True) strategy_name = models.TextField(_("策略名称")) user_list = MultiStrSplitByCommaFieldText(_("用户ID")) select_type = models.CharField(_("目标选择类型"), max_length=16) modules = JsonField(_("模块列表")) visible_dir = MultiStrSplitByCommaFieldText(_("目录列表")) file_type = MultiStrSplitByCommaFieldText(_("文件类型")) operator = models.CharField(_("作业执行人"), max_length=64, default="") class Meta: ordering = ["-updated_at"] class TasksManager(OperateRecordModelManager): search_fields = ["ip_list", "file_path", "created_by", "remark"] def search(self, keyword): if keyword: filter_query = [Q(**{f"{field}__icontains": keyword}) for field in self.search_fields] filter_q = reduce(operator.or_, filter_query) return self.filter(filter_q) return self class Tasks(OperateRecordModel): """任务记录 一个"下载"行为记作一个"Task" """ objects = TasksManager() task_id = models.AutoField(_("任务记录id"), primary_key=True) bk_biz_id = models.IntegerField(_("业务id"), db_index=True) ip_list = MultiStrSplitByCommaFieldText(_("业务机器ip")) file_path = MultiStrSplitByCommaFieldText(_("文件列表")) filter_type = models.CharField(_("过滤类型"), max_length=16, null=True, blank=True) filter_content = JsonField(_("过滤内容"), null=True, blank=True) download_status = models.CharField(_("当前文件下载状态"), max_length=64, null=True, blank=True) expiration_date = models.DateTimeField(_("任务过期时间"), default=None) pipeline_id = models.CharField(_("流水线ID"), max_length=128, null=True, blank=True, db_index=True) pipeline_components_id = JsonField(_("流水线组件ID"), null=True, blank=True) job_task_id = models.BigIntegerField(_("文件分发ID"), null=True, blank=True) # 调创建上传任务的API cstone_upload_ticket = models.BigIntegerField(_("上传票据"), null=True, blank=True) cstone_upload_random = models.TextField(_("上传随机值"), null=True, blank=True) # 创建中转服务器到云石的上传任务 job_upload_task_id = models.BigIntegerField(_("任务上传ID"), null=True, blank=True) # 查询上传脚本的执行结果, 执行结果里有云石返回的task_id cstone_upload_task_id = models.BigIntegerField(_("云石上传ID"), null=True, blank=True) # 用于查询中转服务器到云石的上传情况 # 云石上待下载的文件路径 cstone_file_path = models.CharField(_("云石文件路径"), default=None, max_length=64, null=True, blank=True) # 等到上传完毕后,调创建下载链接的API cstone_download_task_id = models.BigIntegerField(_("云石任务ID"), null=True, blank=True) cstone_download_bk_biz_id = models.BigIntegerField(_("云石下载业务ID"), null=True, blank=True) cstone_download_ticket = models.BigIntegerField(_("下载票据"), null=True, blank=True) # 根据票据向云石网盘发起下载请求 cstone_download_random = models.TextField(_("下载随机值"), null=True, blank=True) task_process_info = models.TextField(_("任务过程信息"), null=True, blank=True) remark = models.TextField(_("备注"), null=True, blank=True) preview_directory = models.CharField(_("预览目录"), null=True, blank=True, max_length=255) preview_ip = models.TextField(_("预览地址ip"), null=True, blank=True) preview_time_range = models.CharField(_("预览日期"), max_length=10, null=True, blank=True) preview_is_search_child = models.BooleanField(_("预览是否搜索子目录"), default=False, blank=True) preview_start_time = models.CharField(_("预览开始日期"), null=True, blank=True, max_length=20) preview_end_time = models.CharField(_("预览结束日期"), null=True, blank=True, max_length=20) ex_data = JsonField(_("额外数据"), null=True, blank=True) cos_file_name = models.CharField(_("cos对象文件名称"), null=True, blank=True, max_length=255) link_id = models.IntegerField(_("链路id"), null=True, blank=True) class Meta: ordering = ["-created_at"] def get_link_type(self): try: return ExtractLink.objects.get(link_id=self.link_id).link_type except ExtractLink.DoesNotExist: return "" def get_extract(self): from apps.log_extract.handlers.extract import ExtractLinkFactory return ExtractLinkFactory.get_link(self.get_link_type())() def get_link(self): return ExtractLink.objects.filter(link_id=self.link_id).first() def total_elapsed(self): try: task_status = task_service.get_state(self.pipeline_id) except Exception: # 存在多主机,单主机日志下载的情况,因此有可能有些pipeline节点未执行 logger.info("pipeline任务不存在,pipeline_id=>[{}]".format(self.pipeline_id)) return "0s" component_status_list = [] if "activities" not in self.pipeline_components_id: return "0s" for component_id, component_info in self.pipeline_components_id["activities"].items(): # 这里有可能有些pipeline组件并未执行 try: task_status["children"][component_id]["name"] = component_info["name"] component_status_list.append(task_status["children"][component_id]) except KeyError: pass return f"{self._cal_total_time(component_status_list)}s" def _cal_total_time(self, components: List[dict]): return sum( [ ( datetime.strptime(component["finish_time"], PIPELINE_TIME_FORMAT) - datetime.strptime(component["start_time"], PIPELINE_TIME_FORMAT) ).seconds for component in components if component["finish_time"] is not None ] ) total_elapsed.short_description = _("总耗时") def ip_num(self): return len(self.ip_list) ip_num.short_description = _("IP数量") def download_file_detail(self): all_file_size = sum(int(ip.get("all_origin_file_size", 0)) for ip in self.ex_data.values()) all_file_num = sum(int(ip.get("file_count", 0)) for ip in self.ex_data.values()) all_pack_file_size = sum(int(ip.get("all_pack_file_size", 0)) for ip in self.ex_data.values()) ret = [ f"{_('下载文件总大小')}: {all_pack_file_size}kb", f"{_('下载原始文件原始总大小')}: {all_file_size}kb", f"{_('下载文件总数量')}: {all_file_num}", ] return " ".join(ret) download_file_detail.short_description = _("下载文件统计") class ExtractLink(OperateRecordModel): name = models.CharField(_("链路名称"), max_length=255) link_id = models.AutoField(_("链路id"), primary_key=True) link_type = models.CharField(_("链路类型"), max_length=20, default=ExtractLinkType.COMMON.value) operator = models.CharField(_("执行人"), max_length=255) op_bk_biz_id = models.IntegerField(_("执行bk_biz_id")) qcloud_secret_id = EncryptionField(_("腾讯云SecretId"), default="", null=True, blank=True, help_text=_("内网链路不需要填写")) qcloud_secret_key = EncryptionField(_("腾讯云SecretKey"), default="", null=True, blank=True, help_text=_("内网链路不需要填写")) qcloud_cos_bucket = models.CharField( _("腾讯云Cos桶名称"), max_length=255, default="", blank=True, help_text=_("内网链路不需要填写") ) qcloud_cos_region = models.CharField( _("腾讯云Cos区域"), max_length=255, default="", blank=True, help_text=_("内网链路不需要填写") ) is_enable = models.BooleanField(_("是否启用"), default=True) created_at = models.DateTimeField(_("创建时间"), auto_now_add=True, blank=True, db_index=True, null=True) class Meta: verbose_name = _("提取链路 (第一次配置链路之后 需要重新部署saas && 暂时只支持linux及安装了cgwin的系统)") verbose_name_plural = _("提取链路 (第一次配置链路之后 需要重新部署saas && 暂时只支持linux及安装了cgwin的系统)") class ExtractLinkHost(models.Model): target_dir = models.CharField(_("挂载目录"), max_length=255, default="") bk_cloud_id = models.IntegerField(_("主机云区域id")) ip = models.GenericIPAddressField(_("主机ip")) link = models.ForeignKey(ExtractLink, on_delete=models.CASCADE) class Meta: verbose_name = _("链路中转机") verbose_name_plural = _("链路中转机")
1.335938
1
sort_algorithms.py
vsaliievaa/DSA_Lab1
0
12793474
"""sorting algorithms""" def merge(lst1: list, lst2: list) -> list: """Returns two lists merged into one.""" counter = 0 new_list = [] one, two = 0, 0 while one != len(lst1) and two != len(lst2): if lst1[one] <= lst2[two]: new_list.append(lst1[one]) one += 1 else: new_list.append(lst2[two]) two += 1 counter += 1 new_list.extend(lst1[one:]) new_list.extend(lst2[two:]) return (new_list, counter) def merge_sort(lst: list) -> list: """Merge Sort implementation.""" counter = 0 result = [] lst_copy = lst for i in range(len(lst_copy)): result.append([lst_copy[i]]) i = 0 while i < len(result)-1: lst1 = result[i] lst2 = result[i+1] new_list, num = (merge(lst1, lst2)) counter += num result.append(new_list) i += 2 if len(result) != 0: lst_copy[:] = result[-1][:] return (lst_copy, counter) def selection_sort(lst: list) -> list: """Selection Sort implementation.""" length = len(lst) counter = 0 lst_copy = lst for i in range(length - 1): min_index = i for j in range(i + 1, length): counter += 1 if lst_copy[min_index] > lst_copy[j]: min_index = j lst_copy[i], lst_copy[min_index] = lst_copy[min_index], lst_copy[i] return counter def insertion_sort(lst: list) -> list: """Insertion Sort implementation.""" length = len(lst) lst_copy, counter = lst, 0 for i in range(1, length): curr_element = lst_copy[i] idx = i-1 if not (lst_copy[idx] > curr_element and idx >= 0): counter += 1 else: while lst_copy[idx] > curr_element and idx >= 0: counter += 1 lst_copy[idx+1] = lst_copy[idx] idx -= 1 if idx >= 0: counter += 1 lst_copy[idx+1] = curr_element return counter def shell_sort(lst: list): """Shell sort implementation.""" counter = 0 lst_copy = lst length = len(lst_copy) interval = length // 2 while interval > 0: for i in range(interval, length): temp = lst_copy[i] j = i counter += 1 while j >= interval and lst_copy[j-interval] > temp: if lst_copy[j-interval] > temp: counter += 1 lst_copy[j], lst_copy[j - interval] = lst_copy[j-interval], lst_copy[j] j -= interval else: break lst_copy[j] = temp interval = interval // 2 return counter
4.1875
4
src/smtv_api/helpers/file_utils.py
AdamDomagalsky/smtv-micro-scpr
0
12793475
from functools import wraps import os import tempfile import tarfile def TemporaryDirectory(func): '''This decorator creates temporary directory and wraps given fuction''' @wraps(func) def wrapper(*args, **kwargs): cwd = os.getcwd() with tempfile.TemporaryDirectory() as tmp_path: os.chdir(tmp_path) result = func(*args, **kwargs) os.chdir(cwd) return result return wrapper def make_tarfile(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir))
3.46875
3
data/models/simulator/pepsenum.py
SIXMON/peps
5
12793476
from enum import IntEnum from abc import abstractmethod class PepsEnum(IntEnum): @property @abstractmethod def display_text(self): raise NotImplementedError('display_text method not implemented')
3.125
3
mmdet/ops/corner_pool/__init__.py
vanyalzr/mmdetection
274
12793477
<reponame>vanyalzr/mmdetection from .corner_pool import CornerPool __all__ = ['CornerPool']
1.148438
1
panelapp/panels/models/genepanel.py
genomicsengland/panelapp
7
12793478
<filename>panelapp/panels/models/genepanel.py ## ## Copyright (c) 2016-2019 Genomics England Ltd. ## ## This file is part of PanelApp ## (see https://panelapp.genomicsengland.co.uk). ## ## Licensed to the Apache Software Foundation (ASF) under one ## or more contributor license agreements. See the NOTICE file ## distributed with this work for additional information ## regarding copyright ownership. The ASF licenses this file ## to you under the Apache License, Version 2.0 (the ## "License"); you may not use this file except in compliance ## with the License. You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, ## software distributed under the License is distributed on an ## "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY ## KIND, either express or implied. See the License for the ## specific language governing permissions and limitations ## under the License. ## from django.db import models from django.db.models import Sum from django.db.models import Case from django.db.models import When from django.db.models import Value from django.urls import reverse from django.utils.functional import cached_property from model_utils import Choices from model_utils.models import TimeStampedModel from .panel_types import PanelType class GenePanelManager(models.Manager): def get_panel(self, pk): if pk.isdigit(): return super().get_queryset().get(pk=pk) else: return super().get_queryset().get(old_pk=pk) def get_active_panel(self, pk): return self.get_panel(pk).active_panel class GenePanel(TimeStampedModel): STATUS = Choices("promoted", "public", "retired", "internal", "deleted") old_pk = models.CharField( max_length=24, null=True, blank=True, db_index=True ) # Mongo ObjectID hex string name = models.CharField(max_length=255, db_index=True) status = models.CharField( choices=STATUS, default=STATUS.internal, max_length=36, db_index=True ) types = models.ManyToManyField(PanelType) objects = GenePanelManager() def __str__(self): ap = self.active_panel return "{} version {}.{}".format(self.name, ap.major_version, ap.minor_version) @property def unique_id(self): return self.old_pk if self.old_pk else str(self.pk) def approve(self): self.status = GenePanel.STATUS.public self.save() def is_approved(self): return self.status in [GenePanel.STATUS.public, GenePanel.STATUS.promoted] def is_public(self): return self.status in [GenePanel.STATUS.public, GenePanel.STATUS.promoted] def is_deleted(self): return self.status == GenePanel.STATUS.deleted def reject(self): self.status = GenePanel.STATUS.internal self.save() def get_absolute_url(self): return reverse("panels:detail", args=(self.pk,)) def _prepare_panel_query(self): """Returns a queryset for all snapshots ordered by version""" return ( self.genepanelsnapshot_set.prefetch_related("panel", "level4title") .annotate( number_of_green_genes=Sum( Case( When( genepanelentrysnapshot__saved_gel_status__gt=3, then=Value(1), ), default=Value(0), output_field=models.IntegerField(), ) ), number_of_amber_genes=Sum( Case( When(genepanelentrysnapshot__saved_gel_status=2, then=Value(1)), default=Value(0), output_field=models.IntegerField(), ) ), number_of_red_genes=Sum( Case( When(genepanelentrysnapshot__saved_gel_status=1, then=Value(1)), default=Value(0), output_field=models.IntegerField(), ) ), number_of_gray_genes=Sum( Case( When(genepanelentrysnapshot__saved_gel_status=0, then=Value(1)), default=Value(0), output_field=models.IntegerField(), ) ), ) .order_by("-major_version", "-minor_version", "-modified", "-pk") ) def clear_cache(self): if self.active_panel: del self.__dict__["active_panel"] @cached_property def active_panel(self): """Return the panel with the largest version""" return self.genepanelsnapshot_set.order_by( "-major_version", "-minor_version", "-modified", "-pk" ).first() @cached_property def active_panel_extra(self): """Return the panel with the largest version and related info""" return ( self.genepanelsnapshot_set.prefetch_related( "panel", "level4title", "genepanelentrysnapshot_set", "genepanelentrysnapshot_set__tags", "genepanelentrysnapshot_set__evidence", "genepanelentrysnapshot_set__gene_core", "genepanelentrysnapshot_set__evaluation__comments", ) .order_by("-major_version", "-minor_version", "-modified", "-pk") .first() ) def get_panel_version(self, version): """Get a specific version. Version argument should be a string""" major_version, minor_version = version.split(".") return ( self._prepare_panel_query() .filter(major_version=int(major_version), minor_version=int(minor_version)) .first() ) def add_activity(self, user, text, entity=None): """Adds activity for this panel""" self.active_panel.add_activity(user, text)
1.804688
2
series_tiempo_ar_api/apps/api/tests/endpoint_tests/pagination_tests.py
datosgobar/series-tiempo-ar-api
28
12793479
from django.urls import reverse from series_tiempo_ar_api.apps.api.tests.endpoint_tests.endpoint_test_case import EndpointTestCase class PaginationTests(EndpointTestCase): def test_get_single_value(self): resp = self.client.get(reverse('api:series:series'), data={'ids': self.increasing_month_series_id, 'limit': 1}) self.assertEqual(len(resp.json()['data']), 1) def test_get_five_offset_values(self): data = {'ids': self.increasing_month_series_id, 'start': 5, 'limit': 5} resp = self.run_query(data) data = [ ['1999-06-01', 105], ['1999-07-01', 106], ['1999-08-01', 107], ['1999-09-01', 108], ['1999-10-01', 109], ] self.assertEqual(resp['data'], data)
2.203125
2
vae/main.py
fomorians/vae
2
12793480
<gh_stars>1-10 import os import attr import random import argparse import numpy as np import tensorflow as tf import tensorflow.contrib.eager as tfe import tensorflow_probability as tfp from tqdm import trange from vae import losses from vae.data import prep_images, get_dataset from vae.model import Model @attr.s class Params: """ Container for hyperparameters. """ learning_rate = attr.ib(default=1e-3) epochs = attr.ib(default=100) batch_size = attr.ib(default=1024) def main(): parser = argparse.ArgumentParser() parser.add_argument('--job-dir', required=True) parser.add_argument('--seed', default=67, type=int) args = parser.parse_args() print('args:', args) # create a job directory if it doesn't already exist if not os.path.exists(args.job_dir): os.makedirs(args.job_dir) # enable eager execution tf.enable_eager_execution() # set random seeds for consistent execution random.seed(args.seed) np.random.seed(args.seed) tf.set_random_seed(args.seed) # define hyperparameters params = Params() print('params:', params) # load MNIST dataset ((images_train, labels_train), (images_test, labels_test)) = tf.keras.datasets.mnist.load_data() # prepare the images by casting and rescaling images_train = prep_images(images_train) images_test = prep_images(images_test) # compute statistics from the training set images_loc = images_train.mean() images_scale = images_train.std() # define datasets for sampling batches dataset_train = get_dataset( (images_train, labels_train), batch_size=params.batch_size, shuffle=True) dataset_test = get_dataset( (images_test, labels_test), batch_size=params.batch_size) # model / optimization global_step = tf.train.get_or_create_global_step() optimizer = tf.train.AdamOptimizer(learning_rate=params.learning_rate) model = Model( inputs_loc=images_loc, inputs_scale=images_scale, inputs_shape=[28, 28, 1]) latent_prior = tfp.distributions.MultivariateNormalDiag( loc=tf.zeros(shape=[2], dtype=tf.float32), scale_identity_multiplier=1.0) # checkpoints checkpoint = tf.train.Checkpoint( optimizer=optimizer, model=model, global_step=global_step) checkpoint_path = tf.train.latest_checkpoint(args.job_dir) if checkpoint_path is not None: checkpoint.restore(checkpoint_path).assert_consumed() # summaries summary_writer = tf.contrib.summary.create_file_writer( args.job_dir, max_queue=1, flush_millis=1000) summary_writer.set_as_default() with trange(params.epochs) as pbar: for epoch in pbar: loss_train = tfe.metrics.Mean(name='loss/train') for images, labels in dataset_train: with tf.GradientTape() as tape: outputs_dist, z_dist, z = model( images, labels, training=True) loss = losses.variational(outputs_dist, z_dist, images, latent_prior) loss_train(loss) grads = tape.gradient(loss, model.trainable_variables) grads_and_vars = zip(grads, model.trainable_variables) optimizer.apply_gradients( grads_and_vars, global_step=global_step) with tf.contrib.summary.always_record_summaries(): loss_train.result() tf.contrib.summary.scalar( name='grad_norm', tensor=tf.global_norm(grads)) tf.contrib.summary.image( name='image/train', tensor=images, max_images=1, step=global_step) tf.contrib.summary.image( name='outputs/train', tensor=outputs_dist.mean(), max_images=1, step=global_step) loss_test = tfe.metrics.Mean(name='loss/eval') for images, labels in dataset_test: outputs_dist, z_dist, z = model(images, labels) loss = losses.variational(outputs_dist, z_dist, images, latent_prior) loss_test(loss) with tf.contrib.summary.always_record_summaries(): loss_test.result() tf.contrib.summary.image( name='image/eval', tensor=images, max_images=1, step=global_step) tf.contrib.summary.image( name='outputs/eval', tensor=outputs_dist.mean(), max_images=1, step=global_step) pbar.set_description('loss (train): {}, loss (eval): {}'.format( loss_train.result().numpy(), loss_test.result().numpy())) checkpoint_prefix = os.path.join(args.job_dir, 'ckpt') checkpoint.save(checkpoint_prefix) if __name__ == '__main__': main()
2.0625
2
possum/utils/pos_util_midpoints.py
morales-gregorio/poSSum3
10
12793481
#!/usr/bin/env python # encoding: utf-8 import os import sys import itk from possum import pos_itk_core from possum import pos_itk_transforms from possum.pos_common import r """ .. note:: Some of the non-cruical, optional functions in this module require vtk module to be installed. If it is not available the VTK support will be disabled. """ def calculate_labels_midpoints(itk_image): """ This function introduces a workflow for calculating the middle midpoints of the labelled imags. The term 'middle midpoints' is used on purpose. You might think that we're calculating centroids here, but not. I use the term 'middle midpoints' as it is not the centroids what is calculated here. Anyway, this function calculated middle midpoints of labels in the provided image. The midpoints are calculated in the following way: Now iterate over all available labels except the background label which has been removed. The overall idea of this loop is to: 1) Extract given label from the segmentation 2) Extract the largest patch of the segmentation as there might be multiple disjoint regions colored with given label 3) Apply the distance transform to the largest path with given segmentation 4) Pick the maximum of the distance transform for given segmentation and by this define the 'middle point' of given label. .. note :: Please have in ming that this procedure returns position of the first (index-wise) voxel with the maimum value. This means that if there is more than one pixels with the maximum value of the distance transform, location of the first one is returned. One could think that probably a centre of mass of the max voxels should be returned, but no. It is unknown is such centre would be located in the actual structure or outside the structure. Therefore some of the results may look wired but they are actually ok. :param itk_image: Labelled image, the image is expected to be a labelled image in which individual discrete values correspond to individual structures. Formally this means that the image has to be of `uchar` or `ushort` type, to have a single component and to have a dimensionality of two or three. Images having different properties will not be processed. :type itk_image: `itk.Image` :return: Middle midpoints of the labels in the image. :rtype: {int: ((float, float, float), (float, float, float)), ...} And now it it a time to do some unit testing. Please also consited this set of unittests as an example how to use this function. >>> import base64 >>> from possum import pos_itk_transforms >>> example_two_dimensions='<KEY> >>> input_filename="/tmp/pos_itk_centroids_example_two_dimensions.nii.gz" >>> open(input_filename, "w").write(base64.decodestring(example_two_dimensions)) >>> itk_image = pos_itk_transforms.read_itk_image(input_filename) >>> midpoints = calculate_labels_midpoints(itk_image) >>> sorted(midpoints.keys()) == [1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33] True >>> map(int, midpoints[1][0]) == [14, 0, 0] True >>> map(int, midpoints[21][0]) == [14, 24, 0] True >>> midpoints[30] == ((0.0, 39.0, 0), (0, 39, 0)) True >>> type(midpoints[30][1][1]) == type(1) True >>> type(midpoints[30][0][1]) == type(1) False >>> type(midpoints[30][0][1]) == type(1.0) True >>> os.remove(input_filename) Now we will try to process a 3D image >>> example_three_dimensions="<KEY> >>> input_filename="/tmp/pos_itk_centroids_example_three_dimensions.nii.gz" >>> open(input_filename, "w").write(base64.decodestring(example_three_dimensions)) >>> itk_image = pos_itk_transforms.read_itk_image(input_filename) >>> midpoints = calculate_labels_midpoints(itk_image) >>> os.remove(input_filename) >>> str(type(midpoints)) == "<type 'dict'>" True >>> len(midpoints.keys()) == 63 True >>> str(midpoints.get(0,None)) == "None" True >>> midpoints[1] == ((5.0, 0.0, 0.0), (5, 0, 0)) True >>> type(midpoints[30][0][1]) == type(1) False >>> type(midpoints[30][0][1]) == type(1) False >>> type(midpoints[30][0][1]) == type(1.0) True >>> midpoints[183] == ((15.0, 15.0, 15.0), (15, 15, 15)) True >>> midpoints[111] == ((5.0, 5.0, 9.0), (5, 5, 9)) True >>> midpoints[53] == ((13.0, 0.0, 5.0), (13, 0, 5)) True """ C_BACKGROUND_LABEL_IDX = 0 # Define the dimensionality, data type and number of components # of the label image label_type = \ pos_itk_core.io_image_type_to_component_string_name[ itk_image.__class__] # Extract the details of the image provided and check if they are # ok to use in the routine. n_dim = len(itk_image.GetLargestPossibleRegion().GetSize()) number_of_components = itk_image.GetNumberOfComponentsPerPixel() data_type = label_type[1] assert n_dim in [2, 3], \ "Incorrect dimensionality." assert number_of_components == 1, \ "Only single component images are allowed." assert data_type in ["unsigned_char", "unsigned_short"], \ r("Incorrect data type for a labelled image only unsigned_char\ and unsigned_short are accepted.") # t_label_img is the ITK image type class to be used in filters # templates. t_label_img = itk_image.__class__ # We'll be also using another image type. This one is identical # in terms of size and dimensionality as the labelled image. # The differe is in data type: this one has to be float to handle # the distance transform well. float_type = list(label_type) float_type[1] = "float" t_float_img = \ pos_itk_core.io_component_string_name_to_image_type[tuple(float_type)] # The purpose of the filter below is to define the unique labels # given segmentation contains. unique_labels = \ itk.LabelGeometryImageFilter[(t_label_img, t_label_img)].New() unique_labels.SetInput(itk_image) unique_labels.CalculatePixelIndicesOff() unique_labels.Update() # This is where we'll collect the results. We collect, both, the physical # location as well as the middle_points = {} # We have to map the available labels returned by itk # as sometimes strange things happen and they are returned as longints # which are apparently incomparibile with python in type. # Consider it a safety precaution available_labels = map(int, unique_labels.GetLabels()) # Now we need to remove the background label (if such # label actually exists) C_BACKGROUND_LABEL_IDX try: available_labels.remove(C_BACKGROUND_LABEL_IDX) except: pass # Now iterate over all available labels except the background label which # has been removed. The overall idea of this loop is to: # 1) Extract given label from the segmentation # 2) Extract the largest patch of the segmentation as there # might be multiple disjoint regions colored with given label # 3) Apply the distance transform to the largest path with # given segmentation # 4) Pick the maximum of the distance transform for given segmentation # and by this define the 'middle point' of given label # I call the midpoints 'middle midpoints' not centroids as centroids # are something different and they are calculated in a different # way. Our center midpoints cannot be called centroids. for label_idx in available_labels: extract_label = \ itk.BinaryThresholdImageFilter[ (t_label_img, t_label_img)].New() extract_label.SetInput(itk_image) extract_label.SetUpperThreshold(label_idx) extract_label.SetLowerThreshold(label_idx) extract_label.SetOutsideValue(0) extract_label.SetInsideValue(1) extract_label.Update() patches = \ itk.ConnectedComponentImageFilter[ (t_label_img, t_label_img)].New() patches.SetInput(extract_label.GetOutput()) patches.Update() largest_patch = \ itk.LabelShapeKeepNObjectsImageFilter[t_label_img].New() largest_patch.SetInput(patches.GetOutput()) largest_patch.SetBackgroundValue(0) largest_patch.SetNumberOfObjects(1) largest_patch.SetAttribute(100) largest_patch.Update() distance_transform = \ itk.SignedMaurerDistanceMapImageFilter[ (t_label_img, t_float_img)].New() distance_transform.SetInput(largest_patch.GetOutput()) distance_transform.InsideIsPositiveOn() distance_transform.Update() centroid = itk.MinimumMaximumImageCalculator[t_float_img].New() centroid.SetImage(distance_transform.GetOutput()) centroid.Compute() centroid.GetIndexOfMaximum() index = centroid.GetIndexOfMaximum() point = itk_image.TransformIndexToPhysicalPoint(index) # We need to slightly refine the results returned by itk # The results have to be processed in a slightly different way for # two dimensional results and slightly different for 3D resuls: # Again, we do a lot of explicit casting assure types # compatibility. The 2D midpoints are converted into 3D midpoints since # it is easier to use them in vtk if they're 3D midpoints. if n_dim == 2: point = map(float, point) + [0] index = map(int, index) + [0] if n_dim == 3: point = map(float, point) index = map(int, index) middle_points[label_idx] = (tuple(point), tuple(index)) # Below there is some debugging code. Not really important for everyday # use. # print middle_points.__repr__() return middle_points def points_to_vtk_points(points_list): """ The function converts the location of the middle points into a vtkPolyData structure and assigns appropriate label IDs to the individual points of the vtk points structure. Basically, you can use the resulting vtkPolyData() and know where is a centre of a particular structure. ... note :: This function will not work if the vtk module is not loaded. :param point_list: List of points to turn into vtk points :type point_list: {int: ((float, float, float), (float, float, float)), ...} :return: Midpoints of the individual structures expressed as vtk.vtkPolyData() :rtype: `vtk.vtkPolyData` """ try: vtk.vtkVersion() except: return None n_points = len(points_list.keys()) points = vtk.vtkPoints() vertices = vtk.vtkCellArray() id_array = vtk.vtkUnsignedCharArray() id_array.SetName("Label_ID") id_array.SetNumberOfComponents(1) id_array.SetNumberOfTuples(n_points) for (i, (pt, idx)) in points_list.items(): id_ = points.InsertNextPoint(pt) vertices.InsertNextCell(1) vertices.InsertCellPoint(id_) id_array.SetTuple1(id_, i) point = vtk.vtkPolyData() point.SetPoints(points) point.SetVerts(vertices) point.GetPointData().AddArray(id_array) return point if __name__ == '__main__': import doctest print doctest.testmod(verbose=True)
2.609375
3
MLSD/Transformers/activeTrans.py
HaoranXue/Machine_Learning_For_Structured_Data
4
12793482
<filename>MLSD/Transformers/activeTrans.py from sklearn.base import TransformerMixin class activeTrans(TransformerMixin): def __init__(self, ifSData=False, Trans_in=True, Multi_col=False, New_Trans=None, Reset_default=False): self.Trans_in = Trans_in self.Multi_col = Multi_col self.New_Trans = New_Trans self.Reset_default = Reset_default self.ifSData = ifSData def fit(self, X, y=None): if self.New_Trans != None: X.transformer = self.New_Trans if self.ifSData == True: trans = X.transformer trans.fit(X) self.trans = trans elif self.ifSData == False: self.trans = [] for i in X.data: self.trans.append(i.transformer.fit(i)) def transform(self, X, y=None): if self.New_Trans != None: X.transformer = self.New_Trans if self.ifSData == True: return self.trans.transform(X) elif self.ifSData == False: features = self.trans[0].transform(X.data[0]) for i in range(2, len(X.data)): features.join(self.trans[i].transform(X.data[i])) return features def fit_transform(self, X, y=None): if self.New_Trans != None: X.transformer = self.New_Trans if self.ifSData == True: self.trans = X.transformer return self.trans.fit_transform(X) elif self.ifSData == False: self.trans = [] for i in X.data: self.trans.append(i.transformer) features = self.trans[0].fit_transform(X.data[0]) for i in range(2, len(X.data)): features.join(self.trans[i].fit_transform(X.data[i])) return features
2.640625
3
WalkerBuddyAPI/app.py
gardyna/WalkerAppGame
0
12793483
# standard lib from functools import wraps # third party packages from flask import Flask, jsonify, abort, request, Response from flask.ext.sqlalchemy import SQLAlchemy app = Flask(__name__) app.debug = True app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' app.secret_key = '<KEY>' db = SQLAlchemy(app) # region dbClasses class User(db.Model): """ Represent a user in database """ id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), unique=True) email = db.Column(db.String(120), unique=True) def __init__(self, username, email): self.username = username self.email = email def __repr__(self): return '<User {}>'.format(self.username) def to_dict(self): return { 'id': self.id, 'username': self.username, 'email': self.email } # endregion # region authorization def check_auth(username, password): return username == 'admin' and password == '<PASSWORD>' def authenticate(): return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}) def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): auth = request.authorization if not auth or not check_auth(auth.username, auth.password): return authenticate() return f(*args, **kwargs) return decorated # endregion @app.route('/') @requires_auth def hello_world(): return 'Hello World!' @app.route('/users', methods=['GET', 'POST']) def get_users(): if request.method == 'POST': if (request.json['username'] is None or request.json['email'] is None): abort() user = User(request.json['username'], request.json['email']) db.session.add(user) db.session.commit() return jsonify({'user': user.to_dict()}), 201 elif request.method == 'GET': users = User.query.all() users_dto = [user.to_dict() for user in users] return jsonify({'users': users_dto}), 200 else: abort(405, "Method not supported") @app.errorhandler(405) def custom405(error): response = jsonify({'message': error.description}) return response, 405 if __name__ == '__main__': if app.debug: app.run() else: app.run(host='0.0.0.0')
2.765625
3
Auto2DSelect/helper.py
MPI-Dortmund/sphire_classes_autoselect
3
12793484
""" Automatic 2D class selection tool. MIT License Copyright (c) 2019 <NAME> Institute of Molecular Physiology Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from os import path, listdir import h5py from PIL import Image # install it via pip install pillow import numpy as np import mrcfile """ The format of the .hf file is the following: ['MDF']['images']['i']['image'] where i is a number representing the i-th images hence to get the images number 5: ['MDF']['images']['5']['image'][()] """ def create_circular_mask(h, w, center=None, radius=None): if center is None: # use the middle of the image center = (int(w / 2), int(h / 2)) if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w - center[0], h - center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2) mask = dist_from_center <= radius return mask def checkfiles(path_to_files): """ checks if the hdf files are in the correct path and returns True if all of them exists :param path_to_files: list of paths :return: """ if isinstance(path_to_files, (list, tuple)): for p in path_to_files: if not path.isfile(p): return False elif isinstance(path_to_files, str): return path.isfile(path_to_files) return True def calc_2d_spectra(img): from scipy import fftpack import numpy as np F1 = fftpack.fft2(img) F2 = fftpack.fftshift(F1) psd2D = np.abs(F2) ** 2 return psd2D def getList_files(paths): """ Returns the list of the valid hdf files in the given paths. It is called recursively :param paths: path or list of paths :return: """ if isinstance(paths, str): paths = [paths] list_new_paths = list() iterate = False for p in paths: if path.isdir(p): iterate = True list_new_paths += [path.join(p, f) for f in listdir(p)] elif path.isfile(p): list_new_paths.append(p) else: print( "WARNING: The given path '" + str(p) + "' is not a folder or a file and it will be ignored" ) if iterate is True: return getList_files(list_new_paths) return list_new_paths def getList_relevant_files(path_to_files): """ Check if the given files are hdf/mrcs/st with a valid format. Return The list of valid hdf :param path_to_files: list of all the files present in the folder (and subfolder)given from the user :return: list of valid hdf """ return [ path_to_file for path_to_file in path_to_files if path_to_file.endswith("mrcs") or path_to_file.endswith("mrc") or path_to_file.endswith("st") or h5py.is_hdf5(path_to_file) ] """ FUNCTION TO READ THE HDF""" def get_key_list_images(path): """ Returns the list of the keys representing the images in the hdf/mrcs/st file. It will be converted in list of integer :param path: :return: """ print("Try to list images on", path) import os filename_ext = os.path.basename(path).split(".")[-1] result_list = None try: if filename_ext in {"mrcs", "st"}: with mrcfile.mmap(path, permissive=True, mode="r") as mrc: list_candidate = [i for i in range(mrc.header.nz)] if len(list_candidate) > 0: result_list = list_candidate if filename_ext == "mrc": with mrcfile.mmap(path, permissive=True, mode="r") as mrc: result_list = list(range(1)) except Exception as e: print(e) print( "WARNING in get_list_images: the file '" + path + " is not an valid mrc file. It will be ignored" ) if filename_ext == "hdf": try: with h5py.File(path, "r") as f: list_candidate = [int(v) for v in list(f["MDF"]["images"])] except: print( "WARNING in get_list_images: the file '" + path + " is not an HDF file with the following format:\n\t['MDF']['images']. It will be ignored" ) if len(list_candidate) > 0: result_list = list_candidate return result_list def getImages_fromList_key(file_index_tubles): """ Returns the images in the hdf file (path_to_file) listed in (list_images) :param path_to_file: path to hdf file :param list_images: list of keys of the DB. It is the output( or part of its) given from 'get_list_images' :return: Returns a list of numpy arrays """ # driver="core" result_data = list() for path_to_file, list_images in file_index_tubles: data = list() if path.isfile(path_to_file): if path.basename(path_to_file).split(".")[-1] == "hdf": try: with h5py.File(path_to_file, 'r') as f: if isinstance(list_images, list) or isinstance( list_images, tuple ): data = [ np.nan_to_num(f["MDF"]["images"][str(i)]["image"][()]) for i in list_images ] # [()] is used instead of .value elif isinstance(list_images, int): data = np.nan_to_num(f["MDF"]["images"][str(list_images)]["image"][()]) else: print( "\nERROR in getImages_fromList_key: invalid list_images, it should be a string or a list/tuple of strings:", type(list_images), ) print("you try to get the following images") print(list_images) exit() except Exception as e: print(e) print( "\nERROR in getImages_fromList_key: the file '" + path_to_file + " is not an HDF file with the following format:\n\t['MDF']['images']['0']['image']" ) print("you try to get the following images") print(list_images) print("there are " + str(len(f["MDF"]["images"]))) exit() elif path.basename(path_to_file).split(".")[-1] in ["mrc", "mrcs", "st"]: data = [] with mrcfile.mmap(path_to_file, permissive=True, mode="r") as mrc: if isinstance(list_images, int): list_images = [list_images] if isinstance(list_images, list) or isinstance(list_images, tuple): if mrc.header.nz > 1: if len(list_images)==1: data = np.nan_to_num(mrc.data[list_images[0]]) else: data = [np.nan_to_num(mrc.data[i]) for i in list_images] elif len(list_images) == 1: data = np.nan_to_num(mrc.data) result_data.append(data) return result_data def getImages_fromList_key_old(path_to_file, list_images): """ Returns the images in the hdf file (path_to_file) listed in (list_images) :param path_to_file: path to hdf file :param list_images: list of keys of the DB. It is the output( or part of its) given from 'get_list_images' :return: Returns a list of numpy arrays """ data = list() if path.isfile(path_to_file): if path.basename(path_to_file).split(".")[-1] == "hdf": try: with h5py.File(path_to_file, driver="core") as f: if isinstance(list_images, list) or isinstance(list_images, tuple): data = [ f["MDF"]["images"][str(i)]["image"][()] for i in list_images ] # [()] is used instead of .value elif isinstance(list_images, int): data = f["MDF"]["images"][str(list_images)]["image"][()] else: print( "\nERROR in getImages_fromList_key: invalid list_images, it should be a string or a list/tuple of strings:", type(list_images), ) print("you try to get the following images") print(list_images) exit() except Exception as e: print(e) print( "\nERROR in getImages_fromList_key: the file '" + path_to_file + " is not an HDF file with the following format:\n\t['MDF']['images']['0']['image']" ) print("you try to get the following images") print(list_images) print("there are " + str(len(f["MDF"]["images"]))) exit() elif path.basename(path_to_file).split(".")[-1] in ["mrc", "mrcs", "st"]: data = [] with mrcfile.mmap(path_to_file, permissive=True, mode="r") as mrc: if isinstance(list_images, int): list_images = [list_images] if isinstance(list_images, list) or isinstance(list_images, tuple): if mrc.header.nz > 1: data = [mrc.data[i] for i in list_images] elif len(list_images) == 1: data = [mrc.data] return data """ FUNCTION TO MANIPULATE THE IMAGES""" def apply_mask(img, mask): mean = np.mean(img) img[mask==False]=mean return img def resize_img(img, resize=(76, 76)): """ Resize the given image into the given size :param img: as numpy array :param resize: resize size :return: return the resized img """ im = Image.fromarray(img) return np.array(im.resize(resize, resample=Image.BILINEAR)) def normalize_img(img): """ normalize the images in base of its mean and variance :param img: :return: """ import numpy as np # img = img.astype(np.float64, copy=False) mean = np.mean(img) std = np.std(img) img = (img - mean) / (std+0.00001) # img = img.astype(np.float32, copy=False) return img def flip_img(img, t=None): """ It flip the image in function of the given typ :param img: :param t: type of the flip 1 --> flip over the row. Flipped array in up-down direction.(X) 2 --> flip over the column Flipped array in right-left direction(Y) 3 --> flip over the column and the row (X and Y) otherwise --> no flip :return: """ if t == 1: return np.flipud(img) elif t == 2: return np.fliplr(img) elif t == 3: return np.flipud(np.fliplr(img)) return img
2.265625
2
blacktape/util.py
carascap/blacktape
0
12793485
<filename>blacktape/util.py import signal def worker_init(): """ Initializer for worker processes that makes them ignore interrupt signals https://docs.python.org/3/library/signal.html#signal.signal https://docs.python.org/3/library/signal.html#signal.SIG_IGN """ signal.signal(signal.SIGINT, signal.SIG_IGN)
1.851563
2
PSET 4/problem-5.py
AtharvaPusalkar/MITx-6.00.1x
1
12793486
def playHand(hand, wordList, n): """ Allows the user to play the given hand, as follows: * The hand is displayed. * The user may input a word or a single period (the string ".") to indicate they're done playing * Invalid words are rejected, and a message is displayed asking the user to choose another word until they enter a valid word or "." * When a valid word is entered, it uses up letters from the hand. * After every valid word: the score for that word is displayed, the remaining letters in the hand are displayed, and the user is asked to input another word. * The sum of the word scores is displayed when the hand finishes. * The hand finishes when there are no more unused letters or the user inputs a "." hand: dictionary (string -> int) wordList: list of lowercase strings n: integer (HAND_SIZE; i.e., hand size required for additional points) """ # BEGIN PSEUDOCODE (download ps4a.py to see) # Keep track of the total score score = 0 # As long as there are still letters left in the hand: while calculateHandlen(hand) > 0: # Display the hand print('Current Hand:', end=' '); displayHand(hand) # Ask user for input guess = str(input('Enter word, or a "." to indicate that you are finished: ')) # If the input is a single period: if guess == '.': # End the game (break out of the loop) break # Otherwise (the input is not a single period): else: # If the word is not valid: if isValidWord(guess, hand, wordList) == False: # Reject invalid word (print a message followed by a blank line) print('Invalid word, please try again.', '\n') # Otherwise (the word is valid): else: # Tell the user how many points the word earned, and the updated total score, in one line followed by a blank line score += getWordScore(guess, n) print('"'+guess+'"', "earned", getWordScore(guess, n), "points. Total:", score, "points", '\n') # Update the hand hand = updateHand(hand, guess) # Game is over (user entered a '.' or ran out of letters), so tell user the total score if guess == '.': print('Goodbye! Total score:', score, 'points.') else: print('Run out of letters. Total score:', score, 'points.')
3.890625
4
tests/printing/test_registry_rendering.py
anna-naden/qalgebra
2
12793487
<gh_stars>1-10 import os import pytest from qalgebra.utils.testing import datadir # TODO
0.976563
1
src/question/migrations/0006_auto_20190215_0755.py
DevTeamSCH/vikoverflow-backend
0
12793488
# Generated by Django 2.1.7 on 2019-02-15 07:55 from django.db import migrations class Migration(migrations.Migration): dependencies = [("question", "0005_merge_20190215_0616")] operations = [ migrations.RemoveField(model_name="answer", name="is_visible"), migrations.RemoveField(model_name="comment", name="is_visible"), migrations.RemoveField(model_name="question", name="is_visible"), ]
1.523438
2
highlights_notifications.py
skontar/hexchat-plugins
0
12793489
""" Plugin for better notifications with actions. HexChat Python Interface: http://hexchat.readthedocs.io/en/latest/script_python.html IRC String Formatting: https://github.com/myano/jenni/wiki/IRC-String-Formatting """ import logging import re import subprocess import sys from os import path import dbus import hexchat __module_name__ = 'highlights_notifications' __module_description__ = 'Better notifications with actions' __module_version__ = '1.1' NOTIFICATION_SERVER = '/home/skontar/Repos/hexchat-plugins/notification_server.py' LOG = '~/highlights_notifications.log' FORMAT = '%(asctime)-24s %(levelname)-9s %(message)s' logging.basicConfig(filename=path.expanduser(LOG), format=FORMAT, level=logging.DEBUG) def handle_exception(exc_type, exc_value, exc_traceback): logging.error('Uncaught exception', exc_info=(exc_type, exc_value, exc_traceback)) sys.__excepthook__(exc_type, exc_value, exc_traceback) sys.excepthook = handle_exception def server_start(): logging.info('Starting server') subprocess.Popen('python3 {}'.format(NOTIFICATION_SERVER), shell=True) def get_dbus_interface(): logging.info('Getting DBus interface for Notification Server') try: session_bus = dbus.SessionBus() proxy = session_bus.get_object('com.skontar.HexChat', '/com/skontar/HexChat') interface = dbus.Interface(proxy, dbus_interface='com.skontar.HexChat') logging.debug('DBus interface Success') return interface except dbus.exceptions.DBusException: logging.debug('DBus interface Fail') server_start() return None def on_focus_tab(word, word_eol, userdata): global active_channel active_channel = hexchat.get_info('channel') logging.info('Changed active tab to %s', active_channel) def on_highlight_notification(word, word_eol, userdata): global interface win_status = hexchat.get_info('win_status') network = hexchat.get_info('network') channel = hexchat.get_info('channel') nickname = word[0] nickname = re.sub(r'^\x03\d+', '', nickname) # Remove color text = word[1] message_type = userdata if message_type == 'HLT': title = 'Highlighted message from: {} ({})'.format(nickname, channel) else: title = 'Private message from: {} ({})'.format(nickname, network) logging.info('New notification [%s | %s | %s]', network, channel, repr(str(nickname))) logging.debug('Application details: [%s | %s]', win_status, active_channel) logging.debug('Message type: "%s"', message_type) logging.debug('Message: %s', repr(text)) # Ignore notification if window is active and active channel is the one where message arrived if win_status == 'active' and channel == active_channel: logging.info('Not showing notifications as channel is already active') return hexchat.EAT_NONE if interface is None: logging.debug('No DBus interface prepared') interface = get_dbus_interface() if interface is None: logging.warning('DBus connection to Notification Server fail') logging.warning('Notification fallback') hexchat.command('TRAY -b "{}" {}'.format(title, text)) else: try: logging.info('Sending message to Notification Server through DBus') interface.create_notification(nickname, network, channel, title, text, message_type) except dbus.exceptions.DBusException: logging.warning('DBus message to Notification Server fail') logging.warning('Notification fallback') hexchat.command('TRAY -b "{}" {}'.format(title, text)) interface = get_dbus_interface() return hexchat.EAT_NONE def on_unload(userdata): global interface logging.info('HexChat notification server ending') hexchat.prnt('Unloading {}, version {}'.format(__module_name__, __module_version__)) logging.info('Setting common notifications to normal') hexchat.command('set input_balloon_hilight 1') hexchat.command('set input_balloon_priv 1') try: logging.info('Sending Quit message to Notification Server') interface.quit() except (AttributeError, dbus.exceptions.DBusException): logging.warning('Quit message to Notification Server failed') logging.info('Explicitly quit') # Unfortunately, this also kills whole HexChat, so the plugin cannot be restarted. # However, I did not find a better way, as if the plugin used DBus interface it seems to hang # on exit. Only other workaround I have found was to raise an Exception, but that stopped to # work when I hooked `sys.excepthook`. I have tried to unhook it just before exit, but that did # not work either. I find the proper Exception logging more useful than ability to restart # plugin. exit(1) active_channel = None win_status = None interface = None logging.info('HexChat notification plugin starting ==============================') server_start() hexchat.prnt('{}, version {}'.format(__module_name__, __module_version__)) logging.info('Setting common notifications to suspended') hexchat.command('set input_balloon_hilight 0') hexchat.command('set input_balloon_priv 0') hexchat.hook_print('Focus Tab', on_focus_tab) hexchat.hook_unload(on_unload) hexchat.hook_print('Channel Action Hilight', on_highlight_notification, userdata='HLT') hexchat.hook_print('Channel Msg Hilight', on_highlight_notification, userdata='HLT') hexchat.hook_print('Private Message', on_highlight_notification, userdata='PVT') hexchat.hook_print('Private Message to Dialog', on_highlight_notification, userdata='PVT') hexchat.hook_print('Private Action to Dialog', on_highlight_notification, userdata='PVT')
2.21875
2
plugin/lighthouse/reader/__init__.py
x9090/lighthouse
1,741
12793490
from .coverage_reader import CoverageReader
1.03125
1
records_mover/records/pandas/to_csv_options.py
ellyteitsworth/records-mover
0
12793491
import csv from ...utils import quiet_remove from ..delimited import cant_handle_hint from ..processing_instructions import ProcessingInstructions from ..records_format import DelimitedRecordsFormat from records_mover.mover_types import _assert_never import logging from typing import Set, Dict logger = logging.getLogger(__name__) def pandas_to_csv_options(records_format: DelimitedRecordsFormat, unhandled_hints: Set[str], processing_instructions: ProcessingInstructions) -> Dict[str, object]: # https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html hints = records_format.\ validate(fail_if_cant_handle_hint=processing_instructions.fail_if_cant_handle_hint) fail_if_cant_handle_hint = processing_instructions.fail_if_cant_handle_hint pandas_options: Dict[str, object] = {} pandas_options['encoding'] = hints.encoding quiet_remove(unhandled_hints, 'encoding') if hints.compression is None: # hints['compression']=None will output an uncompressed csv, # which is the pandas default. pass elif hints.compression == 'GZIP': pandas_options['compression'] = 'gzip' elif hints.compression == 'BZIP': pandas_options['compression'] = 'bz2' else: cant_handle_hint(fail_if_cant_handle_hint, 'compression', hints) quiet_remove(unhandled_hints, 'compression') if hints.quoting is None: pandas_options['quoting'] = csv.QUOTE_NONE elif hints.quoting == 'all': pandas_options['quoting'] = csv.QUOTE_ALL elif hints.quoting == 'minimal': pandas_options['quoting'] = csv.QUOTE_MINIMAL elif hints.quoting == 'nonnumeric': pandas_options['quoting'] = csv.QUOTE_NONNUMERIC else: _assert_never(hints.quoting) quiet_remove(unhandled_hints, 'quoting') pandas_options['doublequote'] = hints.doublequote quiet_remove(unhandled_hints, 'doublequote') pandas_options['quotechar'] = hints.quotechar quiet_remove(unhandled_hints, 'quotechar') if hints.escape is None: pass else: pandas_options['escapechar'] = hints.escape quiet_remove(unhandled_hints, 'escape') pandas_options['header'] = hints.header_row quiet_remove(unhandled_hints, 'header-row') if hints.dateformat is None: if hints.datetimeformattz == hints.datetimeformat: # BigQuery requires that timezone offsets have a colon; # Python (and thus Pandas) doesn't support adding the # colon with strftime. However, we can specify things # without a timezone delimiter just fine. # # Unfortunately Python/Pandas will drop the timezone info # instead of converting the timestamp to UTC. This # corrupts the time, as BigQuery assumes what it gets in # is UTC format. Boo. # # $ python3 # >>> import pytz # >>> us_eastern = pytz.timezone('US/Eastern') # >>> import datetime # >>> us_eastern.localize(datetime.datetime(2000, 1, 2, 12, 34, 56, 789012)) # .strftime('%Y-%m-%d %H:%M:%S.%f') # '2000-01-02 12:34:56.789012' # >>> # # https://github.com/bluelabsio/records-mover/issues/95 pandas_options['date_format'] = '%Y-%m-%d %H:%M:%S.%f' else: pandas_options['date_format'] = '%Y-%m-%d %H:%M:%S.%f%z' elif hints.dateformat == 'YYYY-MM-DD': if hints.datetimeformattz == hints.datetimeformat: pandas_options['date_format'] = '%Y-%m-%d %H:%M:%S.%f' else: pandas_options['date_format'] = '%Y-%m-%d %H:%M:%S.%f%z' elif hints.dateformat == 'MM-DD-YYYY': if hints.datetimeformattz == hints.datetimeformat: pandas_options['date_format'] = '%m-%d-%Y %H:%M:%S.%f' else: pandas_options['date_format'] = '%m-%d-%Y %H:%M:%S.%f%z' elif hints.dateformat == 'DD-MM-YYYY': if hints.datetimeformattz == hints.datetimeformat: pandas_options['date_format'] = '%d-%m-%Y %H:%M:%S.%f' else: pandas_options['date_format'] = '%d-%m-%Y %H:%M:%S.%f%z' elif hints.dateformat == 'MM/DD/YY': if hints.datetimeformattz == hints.datetimeformat: pandas_options['date_format'] = '%m/%d/%y %H:%M:%S.%f' else: pandas_options['date_format'] = '%m/%d/%y %H:%M:%S.%f%z' else: cant_handle_hint(fail_if_cant_handle_hint, 'dateformat', hints) quiet_remove(unhandled_hints, 'dateformat') # pandas can't seem to export a date and time together :( # # might be nice someday to only emit the errors if the actual data # being moved is affected by whatever limitation... if (hints.datetimeformattz not in (f"{hints.dateformat} HH24:MI:SSOF", f"{hints.dateformat} HH:MI:SSOF", f"{hints.dateformat} HH24:MI:SS", f"{hints.dateformat} HH:MI:SS", f"{hints.dateformat} HH:MIOF", f"{hints.dateformat} HH:MI", f"{hints.dateformat} HH24:MIOF", f"{hints.dateformat} HH24:MI")): cant_handle_hint(fail_if_cant_handle_hint, 'datetimeformattz', hints) quiet_remove(unhandled_hints, 'datetimeformattz') valid_datetimeformat = [ f"{hints.dateformat} HH24:MI:SS", f"{hints.dateformat} HH:MI:SS", f"{hints.dateformat} HH24:MI", f"{hints.dateformat} HH:MI", ] if (hints.datetimeformat not in valid_datetimeformat): cant_handle_hint(fail_if_cant_handle_hint, 'datetimeformat', hints) quiet_remove(unhandled_hints, 'datetimeformat') if hints.timeonlyformat != 'HH24:MI:SS': cant_handle_hint(fail_if_cant_handle_hint, 'timeonlyformat', hints) quiet_remove(unhandled_hints, 'timeonlyformat') pandas_options['sep'] = hints.field_delimiter quiet_remove(unhandled_hints, 'field-delimiter') pandas_options['line_terminator'] = hints.record_terminator quiet_remove(unhandled_hints, 'record-terminator') return pandas_options
2.53125
3
tests/unit/raptiformica/actions/prune/test_ensure_neighbour_removed_from_config_by_host.py
vdloo/raptiformica
21
12793492
from raptiformica.actions.prune import ensure_neighbour_removed_from_config_by_host from tests.testcase import TestCase class TestEnsureNeighbourRemovedFromConfigByHost(TestCase): def setUp(self): self._del_neighbour_by_key = self.set_up_patch( 'raptiformica.actions.prune._del_neighbour_by_key' ) def test_ensure_neighbour_removed_from_config_by_host_deleted_neighbour_by_host(self): ensure_neighbour_removed_from_config_by_host('1.2.3.4') self._del_neighbour_by_key.assert_called_once_with( 'host', '1.2.3.4' )
1.976563
2
src/driving_curriculum/agents/algorithmic/teacher_quintic_polynomials.py
takeitallsource/pac-simulator
1
12793493
from math import cos, sin import numpy as np from ....simulator import Agent from .quintic_polynomials_planner import quinic_polynomials_planner class TeacherQuinticPolynomials(Agent): def learn(self, state, action): raise NotImplementedError() def explore(self, state, horizon=1): raise NotImplementedError() def __init__(self, world, lane): Agent.__init__(self, world) self.lane = lane self.navigation_plan = None self.goal = self.lane.end_middle() self.goal = self.goal[0], self.goal[1], 0.0 # the angle depends on the lane direction def plan(self, horizon=10): trajectory = quinic_polynomials_planner(sx=self.x, sy=self.y, syaw=self.theta, sv=self.v, sa=0.0, gx=self.goal[0], gy=self.goal[1], gyaw=self.goal[2], gv=0.0, ga=0.0, max_accel=0.0, max_jerk=0.1, dt=1) return np.array(trajectory[3])[:horizon] def exploit(self, state, horizon=1): if self.navigation_plan is None: self.navigation_plan = self.plan() for _ in range(horizon): self.execute() def execute(self, action, horizon=1): for _ in range(horizon): self.x = self.x + self.v * cos(action) self.y = self.y + self.v * sin(action)
3.125
3
research/cv/meta-baseline/postprocess.py
mindspore-ai/models
77
12793494
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ postprocess """ import os import argparse from functools import reduce import numpy as np import mindspore as ms from mindspore import ops, Tensor, context import src.util as util def cal_acc(args): """ :return: meta-baseline eval """ temp = 5. n_shots = [args.num_shots] file_num = int(len(os.listdir(args.post_result_path)) / args.num_shots) aves_keys = ['tl', 'ta', 'vl', 'va'] for n_shot in n_shots: aves_keys += ['fsa-' + str(n_shot)] aves = {k: util.Averager() for k in aves_keys} label_list = np.load(os.path.join(args.pre_result_path, "label.npy"), allow_pickle=True) shape_list = np.load(os.path.join(args.pre_result_path, "shape.npy"), allow_pickle=True) x_shot_shape = shape_list[0] x_query_shape = shape_list[1] shot_shape = x_shot_shape[:-3] query_shape = x_query_shape[:-3] x_shot_len = reduce(lambda x, y: x*y, shot_shape) x_query_len = reduce(lambda x, y: x*y, query_shape) for i, n_shot in enumerate(n_shots): np.random.seed(0) label_shot = label_list[i] for j in range(file_num): labels = Tensor(label_shot[j]) f = os.path.join(args.post_result_path, "nshot_" + str(i) + "_" + str(j) + "_0.bin") x_tot = Tensor(np.fromfile(f, np.float32).reshape(args.batch_size, 512)) x_shot, x_query = x_tot[:x_shot_len], x_tot[-x_query_len:] x_shot = x_shot.view(*shot_shape, -1) x_query = x_query.view(*query_shape, -1) ########## cross-class bias ############ bs = x_shot.shape[0] fs = x_shot.shape[-1] bias = x_shot.view(bs, -1, fs).mean(1) - x_query.mean(1) x_query = x_query + ops.ExpandDims()(bias, 1) x_shot = x_shot.mean(axis=-2) x_shot = ops.L2Normalize(axis=-1)(x_shot) x_query = ops.L2Normalize(axis=-1)(x_query) logits = ops.BatchMatMul()(x_query, x_shot.transpose(0, 2, 1)) logits = logits * temp ret = ops.Argmax()(logits) == labels.astype(ms.int32) acc = ret.astype(ms.float32).mean() aves['fsa-' + str(n_shot)].add(acc.asnumpy()) for k, v in aves.items(): aves[k] = v.item() for n_shot in n_shots: key = 'fsa-' + str(n_shot) print("epoch {}, {}-shot, val acc {:.4f}".format(str(1), n_shot, aves[key])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device_target', type=str, default='CPU', choices=['Ascend', 'GPU', 'CPU']) parser.add_argument('--dataset', default='mini-imagenet') parser.add_argument('--post_result_path', default='./result_Files') parser.add_argument('--pre_result_path', type=str, default='./preprocess_Result') parser.add_argument('--batch_size', type=int, default=320) parser.add_argument('--num_shots', type=int, default=1) args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) cal_acc(args_opt)
2.015625
2
answers/Khushi/Day 6/Question 2.py
arc03/30-DaysOfCode-March-2021
22
12793495
<gh_stars>10-100 # For the output shown in example enter the required array as shown [1,4,2,5,3] def OddLengthSum(arr): sum=0 l=len(arr) for i in range(l): for j in range(i,l,2): for k in range(i,j+1,1): sum+=arr[k] return sum print("Enter the array of 5 elements: ") arr = [] for x in range(5): element=int(input()) arr.append(element) print("Sum of possible odd length sub-arrays:") print(OddLengthSum(arr))
3.921875
4
PiCode/test_docker/test.py
SilentByte/healthcam
2
12793496
from picamera import PiCamera from picamera.exc import PiCameraMMALError from time import sleep from io import StringIO from glob import glob from os.path import getsize if __name__ == "__main__": tries = 0 while tries < 5: try: cam = PiCamera(camera_num=0) except PiCameraMMALError: # Sometimes happens if something else is hogging the resource sleep(10) continue cam.resolution = (512, 512) cam.start_preview() sleep(4) byte_buffer = StringIO() byte_buffer.seek(0) cam.start_recording('/home/test.mjpeg', format='mjpeg') cam.wait_recording(10) cam.stop_recording() cam.capture('/home/foo.jpeg') cam.stop_preview() print("Recording") cam.close() print(glob("/home/*")) print(getsize('home/test.mjpeg')) print(getsize('home/foo.jpeg')) print(byte_buffer.read())
2.671875
3
nn/framework.py
thunlp/Chinese_NRE
272
12793497
import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import numpy as np from .encoder import BiLstmEncoder from .classifier import AttClassifier from torch.autograd import Variable from torch.nn import functional, init class MGLattice_model(nn.Module): def __init__(self, data): super(MGLattice_model, self).__init__() # MG-Lattice encoder self.encoder = BiLstmEncoder(data) # Attentive classifier self.classifier = AttClassifier(data) def forward(self, gaz_list, word_inputs, biword_inputs, word_seq_lengths, char_inputs, char_seq_lengths, char_seq_recover, pos1_inputs, pos2_inputs, ins_label, scope): # ins_num * seq_len * hidden_dim hidden_out = self.encoder.get_seq_features(gaz_list, word_inputs, biword_inputs, word_seq_lengths, char_inputs, char_seq_lengths, char_seq_recover, pos1_inputs, pos2_inputs) # batch_size * num_classes logit = self.classifier.get_logit(hidden_out, ins_label, scope) return logit
2.625
3
tools/gen/plugin_base.py
mingkaic/tenncor
1
12793498
#!/usr/bin/env python3 ''' Plugin interface definition ''' import abc class PluginBase(metaclass=abc.ABCMeta): @abc.abstractmethod def plugin_id(self) -> str: ''' Return plugin identifier ''' @abc.abstractmethod def process(self, generated_files: dict, arguments: dict, **kwargs) -> dict: ''' Given output path dictionary of generated_files ( mapping filename to FileRep) and dictionary of arguments, Return {filename: FileRep,...} '''
2.90625
3
crawl/dirbot/spiders/data.py
okfde/odm-datenerfassung
5
12793499
import unicodecsv import metautils from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.selector import Selector from dirbot.items import Website class DataSpider(CrawlSpider): name = "data" rules = ( # Extract all links and parse them with the spider's method parse_page Rule(SgmlLinkExtractor(),callback='parse_page',follow=True), ) def __init__(self, domain=None, *a, **kw): super(DataSpider, self).__init__(*a, **kw) self.domain = domain self.fileoutall = domain + ".csv" self.fileoutdata = domain + ".data.csv" self.allowed_domains = [self.domain] self.start_urls = [ "http://www." + domain + "/", ] #File types to search for (non-geo); list so that we can extend self.filetypes = ['.' + ft for ft in metautils.fileformats] #Geographic file types self.geofiletypes = ['.' + ft for ft in metautils.geoformats] #Combined list to search for at first self.filetypes.extend(self.geofiletypes) #Better for searching later self.filetypes = tuple(self.filetypes) self.fields = ('Stadt_URL', 'URL_Datei', 'URL_Text', 'URL_Dateiname', 'Format', 'geo', 'URL_PARENT', 'Title_PARENT') self.writer = unicodecsv.DictWriter(open(self.fileoutall, "wb", encoding='utf-8'), self.fields) self.writer.writeheader() self.writerdata = unicodecsv.DictWriter(open(self.fileoutdata, "wb", encoding='utf-8'), self.fields) self.writerdata.writeheader() print "Searching " + domain + "..." def parse_page(self, response): for ext in self.filetypes: if (ext[1:] in response.headers['Content-Type'].upper() or ('Content-Disposition' in response.headers and ext in response.headers['Content-Disposition'].upper())): print "Detected a downloadable, generated file" item = Website() item['URL_Datei'] = response.url item['Stadt_URL'] = unicode(self.domain, 'utf-8') #Not applicable item['URL_Text'] = unicode('', 'utf-8') if ('Content-Disposition' in response.headers): item['URL_Dateiname'] = unicode(response.headers['Content-Disposition'], 'utf-8') else: item['URL_Dateiname'] = unicode(item['URL_Datei']).split('/')[-1] item['Format'] = ext[1:] #if we just have e.g. "json" and we are dealing with DKAN, then we are probably dealing with an API item description and not a file if (item['URL_Dateiname'].upper() == item['Format']) and 'node' in item['URL_Datei']: return [] if (ext in self.geofiletypes): item['geo'] = 'x' else: item['geo'] = u'' item['URL_PARENT'] = u'Nicht moeglich kann aber nachtraeglich ermittelt werden' item['Title_PARENT'] = u'Nicht moeglich kann aber nachtraeglich ermittelt werden' self.writerdata.writerow(item) #Done return [] if ('Content-Type' in response.headers and 'text/html' not in response.headers['Content-Type']): print "Not HTML or anything else of interest, giving up" print response.headers return [] #Otherwise, its html and we process all links on the page sel = Selector(response) #Title of the page we are on (this will be the 'parent') parent_title = sel.xpath('//title/text()').extract() if (len(parent_title)>0): parent_title = parent_title[0] #URL of the page we are on (parent) parent_url = response.url #Get all links sites = sel.xpath('//body//a') #items = [] for site in sites: item = Website() item['URL_Datei'] = unicode('', 'utf-8') url_file = site.xpath('@href').extract() if (len(url_file)>0): item['URL_Datei'] = url_file[0] item['Stadt_URL'] = unicode(self.domain, 'utf-8') #Get ALL text of everything inside the link #First any sub-elements like <span> textbits = site.xpath('child::node()') item['URL_Text'] = unicode('', 'utf-8') for text in textbits: thetext = text.xpath('text()').extract() if (len(thetext) > 0): item['URL_Text'] += thetext[0] #Then the actual text directText = site.xpath('text()').extract() #If there's something there and it isn't a repetition, use it if (len(directText) > 0) and (directText != thetext): item['URL_Text'] += directText[0] item['URL_Text'] = item['URL_Text'].replace("\t", " ").replace("\n", "").strip() #If that got us nothing, then look at the title and alt elements title_text = site.xpath('@title').extract() if (len(title_text)>0) and (item['URL_Text'] == u''): item['URL_Datei'] = title_text[0] alt_text = site.xpath('@alt').extract() if (len(alt_text)>0) and (item['URL_Text'] == u''): item['URL_Datei'] = alt_text[0] item['URL_Dateiname'] = unicode(item['URL_Datei']).split('/')[-1] item['Format'] = u'Not interesting' item['geo'] = u'' item['URL_PARENT'] = parent_url item['Title_PARENT'] = parent_title #Is it a file (does it have any of the extensions (including the '.' in the filename, #then remove the '.' for ext in self.filetypes: if ext in item['URL_Dateiname'].encode('ascii', errors='ignore').upper(): item['Format'] = ext[1:len(ext)] #And is it one of our special geo filetypes? if ext in self.geofiletypes: item['geo'] = 'x' self.writerdata.writerow(item) self.writer.writerow(item) #items.append(item) return []
2.828125
3
kerlas/gym_env.py
imandr/KeRLas
0
12793500
<filename>kerlas/gym_env.py<gh_stars>0 import gym, random, numpy as np class MultiEnv(object): pass class MultiGymEnv(MultiEnv): # # Convert 1-agent Gym environment into a multi-agent environment # NAgents = 1 def __init__(self, env, tlimit=None, random_observation_space=None): if isinstance(env, str): env = gym.make(env) self.observation_space = env.observation_space self.action_space = env.action_space self.TLimit = tlimit self.Env = env self.Obs = None self.Reward = None self.Done = False self.Info = None self.RandomObservationSpace = random_observation_space def __str__(self): return "GymEnv(%s)" % (self.Env,) def randomStates(self, n): space = self.RandomObservationSpace or self.Env.observation_space return np.array([space.sample() for _ in xrange(n)]) def randomActions(self, n): return np.array([self.Env.action_space.sample() for _ in xrange(n)]) def reset(self, agents, random = False): assert len(agents) == 1, "Converted Gym environments can not handle multiple agents" self.Agent = agents[0] obs = self.Env.reset() if random and self.RandomObservationSpace is not None: obs = self.RandomObservationSpace.sample() self.Env.state = obs self.Obs = obs self.Done = False self.T = self.TLimit return [self.Obs] def addAgent(self, agent, random = False): raise NotImplementedError def step(self, actions): assert len(actions) == 1, "Converted Gym environments can not handle multiple agents" self.Obs, self.Reward, self.Done, self.Info = self.Env.step(actions[0][1]) if self.T is not None: self.T -= 1 self.Done = self.Done or (self.T <= 0) def feedback(self): return False, [(self.Agent, self.Obs, self.Reward, self.Done, self.Info)] def __getattr__(self, name): return getattr(self.Env, name) class TimedGymEnv(object): def __init__(self, env, tlimit=None, random_observation_space=None): if isinstance(env, str): env = gym.make(env) self.TLimit = tlimit self.Env = env self.RandomObservationSpace = random_observation_space self.T = self.TLimit = tlimit def reset(self, random=False): self.T = self.TLimit state = self.Env.reset() if random: state = self.randomStates(1)[0] self.Env.state = state return state def step(self, action): obs, reward, done, info = self.Env.step(action) if self.T is not None: self.T -= 1 if self.T <= 0: done = True return obs, reward, done, info def randomStates(self, n): space = self.RandomObservationSpace or self.Env.observation_space return np.array([space.sample() for _ in xrange(n)]) def randomActions(self, n): return np.array([self.Env.action_space.sample() for _ in xrange(n)]) def randomAction(self): return self.randomActions(1)[0] def __getattr__(self, name): return getattr(self.Env, name)
2.9375
3
lib/to_geojson.py
erictheise/trctr-pllr
0
12793501
<reponame>erictheise/trctr-pllr import json def array_to_geojson(array): props = [] for i in range(len(array[0])-1): props.append(array[0][i]) feature_collection = { "type": "FeatureCollection", "features": [] } features = [] for i in range(1, len(array)): feature = { "type": "Feature", "geometry": array[i][len(array[i])-1], "properties": { }, } for j in range(len(array[i])-1): feature['properties'][props[j]] = array[i][j] feature_collection["features"].append(feature) return json.dumps(feature_collection)
2.859375
3
setup.py
465b/General-Ecosystem-Modeling-Framework
1
12793502
<filename>setup.py from setuptools import setup, find_packages from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: readme_as_long_description = f.read() setup( name="nemf", version="0.3.4", packages=find_packages(), # install_requires=[""], # metadata to display on PyPI author="<NAME>", author_email="<EMAIL>", description="Network-based ecosystem Modelling Framework", long_description=readme_as_long_description, long_description_content_type="text/markdown", keywords="ecosystem modelling framework inverse-modelling", url="https://github.com/465b/nemf/", classifiers=[ 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering', 'Intended Audience :: Science/Research', 'Operating System :: POSIX :: Linux', 'Development Status :: 3 - Alpha', ], license='BSD', install_requires=[ 'numpy','seaborn','pandas','matplotlib','networkx','pyyaml', 'termcolor'] )
1.53125
2
simulator/entities/garage.py
lucassm02/fiap-cptm
0
12793503
<reponame>lucassm02/fiap-cptm from typing import List from .train import Train class Garage(object): def __init__(self, name: str, key: str, cars: List[Train], volume: int): self.name = name self.key = key self.cars = cars self.volume = volume
2.671875
3
3. Python Advanced (September 2021)/3.1 Python Advanced (September 2021)/06. Multidimensional Lists/05_primary_diagonal.py
kzborisov/SoftUni
1
12793504
size = int(input()) matrix = [[int(x) for x in input().split()] for _ in range(size)] print(sum([matrix[x][x] for x in range(size)]))
3.421875
3
Python-Data-Science/code.py
Prakhar1212/greyatom-python-for-data-science
0
12793505
# -------------- # Code starts here class_1 = ['<NAME>','<NAME>','<NAME>','<NAME>'] class_2 = ['<NAME>','<NAME>','<NAME>'] new_class = class_1 + class_2 new_class.append('<NAME>') new_class.remove('<NAME>') print(new_class) # Code ends here # -------------- # Code starts here courses = {'Math':65, 'English': 70, 'History': 80, 'French': 70, 'Science':60} total = 65+70+80+70+60 percentage = total * 100 / 500 print(total) print(percentage) # Code ends here # -------------- # Code starts here mathematics = {'<NAME> ': 78, '<NAME>': 95, '<NAME>':65, '<NAME>':50, '<NAME>':70, '<NAME>': 66, '<NAME>':75} topper = max(mathematics,key = mathematics.get) print(topper) # Code ends here # -------------- # Given string topper = '<NAME>' last_name = topper.split()[1] first_name = topper.split()[0] full_name = last_name + " " + first_name certificate_name = full_name.upper() print(certificate_name) # Code starts here # Code ends here
3.78125
4
src/sklearn_evaluation/SQLiteTracker.py
abcnishant007/sklearn-evaluation
351
12793506
<gh_stars>100-1000 from uuid import uuid4 import sqlite3 import json import pandas as pd from sklearn_evaluation.table import Table class SQLiteTracker: """A simple experiment tracker using SQLite :doc:`Click here <../user_guide/SQLiteTracker>` to see the user guide. Parameters ---------- path Database location """ def __init__(self, path: str): self.conn = sqlite3.connect(path) cur = self.conn.cursor() cur.execute(""" CREATE TABLE IF NOT EXISTS experiments ( uuid TEXT NOT NULL UNIQUE, created TIMESTAMP default current_timestamp, parameters TEXT, comment TEXT ) """) cur.close() def __getitem__(self, uuid): """Get experiment with a given uuid """ # TODO: make it work for a list of uuids return pd.read_sql('SELECT * FROM experiments WHERE uuid = ?', self.conn, params=[uuid], index_col='uuid') def recent(self, n=5, normalize=False): """Get most recent experiments as a pandas.DataFrame """ query = """ SELECT uuid, created, parameters, comment FROM experiments ORDER BY created DESC LIMIT ? """ df = pd.read_sql(query, self.conn, params=[n], index_col='uuid') if normalize: # parse and normalize json parameters = pd.json_normalize( df.pop('parameters').apply(lambda s: json.loads(s))).set_index( df.index) df = df.join(parameters) # re order columns to show "comment" at the end comment = df.pop('comment') df.insert(len(df.columns), 'comment', comment) return df def query(self, code): """Query the database, returns a pandas.DataFrame Examples -------- >>> from sklearn_evaluation import SQLiteTracker >>> tracker = SQLiteTracker(':memory:') # example in-memory db >>> tracker.insert('my_uuid', {'a': 1}) >>> df = tracker.query( ... "SELECT uuid, json_extract(parameters, '$.a') FROM experiments") """ df = pd.read_sql(code, self.conn) if 'uuid' in df: df = df.set_index('uuid') return df def new(self): """Create a new experiment, returns a uuid """ uuid = uuid4().hex cur = self.conn.cursor() cur.execute( """ INSERT INTO experiments (uuid) VALUES(?) """, [uuid]) cur.close() self.conn.commit() return uuid def update(self, uuid, parameters): """Update the parameters of an empty experiment given its uuid """ self._can_update(uuid) cur = self.conn.cursor() cur.execute( """ UPDATE experiments SET parameters = ? WHERE uuid = ? """, [json.dumps(parameters), uuid]) cur.close() self.conn.commit() def insert(self, uuid, parameters): """Insert a new experiment """ cur = self.conn.cursor() cur.execute( """ INSERT INTO experiments (uuid, parameters) VALUES(?, ?) """, [uuid, json.dumps(parameters)]) cur.close() self.conn.commit() def comment(self, uuid, comment): """Add a comment to an experiment given its uuid """ # TODO: add overwrite (false by default) and append options cur = self.conn.cursor() cur.execute( """ UPDATE experiments SET comment = ? WHERE uuid = ? """, [comment, uuid]) cur.close() self.conn.commit() def _recent(self, n=5, fmt='html'): if fmt not in {'html', 'plain'}: raise ValueError('fmt must be one "html" or "plain"') cur = self.conn.cursor() cur.execute( """ SELECT uuid, created, parameters, comment FROM experiments ORDER BY created DESC LIMIT ? """, [n]) res = cur.fetchall() table = Table(res, header=['uuid', 'created', 'parameters', 'comment']) title_template = '<h4> {} </h4>' if fmt == 'html' else '{}\n' title = title_template.format(type(self).__name__) if not len(table): title += '(No experiments saved yet)' if fmt == 'plain': title += '\n' if len(table): footer = (('<br>' if fmt == 'html' else '\n') + '(Most recent experiments)') else: footer = '' return (title + (table.to_html() if fmt == 'html' else str(table)) + footer) def _can_update(self, uuid): """Check if an experiment with a given uuid can be updated """ cur = self.conn.cursor() cur.execute( """ SELECT parameters FROM experiments WHERE uuid = ? """, [uuid]) row = cur.fetchone() exists = row is not None if exists: empty = row[0] is None if not empty: raise ValueError('Cannot update non-empty experiment with ' 'uuid "{}"'.format(uuid)) else: raise ValueError('Cannot update experiment with ' 'uuid "{}" because it does ' 'not exist'.format(uuid)) def __repr__(self): return self._recent(fmt='plain') def _repr_html_(self): return self._recent(fmt='html') def __del__(self): self.conn.close()
3.171875
3
run.pyw
xue0228/keyboard
0
12793507
<gh_stars>0 from xue_macro import macro if __name__ == '__main__': # macro.run(fg='#ECB1AC') macro.run()
1.226563
1
redis/__init__.py
RuiCoreSci/auth
0
12793508
from redis.client import Redis redis = Redis() __all__ = ['redis']
1.25
1
src/RIOT/tests/blob/tests/01-run.py
ARte-team/ARte
2
12793509
<reponame>ARte-team/ARte #!/usr/bin/env python3 # Copyright (C) 2019 <NAME> <<EMAIL>> # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import sys from testrunner import run def testfunc(child): child.expect_exact("Hello blob!") child.expect_exact("Hello blob_subdir!") child.expect_exact("0x00") child.expect_exact("0x01") child.expect_exact("0x02") child.expect_exact("0x03") child.expect_exact("0xFF") if __name__ == "__main__": sys.exit(run(testfunc))
1.5
2
backend/gifz_api/gifs/__init__.py
mkusiciel/terraform-workshops
3
12793510
<reponame>mkusiciel/terraform-workshops default_app_config = 'gifz_api.gifs.apps.GifsConfig'
1.015625
1
consumer_lag.py
aseev-xx/kafka-consumer-lag-metrics
0
12793511
<reponame>aseev-xx/kafka-consumer-lag-metrics<filename>consumer_lag.py #!/usr/bin/python2.7 # -*- coding: utf-8 -*- import sys import requests import ConfigParser import time import socket import os # get base json object for next def get_json_object(url): try: obj = requests.get(url) except requests.exceptions.RequestException as e: print e sys.exit(1) return obj.json() # get all exist clusters for url concatenate in future def get_clusters(base_url): obj = get_json_object(base_url + '/api/status/clusters') clusters = [] for el in obj["clusters"]["active"]: clusters.append(el["name"]) return clusters def prepare_graphite_metrics(base_url,graphite_prefix): clusters = get_clusters(base_url) metrics = [] timestamp = int(time.time()) for cluster in clusters: url = base_url + '/api/status/' + cluster + '/consumersSummary' obj = get_json_object(url) consumers = obj["consumers"] for consumer in consumers: for topic in consumer['topics']: cons = consumer['name'] value = graphite_prefix + cluster.replace('.','_') + '.' + consumer['type'] + '.' + cons.replace('.','_') + '.' + topic.replace('.','_') message = '%s %s %d' % (value, consumer['lags'][topic], timestamp) metrics.append(message) return metrics def send_graphite_metrics(message,graphite_host,graphite_port): print 'sending message:\n%s' % message sock = socket.socket() sock.connect((graphite_host,graphite_port)) sock.sendall(message) sock.close() def main(): config = ConfigParser.SafeConfigParser() config.read(os.path.dirname(__file__) + '/consumer_lag.ini') base_url = config.get('api','url') bulk = prepare_graphite_metrics(base_url,config.get('graphite','prefix')) message = '\n' . join(bulk) + '\n' send_graphite_metrics(message,config.get('graphite','host'),int(config.get('graphite','port'))) if __name__ == "__main__": main()
2.421875
2
cmasher/cli_tools.py
ajdittmann/CMasher
0
12793512
<filename>cmasher/cli_tools.py # -*- coding: utf-8 -*- # %% IMPORTS # Built-in imports import argparse from importlib import import_module import os import sys # Package imports import e13tools as e13 from matplotlib import cm as mplcm import numpy as np # CMasher imports from cmasher import __version__ import cmasher as cmr # All declaration __all__ = ['main'] # %% GLOBALS # Define main description of this package main_desc = ("CMasher: Scientific colormaps for making accessible, informative" " and 'cmashing' plots") # %% CLASS DEFINITIONS # Define formatter that automatically extracts help strings of subcommands class HelpFormatterWithSubCommands(argparse.ArgumentDefaultsHelpFormatter): # Override the add_argument function def add_argument(self, action): # Check if the help of this action is required if action.help is not argparse.SUPPRESS: # Check if this action is a subparser's action if isinstance(action, argparse._SubParsersAction): # If so, sort action.choices on name names = sorted(action.choices.keys()) # Loop over all subcommands defined in the action for name in names: # Obtain corresponding subparser subparser = action.choices[name] # Format the description of this subcommand and add it self._add_item(self.format_subcommands, [name, subparser.description]) # Call super method in all other cases else: super().add_argument(action) # This function formats the description of a subcommand with given name def format_subcommands(self, name, description): # Determine the positions and widths of the help texts help_position = min(self._action_max_length+2, self._max_help_position) help_width = max(self._width-help_position, 11) name_width = help_position-self._current_indent-2 # Transform name to the proper formatting name = "{0}{1: <{2}}{3}".format( ' '*self._current_indent, name, name_width, ' ' if(len(name) <= name_width) else '\n'+' '*help_position) # Split the lines of the subcommand description desc_lines = self._split_lines(description, help_width) # Create list of all parts of the description of this subcommand parts = [name, desc_lines.pop(0), '\n'] # Loop over all remaining desc_lines for line in desc_lines: # Format and add to parts parts.append("%s%s\n" % (' '*help_position, line)) # Convert to a single string and return return(''.join(parts)) # %% COMMAND FUNCTION DEFINITIONS # This function handles the 'bibtex' subcommand def cli_bibtex(): cmr.get_bibtex() # This function handles the 'cmap_type' subcommand def cli_cmap_type(): # Import cmap packages import_cmap_pkgs() # Print cmap type print(cmr.get_cmap_type(get_cmap(ARGS.cmap))) # This function handles the 'take_cmap_colors' subcommand def cli_cmap_colors(): # Import cmap packages import_cmap_pkgs() # Obtain the colors colors = cmr.take_cmap_colors(get_cmap(ARGS.cmap), ARGS.ncolors, cmap_range=ARGS.cmap_range, return_fmt=ARGS.return_fmt) # Print the colors line-by-line if ARGS.return_fmt in ('float', 'norm'): np.savetxt(sys.stdout, colors, '%.8f') elif ARGS.return_fmt in ('int', '8bit'): np.savetxt(sys.stdout, colors, '%i') else: np.savetxt(sys.stdout, colors, '%s') # This function handles the 'mkcmod' subcommand def cli_mk_cmod(): # Create cmap module cmap_path = cmr.create_cmap_mod(ARGS.cmap, save_dir=ARGS.dir) # Print on commandline that module has been created print("Created standalone colormap module of %r in %r." % (ARGS.cmap, cmap_path)) # %% FUNCTION DEFINITIONS # This function obtains the colormap that was requested def get_cmap(cmap): # Try to obtain the colormap from MPL try: cmap = mplcm.get_cmap(cmap) # If this does not work, try to expand given cmap in setuptools-style except ValueError: # Check if cmap contains a colon if ':' in cmap: # Split cmap up into mod_name and obj_name mod_name, obj_name = cmap.split(':', 1) obj_path = obj_name.split('.') # Import the provided module as cmap cmap = import_module(mod_name) # Import the provided object from this module for obj in obj_path: cmap = getattr(cmap, obj) # If cmap is still a string, raise error if isinstance(cmap, str): # Print error and exit print("Requested 'CMAP' ({!r}) cannot be found!".format(cmap)) sys.exit() # Return cmap return(cmap) # This function attempts to import a collection of packages with colormaps def import_cmap_pkgs(): # Define set of packages with colormaps cmap_pkgs = {'cmocean', 'colorcet', 'palettable'} # Obtain packages from CMR_CMAP_PKGS environment variable env_pkgs = os.environ.get('CMR_CMAP_PKGS', None) # Add env_pkgs to cmap_pkgs if it is not empty if env_pkgs is not None: # If Windows, split variable at semicolons if sys.platform.startswith('win'): env_pkgs = env_pkgs.split(';') # Else, if UNIX, split variable at colons elif sys.platform.startswith(('darwin', 'linux')): env_pkgs = env_pkgs.split(':') # Else, ignore the variable else: env_pkgs = [] # Add pkgs cmap_pkgs.update(env_pkgs) # Attempt to import each package for cmap_pkg in cmap_pkgs: try: import_module(cmap_pkg) except ImportError: pass # %% MAIN FUNCTION def main(): """ This is the main function of the CLI and is called whenever `cmr` is invoked from the command-line. """ # Initialize argparser parser = argparse.ArgumentParser( 'cmr', description=main_desc, formatter_class=HelpFormatterWithSubCommands, add_help=True, allow_abbrev=True) # Add subparsers subparsers = parser.add_subparsers( title='commands', metavar='COMMAND') # OPTIONAL ARGUMENTS # Add 'version' argument parser.add_argument( '-v', '--version', action='version', version="CMasher v{}".format(__version__)) # Create a cmap parser for several commands cmap_parent_parser = argparse.ArgumentParser(add_help=False) # Add 'cmap' argument cmap_parent_parser.add_argument( 'cmap', help=("Name of colormap to use as registered in *matplotlib* or the " "object path of a colormap (e.g., 'a.b:c.d' -> import a.b; " "cmap = a.b.c.d)"), metavar='CMAP', action='store', type=str) # BIBTEX COMMAND # Add bibtex subparser bibtex_parser = subparsers.add_parser( 'bibtex', description=e13.get_main_desc(cmr.get_bibtex), formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=True) # Set defaults for bibtex_parser bibtex_parser.set_defaults(func=cli_bibtex) # CMAP_TYPE COMMAND # Add cmap_type subparser cmap_type_parser = subparsers.add_parser( 'cmtype', parents=[cmap_parent_parser], description=e13.get_main_desc(cmr.get_cmap_type), formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=True) # Set defaults for cmap_type_parser cmap_type_parser.set_defaults(func=cli_cmap_type) # CMAP_COLORS COMMAND # Obtain the optional default arguments of take_cmap_colors defaults = cmr.take_cmap_colors.__kwdefaults__ # Create a take_colors parser take_colors_parent_parser = argparse.ArgumentParser(add_help=False) # Add 'cmap_range' optional argument take_colors_parent_parser.add_argument( '--range', help=("Normalized value range in the colormap from which colors should" " be taken"), metavar=('LOWER', 'UPPER'), action='store', nargs=2, default=defaults['cmap_range'], type=float, dest='cmap_range') # Add 'fmt' optional argument take_colors_parent_parser.add_argument( '--fmt', help="Format to return colors in", action='store', default=defaults['return_fmt'], choices=['float', 'norm', 'int', '8bit', 'str', 'hex'], type=str, dest='return_fmt') # Add cmap_colors subparser cmap_colors_parser = subparsers.add_parser( 'cmcolors', parents=[cmap_parent_parser, take_colors_parent_parser], description=e13.get_main_desc(cmr.take_cmap_colors), formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=True) # Add 'N' argument cmap_colors_parser.add_argument( 'ncolors', help="Number of colors to take", metavar='N', action='store', type=int) # Set defaults for cmap_colors_parser cmap_colors_parser.set_defaults(func=cli_cmap_colors) # RGB_TABLE COMMAND # Add rgb_table subparser rgb_table_parser = subparsers.add_parser( 'rgbtable', parents=[cmap_parent_parser, take_colors_parent_parser], description="Retrieves the RGB values of the provided `cmap`.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=True) # Set defaults for rgb_table_parser rgb_table_parser.set_defaults(func=cli_cmap_colors, ncolors=None) # MK_CMOD COMMAND # Add mk_cmod subparser mk_cmod_parser = subparsers.add_parser( 'mkcmod', description=e13.get_main_desc(cmr.create_cmap_mod), formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=True) # Add 'cmap' argument mk_cmod_parser.add_argument( 'cmap', help="Name of *CMasher* colormap to create standalone module for", metavar='CMAP', action='store', type=str) # Add 'dir' optional argument mk_cmod_parser.add_argument( '-d', '--dir', help="Path to directory where the module must be saved", action='store', default=cmr.create_cmap_mod.__kwdefaults__['save_dir'], type=str) # Set defaults for mk_cmod_parser mk_cmod_parser.set_defaults(func=cli_mk_cmod) # Parse the arguments global ARGS ARGS = parser.parse_args() # If arguments is empty (no func was provided), show help if 'func' not in ARGS: parser.print_help() # Else, call the corresponding function else: ARGS.func()
2.125
2
dataprep_example/ingest_retailrocket_dataset.py
DynamicYieldProjects/funnel-rocket
56
12793513
<reponame>DynamicYieldProjects/funnel-rocket import sys import time import argparse from pathlib import Path from contextlib import contextmanager import pandas as pd from pandas import DataFrame EVENTS_FILE = 'events.csv' PROPS_FILE_1 = 'item_properties_part1.csv' PROPS_FILE_2 = 'item_properties_part2.csv' INPUT_FILENAMES = {EVENTS_FILE, PROPS_FILE_1, PROPS_FILE_2} ITEM_PROPERTY_COLUMNS = {'categoryid', 'available', '790', '888'} EXPECTED_EVENT_COUNT = 2_500_516 def progress_msg(msg: str): print(f"\033[33m{msg}\033[0m") # Yellow, just yellow @contextmanager def timed(caption: str): start = time.time() yield total = time.time() - start print(f"Time to {caption}: {total:.3f} seconds") # Read item properties files, filter for relevant columns and 'pivot' its structure from rows to columns def read_item_props(filepath: Path) -> DataFrame: df = pd.read_csv(filepath) df = df[df['property'].isin(ITEM_PROPERTY_COLUMNS)] first_value_per_item = df.groupby(["itemid", "property"])["value"].first() df = first_value_per_item.to_frame() df = df.unstack(level=-1) df.columns = df.columns.droplevel(0) return df def ingest(path: Path): with timed("read & transform item properties of all products"): item_props_tempfile = path / "item_props.parquet" if item_props_tempfile.exists(): progress_msg(f"Reading item properties from cached file {item_props_tempfile}") item_props_df = pd.read_parquet(item_props_tempfile) else: progress_msg("Reading item properties... (this takes a bit)") item_props_df1 = read_item_props(path / PROPS_FILE_1) item_props_df2 = read_item_props(path / PROPS_FILE_2) item_props_df = item_props_df1.combine_first(item_props_df2) progress_msg(f"Storing item properties to {item_props_tempfile} for faster re-runs...") item_props_df.to_parquet(item_props_tempfile) with timed("read & transform user events"): progress_msg("Reading user events...") events = pd.read_csv(path / EVENTS_FILE) progress_msg("Joining events with item properties...") events = pd.merge(events, item_props_df, how='inner', on='itemid') progress_msg("Making columns more queryable...") events['price'] = events['790'].str[1:].astype(float) / 1000 events.drop(columns=['790'], inplace=True) events['available'] = events['available'].astype(int).astype(bool) events['categoryid'] = events['categoryid'].astype('category') events['event'] = events['event'].astype('category') events.rename(columns={'888': 'cryptic_attrs'}, inplace=True) progress_msg("Storing 'cryptic_attrs' also as categorical column 'cryptic_attrs_cat'...") events['cryptic_attrs_cat'] = events['cryptic_attrs'].astype('category') events.reset_index(drop=True) progress_msg("Excerpt from final DataFrame:") print(events) progress_msg("Columns types (a.k.a. dtypes):") print(events.dtypes) progress_msg("Breakdown of event types:") print(events['event'].value_counts()) if len(events) != EXPECTED_EVENT_COUNT: progress_msg(f"WARNING: Expected {EXPECTED_EVENT_COUNT} events, but final DataFrame has {len(events)}") output_file = path / 'retailrocket.parquet' events.to_parquet(output_file) col_memory_sizes = (events.memory_usage(deep=True) / 1024 ** 2).round(decimals=2) progress_msg(f'Size of DataFrame columns in memory (in MB):') print(col_memory_sizes) progress_msg(f"==> Saved output file to: {output_file}, size: {output_file.stat().st_size / 1024 ** 2:.1f}MB") with timed("load file - all columns"): pd.read_parquet(output_file) with timed("load file - just the 'cryptic_attrs' column"): pd.read_parquet(output_file, columns=['cryptic_attrs']) with timed("load file - just the 'cryptic_attrs_cat' column"): pd.read_parquet(output_file, columns=['cryptic_attrs_cat']) with timed("load file - all columns *except* these two"): cols = [col for col in events.dtypes.index if col not in ['cryptic_attrs', 'cryptic_attrs_cat']] pd.read_parquet(output_file, columns=cols) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Ingest RetailRocket dataset (to download: https://www.kaggle.com/retailrocket/ecommerce-dataset/)') parser.add_argument( 'path', type=str, help='Directory where downloaded dataset files are found and output file will be written') args = parser.parse_args() path = Path(args.path) if not path.exists() or not path.is_dir(): sys.exit(f'No such directory: {path}') files_in_path = {f.name for f in path.iterdir()} if not files_in_path >= INPUT_FILENAMES: sys.exit(f'Missing one or more input files: {INPUT_FILENAMES}') ingest(path)
2.5
2
multipole-graph-neural-operator/utilities.py
vir-k01/graph-pde
121
12793514
<gh_stars>100-1000 import torch import numpy as np import scipy.io import h5py import sklearn.metrics from torch_geometric.data import Data import torch.nn as nn from scipy.ndimage import gaussian_filter ################################################# # # Utilities # ################################################# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # reading data class MatReader(object): def __init__(self, file_path, to_torch=True, to_cuda=False, to_float=True): super(MatReader, self).__init__() self.to_torch = to_torch self.to_cuda = to_cuda self.to_float = to_float self.file_path = file_path self.data = None self.old_mat = None self._load_file() def _load_file(self): try: self.data = scipy.io.loadmat(self.file_path) self.old_mat = True except: self.data = h5py.File(self.file_path) self.old_mat = False def load_file(self, file_path): self.file_path = file_path self._load_file() def read_field(self, field): x = self.data[field] if not self.old_mat: x = x[()] x = np.transpose(x, axes=range(len(x.shape) - 1, -1, -1)) if self.to_float: x = x.astype(np.float32) if self.to_torch: x = torch.from_numpy(x) if self.to_cuda: x = x.cuda() return x def set_cuda(self, to_cuda): self.to_cuda = to_cuda def set_torch(self, to_torch): self.to_torch = to_torch def set_float(self, to_float): self.to_float = to_float # normalization, pointwise gaussian class UnitGaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(UnitGaussianNormalizer, self).__init__() # x could be in shape of ntrain*n or ntrain*T*n or ntrain*n*T self.mean = torch.mean(x, 0) self.std = torch.std(x, 0) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): if sample_idx is None: std = self.std + self.eps # n mean = self.mean else: if len(self.mean.shape) == len(sample_idx[0].shape): std = self.std[sample_idx] + self.eps # batch*n mean = self.mean[sample_idx] if len(self.mean.shape) > len(sample_idx[0].shape): std = self.std[:,sample_idx]+ self.eps # T*batch*n mean = self.mean[:,sample_idx] # x is in shape of batch*n or T*batch*n x = (x * std) + mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, Gaussian class GaussianNormalizer(object): def __init__(self, x, eps=0.00001): super(GaussianNormalizer, self).__init__() self.mean = torch.mean(x) self.std = torch.std(x) self.eps = eps def encode(self, x): x = (x - self.mean) / (self.std + self.eps) return x def decode(self, x, sample_idx=None): x = (x * (self.std + self.eps)) + self.mean return x def cuda(self): self.mean = self.mean.cuda() self.std = self.std.cuda() def cpu(self): self.mean = self.mean.cpu() self.std = self.std.cpu() # normalization, scaling by range class RangeNormalizer(object): def __init__(self, x, low=0.0, high=1.0): super(RangeNormalizer, self).__init__() mymin = torch.min(x, 0)[0].view(-1) mymax = torch.max(x, 0)[0].view(-1) self.a = (high - low)/(mymax - mymin) self.b = -self.a*mymax + high def encode(self, x): s = x.size() x = x.view(s[0], -1) x = self.a*x + self.b x = x.view(s) return x def decode(self, x): s = x.size() x = x.view(s[0], -1) x = (x - self.b)/self.a x = x.view(s) return x #loss function with rel/abs Lp loss class LpLoss(object): def __init__(self, d=2, p=2, size_average=True, reduction=True): super(LpLoss, self).__init__() #Dimension and Lp-norm type are postive assert d > 0 and p > 0 self.d = d self.p = p self.reduction = reduction self.size_average = size_average def abs(self, x, y): num_examples = x.size()[0] #Assume uniform mesh h = 1.0 / (x.size()[1] - 1.0) all_norms = (h**(self.d/self.p))*torch.norm(x.view(num_examples,-1) - y.view(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(all_norms) else: return torch.sum(all_norms) return all_norms def rel(self, x, y): num_examples = x.size()[0] diff_norms = torch.norm(x.reshape(num_examples,-1) - y.reshape(num_examples,-1), self.p, 1) y_norms = torch.norm(y.reshape(num_examples,-1), self.p, 1) if self.reduction: if self.size_average: return torch.mean(diff_norms/y_norms) else: return torch.sum(diff_norms/y_norms) return diff_norms/y_norms def __call__(self, x, y): return self.rel(x, y) # A simple feedforward neural network class DenseNet(torch.nn.Module): def __init__(self, layers, nonlinearity, out_nonlinearity=None, normalize=False): super(DenseNet, self).__init__() self.n_layers = len(layers) - 1 assert self.n_layers >= 1 self.layers = nn.ModuleList() for j in range(self.n_layers): self.layers.append(nn.Linear(layers[j], layers[j+1])) if j != self.n_layers - 1: if normalize: self.layers.append(nn.BatchNorm1d(layers[j+1])) self.layers.append(nonlinearity()) if out_nonlinearity is not None: self.layers.append(out_nonlinearity()) def forward(self, x): for _, l in enumerate(self.layers): x = l(x) return x class DenseNet_sin(torch.nn.Module): def __init__(self, layers, nonlinearity, out_nonlinearity=None, normalize=False): super(DenseNet_sin, self).__init__() self.n_layers = len(layers) - 1 assert self.n_layers >= 1 self.layers = nn.ModuleList() for j in range(self.n_layers): self.layers.append(nn.Linear(layers[j], layers[j+1])) def forward(self, x): for j, l in enumerate(self.layers): x = l(x) if j != self.n_layers - 1: x = torch.sin(x) return x # generate graphs on square domain class SquareMeshGenerator(object): def __init__(self, real_space, mesh_size): super(SquareMeshGenerator, self).__init__() self.d = len(real_space) self.s = mesh_size[0] assert len(mesh_size) == self.d if self.d == 1: self.n = mesh_size[0] self.grid = np.linspace(real_space[0][0], real_space[0][1], self.n).reshape((self.n, 1)) else: self.n = 1 grids = [] for j in range(self.d): grids.append(np.linspace(real_space[j][0], real_space[j][1], mesh_size[j])) self.n *= mesh_size[j] self.grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T def ball_connectivity(self, r): pwd = sklearn.metrics.pairwise_distances(self.grid) self.edge_index = np.vstack(np.where(pwd <= r)) self.n_edges = self.edge_index.shape[1] return torch.tensor(self.edge_index, dtype=torch.long) def gaussian_connectivity(self, sigma): pwd = sklearn.metrics.pairwise_distances(self.grid) rbf = np.exp(-pwd**2/sigma**2) sample = np.random.binomial(1,rbf) self.edge_index = np.vstack(np.where(sample)) self.n_edges = self.edge_index.shape[1] return torch.tensor(self.edge_index, dtype=torch.long) def get_grid(self): return torch.tensor(self.grid, dtype=torch.float) def attributes(self, f=None, theta=None): if f is None: if theta is None: edge_attr = self.grid[self.edge_index.T].reshape((self.n_edges,-1)) else: edge_attr = np.zeros((self.n_edges, 2*self.d+2)) edge_attr[:,0:2*self.d] = self.grid[self.edge_index.T].reshape((self.n_edges,-1)) edge_attr[:, 2 * self.d] = theta[self.edge_index[0]] edge_attr[:, 2 * self.d +1] = theta[self.edge_index[1]] else: xy = self.grid[self.edge_index.T].reshape((self.n_edges,-1)) if theta is None: edge_attr = f(xy[:,0:self.d], xy[:,self.d:]) else: edge_attr = f(xy[:,0:self.d], xy[:,self.d:], theta[self.edge_index[0]], theta[self.edge_index[1]]) return torch.tensor(edge_attr, dtype=torch.float) def get_boundary(self): s = self.s n = self.n boundary1 = np.array(range(0, s)) boundary2 = np.array(range(n - s, n)) boundary3 = np.array(range(s, n, s)) boundary4 = np.array(range(2 * s - 1, n, s)) self.boundary = np.concatenate([boundary1, boundary2, boundary3, boundary4]) def boundary_connectivity2d(self, stride=1): boundary = self.boundary[::stride] boundary_size = len(boundary) vertice1 = np.array(range(self.n)) vertice1 = np.repeat(vertice1, boundary_size) vertice2 = np.tile(boundary, self.n) self.edge_index_boundary = np.stack([vertice2, vertice1], axis=0) self.n_edges_boundary = self.edge_index_boundary.shape[1] return torch.tensor(self.edge_index_boundary, dtype=torch.long) def attributes_boundary(self, f=None, theta=None): # if self.edge_index_boundary == None: # self.boundary_connectivity2d() if f is None: if theta is None: edge_attr_boundary = self.grid[self.edge_index_boundary.T].reshape((self.n_edges_boundary,-1)) else: edge_attr_boundary = np.zeros((self.n_edges_boundary, 2*self.d+2)) edge_attr_boundary[:,0:2*self.d] = self.grid[self.edge_index_boundary.T].reshape((self.n_edges_boundary,-1)) edge_attr_boundary[:, 2 * self.d] = theta[self.edge_index_boundary[0]] edge_attr_boundary[:, 2 * self.d +1] = theta[self.edge_index_boundary[1]] else: xy = self.grid[self.edge_index_boundary.T].reshape((self.n_edges_boundary,-1)) if theta is None: edge_attr_boundary = f(xy[:,0:self.d], xy[:,self.d:]) else: edge_attr_boundary = f(xy[:,0:self.d], xy[:,self.d:], theta[self.edge_index_boundary[0]], theta[self.edge_index_boundary[1]]) return torch.tensor(edge_attr_boundary, dtype=torch.float) # generate graphs with sampling class RandomMeshGenerator(object): def __init__(self, real_space, mesh_size, sample_size, attr_features=1): super(RandomMeshGenerator, self).__init__() self.d = len(real_space) self.m = sample_size self.attr_features = attr_features assert len(mesh_size) == self.d if self.d == 1: self.n = mesh_size[0] self.grid = np.linspace(real_space[0][0], real_space[0][1], self.n).reshape((self.n, 1)) else: self.n = 1 grids = [] for j in range(self.d): grids.append(np.linspace(real_space[j][0], real_space[j][1], mesh_size[j])) self.n *= mesh_size[j] self.grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T if self.m > self.n: self.m = self.n self.idx = np.array(range(self.n)) self.grid_sample = self.grid def sample(self): perm = torch.randperm(self.n) self.idx = perm[:self.m] self.grid_sample = self.grid[self.idx] return self.idx def get_grid(self): return torch.tensor(self.grid_sample, dtype=torch.float) def ball_connectivity(self, r, is_forward=False): pwd = sklearn.metrics.pairwise_distances(self.grid_sample) self.edge_index = np.vstack(np.where(pwd <= r)) self.n_edges = self.edge_index.shape[1] if is_forward: print(self.edge_index.shape) self.edge_index = self.edge_index[:, self.edge_index[0] >= self.edge_index[1]] print(self.edge_index.shape) self.n_edges = self.edge_index.shape[1] return torch.tensor(self.edge_index, dtype=torch.long) def torus1d_connectivity(self, r): grid = self.grid_sample pwd0 = sklearn.metrics.pairwise_distances(grid, grid) grid1 = grid grid1[:,0] = grid[:,0]+1 pwd1 = sklearn.metrics.pairwise_distances(grid, grid1) PWD = np.stack([pwd0,pwd1], axis=2) pwd = np.min(PWD, axis=2) self.edge_index = np.vstack(np.where(pwd <= r)) self.n_edges = self.edge_index.shape[1] return torch.tensor(self.edge_index, dtype=torch.long) def gaussian_connectivity(self, sigma): pwd = sklearn.metrics.pairwise_distances(self.grid_sample) rbf = np.exp(-pwd**2/sigma**2) sample = np.random.binomial(1,rbf) self.edge_index = np.vstack(np.where(sample)) self.n_edges = self.edge_index.shape[1] return torch.tensor(self.edge_index, dtype=torch.long) def attributes(self, f=None, theta=None): if f is None: if theta is None: edge_attr = self.grid[self.edge_index.T].reshape((self.n_edges, -1)) else: theta = theta[self.idx] edge_attr = np.zeros((self.n_edges, 2 * self.d + 2*self.attr_features)) edge_attr[:, 0:2 * self.d] = self.grid_sample[self.edge_index.T].reshape((self.n_edges, -1)) edge_attr[:, 2 * self.d : 2 * self.d + self.attr_features] = theta[self.edge_index[0]].view(-1, self.attr_features) edge_attr[:, 2 * self.d + self.attr_features: 2 * self.d + 2*self.attr_features] = theta[self.edge_index[1]].view(-1, self.attr_features) else: xy = self.grid_sample[self.edge_index.T].reshape((self.n_edges, -1)) if theta is None: edge_attr = f(xy[:, 0:self.d], xy[:, self.d:]) else: theta = theta[self.idx] edge_attr = f(xy[:, 0:self.d], xy[:, self.d:], theta[self.edge_index[0]], theta[self.edge_index[1]]) return torch.tensor(edge_attr, dtype=torch.float) # # generate two-level graph class RandomTwoMeshGenerator(object): def __init__(self, real_space, mesh_size, sample_size, induced_point): super(RandomTwoMeshGenerator, self).__init__() self.d = len(real_space) self.m = sample_size self.m_i = induced_point assert len(mesh_size) == self.d if self.d == 1: self.n = mesh_size[0] self.grid = np.linspace(real_space[0][0], real_space[0][1], self.n).reshape((self.n, 1)) else: self.n = 1 grids = [] for j in range(self.d): grids.append(np.linspace(real_space[j][0], real_space[j][1], mesh_size[j])) self.n *= mesh_size[j] self.grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T if self.m > self.n: self.m = self.n self.idx = np.array(range(self.n)) self.idx_i = self.idx self.idx_both = self.idx self.grid_sample = self.grid self.grid_sample_i = self.grid self.grid_sample_both = self.grid def sample(self): perm = torch.randperm(self.n) self.idx = perm[:self.m] self.idx_i = perm[self.m: self.m+self.m_i] self.idx_both = perm[: self.m+self.m_i] self.grid_sample = self.grid[self.idx] self.grid_sample_i = self.grid[self.idx_i] self.grid_sample_both = self.grid[self.idx_both] return self.idx, self.idx_i, self.idx_both def get_grid(self): return torch.tensor(self.grid_sample, dtype=torch.float), \ torch.tensor(self.grid_sample_i, dtype=torch.float), \ torch.tensor(self.grid_sample_both, dtype=torch.float) def ball_connectivity(self, r11, r12, r22): pwd = sklearn.metrics.pairwise_distances(self.grid_sample) pwd12 = sklearn.metrics.pairwise_distances(self.grid_sample, self.grid_sample_i) pwd22 = sklearn.metrics.pairwise_distances(self.grid_sample_i) self.edge_index = np.vstack(np.where(pwd <= r11)) self.edge_index_12 = np.vstack(np.where(pwd12 <= r12)) self.edge_index_12[1,:] = self.edge_index_12[1,:] + self.m self.edge_index_21 = self.edge_index_12[[1,0],:] self.edge_index_22 = np.vstack(np.where(pwd22 <= r22)) + self.m self.n_edges = self.edge_index.shape[1] self.n_edges_12 = self.edge_index_12.shape[1] self.n_edges_22 = self.edge_index_22.shape[1] return torch.tensor(self.edge_index, dtype=torch.long), \ torch.tensor(self.edge_index_12, dtype=torch.long), \ torch.tensor(self.edge_index_21, dtype=torch.long), \ torch.tensor(self.edge_index_22, dtype=torch.long) def attributes(self, theta=None): if theta is None: edge_attr = self.grid_sample_both[self.edge_index.T].reshape((self.n_edges, -1)) edge_attr_12 = self.grid_sample_both[self.edge_index_12.T].reshape((self.n_edges_12, -1)) edge_attr_21 = self.grid_sample_both[self.edge_index_21.T].reshape((self.n_edges_12, -1)) edge_attr_22 = self.grid_sample_both[self.edge_index_22.T].reshape((self.n_edges_22, -1)) else: theta = theta[self.idx_both] edge_attr = np.zeros((self.n_edges, 3 * self.d)) edge_attr[:, 0:2 * self.d] = self.grid_sample_both[self.edge_index.T].reshape((self.n_edges, -1)) edge_attr[:, 2 * self.d] = theta[self.edge_index[0]] edge_attr[:, 2 * self.d + 1] = theta[self.edge_index[1]] edge_attr_12 = np.zeros((self.n_edges_12, 3 * self.d)) edge_attr_12[:, 0:2 * self.d] = self.grid_sample_both[self.edge_index_12.T].reshape((self.n_edges_12, -1)) edge_attr_12[:, 2 * self.d] = theta[self.edge_index_12[0]] edge_attr_12[:, 2 * self.d + 1] = theta[self.edge_index_12[1]] edge_attr_21 = np.zeros((self.n_edges_12, 3 * self.d)) edge_attr_21[:, 0:2 * self.d] = self.grid_sample_both[self.edge_index_21.T].reshape((self.n_edges_12, -1)) edge_attr_21[:, 2 * self.d] = theta[self.edge_index_21[0]] edge_attr_21[:, 2 * self.d + 1] = theta[self.edge_index_21[1]] edge_attr_22 = np.zeros((self.n_edges_22, 3 * self.d)) edge_attr_22[:, 0:2 * self.d] = self.grid_sample_both[self.edge_index_22.T].reshape((self.n_edges_22, -1)) edge_attr_22[:, 2 * self.d] = theta[self.edge_index_22[0]] edge_attr_22[:, 2 * self.d + 1] = theta[self.edge_index_22[1]] return torch.tensor(edge_attr, dtype=torch.float), \ torch.tensor(edge_attr_12, dtype=torch.float), \ torch.tensor(edge_attr_21, dtype=torch.float), \ torch.tensor(edge_attr_22, dtype=torch.float) # generate multi-level graph class RandomMultiMeshGenerator(object): def __init__(self, real_space, mesh_size, level, sample_sizes): super(RandomMultiMeshGenerator, self).__init__() self.d = len(real_space) self.m = sample_sizes self.level = level assert len(sample_sizes) == level assert len(mesh_size) == self.d if self.d == 1: self.n = mesh_size[0] self.grid = np.linspace(real_space[0][0], real_space[0][1], self.n).reshape((self.n, 1)) else: self.n = 1 grids = [] for j in range(self.d): grids.append(np.linspace(real_space[j][0], real_space[j][1], mesh_size[j])) self.n *= mesh_size[j] self.grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T self.idx = [] self.idx_all = None self.grid_sample = [] self.grid_sample_all = None self.edge_index = [] self.edge_index_down = [] self.edge_index_up = [] self.edge_attr = [] self.edge_attr_down = [] self.edge_attr_up = [] self.n_edges_inner = [] self.n_edges_inter = [] def sample(self): self.idx = [] self.grid_sample = [] perm = torch.randperm(self.n) index = 0 for l in range(self.level): self.idx.append(perm[index: index+self.m[l]]) self.grid_sample.append(self.grid[self.idx[l]]) index = index+self.m[l] self.idx_all = perm[:index] self.grid_sample_all = self.grid[self.idx_all] return self.idx, self.idx_all def get_grid(self): grid_out = [] for grid in self.grid_sample: grid_out.append(torch.tensor(grid, dtype=torch.float)) return grid_out, torch.tensor(self.grid_sample_all, dtype=torch.float) def ball_connectivity(self, radius_inner, radius_inter): assert len(radius_inner) == self.level assert len(radius_inter) == self.level - 1 self.edge_index = [] self.edge_index_down = [] self.edge_index_up = [] self.n_edges_inner = [] self.n_edges_inter = [] edge_index_out = [] edge_index_down_out = [] edge_index_up_out = [] index = 0 for l in range(self.level): pwd = sklearn.metrics.pairwise_distances(self.grid_sample[l]) edge_index = np.vstack(np.where(pwd <= radius_inner[l])) + index self.edge_index.append(edge_index) edge_index_out.append(torch.tensor(edge_index, dtype=torch.long)) self.n_edges_inner.append(edge_index.shape[1]) index = index + self.grid_sample[l].shape[0] index = 0 for l in range(self.level-1): pwd = sklearn.metrics.pairwise_distances(self.grid_sample[l], self.grid_sample[l+1]) edge_index = np.vstack(np.where(pwd <= radius_inter[l])) + index edge_index[1, :] = edge_index[1, :] + self.grid_sample[l].shape[0] self.edge_index_down.append(edge_index) edge_index_down_out.append(torch.tensor(edge_index, dtype=torch.long)) self.edge_index_up.append(edge_index[[1,0],:]) edge_index_up_out.append(torch.tensor(edge_index[[1,0],:], dtype=torch.long)) self.n_edges_inter.append(edge_index.shape[1]) index = index + self.grid_sample[l].shape[0] edge_index_out = torch.cat(edge_index_out, dim=1) edge_index_down_out = torch.cat(edge_index_down_out, dim=1) edge_index_up_out = torch.cat(edge_index_up_out, dim=1) return edge_index_out, edge_index_down_out, edge_index_up_out def get_edge_index_range(self): # in order to use graph network's data structure, # the edge index shall be stored as tensor instead of list # we concatenate the edge index list and label the range of each level edge_index_range = torch.zeros((self.level,2), dtype=torch.long) edge_index_down_range = torch.zeros((self.level-1,2), dtype=torch.long) edge_index_up_range = torch.zeros((self.level-1,2), dtype=torch.long) n_edge_index = 0 for l in range(self.level): edge_index_range[l, 0] = n_edge_index n_edge_index = n_edge_index + self.edge_index[l].shape[1] edge_index_range[l, 1] = n_edge_index n_edge_index = 0 for l in range(self.level-1): edge_index_down_range[l, 0] = n_edge_index edge_index_up_range[l, 0] = n_edge_index n_edge_index = n_edge_index + self.edge_index_down[l].shape[1] edge_index_down_range[l, 1] = n_edge_index edge_index_up_range[l, 1] = n_edge_index return edge_index_range, edge_index_down_range, edge_index_up_range def attributes(self, theta=None): self.edge_attr = [] self.edge_attr_down = [] self.edge_attr_up = [] if theta is None: for l in range(self.level): edge_attr = self.grid_sample_all[self.edge_index[l].T].reshape((self.n_edges_inner[l], 2*self.d)) self.edge_attr.append(torch.tensor(edge_attr)) for l in range(self.level - 1): edge_attr_down = self.grid_sample_all[self.edge_index_down[l].T].reshape((self.n_edges_inter[l], 2*self.d)) edge_attr_up = self.grid_sample_all[self.edge_index_up[l].T].reshape((self.n_edges_inter[l], 2*self.d)) self.edge_attr_down.append(torch.tensor(edge_attr_down)) self.edge_attr_up.append(torch.tensor(edge_attr_up)) else: theta = theta[self.idx_all] for l in range(self.level): edge_attr = np.zeros((self.n_edges_inner[l], 2 * self.d + 2)) edge_attr[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index[l].T].reshape( (self.n_edges_inner[l], 2 * self.d)) edge_attr[:, 2 * self.d] = theta[self.edge_index[l][0]] edge_attr[:, 2 * self.d + 1] = theta[self.edge_index[l][1]] self.edge_attr.append(torch.tensor(edge_attr, dtype=torch.float)) for l in range(self.level - 1): edge_attr_down = np.zeros((self.n_edges_inter[l], 2 * self.d + 2)) edge_attr_up = np.zeros((self.n_edges_inter[l], 2 * self.d + 2)) edge_attr_down[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index_down[l].T].reshape( (self.n_edges_inter[l], 2 * self.d)) edge_attr_down[:, 2 * self.d] = theta[self.edge_index_down[l][0]] edge_attr_down[:, 2 * self.d + 1] = theta[self.edge_index_down[l][1]] self.edge_attr_down.append(torch.tensor(edge_attr_down, dtype=torch.float)) edge_attr_up[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index_up[l].T].reshape( (self.n_edges_inter[l], 2 * self.d)) edge_attr_up[:, 2 * self.d] = theta[self.edge_index_up[l][0]] edge_attr_up[:, 2 * self.d + 1] = theta[self.edge_index_up[l][1]] self.edge_attr_up.append(torch.tensor(edge_attr_up, dtype=torch.float)) edge_attr_out = torch.cat(self.edge_attr, dim=0) edge_attr_down_out = torch.cat(self.edge_attr_down, dim=0) edge_attr_up_out = torch.cat(self.edge_attr_up, dim=0) return edge_attr_out, edge_attr_down_out, edge_attr_up_out # generate graph, with split and assemble class RandomGridSplitter(object): def __init__(self, grid, resolution, d=2, m=200, l=1, radius=0.25): super(RandomGridSplitter, self).__init__() self.grid = grid self.resolution = resolution self.n = resolution**d self.d = d self.m = m self.l = l self.radius = radius assert self.n % self.m == 0 self.num = self.n // self.m # number of sub-grid def get_data(self, theta, edge_features=1): data = [] for i in range(self.l): perm = torch.randperm(self.n) perm = perm.reshape(self.num, self.m) for j in range(self.num): idx = perm[j,:].reshape(-1,) grid_sample = self.grid.reshape(self.n,-1)[idx] theta_sample = theta.reshape(self.n,-1)[idx] X = torch.cat([grid_sample,theta_sample],dim=1) pwd = sklearn.metrics.pairwise_distances(grid_sample) edge_index = np.vstack(np.where(pwd <= self.radius)) n_edges = edge_index.shape[1] edge_index = torch.tensor(edge_index, dtype=torch.long) if edge_features == 0: edge_attr = grid_sample[edge_index.T].reshape(n_edges, -1) else: edge_attr = np.zeros((n_edges, 2*self.d+2)) a = theta_sample[:,0] edge_attr[:, :2*self.d] = grid_sample[edge_index.T].reshape(n_edges, -1) edge_attr[:, 2*self.d] = a[edge_index[0]] edge_attr[:, 2*self.d+1] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) data.append(Data(x=X, edge_index=edge_index, edge_attr=edge_attr, split_idx=idx)) print('test', len(data), X.shape, edge_index.shape, edge_attr.shape) return data def assemble(self, pred, split_idx, batch_size2, sigma=1, cuda=False): assert len(pred) == len(split_idx) assert len(pred) == self.num * self.l // batch_size2 out = torch.zeros(self.n, ) if cuda: out = out.cuda() for i in range(len(pred)): pred_i = pred[i].reshape(batch_size2, self.m) split_idx_i = split_idx[i].reshape(batch_size2, self.m) for j in range(batch_size2): pred_ij = pred_i[j,:].reshape(-1,) idx = split_idx_i[j,:].reshape(-1,) out[idx] = out[idx] + pred_ij out = out / self.l # out = gaussian_filter(out, sigma=sigma, mode='constant', cval=0) # out = torch.tensor(out, dtype=torch.float) return out.reshape(-1,) # generate multi-level graph, with split and assemble class RandomMultiMeshSplitter(object): def __init__(self, real_space, mesh_size, level, sample_sizes): super(RandomMultiMeshSplitter, self).__init__() self.d = len(real_space) self.ms = sample_sizes self.m = sample_sizes[0] self.level = level assert len(sample_sizes) == level assert len(mesh_size) == self.d if self.d == 1: self.n = mesh_size[0] self.grid = np.linspace(real_space[0][0], real_space[0][1], self.n).reshape((self.n, 1)) else: self.n = 1 grids = [] for j in range(self.d): grids.append(np.linspace(real_space[j][0], real_space[j][1], mesh_size[j])) self.n *= mesh_size[j] self.grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T self.splits = self.n // self.m # number of sub-grid if self.splits * self.m < self.n: self.splits = self.splits + 1 print('n:',self.n,' m:',self.m, ' number of splits:', self.splits ) self.perm = None self.idx = [] self.idx_all = None self.grid_sample = [] self.grid_sample_all = None self.edge_index = [] self.edge_index_down = [] self.edge_index_up = [] self.edge_attr = [] self.edge_attr_down = [] self.edge_attr_up = [] self.n_edges_inner = [] self.n_edges_inter = [] def sample(self, new_sample=True, index0=0): self.idx = [] self.grid_sample = [] if (new_sample) or (self.perm is None): self.perm = torch.randperm(self.n) index = index0 for l in range(self.level): index = index % self.n index_end = (index+self.ms[l]) % self.n if index < index_end: idx = self.perm[index: index_end] else: idx = torch.cat((self.perm[index: ],self.perm[: index_end]), dim=0) self.idx.append(idx) self.grid_sample.append(self.grid[idx]) index = index_end if index0 < index_end: idx_all = self.perm[index0: index_end] else: idx_all = torch.cat((self.perm[index0:], self.perm[: index_end]), dim=0) self.idx_all = idx_all self.grid_sample_all = self.grid[self.idx_all] return self.idx, self.idx_all def get_grid(self): grid_out = [] for grid in self.grid_sample: grid_out.append(torch.tensor(grid, dtype=torch.float)) return grid_out, torch.tensor(self.grid_sample_all, dtype=torch.float) def ball_connectivity(self, radius_inner, radius_inter): assert len(radius_inner) == self.level assert len(radius_inter) == self.level - 1 self.edge_index = [] self.edge_index_down = [] self.edge_index_up = [] self.n_edges_inner = [] self.n_edges_inter = [] edge_index_out = [] edge_index_down_out = [] edge_index_up_out = [] index = 0 for l in range(self.level): pwd = sklearn.metrics.pairwise_distances(self.grid_sample[l]) edge_index = np.vstack(np.where(pwd <= radius_inner[l])) + index self.edge_index.append(edge_index) edge_index_out.append(torch.tensor(edge_index, dtype=torch.long)) self.n_edges_inner.append(edge_index.shape[1]) index = index + self.grid_sample[l].shape[0] index = 0 for l in range(self.level-1): pwd = sklearn.metrics.pairwise_distances(self.grid_sample[l], self.grid_sample[l+1]) edge_index = np.vstack(np.where(pwd <= radius_inter[l])) + index edge_index[1, :] = edge_index[1, :] + self.grid_sample[l].shape[0] self.edge_index_down.append(edge_index) edge_index_down_out.append(torch.tensor(edge_index, dtype=torch.long)) self.edge_index_up.append(edge_index[[1,0],:]) edge_index_up_out.append(torch.tensor(edge_index[[1,0],:], dtype=torch.long)) self.n_edges_inter.append(edge_index.shape[1]) index = index + self.grid_sample[l].shape[0] edge_index_out = torch.cat(edge_index_out, dim=1) edge_index_down_out = torch.cat(edge_index_down_out, dim=1) edge_index_up_out = torch.cat(edge_index_up_out, dim=1) return edge_index_out, edge_index_down_out, edge_index_up_out def get_edge_index_range(self): # in order to use graph network's data structure, # the edge index shall be stored as tensor instead of list # we concatenate the edge index list and label the range of each level edge_index_range = torch.zeros((self.level,2), dtype=torch.long) edge_index_down_range = torch.zeros((self.level-1,2), dtype=torch.long) edge_index_up_range = torch.zeros((self.level-1,2), dtype=torch.long) n_edge_index = 0 for l in range(self.level): edge_index_range[l, 0] = n_edge_index n_edge_index = n_edge_index + self.edge_index[l].shape[1] edge_index_range[l, 1] = n_edge_index n_edge_index = 0 for l in range(self.level-1): edge_index_down_range[l, 0] = n_edge_index edge_index_up_range[l, 0] = n_edge_index n_edge_index = n_edge_index + self.edge_index_down[l].shape[1] edge_index_down_range[l, 1] = n_edge_index edge_index_up_range[l, 1] = n_edge_index return edge_index_range, edge_index_down_range, edge_index_up_range def attributes(self, theta=None): self.edge_attr = [] self.edge_attr_down = [] self.edge_attr_up = [] if theta is None: for l in range(self.level): edge_attr = self.grid_sample_all[self.edge_index[l].T].reshape((self.n_edges_inner[l], 2*self.d)) self.edge_attr.append(torch.tensor(edge_attr)) for l in range(self.level - 1): edge_attr_down = self.grid_sample_all[self.edge_index_down[l].T].reshape((self.n_edges_inter[l], 2*self.d)) edge_attr_up = self.grid_sample_all[self.edge_index_up[l].T].reshape((self.n_edges_inter[l], 2*self.d)) self.edge_attr_down.append(torch.tensor(edge_attr_down)) self.edge_attr_up.append(torch.tensor(edge_attr_up)) else: theta = theta[self.idx_all] for l in range(self.level): edge_attr = np.zeros((self.n_edges_inner[l], 2 * self.d + 2)) edge_attr[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index[l].T].reshape( (self.n_edges_inner[l], 2 * self.d)) edge_attr[:, 2 * self.d] = theta[self.edge_index[l][0]] edge_attr[:, 2 * self.d + 1] = theta[self.edge_index[l][1]] self.edge_attr.append(torch.tensor(edge_attr, dtype=torch.float)) for l in range(self.level - 1): edge_attr_down = np.zeros((self.n_edges_inter[l], 2 * self.d + 2)) edge_attr_up = np.zeros((self.n_edges_inter[l], 2 * self.d + 2)) edge_attr_down[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index_down[l].T].reshape( (self.n_edges_inter[l], 2 * self.d)) edge_attr_down[:, 2 * self.d] = theta[self.edge_index_down[l][0]] edge_attr_down[:, 2 * self.d + 1] = theta[self.edge_index_down[l][1]] self.edge_attr_down.append(torch.tensor(edge_attr_down, dtype=torch.float)) edge_attr_up[:, 0:2 * self.d] = self.grid_sample_all[self.edge_index_up[l].T].reshape( (self.n_edges_inter[l], 2 * self.d)) edge_attr_up[:, 2 * self.d] = theta[self.edge_index_up[l][0]] edge_attr_up[:, 2 * self.d + 1] = theta[self.edge_index_up[l][1]] self.edge_attr_up.append(torch.tensor(edge_attr_up, dtype=torch.float)) edge_attr_out = torch.cat(self.edge_attr, dim=0) edge_attr_down_out = torch.cat(self.edge_attr_down, dim=0) edge_attr_up_out = torch.cat(self.edge_attr_up, dim=0) return edge_attr_out, edge_attr_down_out, edge_attr_up_out def splitter(self, radius_inner, radius_inter, theta_a, theta_all): # give a test mesh, generate a list of data data = [] index = 0 for i in range(self.splits): if i==0: idx, idx_all = self.sample(new_sample=True, index0=index) else: idx, idx_all = self.sample(new_sample=False, index0=index) index = (index + self.m) % self.n grid, grid_all = self.get_grid() edge_index, edge_index_down, edge_index_up = self.ball_connectivity(radius_inner, radius_inter) edge_index_range, edge_index_down_range, edge_index_up_range = self.get_edge_index_range() edge_attr, edge_attr_down, edge_attr_up = self.attributes(theta=theta_a) x = torch.cat([grid_all, theta_all[idx_all,:] ], dim=1) data.append(Data(x=x, edge_index_mid=edge_index, edge_index_down=edge_index_down, edge_index_up=edge_index_up, edge_index_range=edge_index_range, edge_index_down_range=edge_index_down_range, edge_index_up_range=edge_index_up_range, edge_attr_mid=edge_attr, edge_attr_down=edge_attr_down, edge_attr_up=edge_attr_up, sample_idx=idx[0])) return data def assembler(self, out_list, sample_idx_list, is_cuda=False): assert len(out_list) == self.splits if is_cuda: pred = torch.zeros(self.n, ).cuda() else: pred = torch.zeros(self.n, ) for i in range(self.splits): pred[sample_idx_list[i]] = out_list[i].reshape(-1) return pred # generate graph, with split and assemble with downsample class DownsampleGridSplitter(object): def __init__(self, grid, resolution, r, m=100, radius=0.15, edge_features=1): super(DownsampleGridSplitter, self).__init__() # instead of randomly sample sub-grids, here we downsample sub-grids self.grid = grid.reshape(resolution, resolution,2) # self.theta = theta.reshape(resolution, resolution,-1) # self.y = y.reshape(resolution, resolution,1) self.resolution = resolution if resolution%2==1: self.s = int(((resolution - 1)/r) + 1) else: self.s = int(resolution/r) self.r = r self.n = resolution**2 self.m = m self.radius = radius self.edge_features = edge_features self.index = torch.tensor(range(self.n), dtype=torch.long).reshape(self.resolution, self.resolution) def ball_connectivity(self, grid): pwd = sklearn.metrics.pairwise_distances(grid) edge_index = np.vstack(np.where(pwd <= self.radius)) n_edges = edge_index.shape[1] return torch.tensor(edge_index, dtype=torch.long), n_edges def get_data(self, theta): theta_d = theta.shape[1] theta = theta.reshape(self.resolution, self.resolution, theta_d) data = [] for x in range(self.r): for y in range(self.r): grid_sub = self.grid[x::self.r, y::self.r,:].reshape(-1,2) theta_sub = theta[x::self.r, y::self.r,:].reshape(-1,theta_d) perm = torch.randperm(self.n) m = self.m - grid_sub.shape[0] idx = perm[:m] grid_sample = self.grid.reshape(self.n,-1)[idx] theta_sample = theta.reshape(self.n,-1)[idx] grid_split = torch.cat([grid_sub, grid_sample],dim=0) theta_split = torch.cat([theta_sub, theta_sample],dim=0) X = torch.cat([grid_split,theta_split],dim=1) edge_index, n_edges = self.ball_connectivity(grid_split) edge_attr = np.zeros((n_edges, 4+self.edge_features*2)) a = theta_split[:, :self.edge_features] edge_attr[:, :4] = grid_split[edge_index.T].reshape(n_edges, -1) edge_attr[:, 4:4 + self.edge_features] = a[edge_index[0]] edge_attr[:, 4 + self.edge_features: 4 + self.edge_features * 2] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) split_idx = torch.tensor([x,y],dtype=torch.long).reshape(1,2) data.append(Data(x=X, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx)) print('test', len(data), X.shape, edge_index.shape, edge_attr.shape) return data def sample(self, theta, Y): theta_d = theta.shape[1] theta = theta.reshape(self.resolution, self.resolution, theta_d) Y = Y.reshape(self.resolution, self.resolution) x = torch.randint(0,self.r,(1,)) y = torch.randint(0,self.r,(1,)) grid_sub = self.grid[x::self.r, y::self.r, :].reshape(-1, 2) theta_sub = theta[x::self.r, y::self.r, :].reshape(-1, theta_d) Y_sub = Y[x::self.r, y::self.r].reshape(-1,) index_sub = self.index[x::self.r, y::self.r].reshape(-1,) n_sub = Y_sub.shape[0] if self.m >= n_sub: m = self.m - n_sub perm = torch.randperm(self.n) idx = perm[:m] grid_sample = self.grid.reshape(self.n, -1)[idx] theta_sample = theta.reshape(self.n, -1)[idx] Y_sample = Y.reshape(self.n, )[idx] grid_split = torch.cat([grid_sub, grid_sample], dim=0) theta_split = torch.cat([theta_sub, theta_sample], dim=0) Y_split = torch.cat([Y_sub, Y_sample], dim=0).reshape(-1,) index_split = torch.cat([index_sub, idx], dim=0).reshape(-1,) X = torch.cat([grid_split, theta_split], dim=1) else: grid_split = grid_sub theta_split = theta_sub Y_split = Y_sub.reshape(-1,) index_split = index_sub.reshape(-1,) X = torch.cat([grid_split, theta_split], dim=1) edge_index, n_edges = self.ball_connectivity(grid_split) edge_attr = np.zeros((n_edges, 4+self.edge_features*2)) a = theta_split[:, :self.edge_features] edge_attr[:, :4] = grid_split[edge_index.T].reshape(n_edges, -1) edge_attr[:, 4:4+self.edge_features] = a[edge_index[0]] edge_attr[:, 4+self.edge_features: 4+self.edge_features*2] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) split_idx = torch.tensor([x, y], dtype=torch.long).reshape(1, 2) data = Data(x=X, y=Y_split, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx, sample_idx=index_split) print('train', X.shape, Y_split.shape, edge_index.shape, edge_attr.shape, index_split.shape) return data def assemble(self, pred, split_idx, batch_size2, sigma=1): assert len(pred) == len(split_idx) assert len(pred) == self.r**2 // batch_size2 out = torch.zeros((self.resolution,self.resolution)) for i in range(len(pred)): pred_i = pred[i].reshape(batch_size2, self.m) split_idx_i = split_idx[i] for j in range(batch_size2): pred_ij = pred_i[j,:] x, y = split_idx_i[j] if self.resolution%2==1: if x==0: nx = self.s else: nx = self.s-1 if y==0: ny = self.s else: ny = self.s-1 else: nx = self.s ny = self.s # pred_ij = pred_i[idx : idx + nx * ny] out[x::self.r, y::self.r] = pred_ij[:nx * ny].reshape(nx,ny) out = gaussian_filter(out, sigma=sigma, mode='constant', cval=0) out = torch.tensor(out, dtype=torch.float) return out.reshape(-1,) # generate graph on Torus, with split and assemble class TorusGridSplitter(object): def __init__(self, grid, resolution, r, m=100, radius=0.15, T=None, edge_features=1, ): super(TorusGridSplitter, self).__init__() self.grid = grid.reshape(resolution, resolution,2) # self.theta = theta.reshape(resolution, resolution,-1) # self.y = y.reshape(resolution, resolution,1) self.resolution = resolution if resolution%2==1: self.s = int(((resolution - 1)/r) + 1) else: self.s = int(resolution/r) self.r = r self.n = resolution**2 self.m = m self.T = T self.radius = radius self.edge_features = edge_features self.index = torch.tensor(range(self.n), dtype=torch.long).reshape(self.resolution, self.resolution) def pairwise_difference(self,grid1, grid2): n = grid1.shape[0] x1 = grid1[:,0] y1 = grid1[:,1] x2 = grid2[:,0] y2 = grid2[:,1] X1 = np.tile(x1.reshape(n, 1), [1, n]) X2 = np.tile(x2.reshape(1, n), [n, 1]) X_diff = X1 - X2 Y1 = np.tile(y1.reshape(n, 1), [1, n]) Y2 = np.tile(y2.reshape(1, n), [n, 1]) Y_diff = Y1 - Y2 return X_diff, Y_diff def torus_connectivity(self, grid): pwd0 = sklearn.metrics.pairwise_distances(grid, grid) X_diff0, Y_diff0 = self.pairwise_difference(grid, grid) grid1 = grid grid1[:,0] = grid[:,0]+1 pwd1 = sklearn.metrics.pairwise_distances(grid, grid1) X_diff1, Y_diff1 = self.pairwise_difference(grid, grid1) grid2 = grid grid2[:, 1] = grid[:, 1] + 1 pwd2 = sklearn.metrics.pairwise_distances(grid, grid2) X_diff2, Y_diff2 = self.pairwise_difference(grid, grid2) grid3 = grid grid3[:, :] = grid[:, :] + 1 pwd3 = sklearn.metrics.pairwise_distances(grid, grid3) X_diff3, Y_diff3 = self.pairwise_difference(grid, grid3) grid4 = grid grid4[:, 0] = grid[:, 0] + 1 grid4[:, 1] = grid[:, 1] - 1 pwd4 = sklearn.metrics.pairwise_distances(grid, grid4) X_diff4, Y_diff4 = self.pairwise_difference(grid, grid4) PWD = np.stack([pwd0,pwd1,pwd2,pwd3,pwd4], axis=2) X_DIFF = np.stack([X_diff0,X_diff1,X_diff2,X_diff3,X_diff4], axis=2) Y_DIFF = np.stack([Y_diff0, Y_diff1, Y_diff2, Y_diff3, Y_diff4], axis=2) pwd = np.min(PWD, axis=2) pwd_index = np.argmin(PWD, axis=2) edge_index = np.vstack(np.where(pwd <= self.radius)) pwd_index = pwd_index[np.where(pwd <= self.radius)] PWD_index = (np.where(pwd <= self.radius)[0], np.where(pwd <= self.radius)[1], pwd_index) distance = PWD[PWD_index] X_difference = X_DIFF[PWD_index] Y_difference = Y_DIFF[PWD_index] n_edges = edge_index.shape[1] return torch.tensor(edge_index, dtype=torch.long), n_edges, distance, X_difference, Y_difference def get_data(self, theta, params=None): theta_d = theta.shape[1] theta = theta.reshape(self.resolution, self.resolution, theta_d) data = [] for x in range(self.r): for y in range(self.r): grid_sub = self.grid[x::self.r, y::self.r,:].reshape(-1,2) theta_sub = theta[x::self.r, y::self.r,:].reshape(-1,theta_d) perm = torch.randperm(self.n) m = self.m - grid_sub.shape[0] idx = perm[:m] grid_sample = self.grid.reshape(self.n,-1)[idx] theta_sample = theta.reshape(self.n,-1)[idx] grid_split = torch.cat([grid_sub, grid_sample],dim=0) theta_split = torch.cat([theta_sub, theta_sample],dim=0) X = torch.cat([grid_split,theta_split],dim=1) edge_index, n_edges, distance, X_difference, Y_difference = self.torus_connectivity(grid_split) edge_attr = np.zeros((n_edges, 3+self.edge_features*2)) a = theta_split[:, :self.edge_features] edge_attr[:, 0] = X_difference.reshape(n_edges, ) edge_attr[:, 1] = Y_difference.reshape(n_edges, ) edge_attr[:, 2] = distance.reshape(n_edges, ) edge_attr[:, 3:3 + self.edge_features] = a[edge_index[0]] edge_attr[:, 3 + self.edge_features: 4 + self.edge_features * 2] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) split_idx = torch.tensor([x,y],dtype=torch.long).reshape(1,2) if params==None: data.append(Data(x=X, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx)) else: data.append(Data(x=X, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx, params=params)) print('test', len(data), X.shape, edge_index.shape, edge_attr.shape) return data def sample(self, theta, Y): theta_d = theta.shape[1] theta = theta.reshape(self.resolution, self.resolution, theta_d) Y = Y.reshape(self.resolution, self.resolution) x = torch.randint(0,self.r,(1,)) y = torch.randint(0,self.r,(1,)) grid_sub = self.grid[x::self.r, y::self.r, :].reshape(-1, 2) theta_sub = theta[x::self.r, y::self.r, :].reshape(-1, theta_d) Y_sub = Y[x::self.r, y::self.r].reshape(-1,) index_sub = self.index[x::self.r, y::self.r].reshape(-1,) n_sub = Y_sub.shape[0] if self.m >= n_sub: m = self.m - n_sub perm = torch.randperm(self.n) idx = perm[:m] grid_sample = self.grid.reshape(self.n, -1)[idx] theta_sample = theta.reshape(self.n, -1)[idx] Y_sample = Y.reshape(self.n, )[idx] grid_split = torch.cat([grid_sub, grid_sample], dim=0) theta_split = torch.cat([theta_sub, theta_sample], dim=0) Y_split = torch.cat([Y_sub, Y_sample], dim=0).reshape(-1,) index_split = torch.cat([index_sub, idx], dim=0).reshape(-1,) X = torch.cat([grid_split, theta_split], dim=1) else: grid_split = grid_sub theta_split = theta_sub Y_split = Y_sub.reshape(-1,) index_split = index_sub.reshape(-1,) X = torch.cat([grid_split, theta_split], dim=1) edge_index, n_edges, distance, X_difference, Y_difference = self.torus_connectivity(grid_split) edge_attr = np.zeros((n_edges, 3+self.edge_features*2)) a = theta_split[:, :self.edge_features] edge_attr[:, 0] = X_difference.reshape(n_edges, ) edge_attr[:, 1] = Y_difference.reshape(n_edges, ) edge_attr[:, 2] = distance.reshape(n_edges, ) edge_attr[:, 3:3+self.edge_features] = a[edge_index[0]] edge_attr[:, 3+self.edge_features: 4+self.edge_features*2] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) split_idx = torch.tensor([x, y], dtype=torch.long).reshape(1, 2) data = Data(x=X, y=Y_split, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx, sample_idx=index_split) print('train', X.shape, Y_split.shape, edge_index.shape, edge_attr.shape, index_split.shape) return data def sampleT(self, theta, Y, params=None): theta_d = theta.shape[1] theta = theta.reshape(self.resolution, self.resolution, theta_d) Y = Y.reshape(self.T, self.resolution, self.resolution) x = torch.randint(0, self.r, (1,)) y = torch.randint(0, self.r, (1,)) grid_sub = self.grid[x::self.r, y::self.r, :].reshape(-1, 2) theta_sub = theta[x::self.r, y::self.r, :].reshape(-1, theta_d) Y_sub = Y[:,x::self.r, y::self.r].reshape(self.T,-1) index_sub = self.index[x::self.r, y::self.r].reshape(-1, ) n_sub = Y_sub.shape[1] if self.m >= n_sub: m = self.m - n_sub perm = torch.randperm(self.n) idx = perm[:m] grid_sample = self.grid.reshape(self.n, -1)[idx] theta_sample = theta.reshape(self.n, -1)[idx] Y_sample = Y.reshape(self.T, self.n)[:,idx] grid_split = torch.cat([grid_sub, grid_sample], dim=0) theta_split = torch.cat([theta_sub, theta_sample], dim=0) Y_split = torch.cat([Y_sub, Y_sample], dim=1).reshape(self.T,-1) index_split = torch.cat([index_sub, idx], dim=0).reshape(-1, ) X = torch.cat([grid_split, theta_split], dim=1) else: grid_split = grid_sub theta_split = theta_sub Y_split = Y_sub.reshape(self.T, -1) index_split = index_sub.reshape(-1, ) X = torch.cat([grid_split, theta_split], dim=1) edge_index, n_edges, distance, X_difference, Y_difference = self.torus_connectivity(grid_split) edge_attr = np.zeros((n_edges, 3 + self.edge_features * 2)) a = theta_split[:, :self.edge_features] edge_attr[:, 0] = X_difference.reshape(n_edges, ) edge_attr[:, 1] = Y_difference.reshape(n_edges, ) edge_attr[:, 2] = distance.reshape(n_edges, ) edge_attr[:, 3:3 + self.edge_features] = a[edge_index[0]] edge_attr[:, 3 + self.edge_features: 4 + self.edge_features * 2] = a[edge_index[1]] edge_attr = torch.tensor(edge_attr, dtype=torch.float) split_idx = torch.tensor([x, y], dtype=torch.long).reshape(1, 2) if params==None: data = Data(x=X, y=Y_split, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx, sample_idx=index_split) else: data = Data(x=X, y=Y_split, edge_index=edge_index, edge_attr=edge_attr, split_idx=split_idx, sample_idx=index_split, params=params) print('train', X.shape, Y_split.shape, edge_index.shape, edge_attr.shape, index_split.shape) return data def assemble(self, pred, split_idx, batch_size2, sigma=1): assert len(pred) == len(split_idx) assert len(pred) == self.r**2 // batch_size2 out = torch.zeros((self.resolution,self.resolution)) for i in range(len(pred)): pred_i = pred[i].reshape(batch_size2, self.m) split_idx_i = split_idx[i] for j in range(batch_size2): pred_ij = pred_i[j,:] x, y = split_idx_i[j] if self.resolution%2==1: if x==0: nx = self.s else: nx = self.s-1 if y==0: ny = self.s else: ny = self.s-1 else: nx = self.s ny = self.s # pred_ij = pred_i[idx : idx + nx * ny] out[x::self.r, y::self.r] = pred_ij[:nx * ny].reshape(nx,ny) out = gaussian_filter(out, sigma=sigma, mode='wrap') out = torch.tensor(out, dtype=torch.float) return out.reshape(-1,) def assembleT(self, pred, split_idx, batch_size2, sigma=1): # pred is a list (batches) of list (time seq) assert len(pred) == len(split_idx) assert len(pred[0]) == self.T assert len(pred) == self.r**2 // batch_size2 out = torch.zeros((self.T, self.resolution,self.resolution)) for t in range(self.T): for i in range(len(pred)): pred_i = pred[i][t].reshape(batch_size2, self.m) split_idx_i = split_idx[i] for j in range(batch_size2): pred_ij = pred_i[j,:] x, y = split_idx_i[j] if self.resolution%2==1: if x==0: nx = self.s else: nx = self.s-1 if y==0: ny = self.s else: ny = self.s-1 else: nx = self.s ny = self.s # pred_ij = pred_i[idx : idx + nx * ny] out[t, x::self.r, y::self.r] = pred_ij[:nx * ny].reshape(nx,ny) out = gaussian_filter(out, sigma=sigma, mode='wrap') out = torch.tensor(out, dtype=torch.float) return out.reshape(self.T,self.n) def downsample(data, grid_size, l): data = data.reshape(-1, grid_size, grid_size) data = data[:, ::l, ::l] data = data.reshape(-1, (grid_size // l) ** 2) return data def simple_grid(n_x, n_y): xs = np.linspace(0.0, 1.0, n_x) ys = np.linspace(0.0, 1.0, n_y) # xs = np.array(range(n_x)) # ys = np.array(range(n_y)) grid = np.vstack([xx.ravel() for xx in np.meshgrid(xs, ys)]).T edge_index = [] edge_attr = [] for y in range(n_y): for x in range(n_x): i = y * n_x + x if (x != n_x - 1): edge_index.append((i, i + 1)) edge_attr.append((1, 0, 0)) edge_index.append((i + 1, i)) edge_attr.append((-1, 0, 0)) if (y != n_y - 1): edge_index.append((i, i + n_x)) edge_attr.append((0, 1, 0)) edge_index.append((i + n_x, i)) edge_attr.append((0, -1, 0)) X = torch.tensor(grid, dtype=torch.float) # Exact = torch.tensor(Exact, dtype=torch.float).view(-1) edge_index = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) edge_attr = torch.tensor(edge_attr, dtype=torch.float) return X, edge_index, edge_attr def grid_edge(n_x, n_y, a=None): if a != None: a = a.reshape(n_x, n_y) xs = np.linspace(0.0, 1.0, n_x) ys = np.linspace(0.0, 1.0, n_y) # xs = np.array(range(n_x)) # ys = np.array(range(n_y)) grid = np.vstack([xx.ravel() for xx in np.meshgrid(xs, ys)]).T edge_index = [] edge_attr = [] for y in range(n_y): for x in range(n_x): i = y * n_x + x if (x != n_x - 1): d = 1 / n_x edge_index.append((i, i + 1)) edge_index.append((i + 1, i )) if a != None: a1 = a[x, y] a2 = a[x + 1, y] edge_attr.append((x / n_x, y / n_y, a1, a2)) edge_attr.append((y/n_y, x/n_x, a2, a1)) if (y != n_y - 1): d = 1 / n_y edge_index.append((i, i + n_x)) edge_index.append((i + n_x, i)) if a != None: a1 = a[x, y] a2 = a[x, y+1] edge_attr.append((x/n_x, y/n_y, a1, a2)) edge_attr.append((y/n_y, x/n_x, a2, a1)) X = torch.tensor(grid, dtype=torch.float) # Exact = torch.tensor(Exact, dtype=torch.float).view(-1) edge_index = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) edge_attr = torch.tensor(edge_attr, dtype=torch.float) return X, edge_index, edge_attr def grid_edge1d(n_x, a=None): if a != None: a = a.reshape(n_x) xs = np.linspace(0.0, 1.0, n_x) # xs = np.array(range(n_x)) # ys = np.array(range(n_y)) edge_index = [] edge_attr = [] for x in range(n_x): i = x i1 = (x+1)%n_x edge_index.append((i, i1)) edge_index.append((i1, i )) i2 = (x + 2) % n_x edge_index.append((i, i2)) edge_index.append((i2, i )) if a != None: a1 = a[x] a2 = a[x + 1] edge_attr.append((x / n_x, a1, a2)) edge_attr.append((x / n_x, a2, a1)) X = torch.tensor(xs, dtype=torch.float) # Exact = torch.tensor(Exact, dtype=torch.float).view(-1) edge_index = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) edge_attr = torch.tensor(edge_attr, dtype=torch.float) return X, edge_index, edge_attr def grid_edge_aug(n_x, n_y, a): a = a.reshape(n_x, n_y) xs = np.linspace(0.0, 1.0, n_x) ys = np.linspace(0.0, 1.0, n_y) # xs = np.array(range(n_x)) # ys = np.array(range(n_y)) grid = np.vstack([xx.ravel() for xx in np.meshgrid(xs, ys)]).T edge_index = [] edge_attr = [] for y in range(n_y): for x in range(n_x): i = y * n_x + x if (x != n_x - 1): d = 1 / n_x a1 = a[x, y] a2 = a[x + 1, y] edge_index.append((i, i + 1)) edge_attr.append((d, a1, a2, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) edge_index.append((i + 1, i)) edge_attr.append((d, a2, a1, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) if (y != n_y - 1): d = 1 / n_y a1 = a[x, y] a2 = a[x, y+1] edge_index.append((i, i + n_x)) edge_attr.append((d, a1, a2, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) edge_index.append((i + n_x, i)) edge_attr.append((d, a2, a1, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) X = torch.tensor(grid, dtype=torch.float) # Exact = torch.tensor(Exact, dtype=torch.float).view(-1) edge_index = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) edge_attr = torch.tensor(edge_attr, dtype=torch.float) return X, edge_index, edge_attr def grid_edge_aug_full(n_x, n_y, r, a): n = n_x * n_y xs = np.linspace(0.0, 1.0, n_x) ys = np.linspace(0.0, 1.0, n_y) grid = np.vstack([xx.ravel() for xx in np.meshgrid(xs, ys)]).T edge_index = [] edge_attr = [] for i1 in range(n): x1 = grid[i1] for i2 in range(n): x2 = grid[i2] d = np.linalg.norm(x1-x2) if(d<=r): a1 = a[i1] a2 = a[i2] edge_index.append((i1, i2)) edge_attr.append((d, a1, a2, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) edge_index.append((i2, i1)) edge_attr.append((d, a2, a1, 1 / np.sqrt(np.abs(a1 * a2)), np.exp(-(d) ** 2), np.exp(-(d / 0.1) ** 2), np.exp(-(d / 0.01) ** 2))) X = torch.tensor(grid, dtype=torch.float) # Exact = torch.tensor(Exact, dtype=torch.float).view(-1) edge_index = torch.tensor(edge_index, dtype=torch.long).transpose(0, 1) edge_attr = torch.tensor(edge_attr, dtype=torch.float) return X, edge_index, edge_attr def multi_grid(depth, n_x, n_y, grid, params): edge_index_global = [] edge_attr_global = [] X_global = [] num_nodes = 0 # build connected graph for l in range(depth): h_x_l = n_x // (2 ** l) h_y_l = n_y // (2 ** l) n_l = h_x_l * h_y_l a = downsample(params, n_x, (2 ** l)) if grid == 'grid': X, edge_index_inner, edge_attr_inner = grid(h_y_l, h_x_l) elif grid == 'grid_edge': X, edge_index_inner, edge_attr_inner = grid_edge(h_y_l, h_x_l, a) elif grid == 'grid_edge_aug': X, edge_index_inner, edge_attr_inner = grid_edge(h_y_l, h_x_l, a) # update index edge_index_inner = edge_index_inner + num_nodes edge_index_global.append(edge_index_inner) edge_attr_global.append(edge_attr_inner) # construct X # if (is_high): # X = torch.cat([torch.zeros(n_l, l * 2), X, torch.zeros(n_l, (depth - 1 - l) * 2)], dim=1) # else: # X_l = torch.tensor(l, dtype=torch.float).repeat(n_l, 1) # X = torch.cat([X, X_l], dim=1) X_global.append(X) # construct edges index1 = torch.tensor(range(n_l), dtype=torch.long) index1 = index1 + num_nodes num_nodes += n_l # #construct inter-graph edge if l != depth-1: index2 = np.array(range(n_l//4)).reshape(h_x_l//2, h_y_l//2) # torch.repeat is different from numpy index2 = index2.repeat(2, axis = 0).repeat(2, axis = 1) index2 = torch.tensor(index2).reshape(-1) index2 = index2 + num_nodes index2 = torch.tensor(index2, dtype=torch.long) edge_index_inter1 = torch.cat([index1,index2], dim=-1).reshape(2,-1) edge_index_inter2 = torch.cat([index2,index1], dim=-1).reshape(2,-1) edge_index_inter = torch.cat([edge_index_inter1, edge_index_inter2], dim=1) edge_attr_inter1 = torch.tensor((0, 0, 1), dtype=torch.float).repeat(n_l, 1) edge_attr_inter2 = torch.tensor((0, 0,-1), dtype=torch.float).repeat(n_l, 1) edge_attr_inter = torch.cat([edge_attr_inter1, edge_attr_inter2], dim=0) edge_index_global.append(edge_index_inter) edge_attr_global.append(edge_attr_inter) X = torch.cat(X_global, dim=0) edge_index = torch.cat(edge_index_global, dim=1) edge_attr = torch.cat(edge_attr_global, dim=0) mask_index = torch.tensor(range(n_x * n_y), dtype=torch.long) # print('create multi_grid with size:', X.shape, edge_index.shape, edge_attr.shape, mask_index.shape) return (X, edge_index, edge_attr, mask_index, num_nodes) def multi_pole_grid1d(theta, theta_d, s, N, is_periodic=False): grid_list = [] theta_list = [] edge_index_list = [] edge_index_list_cuda = [] level = int(np.log2(s) - 1) print(level) for l in range(1, level+1): r_l = 2 ** (l - 1) s_l = s // r_l n_l = s_l print('level',s_l,r_l,n_l) xs = np.linspace(0.0, 1.0, s_l) grid_l = xs grid_l = torch.tensor(grid_l, dtype=torch.float) print(grid_l.shape) grid_list.append(grid_l) theta_l = theta[:,:,:theta_d].reshape(N, s, theta_d) theta_l = theta_l[:, ::r_l, :] theta_l = theta_l.reshape(N, n_l, theta_d) theta_l = torch.tensor(theta_l, dtype=torch.float) print(theta_l.shape) theta_list.append(theta_l) # for the finest level, we construct the nearest neighbors (NN) if l==1: edge_index_nn = [] for x_i in range(s_l): for x in (-1,1): x_j = x_i + x if is_periodic: x_j = x_j % s_l # if (xj, yj) is a valid node if (x_j in range(s_l)): edge_index_nn.append([x_i,x_j]) edge_index_nn = torch.tensor(edge_index_nn, dtype=torch.long) edge_index_nn = edge_index_nn.transpose(0,1) edge_index_list.append(edge_index_nn) edge_index_list_cuda.append(edge_index_nn.cuda()) print('edge', edge_index_nn.shape) # we then compute the interactive neighbors -- their parents are NN but they are not NearestNeighbor edge_index_inter = [] for x_i in range(s_l): for x in range(-3,4): x_j = x_i + x # if (xj, yj) is a valid node if is_periodic: x_j = x_j % s_l if (x_j in range(s_l)): # if (xi, yi), (xj, yj) not NearestNeighbor if abs(x)>=2: # if their parents are NN if abs(x_i//2 - x_j//2)%(s_l//2) <=1: edge_index_inter.append([x_i,x_j]) edge_index_inter = torch.tensor(edge_index_inter, dtype=torch.long) edge_index_inter = edge_index_inter.transpose(0,1) edge_index_list.append(edge_index_inter) edge_index_list_cuda.append(edge_index_inter.cuda()) print('edge_inter', edge_index_inter.shape) print(len(grid_list),len(edge_index_list),len(theta_list)) return grid_list, theta_list, edge_index_list, edge_index_list_cuda def get_edge_attr(grid, theta, edge_index): n_edges = edge_index.shape[1] edge_attr = np.zeros((n_edges, 4)) edge_attr[:, 0:2] = grid[edge_index.transpose(0,1)].reshape((n_edges, -1)) edge_attr[:, 2] = theta[edge_index[0]] edge_attr[:, 3] = theta[edge_index[1]] return torch.tensor(edge_attr, dtype=torch.float)
2.109375
2
bitbots_motion/bitbots_hcm/scripts/test_subscriber.py
MosHumanoid/bitbots_thmos_meta
3
12793515
<reponame>MosHumanoid/bitbots_thmos_meta #!/usr/bin/env python3 import rospy import time from sensor_msgs.msg import Imu class SubTest(): def __init__(self): rospy.init_node("test_sub") self.arrt = [] self.arrn = [] self.sum =0 self.count=0 self.max = 0 self.sub = rospy.Subscriber("test", Imu, self.cb, queue_size=1) self.f = open("latencies", 'w') while not rospy.is_shutdown(): time.sleep(1) if self.count !=0: print("mean: " + str((self.sum/self.count)*1000)) print("max: " + str(self.max*1000)) i = 0 for n in self.arrn: self.f.write(str(n) + "," + str(self.arrt[i]*1000) + "\n") i+=1 self.f.close() def cb(self, msg:Imu): diff = rospy.get_time() - msg.header.stamp.to_sec() self.arrt.append(diff) self.arrn.append(msg.header.seq) self.sum += diff self.count +=1 self.max = max(self.max, diff) if __name__ == "__main__": SubTest()
2.34375
2
test_hello.py
bkwin66/python_testx
0
12793516
print "Hello World" print "Print something else" for i in range (10): print i
3.390625
3
pycqed/measurement/qcodes_QtPlot_colors_override.py
nuttamas/PycQED_py3
60
12793517
""" [2020-02-03] Modified version of the original qcodes.plots.colors Mofied by <NAME> for Measurement Control It modules makes available all the colors maps from the qcodes, context menu of the color bar from pyqtgraph, the circular colormap created by me (Victo), and the reversed version of all of them. Feel free to add new colors See "make_qcodes_anglemap" and "make_anglemap45_colorlist" below to get you started. """ from pycqed.analysis.tools.plotting import make_anglemap45_colorlist # default colors and colorscales, taken from plotly color_cycle = [ "#1f77b4", # muted blue "#ff7f0e", # safety orange "#2ca02c", # cooked asparagus green "#d62728", # brick red "#9467bd", # muted purple "#8c564b", # chestnut brown "#e377c2", # raspberry yogurt pink "#7f7f7f", # middle gray "#bcbd22", # curry yellow-green "#17becf", # blue-teal ] colorscales_raw = { "Greys": [[0, "rgb(0,0,0)"], [1, "rgb(255,255,255)"]], "YlGnBu": [ [0, "rgb(8, 29, 88)"], [0.125, "rgb(37, 52, 148)"], [0.25, "rgb(34, 94, 168)"], [0.375, "rgb(29, 145, 192)"], [0.5, "rgb(65, 182, 196)"], [0.625, "rgb(127, 205, 187)"], [0.75, "rgb(199, 233, 180)"], [0.875, "rgb(237, 248, 217)"], [1, "rgb(255, 255, 217)"], ], "Greens": [ [0, "rgb(0, 68, 27)"], [0.125, "rgb(0, 109, 44)"], [0.25, "rgb(35, 139, 69)"], [0.375, "rgb(65, 171, 93)"], [0.5, "rgb(116, 196, 118)"], [0.625, "rgb(161, 217, 155)"], [0.75, "rgb(199, 233, 192)"], [0.875, "rgb(229, 245, 224)"], [1, "rgb(247, 252, 245)"], ], "YlOrRd": [ [0, "rgb(128, 0, 38)"], [0.125, "rgb(189, 0, 38)"], [0.25, "rgb(227, 26, 28)"], [0.375, "rgb(252, 78, 42)"], [0.5, "rgb(253, 141, 60)"], [0.625, "rgb(254, 178, 76)"], [0.75, "rgb(254, 217, 118)"], [0.875, "rgb(255, 237, 160)"], [1, "rgb(255, 255, 204)"], ], "bluered": [[0, "rgb(0,0,255)"], [1, "rgb(255,0,0)"]], # modified RdBu based on # www.sandia.gov/~kmorel/documents/ColorMaps/ColorMapsExpanded.pdf "RdBu": [ [0, "rgb(5, 10, 172)"], [0.35, "rgb(106, 137, 247)"], [0.5, "rgb(190,190,190)"], [0.6, "rgb(220, 170, 132)"], [0.7, "rgb(230, 145, 90)"], [1, "rgb(178, 10, 28)"], ], # Scale for non-negative numeric values "Reds": [ [0, "rgb(220, 220, 220)"], [0.2, "rgb(245, 195, 157)"], [0.4, "rgb(245, 160, 105)"], [1, "rgb(178, 10, 28)"], ], # Scale for non-positive numeric values "Blues": [ [0, "rgb(5, 10, 172)"], [0.35, "rgb(40, 60, 190)"], [0.5, "rgb(70, 100, 245)"], [0.6, "rgb(90, 120, 245)"], [0.7, "rgb(106, 137, 247)"], [1, "rgb(220, 220, 220)"], ], "picnic": [ [0, "rgb(0,0,255)"], [0.1, "rgb(51,153,255)"], [0.2, "rgb(102,204,255)"], [0.3, "rgb(153,204,255)"], [0.4, "rgb(204,204,255)"], [0.5, "rgb(255,255,255)"], [0.6, "rgb(255,204,255)"], [0.7, "rgb(255,153,255)"], [0.8, "rgb(255,102,204)"], [0.9, "rgb(255,102,102)"], [1, "rgb(255,0,0)"], ], "rainbow": [ [0, "rgb(150,0,90)"], [0.125, "rgb(0, 0, 200)"], [0.25, "rgb(0, 25, 255)"], [0.375, "rgb(0, 152, 255)"], [0.5, "rgb(44, 255, 150)"], [0.625, "rgb(151, 255, 0)"], [0.75, "rgb(255, 234, 0)"], [0.875, "rgb(255, 111, 0)"], [1, "rgb(255, 0, 0)"], ], "portland": [ [0, "rgb(12,51,131)"], [0.25, "rgb(10,136,186)"], [0.5, "rgb(242,211,56)"], [0.75, "rgb(242,143,56)"], [1, "rgb(217,30,30)"], ], "jet": [ [0, "rgb(0,0,131)"], [0.125, "rgb(0,60,170)"], [0.375, "rgb(5,255,255)"], [0.625, "rgb(255,255,0)"], [0.875, "rgb(250,0,0)"], [1, "rgb(128,0,0)"], ], "hot": [ [0, "rgb(0,0,0)"], [0.3, "rgb(230,0,0)"], [0.6, "rgb(255,210,0)"], [1, "rgb(255,255,255)"], ], "blackbody": [ [0, "rgb(0,0,0)"], [0.2, "rgb(230,0,0)"], [0.4, "rgb(230,210,0)"], [0.7, "rgb(255,255,255)"], [1, "rgb(160,200,255)"], ], "earth": [ [0, "rgb(0,0,130)"], [0.1, "rgb(0,180,180)"], [0.2, "rgb(40,210,40)"], [0.4, "rgb(230,230,50)"], [0.6, "rgb(120,70,20)"], [1, "rgb(255,255,255)"], ], "electric": [ [0, "rgb(0,0,0)"], [0.15, "rgb(30,0,100)"], [0.4, "rgb(120,0,100)"], [0.6, "rgb(160,90,0)"], [0.8, "rgb(230,200,0)"], [1, "rgb(255,250,220)"], ], "viridis": [ [0, "#440154"], [0.06274509803921569, "#48186a"], [0.12549019607843137, "#472d7b"], [0.18823529411764706, "#424086"], [0.25098039215686274, "#3b528b"], [0.3137254901960784, "#33638d"], [0.3764705882352941, "#2c728e"], [0.4392156862745098, "#26828e"], [0.5019607843137255, "#21918c"], [0.5647058823529412, "#1fa088"], [0.6274509803921569, "#28ae80"], [0.6901960784313725, "#3fbc73"], [0.7529411764705882, "#5ec962"], [0.8156862745098039, "#84d44b"], [0.8784313725490196, "#addc30"], [0.9411764705882353, "#d8e219"], [1, "#fde725"], ], } # Extracted https://github.com/pyqtgraph/pyqtgraph/blob/develop/pyqtgraph/graphicsItems/GradientEditorItem.py Gradients = { "thermal": [ (0.3333, (185, 0, 0, 255)), (0.6666, (255, 220, 0, 255)), (1, (255, 255, 255, 255)), (0, (0, 0, 0, 255)), ], "flame": [ (0.2, (7, 0, 220, 255)), (0.5, (236, 0, 134, 255)), (0.8, (246, 246, 0, 255)), (1.0, (255, 255, 255, 255)), (0.0, (0, 0, 0, 255)), ], "yellowy": [ (0.0, (0, 0, 0, 255)), (0.2328863796753704, (32, 0, 129, 255)), (0.8362738179251941, (255, 255, 0, 255)), (0.5257586450247, (115, 15, 255, 255)), (1.0, (255, 255, 255, 255)), ], "bipolar": [ (0.0, (0, 255, 255, 255)), (1.0, (255, 255, 0, 255)), (0.5, (0, 0, 0, 255)), (0.25, (0, 0, 255, 255)), (0.75, (255, 0, 0, 255)), ], "spectrum": [ (1.0, (255, 0, 255, 255)), (0.0, (255, 0, 0, 255)), ], # this is a hsv, didn't patch qcodes to allow the specification of that part... "cyclic": [ (0.0, (255, 0, 4, 255)), (1.0, (255, 0, 0, 255)), ], # this is a hsv, didn't patch qcodes to allow the specification of that part... # "greyclip": [ # (0.0, (0, 0, 0, 255)), # (0.99, (255, 255, 255, 255)), # (1.0, (255, 0, 0, 255)), # ], "grey": [(0.0, (0, 0, 0, 255)), (1.0, (255, 255, 255, 255))], # Perceptually uniform sequential colormaps from Matplotlib 2.0 "viridis": [ (0.0, (68, 1, 84, 255)), (0.25, (58, 82, 139, 255)), (0.5, (32, 144, 140, 255)), (0.75, (94, 201, 97, 255)), (1.0, (253, 231, 36, 255)), ], "inferno": [ (0.0, (0, 0, 3, 255)), (0.25, (87, 15, 109, 255)), (0.5, (187, 55, 84, 255)), (0.75, (249, 142, 8, 255)), (1.0, (252, 254, 164, 255)), ], "plasma": [ (0.0, (12, 7, 134, 255)), (0.25, (126, 3, 167, 255)), (0.5, (203, 71, 119, 255)), (0.75, (248, 149, 64, 255)), (1.0, (239, 248, 33, 255)), ], "magma": [ (0.0, (0, 0, 3, 255)), (0.25, (80, 18, 123, 255)), (0.5, (182, 54, 121, 255)), (0.75, (251, 136, 97, 255)), (1.0, (251, 252, 191, 255)), ], } def make_qcodes_anglemap45(): anglemap_colorlist = make_anglemap45_colorlist(N=9, use_hpl=False) len_colorlist = len(anglemap_colorlist) color_scale = [ [i / (len_colorlist - 1), "rgb" + repr(tuple((int(x * 255) for x in col)))] for i, col in enumerate(anglemap_colorlist) ] return color_scale qcodes_anglemap45 = make_qcodes_anglemap45() colorscales_raw["anglemap45"] = qcodes_anglemap45 def make_rgba(colorscale): return [(v, one_rgba(c)) for v, c in colorscale] def one_rgba(c): """ convert a single color value to (r, g, b, a) input can be an rgb string 'rgb(r,g,b)', '#rrggbb' if we decide we want more we can make more, but for now this is just to convert plotly colorscales to pyqtgraph tuples """ if c[0] == "#" and len(c) == 7: return (int(c[1:3], 16), int(c[3:5], 16), int(c[5:7], 16), 255) if c[:4] == "rgb(": return tuple(map(int, c[4:-1].split(","))) + (255,) raise ValueError("one_rgba only supports rgb(r,g,b) and #rrggbb colors") colorscales = {} for scale_name, scale in colorscales_raw.items(): colorscales[scale_name] = make_rgba(scale) for scale_name, scale in Gradients.items(): colorscales[scale_name] = scale for name, scale in list(colorscales.items()): last_idx = len(scale) - 1 reversed_scale = [ (scale[last_idx - i][0], color[1]) for i, color in enumerate(scale) ] colorscales[name + "_reversed"] = reversed_scale # Generate also all scales with cliping at green for name, scale in list(colorscales.items()): clip_percent = 0.03 clip_color = (0, 255, 0, 255) scale_low = list(scale) scale_low.insert(1, scale[0]) scale_low[0] = (0.0, clip_color) if scale[1][0] < clip_percent: scale_low[1] = ((scale[1][0] + scale[0][0]) / 2, scale_low[1][1]) else: scale_low[1] = (clip_percent, scale_low[1][1]) colorscales[name + "_clip_low"] = scale_low scale_high = list(scale) scale_high.insert(-1, scale[-1]) scale_high[-1] = (1.0, clip_color) if scale[-2][0] > 1 - clip_percent: scale_high[-2] = ((scale[-1][0] + scale[-2][0]) / 2, scale_high[-2][1]) else: scale_high[-2] = (1 - clip_percent, scale_high[-2][1]) colorscales[name + "_clip_high"] = scale_high
2.0625
2
backend/src/baserow/config/asgi.py
ashishdhngr/baserow
839
12793518
import django from channels.routing import ProtocolTypeRouter from baserow.ws.routers import websocket_router from django.core.asgi import get_asgi_application django.setup() django_asgi_app = get_asgi_application() application = ProtocolTypeRouter( {"http": django_asgi_app, "websocket": websocket_router} )
1.671875
2
source/refresh-ta-check-lambda.py
awslabs/aws-trusted-advisor-explorer
14
12793519
###################################################################################################################### # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/ # # # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # ###################################################################################################################### import re,boto3,logging,os from datetime import date from botocore.exceptions import ClientError class AWSTrustedAdvisorExplorerGenericException(Exception): pass logger = logging.getLogger() if "LOG_LEVEL" in os.environ: numeric_level = getattr(logging, os.environ['LOG_LEVEL'].upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % loglevel) logger.setLevel(level=numeric_level) def sanitize_json(x): d = x.copy() if os.environ['MASK_PII'].lower() == 'true': for k, v in d.items(): if 'AccountId' in k: d[k] = sanitize_string(v) if 'AccountName' in k: d[k] = v[:3]+'-MASKED-'+v[-3:] if 'AccountEmail' in k: d[k] = v[:3]+'-MASKED-'+v[-3:] return d def sanitize_string(x): y = str(x) if os.environ['MASK_PII'].lower() == 'true': pattern=re.compile('\d{12}') y = re.sub(pattern,lambda match: ((match.group()[1])+'XXXXXXX'+(match.group()[-4:])), y) return y def refresh_trusted_advisor_checks(supportClient,checkId): logger.info('Refreshing Trusted Advisor Check:'+checkId) response = supportClient.refresh_trusted_advisor_check( checkId=checkId ) logger.info(sanitize_json(response)) return response def checkAssumeRoleFailure(error): if "(AccessDenied) when calling the AssumeRole operation" in error: pattern=re.compile('.*iam::(\d{12}):.*$') match=pattern.match(error) logger.info('Assume Role Error for Account:'+match.group(1)) if match != None: key_name='Logs/AssumeRoleFailure/'+ str(date.today().year)+ '/'+str(date.today().month)+'/'+str(date.today().day)+'/'+str(match.group(1))+'.log' client = boto3.client('s3') client.put_object(ACL='bucket-owner-full-control',StorageClass='STANDARD',Body=error, Bucket=os.environ['S3BucketName'],Key=key_name) return #Assume Role in Child Account def assumeRole(accountId): logger.info('Variables passed to assumeRole(): '+sanitize_string(accountId)) roleArn="arn:aws:iam::"+str(accountId)+":role/"+os.environ['IAMRoleName'] #STS assume role call stsClient = boto3.client('sts') roleCredentials = stsClient.assume_role(RoleArn=roleArn, RoleSessionName="AWSTrustedAdvisorExplorerAssumeRole") return roleCredentials def lambda_handler(event, context): try: logger.info(sanitize_json(event)) logger.info("Assume Role in child account") roleCredentials=assumeRole(event['AccountId']) logger.info("Create boto3 support client using the temporary credentials") supportClient=boto3.client("support",region_name="us-east-1", aws_access_key_id = roleCredentials['Credentials']['AccessKeyId'], aws_secret_access_key = roleCredentials['Credentials']['SecretAccessKey'], aws_session_token=roleCredentials['Credentials']['SessionToken']) response = refresh_trusted_advisor_checks( supportClient, event['CheckId']) logger.info("Append the Refresh Status '"+response['status']['status']+"' to response." + " This will be consumed by downstream Lambda") event["RefreshStatus"] = response['status']['status'] return event except ClientError as e: checkAssumeRoleFailure(str(e)) e=sanitize_string(e) logger.error("Unexpected client error %s" % e) raise AWSTrustedAdvisorExplorerGenericException(e) except Exception as f: checkAssumeRoleFailure(str(f)) f=sanitize_string(f) logger.error("Unexpected exception: %s" % f) raise AWSTrustedAdvisorExplorerGenericException(f)
1.828125
2
Homework/ArrayList.py
Frumka/python_developer
0
12793520
<reponame>Frumka/python_developer from array import array, ArrayType from typing import TypeVar, Iterable from copy import deepcopy T = TypeVar("T") class ArrayList(object): class Iterator(object): __data: ArrayType __index: int def __init__(self, data: ArrayType): self.__data = data self.__index = -1 def __iter__(self) -> 'ArrayList.Iterator': return self def __next__(self) -> T: if self.__index > len(self.__data) - 2: raise StopIteration() self.__index += 1 return self.__data[self.__index] class ReverseIterator(object): __data: ArrayType __index: int def __init__(self, data: ArrayType): self.__data = data self.__index = len(data) def __iter__(self) -> 'ArrayList.Iterator': return self def __next__(self): if self.__index == 0: raise StopIteration() self.__index -= 1 return self.__data[self.__index] __array: ArrayType def __init__(self, type_char: str, *args) -> None: self.__array = array(type_char, args) def __str__(self) -> str: return self.__array.__str__() def __getitem__(self, index: int) -> T: return self.__array[index] def __len__(self) -> int: return len(self.__array) def __contains__(self, target: T) -> bool: for item in self.__array: if target == item: return True return False def __add__(self, other: "ArrayList") -> "ArrayList": copy = deepcopy(self) copy += other return copy def __iadd__(self, other: "ArrayList") -> "ArrayList": self.__array += other.__array return self def __lt__(self, other: "ArrayList") -> bool: if len(self.__array) < len(other.__array): return True elif len(self.__array) > len(other.__array): return False else: not_equal = False for i, elem in enumerate(self.__array): if elem > other.__array[i]: return False if elem < other.__array[i]: not_equal = True return not_equal def __eq__(self, other: "ArrayList") -> bool: if len(self.__array) != len(other.__array): return False else: for i, elem in enumerate(self.__array): if elem != other.__array[i]: return False return True def __le__(self, other: "ArrayList") -> bool: if self < other: return True elif self == other: return True return False def __ne__(self, other: "ArrayList") -> bool: return not self == other def __gt__(self, other: "ArrayList") -> bool: return not self <= other def __ge__(self, other: "ArrayList") -> bool: return not self < other def __mul__(self, mult: int) -> "ArrayList": result = deepcopy(self) result *= mult return result def __imul__(self, mult: int) -> "ArrayList": old_len = len(self.__array) new_len = old_len * mult new_array = array(self.__array.typecode, [0 for _ in range(new_len)]) for i in range(new_len): new_array[i] = self.__array[i % old_len] self.__array = new_array return self def append(self, item: T) -> None: self.__array += array(self.__array.typecode, [item]) def count(self, item: T) -> int: count = 0 for elem in self.__array: if elem == item: count += 1 return count def index(self, target: T, start=0, stop=None) -> int: stop = stop if stop is not None else len(self.__array) for i in range(start, stop): if self.__array[i] == target: return i raise ValueError def extend(self, *args: Iterable) -> None: for elem in args: self.__array += array(self.__array.typecode, elem) def insert(self, index: int, item: T) -> None: if index == -1: self.append(item) return elif index < 0: index = len(self.__array) + index + 1 old_array = self.__array self.__array = array(old_array.typecode) for i, elem in enumerate(old_array): if i == index: self.append(item) self.append(elem) else: self.append(elem) def __iter__(self) -> 'ArrayList.Iterator': return ArrayList.Iterator(self.__array) def pop(self, index=-1) -> T: if index < 0: index = len(self.__array) + index if index > len(self.__array) - 1: raise IndexError new_array = array(self.__array.typecode, [0 for _ in range(len(self.__array) - 1)]) i = 0 is_found = False for elem in self.__array: if i == index and not is_found: item = self.__array[i] is_found = True continue new_array[i] = elem i += 1 self.__array = new_array return item def remove(self, target: T) -> None: index = self.index(target) self.pop(index) def __reversed__(self) -> 'ArrayList.ReverseIterator': return ArrayList.ReverseIterator(self.__array) def __setitem__(self, key: int, value: T) -> None: self.__array[key] = value def __delitem__(self, key: int) -> None: self.pop(key)
3.46875
3
scripts/render.py
vitchyr/handful-of-trials
1
12793521
<reponame>vitchyr/handful-of-trials<gh_stars>1-10 from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import argparse import pprint from dotmap import DotMap from dmbrl.misc.MBExp import MBExperiment from dmbrl.controllers.MPC import MPC from dmbrl.config import create_config def main( env, ctrl_type, ctrl_args, overrides, model_dir, logdir, init_iter, last_iter, nrecord, rawdir, ): ctrl_args = DotMap(**{key: val for (key, val) in ctrl_args}) overrides.append(["ctrl_cfg.prop_cfg.model_init_cfg.model_dir", model_dir]) overrides.append(["ctrl_cfg.prop_cfg.model_init_cfg.load_model", "True"]) overrides.append(["ctrl_cfg.prop_cfg.model_pretrained", "True"]) overrides.append(["exp_cfg.exp_cfg.ninit_rollouts", "0"]) overrides.append(["exp_cfg.exp_cfg.init_iter", str(init_iter)]) overrides.append(["exp_cfg.exp_cfg.ntrain_iters", str(last_iter)]) overrides.append(["exp_cfg.log_cfg.nrecord", str(nrecord)]) overrides.append(["exp_cfg.log_cfg.rawdir", str(rawdir)]) cfg = create_config(env, ctrl_type, ctrl_args, overrides, logdir) cfg.pprint() if ctrl_type == "MPC": cfg.exp_cfg.exp_cfg.policy = MPC(cfg.ctrl_cfg) exp = MBExperiment(cfg.exp_cfg) if os.path.exists(exp.logdir): overwrite = user_prompt( "{} already exists. Overwrite?".format(exp.logdir) ) if not overwrite: return else: os.makedirs(exp.logdir) with open(os.path.join(exp.logdir, "config.txt"), "w") as f: f.write(pprint.pformat(cfg.toDict())) exp.run_experiment() print("Saved to") print(exp.logdir) def user_prompt(question: str) -> bool: """ Prompt the yes/no-*question* to the user. https://stackoverflow.com/questions/3041986/apt-command-line-interface-like-yes-no-input """ from distutils.util import strtobool while True: user_input = input(question + " [y/n]: ").lower() try: result = strtobool(user_input) return result except ValueError: print("Please use y/n or yes/no.\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-env', type=str, required=True) parser.add_argument('-ca', '--ctrl_arg', action='append', nargs=2, default=[]) parser.add_argument('-o', '--override', action='append', nargs=2, default=[]) parser.add_argument('-model-dir', type=str, required=True) parser.add_argument('-logdir', type=str, required=True) parser.add_argument('-init-iter', type=int, default=0) parser.add_argument('-last-iter', type=int, default=1) parser.add_argument('-nrecord', type=int, default=1) parser.add_argument('-no-raw-dir', action='store_true') args = parser.parse_args() main( args.env, "MPC", args.ctrl_arg, args.override, args.model_dir, args.logdir, args.init_iter, args.last_iter, args.nrecord, not args.no_raw_dir, )
1.8125
2
layers/modules/multibox_loss_combined.py
Ze-Yang/Context-Transformer
86
12793522
import torch import torch.nn as nn import torch.nn.functional as F from utils.box_utils import match class MultiBoxLoss_combined(nn.Module): """SSD Weighted Loss Function Compute Targets: 1) Produce Confidence Target Indices by matching ground truth boxes with (default) 'priorboxes' that have jaccard index > threshold parameter (default threshold: 0.5). 2) Produce localization target by 'encoding' variance into offsets of ground truth boxes and their matched 'priorboxes'. 3) Hard negative mining to filter the excessive number of negative examples that comes with using a large number of default bounding boxes. (default negative:positive ratio 3:1) Objective Loss: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss weighted by α which is set to 1 by cross val. Args: c: class confidences, l: predicted boxes, g: ground truth boxes N: number of matched default boxes See: https://arxiv.org/pdf/1512.02325.pdf for more details. """ def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target): super(MultiBoxLoss_combined, self).__init__() self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = [0.1, 0.2] def forward(self, predictions, priors, targets): """Multibox Loss Args: predictions (tuple): A tuple containing loc preds, conf preds, and prior boxes from SSD net. conf shape: torch.size(batch_size,num_priors,num_classes) loc shape: torch.size(batch_size,num_priors,4) priors shape: torch.size(num_priors,4) ground_truth (tensor): Ground truth boxes and labels for a batch, shape: [batch_size,num_objs,5] (last idx is the label). """ # loc_data[batch_size, num_priors, 4] # conf_data[batch_size, num_priors, num_classes] # obj_data[batch_size, num_priors, 2] loc_data, conf_data, obj_data = predictions device = loc_data.device targets = [anno.to(device) for anno in targets] num = loc_data.size(0) num_priors = priors.size(0) # match priors (default boxes) and ground truth boxes loc_t = torch.Tensor(num, num_priors, 4).to(device) conf_t = torch.Tensor(num, num_priors, 2).to(device) obj_t = torch.BoolTensor(num, num_priors).to(device) # match priors with gt for idx in range(num): # batch_size truths = targets[idx][:, :-2].data # [obj_num, 4] labels = targets[idx][:, -2:].data # [obj_num] defaults = priors.data # [num_priors,4] match(self.threshold, truths, defaults, self.variance, labels, loc_t, conf_t, obj_t, idx) pos = (conf_t[:, :, 0] > 0).bool() # [num, num_priors] num_pos = (conf_t[:, :, 1] * pos.float()).sum(1, keepdim=True).long() # Localization Loss (Smooth L1) # Shape: [batch,num_priors,4] loc_p = loc_data[pos] loc_t = loc_t[pos] loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='none') weight_pos = conf_t[pos][:, 1] loss_l = torch.sum(torch.sum(loss_l, dim=1) * weight_pos) # Compute object loss across batch for hard negative mining with torch.no_grad(): loss_obj = F.cross_entropy(obj_data.view(-1, 2), obj_t.long().view(-1), reduction='none') # Hard Negative Mining loss_obj[obj_t.view(-1)] = 0 # filter out pos boxes (label>0) and ignored boxes (label=-1) for now loss_obj = loss_obj.view(num, -1) _, loss_idx = loss_obj.sort(1, descending=True) _, idx_rank = loss_idx.sort(1) num_neg = torch.clamp(self.negpos_ratio * num_pos, max=num_priors - 1) neg = idx_rank < num_neg.expand_as(idx_rank) # [num, num_priors] # Object Loss Including Positive and Negative Examples mask = pos | neg weight = conf_t[mask][:, 1] loss_obj = torch.sum(F.cross_entropy(obj_data[mask], obj_t[mask].long(), reduction='none') * weight) # Confidence Loss (cosine distance to classes center) # pos [num, num_priors] # conf_data [num, num_priors, feature_dim] batch_conf = conf_data.view(-1, self.num_classes-1) # Compute max conf across batch for hard negative mining (logit-combined) batch_obj = obj_data.view(-1, 2) # [num*num_priors, 2] logit_0 = batch_obj[:, 0].unsqueeze(1) + torch.log( torch.exp(batch_conf).sum(dim=1, keepdim=True)) logit_k = batch_obj[:, 1].unsqueeze(1).expand_as(batch_conf) + batch_conf logit = torch.cat((logit_0, logit_k), 1) # Confidence Loss Including Positive and Negative Examples logit = logit.view(num, -1, self.num_classes) loss_c = torch.sum(F.cross_entropy(logit[mask], conf_t[mask][:, 0].long(), reduction='none') * weight) N = num_pos.sum() loss_l /= N loss_c /= N loss_obj /= N return {'loss_box_reg': loss_l, 'loss_cls': loss_c, 'loss_obj': loss_obj}
2.359375
2
tests/test_simple.py
mosquito/argclass
2
12793523
import logging import os import re import uuid from typing import List, Optional, FrozenSet import pytest import argclass class TestBasics: class Parser(argclass.Parser): integers: List[int] = argclass.Argument( "integers", type=int, nargs=argclass.Nargs.ONE_OR_MORE, metavar="N", help="an integer for the accumulator", ) accumulate = argclass.Argument( "--sum", action=argclass.Actions.STORE_CONST, const=sum, default=max, help="sum the integers (default: find the max)", ) def test_simple(self): parser = self.Parser() parser.parse_args(["1", "2", "3"]) assert parser.integers assert parser.integers == [1, 2, 3] class HostPortGroup(argclass.Group): host: str port: int class TestFoo: class Parser(argclass.Parser): foo: str = argclass.Argument(help="foo") http: HostPortGroup = HostPortGroup( title="HTTP host and port", prefix="api", defaults={ "port": 80, "host": "0.0.0.0", }, ) grpc: HostPortGroup = HostPortGroup( title="GRPC host and port", defaults={"port": 6000, "host": "::"}, ) def test_simple(self): parser = self.Parser() parser.parse_args(["--foo", "bar"]) assert parser.foo == "bar" parser.parse_args(["--foo=bar"]) assert parser.foo == "bar" def test_group(self): parser = self.Parser() parser.parse_args(["--foo", "bar"]) assert parser.foo == "bar" parser.parse_args([ "--foo=bar", "--api-host=127.0.0.1", "--api-port=8080", "--grpc-host=127.0.0.2", "--grpc-port=9000", ]) assert parser.foo == "bar" assert parser.http.host == "127.0.0.1" assert parser.http.port == 8080 assert parser.grpc.host == "127.0.0.2" assert parser.grpc.port == 9000 def test_group_defaults(self): parser = self.Parser() parser.parse_args(["--foo=bar"]) assert parser.foo == "bar" assert parser.http.host == "0.0.0.0" assert parser.http.port == 80 assert parser.grpc.host == "::" assert parser.grpc.port == 6000 def test_parser_repr(self): parser = self.Parser() r = repr(parser) assert r == "<Parser: 1 arguments, 2 groups, 0 subparsers>" def test_access_to_not_parsed_attrs(self): parser = self.Parser() with pytest.raises(AttributeError): _ = parser.foo def test_environment(self, request: pytest.FixtureRequest): prefix = re.sub(r"\d+", "", uuid.uuid4().hex + uuid.uuid4().hex).upper() expected = uuid.uuid4().hex os.environ[f"{prefix}_FOO"] = expected request.addfinalizer(lambda: os.environ.pop(f"{prefix}_FOO")) parser = self.Parser(auto_env_var_prefix=f"{prefix}_") parser.parse_args([]) assert parser.foo == expected def test_env_var(request: pytest.FixtureRequest): env_var = re.sub(r"\d+", "", uuid.uuid4().hex + uuid.uuid4().hex).upper() class Parser(argclass.Parser): foo: str = argclass.Argument(env_var=env_var) expected = uuid.uuid4().hex os.environ[env_var] = expected request.addfinalizer(lambda: os.environ.pop(env_var)) parser = Parser() parser.parse_args([]) assert parser.foo == expected def test_nargs(): class Parser(argclass.Parser): foo: List[int] = argclass.Argument( nargs=argclass.Nargs.ZERO_OR_MORE, type=int, ) bar: int = argclass.Argument(nargs="*") spam: int = argclass.Argument(nargs=1) parser = Parser() parser.parse_args(["--foo", "1", "2", "--bar=3", "--spam=4"]) assert parser.foo == [1, 2] assert parser.bar == [3] assert parser.spam == [4] def test_group_aliases(): class Group(argclass.Group): foo: str = argclass.Argument("-F") class Parser(argclass.Parser): group = Group() parser = Parser() parser.parse_args(["-F", "egg"]) assert parser.group.foo == "egg" def test_short_parser_definition(): class Parser(argclass.Parser): foo: str bar: int parser = Parser() parser.parse_args(["--foo=spam", "--bar=1"]) assert parser.foo == "spam" assert parser.bar == 1 def test_print_help(capsys: pytest.CaptureFixture): class Parser(argclass.Parser): foo: str bar: int = 0 parser = Parser() parser.print_help() captured = capsys.readouterr() assert "--foo" in captured.out assert "--bar" in captured.out assert "--help" in captured.out assert "--foo FOO" in captured.out assert "[--bar BAR]" in captured.out def test_print_log_level(capsys: pytest.CaptureFixture): class Parser(argclass.Parser): log_level: int = argclass.LogLevel parser = Parser() parser.parse_args(["--log-level", "info"]) assert parser.log_level == logging.INFO parser.parse_args(["--log-level=warning"]) assert parser.log_level == logging.WARNING def test_optional_type(): class Parser(argclass.Parser): flag: bool optional: Optional[bool] parser = Parser() parser.parse_args([]) assert parser.optional is None assert not parser.flag parser.parse_args(["--flag"]) assert parser.flag for variant in ("yes", "Y", "yeS", "enable", "ENABLED", "1"): parser.parse_args([f"--optional={variant}"]) assert parser.optional is True for variant in ("no", "crap", "false", "disabled", "MY_HANDS_TYPING_WORDS"): parser.parse_args([f"--optional={variant}"]) assert parser.optional is False def test_argument_defaults(): class Parser(argclass.Parser): debug: bool = False confused_default: bool = True pool_size: int = 4 forks: int = 2 parser = Parser() parser.parse_args([]) assert parser.debug is False assert parser.confused_default is True assert parser.pool_size == 4 assert parser.forks == 2 parser.parse_args([ "--debug", "--forks=8", "--pool-size=2", "--confused-default", ]) assert parser.debug is True assert parser.confused_default is False assert parser.pool_size == 2 assert parser.forks == 8 def test_inheritance(): class AddressPort(argclass.Group): address: str port: int class Parser(argclass.Parser, AddressPort): pass parser = Parser() parser.parse_args(["--address=0.0.0.0", "--port=9876"]) assert parser.address == "0.0.0.0" assert parser.port == 9876 def test_config_for_required(tmp_path): class Parser(argclass.Parser): required: int = argclass.Argument(required=True) config_path = tmp_path / "config.ini" with open(config_path, "w") as fp: fp.write("[DEFAULT]\n") fp.write("required = 10\n") fp.write("\n") parser = Parser(config_files=[config_path]) parser.parse_args([]) assert parser.required == 10 parser = Parser(config_files=[]) with pytest.raises(SystemExit): parser.parse_args([]) def test_minimal_optional(tmp_path): class Parser(argclass.Parser): optional: Optional[int] parser = Parser() parser.parse_args([]) assert parser.optional is None parser.parse_args(["--optional=10"]) assert parser.optional == 10 def test_optional_is_not_required(tmp_path): class Parser(argclass.Parser): optional: Optional[int] = argclass.Argument(required=False) parser = Parser() parser.parse_args([]) assert parser.optional is None parser.parse_args(["--optional=20"]) assert parser.optional == 20 def test_minimal_required(tmp_path): class Parser(argclass.Parser): required: int parser = Parser() with pytest.raises(SystemExit): parser.parse_args([]) parser.parse_args(["--required=20"]) assert parser.required == 20 def test_log_group(): class LogGroup(argclass.Group): level: int = argclass.LogLevel format = argclass.Argument( choices=("json", "stream"), default="stream" ) class Parser(argclass.Parser): log = LogGroup() parser = Parser() parser.parse_args([]) assert parser.log.level == logging.INFO assert parser.log.format == "stream" parser.parse_args(["--log-level=debug", "--log-format=json"]) assert parser.log.level == logging.DEBUG assert parser.log.format == "json" def test_log_group_defaults(): class LogGroup(argclass.Group): level: int = argclass.LogLevel format: str = argclass.Argument( choices=("json", "stream") ) class Parser(argclass.Parser): log = LogGroup(defaults=dict(format="json", level="error")) parser = Parser() parser.parse_args([]) assert parser.log.level == logging.ERROR assert parser.log.format == "json" def test_environment_required(): class Parser(argclass.Parser): required: int parser = Parser(auto_env_var_prefix="TEST_") os.environ['TEST_REQUIRED'] = "100" parser.parse_args([]) assert parser.required == 100 os.environ.pop('TEST_REQUIRED') with pytest.raises(SystemExit): parser.parse_args([]) def test_nargs_and_converter(): class Parser(argclass.Parser): args_set: FrozenSet[int] = argclass.Argument( type=int, nargs="+", converter=frozenset ) parser = Parser() parser.parse_args(["--args-set", "1", "2", "3", "4", "5"]) assert isinstance(parser.args_set, frozenset) assert parser.args_set == frozenset([1, 2, 3, 4, 5]) def test_nargs_and_converter_not_required(): class Parser(argclass.Parser): args_set: FrozenSet[int] = argclass.Argument( type=int, nargs="*", converter=frozenset ) parser = Parser() parser.parse_args([]) assert isinstance(parser.args_set, frozenset) assert parser.args_set == frozenset([]) parser.parse_args(["--args-set", "1", "2", "3", "4", "5"]) assert isinstance(parser.args_set, frozenset) assert parser.args_set == frozenset([1, 2, 3, 4, 5]) def test_nargs_1(): class Parser(argclass.Parser): args_set: FrozenSet[int] = argclass.Argument( type=int, nargs=1, converter=frozenset ) parser = Parser() parser.parse_args([]) assert isinstance(parser.args_set, frozenset) assert parser.args_set == frozenset([]) parser.parse_args(["--args-set", "1"]) assert isinstance(parser.args_set, frozenset) assert parser.args_set == frozenset([1]) def test_nargs_env_var(): class Parser(argclass.Parser): nargs: FrozenSet[int] = argclass.Argument( type=int, nargs="*", converter=frozenset, env_var="NARGS" ) os.environ['NARGS'] = "[1, 2, 3]" try: parser = Parser() parser.parse_args([]) finally: del os.environ['NARGS'] assert parser.nargs == frozenset({1, 2, 3}) def test_nargs_config_list(tmp_path): class Parser(argclass.Parser): nargs: FrozenSet[int] = argclass.Argument( type=int, nargs="*", converter=frozenset, env_var="NARGS" ) conf_file = tmp_path / "config.ini" with open(conf_file, "w") as fp: fp.write("[DEFAULT]\n") fp.write("nargs = [1, 2, 3, 4]\n") parser = Parser(config_files=[conf_file]) parser.parse_args([]) assert parser.nargs == frozenset({1, 2, 3, 4}) def test_nargs_config_set(tmp_path): class Parser(argclass.Parser): nargs: FrozenSet[int] = argclass.Argument( type=int, nargs="*", converter=frozenset, env_var="NARGS" ) conf_file = tmp_path / "config.ini" with open(conf_file, "w") as fp: fp.write("[DEFAULT]\n") fp.write("nargs = {1, 2, 3, 4}\n") parser = Parser(config_files=[conf_file]) parser.parse_args([]) assert parser.nargs == frozenset({1, 2, 3, 4})
2.625
3
tmapi/tests/models/test_association.py
ajenhl/django-tmapi
2
12793524
# Copyright 2011 <NAME> (<EMAIL>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing tests for the Association model. Most if not all of these tests are ported from the public domain tests that come with the TMAPI 2.0 distribution (http://www.tmapi.org/2.0/). """ from tmapi.exceptions import ModelConstraintException from tmapi_test_case import TMAPITestCase class AssociationTest (TMAPITestCase): def test_parent (self): parent = self.tms.create_topic_map( 'http://www.tmapi.org/test/assoc/parent') self.assertEqual(parent.get_associations().count(), 0, 'Expected new topic maps to be created with no ' + 'associations') association = parent.create_association(parent.create_topic()) self.assertEqual(parent, association.get_parent(), 'Unexpected ' + 'association parent after creation') self.assertEqual(1, parent.get_associations().count(), 'Expected association list size to increment for ' + 'topic map') self.assertTrue(association in parent.get_associations(), 'Association is not part of get_associations()') association.remove() self.assertEqual(0, parent.get_associations().count(), 'Expected association list size to decrement for ' + 'topic map') def test_role_creation (self): association = self.create_association() self.assertEqual(0, association.get_roles().count(), 'Expected no roles in a newly created association') role_type = self.create_topic() player = self.create_topic() self.assertEqual(0, player.get_roles_played().count()) role = association.create_role(role_type, player) self.assertEqual(role_type, role.get_type(), 'Unexpected role type') self.assertEqual(player, role.get_player(), 'Unexpected role player') self.assertEqual(1, player.get_roles_played().count()) self.assertTrue(role in player.get_roles_played()) def test_role_types (self): association = self.create_association() type1 = self.create_topic() type2 = self.create_topic() self.assertEqual(0, association.get_role_types().count()) role1 = association.create_role(type1, self.create_topic()) self.assertEqual(1, association.get_role_types().count()) self.assertTrue(type1 in association.get_role_types()) role2 = association.create_role(type2, self.create_topic()) self.assertEqual(2, association.get_role_types().count()) self.assertTrue(type1 in association.get_role_types()) self.assertTrue(type2 in association.get_role_types()) role3 = association.create_role(type2, self.create_topic()) self.assertEqual(2, association.get_role_types().count()) self.assertTrue(type1 in association.get_role_types()) self.assertTrue(type2 in association.get_role_types()) role3.remove() self.assertEqual(2, association.get_role_types().count()) self.assertTrue(type1 in association.get_role_types()) self.assertTrue(type2 in association.get_role_types()) role2.remove() self.assertEqual(1, association.get_role_types().count()) self.assertTrue(type1 in association.get_role_types()) self.assertFalse(type2 in association.get_role_types()) role1.remove() self.assertEqual(0, association.get_role_types().count()) def test_role_filter (self): association = self.create_association() type1 = self.create_topic() type2 = self.create_topic() unused_type = self.create_topic() self.assertEqual(0, association.get_roles(type1).count()) self.assertEqual(0, association.get_roles(type2).count()) self.assertEqual(0, association.get_roles(unused_type).count()) role1 = association.create_role(type1, self.create_topic()) self.assertEqual(1, association.get_roles(type1).count()) self.assertTrue(role1 in association.get_roles(type1)) self.assertEqual(0, association.get_roles(type2).count()) self.assertEqual(0, association.get_roles(unused_type).count()) role2 = association.create_role(type2, self.create_topic()) self.assertEqual(1, association.get_roles(type2).count()) self.assertTrue(role2 in association.get_roles(type2)) role3 = association.create_role(type2, self.create_topic()) self.assertEqual(2, association.get_roles(type2).count()) self.assertTrue(role2 in association.get_roles(type2)) self.assertTrue(role3 in association.get_roles(type2)) self.assertEqual(0, association.get_roles(unused_type).count()) role3.remove() self.assertEqual(1, association.get_roles(type2).count()) self.assertTrue(role2 in association.get_roles(type2)) role2.remove() self.assertEqual(0, association.get_roles(type2).count()) role1.remove() self.assertEqual(0, association.get_roles(type1).count()) self.assertEqual(0, association.get_roles(unused_type).count()) def test_role_filter_illegal (self): # This test is not applicable in this implementation. pass def test_role_creation_invalid_player (self): association = self.create_association() self.assertEqual(0, association.get_roles().count()) self.assertRaises(ModelConstraintException, association.create_role, self.create_topic(), None) def test_role_creation_invalid_type (self): association = self.create_association() self.assertEqual(0, association.get_roles().count()) self.assertRaises(ModelConstraintException, association.create_role, None, self.create_topic())
1.96875
2
robustfpm/util/io.py
andreevnick/robust-financial-portfolio-management-framework
1
12793525
<reponame>andreevnick/robust-financial-portfolio-management-framework<filename>robustfpm/util/io.py<gh_stars>1-10 # Copyright 2021 portfolio-robustfpm-framework Authors # Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or # http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or # http://opensource.org/licenses/MIT>, at your option. This file may not be # copied, modified, or distributed except according to those terms. import os __all__ = [ 'fig2files' ] def fig2files(plt, dirname, filename, dpi=None): os.makedirs('{0}/png'.format(dirname), exist_ok=True) plt.savefig('{0}/png/{1}.png'.format(dirname, filename), dpi=dpi) os.makedirs('{0}/eps'.format(dirname), exist_ok=True) plt.savefig('{0}/eps/{1}.eps'.format(dirname, filename), format='eps') os.makedirs('{0}/svg'.format(dirname), exist_ok=True) plt.savefig('{0}/svg/{1}.svg'.format(dirname, filename), format='svg')
1.984375
2
mmdet/core/anchor/builder.py
mrzhuzhe/mmdetection
0
12793526
# Copyright (c) OpenMMLab. All rights reserved. import warnings from mmcv.utils import Registry, build_from_cfg PRIOR_GENERATORS = Registry('Generator for anchors and points') ANCHOR_GENERATORS = PRIOR_GENERATORS def build_prior_generator(cfg, default_args=None): return build_from_cfg(cfg, PRIOR_GENERATORS, default_args) def build_anchor_generator(cfg, default_args=None): warnings.warn( '``build_anchor_generator`` would be deprecated soon, please use ' '``build_prior_generator`` ') return build_prior_generator(cfg, default_args=default_args)
2.03125
2
list2/task2.py
ErykKrupa/python-course
0
12793527
<filename>list2/task2.py from sys import argv, stderr import re _base64_str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def encode(raw_file_path, encrypted_file_path): raw_file = open(raw_file_path, 'r') encrypted_file = open(encrypted_file_path, 'w') blob = ''.join(f'{char:08b}' for char in raw_file.read().encode('utf-8')) bits_list = re.findall(".{1,6}", blob) if len(bits_list[-1]) == 2: bits_list[-1] += '0000' end = '==' elif len(bits_list[-1]) == 4: bits_list[-1] += '00' end = '=' else: end = '' encrypted_file.write(''.join(_base64_str[int(bits, 2)] for bits in bits_list)) encrypted_file.write(end) raw_file.close() encrypted_file.close() def decode(encrypted_file_path, raw_file_path): encrypted_file = open(encrypted_file_path, 'r') raw_file = open(raw_file_path, 'w') blob = ''.join(f'{_base64_str.index(char):06b}' for char in encrypted_file.read() if char != '=') bits_list = re.findall(".{1,8}", blob) if len(bits_list[-1]) != 8: del bits_list[-1] raw_file.write(''.join(chr(int(bits, 2)) for bits in bits_list)) raw_file.close() encrypted_file.close() if __name__ == '__main__': if len(argv) <= 3: print("Not enough parameters.", file=stderr) exit(1) try: if argv[1] == '--encode' or argv[1] == '-e': encode(argv[2], argv[3]) elif argv[1] == '--decode' or argv[1] == '-d': decode(argv[2], argv[3]) else: print(f"Unknown parameter {argv[1]}.", file=stderr) exit(2) except EnvironmentError: print(f"Problem with access {argv[2]} or {argv[3]} occurred." f"Does {argv[2]} exist?", file=stderr) exit(3)
3.078125
3
x-tree/x-tree.py
bzliu94/algorithms
0
12793528
<reponame>bzliu94/algorithms<gh_stars>0 # 2016-08-21 # x-tree featuring enclosure and containment queries # dimension is implicit (determined using points sampled) and assumed to be consistent # we never split a super-node # updated on 2016-08-23 to fix traditional/non-traditional isLeafNode() distinction # updated on 2016-08-25 to fix overlap logic for determining when to attempt an overlap-minimal split # updated on 2016-11-03 to re-structure and modify adjustTree(); # stop at root instead of non-existent parent of root; # also, we implement delete(); note that our tree # has entry-aware nodes; made bug fix for adjustTree(); # fixed bug with parent pointers for xtreeInsert(); # have supernode demotion when size decreases to or below M # updated on 2016-11-06 to add single-start-rectangle-based # close-descendant finding that takes O(log(n)) time on average # for start rectangle taken from set of actual rectangles # for an r-tree and O(n * log(n)) time at worst; # and to add all-start-rectangles close-ancestor finding, # which for a well-formed r-tree, takes O(n * log(n)) time; # these times involve n, which is number of actual rectangles # or leaves in r-tree; these times assume "maximal disjointedness" # and depth-first stack for internal nodes and # best-first priority queue for leaf nodes # updated on 2016-11-16 to fix margin calculation # note that we assume rectangles are unique for close-descendant # and close-ancestor finding; the assumption is necessary # to make strong running time estimates; the reason is that # otherwise the directed graph implied by the r-tree # is not acyclic and we have cliques # note that we don't necessarily need PythonMagick # note that nodes always point to same entries # unless we explicitly create new entries, # which we do do occasionally # note that M of two works import sys # import PythonMagick import heapq from collections import deque # min-pq class PriorityQueue: def __init__(self): self.heap = [] def push(self, item, priority): pair = (priority,item) heapq.heappush(self.heap,pair) def pop(self): (priority,item) = heapq.heappop(self.heap) return item def isEmpty(self): return len(self.heap) == 0 def peek(self): heap = self.heap pair = heap[0] result = pair return result def toList(self): pair_list = self.heap items = [x[1] for x in pair_list] return items def getSize(self): return len(self.heap) import math def getDistance(point1, point2): x1, y1 = point1 x2, y2 = point2 change_x = x2 - x1 change_y = y2 - y1 distance = math.sqrt(change_x ** 2 + change_y ** 2) return distance class RTreeNode: def __init__(self, parent, entries, is_leaf, entry = None, split_history_root_dimension = None, is_supernode = False): self.parent = parent self.is_leaf = is_leaf self.m = 8 self.M = 16 self.child_to_entry_dict = {} for curr_entry in entries: curr_child = curr_entry.getChild() (self.child_to_entry_dict)[curr_child] = curr_entry self.split_history_root_dimension = split_history_root_dimension self.is_supernode = is_supernode self.entry = entry def getEntry(self): return self.entry def setEntry(self, entry): self.entry = entry def isSuperNode(self): return self.is_supernode def setToSuperNode(self, is_supernode): self.is_supernode = is_supernode def getSplitHistoryRootDimension(self): return self.split_history_root_dimension def setSplitHistoryRootDimension(self, dim): self.split_history_root_dimension = dim def getParent(self): return self.parent def getEntries(self): return (self.child_to_entry_dict).values() def getEntryForChild(self, child_node): return (self.child_to_entry_dict)[child_node] def getChildren(self): return (self.child_to_entry_dict).keys() def getNumEntries(self): return len(self.child_to_entry_dict) def getNumChildren(self): return self.getNumEntries() def setParent(self, node): self.parent = node def isNonTraditionalLeafNode(self): is_non_traditional_leaf_node = (self.getParent() == None and self.getNumChildren() == 0) or (self.getNumChildren() != 0 and False not in [x.getChild().getNumEntries() == 0 for x in self.getEntries()]) return is_non_traditional_leaf_node """ def isTraditionalLeafNode(self): is_traditional_leaf_node = self.getNumEntries() == 0 return is_traditional_leaf_node """ def isLeafNode(self): # is_leaf_node = (self.getParent() == None and self.getNumChildren() == 0) or (self.getNumChildren() != 0 and False not in [x.getChild().getNumEntries() == 0 for x in self.getEntries()]) is_leaf_node = self.getNumChildren() == 0 return is_leaf_node def addEntry(self, entry): curr_child = entry.getChild() (self.child_to_entry_dict)[curr_child] = entry def removeEntry(self, entry): curr_child = entry.getChild() (self.child_to_entry_dict).pop(curr_child) def getMinimumNumEntriesPerNode(self): return self.m def getMaximumNumEntriesPerNode(self): return self.M def isFull(self): return self.getNumEntries() >= self.getMaximumNumEntriesPerNode() def isUnderfull(self): return self.getNumEntries() < self.getMinimumNumEntriesPerNode() def retrieveEntryForChild(self, node): return (self.child_to_entry_dict)[node] def toString(self): return str(self.getEntries()) class RTreeEntry: def __init__(self, mbr, child): self.mbr = mbr self.child = child def getMBR(self): return self.mbr def setMBR(self, mbr): self.mbr = mbr def getChild(self): return self.child def setChild(self, node): self.child = node @staticmethod def draw(tree, entries, image, depth): for entry in entries: RTreeEntry.drawHelper(tree, entry, image, depth) @staticmethod def drawHelper(tree, entry, image, depth): node = entry.getChild() entries = node.getEntries() mbr_list = [entry.getMBR()] for mbr in mbr_list: upper_left = mbr.getUpperLeft() lower_right = mbr.getLowerRight() x1, y1 = upper_left x2, y2 = lower_right multiplier = 1 / (1.0 * 6.5) * 0.8 offset = (1536 * 0.2) / 2 next_x1, next_y1 = (multiplier * x1 + offset, multiplier * y1 + offset) next_x2, next_y2 = (multiplier * x2 + offset, multiplier * y2 + offset) if depth != 0: pass color_choice = depth % 3 color = None if color_choice == 0: color = PythonMagick.Color(65535, 0, 0, 32767) elif color_choice == 1: color = PythonMagick.Color(0, 0, 65535, 32767) elif color_choice == 2: color = PythonMagick.Color(0, 65535, 0, 32767) if upper_left == lower_right: image.strokeColor("none") image.fillColor(color) center_x = next_x1 center_y = next_y1 radius = 4 perimeter_x = next_x1 perimeter_y = next_y1 + radius image.draw(PythonMagick.DrawableCircle(center_x, center_y, perimeter_x, perimeter_y)) else: image.strokeColor(color) image.fillColor("none") image.strokeWidth(4) image.draw(PythonMagick.DrawableRectangle(next_x1, next_y1, next_x2, next_y2)) if len(entries) == 0: parent = entry.getChild().getParent() mbr = entry.getMBR() location = Point.toPoint(mbr) x, y = location multiplier = 1 / (1.0 * 6.5) * 0.8 offset = (1536 * 0.2) / 2 next_x = multiplier * x next_y = multiplier * y image.strokeColor("none") image.fillColor("black") center_x = next_x + offset center_y = next_y + offset radius = 2 perimeter_x = next_x + offset perimeter_y = next_y + offset + radius image.draw(PythonMagick.DrawableCircle(center_x, center_y, perimeter_x, perimeter_y)) children = [x.getChild() for x in entries] entry.draw(tree, entries, image, depth + 1) class MBR: def __init__(self, upper_left, lower_right): self.upper_left = upper_left self.lower_right = lower_right def isRaw(self): return False def isComposite(self): return False def getUpperLeft(self): return self.upper_left def getLowerRight(self): return self.lower_right def getArea(self): upper_left = self.getUpperLeft() lower_right = self.getLowerRight() sides = [] for i in xrange(self.getDimension()): comp1 = upper_left[i] comp2 = lower_right[i] side = comp2 - comp1 sides.append(side) area = reduce(lambda x, y: x * y, sides) return area @staticmethod def getEnlargedMBR(base_mbr, mbr): mbr_list = [base_mbr, mbr] upper_left_points = [x.getUpperLeft() for x in mbr_list] lower_right_points = [x.getLowerRight() for x in mbr_list] points = upper_left_points + lower_right_points min_components = [] max_components = [] for i in xrange(base_mbr.getDimension()): components = [x[i] for x in points] min_comp_value = min(components) max_comp_value = max(components) min_components.append(min_comp_value) max_components.append(max_comp_value) upper_left_point = tuple(min_components) lower_right_point = tuple(max_components) result_mbr_list = base_mbr.getMBRList() + [mbr] mbr = CompositeMBR(upper_left_point, lower_right_point, result_mbr_list) return mbr @staticmethod def getAreaEnlargement(base_mbr, mbr): base_mbr_area = base_mbr.getArea() enlarged_mbr = MBR.getEnlargedMBR(base_mbr, mbr) enlarged_mbr_area = enlarged_mbr.getArea() area_change = enlarged_mbr_area - base_mbr_area return area_change @staticmethod def doOverlap(mbr_a, mbr_b, without_borders = False): upper_left_a = mbr_a.getUpperLeft() lower_right_a = mbr_a.getLowerRight() upper_left_b = mbr_b.getUpperLeft() lower_right_b = mbr_b.getLowerRight() do_overlap = True # assume that rectangles never have negative area for i in xrange(mbr_a.getDimension()): # a "left" comp_a1 = min(upper_left_a[i], lower_right_a[i]) # a "right" comp_a2 = max(upper_left_a[i], lower_right_a[i]) # b "left" comp_b1 = min(upper_left_b[i], lower_right_b[i]) # b "right" comp_b2 = max(upper_left_b[i], lower_right_b[i]) # print comp_a1, comp_a2, comp_b1, comp_b2 # do_overlap = True if without_borders == True: do_overlap = do_overlap and comp_a1 < comp_b2 and comp_a2 > comp_b1 else: do_overlap = do_overlap and comp_a1 <= comp_b2 and comp_a2 >= comp_b1 if do_overlap == False: break return do_overlap @staticmethod def findOverlapArea(mbr_a, mbr_b): if MBR.doOverlap(mbr_a, mbr_b) == False: return 0 else: upper_left_a = mbr_a.getUpperLeft() lower_right_a = mbr_a.getLowerRight() upper_left_b = mbr_b.getUpperLeft() lower_right_b = mbr_b.getLowerRight() dimension = mbr_a.getDimension() sides = [] for i in xrange(dimension): comp_a1 = upper_left_a[i] comp_a2 = lower_right_a[i] comp_b1 = upper_left_b[i] comp_b2 = lower_right_b[i] side = max(0, min(comp_a2, comp_b2) - max(comp_a1, comp_b1)) sides.append(side) intersection_volume = reduce(lambda x, y: x * y, sides) return intersection_volume def getMarginValue(self): upper_left = self.getUpperLeft() lower_right = self.getLowerRight() if self.getDimension() == 0: raise Exception() if self.getDimension() == 1: x1 = upper_left[0] x2 = lower_right[0] margin = x2 - x1 return margin if self.getDimension() == 2: x1, y1 = upper_left x2, y2 = lower_right margin = 2 * (x2 - x1) + 2 * (y2 - y1) return margin surface_area = 0 for i in xrange(self.getDimension()): comp_1a = upper_left[i] comp_1b = lower_right[i] term1 = comp_1b - comp_1a for j in xrange(i + 1, self.getDimension()): comp_2a = upper_left[j] comp_2b = lower_right[j] term2 = comp_2b - comp_2a term = 2 * term1 * term2 surface_area += term margin = surface_area return margin def toString(self): upper_left = self.getUpperLeft() lower_right = self.getLowerRight() result = str(list(upper_left + lower_right) + [self.isRaw()]) return result def getDimension(self): return len(self.getUpperLeft()) def doesEnclose(self, mbr): dimension = self.getDimension() does_enclose = True for i in xrange(dimension): left_value1 = self.getUpperLeft()[i] left_value2 = mbr.getUpperLeft()[i] right_value1 = self.getLowerRight()[i] right_value2 = mbr.getLowerRight()[i] component_does_enclose = left_value1 <= left_value2 and right_value1 >= right_value2 if component_does_enclose == False: does_enclose = False break return does_enclose def isEqualTo(self, mbr): upper_left1 = self.getUpperLeft() lower_right1 = self.getLowerRight() upper_left2 = mbr.getUpperLeft() lower_right2 = mbr.getLowerRight() is_equal = upper_left1 == upper_left2 and lower_right1 == lower_right2 return is_equal class RawMBR(MBR): def __init__(self, upper_left, lower_right, contained_item): MBR.__init__(self, upper_left, lower_right) self.contained_item = contained_item def isRaw(self): return True @staticmethod def makeMBRFromPoint(point): upper_left = point lower_right = point result_mbr = RawMBR(upper_left, lower_right, point) return result_mbr def getContainedItem(self): return self.contained_item def getMBRList(self): return [self] def clone(self): upper_left = self.getUpperLeft() lower_right = self.getLowerRight() contained_item = self.getContainedItem() mbr = RawMBR(upper_left, lower_right, contained_item) return mbr def doesMatch(self, mbr): upper_left_matches = self.getUpperLeft() == mbr.getUpperLeft() lower_right_matches = self.getLowerRight() == mbr.getLowerRight() result = upper_left_matches == True and lower_right_matches == True return result class CompositeMBR(MBR): def __init__(self, upper_left, lower_right, mbr_list): MBR.__init__(self, upper_left, lower_right) self.mbr_list = mbr_list def getMBRList(self): return self.mbr_list def isComposite(self): return True @staticmethod def makeMBR(component_mbr_list): upper_left_points = [x.getUpperLeft() for x in component_mbr_list] lower_right_points = [x.getLowerRight() for x in component_mbr_list] points = upper_left_points + lower_right_points min_components = [] max_components = [] for i in xrange(component_mbr_list[0].getDimension()): components = [x[i] for x in points] min_comp_value = min(components) max_comp_value = max(components) min_components.append(min_comp_value) max_components.append(max_comp_value) upper_left_point = tuple(min_components) lower_right_point = tuple(max_components) result_mbr = CompositeMBR(upper_left_point, lower_right_point, component_mbr_list) return result_mbr class HyperRectangle: def __init__(self, upper_left, lower_right, id_value): self.upper_left = upper_left self.lower_right = lower_right self.id_value = id_value def getUpperLeft(self): return self.upper_left def getLowerRight(self): return self.lower_right def getIDValue(self): return self.id_value class Point: def __init__(self, vec, id_value): self.vec = vec self.id_value = id_value @staticmethod def toPoint(mbr): if mbr.getUpperLeft() != mbr.getLowerRight(): raise Exception("attempted to turn a non-point mbr to a point") return mbr.getUpperLeft() def getVec(self): return self.vec def getComponent(self, d): return self.getVec()[d] def getIDValue(self): return self.id_value import string class RTree: def __init__(self): root_node = RTreeNode(None, [], True) root_mbr = CompositeMBR(None, None, None) root_entry = RTreeEntry(root_mbr, root_node) root_node.setEntry(root_entry) self.setRootEntry(root_entry) def getRootEntry(self): return self.root_entry def setRootEntry(self, root_entry): self.root_entry = root_entry def hasConsistentNonTraditionalLeafDepthValues(self): root = self.getRootEntry().getChild() curr_node = root depth = 0 while curr_node.isLeafNode() == False: curr_node = curr_node.getChildren()[0] depth = depth + 1 return self.hasConsistentNonTraditionalLeafDepthValuesHelper(root, depth, 0) def hasConsistentNonTraditionalLeafDepthValuesHelper(self, node, depth, curr_depth): if node == None: return elif node.isLeafNode() == True: if depth != curr_depth: return False else: return True else: for curr_node in node.getChildren(): result = self.hasConsistentNonTraditionalLeafDepthValuesHelper(curr_node, depth, curr_depth + 1) if result == False: return False return True def toNumChildrenString(self): root = self.getRootEntry().getChild() return self.toNumChildrenStringHelper(root) def toNumChildrenStringHelper(self, node): if node == None: return "" entries = node.getEntries() children = node.getChildren() have_node_str = True overall_str_list = None if have_node_str == True: curr_leaf_status = str(node.getNumChildren()) overall_str_list = [curr_leaf_status] else: overall_str_list = [] for entry in entries: child = entry.getChild() child_str = self.toNumChildrenStringHelper(child) curr_str = child_str overall_str_list.append(curr_str) overall_str = "(" + string.join(overall_str_list, " ") + ")" return overall_str def toEntriesArePresentString(self): root = self.getRootEntry().getChild() return self.toEntriesArePresentStringHelper(root) def toEntriesArePresentStringHelper(self, node): if node == None: return "" entries = node.getEntries() children = node.getChildren() have_node_str = True overall_str_list = None if have_node_str == True: curr_leaf_status = "-" if (node.getParent() == None or (node.getParent() != None and node in node.getParent().getChildren())) == False else "+" overall_str_list = [curr_leaf_status] else: overall_str_list = [] for entry in entries: child = entry.getChild() child_str = self.toEntriesArePresentStringHelper(child) curr_str = child_str overall_str_list.append(curr_str) overall_str = "(" + string.join(overall_str_list, " ") + ")" return overall_str def toLeafStatusString(self): root = self.getRootEntry().getChild() return self.toLeafStatusStringHelper(root) def toLeafStatusStringHelper(self, node): if node == None: return "" entries = node.getEntries() children = node.getChildren() have_node_str = True overall_str_list = None if have_node_str == True: curr_leaf_status = "-" if node.isLeafNode() == False else "+" overall_str_list = [curr_leaf_status] else: overall_str_list = [] for entry in entries: child = entry.getChild() child_str = self.toLeafStatusStringHelper(child) curr_str = child_str overall_str_list.append(curr_str) overall_str = "(" + string.join(overall_str_list, " ") + ")" return overall_str def toDepthString(self): root = self.getRootEntry().getChild() return self.toDepthStringHelper(root, 0) def toDepthStringHelper(self, node, depth): if node == None: return "" entries = node.getEntries() children = node.getChildren() have_node_str = True overall_str_list = None if have_node_str == True: curr_depth = "-" if node.getNumEntries() != 0 else str(depth) overall_str_list = [curr_depth] else: overall_str_list = [] for entry in entries: child = entry.getChild() child_str = self.toDepthStringHelper(child, depth + 1) curr_str = child_str overall_str_list.append(curr_str) overall_str = "(" + string.join(overall_str_list, " ") + ")" return overall_str def toString(self): root = self.getRootEntry().getChild() return self.toStringHelper(root) def toStringHelper(self, node): if node == None: return "" entries = node.getEntries() children = node.getChildren() have_node_str = True is_root_node = node == self.getRootEntry().getChild() if is_root_node == True: have_node_str = True overall_str_list = None if is_root_node == False: overall_str_list = [node.getEntry().getMBR().toString()] # overall_str_list = [node.getEntry().getMBR().toString(), str(node)] else: overall_str_list = [] if node.getNumChildren() == 0 else [node.getEntry().getMBR().toString()] # overall_str_list = [] if node.getNumChildren() == 0 else [node.getEntry().getMBR().toString(), str(node)] for entry in entries: child = entry.getChild() child_str = self.toStringHelper(child) curr_str = child_str overall_str_list.append(curr_str) overall_str = "(" + string.join(overall_str_list, " ") + ")" return overall_str def chooseEntriesWithMinimalOverlapEnlargement(self, entries, entry): mbr_to_entry_dict = {} for i in range(len(entries)): curr_entry = entries[i] curr_mbr = curr_entry.getMBR() mbr_to_entry_dict[curr_mbr] = curr_entry mbr_list = [x.getMBR() for x in entries] mbr = entry.getMBR() tagged_enlargement_values = [(MBR.findOverlapArea(x, mbr), x) for x in mbr_list] enlargement_values = [x[0] for x in tagged_enlargement_values] min_enlargement_value = min(enlargement_values) candidate_tagged_enlargement_values = [x for x in tagged_enlargement_values if x[0] == min_enlargement_value] candidate_entries = [mbr_to_entry_dict[x[1]] for x in candidate_tagged_enlargement_values] return candidate_entries def chooseEntriesWithMinimalAreaEnlargement(self, entries, entry): mbr_to_entry_dict = {} for i in range(len(entries)): curr_entry = entries[i] curr_mbr = curr_entry.getMBR() mbr_to_entry_dict[curr_mbr] = curr_entry mbr_list = [x.getMBR() for x in entries] mbr = entry.getMBR() tagged_enlargement_values = [(MBR.getAreaEnlargement(x, mbr), x) for x in mbr_list] enlargement_values = [x[0] for x in tagged_enlargement_values] min_enlargement_value = min(enlargement_values) candidate_tagged_enlargement_values = [x for x in tagged_enlargement_values if x[0] == min_enlargement_value] candidate_entries = [mbr_to_entry_dict[x[1]] for x in candidate_tagged_enlargement_values] return candidate_entries def resolveEnlargementTie(self, entries, entry): mbr = entry.getMBR() tagged_mbr_list = [] for curr_entry in entries: base_mbr = curr_entry.getMBR() curr_mbr = MBR.getEnlargedMBR(base_mbr, mbr) tagged_mbr_list.append((curr_mbr, curr_entry)) tagged_area_values = [(x[0].getArea(), x[1]) for x in tagged_mbr_list] area_values = [x[0] for x in tagged_area_values] min_area = min(area_values) candidate_tagged_area_values = [x for x in tagged_area_values if x[0] == min_area] candidate_entries = [x[1] for x in candidate_tagged_area_values] return candidate_entries @staticmethod def rstarGenDistributions(entries, M, m): result_list = [] if len(entries) > (M + 1): raise Exception() window_left_sizes = [m - 1 + k for k in range(1, M - 2 * m + 2 + 1)] window_left_sizes = [x for x in window_left_sizes if x <= M and x >= m and (len(entries) - x) <= M and (len(entries) - x) >= m] window_size_pairs = [(window_left_sizes[i], len(entries) - window_left_sizes[i]) for i in range(len(window_left_sizes))] window_size_pairs = [x for x in window_size_pairs if x[0] <= M and x[0] >= m and x[1] <= M and x[1] >= m] for i in xrange(entries[0].getMBR().getDimension()): low_sorted_entries = entries[ : ] low_sorted_entries.sort(key = lambda x: x.getMBR().getUpperLeft()[i]) low_distributions = [(low_sorted_entries[ : window_left_sizes[j]], low_sorted_entries[window_left_sizes[j] : ]) for j in xrange(len(window_left_sizes))] upper_sorted_entries = entries[ : ] upper_sorted_entries.sort(key = lambda x: x.getMBR().getLowerRight()[i]) upper_distributions = [(upper_sorted_entries[ : window_left_sizes[j]], upper_sorted_entries[window_left_sizes[j] : ]) for j in xrange(len(window_left_sizes))] curr_tuple = (low_distributions, upper_distributions) result_list.append(curr_tuple) return result_list @staticmethod def rstarChooseSplitAxis(entries, M, m): result = RTree.rstarGenDistributions(entries, M, m) S_comp_dict = {} for i in xrange(entries[0].getMBR().getDimension()): low_comp_distributions, upper_comp_distributions = result[i] S_comp_value = 0 low_constituent_mbr_list_pairs = [([y.getMBR() for y in x[0]], [y.getMBR() for y in x[1]]) for x in low_comp_distributions] low_mbr_pairs = [(CompositeMBR.makeMBR(x[0]), CompositeMBR.makeMBR(x[1])) for x in low_constituent_mbr_list_pairs] low_margin_values = [x[0].getMarginValue() + x[1].getMarginValue() for x in low_mbr_pairs] low_margin_value_sum = sum(low_margin_values) S_comp_value += low_margin_value_sum upper_constituent_mbr_list_pairs = [([y.getMBR() for y in x[0]], [y.getMBR() for y in x[1]]) for x in upper_comp_distributions] upper_mbr_pairs = [(CompositeMBR.makeMBR(x[0]), CompositeMBR.makeMBR(x[1])) for x in upper_constituent_mbr_list_pairs] upper_margin_values = [x[0].getMarginValue() + x[1].getMarginValue() for x in upper_mbr_pairs] upper_margin_value_sum = sum(upper_margin_values) S_comp_value += upper_margin_value_sum S_comp_dict[i] = S_comp_value d_S_pairs = S_comp_dict.items() min_S_value = min([x[1] for x in d_S_pairs]) min_S_value_d_S_pair_candidates = [x for x in d_S_pairs if x[1] == min_S_value] chosen_d_S_pair = min_S_value_d_S_pair_candidates[0] chosen_d_value = chosen_d_S_pair[0] return chosen_d_value @staticmethod def rstarChooseSplitIndex(entries, axis, M, m): result = RTree.rstarGenDistributions(entries, M, m) candidate_distributions = None candidate_distributions = result[axis][0] + result[axis][1] mbr_list_pair_tagged_candidate_distributions = [(([y.getMBR() for y in x[0]], [y.getMBR() for y in x[1]]), x) for x in candidate_distributions] mbr_pair_tagged_candidate_distributions = [((CompositeMBR.makeMBR(x[0][0]), CompositeMBR.makeMBR(x[0][1])), x[1]) for x in mbr_list_pair_tagged_candidate_distributions] overlap_value_tagged_candidate_distributions = [(MBR.findOverlapArea(x[0][0], x[0][1]), x[1]) for x in mbr_pair_tagged_candidate_distributions] overlap_values = [x[0] for x in overlap_value_tagged_candidate_distributions] min_overlap_value = min(overlap_values) matching_overlap_value_tagged_candidate_distributions = [x for x in overlap_value_tagged_candidate_distributions if x[0] == min_overlap_value] next_next_candidates = [x[1] for x in matching_overlap_value_tagged_candidate_distributions] if len(matching_overlap_value_tagged_candidate_distributions) > 1: next_candidate_distributions = next_next_candidates mbr_list_pair_tagged_candidate_distributions = [(([y.getMBR() for y in x[0]], [y.getMBR() for y in x[1]]), x) for x in next_candidate_distributions] mbr_pair_tagged_next_candidate_distributions = [((CompositeMBR.makeMBR(x[0][0]), CompositeMBR.makeMBR(x[0][1])), x[1]) for x in mbr_list_pair_tagged_candidate_distributions] combined_area_tagged_next_candidate_distributions = [(x[0][0].getArea() + x[0][1].getArea(), x[1]) for x in mbr_pair_tagged_next_candidate_distributions] combined_area_values = [x[0] for x in combined_area_tagged_next_candidate_distributions] min_combined_area_value = min(combined_area_values) matching_combined_area_tagged_next_candidate_distributions = [x for x in combined_area_tagged_next_candidate_distributions if x[0] == min_combined_area_value] next_next_candidates = [x[1] for x in matching_combined_area_tagged_next_candidate_distributions] chosen_distribution_pair = next_next_candidates[0] return chosen_distribution_pair def chooseLeaf(self, entry): return self.chooseLeafHelper(entry, self.getRootEntry().getChild()) def chooseLeafHelper(self, entry, node): if node.isLeafNode() == True: if node == self.getRootEntry().getChild(): return node else: return node.getParent() else: entries = node.getEntries() candidate_entries = self.chooseEntriesWithMinimalAreaEnlargement(entries, entry) if len(candidate_entries) != 1: candidate_entries = self.resolveEnlargementTie(candidate_entries, entry) chosen_entry = candidate_entries[0] chosen_child = chosen_entry.getChild() return self.chooseLeafHelper(entry, chosen_child) def rstarChooseLeaf(self, entry): return self.rstarChooseLeafHelper(entry, self.getRootEntry().getChild()) def rstarChooseLeafHelper(self, entry, node): if node.isLeafNode() == True: if node == self.getRootEntry().getChild(): return node else: return node.getParent() else: entries = node.getEntries() candidate_entries = None # if node.isLeafNode() == True: candidate_entries = self.chooseEntriesWithMinimalOverlapEnlargement(entries, entry) if len(candidate_entries) != 1: candidate_entries = self.chooseEntriesWithMinimalAreaEnlargement(candidate_entries, entry) if len(candidate_entries) != 1: candidate_entries = self.resolveEnlargementTie(candidate_entries, entry) """ else: candidate_entries = self.chooseEntriesWithMinimalAreaEnlargement(entries, entry) if len(candidate_entries) != 1: candidate_entries = self.resolveEnlargementTie(candidate_entries, entry) """ chosen_entry = candidate_entries[0] chosen_child = chosen_entry.getChild() return self.rstarChooseLeafHelper(entry, chosen_child) def insert(self, entry): return self.xtreeInsert(entry) def chooseSubtree(self, entry, node): entries = node.getEntries() candidate_entries = None # if node.isLeafNode() == True: candidate_entries = self.chooseEntriesWithMinimalOverlapEnlargement(entries, entry) if len(candidate_entries) != 1: candidate_entries = self.chooseEntriesWithMinimalAreaEnlargement(candidate_entries, entry) if len(candidate_entries) != 1: candidate_entries = self.resolveEnlargementTie(candidate_entries, entry) """ else: candidate_entries = self.chooseEntriesWithMinimalAreaEnlargement(entries, entry) if len(candidate_entries) != 1: candidate_entries = self.resolveEnlargementTie(candidate_entries, entry) """ chosen_entry = candidate_entries[0] chosen_child = chosen_entry.getChild() return chosen_entry def xtreeInsert(self, entry): # print "insert" return self.xtreeInsertHelper(entry, self.getRootEntry().getChild()) SPLIT = 0 SUPERNODE = 1 NO_SPLIT = 2 def xtreeInsertHelper(self, entry, node): split_status = None next_mbr = None if True: # if node.getNumChildren() == 0 and node == self.getRootEntry().getChild(): # if node.getNumChildren() == 0: # if node.isNonTraditionalLeafNode() == True: if node.isLeafNode() == True and node == self.getRootEntry().getChild(): node.addEntry(entry) curr_node = entry.getChild() curr_node.setParent(node) mbr = CompositeMBR.makeMBR([entry.getMBR()]) node.getEntry().setMBR(mbr) # print "no split" return (RTree.NO_SPLIT, [node]) if node.isLeafNode() == True: # split just in case # print "split" return (RTree.SPLIT, [node]) elif node.isNonTraditionalLeafNode() == True: node.addEntry(entry) entry.getChild().setParent(node) """ elif node.getNumChildren() == 0: pass return (RTree.NO_SPLIT, [node]) """ follow = self.chooseSubtree(entry, node).getChild() result = self.xtreeInsertHelper(entry, follow) split_status, added_nodes = result curr_entry = node.getEntry() curr_mbr = curr_entry.getMBR() mbr = entry.getMBR() next_mbr = MBR.getEnlargedMBR(curr_mbr, mbr) node.getEntry().setMBR(next_mbr) # this parent-setting step is crucial # if node.isNonTraditionalLeafNode() == False: # this is idempotent for added_node in added_nodes: node.addEntry(added_node.getEntry()) added_node.setParent(node) if split_status == RTree.SPLIT: # added_node.setParent(node) if node.getNumChildren() > node.getMaximumNumEntriesPerNode(): split_result = self.xtreeSplitNode(node, entry) was_successful, entry_collection1, entry_collection2, dimension = split_result if was_successful == True: mbr_collection1 = [x.getMBR() for x in entry_collection1] mbr_collection2 = [x.getMBR() for x in entry_collection2] # this line presumes that we have parent set correctly for a leaf, # which is not the case when we initially insert parent = node.getParent() entry1 = RTreeEntry(CompositeMBR.makeMBR(mbr_collection1), None) node1 = RTreeNode(parent, entry_collection1, None, entry1) entry1.setChild(node1) entry2 = RTreeEntry(CompositeMBR.makeMBR(mbr_collection2), None) node2 = RTreeNode(parent, entry_collection2, None, entry2) entry2.setChild(node2) for curr_entry in entry_collection1: curr_entry.getChild().setParent(node1) for curr_entry in entry_collection2: curr_entry.getChild().setParent(node2) node1.setSplitHistoryRootDimension(dimension) node2.setSplitHistoryRootDimension(dimension) if self.getRootEntry().getChild() == node: next_root_entry = RTreeEntry(next_mbr, None) next_root = RTreeNode(None, [entry1, entry2], None, next_root_entry) next_root_entry.setChild(next_root) self.setRootEntry(next_root_entry) node1.setParent(next_root) node2.setParent(next_root) else: parent.removeEntry(node.getEntry()) parent.addEntry(entry1) parent.addEntry(entry2) # print "split #2" return (RTree.SPLIT, [node1, node2]) else: self.xtreeSupernodeInsert(node, [x.getEntry() for x in added_nodes]) # print "supernode #1" return (RTree.SUPERNODE, [node]) elif split_status == RTree.SUPERNODE: pass # print "no split" return (RTree.NO_SPLIT, [node]) def rstarInsert(self, entry): leaf_node = self.rstarChooseLeaf(entry) adjust_result = None if leaf_node.isFull() == False: leaf_node.addEntry(entry) entry.getChild().setParent(leaf_node) adjust_result = RTree.rstarAdjustTree(self, leaf_node, [entry], False) else: split_result = self.rstarSplitNode(leaf_node, entry) l, ll, e, ee = split_result adjust_result = RTree.rstarAdjustTree(self, l, [e, ee], True) ended_with_split2, resulting_entries_from_split = adjust_result if ended_with_split2 == True: e, ee = resulting_entries_from_split l = e.getChild() ll = ee.getChild() if (self.getRootEntry().getChild().getNumEntries() + 1) <= self.getRootEntry().getChild().getMaximumNumEntriesPerNode(): self.getRootEntry().getChild().addEntry(ee) ll.setParent(self.getRootEntry().getChild()) else: split_result = self.rstarSplitNode(self.getRootEntry().getChild(), ee) l, ll, e, ee = split_result resulting_entries_from_split = [e, ee] next_root = RTreeNode(None, resulting_entries_from_split, False, self.getRootEntry()) l.setParent(next_root) ll.setParent(next_root) self.getRootEntry().setChild(next_root) else: pass MAX_OVERLAP_RATIO = 0.2 def xtreeSplitNode(self, node, entry): # we never split a super-node if node.isSuperNode() == True: # raise Exception() return (False, None, None, None) dimension = None result1 = self.xtreeTopologicalSplit(node, entry) entry_collection1, entry_collection2, dimension = result1 mbr_collection1 = [x.getMBR() for x in entry_collection1] mbr_collection2 = [x.getMBR() for x in entry_collection2] mbr1 = CompositeMBR.makeMBR(mbr_collection1) mbr2 = CompositeMBR.makeMBR(mbr_collection2) overlap_area = MBR.findOverlapArea(mbr1, mbr2) area1 = mbr1.getArea() area2 = mbr2.getArea() union_area = area1 + area2 - overlap_area ovelap_ratio = None if union_area == 0: if mbr1.isEqualTo(mbr2) == True: overlap_ratio = 1 else: overlap_ratio = 0 else: overlap_ratio = overlap_area / (1.0 * union_area) # raise Exception() if overlap_ratio > RTree.MAX_OVERLAP_RATIO: # raise Exception() result2 = self.xtreeOverlapMinimalSplit(node, entry) entry_collection3, entry_collection4, dimension, do_fail = result2 # raise Exception() if do_fail == True or len(entry_collection3) < node.getMinimumNumEntriesPerNode() or len(entry_collection4) < node.getMinimumNumEntriesPerNode(): return (False, None, None, dimension) else: return (True, entry_collection3, entry_collection4, dimension) else: return (True, entry_collection1, entry_collection2, dimension) def xtreeTopologicalSplit(self, node, entry): m = self.getRootEntry().getChild().getMinimumNumEntriesPerNode() M = self.getRootEntry().getChild().getMaximumNumEntriesPerNode() E_overall = node.getEntries() axis = RTree.rstarChooseSplitAxis(E_overall, M, m) result = RTree.rstarChooseSplitIndex(E_overall, axis, M, m) entry_group1, entry_group2 = result next_result = (entry_group1, entry_group2, axis) return next_result def xtreeOverlapMinimalSplit(self, node, entry): if node.getSplitHistoryRootDimension() == None: return (None, None, None, True) else: m = self.getRootEntry().getChild().getMinimumNumEntriesPerNode() M = self.getRootEntry().getChild().getMaximumNumEntriesPerNode() E_overall = node.getEntries() axis = node.getSplitHistoryRootDimension() result = RTree.rstarChooseSplitIndex(E_overall, axis, M, m) entry_group1, entry_group2 = result next_result = (entry_group1, entry_group2, axis, False) return next_result def xtreeSupernodeInsert(self, node, entries): if node.isSuperNode() == False: node.setToSuperNode(True) # questionable if this is really necessary for entry in entries: curr_node = entry.getChild() node.addEntry(entry) # needed this curr_node.setParent(node) """ entries = node.getEntries() mbr_list = [x.getMBR() for x in entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) """ def rstarSplitNode(self, node, entry): curr_node = node E_overall = list(set(curr_node.getEntries() + [entry])) return self.rstarSplitNodeHelper(node, E_overall, entry) def rstarSplitNodeHelper(self, node, E_overall, entry): # prev_leaf_status = node.isLeafNode() prev_leaf_status = None curr_node = node m = self.getRootEntry().getChild().getMinimumNumEntriesPerNode() M = self.getRootEntry().getChild().getMaximumNumEntriesPerNode() axis = RTree.rstarChooseSplitAxis(E_overall, M, m) result = RTree.rstarChooseSplitIndex(E_overall, axis, M, m) entry_group1, entry_group2 = result parent = curr_node.getParent() """ if parent != None and (node in parent.getChildren()): pass """ node1 = RTreeNode(parent, entry_group1, prev_leaf_status) node2 = RTreeNode(parent, entry_group2, prev_leaf_status) for curr_entry in entry_group1: curr_entry.getChild().setParent(node1) for curr_entry in entry_group2: curr_entry.getChild().setParent(node2) mbr_group1 = [x.getMBR() for x in entry_group1] mbr_group2 = [x.getMBR() for x in entry_group2] curr_overall_mbr1 = CompositeMBR.makeMBR(mbr_group1) curr_overall_mbr2 = CompositeMBR.makeMBR(mbr_group2) for curr_entry in entry_group1: next_curr_node = curr_entry.getChild() if curr_entry != entry: curr_node.removeEntry(curr_entry) next_curr_node.setParent(node1) for curr_entry in entry_group2: next_curr_node = curr_entry.getChild() if curr_entry != entry: curr_node.removeEntry(curr_entry) next_curr_node.setParent(node2) entry1 = RTreeEntry(curr_overall_mbr1, node1) entry2 = RTreeEntry(curr_overall_mbr2, node2) node1.setEntry(entry1) node2.setEntry(entry2) if parent != None: original_entry = parent.retrieveEntryForChild(curr_node) parent.removeEntry(original_entry) if node != self.getRootEntry().getChild(): parent.addEntry(entry1) parent.addEntry(entry2) node1.setParent(parent) node2.setParent(parent) else: next_root = RTreeNode(None, [entry1, entry2], False) self.getRootEntry().setChild(next_root) next_root.setEntry(self.getRootEntry()) node1.setParent(next_root) node2.setParent(next_root) pass return (node1, node2, entry1, entry2) @staticmethod def rstarPreadjustTree(self, leaf_node): node = leaf_node parent = node.getParent() if parent != None: curr_entries = node.getEntries() entry = node.getParent().retrieveEntryForChild(node) children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) @staticmethod def rstarAdjustTree(tree, node, resulting_entries_from_split, have_resulting_second_entry_from_split): return tree.rstarAdjustTreeHelper(tree, node, resulting_entries_from_split, have_resulting_second_entry_from_split) @staticmethod def rstarAdjustTreeHelper(tree, node, resulting_entries_from_split, have_resulting_second_entry_from_split): if node.getParent() == None: entry = tree.getRootEntry() curr_entries = entry.getChild().getEntries() children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) return (have_resulting_second_entry_from_split, resulting_entries_from_split) else: parent = node.getParent() curr_entries = node.getEntries() entry = None """ if node.getParent() == None: entry = tree.getRootEntry() else: entry = node.getParent().retrieveEntryForChild(node) """ entry = parent.retrieveEntryForChild(node) children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) partner_entry = None if have_resulting_second_entry_from_split == True: first_entry, second_entry = resulting_entries_from_split partner_entry = second_entry if have_resulting_second_entry_from_split == True: partner_node = partner_entry.getChild() partner_entries = partner_node.getEntries() partner_children = [x.getChild() for x in partner_entries] partner_mbr_list = [x.getMBR() for x in partner_entries] partner_tight_overall_mbr = CompositeMBR.makeMBR(partner_mbr_list) partner_entry.setMBR(partner_tight_overall_mbr) if node.isLeafNode() == False: if have_resulting_second_entry_from_split == True: if (parent.getNumChildren() + 1) <= parent.getMaximumNumEntriesPerNode(): parent.addEntry(partner_entry) partner_entry.getChild().setParent(parent) return RTree.rstarAdjustTreeHelper(tree, node.getParent(), [entry], False) else: split_result = tree.rstarSplitNode(parent, partner_entry) l, ll, e, ee = split_result return RTree.rstarAdjustTreeHelper(tree, node.getParent(), [e, ee], True) else: return RTree.rstarAdjustTreeHelper(tree, node.getParent(), [entry], False) else: return RTree.rstarAdjustTreeHelper(tree, node.getParent(), resulting_entries_from_split, have_resulting_second_entry_from_split) """ @staticmethod def adjustTree(tree, node, resulting_entries_from_split, have_resulting_second_entry_from_split, is_first_call_after_first_pass): if node == None: return (False, []) else: parent = node.getParent() curr_entries = node.getEntries() entry = None if node.getParent() == None: entry = tree.getRootEntry() else: entry = parent.retrieveEntryForChild(node) children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) partner_entry = None if have_resulting_second_entry_from_split == True: first_entry, second_entry = resulting_entries_from_split partner_entry = second_entry if have_resulting_second_entry_from_split == True and is_first_call_after_first_pass != True: partner_node = partner_entry.getChild() partner_entries = partner_node.getEntries() partner_children = [x.getChild() for x in partner_entries] partner_mbr_list = [x.getMBR() for x in partner_entries] partner_tight_overall_mbr = CompositeMBR.makeMBR(partner_mbr_list) partner_entry.setMBR(partner_tight_overall_mbr) if have_resulting_second_entry_from_split == True: parent.removeEntry(entry) if (parent.getNumChildren() + 2) <= parent.getMaximumNumEntriesPerNode(): parent.addEntry(entry) parent.addEntry(partner_entry) entry.getChild().setParent(parent) partner_entry.getChild().setParent(parent) return tree.adjustTree(tree, parent, [entry], False, False) else: parent.addEntry(entry) entry.getChild().setParent(parent) split_result = tree.splitNode(parent, partner_entry) l, ll, e, ee = split_result return tree.adjustTree(tree, l, [e, ee], True, False) else: return (False, []) """ # assume item is in tree # returns a node, which can be None if no match is found # finds one match if such a node exists # def delete(self, E, RN): def findLeaf(self, entry): return self.findLeafHelper(entry, self.getRootEntry()) def findLeafHelper(self, entry, curr_entry): """ if node.isLeafNode() == False: curr_mbr = entry.getMBR() entries = self.getEntries() tagged_mbr_list = [(x.getMBR(), x) for x in entries] tagged_overlapped_mbr_list = [x for x in tagged_mbr_list if MBR.doOverlap(curr_mbr, x[0]) == True] for tagged_overlapped_mbr in tagged_overlapped_mbr_list: curr_mbr, curr_entry = tagged_overlapped_mbr curr_node = curr_entry.getChild() result = self.findLeafHelper(entry, curr_node) if result == None: continue else: return curr_node return None """ # a little stilted since we don't need a O(log(n)) time operation # to find the entry containing node; just look at parent of entry child if curr_entry.getMBR().isRaw() == True: if entry == curr_entry: return True else: return False else: entries = curr_entry.getChild().getEntries() for next_entry in entries: if MBR.doOverlap(curr_entry.getMBR(), entry.getMBR()) == True: result = self.findLeafHelper(entry, next_entry) if result == True: return result return False def delete(self, entry): # print "hello" did_find_leaf = self.findLeaf(entry) child_node = entry.getChild() # root node never has a raw mbr # leaf is a non-traditional leaf leaf_node = child_node.getParent() if entry != self.getRootEntry() else None if leaf_node == None: raise Exception("expected a node to be found for a delete") # if parent has zero entries after removing this entry, this should be okay leaf_node.removeEntry(entry) self.condenseTree(leaf_node) # root = self.getRootEntry().getChild() """ if root.getNumChildren() == 1: # shorten tree entries = root.getEntries() chosen_entry = entries[0] chosen_child = chosen_entry.getChild() self.setRoot(chosen_child) """ # if RN is a leaf node # search all entries of RN to find E.mbr # else: # RN is an internal node # find all entries of RN that cover E.mbr # follow the corresponding subtrees unti lthe leaf L that contains E is found # remove E from L # call algorithm condenseTree(L) # if the root has only one child (and it is not a leaf) # remove the root # set as new root its only child pass def condenseTree(self, leaf_node): Q = [] self.condenseTreeHelper(leaf_node, Q) # Q is in order of low-level to high-level; # wish to insert using order of high-level to low-level # Q = list(set(Q)) Q.reverse() for curr_node in Q: curr_entry = curr_node.getEntry() # print "mbr:", curr_entry.getMBR().toString() # print "tree:", self.toString() self.insert(curr_entry) def condenseTreeHelper(self, node, Q): # demote super-node if necessary if node.isSuperNode() == True and node.getNumChildren() <= node.getMaximumNumEntriesPerNode(): node.setToSuperNode(False) if node.getParent() == None: # we are a root node if self.getRootEntry().getChild().getNumChildren() == 0: root_node = RTreeNode(None, [], True) root_mbr = CompositeMBR(None, None, None) root_entry = RTreeEntry(root_mbr, root_node) root_node.setEntry(root_entry) self.setRootEntry(root_entry) return else: entry = self.getRootEntry() curr_entries = entry.getChild().getEntries() children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) return else: # raise Exception() # print "decision point" """ if node.isSuperNode() == True: # print "supernode encountered" parent = node.getParent() parent.removeEntry(parent.retrieveEntryForChild(node)) Q.append(node) # raise Exception() if node.getNumChildren() <= 1: # raise Exception() node.setToSuperNode(False) elif node.getNumChildren() <= node.getMaximumNumEntriesPerNode(): mbr_list = [x.getMBR() in node.getEntries()] curr_x_tree = RTree() overlap_area_sum = sum([x.getArea() for x in mbr_list]) for curr_mbr in mbr_list: next_mbr = RawMBR(curr_mbr.getUpperLeft(), curr_mbr.getLowerRight(), None) next_node = RTreeNode(None, [], True) next_entry = RTreeEntry(next_mbr, next_node) next_node.setEntry(next_entry) curr_x_tree.insert(next_entry) union_area = curr_x_tree.getUnionArea() multi_overlap_ratio = overlap_area_sum / (1.0 * union_area) if multi_overlap_ratio <= RTree.MAX_OVERLAP_RATIO: node.setToSuperNode(False) elif node.isUnderfull() == True: """ if node.isUnderfull() == True: # print "underfull" parent = node.getParent() parent.removeEntry(parent.retrieveEntryForChild(node)) # don't use isLeafNode() for this, as internal nodes can temporarily look like leaf nodes # keep_nodes = [x for x in self.getNodesForNode(node) if x.getEntry().getMBR().isRaw() == True] keep_nodes = [x for x in self.getNodesForNode(node) if x.getEntry().getMBR().isRaw() == True] for keep_node in keep_nodes: Q.append(keep_node) # only makes sense to speak of modifying mbr if we plan on keeping the node if node.isUnderfull() == False: # print "not underfull" parent = node.getParent() curr_entries = node.getEntries() entry = parent.retrieveEntryForChild(node) children = [x.getChild() for x in curr_entries] mbr_list = [x.getMBR() for x in curr_entries] tight_overall_mbr = CompositeMBR.makeMBR(mbr_list) entry.setMBR(tight_overall_mbr) self.condenseTreeHelper(node.getParent(), Q) return # not tested # returns entries # does intersection query def doOverlapQuery(self, mbr, without_borders = False): partial_result = [] self.doOverlapQueryHelper(mbr, self.getRootEntry(), partial_result, without_borders) return partial_result def doOverlapQueryHelper(self, mbr, entry, partial_result, without_borders): if entry.getMBR().isRaw() == True: if MBR.doOverlap(entry.getMBR(), mbr, without_borders) == True: partial_result.append(entry) else: entries = entry.getChild().getEntries() for curr_entry in entries: if MBR.doOverlap(curr_entry.getMBR(), mbr) == True: self.doOverlapQueryHelper(mbr, curr_entry, partial_result, without_borders) # returns entries def doEnclosureQuery(self, mbr): partial_result = [] self.doEnclosureQueryHelper(mbr, self.getRootEntry(), partial_result) return partial_result def doEnclosureQueryHelper(self, mbr, entry, partial_result): if entry.getMBR().isRaw() == True: if entry.getMBR().doesEnclose(mbr) == True: partial_result.append(entry) else: entries = entry.getChild().getEntries() for curr_entry in entries: if curr_entry.getMBR().doesEnclose(mbr) == True: self.doEnclosureQueryHelper(mbr, curr_entry, partial_result) def doEnclosureQueryWithEarlyStopping(self, mbr): result = self.doEnclosureQueryWithEarlyStoppingHelper(mbr, self.getRootEntry()) return result def doEnclosureQueryWithEarlyStoppingHelper(self, mbr, entry): if entry.getMBR().isRaw() == True: if entry.getMBR().doesEnclose(mbr) == True: return True else: entries = entry.getChild().getEntries() for curr_entry in entries: if curr_entry.getMBR().doesEnclose(mbr) == True: result = self.doEnclosureQueryWithEarlyStoppingHelper(mbr, curr_entry) if result == True: return True return False # returns entries def doContainmentQuery(self, mbr): partial_result = [] self.doContainmentQueryHelper(mbr, self.getRootEntry(), partial_result) return partial_result def doContainmentQueryHelper(self, mbr, entry, partial_result): if entry.getMBR().isRaw() == True: # print mbr.toString(), entry.getMBR().toString() if mbr.doesEnclose(entry.getMBR()) == True: partial_result.append(entry) else: entries = entry.getChild().getEntries() for curr_entry in entries: if MBR.doOverlap(curr_entry.getMBR(), mbr) == True: self.doContainmentQueryHelper(mbr, curr_entry, partial_result) # prefix order def getNodes(self): node_list = [] self.getNodesHelper(self.getRootEntry().getChild(), node_list) return node_list def getNodesHelper(self, node, partial_result): partial_result.append(node) for curr_node in node.getChildren(): self.getNodesHelper(curr_node, partial_result) def getNodesForNode(self, node): node_list = [] self.getNodesHelper(node, node_list) return node_list """ def getUnionArea(self): pass """ # takes O(log(n)) time on average for start rectangle # taken from set of actual rectangles for an r-tree; # takes O(n * log(n)) time at worst; # assumes that rectangles are distinct # return a list of entries def getRectangleCloseDescendants(self, reference_entry): # repeatedly pop nodes, prune using enclosure/containment # w.r.t. reference rectangle, add children to priority queue, # ignore if contained rectangle is contained by a rectangle in conflict x-tree, # add actual rectangles to conflict x-tree, # use as priority (prefer_contained, prefer_large_area_if_contained_else_small) if self.getRootEntry().getChild().getNumChildren() == 0: return [] reference_mbr = reference_entry.getMBR() root_entry = self.getRootEntry() root_node = root_entry.getChild() root_mbr = root_entry.getMBR() root_mbr_is_actual = root_mbr.isRaw() root_mbr_is_contained = reference_mbr.doesEnclose(root_mbr) root_mbr_area = root_mbr.getArea() first_priority_component = 0 if root_mbr_is_contained == True else 1 second_priority_component = (-1 if root_mbr_is_contained == True else 1) * root_mbr_area # min-pq priority = (first_priority_component, second_priority_component) # priority = -1 * root_mbr_area # entry_pq = PriorityQueue() heap = [] # entry_pq.push(root_entry, priority) item = root_entry pair = (priority,item) heapq.heappush(heap,pair) # print entry_pq # raise Exception() result_entry_list = [] self.getRectangleCloseDescendantsHelper(heap, reference_mbr, result_entry_list, reference_entry) return result_entry_list # def TopicKNearestNeighborBestFirstSearchHelper(self, heap, point, TopicKNearest, k): def getRectangleCloseDescendantsHelper(self, heap, reference_mbr, result_entry_list, ignore_entry): conflict_x_tree = RTree() internal_node_stack_deque = deque() # while len(heap) != 0: while len(internal_node_stack_deque) != 0 or len(heap) != 0: # entry = entry_pq.pop() item = None if len(heap) != 0: (priority,item) = heapq.heappop(heap) elif len(internal_node_stack_deque) != 0: item = internal_node_stack_deque.popleft() # (priority,item) = heapq.heappop(heap) entry = item node = entry.getChild() mbr = entry.getMBR() if mbr.doesEnclose(reference_mbr) == False and reference_mbr.doesEnclose(mbr) == False: # ignore node if associated mbr does not enclose reference mbr # and associated mbr is not contained within reference mbr continue if conflict_x_tree.doEnclosureQueryWithEarlyStopping(mbr) == True: # ignore node if enclosing mbr exists in conflict x-tree continue if entry == ignore_entry: # ignore node if its entry matches the ignore entry continue if node.isLeafNode() == True: # could have a safe path to a leaf where the leaf mbr # is not contained by reference rectangle; # check explicitly for this case if reference_mbr.doesEnclose(mbr) == False: continue # kick out close descendant candidates on occasion, # if containment query for conflict x-tree returns entries matching_entries = conflict_x_tree.doContainmentQuery(mbr) for matching_entry in matching_entries: # raise Exception() conflict_x_tree.delete(matching_entry) # if node is a leaf node, it has an actual rectangle # decide whether to include associated entry in result; # if we made it this far, we should add to conflict x-tree result_entry_list.append(entry) raw_mbr = mbr next_mbr = raw_mbr.clone() next_node = RTreeNode(None, [], True) next_entry = RTreeEntry(next_mbr, next_node) next_node.setEntry(next_entry) conflict_x_tree.insert(next_entry) elif node.isLeafNode() == False: # if we made it this far, we should add children to priority queue entries = node.getEntries() priority_tagged_internal_entries = [] for curr_entry in entries: # set priority correctly and add to priority queue curr_node = curr_entry.getChild() curr_mbr = curr_entry.getMBR() curr_mbr_is_actual = curr_mbr.isRaw() curr_mbr_is_contained = reference_mbr.doesEnclose(curr_mbr) curr_mbr_area = curr_mbr.getArea() first_priority_component = 0 if curr_mbr_is_contained == True else 1 second_priority_component = (-1 if curr_mbr_is_contained == True else 1) * curr_mbr_area # min-pq # priority = (first_priority_component, second_priority_component) if curr_mbr.isRaw() == True: priority = -1 * curr_mbr_area item = curr_entry pair = (priority,item) heapq.heappush(heap,pair) elif curr_mbr.isRaw() == False: if curr_mbr.doesEnclose(reference_mbr) == False and reference_mbr.doesEnclose(curr_mbr) == False: continue # item = curr_entry # internal_node_stack_deque.appendleft(item) priority = (first_priority_component, second_priority_component) priority_tagged_internal_entry = (priority, curr_entry) priority_tagged_internal_entries.append(priority_tagged_internal_entry) # item = curr_entry # pair = (priority,item) # if curr_mbr.doesEnclose(reference_mbr) == True or reference_mbr.doesEnclose(curr_mbr) == True: # heapq.heappush(heap,pair) priority_tagged_internal_entries.sort(key = lambda x: x[0], reverse = True) for priority_tagged_internal_entry in priority_tagged_internal_entries: priority, internal_entry = priority_tagged_internal_entry item = internal_entry internal_node_stack_deque.appendleft(item) # print "conflict x-tree:", conflict_x_tree.toString() # for a well-formed r-tree, this takes O(n * log(n)) time, # where n is number of actual rectangles or leaves; # assumes that rectangles are distinct def getAllRectangleCloseAncestors(self): start_rectangle_nodes = [x for x in self.getNodes() if x.getEntry().getMBR().isRaw() == True] start_rectangle_entries = [x.getEntry() for x in start_rectangle_nodes] start_rectangle_to_close_ancestor_entries_dict = {} for start_rectangle_entry in start_rectangle_entries: start_rectangle_to_close_ancestor_entries_dict[start_rectangle_entry] = [] for start_rectangle_entry in start_rectangle_entries: close_descendant_entries = self.getRectangleCloseDescendants(start_rectangle_entry) for close_descendant_entry in close_descendant_entries: start_rectangle_to_close_ancestor_entries_dict[close_descendant_entry].append(start_rectangle_entry) return start_rectangle_to_close_ancestor_entries_dict def draw(self): # im = Image.new("RGB", (512, 512), "white") """ im = Image.new("RGB", (768, 768), "white") draw = ImageDraw.Draw(im) root = self.getRoot() root.draw(self, draw, 0) im.save("tree.png", "PNG") """ # image = PythonMagick.Image(PythonMagick.Geometry("768x768"), "white") image = PythonMagick.Image(PythonMagick.Geometry("1536x1536"), "white") root_entry = self.getRootEntry() entries = [root_entry] RTreeEntry.draw(self, entries, image, 0) """ image.strokeColor("orange") image.fillColor("none") image.strokeWidth(4) multiplier = 3 * 0.8 # offset = (768 * 0.2) / 2 offset = (1536 * 0.2) / 2 x1 = 0 y1 = 0 x2 = 47 y2 = 60 next_x1 = x1 * multiplier + offset next_y1 = y1 * multiplier + offset next_x2 = x2 * multiplier + offset next_y2 = y2 * multiplier + offset """ # image.draw(PythonMagick.DrawableRectangle(next_x1, next_y1, next_x2, next_y2)) image.write("tree.png") def main(): point1 = (30, 100, 0) point2 = (40, 100, 0) point3 = (50, 100, 0) point4 = (60, 100, 0) point5 = (70, 100, 0) point6 = (80, 100, 0) point7 = (90, 100, 0) point8 = (110, 100, 0) curr_mbr1 = RawMBR((100, 100, 0), (100, 100, 0), (100, 100, 0)) curr_mbr2 = RawMBR((50, 100, 0), (50, 100, 0), point3) curr_mbr2b = RawMBR((50, 50, 0), (100, 100, 0), HyperRectangle((50, 50, 0), (100, 100, 0), 1)) tree = RTree() print tree.toString() curr_root = tree.getRootEntry().getChild() mbr1 = RawMBR(point1, (110, 200, 100), point1) node1 = RTreeNode(None, [], True) entry1 = RTreeEntry(mbr1, node1) node1.setEntry(entry1) tree.insert(entry1) mbr2 = RawMBR(point2, (110, 200, 100), point2) node2 = RTreeNode(None, [], True) entry2 = RTreeEntry(mbr2, node2) node2.setEntry(entry2) tree.insert(entry2) mbr3 = RawMBR(point3, (110, 200, 100), point3) node3 = RTreeNode(None, [], True) entry3 = RTreeEntry(mbr3, node3) node3.setEntry(entry3) tree.insert(entry3) mbr4 = RawMBR(point4, (110, 200, 100), point4) node4 = RTreeNode(None, [], True) entry4 = RTreeEntry(mbr4, node4) node4.setEntry(entry4) tree.insert(entry4) mbr5 = RawMBR(point5, (110, 200, 100), point5) node5 = RTreeNode(None, [], True) entry5 = RTreeEntry(mbr5, node5) node5.setEntry(entry5) tree.insert(entry5) mbr6 = RawMBR(point6, (110, 200, 100), point6) node6 = RTreeNode(None, [], True) entry6 = RTreeEntry(mbr6, node6) node6.setEntry(entry6) tree.insert(entry6) mbr7 = RawMBR(point7, (110, 200, 100), point7) node7 = RTreeNode(None, [], True) entry7 = RTreeEntry(mbr7, node7) node7.setEntry(entry7) tree.insert(entry7) mbr8 = RawMBR(point8, (110, 200, 100), point8) node8 = RTreeNode(None, [], True) entry8 = RTreeEntry(mbr8, node8) node8.setEntry(entry8) # problem here tree.insert(entry8) print tree.toString() print tree.doEnclosureQuery(curr_mbr2) curr_mbr3 = RawMBR((50, 100, 0), (110, 200, 100), None) print tree.doContainmentQuery(curr_mbr3) # raise Exception() print tree.doOverlapQuery(curr_mbr2) # raise Exception() print tree.toString() # tree.delete(entry1) print tree.toString() # tree.delete(entry8) # tree.insert(entry1) """ tree.delete(entry1) tree.delete(entry2) tree.delete(entry3) tree.delete(entry4) tree.delete(entry5) tree.delete(entry6) tree.delete(entry7) tree.delete(entry8) """ print tree.toString() tree2 = RTree() import random entries = [] # lower_rights = [(3, 10, 10), (1, 10, 10), (8, 10, 10), (6, 10, 10), (9, 10, 10), (6, 10, 10), (9, 10, 10), (3, 10, 10), (1, 10, 10), (3, 10, 10)] # for i in xrange(10): # for i in xrange(4): """ ul_lr_pairs = [((797, 989, 602), (910, 1248, 1035)), \ ((920, 974, 724), (1802, 1524, 1378)), \ ((911, 953, 196), (1776, 1662, 455)), \ ((596, 892, 131), (1543, 1838, 669)), \ ((879, 319, 789), (1877, 744, 791)), \ ((1081, 1056, 1020), (1708, 1075, 1542)), \ ((358, 815, 372), (761, 1089, 594)), \ ((294, 238, 1036), (785, 378, 1963)), \ ((803, 1054, 307), (1776, 1597, 501)), \ ((803, 233, 521), (1314, 717, 1487)), \ ((660, 268, 962), (1293, 619, 1521)), \ ((798, 928, 1028), (1762, 1795, 1309)), \ ((225, 359, 290), (579, 950, 700)), \ ((297, 196, 750), (1085, 718, 1259)), \ ((808, 926, 151), (889, 1755, 320)), \ ((945, 260, 1091), (1932, 332, 1133)), \ ((262, 221, 872), (500, 279, 1521)), \ ((332, 886, 493), (822, 1305, 1149)), \ ((800, 709, 871), (1390, 1402, 1548)), \ ((433, 499, 483), (1300, 1330, 1055))] """ # n = 10,000 works in 1 min. 54 sec. for pypy with m = 2 and M = 4 # n = 1,000 works in 2.996 sec. for pypy with m = 2 and M = 4 # n = 1,000 works in 3.428 sec. for pypy with m = 8 and M = 16 # n = 6,000 works in 56.672 sec. for pypy with m = 8 and M = 16 # these numbers are for upper-left's in (100, 10100) and # lower-right's in (ul_i, ul_i + 10000) # two strange things going on - saturation occurs # if we increase n and do not increase domains and # high inter-group overlap means maximal disjointedness # is not going to be good enough to cut down branches explored; # to counter saturation, domain has to grow with n # n = 100 # 0.427 seconds (~1x slower for 1x growth; expected 1x slower) # n = 1000 # 1.1649 seconds (~2.72x slower for 10x growth; expected 33x slower) # n = 5500 # 23.899 seconds (~55.96x slower for 55x growth; expected 317x slower) # n = 10000 # 84.222 seconds (~197x slower for 100x growth; expected 664x slower) # n = 14500 # 170.053 seconds (~398x slower for 145x growth; expected 1040x slower) # n = 20000 # 230.0411 seconds (~538x slower for 200x growth; expected 1528x slower) # n = 2000 # n = 1000 # n = 20000 n = 1000 import math for i in xrange(n): upper_left = None lower_right = None """ if i % 4 == 0: upper_left = (0, 0) lower_right = (10, 10) elif i % 4 == 1: upper_left = (20, 20) lower_right = (40, 40) elif i % 4 == 2: upper_left = (60, 60) lower_right = (80, 80) elif i % 4 == 3: upper_left = (100, 100) lower_right = (120, 120) """ denominator = (100 * math.log(100, 2)) ** (1 / 3.0) k = 1 # k = int(round(denominator / denominator)) # for n = 100 # k = int(round((1000 * math.log(1000, 2)) ** (1 / 3.0) / denominator)) # for n = 1000 # k = int(round((5500 * math.log(5500, 2)) ** (1 / 3.0) / denominator)) # for n = 5500 # k = int(round((10000 * math.log(10000, 2)) ** (1 / 3.0) / denominator)) # for n = 10000 # k = int(round((20000 * math.log(20000, 2)) ** (1 / 3.0) / denominator)) # for n = 20000 # k = int(round((14500 * math.log(14500, 2)) ** (1 / 3.0) / denominator)) # for n = 14500 # x1 = int(100 + random.randint(0, k) * 100) # y1 = int(100 + random.randint(0, k) * 100) # z1 = int(100 + random.randint(0, k) * 100) # x2 = int(x1 + random.random() * 100) # y2 = int(y1 + random.random() * 100) # z2 = int(z1 + random.random() * 100) x = random.randint(0, 10000) y = random.randint(0, 10000) # upper_left = (x1, y1, z1) # lower_right = (x2, y2, z2) upper_left = (x, y) lower_right = (x, y) # upper_left = ul_lr_pairs[i][0] # lower_right = ul_lr_pairs[i][1] # x = int(random.randint(1, 100)) # y = 10 # z = 10 # lower_right = (x, y, z) # lower_right = lower_rights[i] mbr = RawMBR(upper_left, lower_right, None) node = RTreeNode(None, [], True) entry = RTreeEntry(mbr, node) node.setEntry(entry) entries.append(entry) """ for i in xrange(10): upper_left = (20, 20) lower_right = (40, 40) mbr = RawMBR(upper_left, lower_right, None) node = RTreeNode(None, [], True) entry = RTreeEntry(mbr, node) node.setEntry(entry) entries.append(entry) for i in xrange(1000): upper_left = (0, 0) lower_right = (10, 10) mbr = RawMBR(upper_left, lower_right, None) node = RTreeNode(None, [], True) entry = RTreeEntry(mbr, node) node.setEntry(entry) # entries.append(entry) """ # for entry in entries[0 : 4]: # for entry in entries[0 : 15]: for entry in entries: tree2.insert(entry) """ if entry.getChild().getParent() == None: raise Exception() """ # print tree.toString() # for entry in entries[0 : 4]: # print "supernodes:", [x for x in tree.getNodes() if x.isSuperNode() == True], tree.getRootEntry().getChild() # tree2.draw() print len(tree2.getNodes()) import time time1 = time.time() result = tree2.getAllRectangleCloseAncestors() time2 = time.time() time_diff = time2 - time1 print "time difference:", time_diff, "seconds" # raise Exception() for entry_to_close_ancestor_entry_list_pair in result.items(): entry, close_ancestor_entry_list = entry_to_close_ancestor_entry_list_pair print "start rectangle:", entry.getMBR().toString() for close_ancestor_entry in close_ancestor_entry_list: print "close ancestor:", close_ancestor_entry.getMBR().toString() # raise Exception() # for entry in entries[0 : 15]: for entry in entries: # if len(tree.getNodes()) != 0: # print "removing entry with mbr:", entry.getMBR().toString() # print "tree, currently:", tree.toString() # tree2.delete(entry) pass # print tree.toString() result = tree.getRectangleCloseDescendants(entry8) print result result = tree.getAllRectangleCloseAncestors() print result print len(result) for entry_to_close_ancestor_entry_list_pair in result.items(): entry, close_ancestor_entry_list = entry_to_close_ancestor_entry_list_pair print "start rectangle:", entry.getMBR().toString() for close_ancestor_entry in close_ancestor_entry_list: print "close ancestor:", close_ancestor_entry.getMBR().toString() if __name__ == "__main__": main()
2.90625
3
tests/test_mailmerge.py
plysytsya/mailmerge
0
12793529
""" System tests. <NAME> <<EMAIL>> """ import os import re import sh from . import utils def test_stdout(): """Verify stdout and stderr. pytest docs on capturing stdout and stderr https://pytest.readthedocs.io/en/2.7.3/capture.html """ mailmerge_cmd = sh.Command("mailmerge") output = mailmerge_cmd( "--template", os.path.join(utils.TESTDATA, "simple_template.txt"), "--database", os.path.join(utils.TESTDATA, "simple_database.csv"), "--config", os.path.join(utils.TESTDATA, "server_open.conf"), "--no-limit", "--dry-run", ) # Verify mailmerge output. We'll filter out the Date header because it # won't match exactly. stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") assert stderr == "" assert "Date:" in stdout stdout = re.sub(r"Date.*\n", "", stdout) assert stdout == """>>> message 0 TO: <EMAIL> SUBJECT: Testing mailmerge FROM: My Self <<EMAIL>> MIME-Version: 1.0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Hi, Myself, Your number is 17. >>> sent message 0 >>> message 1 TO: <EMAIL> SUBJECT: Testing mailmerge FROM: My Self <<EMAIL>> MIME-Version: 1.0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Hi, Bob, Your number is 42. >>> sent message 1 >>> This was a dry run. To send messages, use the --no-dry-run option. """
2.6875
3
src/vcslinks/tests/test_py_typed.py
tkf/vcslinks
1
12793530
<filename>src/vcslinks/tests/test_py_typed.py from pathlib import Path def test_py_typed(): assert (Path(__file__).parents[1] / "py.typed").exists()
1.859375
2
bogrod/banking/models.py
joostrijneveld/bogrod
0
12793531
<gh_stars>0 from django.db import models from django.db.models import Sum from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ValidationError class Account(models.Model): iban = models.CharField(_('iban'), max_length=34, unique=True) ACCOUNT_TYPES = ( ('checking', 'Checking account'), ('savings', 'Savings account'), # ('investment', 'Investment account'), # TODO how to differentiate ('secondparty', 'Second party account'), ('other', 'Other account'), ) account_type = models.CharField(max_length=10, choices=ACCOUNT_TYPES, default='other') def __str__(self): return self.iban class Category(models.Model): name = models.CharField(max_length=100) # This model is purposefully specific to ASN bank transactions, as that is # the main use case for development of bogrod at the moment. class Transaction(models.Model): booking_date = models.DateField() account = models.ForeignKey(Account) counter_account = models.ForeignKey(Account, related_name='counter_transactions') counter_name = models.CharField(max_length=70) account_currency = models.CharField(max_length=3) balance_before = models.DecimalField(max_digits=12, decimal_places=2) mutation_currency = models.CharField(max_length=3) mutation_value = models.DecimalField(max_digits=12, decimal_places=2) journal_date = models.DateField() value_date = models.DateField() # ASN bank uses this field to internally identify transaction types. # These are translated to the (potentially more generic) global code. internal_code = models.IntegerField() BOOKING_CODES = ( ('ACC', 'Acceptgirobetaling'), ('AF', 'Afboeking'), ('AFB', 'Afbetalen'), ('BEA', 'Betaalautomaat'), ('BIJ', 'Bijboeking'), ('BTL', 'Buitenlandse Overboeking'), ('CHP', 'Chipknip'), ('CHQ', 'Cheque'), ('COR', 'Correctie'), ('DIV', 'Diversen'), ('EFF', 'Effectenboeking'), ('ETC', 'Euro traveller cheques'), ('GBK', 'GiroBetaalkaart'), ('GEA', 'Geldautomaat'), ('INC', 'Incasso'), ('IDB', 'iDEAL betaling'), ('IMB', 'iDEAL betaling via mobiel'), ('IOB', 'Interne Overboeking'), ('KAS', 'Kas post'), ('KTN', 'Kosten/provisies'), ('KST', 'Kosten/provisies'), ('OVB', 'Overboeking'), ('PRM', 'Premies'), ('PRV', 'Provisies'), ('RNT', 'Rente'), ('STO', 'Storno'), ('TEL', 'Telefonische Overboeking'), ('VV', 'Vreemde valuta'), ) global_code = models.CharField(max_length=3, choices=BOOKING_CODES) sequence_number = models.IntegerField() reference = models.CharField(max_length=16) description = models.CharField(max_length=140) statement_number = models.IntegerField() class Meta: unique_together = ('sequence_number', 'journal_date') class Flow(models.Model): transaction = models.ForeignKey(Transaction) value = models.DecimalField(max_digits=12, decimal_places=2) category = models.ForeignKey(Category, blank=True, null=True) def clean(self): flow_sum = (Flow.objects.filter(transaction=self.transaction) .exclude(pk=self.pk) .aggregate(Sum('value'))) if abs(flow_sum + self.value) > abs(self.transaction.value): raise ValidationError("Sum of flows cannot exceed transaction!") class ExpectedTransaction(models.Model): from_date = models.DateField(blank=True, null=True) to_date = models.DateField(blank=True, null=True) from_value = models.DecimalField(max_digits=12, decimal_places=2, blank=True, null=True) to_value = models.DecimalField(max_digits=12, decimal_places=2, blank=True, null=True) account = models.ForeignKey(Account, blank=True, null=True) counter_account = models.ForeignKey( Account, blank=True, null=True, related_name='counter_expected_transactions' ) category = models.ForeignKey(Category, blank=True, null=True) # This could be much more generic, but as of yet there are no use-cases. repeat_after_months = models.IntegerField(blank=True, null=True) # Initialize flow once the transaction has occurred flows = models.ManyToManyField(Flow, blank=True) class Loan(models.Model): title = models.CharField(max_length=100) description = models.TextField(blank=True, null=True) receipt = models.ImageField() outgoing = models.ManyToManyField(Flow, blank=True) payment = models.ManyToManyField(Flow, blank=True, related_name='repaid_loans') class InterestPeriod(models.Model): annual_percentage = models.DecimalField(max_digits=5, decimal_places=2) from_date = models.DateField() to_date = models.DateField(blank=True, null=True) # NULL signifies today loan = models.ForeignKey(Loan)
2.140625
2
readsdb_plot.py
ondrolexa/readsdb
3
12793532
<gh_stars>1-10 # -*- coding: utf-8 -*- """ /*************************************************************************** ReadSDBDialog A QGIS plugin Read PySDB structural data into QGIS Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/ ------------------- begin : 2018-11-03 git sha : $Format:%H$ copyright : (C) 2018 by <NAME> email : <EMAIL> ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ import os from PyQt5 import uic from PyQt5 import QtWidgets from PyQt5.QtCore import Qt from qgis.core import * import matplotlib # Make sure that we are using QT5 matplotlib.use('Qt5Agg') import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from apsg import * # qhull workaroud import platform qgis_qhull_fails = platform.platform().startswith('Linux') if qgis_qhull_fails: from .stereogrid_workaround import StereoGrid as StereoGridQGIS FORM_CLASS, _ = uic.loadUiType(os.path.join( os.path.dirname(__file__), 'ui/readsdb_plot.ui')) class MyMplCanvas(FigureCanvas): """Ultimately, this is a QWidget (as well as a FigureCanvasAgg, etc.).""" def __init__(self, parent=None): # fig, self.axes = plt.subplots() # t = np.arange(0.0, 3.0, 0.01) # s = np.sin(2 * np.pi * t) # self.axes.plot(t, s) self.net = StereoNet() FigureCanvas.__init__(self, self.net.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) class ReadSDBPlotDialog(QtWidgets.QDialog, FORM_CLASS): def __init__(self, readsdb, parent=None): """Constructor.""" super(ReadSDBPlotDialog, self).__init__(parent, Qt.WindowStaysOnTopHint) # Set up the user interface from Designer. # After setupUI you can access any designer object by doing # self.<objectname>, and you can use autoconnect slots - see # http://qt-project.org/doc/qt-4.8/designer-using-a-ui-file.html # #widgets-and-dialogs-with-auto-connect self.setupUi(self) self.pushApply.clicked.connect(self.plotnet) self.data_layers = [] self.canvas = MyMplCanvas(self) self.toolbar = NavigationToolbar(self.canvas, self) self.mplLayout.addWidget(self.canvas) self.mplLayout.addWidget(self.toolbar) self.net = self.canvas.net def opt(self, index, type, name): return self.tabWidget.widget(index).findChild(type, name) def plotnet(self): self.net.grid = self.checkGrid.isChecked() self.net.cla() for idx, layer in self.data_layers[::-1]: # plot in right order if layer.selectedFeatureCount(): features = layer.getSelectedFeatures() else: features = layer.getFeatures() # Create data Group if layer._is_planar: g = Group([Fol(f.attribute('azi'), f.attribute('inc')) for f in features], layer.name()) else: g = Group([Lin(f.attribute('azi'), f.attribute('inc')) for f in features], layer.name()) label = repr(g) if self.checkLabels.isChecked() else None # contours if self.opt(idx, QtWidgets.QCheckBox, 'checkContours').isChecked(): nlevels = self.opt(idx, QtWidgets.QSpinBox, 'spinLevels').value() sigma = self.opt(idx, QtWidgets.QDoubleSpinBox, 'spinSigma').value() if qgis_qhull_fails: kwargs = {'cmap': 'Greys', 'zorder': 1} d = StereoGridQGIS(g, sigma=sigma) mn = d.values.min() mx = d.values.max() levels = np.linspace(mn, mx, nlevels) levels[-1] += 1e-8 legend = True if self.opt(idx, QtWidgets.QCheckBox, 'checkContoursFilled').isChecked(): if qgis_qhull_fails: cs = self.net.fig.axes[self.net.active].tricontourf(d.triang, d.values, levels, **kwargs) self.net.fig.axes[self.net.active].tricontour(d.triang, d.values, levels, colors="k") else: self.net.contourf(StereoGrid(g), levels=nlevels, sigma=sigma) else: if qgis_qhull_fails: cs = self.net.fig.axes[self.net.active].tricontour(d.triang, d.values, levels, **kwargs) else: self.net.contour(StereoGrid(g), levels=nlevels, sigma=sigma) if qgis_qhull_fails: if legend: ab = self.net.fig.axes[self.net.active].get_position().bounds cbaxes = self.net.fig.add_axes([0.1, ab[1] + 0.1 * ab[3], 0.03, 0.8 * ab[3]]) cb = self.net.fig.colorbar(cs, cax=cbaxes) if label: cb.ax.set_title(label) # principal eigf = self.opt(idx, QtWidgets.QCheckBox, 'checkEigPlanes').isChecked() eigl = self.opt(idx, QtWidgets.QCheckBox, 'checkEigLines').isChecked() self.net.tensor(g.ortensor, eigenfols=eigf, eigenlins=eigl) # plot data markersize = self.opt(idx, QtWidgets.QSpinBox, 'spinSize').value() marker = self.opt(idx, QtWidgets.QComboBox, 'comboStyle').currentText() if layer._is_planar: if self.opt(idx, QtWidgets.QCheckBox, 'checkShowData').isChecked(): if self.opt(idx, QtWidgets.QCheckBox, 'checkAsPoles').isChecked(): self.net.pole(g, marker=marker, markersize=markersize, label=label) else: self.net.plane(g, label=label) else: if self.opt(idx, QtWidgets.QCheckBox, 'checkShowData').isChecked(): self.net.line(g, marker=marker, markersize=markersize, label=label) self.canvas.draw()
1.601563
2
Volume Estimation/demo.py
JessieRamaux/Food-Volume-Estimation
10
12793533
import argparse import torch import cv2 import os import torch.nn.parallel import modules, net, resnet, densenet, senet import numpy as np import loaddata_demo as loaddata import pdb import argparse from volume import get_volume from mask import get_mask import matplotlib.image import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='KD-network') parser.add_argument('--img', metavar='DIR',default="./input/test.jpg", help='img to input') parser.add_argument('--json', metavar='DIR',default="./input/test.json", help='json file to input') parser.add_argument('--output', metavar='DIR',default="./output", help='dir to output') args=parser.parse_args() def define_model(is_resnet, is_densenet, is_senet): if is_resnet: original_model = resnet.resnet50(pretrained = True) Encoder = modules.E_resnet(original_model) model = net.model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048]) if is_densenet: original_model = densenet.densenet161(pretrained=True) Encoder = modules.E_densenet(original_model) model = net.model(Encoder, num_features=2208, block_channel = [192, 384, 1056, 2208]) if is_senet: original_model = senet.senet154(pretrained='imagenet') Encoder = modules.E_senet(original_model) model = net.model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048]) return model def main(): if (not os.path.exists(args.output)): print("Output directory doesn't exist! Creating...") os.makedirs(args.output) model = define_model(is_resnet=False, is_densenet=False, is_senet=True) model = torch.nn.DataParallel(model).cuda() model.load_state_dict(torch.load('./pretrained_model/model_senet')) model.eval() print img = cv2.imread(args.img) nyu2_loader = loaddata.readNyu2(args.img) test(nyu2_loader, model, img.shape[1], img.shape[0]) def test(nyu2_loader, model, width, height): for i, image in enumerate(nyu2_loader): image = torch.autograd.Variable(image, volatile=True).cuda() out = model(image) out = out.view(out.size(2),out.size(3)).data.cpu().numpy() max_pix = out.max() min_pix = out.min() out = (out-min_pix)/(max_pix-min_pix)*255 out = cv2.resize(out,(width,height),interpolation=cv2.INTER_CUBIC) cv2.imwrite(os.path.join(args.output, "out_grey.png"),out) out_grey = cv2.imread(os.path.join(args.output, "out_grey.png"),0) out_color = cv2.applyColorMap(out_grey, cv2.COLORMAP_JET) cv2.imwrite(os.path.join(args.output, "out_color.png"),out_color) vol = get_volume(out_grey, args.json) print("Volume:") print(vol) print("unit: cm^3") out_file = open(os.path.join(args.output, "out.txt"), "w") out_file.write("Volume:\n") out_file.write(str(vol)) out_file.write("\n") out_file.write("unit: cm^3") out_file.close() get_mask(out_grey, args.json, args.output) if __name__ == '__main__': main()
2.28125
2
plugins/fake_msg/__init__.py
Orilx/Niko-py
4
12793534
<filename>plugins/fake_msg/__init__.py from nonebot import on_command from nonebot.adapters.onebot.v11 import GroupMessageEvent, Message, MessageSegment from nonebot.params import CommandArg from utils.message_builder import fake_forward_msg from utils.utils import send_group_forward_msg fake = on_command('fake', aliases={"假消息"}, priority=5, block=True) @fake.handle() async def _(event: GroupMessageEvent, args: Message = CommandArg()): at = [] msg = [] fake_msg = [] for i in args: if i.type == 'at': if i.data["qq"] == 'all': continue else: at.append(i.data["qq"]) else: msg.append(i) for i in msg: if i.type == 'text': if i.data["text"].strip(): fake_msg.append(MessageSegment.text(i.data["text"].strip())) else: fake_msg.append(i) if at and fake_msg: group_forward_msg = await fake_forward_msg(at, event.group_id, fake_msg) await send_group_forward_msg(event.group_id, group_forward_msg) else: await fake.finish("参数有误~")
2.171875
2
devops-console/apps/features/migrations/0017_auto_20190911_1550.py
lilinghell/devops
4
12793535
# Generated by Django 2.1.5 on 2019-09-11 07:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('features', '0016_auto_20190605_1830'), ] operations = [ migrations.AlterField( model_name='feature', name='apps', field=models.ManyToManyField(related_name='app_features', to='applications.Application', verbose_name='关联应用'), ), ]
1.445313
1
hextech_core/blog/models.py
duonghao314/hextech-core
0
12793536
from django.db import models from django.utils import timezone from django.utils.text import slugify from django.utils.translation import gettext_lazy as _ from modelcluster.fields import ParentalKey from modelcluster.models import ClusterableModel from wagtail.core.fields import RichTextField from hextech_core.core.models.base_model import BaseModel, MetadataModel from hextech_core.core.utils import no_accent_vietnamese from hextech_core.core.utils.id import RandomID from hextech_core.users.models import User class BlogCategory(MetadataModel): parent = models.ForeignKey( "self", on_delete=models.PROTECT, related_name="child_categories", null=True, blank=True, ) name = models.CharField(max_length=100) slug = models.SlugField(blank=True, unique=True, db_index=True) def save(self, *args, **kwargs): self.slug = slugify(self.name) super().save(*args, **kwargs) def __str__(self): return self.name class BlogTag(BaseModel): tag = models.CharField(max_length=50, unique=True) def __str__(self): return self.tag @classmethod def tagger(cls, tag: str) -> str: tag = no_accent_vietnamese(tag) tag = "".join([ele.title() for ele in tag.split(" ")]) return tag def save(self, *args, **kwargs): if not self.pk: self.tag = self.tagger(self.tag) return super().save() class Blog(ClusterableModel, MetadataModel): id = models.BigIntegerField( _("Random id"), default=RandomID("blog.Blog"), primary_key=True ) author = models.ForeignKey( "users.User", on_delete=models.CASCADE, related_name="blogs", db_index=True ) category = models.ForeignKey( BlogCategory, on_delete=models.SET_NULL, related_name="blogs", db_index=True, null=True, ) title = models.CharField(max_length=400) content = RichTextField() slug = models.SlugField(blank=True, unique=True, db_index=True, max_length=450) tags = models.ManyToManyField(BlogTag, blank=True) published = models.BooleanField(default=True) published_at = models.DateTimeField(null=True, blank=True) class Meta: unique_together = ("author", "title") def save(self, *args, **kwargs): print(self.__dict__) if self.published and not self.published_at: self.published_at = timezone.now() self.slug = f"{slugify(self.title)}-{self.author.id}" super().save(*args, **kwargs) def __str__(self): return self.title class BlogComment(BaseModel): blog = ParentalKey(Blog, on_delete=models.CASCADE, related_name="comments") content = RichTextField() title = models.CharField(max_length=255) created_by = models.ForeignKey( "users.User", on_delete=models.CASCADE, related_name="+", null=True, blank=True ) def __str__(self): return f"#{self.blog.id} - {self.title if self.title else 'Untitled'}" class BlogLike(BaseModel): blog = models.ForeignKey(Blog, on_delete=models.CASCADE, related_name="likes") user = models.ForeignKey(User, on_delete=models.CASCADE, related_name="liked") is_like = models.BooleanField(default=True) class Meta: unique_together = ("blog", "user")
1.960938
2
models/drocc.py
jbr-ai-labs/PU-OC
0
12793537
import torch import torch.nn.functional as F import torch.utils.data import torch.utils.data from models.base_models import OCModel, PUModelRandomBatch from models.classifiers import Net device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # code DROCC is borrowed from https://github.com/microsoft/EdgeML class DROCC(OCModel): def __init__(self, model=Net, lam=0.5, radius=8, gamma=2, warmup_epochs=6, ascent_step_size=0.001, ascent_num_steps=50, half=True): super().__init__(model, 0) self.lam = lam self.radius = radius self.gamma = gamma self.warmup_epochs = warmup_epochs self.ascent_step_size = ascent_step_size self.ascent_num_steps = ascent_num_steps self.half = half def batch_loss(self, batch): data, target = batch[0], batch[2] data, target = data.to(device), target.to(device) # Data Processing data = data.to(torch.float) target = target.to(torch.float) target = torch.squeeze(target) # Extract the logits for cross entropy loss logits_start = self.model.forward_start(data) logits = self.model.forward_end(logits_start) logits = torch.squeeze(logits, dim=1) ce_loss = F.binary_cross_entropy_with_logits(logits, target) # Add to the epoch variable for printing average CE Loss ''' Adversarial Loss is calculated only for the positive data points (label==1). ''' if self.epoch >= self.warmup_epochs: logits_start = logits_start[target == 1] # AdvLoss if not self.half: adv_loss = self.one_class_adv_loss(data[target == 1].detach(), self.half) else: adv_loss = self.one_class_adv_loss(logits_start.detach(), self.half) loss = ce_loss + adv_loss * self.lam else: # If only CE based training has to be done loss = ce_loss return loss def one_class_adv_loss(self, x_train_data, half=True): """Computes the adversarial loss: 1) Sample points initially at random around the positive training data points 2) Gradient ascent to find the most optimal point in set N_i(r) classified as +ve (label=0). This is done by maximizing the CE loss wrt label 0 3) Project the points between spheres of radius R and gamma * R (set N_i(r)) 4) Pass the calculated adversarial points through the model, and calculate the CE loss wrt target class 0 Parameters ---------- x_train_data: Batch of data to compute loss on. """ batch_size = len(x_train_data) # Randomly sample points around the training data # We will perform SGD on these to find the adversarial points x_adv = torch.randn(x_train_data.shape).to(device).detach().requires_grad_() x_adv_sampled = x_adv + x_train_data for step in range(self.ascent_num_steps): with torch.enable_grad(): new_targets = torch.zeros(batch_size, 1).to(device) # new_targets = (1 - targets).to(self.device) new_targets = torch.squeeze(new_targets) new_targets = new_targets.to(torch.float) if half: logits = self.model.forward_end(x_adv_sampled) else: logits = self.model(x_adv_sampled) logits = torch.squeeze(logits, dim=1) new_loss = F.binary_cross_entropy_with_logits(logits, new_targets) grad = torch.autograd.grad(new_loss, [x_adv_sampled])[0] grad_norm = torch.norm(grad, p=2, dim=tuple(range(1, grad.dim()))) grad_norm = grad_norm.view(-1, *[1] * (grad.dim() - 1)) grad_normalized = grad / grad_norm with torch.no_grad(): x_adv_sampled.add_(self.ascent_step_size * grad_normalized) if (step + 1) % 10 == 0: # Project the normal points to the set N_i(r) h = x_adv_sampled - x_train_data norm_h = torch.sqrt(torch.sum(h ** 2, dim=tuple(range(1, h.dim())))) alpha = torch.clamp(norm_h, self.radius, self.gamma * self.radius).to(device) # Make use of broadcast to project h proj = (alpha / norm_h).view(-1, *[1] * (h.dim() - 1)) h = proj * h x_adv_sampled = x_train_data + h # These adv_points are now on the surface of hyper-sphere if half: adv_pred = self.model.forward_end(x_adv_sampled) else: adv_pred = self.model(x_adv_sampled) adv_pred = torch.squeeze(adv_pred, dim=1) adv_loss = F.binary_cross_entropy_with_logits(adv_pred, new_targets) return adv_loss # class DROCC(nn.Module): # def __init__(self, ): # super().__init__() # # self.model = CIFAR10_LeNet() # # def run_train(self, # train_data, # test_data, # lamda=0.5, # radius=8, # gamma=2, # verbose=False, # learning_rate=1e-3, # total_epochs=30, # only_ce_epochs=6, # ascent_step_size=0.001, # ascent_num_steps=50, # gamma_lr=1, # batch_size=128, # half=True): # # self.best_score = -np.inf # best_model = None # self.ascent_num_steps = ascent_num_steps # self.ascent_step_size = ascent_step_size # self.lamda = lamda # self.radius = radius # self.gamma = gamma # # self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate) # lr_scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=gamma_lr) # # train_loader = torch.utils.data.DataLoader(train_data, # batch_size=batch_size, # shuffle=True) # # test_loader = torch.utils.data.DataLoader(test_data, # batch_size=batch_size, # shuffle=True) # # for epoch in range(total_epochs): # # Make the weights trainable # self.model.train() # # # Placeholder for the respective 2 loss values # epoch_adv_loss = torch.tensor([0]).type(torch.float32).to(device) # AdvLoss # epoch_ce_loss = 0 # Cross entropy Loss # # batch_idx = -1 # for data, target, _ in train_loader: # batch_idx += 1 # data, target = data.to(device), target.to(device) # # Data Processing # data = data.to(torch.float) # target = target.to(torch.float) # target = torch.squeeze(target) # # self.optimizer.zero_grad() # # # Extract the logits for cross entropy loss # logits_start = self.model.half_forward_start(data) # logits = self.model.half_forward_end(logits_start) # # logits = torch.squeeze(logits, dim=1) # ce_loss = F.binary_cross_entropy_with_logits(logits, target) # # Add to the epoch variable for printing average CE Loss # epoch_ce_loss += ce_loss # # ''' # Adversarial Loss is calculated only for the positive data points (label==1). # ''' # if epoch >= only_ce_epochs: # logits_start = logits_start[target == 1] # # AdvLoss # if not half: # adv_loss = self.one_class_adv_loss(data[target == 1].detach(), target[target == 1], half) # else: # adv_loss = self.one_class_adv_loss(logits_start.detach(), target[target == 1], half) # epoch_adv_loss += adv_loss # # loss = ce_loss + adv_loss * self.lamda # else: # # If only CE based training has to be done # loss = ce_loss # # # Backprop # loss.backward() # self.optimizer.step() # # epoch_ce_loss = epoch_ce_loss / (batch_idx + 1) # Average CE Loss # epoch_adv_loss = epoch_adv_loss / (batch_idx + 1) # Average AdvLoss # # if verbose: # test_score = self.test(test_loader) # if test_score > self.best_score: # self.best_score = test_score # best_model = copy.deepcopy(self.model) # # print('Epoch: {}, CE Loss: {}, AdvLoss: {}, {}: {}'.format( # epoch, epoch_ce_loss.item(), epoch_adv_loss.item(), # 'AUC', test_score)) # lr_scheduler.step() # if verbose: # self.model = copy.deepcopy(best_model) # print('\nBest test {}: {}'.format( # 'AUC', self.best_score # )) # # def test(self, test_loader, metric='AUC'): # """Evaluate the model on the given test dataset. # Parameters # ---------- # test_loader: Dataloader object for the test dataset. # metric: Metric used for evaluation (AUC / F1). # """ # self.model.eval() # label_score = [] # batch_idx = -1 # for data, target, _ in test_loader: # batch_idx += 1 # data, target = data.to(device), target.to(device) # data = data.to(torch.float) # target = target.to(torch.float) # target = torch.squeeze(target) # # logits = self.model(data) # logits = torch.squeeze(logits, dim=1) # sigmoid_logits = torch.sigmoid(logits) # scores = logits # label_score += list(zip(target.cpu().data.numpy().tolist(), # scores.cpu().data.numpy().tolist())) # # Compute test score # labels, scores = zip(*label_score) # labels = np.array(labels) # scores = np.array(scores) # if metric == 'AUC': # test_metric = roc_auc_score(labels, scores) # if metric == 'alpha': # test_metric = (scores > 0.5).mean() # return test_metric # # def one_class_adv_loss(self, x_train_data, targets, half=True): # """Computes the adversarial loss: # 1) Sample points initially at random around the positive training # data points # 2) Gradient ascent to find the most optimal point in set N_i(r) # classified as +ve (label=0). This is done by maximizing # the CE loss wrt label 0 # 3) Project the points between spheres of radius R and gamma * R # (set N_i(r)) # 4) Pass the calculated adversarial points through the model, # and calculate the CE loss wrt target class 0 # # Parameters # ---------- # x_train_data: Batch of data to compute loss on. # """ # batch_size = len(x_train_data) # # Randomly sample points around the training data # # We will perform SGD on these to find the adversarial points # x_adv = torch.randn(x_train_data.shape).to(device).detach().requires_grad_() # x_adv_sampled = x_adv + x_train_data # # for step in range(self.ascent_num_steps): # with torch.enable_grad(): # # new_targets = torch.zeros(batch_size, 1).to(device) # # new_targets = (1 - targets).to(self.device) # new_targets = torch.squeeze(new_targets) # new_targets = new_targets.to(torch.float) # # if half: # logits = self.model.half_forward_end(x_adv_sampled) # else: # logits = self.model(x_adv_sampled) # # logits = torch.squeeze(logits, dim=1) # new_loss = F.binary_cross_entropy_with_logits(logits, new_targets) # # grad = torch.autograd.grad(new_loss, [x_adv_sampled])[0] # grad_norm = torch.norm(grad, p=2, dim=tuple(range(1, grad.dim()))) # grad_norm = grad_norm.view(-1, *[1] * (grad.dim() - 1)) # grad_normalized = grad / grad_norm # with torch.no_grad(): # x_adv_sampled.add_(self.ascent_step_size * grad_normalized) # # if (step + 1) % 10 == 0: # # Project the normal points to the set N_i(r) # h = x_adv_sampled - x_train_data # norm_h = torch.sqrt(torch.sum(h ** 2, # dim=tuple(range(1, h.dim())))) # alpha = torch.clamp(norm_h, self.radius, # self.gamma * self.radius).to(device) # # Make use of broadcast to project h # proj = (alpha / norm_h).view(-1, *[1] * (h.dim() - 1)) # h = proj * h # x_adv_sampled = x_train_data + h # These adv_points are now on the surface of hyper-sphere # # if half: # adv_pred = self.model.half_forward_end(x_adv_sampled) # else: # adv_pred = self.model(x_adv_sampled) # # adv_pred = torch.squeeze(adv_pred, dim=1) # adv_loss = F.binary_cross_entropy_with_logits(adv_pred, (new_targets)) # # return adv_loss # # def save(self, path): # torch.save(self.model.state_dict(), os.path.join(path, 'model.pt')) # # def load(self, path): # self.model.load_state_dict(torch.load(os.path.join(path, 'model.pt'))) class PU_DROCC(PUModelRandomBatch): def __init__(self, model=Net, lam=0.5, radius=8, gamma=2, warmup_epochs=6, ascent_step_size=0.001, ascent_num_steps=50, half=True): super().__init__(model, 0) self.lam = lam self.radius = radius self.gamma = gamma self.warmup_epochs = warmup_epochs self.ascent_step_size = ascent_step_size self.ascent_num_steps = ascent_num_steps self.half = half def batch_loss(self, batch): data, target = batch[0], batch[2] data, target = data.to(device), target.to(device) lab_ind = target == 1 unl_ind = target == 0 # lab_cnt = max(lab_ind.sum(), 1) unl_cnt = max(unl_ind.sum(), 1) # Extract the logits for cross entropy loss logits_start = self.model.forward_start(data) logits = self.model.forward_end(logits_start[lab_ind]) logits = torch.squeeze(logits, dim=1) ce_loss = F.binary_cross_entropy_with_logits(logits, target[lab_ind]) # Add to the epoch variable for printing average CE Loss ''' Adversarial Loss is calculated only for the positive data points (label==1). ''' if self.epoch >= self.warmup_epochs and unl_cnt > 1: logits_start = logits_start[unl_ind] # AdvLoss if not self.half: adv_loss = self.one_class_adv_loss(data[unl_ind].detach(), self.half) else: adv_loss = self.one_class_adv_loss(logits_start[unl_ind].detach(), self.half) loss = ce_loss + adv_loss * self.lam else: # If only CE based training has to be done loss = ce_loss return loss def one_class_adv_loss(self, x_train_data, half=True): """Computes the adversarial loss: 1) Sample points initially at random around the positive training data points 2) Gradient ascent to find the most optimal point in set N_i(r) classified as +ve (label=0). This is done by maximizing the CE loss wrt label 0 3) Project the points between spheres of radius R and gamma * R (set N_i(r)) 4) Pass the calculated adversarial points through the model, and calculate the CE loss wrt target class 0 Parameters ---------- x_train_data: Batch of data to compute loss on. """ batch_size = len(x_train_data) # Randomly sample points around the training data # We will perform SGD on these to find the adversarial points x_adv = torch.randn(x_train_data.shape).to(device).detach().requires_grad_() x_adv_sampled = x_adv + x_train_data for step in range(self.ascent_num_steps): with torch.enable_grad(): new_targets = torch.zeros(batch_size, 1).to(device) # new_targets = (1 - targets).to(self.device) new_targets = torch.squeeze(new_targets) new_targets = new_targets.to(torch.float) if half: logits = self.model.forward_end(x_adv_sampled) else: logits = self.model(x_adv_sampled) logits = torch.squeeze(logits, dim=1) new_loss = F.binary_cross_entropy_with_logits(logits, new_targets) grad = torch.autograd.grad(new_loss, [x_adv_sampled])[0] grad_norm = torch.norm(grad, p=2, dim=tuple(range(1, grad.dim()))) grad_norm = grad_norm.view(-1, *[1] * (grad.dim() - 1)) grad_normalized = grad / grad_norm with torch.no_grad(): x_adv_sampled.add_(self.ascent_step_size * grad_normalized) if (step + 1) % 10 == 0: # Project the normal points to the set N_i(r) h = x_adv_sampled - x_train_data norm_h = torch.sqrt(torch.sum(h ** 2, dim=tuple(range(1, h.dim())))) alpha = torch.clamp(norm_h, self.radius, self.gamma * self.radius).to(device) # Make use of broadcast to project h proj = (alpha / norm_h).view(-1, *[1] * (h.dim() - 1)) h = proj * h x_adv_sampled = x_train_data + h # These adv_points are now on the surface of hyper-sphere if half: adv_pred = self.model.forward_end(x_adv_sampled) else: adv_pred = self.model(x_adv_sampled) adv_pred = torch.squeeze(adv_pred, dim=1) adv_loss = F.binary_cross_entropy_with_logits(adv_pred, new_targets) return adv_loss # class PU_DROCC(nn.Module): # def __init__(self, ): # super().__init__() # # self.model = CIFAR10_LeNet() # # def run_train(self, # train_data, # test_data, # lamda=0.5, # radius=1, # gamma=2, # verbose=False, # learning_rate=5e-4, # total_epochs=20, # only_ce_epochs=2, # ascent_step_size=5e-6, # ascent_num_steps=10, # gamma_lr=0.96, # batch_size=512, # half=True): # # self.best_score = -np.inf # best_model = None # self.ascent_num_steps = ascent_num_steps # self.ascent_step_size = ascent_step_size # self.lamda = lamda # self.radius = radius # self.gamma = gamma # # self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate) # lr_scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, gamma=gamma_lr) # # train_loader = torch.utils.data.DataLoader(train_data, # batch_size=batch_size, # shuffle=True) # # test_loader = torch.utils.data.DataLoader(test_data, # batch_size=batch_size, # shuffle=True) # # for epoch in range(total_epochs): # # Make the weights trainable # self.model.train() # # # Placeholder for the respective 2 loss values # epoch_adv_loss = torch.tensor([0]).type(torch.float32).to(device) # AdvLoss # epoch_ce_loss = 0 # Cross entropy Loss # # batch_idx = -1 # for data, _, target in train_loader: # batch_idx += 1 # data, target = data.to(device), target.to(device) # # Data Processing # data = data.to(torch.float) # target = target.to(torch.float) # target = torch.squeeze(target) # # self.optimizer.zero_grad() # # lab_ind = target == 1 # unl_ind = target == 0 # # # lab_cnt = max(lab_ind.sum(), 1) # unl_cnt = max(unl_ind.sum(), 1) # # # Extract the logits for cross entropy loss # logits_start = self.model.half_forward_start(data) # logits = self.model.half_forward_end(logits_start[lab_ind]) # # logits = torch.squeeze(logits, dim=1) # ce_loss = F.binary_cross_entropy_with_logits(logits, target[lab_ind]) # # Add to the epoch variable for printing average CE Loss # epoch_ce_loss += ce_loss # # ''' # Adversarial Loss is calculated only for the positive data points (label==1). # ''' # if epoch >= only_ce_epochs and unl_cnt > 1: # logits_start = logits_start[unl_ind] # # AdvLoss # if not half: # adv_loss = self.one_class_adv_loss(data[unl_ind].detach(), target[unl_ind], half) # else: # adv_loss = self.one_class_adv_loss(logits_start.detach(), target[unl_ind], half) # epoch_adv_loss += adv_loss # # loss = ce_loss + adv_loss * self.lamda # else: # # If only CE based training has to be done # loss = ce_loss # # # Backprop # loss.backward() # self.optimizer.step() # # epoch_ce_loss = epoch_ce_loss / (batch_idx + 1) # Average CE Loss # epoch_adv_loss = epoch_adv_loss / (batch_idx + 1) # Average AdvLoss # # if verbose: # test_score = self.test(test_loader) # if test_score > self.best_score: # self.best_score = test_score # best_model = copy.deepcopy(self.model) # # print('Epoch: {}, CE Loss: {}, AdvLoss: {}, {}: {}'.format( # epoch, epoch_ce_loss.item(), epoch_adv_loss.item(), # 'AUC', test_score)) # lr_scheduler.step() # if verbose: # self.model = copy.deepcopy(best_model) # print('\nBest test {}: {}'.format( # 'AUC', self.best_score # )) # # def test(self, test_loader, metric='AUC'): # """Evaluate the model on the given test dataset. # Parameters # ---------- # test_loader: Dataloader object for the test dataset. # metric: Metric used for evaluation (AUC / F1). # """ # self.model.eval() # label_score = [] # batch_idx = -1 # for data, target, _ in test_loader: # batch_idx += 1 # data, target = data.to(device), target.to(device) # data = data.to(torch.float) # target = target.to(torch.float) # target = torch.squeeze(target) # # logits = self.model(data) # logits = torch.squeeze(logits, dim=1) # sigmoid_logits = torch.sigmoid(logits) # scores = logits # label_score += list(zip(target.cpu().data.numpy().tolist(), # scores.cpu().data.numpy().tolist())) # # Compute test score # labels, scores = zip(*label_score) # labels = np.array(labels) # scores = np.array(scores) # if metric == 'AUC': # test_metric = roc_auc_score(labels, scores) # if metric == 'alpha': # test_metric = (scores > 0.5).mean() # return test_metric # # def one_class_adv_loss(self, x_train_data, targets, half=True): # """Computes the adversarial loss: # 1) Sample points initially at random around the positive training # data points # 2) Gradient ascent to find the most optimal point in set N_i(r) # classified as +ve (label=0). This is done by maximizing # the CE loss wrt label 0 # 3) Project the points between spheres of radius R and gamma * R # (set N_i(r)) # 4) Pass the calculated adversarial points through the model, # and calculate the CE loss wrt target class 0 # # Parameters # ---------- # x_train_data: Batch of data to compute loss on. # """ # batch_size = len(x_train_data) # # Randomly sample points around the training data # # We will perform SGD on these to find the adversarial points # x_adv = torch.randn(x_train_data.shape).to(device).detach().requires_grad_() # x_adv_sampled = x_adv + x_train_data # # for step in range(self.ascent_num_steps): # with torch.enable_grad(): # # new_targets = torch.zeros(batch_size, 1).to(device) # # new_targets = (1 - targets).to(self.device) # new_targets = torch.squeeze(new_targets) # new_targets = new_targets.to(torch.float) # # if half: # logits = self.model.half_forward_end(x_adv_sampled) # else: # logits = self.model(x_adv_sampled) # # logits = torch.squeeze(logits, dim=1) # new_loss = F.binary_cross_entropy_with_logits(logits, new_targets) # # grad = torch.autograd.grad(new_loss, [x_adv_sampled])[0] # grad_norm = torch.norm(grad, p=2, dim=tuple(range(1, grad.dim()))) # grad_norm = grad_norm.view(-1, *[1] * (grad.dim() - 1)) # grad_normalized = grad / grad_norm # with torch.no_grad(): # x_adv_sampled.add_(self.ascent_step_size * grad_normalized) # # if (step + 1) % 10 == 0: # # Project the normal points to the set N_i(r) # h = x_adv_sampled - x_train_data # norm_h = torch.sqrt(torch.sum(h ** 2, # dim=tuple(range(1, h.dim())))) # alpha = torch.clamp(norm_h, self.radius, # self.gamma * self.radius).to(device) # # Make use of broadcast to project h # proj = (alpha / norm_h).view(-1, *[1] * (h.dim() - 1)) # h = proj * h # x_adv_sampled = x_train_data + h # These adv_points are now on the surface of hyper-sphere # # if half: # adv_pred = self.model.half_forward_end(x_adv_sampled) # else: # adv_pred = self.model(x_adv_sampled) # # adv_pred = torch.squeeze(adv_pred, dim=1) # adv_loss = F.binary_cross_entropy_with_logits(adv_pred, (new_targets)) # # return adv_loss # # def save(self, path): # torch.save(self.model.state_dict(), os.path.join(path, 'model.pt')) # # def load(self, path): # self.model.load_state_dict(torch.load(os.path.join(path, 'model.pt')))
2.453125
2
chat/chat.py
tima-fey/devman
0
12793538
import argparse import asyncio import logging import datetime import sys import json from aiofile import AIOFile async def read_from_socket(host, port): timer = 0 reader, writer = None, None async with AIOFile("text.txt", 'a') as _file: while True: try: if not reader or not writer: reader, writer = await asyncio.open_connection(host=host, port=port) text = await reader.readline() time_now = datetime.datetime.now().strftime("%y.%m.%d %H.%M") await _file.write('[{}] {}'.format(time_now, text.decode("utf-8"))) print(text.decode("utf-8")) except (ConnectionRefusedError, ConnectionResetError): logging.warning('sleep %s seconds', 2 ** timer) await asyncio.sleep(2 ** timer) reader, writer = None, None timer += 1 except asyncio.CancelledError: writer.close() raise async def submit_message(host, port, args): timer = 0 try: async with AIOFile(args.token_file, 'r') as _file: token = await _file.read() except FileNotFoundError: token = None while True: try: reader, writer = await asyncio.open_connection(host=host, port=port) temp = await reader.readline() logging.debug(temp.decode("utf-8")) if not token: writer.write('\n'.encode()) await register(reader, writer, args) else: await authorise(reader, writer, args, token) writer.write('{}\n\n'.format(args.text.replace('\n', ' ')).encode()) logging.info('text has been successfully sent') return except (ConnectionRefusedError, ConnectionResetError): logging.warning('sleep %s seconds', 2 ** timer) await asyncio.sleep(2 ** timer) timer += 1 except asyncio.CancelledError: writer.close() raise async def register(reader, writer, args): if not args.user: logging.error("It's obligated to specidy login if you do not have the correct token file") logging.error('exiting') sys.exit() temp = await reader.readline() logging.debug(temp.decode("utf-8")) user = '{}\n'.format(args.user.replace('\n', ' ')) writer.write(user.encode()) answer = await reader.readline() logging.debug(answer.decode("utf-8")) answer_dict = json.loads(answer) token = answer_dict['account_hash'] logging.debug(token) async with AIOFile(args.token_file, 'w') as _file: await _file.write(token) async def authorise(reader, writer, args, token): writer.write('{}\n'.format(token.replace('\n', '')).encode()) answer = await reader.readline() logging.debug(answer.decode("utf-8")) if answer.decode("utf-8") == 'null\n': logging.warning("Wrong token, let's get another one") await register(reader, writer, args) async def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description='connect to secret chat') parser.add_argument('--host', default='minechat.dvmn.org', help='Host to connect') parser.add_argument('--rport', default=5000, type=int, help='Specify port to receive msg') parser.add_argument('--sport', default=5050, type=int, help='Specify port to send msg') parser.add_argument('--user', help="set a username, it's oblicated for first run") parser.add_argument('--token_file', default="token.txt", help="set a file with token") parser.add_argument('--text', help="set a text to send") parser.add_argument('--send_only', action='store_true', help="set a send only mode") args = parser.parse_args() tasks = [] if not args.send_only: tasks.append(asyncio.create_task(read_from_socket(args.host, args.rport))) if args.text: tasks.append(asyncio.create_task(submit_message(args.host, args.sport, args))) for task in tasks: await task if __name__ == "__main__": try: asyncio.run(main()) except KeyboardInterrupt: pass
2.84375
3
sdk/python/pulumi_oci/identity/get_group.py
EladGabay/pulumi-oci
5
12793539
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetGroupResult', 'AwaitableGetGroupResult', 'get_group', ] @pulumi.output_type class GetGroupResult: """ A collection of values returned by getGroup. """ def __init__(__self__, compartment_id=None, defined_tags=None, description=None, freeform_tags=None, group_id=None, id=None, inactive_state=None, name=None, state=None, time_created=None): if compartment_id and not isinstance(compartment_id, str): raise TypeError("Expected argument 'compartment_id' to be a str") pulumi.set(__self__, "compartment_id", compartment_id) if defined_tags and not isinstance(defined_tags, dict): raise TypeError("Expected argument 'defined_tags' to be a dict") pulumi.set(__self__, "defined_tags", defined_tags) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if freeform_tags and not isinstance(freeform_tags, dict): raise TypeError("Expected argument 'freeform_tags' to be a dict") pulumi.set(__self__, "freeform_tags", freeform_tags) if group_id and not isinstance(group_id, str): raise TypeError("Expected argument 'group_id' to be a str") pulumi.set(__self__, "group_id", group_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if inactive_state and not isinstance(inactive_state, str): raise TypeError("Expected argument 'inactive_state' to be a str") pulumi.set(__self__, "inactive_state", inactive_state) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if time_created and not isinstance(time_created, str): raise TypeError("Expected argument 'time_created' to be a str") pulumi.set(__self__, "time_created", time_created) @property @pulumi.getter(name="compartmentId") def compartment_id(self) -> str: """ The OCID of the tenancy containing the group. """ return pulumi.get(self, "compartment_id") @property @pulumi.getter(name="definedTags") def defined_tags(self) -> Mapping[str, Any]: """ Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Operations.CostCenter": "42"}` """ return pulumi.get(self, "defined_tags") @property @pulumi.getter def description(self) -> str: """ The description you assign to the group. Does not have to be unique, and it's changeable. """ return pulumi.get(self, "description") @property @pulumi.getter(name="freeformTags") def freeform_tags(self) -> Mapping[str, Any]: """ Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see [Resource Tags](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). Example: `{"Department": "Finance"}` """ return pulumi.get(self, "freeform_tags") @property @pulumi.getter(name="groupId") def group_id(self) -> str: return pulumi.get(self, "group_id") @property @pulumi.getter def id(self) -> str: """ The OCID of the group. """ return pulumi.get(self, "id") @property @pulumi.getter(name="inactiveState") def inactive_state(self) -> str: """ The detailed status of INACTIVE lifecycleState. """ return pulumi.get(self, "inactive_state") @property @pulumi.getter def name(self) -> str: """ The name you assign to the group during creation. The name must be unique across all groups in the tenancy and cannot be changed. """ return pulumi.get(self, "name") @property @pulumi.getter def state(self) -> str: """ The group's current state. """ return pulumi.get(self, "state") @property @pulumi.getter(name="timeCreated") def time_created(self) -> str: """ Date and time the group was created, in the format defined by RFC3339. Example: `2016-08-25T21:10:29.600Z` """ return pulumi.get(self, "time_created") class AwaitableGetGroupResult(GetGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetGroupResult( compartment_id=self.compartment_id, defined_tags=self.defined_tags, description=self.description, freeform_tags=self.freeform_tags, group_id=self.group_id, id=self.id, inactive_state=self.inactive_state, name=self.name, state=self.state, time_created=self.time_created) def get_group(group_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetGroupResult: """ This data source provides details about a specific Group resource in Oracle Cloud Infrastructure Identity service. Gets the specified group's information. This operation does not return a list of all the users in the group. To do that, use [ListUserGroupMemberships](https://docs.cloud.oracle.com/iaas/api/#/en/identity/20160918/UserGroupMembership/ListUserGroupMemberships) and provide the group's OCID as a query parameter in the request. ## Example Usage ```python import pulumi import pulumi_oci as oci test_group = oci.identity.get_group(group_id=oci_identity_group["test_group"]["id"]) ``` :param str group_id: The OCID of the group. """ __args__ = dict() __args__['groupId'] = group_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:identity/getGroup:getGroup', __args__, opts=opts, typ=GetGroupResult).value return AwaitableGetGroupResult( compartment_id=__ret__.compartment_id, defined_tags=__ret__.defined_tags, description=__ret__.description, freeform_tags=__ret__.freeform_tags, group_id=__ret__.group_id, id=__ret__.id, inactive_state=__ret__.inactive_state, name=__ret__.name, state=__ret__.state, time_created=__ret__.time_created)
1.757813
2
divulga/views.py
SaviorsServices/CommunityService
0
12793540
<filename>divulga/views.py from email.mime.text import MIMEText from django.shortcuts import get_object_or_404 from django.shortcuts import render from django.urls import reverse from django.http import HttpResponseRedirect from django.http import HttpResponse from django.contrib.auth.decorators import login_required from .forms import CommunityActionForm, DonationForm, HealthServiceForm, EstablishmentForm , VoluntaryServiceForm from .models import Establishment, HealthService, Donation, VoluntaryService # from .models import Divulgacoes import requests import urllib, json import smtplib # @login_required # def formevent(request): # if request.method == 'POST': # divulgacao = Establishment() # divulgacao.nomeEvento = request.POST['nomeEvento'] # divulgacao.categoria = request.POST['categoria'] # divulgacao.cidade = request.POST['cidade'] # #divulgacao.bairro = request.POST['bairro'] # divulgacao.endereco = request.POST['endereco'] # #divulgacao.cep = request.POST['cep'] # divulgacao.telefone = request.POST['telefone'] # divulgacao.horarioInicio = request.POST['horarioInicio'] # divulgacao.horarioFim = request.POST['horarioFim'] # divulgacao.data = request.POST['data'] # divulgacao.user = request.user # divulgacao.save() # return render(request , 'index.html') # return render(request , 'formevent.html') def mapa(request, id): latitude = 0 longitude = 0 # if request.method == "POST": chave = "<KEY>" div = Establishment.objects.get(id=id) address = div.endereco+"+"+div.cidade r = requests.get("https://maps.googleapis.com/maps/api/geocode/json?address="+address+"&key="+chave) if r.status_code == 200: dados = json.loads(r.content) latitude = dados["results"][0]["geometry"]["location"]["lat"] longitude = dados["results"][0]["geometry"]["location"]["lng"] #print(latitude) #print(longitude) return render(request, 'mapa.html', {'latitude':latitude, 'longitude': longitude}) # return render(request, 'index.html') def servicolist(request): estabelecimentos = Establishment.objects.all() saude = HealthService.objects.all() doacao = Donation.objects.all() return render(request, 'servicolist.html', {'estabelecimentos':estabelecimentos,'saude':saude,'doacao':doacao}) @login_required def create_establishment(request): title = "Cadastrar Estabelecimento" if request.method == "POST": form = EstablishmentForm(request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse("index")) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = EstablishmentForm() return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def create_voluntary(request): title = "Cadastrar Voluntário" if request.method == "POST": form = VoluntaryServiceForm(request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse("index")) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = VoluntaryServiceForm() return render(request, 'establishment.html', {'form': form,'title':title}) from .forms import CommunityActionForm, DonationForm, HealthServiceForm, EstablishmentForm @login_required def create_health_service(request): title = "Cadastrar Serviço" if request.method == "POST": form = HealthServiceForm(request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse("index")) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = HealthServiceForm() return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def create_donation(request): title = "Cadastrar Doação" if request.method == "POST": form = DonationForm(request.POST) if form.is_valid(): form.save() return HttpResponseRedirect(reverse("index")) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = DonationForm() return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def edit_establishment(request, id): title = "Editar Estabelecimento" establishment = get_object_or_404(Establishment, id=id) if request.method == "POST": form = EstablishmentForm(request.POST, instance=product) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('index')) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = EstablishmentForm(instance=establishment) return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def edit_health_service(request, id): title = "Editar Serviço de Saude" health_service = get_object_or_404(HealthService, id=id) if request.method == "POST": form = HealthServiceForm(request.POST, instance=health_service) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('index')) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = HealthServiceForm(instance=health_service) return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def edit_donation(request, id): title = "Editar Doação" donation = get_object_or_404(Donation, id=id) if request.method == "POST": form = DonationForm(request.POST, instance=donation) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('index')) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = DonationForm(instance=donation) return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def edit_voluntary(request, id): title = "Editar Voluntário" voluntary = get_object_or_404(VoluntaryService, id=id) if request.method == "POST": form = VoluntaryServiceForm(request.POST, instance=voluntary) if form.is_valid(): form.save() return HttpResponseRedirect(reverse('index')) return render(request, 'establishment.html', {'form': form,'title':title}) else: form = VoluntaryServiceForm(instance=voluntary) return render(request, 'establishment.html', {'form': form,'title':title}) @login_required def delete_establishment(request, id): establishment = get_object_or_404(Establishment, id=id) establishment.delete() return render(request, 'delete.html') @login_required def delete_health_service(request, id): health_service = get_object_or_404(HealthService, id=id) health_service.delete() return render(request, 'delete.html') @login_required def delete_donation(request, id): delete_donation = get_object_or_404(Donation, id=id) delete_donation.delete() return render(request, 'delete.html') @login_required def delete_voluntary(request, id): delete_voluntary = get_object_or_404(VoluntaryService, id=id) delete_voluntary.delete() return render(request, 'delete.html') def list_establishment(request): establishments = Establishment.objects.all() print(establishments) return render(request, 'list_establishment.html', {"establishments": establishments}) def list_health_service(request): health_services = HealthService.objects.all() return render(request, 'list_health_service.html', {"health_services": health_services}) def list_donation(request): donations = Donation.objects.all() return render(request, 'list_donation.html', {"donations": donations}) def list_voluntary(request): volunteers = VoluntaryService.objects.all() print(volunteers) return render(request, 'list_voluntary.html', {"volunteers": volunteers}) def fale_conosco(request, id): servico = HealthService.objects.get(id=id) if request.method == "POST": nome = request.POST['nome'] email = request.POST['email'] texto = request.POST['mensagem'] m = MIMEText(texto) m.set_charset('utf-8') m['Subject'] = email mail = smtplib.SMTP('smtp.gmail.com', 587) mail.ehlo() mail.starttls() mail.login('<EMAIL>', 'fiscaeunb') mail.sendmail('<EMAIL>', email, m.as_string()) return render(request, 'fale-conosco.html', {"servico": servico}) def perfil(request, id): servico = HealthService.objects.get(id=id) return render(request, 'perfil.html', {"servico":servico})
2.0625
2
voting/templatetags/voting/custom_helpers.py
lzh9102/ee-voting
0
12793541
<gh_stars>0 from django import template from django.core.urlresolvers import reverse register = template.Library() def strip_quotes(s): if s[0] == s[-1] and s.startswith(('"', "'")): # is quoted string return s[1:-1] # strip quotes else: return s @register.simple_tag(takes_context=True) def css_active(context, url): request = context['request'] if request.path == url: return "active" return "" @register.filter(name='css_class') def css_class(value, arg): return value.as_widget(attrs={'class': arg}) @register.tag(name='navlink') def do_navlink(parser, token): """ usage: {% navlink <view> %} ... {% endnavlink %} Generate navigation link for <view>. The navigation link is a listitem (<li><a>...</a></li>). If the link is the same as the current page, the css class "active" will be added to the <li> tag (i.e. <li class="active">...</li>). """ try: args = token.split_contents() if len(args) < 2: raise template.TemplateSyntaxError( "%r tag requires at least 2 arguments" % token.contents.split()[0]) # required arguments tag_name = strip_quotes(args.pop(0)) view = strip_quotes(args.pop(0)) args = [template.Variable(arg) for arg in args] nodelist = parser.parse(('endnavlink',)) parser.delete_first_token() return NavigationLink(nodelist, view, args) except ValueError: raise template.TemplateSyntaxError("%r tag requires a single argument" % (tokens.contents.split()[0])) class NavigationLink(template.Node): def __init__(self, nodelist, view, args): self.nodelist = nodelist self.view = view self.args = args def render(self, context): args = [arg.resolve(context) for arg in self.args] url = reverse(self.view, args=args) return '<li class="%(active)s"><a href="%(url)s">%(content)s</a></li>' % { 'url': url, 'active': css_active(context, url), 'content': self.nodelist.render(context), }
2.484375
2
bin/cmssw_wm_create_process.py
khurtado/cmssw-wm-tools
0
12793542
<filename>bin/cmssw_wm_create_process.py<gh_stars>0 #!/usr/bin/env python import FWCore.ParameterSet.Config as cms import pickle try: import argparse except ImportError: #get it from this package instead import archived_argparse as argparse import sys, re, os import json from tweak_program_helpers import make_parser def create_process(args,func_args): if args.funcname == "merge": if not args.useErrorDataset: func_args['outputmod_label'] = "MergedError" try: from Configuration.DataProcessing.Merge import mergeProcess process = mergeProcess(**func_args) except Exception as ex: msg = "Failed to create a merge process." print(msg) raise ex elif args.funcname == "repack": try: from Configuration.DataProcessing.Repack import repackProcess process = repackProcess(**func_args) except Exception as ex: msg = "Failed to create a repack process." print(msg) raise ex else: try: from Configuration.DataProcessing.GetScenario import getScenario scenarioInst = getScenario(scenario) except Exception as ex: msg = "Failed to retrieve the Scenario named " msg += str(scenario) msg += "\nWith Error:" msg += str(ex) print(msg) raise ex try: process = getattr(scenarioInst, args.funcname)(**func_args) except Exception as ex: msg = "Failed to load process from Scenario %s (%s)." % (scenario, scenarioInst) print(msg) raise ex return process def init_argparse(): parser = argparse.ArgumentParser( usage="%(prog)s [OPTION] [FILE]...", description="Process creator (merge, DataProcessing etc)" ) parser.add_argument('--funcname', required=True) parser.add_argument('--funcargs', required=True) parser.add_argument('--useErrorDataset', action="store_true", required=False) parser.add_argument('--output_pkl', required=True) return parser def main(): parser = init_argparse() args = parser.parse_args() func_args={} try: with open(args.funcargs) as json_file: json_data = json.load(json_file) except Exception as e: print("Error opening file "+args.funcargs) sys.exit(1) if not isinstance(json_data,dict): print("Error loading dictionary "+args.funcargs) sys.exit(1) func_args = json_data process=create_process(args, func_args) with open(args.output_pkl, "wb") as output_file: if output_file.closed: print("Error loading pickle input "+args.output_pkl[i]) sys.exit(1) pickle.dump(process, output_file, protocol=0) main()
2.046875
2
posters/apps.py
postersession/postersession
0
12793543
<reponame>postersession/postersession<filename>posters/apps.py from django.apps import AppConfig class PostersConfig(AppConfig): name = 'posters'
1.304688
1
tests/filters/test_interface.py
FlaskGuys/Flask-Imagine
1
12793544
import unittest from flask.ext.imagine.filters.interface import ImagineFilterInterface class TestImagineFilterInterface(unittest.TestCase): interface = None def setUp(self): self.interface = ImagineFilterInterface() def test_not_implemented_apply_method(self): with self.assertRaises(NotImplementedError): self.interface.apply('')
2.375
2
alura-python/gamelib/dao.py
wiltonpaulo/python-fullcourse
0
12793545
<filename>alura-python/gamelib/dao.py from models import Game, User SQL_DELETE_GAME = "delete from game where id = %s" SQL_GAME_BY_ID = "SELECT id, name, category, console from game where id = %s" SQL_USER_BY_ID = "SELECT id, name, password from user where id = %s" SQL_UPDATE_GAME = "UPDATE game SET name=%s, category=%s, console=%s where id = %s" SQL_SEARCH_GAMES = "SELECT id, name, category, console from game" SQL_CREATE_GAME = "INSERT into game (name, category, console) values (%s, %s, %s)" class GameDao: def __init__(self, db): self.__db = db def save_game(self, game): cursor = self.__db.connection.cursor() if game.id: cursor.execute( SQL_UPDATE_GAME, (game.name, game.category, game.console, game.id) ) else: cursor.execute(SQL_CREATE_GAME, (game.name, game.category, game.console)) game.id = cursor.lastrowid self.__db.connection.commit() return game def list_game(self): cursor = self.__db.connection.cursor() cursor.execute(SQL_SEARCH_GAMES) games = translate_games(cursor.fetchall()) return games def search_by_id(self, id): cursor = self.__db.connection.cursor() cursor.execute(SQL_GAME_BY_ID, (id,)) game_tuple = cursor.fetchone() return Game(game_tuple[1], game_tuple[2], game_tuple[3], id=game_tuple[0]) def delete_game(self, id): self.__db.connection.cursor().execute(SQL_DELETE_GAME, (id,)) self.__db.connection.commit() class UserDao: def __init__(self, db): self.__db = db def search_by_id(self, id): cursor = self.__db.connection.cursor() cursor.execute(SQL_USER_BY_ID, (id,)) data = cursor.fetchone() user = translate_user(data) if data else None return user def translate_games(games): def create_game_with_tuple(game_tuple): return Game(game_tuple[1], game_tuple[2], game_tuple[3], id=game_tuple[0]) return list(map(create_game_with_tuple, games)) def translate_user(user_tuple): return User(user_tuple[0], user_tuple[1], user_tuple[2])
3.21875
3
src/bgapi/gatt_server/rsp.py
GetAmbush/python-bgapi
5
12793546
<reponame>GetAmbush/python-bgapi from struct import (unpack_from, calcsize, error) def find_attribute(data: bytes, offset: int = 0): FORMAT = '<HH' result, sent_len = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, 'sent_len': sent_len, } return payload, offset def read_attribute_type(data: bytes, offset: int = 0): FORMAT = '<HB' result, n = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) _type = data[offset:offset + n] offset += n if len(_type) < n: raise error payload = { 'result': result, 'type': _type, } return payload, offset def read_attribute_value(data: bytes, offset: int = 0): FORMAT = '<HB' result, n = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) value = data[offset:offset + n] offset += n if len(value) < n: raise error payload = { 'result': result, 'value': value, } return payload, offset def send_characteristic_notification(data: bytes, offset: int = 0): FORMAT = '<HH' result, sent_len = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, 'sent_len': sent_len, } return payload, offset def send_user_read_response(data: bytes, offset: int = 0): FORMAT = '<HH' result, sent_len = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, 'sent_len': sent_len, } return payload, offset def send_user_write_response(data: bytes, offset: int = 0): FORMAT = '<H' result, = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, } return payload, offset def set_capabilities(data: bytes, offset: int = 0): FORMAT = '<H' result, = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, } return payload, offset def write_attribute_value(data: bytes, offset: int = 0): FORMAT = '<H' result, = unpack_from(FORMAT, data, offset=offset) offset += calcsize(FORMAT) payload = { 'result': result, } return payload, offset
2.296875
2
backend/api/migrations/0004_auto_20191114_1008.py
a-mazalov/django-vuejs
0
12793547
<filename>backend/api/migrations/0004_auto_20191114_1008.py # Generated by Django 2.2.1 on 2019-11-14 07:08 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0003_auto_20191113_1639'), ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('direction', models.CharField(blank=True, choices=[('h', 'html'), ('j', 'js'), ('p', 'php'), ('py', 'python')], default='py', help_text='Направление курса', max_length=1)), ('date_start', models.DateField(blank=True, null=True)), ('date_start_registration', models.DateField(blank=True, null=True, verbose_name='Начало регистрации')), ('level', models.CharField(blank=True, choices=[('j', 'Junior'), ('m', 'Middle'), ('s', 'Senior'), ('l', 'Lead')], default='j', help_text='Уровень курса', max_length=1)), ('duration', models.IntegerField(blank=True, null=True)), ('description', models.TextField(help_text='Описание курса', max_length=2000, null=True)), ('members', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='course', to=settings.AUTH_USER_MODEL)), ], ), migrations.AlterField( model_name='courseparticipants', name='id_course', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='api.Course'), ), migrations.DeleteModel( name='Courses', ), ]
1.5625
2
Utils/dicts/sensor_dicts.py
isse-augsburg/PermeabilityNets
1
12793548
sensor_indices = { "1140": ((0, 1), (0, 1)), "285": ((1, 2), (1, 2)), "80": ((1, 4), (1, 4)), "20": ((1, 8), (1, 8)) } sensor_shape = { "1140": (38, 30), "285": (19, 15), "80": (10, 8), "20": (5, 4) }
1.632813
2
data/altera_file_splitter.py
bradysalz/fpga-pin-trends
0
12793549
#!/usr/bin/env python3 """Separates Altera's junky concatenated CSV files into unique files We do this in two steps: 1. Move all existing *.txt files to *.tmp files 2. Go through and break up at the start of each CSV file into a new file """ import os import sys from pathlib import Path def main(root: str): root_path = Path(root) # Stash old files tmp_files = [f for f in root_path.glob('*.txt')] for tmp_file in tmp_files: os.rename(tmp_file, tmp_file.with_suffix('.tmp')) # Loop through and separate the new files orig_files = [f for f in root_path.glob('*.tmp')] for orig_file in orig_files: idx = 0 new_file_name = orig_file.parent.joinpath(orig_file.stem + '-' + str(idx) + '.txt') new_file = open(new_file_name, 'w') with open(orig_file, 'r', encoding='cp1252') as orig: lines = orig.readlines() for line in lines: if line.startswith('Bank'): new_file.close() idx = idx + 1 new_file_name = orig_file.parent.joinpath( orig_file.stem + '-' + str(idx) + '.txt') new_file = open(new_file_name, 'w') new_file.write(line) else: new_file.write(line) new_file.close() if __name__ == '__main__': if len(sys.argv) == 1: main(os.getcwd()) elif len(sys.argv) == 2: main(sys.argv[1]) else: print("Wrong number of args.")
3.375
3
B2G/gecko/testing/tps/tps/mozhttpd.py
wilebeast/FireFox-OS
3
12793550
<gh_stars>1-10 #!/usr/bin/python # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import BaseHTTPServer import SimpleHTTPServer import threading import sys import os import urllib import re from urlparse import urlparse from SocketServer import ThreadingMixIn DOCROOT = '.' class EasyServer(ThreadingMixIn, BaseHTTPServer.HTTPServer): allow_reuse_address = True class MozRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): def translate_path(self, path): # It appears that the default path is '/' and os.path.join makes the '/' o = urlparse(path) sep = '/' if sys.platform == 'win32': sep = '' ret = '%s%s' % ( sep, DOCROOT.strip('/') ) # Stub out addons.mozilla.org search API, which is used when installing # add-ons. The version is hard-coded because we want tests to fail when # the API updates so we can update our stubbed files with the changes. if o.path.find('/en-US/firefox/api/1.5/search/guid:') == 0: ids = urllib.unquote(o.path[len('/en-US/firefox/api/1.5/search/guid:'):]) if ids.count(',') > 0: raise Exception('Searching for multiple IDs is not supported.') base = ids at_loc = ids.find('@') if at_loc > 0: base = ids[0:at_loc] ret += '/%s.xml' % base else: ret += '/%s' % o.path.strip('/') return ret # I found on my local network that calls to this were timing out # I believe all of these calls are from log_message def address_string(self): return "a.b.c.d" # This produces a LOT of noise def log_message(self, format, *args): pass class MozHttpd(object): def __init__(self, host="127.0.0.1", port=8888, docroot='.'): global DOCROOT self.host = host self.port = int(port) DOCROOT = docroot def start(self): self.httpd = EasyServer((self.host, self.port), MozRequestHandler) self.server = threading.Thread(target=self.httpd.serve_forever) self.server.setDaemon(True) # don't hang on exit self.server.start() #self.testServer() #TODO: figure this out def testServer(self): fileList = os.listdir(DOCROOT) filehandle = urllib.urlopen('http://%s:%s' % (self.host, self.port)) data = filehandle.readlines(); filehandle.close() for line in data: found = False # '@' denotes a symlink and we need to ignore it. webline = re.sub('\<[a-zA-Z0-9\-\_\.\=\"\'\/\\\%\!\@\#\$\^\&\*\(\) ]*\>', '', line.strip('\n')).strip('/').strip().strip('@') if webline != "": if webline == "Directory listing for": found = True else: for fileName in fileList: if fileName == webline: found = True if (found == False): print "NOT FOUND: " + webline.strip() def stop(self): if self.httpd: self.httpd.shutdown() self.httpd.server_close() __del__ = stop
2.171875
2