max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
monoidic/intelmq-manager
0
12793551
<reponame>monoidic/intelmq-manager """ Setup file for intelmq-manager SPDX-FileCopyrightText: 2020 IntelMQ Team <<EMAIL>> SPDX-License-Identifier: AGPL-3.0-or-later """ from setuptools import find_packages, setup import pathlib import shutil from mako.lookup import TemplateLookup from intelmq_manager.version import __version__ def render_page(pagename:str, **template_args) -> str: template_dir = pathlib.Path('intelmq_manager/templates') template_lookup = TemplateLookup(directories=[template_dir], default_filters=["h"], input_encoding='utf8') template = template_lookup.get_template(f'{pagename}.mako') return template.render(pagename=pagename, **template_args) def buildhtml(): outputdir = pathlib.Path('html') outputdir.mkdir(parents=True, exist_ok=True) htmlfiles = ["configs", "management", "monitor", "check", "about", "index"] for filename in htmlfiles: print(f"Rendering {filename}.html") html = render_page(filename) outputdir.joinpath(f"{filename}.html").write_text(html) staticfiles = ["css", "images", "js", "plugins", "less"] for filename in staticfiles: print(f"Copying {filename} recursively") src = pathlib.Path('intelmq_manager/static') / filename dst = outputdir / filename if dst.exists(): shutil.rmtree(dst) shutil.copytree(src, dst) print('rendering dynvar.js') rendered = render_page('dynvar', allowed_path='/opt/intelmq/var/lib/bots/', controller_cmd='intelmq') outputdir.joinpath('js/dynvar.js').write_text(rendered) # Before running setup, we build the html files in any case buildhtml() htmlsubdirs = [directory for directory in pathlib.Path('html').glob('**') if directory.is_dir()] data_files = [(f'/usr/share/intelmq_manager/{directory}', [str(x) for x in directory.glob('*') if x.is_file()]) for directory in htmlsubdirs] data_files = data_files + [('/usr/share/intelmq_manager/html', [str(x) for x in pathlib.Path('html').iterdir() if x.is_file()])] data_files = data_files + [('/etc/intelmq', ['contrib/manager-apache.conf'])] setup( name="intelmq-manager", version=__version__, python_requires='>=3.5', packages=find_packages(), install_requires=[ "intelmq-api", ], include_package_data=True, url='https://github.com/certtools/intelmq-manager/', description=("IntelMQ Manager is a graphical interface to manage" " configurations for the IntelMQ framework."), data_files=data_files )
1.984375
2
models/deepWalk.py
nicolas-racchi/hpc2020-graphML
0
12793552
<reponame>nicolas-racchi/hpc2020-graphML import time import pandas as pd import numpy as np import stellargraph as sg from gensim.models import Word2Vec import matplotlib.pyplot as plt from utils.visualization import get_TSNE def sg_DeepWalk(v_sets, e_sets, v_sample, e_sample): G = sg.StellarDiGraph(v_sets, e_sets) #### Graph embedding with NODE2VEC and WORD2VEC print("Running DeepWalk") rw = sg.data.BiasedRandomWalk(G) t0 = time.time() walks = rw.run( nodes=list(G.nodes()), # root nodes length=10, # maximum length of a random walk n=10, # number of random walks per root node p=0.6, # Defines (unormalised) probability, 1/p, of returning to source node q=1.7, # Defines (unormalised) probability, 1/q, for moving away from source node ) t1 = time.time() print("Number of random walks: {} in {:.2f} s".format(len(walks), (t1-t0))) str_walks = [[str(n) for n in walk] for walk in walks] model = Word2Vec(str_walks, size=128, window=5, min_count=0, sg=1, workers=8, iter=5) # size: length of embedding vector # The embedding vectors can be retrieved from model.wv using the node ID. # model.wv["19231"].shape # Retrieve node embeddings node_ids = model.wv.index2word # list of node IDs node_embeddings = (model.wv.vectors) # numpy.ndarray of size number of nodes times embeddings dimensionality # Retrieve corresponding targets # from training csv # core_targets = core_target_sample.loc[[int(node_id) for node_id in node_ids if int(node_id) in list(core_target_sample.index)]].CaseID # ext_targets = ext_target_sample.loc[[int(node_id) for node_id in node_ids if int(node_id) in list(ext_target_sample.index)]].CaseID # from vertices' data core_targets = v_sample.loc[[int(node_id) for node_id in node_ids]].CoreCaseGraphID ext_targets = v_sample.loc[[int(node_id) for node_id in node_ids]].ExtendedCaseGraphID t2 = time.time() print(f"Deepwalk complete: {(t2-t0):.2f} s") # Visualize embeddings with TSNE embs_2d = get_TSNE(node_embeddings) # Draw the embedding points, coloring them by the target label (CaseID) alpha = 0.6 label_map = {l: i for i, l in enumerate(np.unique(ext_targets), start=10) if pd.notna(l)} label_map[0] = 1 node_colours = [label_map[target] if pd.notna(target) else 0 for target in ext_targets] plt.figure(figsize=(15, 15)) plt.axes().set(aspect="equal") plt.scatter( embs_2d[:, 0], embs_2d[:, 1], c=node_colours, cmap="jet", alpha=alpha, ) plt.title("TSNE visualization of node embeddings w.r.t. Extended Case ID") plt.show() return node_ids, node_embeddings, core_targets, ext_targets
2.65625
3
2017/10_Oct/11/04-isnumeric.py
z727354123/pyCharmTest
0
12793553
myStr = '' print(myStr.isalnum()) # False 不支持空 myStr = 'abCC' print(myStr.isalpha()) # True 支持大写 myStr = 'abc*' print(myStr.isalpha()) # False 不支持 符号 myStr = 'abc1' print(myStr.isalpha()) # False 不支持 包含num print(myStr.isalnum()) # True 支持 包含num myStr = '123' print(myStr.isnumeric()) # True 只支持 全数字 myStr = '123.123' print(myStr.isnumeric()) # False myStr = '0.1' print(myStr.isnumeric()) # False 不支持 . print(myStr.isalnum()) # False 不支持 . myStr = 'abc123.1' print(myStr.isalnum()) # False 不支持 .
3.984375
4
tex/poster/make_comparative_figure.py
se4u/mvlsa
12
12793554
<reponame>se4u/mvlsa from __future__ import division conditions="Glove W2Vec(Skipgram) MVLSA(Glove+W2Vec) MVLSA(Wiki) MVLSA(Allviews) MVLSA(Allviews+Glove+W2Vec)".split() viewperf=r""" MEN & 70.4 & 73.9 & 76.0 & 71.4 & 71.2 & 75.8 RW & 28.1 & 32.9 & 37.2 & 29.0 & 41.7 & 40.5 SCWS & 54.1 & 65.6 & 60.7 & 61.8 & 67.3 & 66.4 SIMLEX & 33.7 & 36.7 & 41.1 & 34.5 & 42.4 & 43.9 WS & 58.6 & 70.8 & 67.4 & 68.0 & 70.8 & 70.1 MTURK & 61.7 & 65.1 & 59.8 & 59.1 & 59.7 & 62.9 WS-REL & 53.4 & 63.6 & 59.6 & 60.1 & 65.1 & 63.5 WS-SEM & 69.0 & 78.4 & 76.1 & 76.8 & 78.8 & 79.2 RG & 73.8 & 78.2 & 80.4 & 71.2 & 74.4 & 80.8 MC & 70.5 & 78.5 & 82.7 & 76.6 & 75.9 & 77.7 An-SYN & 61.8 & 59.8 & 51.0 & 42.7 & 60.0 & 64.3 An-SEM & 80.9 & 73.7 & 73.5 & 36.2 & 38.6 & 77.2 TOEFL & 83.8 & 81.2 & 86.2 & 78.8 & 87.5 & 88.8""" viewperf=viewperf.split("\n") colors="gbcykr" import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.style.use('ggplot') from pylab import savefig fig = plt.figure() ax = fig.add_subplot(1,1,1) xlab=[] width=0.8 patch_height=0.7 ba=[] pa=[] for idx, row in enumerate(viewperf[1:]): row=row.split("&") dataset=row[0] # The dataset is the xlabel xlab.append(dataset.strip()) perf=[float(e) for e in row[1:]] # Plot the last number as a bar bar_artist,=plt.bar(idx+0.1, perf[-1], width=width, color=colors[-1], edgecolor='black', linewidth=0.4, alpha=0.8) bar_artist.set_label(conditions[-1].replace("(", " (").replace("Allviews", "All Views")) ba.append(bar_artist) # Plot the rest of them as boxes on the bar. for j, p in enumerate(perf[0:-1]): patch_artist=ax.add_patch(plt.Rectangle((idx+0.01*j, p-patch_height), width, patch_height, facecolor=colors[j], alpha=0.7, label=conditions[j].replace("(", " (").replace("Allviews", "All Views"), edgecolor='white', linewidth=0.4, )) pa.append(patch_artist) ax.set_xlim(xmax=len(xlab)) from matplotlib.ticker import MultipleLocator, FormatStrFormatter ax.yaxis.set_minor_locator(MultipleLocator(5)) ax.yaxis.set_ticks_position('both') ax.set_xticklabels([""]+xlab, rotation=45, ha='left') ax.xaxis.set_major_locator(MultipleLocator(1)) ax.xaxis.set_ticks_position('bottom') ax.set_title('Comparison between Word2Vec, Glove and MVLSA', color='black') ymin=25 ax.legend(handles=[ba[-1], pa[-3], pa[-1], pa[-2], pa[-5], pa[-4]], loc=(.08, .74), prop={'size':9}, shadow=True) ax.set_ylabel("Correlation") plt.axvline(x=9.95, color='black') ax.set_ylim(ymin=ymin) ax.set_yticklabels(["%.2f"%(e/100) for e in range(ymin-5,100,10)]) ax.text(13.2, ymin+37, 'Accuracy', fontsize=13, rotation=270, color='gray') savefig("comparative_figure.pdf", bbox_inches='tight')
1.953125
2
dbaas/tsuru/admin/__init__.py
jaeko44/python_dbaas
0
12793555
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.contrib import admin from .. import models from .bind import BindAdmin admin.site.register(models.Bind, BindAdmin)
1.195313
1
ops.py
Forty-lock/Inpainting_AIHub
0
12793556
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import utils import math class conv5x5(nn.Module): def __init__(self, in_channels, out_channels, stride=1, dilation=1): super(conv5x5, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=stride, padding=2*dilation, dilation=dilation, bias=False) self.conv = utils.spectral_norm(self.conv) def forward(self, x): return self.conv(x) class conv3x3(nn.Module): def __init__(self, in_channels, out_channels, stride=1, dilation=1): super(conv3x3, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, padding_mode='reflect', bias=False) self.conv = utils.spectral_norm(self.conv) def forward(self, x): return self.conv(x) class conv1x1(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(conv1x1, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) self.conv = utils.spectral_norm(self.conv) def forward(self, x): return self.conv(x) class conv_zeros(nn.Module): def __init__(self, in_channels, out_channels): super(conv_zeros, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) nn.init.constant_(self.conv.weight, 0) def forward(self, x): return self.conv(x) class PAKA3x3(nn.Module): def __init__(self, in_channels, out_channels, stride=1, dilation=1): super(PAKA3x3, self).__init__() self.conv = PAKA2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) self.conv = utils.spectral_norm(self.conv) def forward(self, x): return self.conv(x) class PAKA2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False): super(PAKA2d, self).__init__() self.kernel_size = kernel_size self.stride = stride self.weight = torch.nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size ** 2, 1, 1)) if bias: self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.conv_c = nn.Sequential(conv1x1(in_channels, in_channels, stride), nn.ReLU(True), conv_zeros(in_channels, in_channels), ) self.conv_d = nn.Sequential(conv3x3(in_channels, in_channels, stride, dilation=dilation), nn.ReLU(True), conv_zeros(in_channels, kernel_size ** 2), ) self.unfold = nn.Unfold(kernel_size, padding=padding, stride=stride, dilation=dilation) self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def extra_repr(self): s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' ', stride={stride}') if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.bias is None: s += ', bias=False' return s.format(**self.__dict__) def forward(self, x): b, n, h, w = x.shape return F.conv3d(self.unfold(x).view(b, n, self.kernel_size ** 2, h//self.stride, w//self.stride) * (1 + torch.tanh(self.conv_d(x).unsqueeze(1)+self.conv_c(x).unsqueeze(2))), self.weight, self.bias).squeeze(2) class downsample(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super(downsample, self).__init__() self.conv1 = conv3x3(in_channels, hidden_channels) self.conv2 = conv3x3(hidden_channels, out_channels, stride=2) def forward(self, x): h = self.conv1(x) h = F.elu(h) h = self.conv2(h) h = F.elu(h) return h class upsample(nn.Module): def __init__(self, in_channels, out_channels): super(upsample, self).__init__() self.conv1 = conv3x3(in_channels, out_channels*4) self.conv2 = conv3x3(out_channels, out_channels) def forward(self, x): h = self.conv1(x) h = F.pixel_shuffle(h, 2) h = F.elu(h) h = self.conv2(h) h = F.elu(h) return h
2.46875
2
wiske/event.py
jthistle/wiskesynth
0
12793557
from enum import Enum class EventType(Enum): NOTE_ON = 1 NOTE_OFF = 2 class Event: def __init__(self, etype): self.type = etype class EventNoteOn(Event): def __init__(self, midi_note, velocity): super().__init__(EventType.NOTE_ON) self.note = midi_note self.velocity = velocity class EventNoteOff(Event): def __init__(self, midi_note): super().__init__(EventType.NOTE_OFF) self.note = midi_note
3.046875
3
long-exp.py
nmiculinic/python-hello-world
0
12793558
<gh_stars>0 #!/usr/bin/python import time for i in range(2 * 3600): print(f"hello world {i}", flush=True) with open(f"artifacts-{i}.txt", "w") as f: print("Hello mother, hello father, I'm here!", file=f) time.sleep(1)
2.8125
3
tests/unit/test_lockfile.py
indhupriya/dvc
1
12793559
import pytest from dvc.dvcfile import Lockfile, LockfileCorruptedError from dvc.stage import PipelineStage from dvc.utils.serialize import dump_yaml def test_stage_dump_no_outs_deps(tmp_dir, dvc): stage = PipelineStage(name="s1", repo=dvc, path="path", cmd="command") lockfile = Lockfile(dvc, "path.lock") lockfile.dump(stage) assert lockfile.load() == {"s1": {"cmd": "command"}} def test_stage_dump_when_already_exists(tmp_dir, dvc): data = {"s1": {"cmd": "command", "deps": [], "outs": []}} dump_yaml("path.lock", data) stage = PipelineStage(name="s2", repo=dvc, path="path", cmd="command2") lockfile = Lockfile(dvc, "path.lock") lockfile.dump(stage) assert lockfile.load() == { **data, "s2": {"cmd": "command2"}, } def test_stage_dump_with_deps_and_outs(tmp_dir, dvc): data = { "s1": { "cmd": "command", "deps": [{"md5": "1.txt", "path": "checksum"}], "outs": [{"md5": "2.txt", "path": "checksum"}], } } dump_yaml("path.lock", data) lockfile = Lockfile(dvc, "path.lock") stage = PipelineStage(name="s2", repo=dvc, path="path", cmd="command2") lockfile.dump(stage) assert lockfile.load() == { **data, "s2": {"cmd": "command2"}, } def test_stage_overwrites_if_already_exists(tmp_dir, dvc): lockfile = Lockfile(dvc, "path.lock",) stage = PipelineStage(name="s2", repo=dvc, path="path", cmd="command2") lockfile.dump(stage) stage = PipelineStage(name="s2", repo=dvc, path="path", cmd="command3") lockfile.dump(stage) assert lockfile.load() == { "s2": {"cmd": "command3"}, } def test_load_when_lockfile_does_not_exist(tmp_dir, dvc): assert {} == Lockfile(dvc, "pipelines.lock").load() @pytest.mark.parametrize( "corrupt_data", [ {"s1": {"outs": []}}, {"s1": {}}, { "s1": { "cmd": "command", "outs": [ {"md5": "checksum", "path": "path", "random": "value"} ], } }, {"s1": {"cmd": "command", "deps": [{"md5": "checksum"}]}}, ], ) def test_load_when_lockfile_is_corrupted(tmp_dir, dvc, corrupt_data): dump_yaml("Dvcfile.lock", corrupt_data) lockfile = Lockfile(dvc, "Dvcfile.lock") with pytest.raises(LockfileCorruptedError) as exc_info: lockfile.load() assert "Dvcfile.lock" in str(exc_info.value)
2.171875
2
datapypes/pype.py
msmathers/datapypes
1
12793560
<filename>datapypes/pype.py from set import Set from model import Model from source import Source from store import Store class Pype(object): @property def set(self): raise NotImplementedError() @property def source(self): raise NotImplementedError() @property def store(self): raise NotImplementedError() class SourcePype(Pype): def __init__(self, set, source): self._set = set self._source = source # Actions def one(self, query_model): raise NotImplementedError() def latest(self, query_model): raise NotImplementedError() def search(self, query_model): raise NotImplementedError() def stream(self, query_model): raise NotImplementedError() def all(self, query_model): raise NotImplementedError() # Source action invocation def retrieve_model(self, result): return self.set.model(**result) def retrieve_set(self, results): return self.set(*[self.retrieve_model(r) for r in results]) class StorePype(Pype): def __init__(self, set, store): self._set = set self._store = store # Actions def save(self, data_type): return self._store_method('save', data_type) def update(self, data_type, query_model=None): return self._store_method('update', data_type, query_model) def delete(self, data_type, query_model=None): return self._store_method('save', data_type, query_model) # Define bindings in subclass def save_model(self, data_model): raise NotImplementedError() def save_set(self, data_set): raise NotImplementedError() def update_model(self, data_model): raise NotImplementedError() def update_set(self, data_set, query_model): raise NotImplementedError() def delete_model(self, data_model): raise NotImplementedError() def delete_set(self, data_set, query_model): raise NotImplementedError() # Action invocation def _store_method(self, method, data_type, query=None): if isinstance(data_type, Set): method += "_set" elif isinstance(data_type, Model): method += "_model" else: raise InvalidPypeDataType(data_type) kwargs = {} if query is None else {'query_model': query} getattr(self, method)(data_type, **kwargs) return self.set def register_pypes(*pype_classes): for cls in pype_classes: if hasattr(cls,'__bases__') and StorePype in cls.__bases__: Store.__pypes__.setdefault(cls.store,{})[cls.set] = cls Store.__pypes__.setdefault(cls.store,{})[cls.set.model] = cls Set.__pypes__.setdefault(cls.set,{})[cls.store] = cls Model.__pypes__.setdefault(cls.set.model,{})[cls.store] = cls elif hasattr(cls,'__bases__') and SourcePype in cls.__bases__: Source.__pypes__.setdefault(cls.source,{})[cls.set] = cls Source.__pypes__.setdefault(cls.source,{})[cls.set.model] = cls Set.__pypes__.setdefault(cls.set,{})[cls.source] = cls Model.__pypes__.setdefault(cls.set.model,{})[cls.source] = cls
2.59375
3
xdd-7.0.0.rc-ramses3/contrib/buildbot_master_xdd.py
eunsungc/gt6-RAMSES_8_5
1
12793561
<reponame>eunsungc/gt6-RAMSES_8_5 #!/usr/bin/python # # The buildbot settings for XDD. We assume the following build slaves are # defined in the master.cfg: # # c['slaves'] = [] # c['slaves'].append(BuildSlave("pod9", "banana")) # c['slaves'].append(BuildSlave("pod7", "banana")) # c['slaves'].append(BuildSlave("pod10", "banana")) # c['slaves'].append(BuildSlave("pod11", "banana")) # c['slaves'].append(BuildSlave("spry02", "banana")) # c['slaves'].append(BuildSlave("natureboy", "banana")) # # In order to enable these tests, add the # following lines to the bottom of the default master.cfg # ####### Import the configuration to build/test XDD # import buildbot_master_xdd # reload(buildbot_master_xdd) # from buildbot_master_xdd import * # buildbot_master_xdd.loadConfig(config=c) # # To retrieve the latest version of this file, run the following command: # # git archive --format=tar --prefix=xdd/ --remote=/ccs/proj/csc040/var/git/xdd.git master |tar xf - --strip=2 xdd/contrib/buildbot_master_xdd.py # # # This uses the BuildmasterConfig object referenced in master.cfg def loadConfig(config): ####### CHANGESOURCES # the 'change_source' setting tells the buildmaster how it should find out # about source code changes. Here we point to the buildbot clone of pyflakes. from buildbot.changes.gitpoller import GitPoller from buildbot.changes.filter import ChangeFilter config['change_source'].append( GitPoller( repourl = '<EMAIL>:ORNL/xdd.git', workdir='gitpoller-workdir-xdd-master', pollinterval=120, branch='master', project='xdd')) xdd_filter = ChangeFilter( project = 'xdd', branch = 'testing') ####### BUILDERS # The 'builders' list defines the Builders, which tell Buildbot how to perform a build: # what steps, and which slaves can execute them. Note that any particular build will # only take place on one slave. from buildbot.process.factory import BuildFactory, GNUAutoconf from buildbot.steps.source import Git from buildbot.steps.shell import ShellCommand, Configure, Compile, Test xdd_factory = BuildFactory() # Check out the source xdd_factory.addStep(Git(repourl='<EMAIL>:ORNL/xdd.git', mode='copy', branch='master')) # Generate the test configuration xdd_factory.addStep(ShellCommand(command=['./contrib/buildbot_gen_test_config.sh'], name="configuring")) # Compile the code xdd_factory.addStep(Compile(description=["compiling"])) # Install the code xdd_factory.addStep(ShellCommand(command=['make', 'install'], name="make install")) # Perform make check xdd_factory.addStep(ShellCommand(command=['make', 'check'], name="make check", maxTime=600)) # Perform make test xdd_factory.addStep(Test(description=["make test"], maxTime=600)) # Perform cleanup xdd_factory.addStep(ShellCommand(command=['pkill', '-f', 'xdd', '||', 'echo ""'], name='process cleanup', maxTime=60)) # Add the XDD Build factory to each of the available builders described in the master.cfg from buildbot.config import BuilderConfig # config['builders'].append(BuilderConfig(name="xdd-rhel5-x86_64", slavenames=["pod7"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"}, category='xdd')) # config['builders'].append(BuilderConfig(name="xdd-rhel6-x86_64", slavenames=["pod9"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"},category='xdd')) # config['builders'].append(BuilderConfig(name="xdd-sles10-x86_64", slavenames=["pod10"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"}, category='xdd')) config['builders'].append(BuilderConfig(name="xdd-sles11-x86_64", slavenames=["pod11"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"}, category='xdd')) config['builders'].append(BuilderConfig(name="xdd-osx-10-8", slavenames=["natureboy"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"}, category='xdd')) # config['builders'].append(BuilderConfig(name="xdd-rhel6-ppc64", slavenames=["spry02"], factory=xdd_factory, env={"XDDTEST_TIMEOUT": "900"}, category='xdd')) ####### SCHEDULERS # Configure the Schedulers, which decide how to react to incoming changes. In this # case, just kick off a 'runtests' build # Configure the nightly testing so that every test lives in the same buildset from buildbot.schedulers.basic import SingleBranchScheduler from buildbot.schedulers.timed import Periodic,Nightly build_nightly_xdd=Nightly(name="xdd-nightly1", branch = "master", properties={'owner' : ['<EMAIL>']}, builderNames=["xdd-sles11-x86_64", "xdd-osx-10-8"], hour = 2, minute = 3) config['schedulers'].append(build_nightly_xdd) # Configure each force build seperately so that they live in differing buildsets from buildbot.schedulers.forcesched import ForceScheduler # config['schedulers'].append(ForceScheduler(name="xdd-force1", builderNames=["xdd-rhel5-x86_64"])) # config['schedulers'].append(ForceScheduler(name="xdd-force2", builderNames=["xdd-rhel6-x86_64"])) # config['schedulers'].append(ForceScheduler(name="xdd-force3", builderNames=["xdd-sles10-x86_64"])) config['schedulers'].append(ForceScheduler(name="xdd-force4", builderNames=["xdd-sles11-x86_64"])) config['schedulers'].append(ForceScheduler(name="xdd-force6", builderNames=["xdd-osx-10-8"])) # config['schedulers'].append(ForceScheduler(name="xdd-force7", builderNames=["xdd-rhel6-ppc64"])) ####### STATUS TARGETS # 'status' is a list of Status Targets. The results of each build will be # pushed to these targets. buildbot/status/*.py has a variety to choose from, # including web pages, email senders, and IRC bots. from buildbot.status.mail import MailNotifier xddMN = MailNotifier(fromaddr="<EMAIL>", extraRecipients=['<EMAIL>'], categories='xdd', buildSetSummary=True, messageFormatter=xddSummaryMail) config['status'].append(xddMN) # # Generate the BuildSetSummary mail format for XDD's nightly build # and test information # from buildbot.status.builder import Results from buildbot.status.results import FAILURE, SUCCESS, WARNINGS, Results import urllib def xddSummaryMail(mode, name, build, results, master_status): """Generate a buildbot mail message and return a tuple of the subject, message text, and mail type.""" # Construct the mail subject subject = "" if results == SUCCESS: subject = "[Buildbot] SUCCESS -- XDD Acceptance Test -- SUCCESS" else: subject = "[Buildbot] FAILURE -- XDD Acceptance Test -- FAILURE" # Construct the mail body body = "" body += "Build Host: %s (%s)\n" % (build.getSlavename(), name) body += "Build Result: %s\n" % Results[results] body += "Build Status: %s\n" % master_status.getURLForThing(build) #body += "Build Logs available at: %s\n" % urllib.quote(master_status.getBuildbotURL(), '/:') #body += "Flagged Build: %s\n" % build.getSlavename() if results != SUCCESS: body += "Failed tests: %s\n" % build.getText() body += "--\n\n" return { 'subject' : subject, 'body' : body, 'type' : 'plain' }
1.992188
2
python/f-gradf.py
blazej-bucha/physical-geodesy-lecture-notes
0
12793562
# Import modulov import numpy as np import matplotlib.pyplot as plt from matplotlib import rc rc('text', usetex=True) # Výpočtová oblasť xmin = -1.0 xmax = 1.0 xn = 101 # Počet vzorkovacích bodov funkcie "f" na intervale "[xmin, xmax]" ymin = xmin ymax = xmax yn = xn # Počet vzorkovacích bodov funkcie "f" na intervale "[ymin, ymax]" xngrad = 10 # Zobrazený bude každý "xngrad" vzorkovací bod v smere osi "x" yngrad = xngrad # Zobrazený bude každý "yngrad" vzorkovací bod v smere osi "y" # Tvorba gridu x, y = np.meshgrid(np.linspace(xmin, xmax, xn), np.linspace(ymin, ymax, yn)) # Výpočet funkcie f = np.sin(2.0 * x) + np.cos(2.0 * y) # Výpočet derivácií "f" podľa "x" a "y" fx = 2.0 * np.cos(2.0 * x) fy = -2.0 * np.sin(2.0 * y) # Vykreslenie fig, ax = plt.subplots(figsize=(12.0 / 2.54, 8.0 / 2.54)) im = ax.imshow(f, extent=(xmin, xmax, ymin, ymax), cmap="bwr", vmin=-np.abs(f).max(), vmax=np.abs(f).max()) ax.quiver( x[::xngrad, ::xngrad], y[::yngrad, ::yngrad], fx[::xngrad, ::xngrad], fy[::yngrad, ::yngrad]) ax.set_xlabel("$x$") ax.set_ylabel("$y$") ax.set_xticks(np.linspace(xmin, xmax, 6)) ax.set_yticks(np.linspace(ymin, ymax, 6)) fig.colorbar(im) plt.show() fig.savefig("../latex/fig-f-gradf.pdf")
2.390625
2
GetIcons.py
MrJustPeachy/Font-Awesome-Icon-Scraper
2
12793563
import requests from bs4 import BeautifulSoup from selenium import webdriver # url = 'https://fontawesome.com/cheatsheet/pro' # req = requests.get(url) # markup = req.text # print(markup) from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException browser = webdriver.Chrome() browser.get("https://fontawesome.com/cheatsheet/pro") delay = 15 # seconds icon_list = '<select>\n\t<option value="">No icon</option>\n' def make_icon_format_string(font_awesome_icon): return "\t<option>" + font_awesome_icon + '</option>' # Please enter in blacklist items in the following format blacklist = ['far fa-reply', 'fal fa-reply', 'fas fa-reply', 'far fa-republican', 'fal fa-republican', 'fas fa-republican', 'fab fa-youtube-square', 'fas fa-angle-up', 'fas fa-hand-middle-finger', 'far fa-hand-middle-finger', 'fal fa-hand-middle-finger', 'fas fa-bong', 'fal fa-bong', 'far fa-bong', 'fas fa-cannabis', 'fal fa-cannabis', 'far fa-cannabis', 'fas fa-mosque', 'far fa-mosque', 'fal fa-mosque', 'fal fa-church', 'far fa-church', 'fas fa-church', 'far fa-clipboard', 'far fa-democrat', 'fas fa-democrat', 'fal fa-democrat'] blacklist = [make_icon_format_string(string) for string in blacklist] try: myElem = WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.ID, 'reply'))) soup = BeautifulSoup(browser.page_source, features='html.parser') solid_icons = soup.find("section", {'id': 'solid'}).find_all('article') solid_icon_values = ['\t<option>fas fa-' + x.attrs['id'] + '</option>' for x in solid_icons if '\t<option>fas fa-' + x.attrs['id'] + '</option>' not in blacklist] icon_list += '\n'.join(solid_icon_values) regular_icons = soup.find("section", {'id': 'regular'}).find_all('article') regular_icon_values = ['\t<option>far fa-' + x.attrs['id'] + '</option>' for x in regular_icons if '\t<option>far fa-' + x.attrs['id'] + '</option>' not in blacklist] icon_list += '\n'.join(regular_icon_values) light_icons = soup.find("section", {'id': 'light'}).find_all('article') light_icon_values = ['\t<option>fal fa-' + x.attrs['id'] + '</option>' for x in light_icons if '\t<option>fal fa-' + x.attrs['id'] + '</option>' not in blacklist] icon_list += '\n'.join(light_icon_values) brand_icons = soup.find("section", {'id': 'brands'}).find_all('article') brand_icon_values = ['\t<option>fab fa-' + x.attrs['id'] + '</option>' for x in brand_icons if '\t<option>fab fa-' + x.attrs['id'] + '</option>' not in blacklist] icon_list += '\n'.join(brand_icon_values) except TimeoutException: print('timeout exception') icon_list += '\n</select>' with open('fa-icons.txt', 'w+') as file: file.write(icon_list)
2.921875
3
mimic/utils/exceptions.py
Jimmy2027/MoPoE-MIMIC
1
12793564
class NaNInLatent(Exception): pass class CudaOutOfMemory(Exception): pass
1.265625
1
h1st/core/__init__.py
Shiti/h1st
0
12793565
<reponame>Shiti/h1st from .dataclass import NodeInfo, GraphInfo
1.101563
1
ml_api/request_cloud_function.py
r-matsuzaka/mlops-example
0
12793566
import requests result = requests.post( "https://asia-northeast1-mlops-331003.cloudfunctions.net/function-1", json={"msg": "Hello from cloud functions"}, ) print(result.json())
2.46875
2
utils/start_server.py
FGAUnB-REQ-GM/2021.2-PousadaAnimal
0
12793567
<filename>utils/start_server.py from os import system # Database system('python3 manage.py makemigrations users pets hosting services message payment host') system('python3 manage.py migrate') # Server system('python3 manage.py runserver localhost:8000')
1.914063
2
lib/config.py
GraciousGpal/Colony-Server
1
12793568
<reponame>GraciousGpal/Colony-Server from configparser import ConfigParser config = ConfigParser() config.read('config.ini') def get_config(): """ Loads the configuration file config.ini and returns a dictionary with keys and its values. :return: """ sections = config.sections() config_dict = {} for key in sections: config_dict[key] = dict(config[key]) return config_dict
2.953125
3
tests/test_parser.py
alisonrclarke/raga-pose-estimation-1
1
12793569
<reponame>alisonrclarke/raga-pose-estimation-1 import pandas as pd from raga_pose_estimation.openpose_json_parser import OpenPoseJsonParser from raga_pose_estimation.openpose_parts import ( OpenPoseParts, OpenPosePartGroups, ) def test_parser(): parser = OpenPoseJsonParser( "example_files/example_3people/output_json/video_000000000093_keypoints.json" ) # choose one where the people are not already sorted assert parser.get_person_count() == 3 # Check get_person_keypoints person_keypoints = parser.get_person_keypoints(1) assert type(person_keypoints) == pd.DataFrame assert person_keypoints.shape == (len(OpenPoseParts), 3) assert list(person_keypoints.columns) == parser.COLUMN_NAMES # Check getting multiple people all_keypoints = parser.get_multiple_keypoints([0, 1]) assert type(all_keypoints) == pd.DataFrame assert all_keypoints.shape == (len(OpenPoseParts), 6) assert list(all_keypoints.columns) == [ "x0", "y0", "confidence0", "x1", "y1", "confidence1", ] # Check that values in person_keypoints are the same as second set of # columns in all_keypoints (apart from column names) all_keypoints_person1 = all_keypoints.iloc[:, 3:6] all_keypoints_person1.columns = person_keypoints.columns assert all_keypoints_person1.equals(person_keypoints) # Check getting only upper parts upper_keypoints = parser.get_person_keypoints( 1, OpenPosePartGroups.UPPER_BODY_PARTS ) assert type(upper_keypoints) == pd.DataFrame assert upper_keypoints.shape == ( len(OpenPosePartGroups.UPPER_BODY_PARTS), 3, ) assert OpenPoseParts.L_ANKLE not in upper_keypoints.index # Test person ordering (0 is left-most, 1 is next) sorted_person_keypoints = parser.sort_persons_by_x_position(all_keypoints) assert ( sorted_person_keypoints.loc[OpenPoseParts.MID_HIP.value].iloc[0] < sorted_person_keypoints.loc[OpenPoseParts.MID_HIP.value].iloc[3] ) # Test handing in a confidence threshold (and make sure it replaces values by the same values) sorted_person_keypoints2 = parser.get_multiple_keypoints( [0, 1], None, 0.7, sorted_person_keypoints ) assert sorted_person_keypoints.equals(sorted_person_keypoints2)
2.578125
3
news_outlet/settings.py
dmahon10/django-tiered-membership-web-app
0
12793570
import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent SECRET_KEY = os.environ.get('SECRET_KEY') ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1'] ENIVRONMENT = os.environ.get('ENVIRONMENT', default='development') SECRET_KEY = os.environ.get('SECRET_KEY') DEBUG = int(os.environ.get('DEBUG', default=0)) USE_S3 = int(os.environ.get('USE_S3', default=1)) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'whitenoise.runserver_nostatic', # whitenoise 'django.contrib.staticfiles', 'django.contrib.sites', # Third party 'crispy_forms', 'allauth', 'allauth.account', #'storages', 'ckeditor', 'ckeditor_uploader', 'debug_toolbar', # Local 'users.apps.UsersConfig', 'pages.apps.PagesConfig', 'articles.apps.ArticlesConfig', 'payments.apps.PaymentsConfig', ] MIDDLEWARE = [ #'django.middleware.cache.UpdateCacheMiddleware', # caching 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', # whitenoise 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', #'django.middleware.cache.FetchFromCacheMiddleware', # caching ] ROOT_URLCONF = 'news_outlet.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'news_outlet.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'PASSWORD': '<PASSWORD>', 'HOST': 'db', 'PORT': 5432, } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # Django all-auth AUTH_USER_MODEL = 'users.CustomUser' LOGIN_REDIRECT_URL = 'home' LOGOUT_REDIRECT_URL = 'home' SITE_ID = 1 AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ) ACCOUNT_SESSION_REMEMBER = True ACCOUNT_SIGNUP_PASSWORD_ENTER_TWICE = False ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_UNIQUE_EMAIL = True # Crispy forms CRISPY_TEMPLATE_PACK = 'bootstrap4' # Static files storage if USE_S3: # AWS settings AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY') AWS_STORAGE_BUCKET_NAME = os.environ.get('AWS_STORAGE_BUCKET_NAME') AWS_S3_CUSTOM_DOMAIN = f'{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com' AWS_S3_FILE_OVERWRITE = False AWS_DEFAULT_ACL = 'public-read' DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' # s3 static settings AWS_LOCATION = 'static' STATIC_URL = f'https://{AWS_S3_CUSTOM_DOMAIN}/{AWS_LOCATION}/' STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' else: STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # STATICFILES_FINDERS = [ # "django.contrib.staticfiles.finders.FileSystemFinder", # "django.contrib.staticfiles.finders.AppDirectoriesFinder", # ] STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'),] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # emails if int(os.environ.get('EMAIL')): EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = os.environ.get('EMAIL_HOST') EMAIL_USE_TLS = int(os.environ.get('EMAIL_USE_TLS')) EMAIL_PORT = int(os.environ.get('EMAIL_PORT')) EMAIL_HOST_USER = os.environ.get('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_HOST_PASSWORD') else: EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' DEFAULT_FROM_EMAIL = '<EMAIL>' #production if ENIVRONMENT == 'production': SECURE_BROWSER_XSS_FILTER = True X_FRAME_OPTIONS = 'DENY' SECURE_SSL_REDIRECT = True SECURE_HSTS_SECONDS = 3600 SECURE_HSTS_INCLUDE_SUBDOMAINS = True SECURE_HSTS_PRELOAD = True SECURE_CONTENT_TYPE_NOSNIFF = True SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') #ckEditor X_FRAME_OPTIONS = 'SAMEORIGIN' CKEDITOR_UPLOAD_PATH = 'uploads/' CKEDITOR_IMAGE_BACKEND = 'pillow' CKEDITOR_BROWSE_SHOW_DIRS = True CKEDITOR_CONFIGS = { 'default': { 'toolbar': None, 'extraPlugins': 'codesnippet', }, } # Stripe STRIPE_TEST_PUBLISHABLE_KEY=os.environ.get('STRIPE_TEST_PUBLISHABLE_KEY') STRIPE_TEST_SECRET_KEY=os.environ.get('STRIPE_TEST_SECRET_KEY') # Caching # CACHE_MIDDLEWARE_ALIAS = 'default' # CACHE_MIDDLEWARE_SECONDS = 604800 # CACHE_MIDDLEWARE_KEY_PREFIX = '' # django-debug-toolbar import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS = [ip[:-1] + "1" for ip in ips] # Heroku import dj_database_url db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env)
1.84375
2
Misc Learning/HackerRank 30 Days of Code/14 - Scopes.py
hamil168/Learning-Data-Science
0
12793571
<reponame>hamil168/Learning-Data-Science<gh_stars>0 # -*- coding: utf-8 -*- """ Hacker Rank 30 Days of Code 14 - Scope Created on Sun Jul 22 23:53:27 2018 @author: DRB4 Task: complete Difference class - class constructor that takes an array of integers and saves it to an instance variable named elements - computeDifference method that finds the maximum absolute different between any 2 numbers in N and stores it in the maximumDifference instance variable 1 <= N <= 10 1 <= elements[i] <= 100, where 0 <= i <= N - 1 """ ### MY CODE ### class Difference: def __init__(self, a): self.__elements = a def computeDifference(self): self.maximumDifference = 0 # Need the difference of every element with each other # count over i for i in range(len(self.elements)): # count over i again, only call it j for j in range(len(self.elements) - i): # len(elements) - 1 to keep from double counting diff = abs(self.elements[i] - self.elements[j]) if diff > self.maximumDifference: self.maximumDifference = diff return self.maximumDifference pass # End of Difference class ################# HR CODE ################## _ = input() a = [int(e) for e in input().split(' ')] d = Difference(a) d.computeDifference() print(d.maximumDifference) # TEST CASES # input [1 2 5] output: 4 SUCCESS # input [8 19 3 2 7] output: 17 SUCCESS
3.859375
4
dsatools/operators/_ecdf.py
diarmaidocualain/dsatools
31
12793572
import numpy as np import scipy from ._hist import take_bins __all__ = ['ecdf'] __EPSILON__ = 1e-8 #-------------------------------------------------------------------- def ecdf(x,y=None): ''' Empirical Cumulative Density Function (ECDF). Parameters ----------- * x,y: 1d ndarrays, if y is None, than ecdf only by x will be taken. Returns -------- * if y is not None -> (bins,out_x, out_y); * if y is None -> (bins,out_x). Notes ------- * Based on scipy implementation. * If y is not None, ECDF will be constructed on the joint x and y. * If y is None, only bins and cdf(x) (2 argument) will be returned. * ECDF is calculated as: bins = sort(concatenate(x,y)), cdf_x = (serch&past bins in sort(x))/size(x), cdf_y = (serch&past bins in sort(y))/size(y), where: * bins - bins for cdfs (if y is not None, joint bins). ''' x = np.array(x) x = np.sort(x) ret2 =True if (y is not None): y = np.array(y) y = np.sort(y) else: ret2 = False y=np.array([]) bins = np.concatenate((x,y)) bins=np.sort(bins) x_cdf = np.searchsorted(x,bins, 'right') y_cdf = np.searchsorted(y,bins, 'right') x_cdf = (x_cdf) / x.shape[0] y_cdf = (y_cdf) / y.shape[0] out = (bins,x_cdf) if (ret2): out= (bins,x_cdf,y_cdf) return out #-------------------------------------------------------------------- def hist2cdf(hist_x, normalize = True): ''' The cumulative density function made by histogram. Parameters: * hist_x 1d histogram (ndarray). Returns: * cfd(hist_x) (Cumulative Density Function). ''' hist_x = np.asarray(hist_x) out = np.cumsum(hist_x) if(normalize): out /=np.max(out) # TODO: out /=x.size # more simple! return out #-------------------------------------------------------------------- def cdf_by_hist(x,y=None,n_bins = None, bins = None, take_mean=False): ''' Cumulative density function constructed by histogram. Parameters: * x,y: 1d ndarrays; * n_bins: required number of uniformly distributed bins, * work only if bins is None. * bins: grid of prepared bins (can be ununiform) * take_mean: sustrauct mean if ture. Returns: * y is not None -> (out_x, out_y,bins) * y is None -> (out_x,bins) Notes: * If bins is None and n_bins is None: bins = np.sort(np.concatenate((x,y))). This case make the same result as ecdf! * If bins is None and n_bins <=0: n_bins = x.shape[0]; The case of uniform bins grid! (Differ from ECDF). * For tests: modes n_bins = 't10' and n_bins = 't5' for obtaining uniform bins with x shape/10 and /5 correspondingly ''' #FIXME: the results are sligthly differ from ecdf # TODO: the case xy is the same as for ecfd, but uniform bins may be more valid (see tests) if(bins is None and n_bins is None): bins = take_bins(x,y, n_bins='xy') elif(n_bins == 't10' and bins is None): bins = take_bins(x,y, n_bins=x.shape[0]//10) elif(n_bins == 't5' and bins is None): bins = take_bins(x,y, n_bins=x.shape[0]//5) if(y is None): bins, out_x = hist(x,y=None,n_bins = n_bins, bins = bins, take_mean=take_mean) out_x = hist2cdf(out_x, normalize = True) out = (bins, out_x ) else: bins, out_x, out_y = hist(x,y=y,n_bins = n_bins, bins = bins, take_mean=take_mean) out_x = hist2cdf(out_x, normalize = True) out_y = hist2cdf(out_y, normalize = True) out = (bins,out_x, out_y) return out
2.921875
3
nevernoip/P1422.py
GalvinGao/2019-ProgrammingCourse
0
12793573
def main(x): if x <= 150: return x * .4463 elif x <= 400: return (x - 150) * .4663 + 150 * .4463 else: return 250 * .4663 + 150 * .4463 + (x - 400) * .5663 print("{0:.2f}".format(main(int(input()))))
3.421875
3
Directory-observer/test/__init__.py
hiroki8080/MyPythonLibrary
0
12793574
<filename>Directory-observer/test/__init__.py #!/usr/bin/env python # -*- coding: utf-8 -*- import test_engine __author__ = 'Shishou'
0.945313
1
server/apps/devicelocation/tests/test_device_location.py
iotile/iotile_cloud
0
12793575
import datetime import json import dateutil.parser from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from django.utils import timezone from rest_framework import status from apps.physicaldevice.models import Device from apps.streamfilter.models import * from apps.utils.gid.convert import * from apps.utils.test_util import TestMixin from ..models import * user_model = get_user_model() class DeviceLocationTestCase(TestMixin, TestCase): def setUp(self): self.usersTestSetup() self.orgTestSetup() self.deviceTemplateTestSetup() self.pd1 = Device.objects.create_device(project=self.p1, label='d1', template=self.dt1, created_by=self.u2) self.pd2 = Device.objects.create_device(project=self.p2, label='d2', template=self.dt1, created_by=self.u3) def tearDown(self): DeviceLocation.objects.all().delete() Device.objects.all().delete() self.deviceTemplateTestTearDown() self.orgTestTearDown() self.userTestTearDown() def testLocation(self): location = DeviceLocation.objects.create( timestamp=timezone.now(), target_slug=self.pd1.slug, user=self.u2 ) self.assertIsNotNone(location) self.assertEqual(location.target.id, self.pd1.id) def testMemberPermissions(self): """ Test that people with no permissions cannot access """ map_url = reverse('devicelocation:map', kwargs={'slug': self.pd1.slug}) self.client.login(email='<EMAIL>', password='<PASSWORD>') membership = self.p1.org.register_user(self.u3, role='m1') membership.permissions['can_read_device_locations'] = False membership.save() resp = self.client.get(map_url) self.assertEqual(resp.status_code, status.HTTP_403_FORBIDDEN) membership.permissions['can_read_device_locations'] = True membership.permissions['can_access_classic'] = False membership.save() resp = self.client.get(map_url) self.assertEqual(resp.status_code, status.HTTP_403_FORBIDDEN) self.client.logout()
2.203125
2
accounts/utils.py
shunnyjang/SM-ChooIT-DRF
0
12793576
<filename>accounts/utils.py from random import choice from accounts.models import Nickname, NicknameArchive def get_nickname(): nickname = "" count = 1 adj_list = Nickname.objects.filter(part='a').values_list('content') adj = choice(adj_list)[0] noun_list = Nickname.objects.filter(part='n').values_list('content', 'emoji') noun = choice(noun_list) emoji = noun[1] nickname = adj + noun[0] try: archive = NicknameArchive.objects.get(nickname=nickname) count = archive.count archive.count += 1 archive.save() except NicknameArchive.DoesNotExist: NicknameArchive.objects.create(nickname=nickname) return emoji, nickname+str(count)
2.421875
2
_setup/management/commands/setup.py
marcoEDU/HackerspaceWebsiteTemplate
9
12793577
<reponame>marcoEDU/HackerspaceWebsiteTemplate<filename>_setup/management/commands/setup.py<gh_stars>1-10 from django.core.management.base import BaseCommand from _setup.models import Setup class Command(BaseCommand): help = "start the setup" def handle(self, *args, **options): Setup()._menu()
1.617188
2
python/frost_rcmrd.py
vightel/FloodMapsWorkshop
24
12793578
#!/usr/bin/env python # # From <NAME>, <EMAIL> # RCMRD Nairobi, Kenya # Minor teaks for MacOSX Pat Cappelaere - Vightel Corporation # # Here is the link where you can get the original hdfs and the resulting tif files # http://172.16.17.32/frostmaps/ # http://172.16.17.32/frostmaps/ import time import datetime import glob,os, fnmatch #import arcpy #import smtplib #from email.MIMEMultipart import MIMEMultipart #from email.MIMEBase import MIMEBase #from email.MIMEText import MIMEText #from email.Utils import COMMASPACE, formatdate #from email import Encoders #import shutil import config one_day = datetime.timedelta(days=1) #_today = datetime.date.today()- one_day # PGC Debug _today = datetime.date(2014,10,2) _month = _today.month _day = _today.day _year = str(_today.year) _yrDay = str(_today.timetuple()[7]) if len(_yrDay)==1: _yrDay = "00" + _yrDay elif len(_yrDay)==2: _yrDay = "0" + _yrDay else: _yrDay=_yrDay BASE_DIR = config.FROST_DIR outPtDir = os.path.join(BASE_DIR, _year, _yrDay, 'output') if not os.path.exists(outPtDir): os.makedirs(outPtDir) srcPath = os.path.join(BASE_DIR, _year) if not os.path.exists(srcPath): os.makedirs(srcPath) resources = os.path.join(BASE_DIR, 'resources') templateMXD = os.path.join(resources, 'Frost2.mxd') #"H:\\Frost\\_resources\\Frost2.mxd" targetMXD = os.path.join(resources, 'Frost3.mxd') #"H:\\Frost\\_resources\\Frost3.mxd" symbologyLayerFile = os.path.join(resources, 'LST2.lyr') #"H:\\Frost\\_resources\\LST2.lyr" frostMapTitle = "Estimated Frost Occurrences on " + str(_today + one_day) #ouputMapFileName = "H:\\Frost\\_workingDir\\maps\\Frost_" + str(_today + one_day) ouputMapFileName = os.path.join(BASE_DIR, _year, _yrDay, "Frost_" + str(_today + one_day)) print (_today) #...................................................................................................................................................................... def send_mail(send_from, send_to, subject, text, files=[], server="192.168.0.243"): assert type(send_to)==list assert type(files)==list msg = MIMEMultipart() msg['From'] = send_from msg['To'] = COMMASPACE.join(send_to) msg['Date'] = formatdate(localtime=True) msg['Subject'] = subject msg.attach( MIMEText(text) ) for f in files: part = MIMEBase('application', "octet-stream") part.set_payload( open(f,"rb").read() ) Encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="%s"' % os.path.basename(f)) msg.attach(part) smtp = smtplib.SMTP(server) smtp.set_debuglevel(1) smtp.ehlo() smtp.starttls() #smtp.ehlo() smtp.login('servir', 'servir2013') smtp.sendmail(send_from, send_to, msg.as_string()) smtp.close() #.............................................................................................................................. def _getFrostFiles(tifPath): frostFiles =[] try: dirList=os.listdir(tifPath) for fname in dirList: if fnmatch.fnmatch(fname, '*.tif'): #Process: Build Pyramids And Statistics for the TIF file arcpy.BuildPyramidsandStatistics_management(srcPath + _yrDay + "\\output\\" + fname, "INCLUDE_SUBDIRECTORIES", "BUILD_PYRAMIDS", "CALCULATE_STATISTICS", "NONE") #Process: Get Raster Properties and determine the maxmum cell value #maxCellValue = arcpy.GetRasterProperties_management(srcPath + "\\" + fname, "MAXIMUM") rst = arcpy.Raster(srcPath + _yrDay + "\\output\\" + fname) maxCellValue = rst.maximum if str(maxCellValue) == "0.0": print str(maxCellValue) + "T" else: print str(maxCellValue) + "F" frostFiles.append(fname) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) return frostFiles #print _getFrostFiles(srcPath)[0] #..................................................................................................................................................................... def _mapping(tmp_mxdPath, symbologyLayer, target_mxdPath, MapTitle, outPutFileName): try: mxd = arcpy.mapping.MapDocument(tmp_mxdPath) #("D:\\Modis_LST\\Frost\\Frost2.mxd") df = arcpy.mapping.ListDataFrames(mxd, "Layers")[0] #Add frost layers to the map document print "Adding frost layers" for tifFile in _getFrostFiles(srcPath + _yrDay + "\\output\\" ): print tifFile result = arcpy.MakeRasterLayer_management(srcPath + _yrDay + "\\output\\" + tifFile, tifFile + ".lyr") print result.getOutput(0) addLayer = result.getOutput(0) #addLayer = arcpy.mapping.Layer(srcPath +"\\" + tifFile) arcpy.mapping.AddLayer(df, addLayer, "BOTTOM") #Apply Frost symbology to the layers print "Applying symbology" lryIndx = 0 for lyr in arcpy.mapping.ListLayers(mxd, "", df): if lryIndx > 1: arcpy.ApplySymbologyFromLayer_management(lyr,symbologyLayer) lryIndx=lryIndx+1 #Add new Map title print "Titling map" for elm in arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT"): if elm.name == "map": elm.text=MapTitle print elm.text if elm.name == "day": elm.text="Map Reference no :- " + _yrDay print elm.text mxd.saveACopy(target_mxdPath) #("D:\\Modis_LST\\Frost\\Frost3.mxd") del mxd #Exprot to pdf and JPG print "Exporting maps" mappingMxd = arcpy.mapping.MapDocument(target_mxdPath) arcpy.mapping.ExportToPDF(mappingMxd, outPutFileName + ".pdf") arcpy.mapping.ExportToJPEG(mappingMxd, outPutFileName + ".jpg") #Email the maps except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) #....................................................................................................................................................................... def _getLSTFile(_time): global _yrDay, _year lstfname='MYD11_L2.A' try: if len(_yrDay) == 2: _yrDay = "0" + _yrDay print _yrDay lstfname= os.path.join(_yrDay, "lst", lstfname +_year + _yrDay + "." + _time +".005.NRT.hdf") print lstfname except IOError as e: print e return lstfname #....................................................................................................................................................................... def _getGeolocationFile(_time): global _yrDay, _year lstfname='MYD03.A' try: if len(_yrDay) == 2: _yrDay = "0" + _yrDay print _yrDay lstfname= os.path.join(_yrDay, "geo", lstfname +_year + _yrDay + "."+ _time +".005.NRT.hdf") print lstfname except IOError as e: print e return lstfname #....................................................................................................................................................................... def _getOutputFile(_time): global _yrDay, _year lstfname='Frost_' try: if len(_yrDay) == 2: _yrDay = "0" + _yrDay print _yrDay lstfname= os.path.join(_yrDay, "output", lstfname +_year + _yrDay + "."+ _time +".tif") print lstfname except IOError as e: print e return lstfname #---------------------------------------------------------------------------------------------------------------------------------------------------------------------- def _mrtSwath2Gird( inPutLST, OutPuTIF, inPutGeoloc): try: #cmd1='swath2grid -if=D:\\Modis_LST\\2014\\027\\lst\\MYD11_L2.A2013027.0030.005.NRT.hdf -of=D:\\Modis_LST\\2014\\027\\output\\output1.tif -gf=D:\\Modis_LST\\2014\\027\\geo\\MYD03.A2013027.0030.005.NRT.hdf -off=GEOTIFF_FMT -sds=LST -kk=NN -oproj=GEO -oprm="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0" -oul="33.0 5.5" -olr="42.0 -5.5" -osst=LAT_LONG -osp=8' #cmd='swath2grid -if='+ inPutLST + ' -of='+OutPuTIF+' -gf='+inPutGeoloc+' -off=GEOTIFF_FMT -sds=LST -kk=NN -oproj=GEO -oprm="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0" -oul="33.0 5.5" -olr="42.0 -5.5" -osst=LAT_LONG -osp=8' cmd='swath2grid -if='+ inPutLST + ' -of='+OutPuTIF+' -gf='+inPutGeoloc+' -off=GEOTIFF_FMT -sds=LST -kk=NN -oproj=GEO -oprm="0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0" -oul="14.5 15.5" -olr="51.5 -13.5" -osst=LAT_LONG -osp=8' os.system(cmd) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- def _theMain(theTime): try: lstDir = srcPath _lstFname = _getLSTFile(theTime) _geoLocFname = _getGeolocationFile(theTime) _outPuttif = _getOutputFile(theTime) inLst = os.path.join(lstDir, _lstFname) #'D:\\Modis_LST\\2013\\027\\lst\\MYD11_L2.A2013027.0030.005.NRT.hdf' outTif = os.path.join(lstDir, _outPuttif) #'D:\\Modis_LST\\2013\\027\\output\\output1.tif' inGeoloc = os.path.join(lstDir, _geoLocFname) #'D:\\Modis_LST\\2013\\027\\geo\\MYD03.A2013027.0030.005.NRT.hdf' if ( not os.path.isfile(inLst)) or ( not os.path.isfile(inGeoloc)): print("Error: %s file not found" % inLst ) print("Or Error: %s file not found" % inGeoloc) else: _mrtSwath2Gird(inLst, outTif, inGeoloc) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _hr=0 while _hr < 24: _min=0 hrStr=str(_hr) if len(str(_hr)) == 1: hrStr = "0" + str(_hr) while _min < 60: if len(str(_min)) == 1: minStr = "0" + str(_min) else: minStr=str(_min) _thhr = hrStr + minStr _theMain(_thhr) #print _thhr _min=_min+5 _hr = _hr+1 #_mapping(templateMXD, symbologyLayerFile, targetMXD, frostMapTitle, ouputMapFileName) #Send frost products to users #filesToAttch = [ouputMapFileName +".pdf", ouputMapFileName +".jpg"] #recp = ["<EMAIL>", "<EMAIL>", "<EMAIL>"] #recp = ["<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>" ] #recp2 = ["<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>"] #send_mail(send_from, send_to, subject, text, files=[], server="192.168.0.243"): #send_mail("<EMAIL>", recp, "Frost Map for " + str(_today + one_day), "Please find the attached Frost map for " + str(_today + one_day) + ". You can also find the same map on http://172.16.17.32/frostmaps/ This email was automatically send by Frost Monitoring System." , filesToAttch, "192.168.0.243:25") #send_mail("<EMAIL>", recp2, "Frost Map for " + str(_today + one_day), "Please find the attached Frost map for " + str(_today + one_day) + ". You can also find the same map on http://172.16.17.32/frostmaps/ This email was automatically send by Frost Monitoring System." , filesToAttch, "192.168.0.243:25")
2.140625
2
Receive.py
jackSN8/Jack_Hydrogen_line_software
0
12793579
import operator import math import numpy as np from rtlsdr import RtlSdr import matplotlib.pyplot as plt # Available sample rates ''' 3200000Hz 2800000Hz 2560000Hz 2400000Hz 2048000Hz 1920000Hz 1800000Hz 1400000Hz 1024000Hz 900001Hz 250000Hz ''' # Receiver class. This needs receiving parameters and will receive data from the SDR class Receiver: def __init__(self, sample_rate, ppm, resolution, num_FFT, num_med): self.sdr = RtlSdr() # configure SDR self.sdr.sample_rate = sample_rate self.sdr.center_freq = 1420405000 # For some reason the SDR doesn't want to set the offset PPM to 0 so we avoid that if ppm != 0: self.sdr.freq_correction = ppm self.sdr.gain = 'auto' self.resolution = 2**resolution self.num_FFT = num_FFT self.num_med = num_med # Reads data from SDR, processes and writes it def receive(self): print(f'Receiving {self.num_FFT} bins of {self.resolution} samples each...') data_PSD = self.sample() # Observed frequency range start_freq = self.sdr.center_freq - self.sdr.sample_rate/2 stop_freq = self.sdr.center_freq + self.sdr.sample_rate/2 freqs = np.linspace(start = start_freq, stop = stop_freq, num = self.resolution) # Samples a blank spectrum to callibrate spectrum with. self.sdr.center_freq = self.sdr.center_freq + 3000000 blank_PSD = self.sample() SNR_spectrum = self.estimate_SNR(data = data_PSD, blank = blank_PSD) SNR_median = self.median(SNR_spectrum) if self.num_med != 0 else SNR_spectrum # Close the SDR self.sdr.close() return freqs, SNR_median # Returns numpy array with PSD values averaged from "num_FFT" datasets def sample(self): counter = 0.0 PSD_summed = (0, )* self.resolution while (counter < self.num_FFT): samples = self.sdr.read_samples(self.resolution) # Applies window to samples in time domain before performing FFT window = np.hanning(self.resolution) windowed_samples = samples * window # Perform FFT and PSD-analysis PSD = np.abs(np.fft.fft(windowed_samples)/self.sdr.sample_rate)**2 PSD_checked = self.check_for_zero(PSD) PSD_log = 10*np.log10(PSD_checked) PSD_summed = tuple(map(operator.add, PSD_summed, np.fft.fftshift(PSD_log))) counter += 1.0 averaged_PSD = tuple(sample/counter for sample in PSD_summed) return averaged_PSD # Calculates SNR from spectrum and H-line SNR def estimate_SNR(self, data, blank): SNR = np.array(data)-np.array(blank) # Ghetto noise floor estimate: noise_floor = sum(SNR[0:10])/10 shifted_SNR = SNR-noise_floor return shifted_SNR # Median filter for rfi-removal def median(self, data): for i in range(len(data)): data[i] = np.mean(data[i:i+self.num_med]) return data # Checks if samples have been dropped and replaces 0.0 with next value def check_for_zero(self, PSD): try: index = list(PSD).index(0.0) print('Dropped sample was recovered!') PSD[index] = (PSD[index+1]+PSD[index-1])/2 return PSD except: return PSD
3.015625
3
experiments/3.py
seyfullah/stockprediction
0
12793580
from bindsnet.network.nodes import Input, LIFNodes from bindsnet.network.topology import Connection from bindsnet.learning import PostPre source_layer = Input(n=100, traces=True) target_layer = LIFNodes(n=1000, traces=True) connection = Connection( source=source_layer, target=target_layer, update_rule=PostPre, nu=(1e-4, 1e-2))
2.046875
2
ext/candc/src/api/nlp/__init__.py
TeamSPoon/logicmoo_nlu
6
12793581
# C&C NLP tools # Copyright (c) Universities of Edinburgh, Oxford and Sydney # Copyright (c) <NAME> # # This software is covered by a non-commercial use licence. # See LICENCE.txt for the full text of the licence. # # If LICENCE.txt is not included in this distribution # please email <EMAIL> to obtain a copy. from base import * import config import io import model import tagger import ccg def load(super, parser, load_model = True): int_cfg = ccg.IntegrationConfig() super_cfg = tagger.SuperConfig() super_cfg.path.value = super parser_cfg = ccg.ParserConfig() parser_cfg.path.value = parser return ccg.Integration(int_cfg, super_cfg, parser_cfg, Sentence()) def read(sent, s): tokens = [tuple(x.split('|')) for x in s.split()] sent.words = [t[0] for t in tokens] sent.pos = [t[1] for t in tokens] sent.msuper = [[t[2]] for t in tokens]
2.375
2
blog/models.py
minielectron/portfolio
0
12793582
from django.db import models # Create your models here. class Blog(models.Model): """ Represents a project model in home page. """ title = models.CharField(max_length=50) description = models.CharField(max_length=150) date = models.DateField() def __str__(self): return self.title
2.703125
3
simple_client.py
stefmarais/haas-ngc-simulator
0
12793583
import telnetlib import time tn = telnetlib.Telnet('192.168.137.226', 5051) #tn.write(b"Client") time.sleep(1) for i in range(5): print("Now writing ?Q102") tn.write(b"?Q102\n") status = tn.read_until(b"\n",timeout=1).decode("utf-8") print(f"Data received: {status}") print("Now writing ?Q104") tn.write(b"?Q104\n") status2 = tn.read_until(b"\n",timeout=1).decode("utf-8") print(f"Data received: {status2}") print("Now writing ?Q200") tn.write(b"?Q200\n") status2 = tn.read_until(b"\n",timeout=1).decode("utf-8") print(f"Data received: {status2}") print("Now writing ?Q500") tn.write(b"?Q500\n") status2 = tn.read_until(b"\n",timeout=1).decode("utf-8") print(f"Data received: {status2}") tn.close()
2.84375
3
src/main.py
SantaSpeen/CLI-in-Python
3
12793584
<filename>src/main.py import getpass import logging import os import platform from console import Console, ConsoleIO # Init modules cli = Console(prompt_in=">", prompt_out="]:", not_found="Command \"%s\" not found in alias.", file=ConsoleIO, debug=False) logging.basicConfig(level=logging.NOTSET, format="%(asctime)s - %(name)-5s - %(levelname)-7s - %(message)s") def cli_print(): """ How can I write text to the console? Read below! """ cli.log("cli.og") cli.write("cli.write") print(end="\n\n\n") def logger_preview(): """ I use logging and want its output to be in the console! """ cli.logger_hook() # All calls below will be implemented via Console logging.debug("Debug log") logging.warning('Warning log') logging.error("Error log") logging.info("Info log") print(end="\n\n\n") def builtins_preview(): """ I want print to be output like cli.log """ # Output below without hook print("No builtins_hook here") cli.builtins_hook() # Output below from the hook # After hook cli = console print("builtins_hook here") console.write("console.write") console.log("console.log") console['[] log'] console << "<< log" ConsoleIO.write("\n\n") # Or console.get_IO.write("\n\n") def cli_echo(argv: list): """ Help message here """ message = f"argv: {argv}" return message def cli_error(): """ Print error message """ raise Exception("Test error message") def cli_exit(): """ Kill process """ pid = os.getpid() print(f"\r$ kill {pid}") os.system(f"kill {pid}") def cli_uname(): """ Print uname information """ uname = platform.uname() user = getpass.getuser() return f"{user}@{uname.node} -> {uname.system} {uname.release} ({uname.version})" def cli_mode(): ConsoleIO.write("\rtype help\n") cli.add("echo", cli_echo, argv=True) cli.add("error", cli_error) cli.add("exit", cli_exit) cli.add("uname", cli_uname) cli.run() # Or you may use # cli.run_while(lambda: <some code>) if __name__ == '__main__': cli_print() logger_preview() builtins_preview() cli_mode()
3.78125
4
src/pypiserver_testing/_version.py
pypiserver/pypiserver-testing-common
0
12793585
"""Define version constants.""" import re __version__ = '1.0.0' __version_info__ = tuple(re.split('[.-]', __version__))
1.96875
2
tests/__init__.py
mportesdev/handpick
0
12793586
<filename>tests/__init__.py def is_even(n): return n % 2 == 0 def is_positive(n): return n > 0 # basic sequences (tuple, list, str, bytes, bytearray) SEQUENCES = ( [ [ "hand", ], b"pick", ( 42, b"hand", ), ], ( "3.14", (1.414,), [ "15", bytearray(b"pick"), ], ), ) # similar to above, modified to contain dictionaries SEQS_DICTS = ( [ [ "hand", ], b"pick", { 42: b"hand", }, ], ( "3.14", (1.414,), { ("15",): bytearray(b"pick"), }, ), ) # similar to above, modified to contain set and frozenset COLLECTIONS = ( [ { "hand", }, b"pick", { 42: b"hand", }, ], ( "3.14", (frozenset({1.414}),), { ("15",): bytearray(b"pick"), }, ), )
3.234375
3
solr-admin-app/config.py
sumesh-aot/namex
4
12793587
<filename>solr-admin-app/config.py import os import dotenv dotenv.load_dotenv(dotenv.find_dotenv(), override=True) CONFIGURATION = { 'development': 'config.DevConfig', 'testing': 'config.TestConfig', 'production': 'config.Config', 'default': 'config.Config' } class Config(object): SECRET_KEY = 'My Secret' # Normal Keycloak parameters. OIDC_CLIENT_SECRETS = os.getenv('SOLR_ADMIN_APP_OIDC_CLIENT_SECRETS', 'solr-admin-app/keycloak_client_secrets/secrets.json') OIDC_SCOPES = ['openid', 'email', 'profile'] OIDC_VALID_ISSUERS = [os.getenv('SOLR_ADMIN_APP_OIDC_VALID_ISSUERS', 'http://localhost:8081/auth/realms/master')] OVERWRITE_REDIRECT_URI = os.getenv('SOLR_ADMIN_APP_OVERWRITE_REDIRECT_URI', '') print("OIDC" + OIDC_CLIENT_SECRETS) # Undocumented Keycloak parameter: allows sending cookies without the secure flag, which we need for the local # non-TLS HTTP server. Set this to non-"True" for local development, and use the default everywhere else. OIDC_ID_TOKEN_COOKIE_SECURE = os.getenv('SOLR_ADMIN_APP_OIDC_ID_TOKEN_COOKIE_SECURE', 'True') == 'True' # Turn this off to get rid of warning messages. In future versions of SQLAlchemy, False will be the default and # this can be removed. SQLALCHEMY_TRACK_MODIFICATIONS = False # PostgreSQL Connection information. DATABASE_USER = os.getenv('NAMES_ADMIN_DATABASE_USERNAME', '') DATABASE_PASSWORD = os.getenv('NAMES_ADMIN_DATABASE_PASSWORD', '') DATABASE_HOST = os.getenv('NAMES_ADMIN_DATABASE_HOST', '') DATABASE_PORT = os.getenv('NAMES_ADMIN_DATABASE_PORT', '5432') DATABASE_NAME = os.getenv('NAMES_ADMIN_DATABASE_NAME', '') SQLALCHEMY_DATABASE_URI = 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=DATABASE_USER, password=<PASSWORD>, host=DATABASE_HOST, port=int(DATABASE_PORT), name=DATABASE_NAME) SYNONYMS_DATABASE_USER = os.getenv('NAMES_ADMIN_SYNONYMS_DATABASE_USERNAME', '') SYNONYMS_DATABASE_PASSWORD = os.getenv('NAMES_ADMIN_SYNONYMS_DATABASE_PASSWORD', '') SYNONYMS_DATABASE_HOST = os.getenv('NAMES_ADMIN_SYNONYMS_DATABASE_HOST', '') SYNONYMS_DATABASE_PORT = os.getenv('NAMES_ADMIN_SYNONYMS_DATABASE_PORT', '5432') SYNONYMS_DATABASE_NAME = os.getenv('NAMES_ADMIN_SYNONYMS_DATABASE_NAME', 'synonyms') SQLALCHEMY_BINDS = { 'synonyms': 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=SYNONYMS_DATABASE_USER, password=<PASSWORD>, host=SYNONYMS_DATABASE_HOST, port=int(SYNONYMS_DATABASE_PORT), name=SYNONYMS_DATABASE_NAME) } DEBUG = False TESTING = False class DevConfig(Config): DEBUG = True TESTING = True # SQLALCHEMY_ECHO = True class TestConfig(Config): DEBUG = True TESTING = True
2.1875
2
python/testData/inspections/PyDictDuplicateKeysInspection/test.py
teddywest32/intellij-community
2
12793588
<filename>python/testData/inspections/PyDictDuplicateKeysInspection/test.py<gh_stars>1-10 dict = {<warning descr="Dictionary contains duplicate keys key_1">key_1</warning> : 1, key_2: 2, <warning descr="Dictionary contains duplicate keys key_1">key_1</warning> : 3} dict = {'key_1' : 1, <warning descr="Dictionary contains duplicate keys 'key_2'">'key_2'</warning>: 2, <warning descr="Dictionary contains duplicate keys 'key_2'">'key_2'</warning> : 3} a = {} {'key_1' : 1, 'key_2': 2} import random def foo(): return random.random() {foo(): 1, foo():2} # PY-2511 dict = dict([(<warning descr="Dictionary contains duplicate keys key">'key'</warning>, 666), (<warning descr="Dictionary contains duplicate keys key">'key'</warning>, 123)]) dict = dict(((<warning descr="Dictionary contains duplicate keys key">'key'</warning>, 666), (<warning descr="Dictionary contains duplicate keys key">'key'</warning>, 123))) dict = dict(((<warning descr="Dictionary contains duplicate keys key">'key'</warning>, 666), ('k', 123)), <warning descr="Dictionary contains duplicate keys key">key</warning>=4) dict([('key', 666), ('ky', 123)])
2.875
3
tests/test_node.py
jherland/browson
0
12793589
<filename>tests/test_node.py<gh_stars>0 import textwrap from browson.node import Node class TestNode_build: def verify_scalar(self, n, expect_kind, expect_value, expect_name=""): assert n.name == expect_name assert n.kind is expect_kind assert n.value == expect_value assert n.is_leaf def verify_collection(self, n, expect_kind, expect_value, expect_name=""): assert n.name == expect_name assert n.kind is expect_kind assert n.value == expect_value assert n.kind in {list, tuple, set, dict} assert not n.is_leaf assert len(n.children) == len(expect_value) if n.kind is dict: expect_children = [ Node(f"{expect_name}.{k}", type(v), v, parent=n, key=k) for k, v in expect_value.items() ] else: expect_children = [ Node(f"{expect_name}[{i}]", type(c), c, parent=n) for i, c in enumerate(expect_value) ] assert n.children == expect_children # singletons def test_None(self): n = Node.build(None) self.verify_scalar(n, type(None), None) def test_True(self): n = Node.build(True) self.verify_scalar(n, bool, True) def test_False(self): n = Node.build(False) self.verify_scalar(n, bool, False) # numbers def test_zero(self): n = Node.build(0) self.verify_scalar(n, int, 0) def test_positive_int(self): n = Node.build(1234) self.verify_scalar(n, int, 1234) def test_negative_int(self): n = Node.build(-5678) self.verify_scalar(n, int, -5678) def test_float_zero(self): n = Node.build(0.0) self.verify_scalar(n, float, 0.0) def test_float_nonzero(self): n = Node.build(1.234) self.verify_scalar(n, float, 1.234) def test_float_negative_inf(self): n = Node.build(float("-inf")) self.verify_scalar(n, float, float("-inf")) def test_float_nan(self): n = Node.build(float("nan")) # NaN cannot be compared to itself assert n.name == "" assert n.kind is float assert str(n.value) == "nan" assert n.is_leaf # strings def test_empty_string(self): n = Node.build("") self.verify_scalar(n, str, "") def test_short_string(self): n = Node.build("foo") self.verify_scalar(n, str, "foo") # lists def test_list_empty(self): n = Node.build([]) self.verify_collection(n, list, []) def test_list_single_item(self): n = Node.build([123]) self.verify_collection(n, list, [123]) def test_list_of_singletons(self): n = Node.build([None, True, False]) self.verify_collection(n, list, [None, True, False]) def test_list_of_ints(self): n = Node.build([123, -456, 789]) self.verify_collection(n, list, [123, -456, 789]) # nested lists def test_list_of_empty_list(self): n = Node.build([[]]) assert n.name == "" assert n.kind is list assert n.value == [[]] assert not n.is_leaf assert len(n.children) == 1 n2 = n.children[0] assert n2.name == "[0]" assert n2.kind is list assert n2.value == [] assert not n2.is_leaf assert len(n2.children) == 0 self.verify_collection(n2, list, [], "[0]") def test_list_of_list_of_list_of_one_string(self): n = Node.build([[["foo"]]]) assert n.name == "" assert n.kind is list assert n.value == [[["foo"]]] assert not n.is_leaf assert len(n.children) == 1 n2 = n.children[0] assert n2.name == "[0]" assert n2.kind is list assert n2.value == [["foo"]] assert not n2.is_leaf assert len(n2.children) == 1 n3 = n2.children[0] self.verify_collection(n3, list, ["foo"], "[0][0]") # tuples def test_tuple_empty(self): n = Node.build(()) self.verify_collection(n, tuple, ()) def test_tuple_single_item(self): n = Node.build(("foo",)) self.verify_collection(n, tuple, ("foo",)) def test_tuple_heterogeneous(self): n = Node.build((None, "foo", -321)) self.verify_collection(n, tuple, (None, "foo", -321)) # sets def test_set_empty(self): n = Node.build(set()) self.verify_collection(n, set, set()) def test_set_single_item(self): n = Node.build({"foo"}) self.verify_collection(n, set, {"foo"}) def test_set_multiple(self): n = Node.build({"foo", 456, "bar", 123}) self.verify_collection(n, set, {"foo", 456, "bar", 123}) # dicts def test_dict_empty(self): n = Node.build({}) self.verify_collection(n, dict, {}) def test_dict_single_item(self): n = Node.build({"foo": 123}) self.verify_collection(n, dict, {"foo": 123}) def test_dict_multiple_items(self): n = Node.build({"foo": 123, "bar": 456, "baz": 789}) self.verify_collection(n, dict, {"foo": 123, "bar": 456, "baz": 789}) class TestNode_dfwalk: def test_leaf_node(self): n = Node.build("foo") assert list(n.dfwalk()) == [Node("", str, "foo")] def test_simple_list(self): n = Node.build(["foo", 123, True]) assert list(n.dfwalk()) == [ n, Node("[0]", str, "foo", parent=n), Node("[1]", int, 123, parent=n), Node("[2]", bool, True, parent=n), ] def test_simple_dict(self): n = Node.build({"foo": 123, "bar": 456, "baz": 789}) assert list(n.dfwalk()) == [ n, Node(".foo", int, 123, key="foo", parent=n), Node(".bar", int, 456, key="bar", parent=n), Node(".baz", int, 789, key="baz", parent=n), ] def test_nested_dict(self): n = Node.build({"foo": {"a": 1, "b": 2}, "bar": [3, 4], "baz": {5, 6}}) foo = Node( ".foo", dict, {"a": 1, "b": 2}, parent=n, key="foo", children=[] ) foo_a = Node(".foo.a", int, 1, parent=foo, key="a") foo_b = Node(".foo.b", int, 2, parent=foo, key="b") foo.children.extend([foo_a, foo_b]) bar = Node(".bar", list, [3, 4], parent=n, key="bar", children=[]) bar_0 = Node(".bar[0]", int, 3, parent=bar) bar_1 = Node(".bar[1]", int, 4, parent=bar) bar.children.extend([bar_0, bar_1]) baz = Node(".baz", set, {5, 6}, parent=n, key="baz", children=[]) baz_0 = Node(".baz[0]", int, 5, parent=baz) baz_1 = Node(".baz[1]", int, 6, parent=baz) baz.children.extend([baz_0, baz_1]) assert list(n.dfwalk()) == [ n, foo, foo_a, foo_b, bar, bar_0, bar_1, baz, baz_0, baz_1, ] def test_str_visit_heterogeneous_structure(self): n = Node.build( { "dict": {"key": 321, "other_key": None, "last_key": False}, "list": [1, 2, 3], "tuple": (4, 5, 6), "set": {7, 8, 9}, "nested": ([{"key": {"value"}}],), } ) def yield_str(node): yield str(node) assert "\n".join(n.dfwalk(yield_str)) == textwrap.dedent( """\ /dict/5 .dict/dict/3 .dict.key/int/* .dict.other_key/NoneType/* .dict.last_key/bool/* .list/list/3 .list[0]/int/* .list[1]/int/* .list[2]/int/* .tuple/tuple/3 .tuple[0]/int/* .tuple[1]/int/* .tuple[2]/int/* .set/set/3 .set[0]/int/* .set[1]/int/* .set[2]/int/* .nested/tuple/1 .nested[0]/list/1 .nested[0][0]/dict/1 .nested[0][0].key/set/1 .nested[0][0].key[0]/str/*""" ) def test_node_ancestors(): n = Node.build({"foo": {"bar": {"baz": "xyzzy"}}}) assert list(n.ancestors()) == [] foo = n.children[0] assert list(foo.ancestors()) == [n] bar = foo.children[0] assert list(bar.ancestors()) == [foo, n] baz = bar.children[0] assert list(baz.ancestors()) == [bar, foo, n]
2.515625
3
scripts/parse_kif.py
SakodaShintaro/Miacis
10
12793590
<gh_stars>1-10 #!/usr/bin/env python3 import glob import codecs import numpy as np import matplotlib.pyplot as plt import japanize_matplotlib from natsort import natsorted # もし序盤が弱い→序盤から悪くしてそのまま負ける # もし終盤が弱い→序盤・中盤は良いのに終盤で負ける turns = list() BIN_SIZE = 31 BIN_WIDTH = 2 / BIN_SIZE result_points = [list() for _ in range(BIN_SIZE)] PHASE_NUM = 3 result_points_each_phase = [[list() for _ in range(BIN_SIZE)] for i in range(PHASE_NUM)] total_result_for_miacis = [0, 0, 0] file_names = natsorted(glob.glob("./*.kif")) for file_name in file_names: f = codecs.open(file_name, 'r', 'shift_jis') date = f.readline().strip() startpos = f.readline().strip() black = f.readline().strip() white = f.readline().strip() label = f.readline().strip() is_miacis_black = "Miacis" in black miacis_scores = list() result = None while True: # 指し手が記述されている行を読み込み line1 = f.readline().strip() elements1 = line1.split() # 評価値が記述されている行を読み込み line2 = f.readline().strip() elements2 = line2.split() # 指し手を取得 turn = int(elements1[0]) move = elements1[1] # 同* という行動は"同 *"と記録されるため分割されてしまう if move == "同": move += elements1[2] if move == "投了": # print(turn, move, end=" ") turns.append(turn - 1) # 読み筋が記録されている場合があるのでコメントだったら読み込み直す if line2[0:2] == "**": line2 = f.readline().strip() # 勝敗を解釈 if "先手の勝ち" in line2: # print(f"勝者:{black}") result = 1 elif "後手の勝ち" in line2: # print(f"勝者:{white}") result = -1 else: print(line2) assert False break elif move == "入玉宣言": print(file_name) print(turn, move, end=" ") turns.append(turn - 1) # 読み筋が記録されている場合があるのでコメントだったら読み込み直す if line2[0:2] == "**": line2 = f.readline().strip() # 勝敗を解釈 if turn % 2 == 1: print(f"勝者:{black}") result = 1 else: print(f"勝者:{white}") result = -1 break elif move == "持将棋": print(file_name, move) turns.append(turn - 1) # 読み筋が記録されている場合があるのでコメントだったら読み込み直す if line2[0:2] == "**": line2 = f.readline().strip() # 勝敗を解釈 result = 0 break # 評価値を取得 score_index = elements2.index("評価値") + 1 score = elements2[score_index] # 詰みだとスペース区切りで次に手数が記録されるため分割されている if "詰" in score: score += elements2[score_index + 1] # print(turn, move, score) if (turn % 2 == 1 and is_miacis_black) or (turn % 2 == 0 and not is_miacis_black): miacis_scores.append(float(score) / 5000) result_for_miacis = result if is_miacis_black else -result total_result_for_miacis[int(1 - result_for_miacis)] += 1 for i, score in enumerate(miacis_scores): index = min(int((score + 1) // BIN_WIDTH), BIN_SIZE - 1) result_points[index].append(result) phase = min(i * PHASE_NUM // len(miacis_scores), PHASE_NUM - 1) result_points_each_phase[phase][index].append(result) print(f"対局数 {len(turns)}") print(f"最小手数 {np.min(turns)}") print(f"最大手数 {np.max(turns)}") print(f"平均手数 {np.mean(turns)}") print(f"標準偏差 {np.std(turns)}") print("Miacisから見た勝敗") print(f"{total_result_for_miacis[0]}勝 {total_result_for_miacis[1]}引き分け {total_result_for_miacis[2]}敗") x = [-1 + BIN_WIDTH * (i + 0.5) for i in range(BIN_SIZE)] y = list() y_each_phase = [list() for _ in range(PHASE_NUM)] for i in range(BIN_SIZE): y.append(np.mean(result_points[i])) for p in range(PHASE_NUM): y_each_phase[p].append(np.mean(result_points_each_phase[p][i])) plt.plot(x, y, marker=".", label="Miacisの探索結果") # for p in range(PHASE_NUM): # plt.plot(x, y_each_phase[p], marker=".", label=f"Miacis探索結果{p}") plt.plot(x, x, linestyle="dashed", label="理論値") plt.legend() plt.xlabel("評価値(探索結果)") plt.ylabel("平均報酬") plt.savefig("evaluation_curve.png", bbox_inches="tight", pad_inches=0.05)
3.09375
3
staging/commands/dev/repos/push.py
cligraphy/cligraphy
5
12793591
#!/usr/bin/env python # Copyright 2013 Netflix """Push all repos to stash """ from nflx_oc.commands.dev.repos import run_for_all_repos def main(): run_for_all_repos('git push origin master')
1.5625
2
lace/integrity.py
bodylabs/lace
2
12793592
from __future__ import print_function import numpy as np def faces_with_repeated_vertices(f): if f.shape[1] == 3: return np.unique(np.concatenate([ np.where(f[:, 0] == f[:, 1])[0], np.where(f[:, 0] == f[:, 2])[0], np.where(f[:, 1] == f[:, 2])[0], ])) else: return np.unique(np.concatenate([ np.where(f[:, 0] == f[:, 1])[0], np.where(f[:, 0] == f[:, 2])[0], np.where(f[:, 0] == f[:, 3])[0], np.where(f[:, 1] == f[:, 2])[0], np.where(f[:, 1] == f[:, 3])[0], np.where(f[:, 2] == f[:, 3])[0], ])) def faces_with_out_of_range_vertices(f, v): return np.unique(np.concatenate([ np.where(f < 0)[0], np.where(f >= len(v))[0], ])) def check_integrity(mesh): errors = [] for f_index in faces_with_out_of_range_vertices(mesh.f, mesh.v): errors.append(("f", f_index, "Vertex out of range")) for f_index in faces_with_repeated_vertices(mesh.f): errors.append(("f", f_index, "Repeated vertex")) return errors def print_integrity_errors(errors, mesh): for attr, index, message in errors: try: data = getattr(mesh, attr)[index] except (AttributeError, IndexError): data = '' print("{} {} {} {}".format(attr, index, message, data))
2.671875
3
src/lab3/infer_resnet50_loadtest.py
aws-samples/aws-inf1-gcr-workshop
2
12793593
<reponame>aws-samples/aws-inf1-gcr-workshop import os import time import torch import torch_neuron import json import numpy as np from concurrent import futures from urllib import request from torchvision import models, transforms, datasets ## Create an image directory containing a small kitten os.makedirs("./torch_neuron_test/images", exist_ok=True) request.urlretrieve("https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/kitten_small.jpg", "./torch_neuron_test/images/kitten_small.jpg") ## Fetch labels to output the top classifications request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json","imagenet_class_index.json") idx2label = [] with open("imagenet_class_index.json", "r") as read_file: class_idx = json.load(read_file) idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))] ## Import a sample image and normalize it into a tensor normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) eval_dataset = datasets.ImageFolder( os.path.dirname("./torch_neuron_test/"), transforms.Compose([ transforms.Resize([224, 224]), transforms.ToTensor(), normalize, ]) ) image, _ = eval_dataset[0] image = torch.tensor(image.numpy()[np.newaxis, ...]) # begin of infer once ## Load model #model_neuron = torch.jit.load( 'resnet50_neuron.pt' ) ## Predict #results = model_neuron( image ) # Get the top 5 results #top5_idx = results[0].sort()[1][-5:] # Lookup and print the top 5 labels #top5_labels = [idx2label[idx] for idx in top5_idx] #print("Top 5 labels:\n {}".format(top5_labels) ) # end of infer once USER_BATCH_SIZE = 50 NUM_LOOPS_PER_THREAD = 100 pred_list = [torch.jit.load( 'resnet50_neuron.pt' ) for _ in range(4)] pred_list = [ pred_list[0], pred_list[0], pred_list[0], pred_list[0], pred_list[1], pred_list[1], pred_list[1], pred_list[1], pred_list[2], pred_list[2], pred_list[2], pred_list[2], pred_list[3], pred_list[3], pred_list[3], pred_list[3], ] num_infer_per_thread = [] for i in range(len(pred_list)): num_infer_per_thread.append(0) def one_thread(pred, input_batch, index): global num_infer_per_thread for _ in range(NUM_LOOPS_PER_THREAD): with torch.no_grad(): result = pred(input_batch) num_infer_per_thread[index] += USER_BATCH_SIZE # print("result",result) def current_throughput(): global num_infer_per_thread num_infer = 0 last_num_infer = num_infer print("NUM THREADS: ", len(pred_list)) print("NUM_LOOPS_PER_THREAD: ", NUM_LOOPS_PER_THREAD) print("USER_BATCH_SIZE: ", USER_BATCH_SIZE) while num_infer < NUM_LOOPS_PER_THREAD * USER_BATCH_SIZE * len(pred_list): num_infer = 0 for i in range(len(pred_list)): num_infer = num_infer + num_infer_per_thread[i] current_num_infer = num_infer throughput = current_num_infer - last_num_infer print('current throughput: {} images/sec'.format(throughput)) last_num_infer = current_num_infer time.sleep(1.0) # Run inference #model_feed_dict={'input_1:0': img_arr3} executor = futures.ThreadPoolExecutor(max_workers=16+1) executor.submit(current_throughput) for i,pred in enumerate(pred_list): executor.submit(one_thread, pred, image, i)
2.5
2
services/cal/test/test_service.py
Ovakefali13/buerro
2
12793594
import unittest import os from icalendar import Calendar import random import string from datetime import timedelta, datetime as dt import pytz from util import Singleton from .. import CalService, CalRemote, iCloudCaldavRemote, Event @Singleton class CalMockRemote(CalRemote): def create_calendar(self): self.calendar = Calendar() self.calendar.add("prodid", "-//My calendar product//mxm.dk//") self.calendar.add("version", "2.0") def __init__(self): self.create_calendar() def add_event(self, event: Event): self.calendar.add_component(event) def events(self): events = self.calendar.subcomponents return list(map(lambda e: Event(e), events)) def purge(self): self.create_calendar() def date_search(self, start, end=None): events = self.events() if end is None: end = pytz.utc.localize(dt.max) def _starts_between(e: Event, start, end): return end > e["dtstart"].dt and e["dtstart"].dt > start return list(filter(lambda e: _starts_between(e, start, end), events)) class TestCalService(unittest.TestCase): @classmethod def setUpClass(self): if "DONOTMOCK" in os.environ: purgable_calendar = os.getenv("CALDAV_PURGABLE_CALENDAR") self.cal_service = CalService.instance( iCloudCaldavRemote.instance(purgable_calendar) ) else: self.cal_service = CalService.instance(CalMockRemote.instance()) print("Mocking Remote...") def setUp(self): self.cal_service.purge() def now(self): return pytz.utc.localize(dt.now()) def test_cant_add_with_too_few_params(self): summary = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event = Event() event.add("summary", summary) self.assertRaises(Exception, self.cal_service.add_event, event) def test_add_and_get_event(self): summary = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event = Event() event.add("summary", summary) event.add("dtstart", pytz.utc.localize(dt(2020, 2, 26, 18, 00))) event.add("dtend", pytz.utc.localize(dt(2020, 2, 26, 19, 00))) event.add("location", "My Hood") event.set_reminder(timedelta(minutes=10)) self.cal_service.add_event(event) all_events = self.cal_service.get_all_events() self.assertTrue(len(all_events) > 0) self.assertIsInstance(all_events[0], Event) self.assertTrue(any(e["summary"] == summary for e in all_events)) def test_get_events_between(self): event = Event() summary = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event.add("summary", summary) event.add("dtstart", self.now() + timedelta(minutes=2)) event.add("dtend", self.now() + timedelta(minutes=12)) self.cal_service.add_event(event) start = self.now() end = self.now() + timedelta(minutes=15) all_events = self.cal_service.get_events_between(start, end) self.assertTrue(len(all_events) > 0) self.assertIsInstance(all_events[0], Event) self.assertTrue(any(e["summary"] == summary for e in all_events)) def test_get_next_events(self): event = Event() summary = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event.add("summary", summary) event.add("dtstart", self.now() + timedelta(minutes=1)) event.add("dtend", self.now() + timedelta(minutes=10)) self.cal_service.add_event(event) event2 = Event() summary2 = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event2.add("summary", summary2) event2.add("dtstart", self.now() + timedelta(minutes=2)) event2.add("dtend", self.now() + timedelta(minutes=10)) self.cal_service.add_event(event2) next_events = self.cal_service.get_next_events() self.assertIsInstance(next_events[0], Event) self.assertEqual(next_events[0]["summary"], summary) self.assertEqual(next_events[1]["summary"], summary2) def test_get_max_available_time_between(self): def _chop_dt(date: dt): return date.replace(microsecond=0) start_time = self.now() end_time = self.now() + timedelta(hours=4) with self.subTest("no events today"): max_time, before, after = self.cal_service.get_max_available_time_between( start_time, end_time ) self.assertEqual(max_time, end_time - start_time) self.assertEqual(before, start_time) self.assertEqual(after, end_time) event1 = Event() summary = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event1.add("summary", summary) event1.add("dtstart", start_time + timedelta(minutes=15)) event1.add("dtend", start_time + timedelta(minutes=30)) self.cal_service.add_event(event1) # which is 30 minutes from event2 = Event() summary2 = "".join(random.choices(string.ascii_uppercase + string.digits, k=6)) event2_start_time = event1.get_end() + timedelta(minutes=30) event2.add("summary", summary2) event2.add("dtstart", event2_start_time) event2.add("dtend", event2_start_time + timedelta(minutes=15)) self.cal_service.add_event(event2) with self.subTest(msg="rest of the day is empty"): max_time, before, after = self.cal_service.get_max_available_time_between( start_time, end_time ) self.assertGreater(max_time, timedelta(minutes=30)) self.assertEqual(_chop_dt(before), _chop_dt(event2.get_end())) self.assertEqual(after, end_time) with self.subTest(msg="rest of the day with events of shorter delta"): # each of which are 15 minutes apart next_event_start_time = event2.get_end() + timedelta(minutes=15) while next_event_start_time < end_time: next_ev_summary = "".join( random.choices(string.ascii_uppercase + string.digits, k=6) ) next_event = Event() next_event.add("summary", next_event) next_event.add("dtstart", next_event_start_time) next_event.add("dtend", next_event_start_time + timedelta(minutes=15)) self.cal_service.add_event(next_event) next_event_start_time = next_event.get_end() + timedelta(minutes=15) max_time, before, after = self.cal_service.get_max_available_time_between( start_time, end_time ) self.assertEqual(timedelta(minutes=30), max_time) self.assertEqual(_chop_dt(before), _chop_dt(event1.get_end())) self.assertEqual(_chop_dt(after), _chop_dt(event2.get_start()))
2.546875
3
catkin_ws/src:/opt/ros/kinetic/lib/python2.7/dist-packages:/home/bala/duckietown/catkin_ws/src:/home/bala/duckietown/catkin_ws/src/lib/python2.7/site-packages/geometry/manifolds/tests/__init__.py
johnson880319/Software
0
12793595
# coding=utf-8 import itertools from contracts.utils import raise_wrapped from nose.tools import nottest from geometry import MatrixLieGroup, RandomManifold, all_manifolds, logger from .checks_generation import * def list_manifolds(): return all_manifolds @nottest def get_test_points(M, num_random=2): interesting = M.interesting_points() if isinstance(M, RandomManifold): for i in range(num_random): # @UnusedVariable interesting.append(M.sample_uniform()) if len(interesting) == 0: logger.warning('No test points for %s and not random.' % M) return interesting def list_manifold_point(): """ Yields all possible (M, point, i, num) tests we have """ for M in list_manifolds(): interesting = get_test_points(M) num_examples = len(interesting) for i in range(num_examples): point = interesting[i] try: M.belongs(point) except Exception as e: msg = 'M %s does not contain %s: %s' % (M, point, e) raise_wrapped(Exception, e, msg) yield M, point, i, num_examples def list_mgroup(): """ Yields all possible (M, point, i, num) tests we have """ for M in list_manifolds(): if not isinstance(M, MatrixLieGroup): continue yield M def list_mgroup_point(): """ Yields all possible (M, point, i, num) tests we have """ for M in list_mgroup(): interesting = get_test_points(M) num_examples = len(interesting) for i in range(num_examples): point = interesting[i] try: M.belongs(point) except Exception as e: msg = 'M %s does not contain %s: %s' % (M, point, e) raise_wrapped(Exception, e, msg) yield M, point, i, num_examples def list_manifold_points(): """ Yields all possible (M, point1, point2, i, num) tests we have """ for M in list_manifolds(): interesting = get_test_points(M) num_examples = len(interesting) * len(interesting) k = 0 for p1, p2 in itertools.product(interesting, interesting): yield M, p1, p2, k, num_examples k += 1 for_all_manifolds = fancy_test_decorator(lister=lambda: all_manifolds, arguments=lambda M: (M,), attributes=lambda M: dict(manifolds=1, manifold=str(M))) def _args0(x): (M, p, i, n) = x return M, p def _attrs0(x): (M, p, i, n) = x return dict(manifolds=1, manifold=M, point=p) for_all_manifold_point = fancy_test_decorator(lister=list_manifold_point, arguments=_args0, attributes=_attrs0) def _args1(x): (M, p, i, n) = x return M, p def _attrs1(x): (M, p, i, n) = x return dict(manifolds=1, matrixgroups=1, manifold=M, point=p) for_all_mgroup_point = fancy_test_decorator(lister=list_mgroup_point, arguments=_args1, attributes=_attrs1) for_all_mgroup = fancy_test_decorator(lister=list_mgroup, arguments=lambda M: (M,), attributes=lambda M: dict(manifolds=1, matrixgroups=1, manifold=M)) def _args(x): (M, p1, p2, k, n) = x return M, p1, p2 def _attrs(x): (M, p1, p2, k, n) = x return dict(type='manifolds', manifold=M, point1=p1, point2=p2) for_all_manifold_pairs = fancy_test_decorator(lister=list_manifold_points, arguments=_args, attributes=_attrs)
2.65625
3
Graph/Solutions_Four.py
daniel-zeiler/potential-happiness
0
12793596
import collections import heapq from typing import List def find_town_judge(n: int, trust: List[List[int]]) -> int: trusts = {i + 1: 0 for i in range(n)} outgoing = {i + 1 for i in range(n)} for origin, destination in trust: if origin in outgoing: outgoing.remove(origin) trusts[destination] += 1 if len(outgoing) == 1 and trusts[list(outgoing)[0]] == n - 1: return list(outgoing)[0] return -1 def all_paths_source_to_target(graph): result = [] def traverse(node_id, path, visited): if node_id in visited: return 1 visited.add(node_id) if node_id == len(graph) - 1: result.append(path) else: if any([traverse(adjacent, path + [adjacent], visited | {node_id}) for adjacent in graph[node_id]]): return 1 return 0 if traverse(0, [0], set()) == 1: return [] return result def minimum_vertices_reach_all_nodes(n: int, edges: List[List[int]]) -> List[int]: in_degree = {i: 0 for i in range(n)} for origin, destination in edges: in_degree[destination] += 1 return list(filter(lambda x: in_degree[x] == 0, in_degree.keys())) def keys_and_rooms(rooms: List[List[int]]) -> bool: visited = {0} queue = collections.deque([0]) while queue: node_id = queue.popleft() for adjacent in rooms[node_id]: if adjacent not in visited: visited.add(adjacent) queue.append(adjacent) return len(rooms) == len(visited) def number_of_provinces(is_connected): parents = [i for i in range(len(is_connected))] rank = [1 for _ in range(len(is_connected))] def find(node_id): if parents[node_id] != node_id: parents[node_id] = find(parents[node_id]) return parents[node_id] def union(node_a, node_b): parent_a = find(node_a) parent_b = find(node_b) if parent_a == parent_b: return rank_a = rank[parent_a] rank_b = rank[parent_b] if rank_a > rank_b: parents[parent_b] = parent_a rank[parent_a] += 1 else: parents[parent_a] = parent_b rank[parent_b] += 1 for x, row in enumerate(is_connected): for y, value in enumerate(row): if y > x and value == 1: union(x, y) for x in range(len(is_connected)): find(x) return len(set(parents)) def redundant_connections(edges): parents = [i for i in range(len(edges) + 1)] rank = [1 for _ in range(len(edges) + 1)] def find(node_id): if parents[node_id] != node_id: parents[node_id] = find(parents[node_id]) return parents[node_id] def union(node_a, node_b): parent_a = find(node_a) parent_b = find(node_b) if parent_a == parent_b: return True rank_a = rank[parent_a] rank_b = rank[parent_b] if rank_a > rank_b: rank[parent_a] += 1 parents[node_b] = parent_a else: parents[node_a] = parent_b rank[parent_b] += 1 return False result = [] for origin, destination in edges: if union(origin, destination): result = [origin, destination] return result def maximal_network_rank(n, roads): def get_graph(): graph = collections.defaultdict(set) for origin, destination in roads: graph[origin].add(destination) graph[destination].add(origin) return graph graph = get_graph() max_rank = 0 for x in range(n): for y in range(x + 1, n): rank = len(graph[x]) + len(graph[y]) if x in graph[y]: rank -= 1 max_rank = max(max_rank, rank) return max_rank def find_eventual_safe_nodes(graph): safe = set() unsafe = set() def traverse(node_id, visited): if node_id in visited: unsafe.add(node_id) return False for adjacent in graph[node_id]: if adjacent in unsafe: unsafe.add(node_id) return False if adjacent not in safe and not traverse(adjacent, visited | {node_id}): unsafe.add(node_id) return False safe.add(node_id) return True for node_id in range(len(graph)): if node_id not in safe and node_id not in unsafe: traverse(node_id, set()) return list(safe) def is_graph_bipartite(graph): colors = collections.defaultdict(bool) def traverse(node_id, color): colors[node_id] = color for adjacent in graph[node_id]: if adjacent in colors and colors[adjacent] == color: return False if adjacent not in colors and not traverse(adjacent, not color): return False return True for node_id in range(len(graph)): if node_id not in colors: if not traverse(node_id, True): return False return True def flower_planting_no_adjacent(n, paths): flowers = collections.defaultdict(int) flower_colors = {1, 2, 3, 4} def get_graph(): graph = collections.defaultdict(list) for origin, destination in paths: graph[origin].append(destination) graph[destination].append(origin) return graph graph = get_graph() def get_color(node_id): colors = set() for adjacent in graph[node_id]: if adjacent in flowers: colors.add(flowers[adjacent]) return list(flower_colors.difference(colors))[0] def traverse(node_id): flowers[node_id] = get_color(node_id) for adjacent in graph[node_id]: if adjacent not in flowers: traverse(adjacent) for node_id in range(1, n + 1): if node_id not in flowers: traverse(node_id) result = [None for _ in range(n)] for key, value in flowers.items(): result[key - 1] = value return result def network_delay_time(times, n, k): queue = [[0, k]] visited = set() def get_graph(): graph = collections.defaultdict(list) for origin, destination, weight in times: graph[origin].append([weight, destination]) return graph graph = get_graph() while queue: total_time, node_id = heapq.heappop(queue) visited.add(node_id) if len(visited) == n: return total_time for adjacent_weight, adjacent_node in graph[node_id]: if adjacent_node not in visited: heapq.heappush(queue, [total_time + adjacent_weight, adjacent_node]) return -1 def course_schedule_two(num_courses, prerequisites): def get_graph(): graph = collections.defaultdict(list) in_degree = {x: 0 for x in range(num_courses)} for destination, origin in prerequisites: graph[origin].append(destination) in_degree[destination] += 1 return graph, in_degree graph, in_degree = get_graph() queue = collections.deque(list(filter(lambda x: in_degree[x] == 0, in_degree.keys()))) result = [] while queue: node_id = queue.popleft() result.append(node_id) for adjacent in graph[node_id]: in_degree[adjacent] -= 1 if in_degree[adjacent] == 0: queue.append(adjacent) if len(result) == num_courses: return result return [] def calcEquation(equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]: def get_graph(): graph = collections.defaultdict(list) for [origin, destination], value in zip(equations, values): graph[origin].append([value, destination]) graph[destination].append([1 / value, origin]) return graph graph = get_graph() def traverse(node_id, target_node, temp_result, visited): if node_id == target_node: return temp_result for weight, adjacent in graph[node_id]: if adjacent not in visited: result = traverse(adjacent, target_node, temp_result * weight, visited | {node_id}) if result != -1: return result return -1 result = [] for node_id, target_id in queries: if node_id not in graph or target_id not in graph: result.append(float(-1)) else: result.append(traverse(node_id, target_id, 1, set())) return result def numBusesToDestination(routes: List[List[int]], source: int, target: int) -> int: def get_graph(): bus_graph = collections.defaultdict(list) stop_graph = collections.defaultdict(list) for i, stops in enumerate(routes): for stop in stops: bus_graph[i + 1].append(stop) stop_graph[stop].append(i + 1) return bus_graph, stop_graph bus_graph, stop_graph = get_graph() bus_visited, stop_visited = set(), set() queue = collections.deque([[0, source, 0]]) while queue: total, location_id, turn = queue.popleft() if turn == 0: if location_id == target: return total for adjacent in stop_graph[location_id]: if adjacent not in bus_visited: bus_visited.add(adjacent) queue.append([total + 1, adjacent, 1]) else: for adjacent in bus_graph[location_id]: if adjacent not in stop_visited: stop_visited.add(adjacent) queue.append([total, adjacent, 0]) return -1 def kSimilarity(s1: str, s2: str) -> int: visited = set() def get_neighbors(input_string): neighbors = [] for x in range(len(input_string)): for y in range(x + 1, len(input_string)): temp_string = list(input_string) temp_string[x], temp_string[y] = temp_string[y], temp_string[x] neighbors.append(''.join(temp_string)) return neighbors queue = collections.deque([[0, s1]]) visited.add(s1) while queue: value, input_string = queue.popleft() if input_string == s2: return value for neighbor in get_neighbors(input_string): if neighbor not in visited: visited.add(neighbor) queue.append([value + 1, neighbor]) return -1 def ladderLength(beginWord: str, endWord: str, wordList: List[str]) -> int: def get_graph(): graph = collections.defaultdict(list) for word in wordList + [beginWord]: for i, letter in enumerate(word): graph[word[:i] + '*' + word[i + 1:]].append(word) return graph if endWord not in wordList: return -1 graph = get_graph() visited = {beginWord} queue = collections.deque([[1, beginWord]]) while queue: distance, word = queue.popleft() if word == endWord: return distance + 1 for i, letter in enumerate(word): transform = word[:i] + '*' + word[i + 1:] for word in graph[transform]: if word not in visited: visited.add(word) queue.append([distance + 1, word]) return -1
3.359375
3
Basic Algorithms/Basic Algorithms/heap_introduction_2_solution.py
michal0janczyk/udacity_data_structures_and_algorithms_nanodegree
1
12793597
<reponame>michal0janczyk/udacity_data_structures_and_algorithms_nanodegree class Heap: def __init__(self, initial_size=10): self.cbt = [None for _ in range(initial_size)] # initialize arrays self.next_index = 0 # denotes next index where new element should go def _down_heapify(self): parent_index = 0 while parent_index < self.next_index: left_child_index = 2 * parent_index + 1 right_child_index = 2 * parent_index + 2 parent = self.cbt[parent_index] left_child = None right_child = None min_element = parent # check if left child exists if left_child_index < self.next_index: left_child = self.cbt[left_child_index] # check if right child exists if right_child_index < self.next_index: right_child = self.cbt[right_child_index] # compare with left child if left_child is not None: min_element = min(parent, left_child) # compare with right child if right_child is not None: min_element = min(right_child, min_element) # check if parent is rightly placed if min_element == parent: return if min_element == left_child: self.cbt[left_child_index] = parent self.cbt[parent_index] = min_element parent = left_child_index elif min_element == right_child: self.cbt[right_child_index] = parent self.cbt[parent_index] = min_element parent = right_child_index def size(self): return self.next_index def remove(self): """ Remove and return the element at the top of the heap """ if self.size() == 0: return None self.next_index -= 1 to_remove = self.cbt[0] last_element = self.cbt[self.next_index] # place last element of the cbt at the root self.cbt[0] = last_element # we do not remove the elementm, rather we allow next `insert` operation to overwrite it self.cbt[self.next_index] = to_remove self._down_heapify() return to_remove
3.921875
4
src/apps/about/models/katalog.py
rko619619/Skidon
0
12793598
<reponame>rko619619/Skidon from django.db import models as m class Katalog(m.Model): title = m.TextField(unique=True) content = m.TextField(unique=True) media = m.URLField(unique=True) adress = m.TextField(null=True, blank=True) class Meta: verbose_name_plural = "katalog" ordering = ["id", "title", "content", "media", "adress"] def __repr__(self): return f"Zavedeniya # {self.pk}: '{self.title}'" def __str__(self): return f"{self.pk}: '{self.title}'"
2.171875
2
printer/mean_printer.py
kuanhsunchen/Suspension
1
12793599
<reponame>kuanhsunchen/Suspension import matplotlib matplotlib.use('Agg') import matplotlib.patches as mpatches import random import math import sys import numpy as np import matplotlib.pyplot as plt import itertools from matplotlib import rcParams from matplotlib.backends.backend_pdf import PdfPages from scipy.stats.mstats import gmean x1 = [] y1 = [] x2 = [] y2 = [] x3 = [] y3 = [] x4 = [] y4 = [] x5 = [] y5 = [] x6 = [] y6 = [] x7 = [] y7 = [] x8 = [] y8 = [] x9 = [] y9 = [] x10 = [] y10 = [] x11 = [] y11 = [] x12 = [] y12 = [] x13 = [] y13 = [] x14 = [] y14 = [] x15 = [] y15 = [] x16 = [] y16 = [] x17 = [] y17 = [] resTotal1 = [] resTotal2 = [] resTotal3 = [] resTotal4 = [] resTotal5 = [] resTotal6 = [] resTotal7 = [] resTotal8 = [] resTotal9 = [] resTotal10 = [] resTotal11 = [] resTotal12 = [] resTotal13 = [] resTotal14 = [] resTotal15 = [] resTotal16 = [] resTotal17 = [] def init(): global x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17 global y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17 global resTotal1, resTotal2, resTotal3, resTotal4, resTotal5, resTotal6, resTotal7, resTotal8, resTotal9, resTotal10, resTotal11, resTotal12, resTotal13, resTotal14, resTotal15, resTotal16, resTotal17 x1 = [] y1 = [] x2 = [] y2 = [] x3 = [] y3 = [] x4 = [] y4 = [] x5 = [] y5 = [] x6 = [] y6 = [] x7 = [] y7 = [] x8 = [] y8 = [] x9 = [] y9 = [] x10 = [] y10 = [] x11 = [] y11 = [] x12 = [] y12 = [] x13 = [] y13 = [] x14 = [] y14 = [] x15 = [] y15 = [] x16 = [] y16 = [] x17 = [] y17 = [] resTotal1 = [] resTotal2 = [] resTotal3 = [] resTotal4 = [] resTotal5 = [] resTotal6 = [] resTotal7 = [] resTotal8 = [] resTotal9 = [] resTotal10 = [] resTotal11 = [] resTotal12 = [] resTotal13 = [] resTotal14 = [] resTotal15 = [] resTotal16 = [] resTotal17 = [] def fileInput(var1, group, s): fileidx = 0 utililist = [] flag = 0 while fileidx < group: tmpUtil = [] f1 = open(var1+".txt", 'r') count = -1 flag = 0 tmpRes1 = [] tmpRes2 = [] tmpRes3 = [] tmpRes4 = [] tmpRes5 = [] tmpRes6 = [] tmpRes7 = [] tmpRes8 = [] tmpRes9 = [] tmpRes10 = [] tmpRes11 = [] tmpRes12 = [] tmpRes13 = [] tmpRes14 = [] tmpRes15 = [] tmpRes16 = [] tmpRes17 = [] for line in f1: if count == -1: #filename to get utilization: filename = line.split('_') #print filename tmpUtil.append(int(filename[1])) #Content to get Arithmetic mean and Gmean if 0 <count < s*2: if count%2==1: strline = line.replace('[','') strline = strline.replace(']','') strline = strline.replace('\n','') strline = strline.split(',') #prechecking #strline[x] x = 0-16 #[ILPcarry, ILPblock, ILPjit, Inflation, ILPbaseline, Combo, TDA, TDAcarry, TDAblock, TDAjit, TDAjitblock, TDAmix, CTbaseline, CTcarry, CTblock, CTjit, CTmix] #ILPcarry tmpRes1.append(int(strline[0])) #ILPblock tmpRes2.append(int(strline[1])) #ILPjit tmpRes3.append(int(strline[2])) #Inflation tmpRes4.append(int(strline[3])) #ILPbaseline tmpRes5.append(int(strline[4])) #Combo tmpRes6.append(int(strline[5])) #TDAbaseline tmpRes7.append(int(strline[6])) #TDAcarry tmpRes8.append(int(strline[7])) #TDAblock tmpRes9.append(int(strline[8])) #TDAjit tmpRes10.append(int(strline[9])) #TDAjitblock tmpRes11.append(int(strline[10])) #TDAmix tmpRes12.append(int(strline[11])) #CTbaseline tmpRes13.append(int(strline[12])) #CTbarry tmpRes14.append(int(strline[13])) #CTblock tmpRes15.append(int(strline[14])) #CTjit tmpRes16.append(int(strline[15])) #CTmix tmpRes17.append(int(strline[16])) if count == s*2+1: ''' #print 'Gmean:'+line strline = line.replace('[','') strline = strline.replace(']','') strline = strline.replace('\n','') strline = strline.split(',') print strline #strline[x] x = 0-16 y1.append(float(strline[0])) ''' count = -1 continue count += 1 f1.close() resTotal1.append(tmpRes1) resTotal2.append(tmpRes2) resTotal3.append(tmpRes3) resTotal4.append(tmpRes4) resTotal5.append(tmpRes5) resTotal6.append(tmpRes6) resTotal7.append(tmpRes7) resTotal8.append(tmpRes8) resTotal9.append(tmpRes9) resTotal10.append(tmpRes10) resTotal11.append(tmpRes11) resTotal12.append(tmpRes12) resTotal13.append(tmpRes13) resTotal14.append(tmpRes14) resTotal15.append(tmpRes15) resTotal16.append(tmpRes16) resTotal17.append(tmpRes17) utililist.append(tmpUtil) fileidx += 1 return utililist #print resTotal6 def getResPerUtili(res, numinSets, num): #work for tasks 10 an 20 utililist = [] if num == 40: readyres = [[] for i in range(6)] elif num == 30: readyres = [[] for i in range(7)] else: readyres = [[] for i in range(8)] count = 0 for ind, i in enumerate(res): #each file #print "" #print i #print len(i) tmp = [] icount = 0 for j in i: #every numinSets input for each utilization tmp.append(j) count+=1 #print icount if count > numinSets-1: readyres[icount]=readyres[icount]+tmp tmp = [] count = 0 if num == 40: icount = (icount+1)%6 elif num == 30: icount = (icount+1)%7 else: icount = (icount+1)%8 icount = 0 count = 0 for i in readyres: utililist.append(i) return utililist def Ameanratio(results, baseline): res = [] if baseline ==0: return 1 for i in results: if i == 0: res.append(1) elif baseline >= i : res.append(float(i)/float(baseline)) else: res.append(1) if len(results) == 0: return 1 return np.mean(res) def Gmeanratio(results, baseline): res = [] if baseline == 0: return 1 for i in results: if i == 0: res.append(1) elif i < 0: continue elif baseline >= i : if i/baseline <= 1: res.append(float(i)/float(baseline)) else: res.append(1) else: res.append(1) if len(results) == 0: return 1 return gmean(res) # wayofMean(np.mean, 10, 'Amean', 'S', 100, 0) # Now assume all the results are for Limited-preemptive scheduling so # of arguments is 6. def wayofMean(way, num, atitle, typ, s, MST, btype = 'N', mode = 'REP'): init() typ.replace("'", '') if MST == 3: target = 'worst/Results-tasks'+repr(num)+'_stype'+typ+'_btype'+btype elif MST == 2: target = 'best/Results-tasks'+repr(num)+'_stype'+typ+'_btype'+btype elif MST == 1: target = 'outputM_completed/Results-tasks'+repr(num)+'_stype'+typ+'_btype'+btype else: target = 'output_completed/Results-tasks'+repr(num)+'_stype'+typ+'_btype'+btype utili = fileInput(target, g, s) for i in utili[0]: x1.append(i) x2.append(i) x3.append(i) x4.append(i) x5.append(i) x6.append(i) x7.append(i) x8.append(i) x9.append(i) x10.append(i) x11.append(i) x12.append(i) x13.append(i) x14.append(i) x15.append(i) x16.append(i) x17.append(i) if MST == 1: fileName = 'First-M'+atitle+'-tasks'+repr(num)+'_stype_'+repr(typ)+'_btype'+btype elif MST == 2: #best fileName = 'Best-M'+atitle+'-tasks'+repr(num)+'_stype_'+repr(typ)+'_btype'+btype elif MST == 3: #worst fileName = 'Worst-M'+atitle+'-tasks'+repr(num)+'_stype_'+repr(typ)+'_btype'+btype else: fileName = atitle+'-tasks'+repr(num)+'_stype_'+repr(typ)+'_btype'+btype print fileName Mbaseline = 0 for i in getResPerUtili(resTotal4,s, num): #when g = 6 Inflation if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y4.append(way(i, num)) else: y4.append(way(i, 0)) else: y4.append(way(i)) Mbaseline = max(y4) tmpy4 = [] if atitle == 'Ameanratio' or atitle == 'Gmeanratio': for i in getResPerUtili(resTotal4,s, num): tmpy4.append(np.mean(i)) Mbaseline = max(tmpy4) for i in getResPerUtili(resTotal1,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y1.append(way(i, num)) else: y1.append(way(i, Mbaseline )) else: y1.append(way(i)) for i in getResPerUtili(resTotal2,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y2.append(way(i, num)) else: y2.append(way(i, Mbaseline )) else: y2.append(way(i)) for i in getResPerUtili(resTotal3,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y3.append(way(i, num)) else: y3.append(way(i, Mbaseline )) else: y3.append(way(i)) for i in getResPerUtili(resTotal5,s, num): #when g = 6 ILPbaseline if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y5.append(way(i, num)) else: y5.append(way(i, Mbaseline )) else: y5.append(way(i)) for i in getResPerUtili(resTotal6,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y6.append(way(i, num)) else: y6.append(way(i, Mbaseline )) else: y6.append(way(i)) for i in getResPerUtili(resTotal7,s, num): #when g = 6 TDAbaseline if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y7.append(way(i, num)) else: y7.append(way(i, 0)) else: y7.append(way(i)) Mbaseline = max(y7) tmpy7 = [] if atitle == 'Ameanratio' or atitle == 'Gmeanratio': for i in getResPerUtili(resTotal7,s, num): tmpy7.append(np.mean(i)) if Mbaseline == 0: Mbaseline = max(tmpy7) for i in getResPerUtili(resTotal8,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y8.append(way(i, num)) else: y8.append(way(i, Mbaseline )) else: y8.append(way(i)) for i in getResPerUtili(resTotal9,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y9.append(way(i, num)) else: y9.append(way(i, Mbaseline )) else: y9.append(way(i)) for i in getResPerUtili(resTotal10,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y10.append(way(i, num)) else: y10.append(way(i, Mbaseline )) else: y10.append(way(i)) for i in getResPerUtili(resTotal11,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y11.append(way(i, num)) else: y11.append(way(i, Mbaseline )) else: y11.append(way(i)) for i in getResPerUtili(resTotal12,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y12.append(way(i, num)) else: y12.append(way(i, Mbaseline )) else: y12.append(way(i)) for i in getResPerUtili(resTotal13,s, num): #when g = 6 CTbaseline if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y13.append(way(i, num)) else: y13.append(way(i, 0)) else: y13.append(way(i)) Mbaseline = max(y13) tmpy13 = [] if atitle == 'Ameanratio' or atitle == 'Gmeanratio': for i in getResPerUtili(resTotal13,s, num): tmpy13.append(np.mean(i)) if Mbaseline == 0: Mbaseline = max(tmpy13) for i in getResPerUtili(resTotal14,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: #print i, num #print way(i, num) y14.append(way(i, num)) else: y14.append(way(i, Mbaseline )) else: y14.append(way(i)) for i in getResPerUtili(resTotal15,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y15.append(way(i, num)) else: y15.append(way(i, Mbaseline )) else: y15.append(way(i)) for i in getResPerUtili(resTotal16,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y16.append(way(i, num)) else: y16.append(way(i, Mbaseline )) else: y16.append(way(i)) for i in getResPerUtili(resTotal17,s, num): #when g = 6 if atitle == 'Ameanratio' or atitle == 'Gmeanratio': if MST == 0: y17.append(way(i, num)) else: y17.append(way(i, Mbaseline )) else: y17.append(way(i)) # plot in pdf pp = PdfPages(folder + fileName + '.pdf') if btype != 'N': atitle = "Limited-"+atitle title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')' if MST == 1: if mode == 'ILP': title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')' else: title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')-First-Fit' elif MST == 2: if mode == 'ILP': title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')' else: title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')-Best-Fit' elif MST == 3: if mode == 'ILP': title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')' else: title = atitle+'-'+repr(num)+'Tasks-e('+typ+')-b('+btype+')-Worst-Fit' plt.title(title, fontsize=20) plt.grid(True) #plt.ylabel('Geometric Mean', fontsize=20) #plt.xlabel('Approaches($U^*$)', fontsize=20) ax = plt.subplot() ax.tick_params(axis='both', which='major',labelsize=16) #way of means if atitle == 'Amean': ax.set_ylabel("Arithmetic Mean", size=20) elif atitle == 'Gmean': ax.set_ylabel("Geometric Mean", size=20) elif atitle == 'Ameanratio': ax.set_ylabel("Normalized Arithmetic Mean", size=20) elif atitle == 'Gmeanratio': ax.set_ylabel("Normalized Geometric Mean", size=20) ax.set_xlabel("Utilization (%)", size=20) marker = itertools.cycle(('D', 'd', 'o', 's', 'v')) try: if MST == 0: if mode == 'REP': if num < 30: ax.plot( x4, y4, '-', marker = marker.next(), label='ILP-Inflation', linewidth=2.0) ax.plot( x6, y6, '-', marker = marker.next(), label='ILP-Combo', linewidth=2.0) pass ax.plot( x7, y7, '-', marker = marker.next(), label='PST-FF-TDA(Baseline)', linewidth=2.0) ax.plot( x12, y12, '-', marker = marker.next(), label='PST-FF-TDA(Mixed)', linewidth=2.0) ax.plot( x13, y13, '-', marker = marker.next(), label='PST-FF-CT(Baseline)', linewidth=2.0) ax.plot( x17, y17, '-', marker = marker.next(), label='PST-FF-CT(Mixed)', linewidth=2.0) elif mode == 'ILP': if num < 30: ax.plot( x1, y1, '-', marker = marker.next(), label='ILP-Carry', linewidth=2.0) #ax.plot( x2, y2, '-', marker = marker.next(), label='ILP-Block', linewidth=2.0) ax.plot( x3, y3, '-', marker = marker.next(), label='ILP-Jit', linewidth=2.0) ax.plot( x4, y4, '-', marker = marker.next(), label='ILP-Inflation', linewidth=2.0) ax.plot( x5, y5, '-', marker = marker.next(), label='ILP-Baseline', linewidth=2.0) ax.plot( x6, y6, '-', marker = marker.next(), label='ILP-Combo', linewidth=2.0) pass elif mode == 'TDA': ax.plot( x7, y7, '-', marker = marker.next(), label='PST-FF-TDA(Baseline)', linewidth=2.0) ax.plot( x8, y8, '-', marker = marker.next(), label='PST-FF-TDA(Carry)', linewidth=2.0) #ax.plot( x9, y9, '-', marker = marker.next(), label='PST-FF-TDA(Block)', linewidth=2.0) ax.plot( x10, y10, '-', marker = marker.next(), label='PST-FF-TDA(Jit)', linewidth=2.0) #ax.plot( x11, y11, '-', marker = marker.next(), label='PST-FF-TDA(Jitblock)', linewidth=2.0) ax.plot( x12, y12, '-', marker = marker.next(), label='PST-FF-TDA(Mixed)', linewidth=2.0) elif mode == 'CT': ax.plot( x13, y13, '-', marker = marker.next(), label='PST-FF-CT(Baseline)', linewidth=2.0) ax.plot( x14, y14, '-', marker = marker.next(), label='PST-FF-CT(Carry)', linewidth=2.0) #ax.plot( x15, y15, '-', marker = marker.next(), label='PST-FF-CT(Block)', linewidth=2.0) ax.plot( x16, y16, '-', marker = marker.next(), label='PST-FF-CT(Jit)', linewidth=2.0) ax.plot( x17, y17, '-', marker = marker.next(), label='PST-FF-CT(Mixed)', linewidth=2.0) else: if mode == 'REP': if num < 30: ax.plot( x4, y4, '-', marker = marker.next(), label='ILP-Inflation', linewidth=2.0) ax.plot( x6, y6, '-', marker = marker.next(), label='ILP-Combo', linewidth=2.0) pass ax.plot( x7, y7, '-', marker = marker.next(), label='PST-BF-TDA(Baseline)', linewidth=2.0) ax.plot( x12, y12, '-', marker = marker.next(), label='PST-BF-TDA(Mixed)', linewidth=2.0) ax.plot( x13, y13, '-', marker = marker.next(), label='PST-BF-CT(Baseline)', linewidth=2.0) ax.plot( x17, y17, '-', marker = marker.next(), label='PST-BF-CT(Mixed)', linewidth=2.0) elif mode == 'ILP': if num < 30: ax.plot( x1, y1, '-', marker = marker.next(), label='ILP-Carry', linewidth=2.0) #ax.plot( x2, y2, '-', marker = marker.next(), label='ILP-Block', linewidth=2.0) ax.plot( x3, y3, '-', marker = marker.next(), label='ILP-Jit', linewidth=2.0) ax.plot( x4, y4, '-', marker = marker.next(), label='ILP-Inflation', linewidth=2.0) ax.plot( x5, y5, '-', marker = marker.next(), label='ILP-Baseline', linewidth=2.0) ax.plot( x6, y6, '-', marker = marker.next(), label='ILP-Combo', linewidth=2.0) pass elif mode == 'TDA': ax.plot( x7, y7, '-', marker = marker.next(), label='PST-BF-TDA(Baseline)', linewidth=2.0) ax.plot( x8, y8, '-', marker = marker.next(), label='PST-BF-TDA(Carry)', linewidth=2.0) #ax.plot( x9, y9, '-', marker = marker.next(), label='PST-FF-TDA(Block)', linewidth=2.0) ax.plot( x10, y10, '-', marker = marker.next(), label='PST-BF-TDA(Jit)', linewidth=2.0) #ax.plot( x11, y11, '-', marker = marker.next(), label='PST-FF-TDA(Jitblock)', linewidth=2.0) ax.plot( x12, y12, '-', marker = marker.next(), label='PST-BF-TDA(Mixed)', linewidth=2.0) elif mode == 'CT': ax.plot( x13, y13, '-', marker = marker.next(), label='PST-BF-CT(Baseline)', linewidth=2.0) ax.plot( x14, y14, '-', marker = marker.next(), label='PST-BF-CT(Carry)', linewidth=2.0) #ax.plot( x15, y15, '-', marker = marker.next(), label='PST-FF-CT(Block)', linewidth=2.0) ax.plot( x16, y16, '-', marker = marker.next(), label='PST-BF-CT(Jit)', linewidth=2.0) ax.plot( x17, y17, '-', marker = marker.next(), label='PST-BF-CT(Mixed)', linewidth=2.0) except ValueError: print "ValueError" #ax.vlines(0.5, 0, 1, transform=ax.transAxes ) #ax.text(0.35, 0.04, "$U^*=60\%$", transform=ax.transAxes, size=16 ) #ax.text(0.85, 0.04, "$U^*=70\%$", transform=ax.transAxes, size=16 ) ax.legend(loc=0, prop={'size':14}) figure = plt.gcf() figure.set_size_inches([10, 6]) pp.savefig() plt.clf() plt.show() pp.close() folder = 'plots/' g = 1 def main(): args = sys.argv if len(args) < 1 or len(args) > 2: print "Usage: python mean_printer.py [representative/ILP/TDA/CT]" return -1 mode = args[1] #after this, 6 sets of methods are prepared ''' wayofMean(np.mean, 10, 'Amean', 'S', 100, 0) wayofMean(gmean, 10, 'Gmean', 'S', 100, 0) wayofMean(np.mean, 10, 'Amean', 'M', 100, 0) wayofMean(gmean, 10, 'Gmean', 'M', 100, 0) wayofMean(np.mean, 10, 'Amean', 'L', 100, 0) wayofMean(gmean, 10, 'Gmean', 'L', 100, 0) wayofMean(np.mean, 20, 'Amean', 'S', 100, 0) wayofMean(gmean, 20, 'Gmean', 'S', 100, 0) wayofMean(np.mean, 20, 'Amean', 'M', 100, 0) wayofMean(gmean, 20, 'Gmean', 'M', 100, 0) wayofMean(np.mean, 20, 'Amean', 'L', 100, 0) wayofMean(gmean, 20, 'Gmean', 'L', 100, 0) wayofMean(np.mean, 30, 'Amean', 'S', 100, 0) wayofMean(gmean, 30, 'Gmean', 'S', 100, 0) wayofMean(np.mean, 30, 'Amean', 'M', 100, 0) wayofMean(gmean, 30, 'Gmean', 'M', 100, 0) wayofMean(np.mean, 30, 'Amean', 'L', 100, 0) wayofMean(gmean, 30, 'Gmean', 'L', 100, 0) wayofMean(np.mean, 40, 'Amean', 'S', 100, 0) wayofMean(gmean, 40, 'Gmean', 'S', 100, 0) wayofMean(np.mean, 40, 'Amean', 'M', 100, 0) wayofMean(gmean, 40, 'Gmean', 'M', 100, 0) wayofMean(np.mean, 40, 'Amean', 'L', 100, 0) wayofMean(gmean, 40, 'Gmean', 'L', 100, 0) #ratio wayofMean(Ameanratio, 10, 'Ameanratio', 'S', 100, 0) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 100, 0) wayofMean(Ameanratio, 10, 'Ameanratio', 'M', 100, 0) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'M', 100, 0) wayofMean(Ameanratio, 10, 'Ameanratio', 'L', 100, 0) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 100, 0) wayofMean(Ameanratio, 20, 'Ameanratio', 'S', 100, 0) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 100, 0) wayofMean(Ameanratio, 20, 'Ameanratio', 'M', 100, 0) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'M', 100, 0) wayofMean(Ameanratio, 20, 'Ameanratio', 'L', 100, 0) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 0) wayofMean(Ameanratio, 30, 'Ameanratio', 'S', 100, 0) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 100, 0) wayofMean(Ameanratio, 30, 'Ameanratio', 'M', 100, 0) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'M', 100, 0) wayofMean(Ameanratio, 30, 'Ameanratio', 'L', 100, 0) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 100, 0) wayofMean(Ameanratio, 40, 'Ameanratio', 'S', 100, 0) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 100, 0) wayofMean(Ameanratio, 40, 'Ameanratio', 'M', 100, 0) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'M', 100, 0) wayofMean(Ameanratio, 40, 'Ameanratio', 'L', 100, 0) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 100, 0) #MST wayofMean(np.mean, 10, 'Amean', 'S', 100, 1) wayofMean(gmean, 10, 'Gmean', 'S', 100, 1) wayofMean(np.mean, 10, 'Amean', 'M', 100, 1) wayofMean(gmean, 10, 'Gmean', 'M', 100, 1) wayofMean(np.mean, 10, 'Amean', 'L', 100, 1) wayofMean(gmean, 10, 'Gmean', 'L', 100, 1) wayofMean(np.mean, 20, 'Amean', 'S', 100, 1) wayofMean(gmean, 20, 'Gmean', 'S', 100, 1) wayofMean(np.mean, 20, 'Amean', 'M', 100, 1) wayofMean(gmean, 20, 'Gmean', 'M', 100, 1) wayofMean(np.mean, 20, 'Amean', 'L', 100, 1) wayofMean(gmean, 20, 'Gmean', 'L', 100, 1) wayofMean(np.mean, 30, 'Amean', 'S', 100, 1) wayofMean(gmean, 30, 'Gmean', 'S', 100, 1) wayofMean(np.mean, 30, 'Amean', 'M', 100, 1) wayofMean(gmean, 30, 'Gmean', 'M', 100, 1) wayofMean(np.mean, 30, 'Amean', 'L', 100, 1) wayofMean(gmean, 30, 'Gmean', 'L', 100, 1) wayofMean(np.mean, 40, 'Amean', 'S', 100, 1) wayofMean(gmean, 40, 'Gmean', 'S', 100, 1) wayofMean(np.mean, 40, 'Amean', 'M', 100, 1) wayofMean(gmean, 40, 'Gmean', 'M', 100, 1) wayofMean(np.mean, 40, 'Amean', 'L', 100, 1) wayofMean(gmean, 40, 'Gmean', 'L', 100, 1) #ratio #wayofMean(Ameanratio, 10, 'Ameanratio', 'S', 100, 1) #wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 100, 1) #wayofMean(Ameanratio, 10, 'Ameanratio', 'M', 100, 1) #wayofMean(Gmeanratio, 10, 'Gmeanratio', 'M', 100, 1) #wayofMean(Ameanratio, 10, 'Ameanratio', 'L', 100, 1) #wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 100, 1) #wayofMean(Ameanratio, 20, 'Ameanratio', 'S', 100, 1) #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 100, 1) #wayofMean(Ameanratio, 20, 'Ameanratio', 'M', 100, 1) #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'M', 100, 1) #wayofMean(Ameanratio, 20, 'Ameanratio', 'L', 100, 1) #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 1) #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 2) #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 3) #wayofMean(Ameanratio, 30, 'Ameanratio', 'S', 100, 1) #wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 100, 1) #wayofMean(Ameanratio, 30, 'Ameanratio', 'M', 100, 1) #wayofMean(Gmeanratio, 30, 'Gmeanratio', 'M', 100, 1) #wayofMean(Ameanratio, 30, 'Ameanratio', 'L', 100, 1) #wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 100, 1) #wayofMean(Ameanratio, 40, 'Ameanratio', 'S', 100, 1) #wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 100, 1) #wayofMean(Ameanratio, 40, 'Ameanratio', 'M', 100, 1) #wayofMean(Gmeanratio, 40, 'Gmeanratio', 'M', 100, 1) #wayofMean(Ameanratio, 40, 'Ameanratio', 'L', 100, 1) #wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 100, 1) ''' #wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 2, 'L', mode) #Limited-preemptive wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 100, 2, 'S', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 100, 2, 'M', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 100, 2, 'L', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'M', 100, 2, 'S', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'M', 100, 2, 'M', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'M', 100, 2, 'L', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 100, 2, 'S', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 100, 2, 'M', mode) wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 100, 2, 'L', mode) # wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 100, 2, 'S', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 100, 2, 'M', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 100, 2, 'L', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'M', 100, 2, 'S', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'M', 100, 2, 'M', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'M', 100, 2, 'L', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 2, 'S', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 2, 'M', mode) wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 100, 2, 'L', mode) # wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 100, 2, 'S', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 100, 2, 'M', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 100, 2, 'L', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'M', 100, 2, 'S', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'M', 100, 2, 'M', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'M', 100, 2, 'L', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 100, 2, 'S', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 100, 2, 'M', mode) wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 100, 2, 'L', mode) # wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 100, 2, 'S', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 100, 2, 'M', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 100, 2, 'L', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'M', 100, 2, 'S', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'M', 100, 2, 'M', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'M', 100, 2, 'L', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 100, 2, 'S', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 100, 2, 'M', mode) wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 100, 2, 'L', mode) ''' #Limited-preemptive wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 10, 1, 'S') wayofMean(Gmeanratio, 10, 'Gmeanratio', 'S', 10, 1, 'L') wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 10, 1, 'S') wayofMean(Gmeanratio, 10, 'Gmeanratio', 'L', 10, 1, 'L') # wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 10, 1, 'S') wayofMean(Gmeanratio, 20, 'Gmeanratio', 'S', 10, 1, 'L') wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 10, 1, 'S') wayofMean(Gmeanratio, 20, 'Gmeanratio', 'L', 10, 1, 'L') # wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 10, 1, 'S') wayofMean(Gmeanratio, 30, 'Gmeanratio', 'S', 10, 1, 'L') wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 10, 1, 'S') wayofMean(Gmeanratio, 30, 'Gmeanratio', 'L', 10, 1, 'L') # wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 10, 1, 'S') wayofMean(Gmeanratio, 40, 'Gmeanratio', 'S', 10, 1, 'L') wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 10, 1, 'S') wayofMean(Gmeanratio, 40, 'Gmeanratio', 'L', 10, 1, 'L') ''' if __name__ == "__main__": main()
1.765625
2
yt_dlp/WS_Extractor/arte.py
evolution-ant/local-youtube-dl
0
12793600
# encoding: utf-8 import re import base64 from ..utils import int_or_none from ..extractor.arte import ArteTVBaseIE from ..compat import ( compat_str, ) from ..utils import ( ExtractorError, int_or_none, qualities, try_get, unified_strdate, ) def _extract_from_json_url(self, json_url, video_id, lang, title=None): info = self._download_json(json_url, video_id) player_info = info['videoJsonPlayer'] vsr = try_get(player_info, lambda x: x['VSR'], dict) if not vsr: error = None if try_get(player_info, lambda x: x['custom_msg']['type']) == 'error': error = try_get( player_info, lambda x: x['custom_msg']['msg'], compat_str) if not error: error = 'Video %s is not available' % player_info.get('VID') or video_id raise ExtractorError(error, expected=True) upload_date_str = player_info.get('shootingDate') if not upload_date_str: upload_date_str = (player_info.get('VRA') or player_info.get('VDA') or '').split(' ')[0] title = (player_info.get('VTI') or title or player_info['VID']).strip() subtitle = player_info.get('VSU', '').strip() if subtitle: title += ' - %s' % subtitle info_dict = { 'id': player_info['VID'], 'title': title, 'description': player_info.get('VDE'), 'upload_date': unified_strdate(upload_date_str), 'thumbnail': player_info.get('programImage') or player_info.get('VTU', {}).get('IUR'), } qfunc = qualities(['HQ', 'MQ', 'EQ', 'SQ']) LANGS = { 'fr': 'F', 'de': 'A', 'en': 'E[ANG]', 'es': 'E[ESP]', } langcode = LANGS.get(lang, lang) formats = [] temp = {format_id : format_dict for format_id, format_dict in list(vsr.items()) if dict(format_dict).get('versionShortLibelle').lower() == lang} if temp: vsr = temp for format_id, format_dict in list(vsr.items()): f = dict(format_dict) versionCode = f.get('versionCode') l = re.escape(langcode) # Language preference from most to least priority # Reference: section 5.6.3 of # http://www.arte.tv/sites/en/corporate/files/complete-technical-guidelines-arte-geie-v1-05.pdf PREFERENCES = ( # original version in requested language, without subtitles r'VO{0}$'.format(l), # original version in requested language, with partial subtitles in requested language r'VO{0}-ST{0}$'.format(l), # original version in requested language, with subtitles for the deaf and hard-of-hearing in requested language r'VO{0}-STM{0}$'.format(l), # non-original (dubbed) version in requested language, without subtitles r'V{0}$'.format(l), # non-original (dubbed) version in requested language, with subtitles partial subtitles in requested language r'V{0}-ST{0}$'.format(l), # non-original (dubbed) version in requested language, with subtitles for the deaf and hard-of-hearing in requested language r'V{0}-STM{0}$'.format(l), # original version in requested language, with partial subtitles in different language r'VO{0}-ST(?!{0}).+?$'.format(l), # original version in requested language, with subtitles for the deaf and hard-of-hearing in different language r'VO{0}-STM(?!{0}).+?$'.format(l), # original version in different language, with partial subtitles in requested language r'VO(?:(?!{0}).+?)?-ST{0}$'.format(l), # original version in different language, with subtitles for the deaf and hard-of-hearing in requested language r'VO(?:(?!{0}).+?)?-STM{0}$'.format(l), # original version in different language, without subtitles r'VO(?:(?!{0}))?$'.format(l), # original version in different language, with partial subtitles in different language r'VO(?:(?!{0}).+?)?-ST(?!{0}).+?$'.format(l), # original version in different language, with subtitles for the deaf and hard-of-hearing in different language r'VO(?:(?!{0}).+?)?-STM(?!{0}).+?$'.format(l), ) for pref, p in enumerate(PREFERENCES): if re.match(p, versionCode): lang_pref = len(PREFERENCES) - pref break else: lang_pref = -1 format = { 'format_id': format_id, 'preference': -10 if f.get('videoFormat') == 'M3U8' else None, 'language_preference': lang_pref, 'format_note': '%s, %s' % (f.get('versionCode'), f.get('versionLibelle')), 'width': int_or_none(f.get('width')), 'height': int_or_none(f.get('height')), 'tbr': int_or_none(f.get('bitrate')), 'quality': qfunc(f.get('quality')), } if f.get('mediaType') == 'rtmp': format['url'] = f['streamer'] format['play_path'] = 'mp4:' + f['url'] format['ext'] = 'flv' else: format['url'] = f['url'] formats.append(format) self._check_formats(formats, video_id) self._sort_formats(formats) info_dict['formats'] = formats return info_dict ArteTVBaseIE._extract_from_json_url = _extract_from_json_url
2.046875
2
mlapp/MLAPP_CODE/MLAPP-C4-Code/GaussInterpDemo.py
xishansnow/MLAPP
0
12793601
<filename>mlapp/MLAPP_CODE/MLAPP-C4-Code/GaussInterpDemo.py<gh_stars>0 """根据已有观察值,对函数进行插值处理""" import numpy as np from functools import reduce from scipy.sparse import spdiags import matplotlib.pyplot as plt from scipy import stats np.random.seed(1) # 设置随机种子 D = 150 # 数据的总量(含观测和未观测到的值) n_obs = 10 # 观测到的样本点的数量 xs = np.linspace(0, 1, D) # 定义函数的支撑集 perm = np.random.permutation(D) # 索引号打乱 obs_index = perm[range(10)] #观测值的索引号 hid_index = np.array(list(set(perm)-set(obs_index))) # 未观测值的索引号 x_obs = np.random.randn(n_obs)[:, np.newaxis] # 生成n_obs个观测值 data = np.array([[-1]*D, [2]*D, [-1]*D]) diags = np.array([0, 1, 2]) all_matrix = spdiags(data, diags, D, D).toarray() L = (1/2)*all_matrix[0:D-2] print(L) # 先验精度值lambda 仅仅影响方差 lambdas = [30, 0.01] lambda_index = 0 L = lambdas[lambda_index]*L L1 = L[:, hid_index] L2 = L[:, obs_index] laml1 = np.dot(L1.T, L1) laml2 = np.dot(L1.T, L2) postdist_sigma = np.linalg.inv(laml1) postdist_mu = reduce(np.dot,(-np.linalg.inv(laml1), laml2, x_obs)) ### 绘图 plt.figure() plt.style.use('ggplot') plt.plot(xs[hid_index], postdist_mu, linewidth=2) plt.plot(xs[obs_index], x_obs, 'ro', markersize=12) plt.title(r'$\lambda$={}'.format(lambdas[lambda_index])) xbar = np.zeros(D) xbar[hid_index] = postdist_mu.flatten() xbar[obs_index] = x_obs.flatten() sigma = np.zeros(D) sigma[hid_index] = (np.diag(postdist_sigma))**0.5 sigma[obs_index] = 0 # 绘制边缘后验分布的标准误差带 plt.figure() plt.style.use('ggplot') f1 = xbar + 2*sigma f2 = xbar - 2*sigma plt.fill_between(xs, f2, f1, color=(0.8,0.8,0.8)) plt.plot(xs[hid_index], postdist_mu, linewidth=2) plt.plot(xs[obs_index], x_obs, 'ro', markersize=12) #plt.ylim([-5,5]) plt.title(r'$\lambda$={}'.format(lambdas[lambda_index])) for i in range(3): fs = np.zeros(D) # for j, single_index in enumerate(hid_index): fs[hid_index] = stats.multivariate_normal.rvs(postdist_mu.flatten(), postdist_sigma, 1) fs[obs_index] = x_obs.flatten() plt.plot(xs, fs,'k-',linewidth=1) plt.show()
2.0625
2
eval_covid20cases_timm-regnetx_002_CoarseDropout.py
BrunoKrinski/segtool
0
12793602
import os ls=["python main.py --configs configs/eval_covid20cases_unetplusplus_timm-regnetx_002_0_CoarseDropout.yml", "python main.py --configs configs/eval_covid20cases_unetplusplus_timm-regnetx_002_1_CoarseDropout.yml", "python main.py --configs configs/eval_covid20cases_unetplusplus_timm-regnetx_002_2_CoarseDropout.yml", "python main.py --configs configs/eval_covid20cases_unetplusplus_timm-regnetx_002_3_CoarseDropout.yml", "python main.py --configs configs/eval_covid20cases_unetplusplus_timm-regnetx_002_4_CoarseDropout.yml", ] for l in ls: os.system(l)
1.554688
2
predict.py
cswin/CADA
5
12793603
import argparse import numpy as np from packaging import version import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="2,3" from PIL import Image import matplotlib.pyplot as plt import cv2 from skimage.transform import rotate import torch from torch.autograd import Variable import torch.nn as nn from torch.utils import data from models.unet import UNet from dataset.refuge import REFUGE NUM_CLASSES = 3 NUM_STEPS = 512 # Number of images in the validation set. RESTORE_FROM = '/home/charlietran/CADA_Tutorial/Model_Weights/Trial1/UNet1000_v18_weightedclass.pth' SAVE_PATH = '/home/charlietran/CADA_Tutorial/result/Trial1/' MODEL = 'Unet' BATCH_SIZE = 1 is_polar = False #If need to transfer the image and labels to polar coordinates: MICCAI version is False ROI_size = 700 #ROI size from evaluation.evaluation_segmentation import * print(RESTORE_FROM) palette=[ 255, 255, 255, # black background 128, 128, 128, # index 1 is red 0, 0, 0, # index 2 is yellow 0, 0 , 0 # index 3 is orange ] zero_pad = 256 * 3 - len(palette) for i in range(zero_pad): palette.append(0) def colorize_mask(mask): # mask: numpy array of the mask new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P') new_mask.putpalette(palette) return new_mask def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Unet Network") parser.add_argument("--model", type=str, default=MODEL, help="Model Choice Unet.") parser.add_argument("--num-classes", type=int, default=NUM_CLASSES, help="Number of classes to predict (including background).") parser.add_argument("--restore-from", type=str, default=RESTORE_FROM, help="Where restore model parameters from.") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Number of images sent to the network in one step.") parser.add_argument("--gpu", type=int, default=0, help="choose gpu device.") parser.add_argument("--save", type=str, default=SAVE_PATH, help="Path to save result.") parser.add_argument("--is_polar", type=bool, default=False, help="If proceed images in polar coordinate. MICCAI version is false") parser.add_argument("--ROI_size", type=int, default=460, help="Size of ROI.") parser.add_argument('--t', type=int, default=3, help='t for Recurrent step of R2U_Net or R2AttU_Net') return parser.parse_args() def main(): """Create the model and start the evaluation process.""" args = get_arguments() gpu0 = args.gpu if not os.path.exists(args.save): os.makedirs(args.save) model = UNet(3, n_classes=args.num_classes) saved_state_dict = torch.load(args.restore_from) model.load_state_dict(saved_state_dict) model.cuda(gpu0) model.train() testloader = data.DataLoader(REFUGE(False, domain='REFUGE_TEST', is_transform=True), batch_size=args.batch_size, shuffle=False, pin_memory=True) if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(ROI_size, ROI_size), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(ROI_size, ROI_size), mode='bilinear') for index, batch in enumerate(testloader): if index % 100 == 0: print('%d processd' % index) image, label, _, _, name = batch if args.model == 'Unet': _,_,_,_, output2 = model(Variable(image, volatile=True).cuda(gpu0)) output = interp(output2).cpu().data.numpy() for idx, one_name in enumerate(name): pred = output[idx] pred = pred.transpose(1,2,0) pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8) output_col = colorize_mask(pred) print(output_col.size) one_name = one_name.split('/')[-1] output_col = output_col.convert('L') output_col.save('%s/%s.bmp' % (args.save, one_name)) if __name__ == '__main__': main() results_folder = SAVE_PATH gt_folder = '/DATA/charlie/AWC/CADA_Tutorial_Image/Target_Test/mask/' output_path = results_folder export_table = True evaluate_segmentation_results(results_folder, gt_folder, output_path, export_table)
2.234375
2
paper2tmb/tests/test_manipulator.py
sotetsuk/paper2img
1
12793604
import os import unittest import subprocess from paper2tmb.manipulator import Manipulator class TestManipulator(unittest.TestCase): def test_init(self): with Manipulator('test.pdf') as m: self.assertTrue(os.path.isdir(m.dirname)) def test_pdf2png(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png() for i in range(12): self.assertTrue(os.path.exists(os.path.join(m.dirname, "pdf2png-{}.png".format(i)))) self.assertTrue(m._last == os.path.join(m.dirname, "pdf2png.png")) def test_pdf2png_trim(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png(trim="100x100") for i in range(12): self.assertTrue(os.path.exists(os.path.join(m.dirname, "pdf2png-{}.png".format(i)))) self.assertTrue(m._last == os.path.join(m.dirname, "pdf2png.png")) def test_pdf2png_density(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png(density="20") for i in range(12): self.assertTrue(os.path.exists(os.path.join(m.dirname, "pdf2png-{}.png".format(i)))) self.assertTrue(m._last == os.path.join(m.dirname, "pdf2png.png")) def test_pdf2png_both_trim_density(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png(trim="300x300", density="10") for i in range(12): self.assertTrue(os.path.exists(os.path.join(m.dirname, "pdf2png-{}.png".format(i)))) self.assertTrue(m._last == os.path.join(m.dirname, "pdf2png.png")) def test_stack(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png() m.stack(4, 2) self.assertTrue(os.path.exists(os.path.join(m.dirname, "stack_row_0.png"))) self.assertTrue(os.path.exists(os.path.join(m.dirname, "stack_row_1.png"))) self.assertTrue(os.path.exists(os.path.join(m.dirname, "stack.png"))) self.assertTrue(m._last == os.path.join(m.dirname, "stack.png")) def test_stack(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png(trim="100x60") m.stack(6, 2) m.resize("x400") self.assertTrue(os.path.exists(os.path.join(m.dirname, "resize_x400.png"))) self.assertTrue(m._last == os.path.join(m.dirname, "resize_x400.png")) def test_top(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: m.pdf2png(trim="400x240", density="300x300") m.top("60%") self.assertTrue(os.path.exists(os.path.join(m.dirname, "top_60%-0.png"))) self.assertTrue(m._last == os.path.join(m.dirname, "top_60%-0.png")) def test_out(self): with Manipulator("paper2tmb/tests/testdata/1412.6785v2.pdf") as m: target = "paper2tmb/tests/testdata/out.pdf" m.out(target) self.assertTrue(os.path.exists(target)) subprocess.call(["rm", target])
2.6875
3
py-simspark/effectors.py
edison-moreland/py-simspark
2
12793605
<gh_stars>1-10 # TODO(MESSAGES) Turn into actual classes the parse_preceptors can return def message_factory(effector_string): """Makes messages easy to define""" def message(**kwargs): return effector_string.format(**kwargs) return message create = message_factory("(scene {filename})") hinge_joint = message_factory("({name} {ax1})") universal_joint = message_factory("({name {ax1} {ax2}})") synchronize = message_factory("(syn)") init = message_factory("(init (unum {playernumber}) (teamname {teamname}))") beam = message_factory("(beam {x} {y} {rot})") say = message_factory("(say {message})")
2.46875
2
analysis/example_utils.py
liuzh91/DEVELOP
73
12793606
from rdkit import Chem def mol_with_atom_index(mol): atoms = mol.GetNumAtoms() tmp_mol = Chem.Mol(mol) for idx in range(atoms): tmp_mol.GetAtomWithIdx(idx).SetProp('molAtomMapNumber', str(tmp_mol.GetAtomWithIdx(idx).GetIdx())) return tmp_mol def unique_mols(sequence): seen = set() return [x for x in sequence if not (tuple(x) in seen or seen.add(tuple(x)))]
2.65625
3
external/frozendict.py
MPvHarmelen/MarkdownCiteCompletions
0
12793607
# The frozendict is originally available under the following license: # # Copyright (c) 2012 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import collections import copy _iteritems = getattr(dict, 'iteritems', dict.items) # py2-3 compatibility class frozendict(collections.Mapping): """ An immutable wrapper around dictionaries that implements the complete :py:class:`collections.Mapping` interface. It can be used as a drop-in replacement for dictionaries where immutability is desired. """ dict_cls = dict def __init__(self, *args, **kwargs): self._dict = self.dict_cls(*args, **kwargs) self._hash = None def __getitem__(self, key): item = self._dict[key] if isinstance(item, dict): item = self._dict[key] = frozendict(**item) elif isinstance(item, list): item = self._dict[key] = tuple(item) elif isinstance(item, set): item = self._dict[key] = frozenset(item) elif hasattr(item, '__dict__') or hasattr(item, '__slots__'): return copy.copy(item) return item def __contains__(self, key): return key in self._dict def copy(self, **add_or_replace): return self.__class__(self, **add_or_replace) def __iter__(self): return iter(self._dict) def __len__(self): return len(self._dict) def __repr__(self): return '<%s %r>' % (self.__class__.__name__, self._dict) def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result result.__dict__.update(dict(( (k, copy.deepcopy(v, memo)) for k, v in self.__dict__.items()))) return result def __hash__(self): if self._hash is None: h = 0 for key, value in _iteritems(self._dict): h ^= hash((key, value)) self._hash = h return self._hash
1.96875
2
stream_alert_cli/manage_lambda/rollback.py
opsbay/streamalert
0
12793608
""" Copyright 2017-present, Airbnb Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from stream_alert_cli.logger import LOGGER_CLI import boto3 from botocore.exceptions import ClientError def _rollback_production(lambda_client, function_name): """Rollback the production alias for the given function name.""" version = lambda_client.get_alias( FunctionName=function_name, Name='production')['FunctionVersion'] if version == '$LATEST': # This won't happen with Terraform, but the alias could have been manually changed. LOGGER_CLI.error('%s:production is pointing to $LATEST instead of a published version', function_name) return current_version = int(version) if current_version == 1: LOGGER_CLI.warn('%s:production is already at version 1', function_name) return LOGGER_CLI.info('Rolling back %s:production from version %d => %d', function_name, current_version, current_version - 1) try: lambda_client.update_alias( FunctionName=function_name, Name='production', FunctionVersion=str(current_version - 1)) except ClientError: LOGGER_CLI.exception('version not updated') def rollback(options, config): """Rollback the current production Lambda version(s) by 1. Args: options: Argparse parsed options config (dict): Parsed configuration from conf/ """ rollback_all = 'all' in options.processor prefix = config['global']['account']['prefix'] clusters = sorted(options.clusters or config.clusters()) client = boto3.client('lambda') if rollback_all or 'alert' in options.processor: _rollback_production(client, '{}_streamalert_alert_processor'.format(prefix)) if rollback_all or 'alert_merger' in options.processor: _rollback_production(client, '{}_streamalert_alert_merger'.format(prefix)) if rollback_all or 'apps' in options.processor: for cluster in clusters: apps_config = config['clusters'][cluster]['modules'].get('stream_alert_apps', {}) for lambda_name in sorted(apps_config): _rollback_production(client, lambda_name) if rollback_all or 'athena' in options.processor: _rollback_production(client, '{}_streamalert_athena_partition_refresh'.format(prefix)) if rollback_all or 'rule' in options.processor: for cluster in clusters: _rollback_production(client, '{}_{}_streamalert_rule_processor'.format(prefix, cluster)) if rollback_all or 'threat_intel_downloader' in options.processor: _rollback_production(client, '{}_streamalert_threat_intel_downloader'.format(prefix))
1.820313
2
gtc-model-using-SCIP.py
mgorav/linear-programing
1
12793609
from ortools.linear_solver import pywraplp from ortools.sat.python import cp_model def main(): solver = pywraplp.Solver.CreateSolver('SCIP') infinity = solver.infinity() # wrenches wrenches = solver.IntVar(0.0, infinity, 'wrenches') # pliers pliers = solver.IntVar(0.0, infinity, 'pliers') print('Number of variables =', solver.NumVariables()) # constraints # steel solver.Add(1.5 * wrenches + pliers <= 27000) # molding solver.Add(1.0 * wrenches + pliers <= 21000) # assembly solver.Add(0.3 * wrenches + 0.5 * pliers <= 9000) # demand1 solver.Add(wrenches <= 15000) # demand2 solver.Add(pliers <= 16000) print('Number of constraints =', solver.NumConstraints()) # objective function solver.Maximize(0.13 * wrenches + 0.10 * pliers) status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print('Solution:') print('Objective value =', solver.Objective().Value()) print('Wrenches =', wrenches.solution_value()) print('Pliers =', pliers.solution_value()) print('Slack steel', (27000 - (1.5 * wrenches.solution_value() + pliers.solution_value()))) print('Slack molding', (21000 - (1.0 * wrenches.solution_value() + pliers.solution_value()))) print('Slack assembly',(9000 -(0.3 * wrenches.solution_value() + 0.5 * pliers.solution_value()))) print('Slack demand1',(15000 - wrenches.solution_value())) print('Slack demand2',(16000 - pliers.solution_value())) else: print('The problem does not have an optimal solution.') print('Problem solved in %f milliseconds' % solver.wall_time()) print('Problem solved in %d iterations' % solver.iterations()) print('Problem solved in %d branch-and-bound nodes' % solver.nodes()) if __name__ == '__main__': main()
2.703125
3
urls.py
j-ollivier/sonov-main
0
12793610
from django.urls import path, include from . import views urlpatterns = [ path('accounts/', include('registration.backends.simple.urls')), path('', views.FrontPage, name='FrontPage'), path('tags', views.TagList, name='TagList'), path('clips', views.ClipList, name='ClipList'), path('playlist/<str:tag_title>', views.Playlist, name='Playlist'), path('subscribe', views.Subscribe, name='Subscribe'), path('upload', views.UploadSon, name='UploadSon'), path('soundcloud_iframe/<str:soundcloud_id>', views.SoundcloudIframe), path('youtube_iframe/<str:youtube_id>', views.YoutubeIframe), path('vimeo_iframe/<str:vimeo_id>', views.VimeoIframe), ]
1.71875
2
Data_Science/chatbotPreprocessing.py
BasilcM/Short_URL
0
12793611
# -*- coding: utf-8 -*- import os import json import nltk import gensim import numpy as np from gensim import corpora, models, similarities import pickle os.chdir("D:\semicolon\Deep Learning\chatbot"); model = gensim.models.Word2Vec.load('word2vec.bin'); path2="corpus"; file=open(path2+'/conversation.json'); data = json.load(file) cor=data["conversations"]; x=[] y=[] path2="corpus"; for i in range(len(cor)): for j in range(len(cor[i])): if j<len(cor[i])-1: x.append(cor[i][j]); y.append(cor[i][j+1]); tok_x=[] tok_y=[] for i in range(len(x)): tok_x.append(nltk.word_tokenize(x[i].lower())) tok_y.append(nltk.word_tokenize(y[i].lower())) sentend=np.ones((300L,),dtype=np.float32) vec_x=[] for sent in tok_x: sentvec = [model[w] for w in sent if w in model.vocab] vec_x.append(sentvec) vec_y=[] for sent in tok_y: sentvec = [model[w] for w in sent if w in model.vocab] vec_y.append(sentvec) for tok_sent in vec_x: tok_sent[14:]=[] tok_sent.append(sentend) for tok_sent in vec_x: if len(tok_sent)<15: for i in range(15-len(tok_sent)): tok_sent.append(sentend) for tok_sent in vec_y: tok_sent[14:]=[] tok_sent.append(sentend) for tok_sent in vec_y: if len(tok_sent)<15: for i in range(15-len(tok_sent)): tok_sent.append(sentend) with open('conversation.pickle','w') as f: pickle.dump([vec_x,vec_y],f)
2.5
2
itg-tests/es-it/TraceContainers.py
Hemankita/refarch-kc
0
12793612
''' Trace container events to validate, events are published ''' import sys,os import time,json import signal,asyncio from confluent_kafka import KafkaError, Consumer try: KAFKA_BROKERS = os.environ['KAFKA_BROKERS'] except KeyError: print("The KAFKA_BROKERS environment variable needs to be set.") exit try: KAFKA_APIKEY = os.environ['KAFKA_APIKEY'] except KeyError: print("The KAFKA_APIKEY environment variable not set... assume local deployment") TOPIC_NAME = "containers" def parseArguments(): if len(sys.argv) <= 1: print("Set the number of container ID to send and the event type") NB_EVENTS = int(sys.argv[1]) EVT_TYPE = sys.argv[2] print("The arguments are: " , str(sys.argv)) def delivery_report(err, msg): """ Called once for each message produced to indicate delivery result. Triggered by poll() or flush(). """ if err is not None: print('Message delivery failed: {}'.format(err)) else: print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition())) def prepareProducer(): producer_options = { 'bootstrap.servers': KAFKA_BROKERS, 'security.protocol': 'SASL_SSL', 'ssl.ca.location': '/etc/ssl/certs', 'sasl.mechanisms': 'PLAIN', 'sasl.username': 'token', 'sasl.password': <PASSWORD>, 'api.version.request': True, 'broker.version.fallback': '0.10.2.1', 'log.connection.close' : False, 'client.id': 'kafka-python-container-test-producer', } return Producer( producer_options) def sendContainerEvent(producer,eventType,idx): for i in range(0,idx,1): cid = "c_" + str(i) data = {"timestamp": int(time.time()), "type": eventType, "version":"1", "containerID": cid, "payload": {"containerID": cid, "type": "Reefer", "status": "atDock", "city": "Oakland", "brand": "brand-reefer", "capacity": 100}} dataStr = json.dumps(data) producer.produce(TOPIC_NAME,dataStr.encode('utf-8'), callback=delivery_report) producer.flush() if __name__ == '__main__': parseArguments() producer=prepareProducer() sendContainerEvent(producer,EVT_TYPE,NB_EVENTS)
2.328125
2
scrapers/competitor_prices/models.py
vlandham/social_shopper
0
12793613
<filename>scrapers/competitor_prices/models.py from sqlalchemy import create_engine, Column, Integer, String, Numeric from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.engine.url import URL import settings DeclarativeBase = declarative_base() def create_competitor_prices_table(engine): DeclarativeBase.metadata.create_all(engine) def db_connect(): """ Performs database connection using settings from settings.py. Returns sqlalchemy engine instance. """ return create_engine(URL(**settings.DATABASE)) class CompetitorPrices(DeclarativeBase): """ sqlalchemy competitor_prices model """ __tablename__ = "competitor_prices" product_id = Column(Integer, primary_key = True) product_name = Column('product_name', String, nullable = True) brand = Column('brand', String, nullable = True) price_high = Column('price_high', Numeric(10, 2), nullable = True) price_low = Column('price_low', Numeric(10, 2), nullable = True)
2.890625
3
winery/dead_seg.py
H-B-P/DURKON
0
12793614
import pandas as pd import numpy as np import math import util def gimme_pseudo_winsors(inputDf, col, pw=0.05): return util.round_to_sf(inputDf[col].quantile(pw),3), util.round_to_sf(inputDf[col].quantile(1-pw),3) def gimme_starting_affect(inputDf, col, segs): x = inputDf[col] x1 = float(segs[0]) x2 = float(segs[1]) affectedness = pd.Series([0]*len(inputDf)) affectedness.loc[(x<x1)] = 1 affectedness.loc[(x>=x1) & (x<x2)] = (x2 - x)/(x2 - x1) return sum(affectedness) def gimme_normie_affect(inputDf, col, segs, posn): x = inputDf[col] x1 = float(segs[posn-1]) x2 = float(segs[posn]) x3 = float(segs[posn+1]) affectedness = pd.Series([0]*len(inputDf)) affectedness.loc[(x>=x1) & (x<x2)] = (x - x1)/(x2 - x1) affectedness.loc[(x>=x2) & (x<x3)] = (x3 - x)/(x3 - x2) return sum(affectedness) def gimme_ending_affect(inputDf, col, segs): x = inputDf[col] x1 = float(segs[-2]) x2 = float(segs[-1]) affectedness = pd.Series([0]*len(inputDf)) affectedness.loc[(x>=x2)] = 1 affectedness.loc[(x>=x1) & (x<x2)] = (x - x1)/(x2 - x1) return sum(affectedness) def gimme_sa_optimizing_func(inputDf, col, segsSoFar): def sa_optimizing_func(x): return gimme_starting_affect(inputDf, col, segsSoFar+[x]) return sa_optimizing_func def gimme_na_optimizing_func(inputDf, col, segsSoFar): def na_optimizing_func(x): return gimme_normie_affect(inputDf, col, segsSoFar+[x], len(segsSoFar)-1) return na_optimizing_func def gimme_pa_optimizing_func(inputDf, col, segsSoFar, end): def pa_optimizing_func(x): return gimme_normie_affect(inputDf, col, segsSoFar+[x]+[end], len(segsSoFar)) return pa_optimizing_func if __name__ == "__main__": dyct = {"x":list(range(100))} df=pd.DataFrame(dyct) start, end = gimme_pseudo_winsors(df, "x") print(start, end) targetLen=5 goodAmt=float(len(df))/targetLen segs = [start] print(segs) if targetLen>2: optFunc = gimme_sa_optimizing_func(df, "x", segs) next = util.target_input_with_output(optFunc, goodAmt, start, end) segs.append(util.round_to_sf(next,3)) print(segs) for i in range(targetLen-3): optFunc = gimme_na_optimizing_func(df, "x", segs) next = util.target_input_with_output(optFunc, goodAmt, start, end) segs.append(util.round_to_sf(next,3)) print(segs) segs.append(end) print(segs) print([gimme_starting_affect(df, "x", segs), gimme_normie_affect(df, "x", segs, 1), gimme_normie_affect(df, "x", segs, 2), gimme_normie_affect(df, "x", segs, 3), gimme_ending_affect(df, "x", segs)])
2.65625
3
dsf_utils/evaluation.py
ltsaprounis/dsf-ts-forecasting
18
12793615
<reponame>ltsaprounis/dsf-ts-forecasting """Evaluation Functions""" import pandas as pd import numpy as np from sktime.forecasting.model_evaluation import evaluate from sktime.forecasting.model_selection import ( CutoffSplitter, SlidingWindowSplitter, ExpandingWindowSplitter, SingleWindowSplitter, ) from typing import Union from IPython.display import display from copy import deepcopy def evaluate_forecasters_on_cutoffs( time_series: pd.Series, cutoffs: list, forecasters_dict: dict, metrics_dict: dict, fh: np.array = np.arange(3) + 1, window_length: int = 5 * 52, ) -> pd.DataFrame: _df_list = [] for cutoff in cutoffs: _ts = time_series.copy() for fcaster_name, forecaster in forecasters_dict.items(): for metric_name, metric in metrics_dict.items(): _forecaster = deepcopy(forecaster) cv = CutoffSplitter( cutoffs=np.array([cutoff]), fh=fh, window_length=window_length, ) _df = evaluate( forecaster=_forecaster, y=_ts, cv=cv, strategy="refit", return_data=True, scoring=metric, ) _df["Forecaster"] = fcaster_name _df["Metric"] = metric_name _df = _df.rename(columns={f"test_{metric.name}": "Score"}) _df_list.append(_df) return pd.concat(_df_list) def evaluate_forecasters( time_series: pd.Series, cv: Union[ CutoffSplitter, SlidingWindowSplitter, ExpandingWindowSplitter, SingleWindowSplitter, ], forecasters_dict: dict, metrics_dict: dict, ) -> pd.DataFrame: _df_list = [] _ts = time_series.copy() for fcaster_name, forecaster in forecasters_dict.items(): for metric_name, metric in metrics_dict.items(): _forecaster = deepcopy(forecaster) cv = deepcopy(cv) _df = evaluate( forecaster=_forecaster, y=_ts, cv=cv, strategy="refit", return_data=True, scoring=metric, ) _df["Forecaster"] = fcaster_name _df["Metric"] = metric_name _df = _df.rename(columns={f"test_{metric.name}": "Score"}) _df_list.append(_df) return pd.concat(_df_list) def display_results(df, axis=0): results = df.groupby(["Forecaster", "Metric"], as_index=False)["Score"].mean() results = results.pivot(index="Forecaster", columns="Metric", values="Score") def highlight_min(s, props=""): return np.where(s == np.nanmin(s.values), props, "") results = results.applymap("{:,.2f}".format).style.apply( highlight_min, props="color:white;background-color:purple", axis=axis ) display(results) def evaluate_panel_forecaster_on_cutoffs( panel_df: pd.DataFrame, cutoffs: list, forecaster, metric, fh: np.array = np.arange(3) + 1, window_length: int = 5 * 52, freq="W-SUN", ts_id_col="REGION", target="ILITOTAL", ) -> pd.DataFrame: _panel_df = panel_df.copy() _panel_df = _panel_df.sort_values(by=[ts_id_col]).sort_index() ts_list = list(panel_df[ts_id_col].unique()) results = pd.DataFrame() for cutoff in cutoffs: _forecaster = deepcopy(forecaster) cutoff = pd.Period(cutoff, freq=freq) + 1 train_df = _panel_df[ (_panel_df.index <= cutoff) & (_panel_df.index > cutoff - window_length) ].sort_index() min_test_date = cutoff + int(np.min(fh)) max_test_date = cutoff + int(np.max(fh)) test_df = _panel_df[ (_panel_df.index >= min_test_date) & (_panel_df.index <= max_test_date) ] # if forecaster doesn't need fh in fit fh will be ignored. _forecaster.fit(train_df, fh=fh) pred_df = _forecaster.predict(fh=fh) # loop over regions to get region level metrics and y_preds for ts in ts_list: _pred = pred_df[pred_df[ts_id_col] == ts]["y_pred"] _test = test_df[test_df[ts_id_col] == ts][target] _train = train_df[train_df[ts_id_col] == ts][target].sort_index() score = metric(y_true=_test, y_pred=_pred, y_train=_train) results = results.append( { ts_id_col: ts, "cutoff": cutoff, "Metric": metric.name, "Score": score, "y_test": _test, "y_pred": _pred, }, ignore_index=True, ) return results
2.625
3
app/core/tests/test_models.py
georgecretu26/recipe-app-api
0
12793616
<reponame>georgecretu26/recipe-app-api from django.test import TestCase from django.contrib.auth import get_user_model class ModelTests(TestCase): def test_create_user_with_email_successful(self): """Test creating new user with an email is successful""" email = "<EMAIL>" password = "<PASSWORD>" user = get_user_model().objects.create_user( email=email, password=password, ) self.assertEqual(user.email, email) self.assertTrue(user.check_password, password) def test_new_user_email_normalized(self): """test the email for a new user is normilized""" email = '<EMAIL>' user = get_user_model().objects.create_user( email=email, ) self.assertEqual(user.email, email.lower()) def test_new_user_email_invalid(self): """test if the email is invalid""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, 'asdqw12') def test_create_new_super_user(self): """Test create new super user""" user = get_user_model().objects.create_superuser( '<EMAIL>', 'test123', ) self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
2.953125
3
project/20-custom-training-loops.py
marknhenry/tf_starter_kit
0
12793617
<reponame>marknhenry/tf_starter_kit import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, regularizers from tensorflow.keras.datasets import mnist import tensorflow_datasets as tfds from tensorflow.keras import Input from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, ReLU from utils import style import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # change to 2 os.system('clear') print(style.YELLOW + f'Tensorflow version: {tf.__version__}\n') print(style.GREEN, end='') (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): return tf.cast(image, tf.float32)/255.0, label AUTOTUNE = tf.data.experimental.AUTOTUNE BATCH_SIZE = 32 # Setting up training dataset ds_train = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(BATCH_SIZE) ds_train = ds_train.prefetch(AUTOTUNE) # Setting up test dataset ds_test = ds_train.map(normalize_img, num_parallel_calls=AUTOTUNE) ds_test = ds_train.batch(BATCH_SIZE) ds_test = ds_train.prefetch(AUTOTUNE) # Building the Model model = keras.Sequential( [ Input((28, 28, 1)), Conv2D(32, 3, activation='relu'), Flatten(), Dense(10, activation='softmax'), ] ) print(style.GREEN, end='') num_epochs = 5 loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam(learning_rate=3e-4) acc_metric = keras.metrics.SparseCategoricalAccuracy() for epoch in range(num_epochs): print(f'\nStart of Training Epoch {epoch}') for batch_idx, (x_batch, y_batch) in enumerate(ds_train): with tf.GradientTape() as tape: y_pred = model(x_batch, training=True) loss = loss_fn(y_batch, y_pred) gradients = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) acc_metric.update_state(y_batch, y_pred) train_acc = acc_metric.result() print(f'Accuracy over epoch {train_acc}') acc_metric.reset_states() for batch_idx, (x_batch, y_batch) in enumerate(ds_test): y_pred = model(x_batch, training=False) acc_metric.update_state(y_batch, y_pred) train_acc = acc_metric.result() print(f'Accuracy over test set: {train_acc}') acc_metric.reset_states()
2.609375
3
13_multiprocessing/05_remote_server.py
varshashivhare/Mastering-Python
30
12793618
<filename>13_multiprocessing/05_remote_server.py constants = __import__('05_remote_processor') import multiprocessing from multiprocessing import managers queue = multiprocessing.Queue() manager = managers.BaseManager(address=('', constants.port), authkey=constants.password) manager.register('queue', callable=lambda: queue) manager.register('primes', callable=constants.primes) server = manager.get_server() server.serve_forever()
2.09375
2
catkin_ws_assignments/src/week2/src/Scripts/surname.py
ritvik506/Robotics-Automation-QSTP-2021
0
12793619
<gh_stars>0 #!/usr/bin/env python2 import rospy from std_msgs.msg import String rospy.init_node("surname") pub=rospy.Publisher("surname",String) rate=rospy.Rate(3) surname="Puranik" while not rospy.is_shutdown(): pub.publish(surname) rate.sleep()
2.359375
2
threedod/benchmark_scripts/utils/box_utils.py
Levintsky/ARKitScenes
237
12793620
# TODO: Explain 8 corners logic at the top and use it consistently # Add comments of explanation import numpy as np import scipy.spatial from .rotation import rotate_points_along_z def get_size(box): """ Args: box: 8x3 Returns: size: [dx, dy, dz] """ distance = scipy.spatial.distance.cdist(box[0:1, :], box[1:5, :]) l = distance[0, 2] w = distance[0, 0] h = distance[0, 3] return [l, w, h] def get_heading_angle(box): """ Args: box: (8, 3) Returns: heading_angle: float """ a = box[0, 0] - box[1, 0] b = box[0, 1] - box[1, 1] heading_angle = np.arctan2(a, b) return heading_angle def compute_box_3d(size, center, rotmat): """Compute corners of a single box from rotation matrix Args: size: list of float [dx, dy, dz] center: np.array [x, y, z] rotmat: np.array (3, 3) Returns: corners: (8, 3) """ l, h, w = [i / 2 for i in size] center = np.reshape(center, (-1, 3)) center = center.reshape(3) x_corners = [l, l, -l, -l, l, l, -l, -l] y_corners = [h, -h, -h, h, h, -h, -h, h] z_corners = [w, w, w, w, -w, -w, -w, -w] corners_3d = np.dot( np.transpose(rotmat), np.vstack([x_corners, y_corners, z_corners]) ) corners_3d[0, :] += center[0] corners_3d[1, :] += center[1] corners_3d[2, :] += center[2] return np.transpose(corners_3d) def corners_to_boxes(corners3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: corners: (N, 8, 3), vertex order shown in figure above Returns: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading] with (x, y, z) is the box center (dx, dy, dz) as the box size and heading as the clockwise rotation angle """ boxes3d = np.zeros((corners3d.shape[0], 7)) for i in range(corners3d.shape[0]): boxes3d[i, :3] = np.mean(corners3d[i, :, :], axis=0) boxes3d[i, 3:6] = get_size(corners3d[i, :, :]) boxes3d[i, 6] = get_heading_angle(corners3d[i, :, :]) return boxes3d def boxes_to_corners_3d(boxes3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center Returns: corners: (N, 8, 3) """ template = np.array([[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1]] ) / 2. # corners3d: of shape (N, 3, 8) corners3d = np.tile(boxes3d[:, None, 3:6], (1, 8, 1)) * template[None, :, :] corners3d = rotate_points_along_z(corners3d.reshape(-1, 8, 3), boxes3d[:, 6]).reshape( -1, 8, 3 ) corners3d += boxes3d[:, None, 0:3] return corners3d def points_in_boxes(points, boxes): """ Args: pc: np.array (n, 3+d) boxes: np.array (m, 8, 3) Returns: mask: np.array (n, m) of type bool """ if len(boxes) == 0: return np.zeros([points.shape[0], 1], dtype=np.bool) points = points[:, :3] # get xyz # u = p6 - p5 u = boxes[:, 6, :] - boxes[:, 5, :] # (m, 3) # v = p6 - p7 v = boxes[:, 6, :] - boxes[:, 7, :] # (m, 3) # w = p6 - p2 w = boxes[:, 6, :] - boxes[:, 2, :] # (m, 3) # ux, vx, wx ux = np.matmul(points, u.T) # (n, m) vx = np.matmul(points, v.T) wx = np.matmul(points, w.T) # up6, up5, vp6, vp7, wp6, wp2 up6 = np.sum(u * boxes[:, 6, :], axis=1) up5 = np.sum(u * boxes[:, 5, :], axis=1) vp6 = np.sum(v * boxes[:, 6, :], axis=1) vp7 = np.sum(v * boxes[:, 7, :], axis=1) wp6 = np.sum(w * boxes[:, 6, :], axis=1) wp2 = np.sum(w * boxes[:, 2, :], axis=1) mask_u = np.logical_and(ux <= up6, ux >= up5) # (1024, n) mask_v = np.logical_and(vx <= vp6, vx >= vp7) mask_w = np.logical_and(wx <= wp6, wx >= wp2) mask = mask_u & mask_v & mask_w # (10240, n) return mask def poly_area(x,y): """ Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0]) def computeIntersection(): dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]] dp = [s[0] - e[0], s[1] - e[1]] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return (outputList) def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1,p2) if inter_p is not None: hull_inter = scipy.spatial.ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def box3d_vol(corners): ''' corners: (8,3) no assumption on axis direction ''' a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2)) c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) return a*b*c def box3d_iou(corners1, corners2): ''' Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU ''' # corner points are in counter clockwise order rect1 = [(corners1[i,0], corners1[i,1]) for i in range(3,-1,-1)] rect2 = [(corners2[i,0], corners2[i,1]) for i in range(3,-1,-1)] area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1]) area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1]) inter, inter_area = convex_hull_intersection(rect1, rect2) iou_2d = inter_area/(area1+area2-inter_area) ymax = min(corners1[:,2].max(), corners2[:,2].max()) ymin = max(corners1[:,2].min(), corners2[:,2].min()) inter_vol = inter_area * max(0.0, ymax-ymin) vol1 = box3d_vol(corners1) vol2 = box3d_vol(corners2) iou = inter_vol / (vol1 + vol2 - inter_vol) return iou
3.8125
4
merc/features/rfc1459/motd.py
merc-devel/merc
4
12793621
from merc import config from merc import feature from merc import message class MotdFeature(feature.Feature): NAME = __name__ CONFIG_SECTION = 'motd' install = MotdFeature.install @MotdFeature.register_config_checker def check_config(section): return config.validate(section, str) class MotdReply(message.Reply): NAME = "372" FORCE_TRAILING = True MIN_ARITY = 1 def __init__(self, line, *args): self.line = line def as_reply_params(self): return [self.line] class MotdStart(message.Reply): NAME = "375" FORCE_TRAILING = True MIN_ARITY = 1 def __init__(self, reason, *args): self.reason = reason def as_reply_params(self): return [self.reason] class EndOfMotd(message.Reply): NAME = "376" FORCE_TRAILING = True MIN_ARITY = 1 def __init__(self, reason="End of /MOTD command", *args): self.reason = reason def as_reply_params(self): return [self.reason] @MotdFeature.register_user_command class Motd(message.Command): NAME = "MOTD" MIN_ARITY = 0 @message.Command.requires_registration def handle_for(self, app, user, prefix): motd = app.features.get_config_section(__name__) user.send_reply(MotdStart( "- {} Message of the Day".format(app.server.name))) for line in motd.splitlines(): user.send_reply(MotdReply("- " + line)) user.send_reply(EndOfMotd()) @MotdFeature.hook("user.welcome") def send_motd_on_welcome(app, user): user.on_message(app, user.hostmask, Motd())
2.3125
2
app.py
jessicagtz/Project-2-Chicago-Communities
0
12793622
<reponame>jessicagtz/Project-2-Chicago-Communities import datetime as dt import numpy as np import pandas as pd from flask import ( Flask, render_template, jsonify, request, redirect) import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Database Setup ################################################# engine = create_engine("sqlite:///chi_db.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table Communities = Base.classes.comm_names Neighborhoods = Base.classes.neighborhoods Twitter = Base.classes.twitter Population = Base.classes.population Race = Base.classes.race Crime = Base.classes.crime # Create our session (link) from Python to the DB session = Session(engine) ################################################# # Flask Routes ################################################# @app.route("/") def index(): #render the index template return render_template("index.html") @app.route("/dash/<ID>") def dash(ID): # query for the community name based off of ID selected names = session.query(Communities).filter(Communities.id == ID) all_names = [] for name in names: comm_dict = {} comm_dict["name"] = name.community all_names.append(comm_dict) name = jsonify(all_names) # query for community twitter handle based off of ID twitters = session.query(Twitter).filter(Twitter.id == ID) handles = [] for handle in twitters: handle_dict = {} handle_dict["handle"] = handle.twitter_handle handles.append(handle_dict) twitter_handle = jsonify(handles) # query the population data for chart based off of ID results = session.query(Population).filter(Population.id == ID) totals = session.query(Population).filter(Population.id == 78) pop = [] for population in results: pop_dict = {} pop_dict["ID"] = population.id pop_dict["_1930"] = population._1930 pop_dict["_1940"] = population._1940 pop_dict["_1950"] = population._1950 pop_dict["_1960"] = population._1960 pop_dict["_1970"] = population._1970 pop_dict["_1980"] = population._1980 pop_dict["_1990"] = population._1990 pop_dict["_2000"] = population._2000 pop_dict["_2010"] = population._2010 pop_dict["_2015"] = population._2015 for total in totals: pop_dict["all_1930"] = total._1930 pop_dict["all_1940"] = total._1940 pop_dict["all_1950"] = total._1950 pop_dict["all_1960"] = total._1960 pop_dict["all_1970"] = total._1970 pop_dict["all_1980"] = total._1980 pop_dict["all_1990"] = total._1990 pop_dict["all_2000"] = total._2000 pop_dict["all_2010"] = total._2010 pop_dict["all_2015"] = total._2015 pop.append(pop_dict) population_data = jsonify(pop) # query the race data for chart based off of ID demographics = session.query(Race).filter(Race.id == ID) race = [] for demo in demographics: demo_dict = {} demo_dict["ID"] = demo.id demo_dict["asian2015"] = demo.asian2015 demo_dict["black2015"] = demo.black2015 demo_dict["hispanic2015"] = demo.hispanic2015 demo_dict["other2015"] = demo.other2015 demo_dict["white2015"] = demo.white2015 race.append(demo_dict) race_data = jsonify(race) # query the neighborhood data for chart based off of ID neighborhoods = session.query(Neighborhoods).filter(Neighborhoods.ID ==ID) all_neighborhoods = [] for hood in neighborhoods: hood_dict = {} hood_dict["ID"] = hood.ID hood_dict["Neighborhoods"] = hood.neighborhoods all_neighborhoods.append(hood_dict) neighborhood_data = jsonify(all_neighborhoods) #query the crime data for chart based off of ID crimes = session.query(Crime).filter(Crime.id == ID) crime_data = [] for crime in crimes: crime_dict = {} crime_dict["ID"] = crime.id crime_dict["battery"] = crime.battery crime_dict["deceptive_practice"] = crime.deceptive_practice crime_dict["homicide"] = crime.homicide crime_dict["narcotics"] = crime.narcotics crime_dict["non_criminal"] = crime.non_criminal crime_dict["sexual"] = crime.sexual crime_dict["theft"] = crime.theft crime_data.append(crime_dict) crimes2017 = jsonify(crime_data) # render the template return render_template("dashboard.html", comm_dict=comm_dict, handle_dict=handle_dict, pop_dict=pop_dict, demo_dict=demo_dict, hood_dict=hood_dict, crime_dict=crime_dict) @app.route("/twitter/<ID>") def twitter(ID): twitters = session.query(Twitter).filter(Twitter.id == ID) handles = [] for handle in twitters: handle_dict = {} handle_dict["handle"] = handle.twitter_handle handles.append(handle_dict) twitter_handle = jsonify(handles) return twitter_handle @app.route("/names/<ID>") def names(ID): results = session.query(Communities).filter(Communities.id == ID) all_communities = [] for comm in results: comm_dict = {} comm_dict["ID"] = comm.id comm_dict["Name"] = comm.community all_communities.append(comm_dict) return jsonify(all_communities) @app.route("/hoods/<ID>") def hoods(ID): results = session.query(Neighborhoods).filter(Neighborhoods.ID ==ID) all_neighborhoods = [] for hood in results: hood_dict = {} hood_dict["ID"] = hood.ID hood_dict["Neighborhoods"] = hood.neighborhoods all_neighborhoods.append(hood_dict) return jsonify(all_neighborhoods) @app.route("/pop/<ID>") def pop(ID): results = session.query(Population).filter(Population.id == ID) totals = session.query(Population).filter(Population.id == 78) pop = [] for population in results: pop_dict = {} pop_dict["ID"] = population.id pop_dict["1930"] = population._1930 pop_dict["1940"] = population._1940 pop_dict["1950"] = population._1950 pop_dict["1960"] = population._1960 pop_dict["1970"] = population._1970 pop_dict["1980"] = population._1980 pop_dict["1990"] = population._1990 pop_dict["2000"] = population._2000 pop_dict["2010"] = population._2010 pop_dict["2015"] = population._2015 for total in totals: pop_dict["all_1930"] = total._1930 pop_dict["all_1940"] = total._1940 pop_dict["all_1950"] = total._1950 pop_dict["all_1960"] = total._1960 pop_dict["all_1970"] = total._1970 pop_dict["all_1980"] = total._1980 pop_dict["all_1990"] = total._1990 pop_dict["all_2000"] = total._2000 pop_dict["all_2010"] = total._2010 pop_dict["all_2015"] = total._2015 pop.append(pop_dict) return jsonify(pop) @app.route("/race/<ID>") def race(ID): demographics = session.query(Race).filter(Race.id == ID) race = [] for demo in demographics: demo_dict = {} demo_dict["ID"] = demo.id demo_dict["asian2015"] = demo.asian2015 demo_dict["black2015"] = demo.black2015 demo_dict["hispanic2015"] = demo.hispanic2015 demo_dict["other2015"] = demo.other2015 demo_dict["white2015"] = demo.white2015 race.append(demo_dict) return jsonify(race) @app.route("/crime/<ID>") def crime(ID): crimes = session.query(Crime).filter(Crime.id == ID) crime_data = [] for crime in crimes: crime_dict = {} crime_dict["ID"] = crime.id crime_dict["battery"] = crime.battery crime_dict["deceptive_practice"] = crime.deceptive_practice crime_dict["homicide"] = crime.homicide crime_dict["narcotics"] = crime.narcotics crime_dict["non_criminal"] = crime.non_criminal crime_dict["sexual"] = crime.sexual crime_dict["theft"] = crime.theft crime_data.append(crime_dict) return jsonify(crime_data) @app.route("/crime") def crimes(): return render_template("crime.html") @app.route("/about") def about(): return("Chicago Community Project: " "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>") if __name__ == '__main__': app.run(debug=True)
2.96875
3
src/launch/scenario_simulator_launch/launch/autoware_auto_perception.launch.py
ruvus/auto
19
12793623
# Copyright 2021 the Autoware Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ament_index_python import get_package_share_directory from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.conditions import IfCondition from launch.substitutions import LaunchConfiguration from launch_ros.actions import Node import os def generate_launch_description(): """ Launch perception nodes. * euclidean_cluster * off_map_obstacles_filter * ray_ground_classifier """ autoware_auto_launch_pkg_prefix = get_package_share_directory( 'autoware_auto_launch') euclidean_cluster_param_file = os.path.join( autoware_auto_launch_pkg_prefix, 'param/euclidean_cluster.param.yaml') off_map_obstacles_filter_param_file = os.path.join( autoware_auto_launch_pkg_prefix, 'param/off_map_obstacles_filter.param.yaml') ray_ground_classifier_param_file = os.path.join( autoware_auto_launch_pkg_prefix, 'param/ray_ground_classifier.param.yaml') # Arguments with_obstacles_param = DeclareLaunchArgument( 'with_obstacles', default_value='True', description='Enable obstacle detection' ) euclidean_cluster_param = DeclareLaunchArgument( 'euclidean_cluster_param_file', default_value=euclidean_cluster_param_file, description='Path to config file for Euclidean Clustering' ) off_map_obstacles_filter_param = DeclareLaunchArgument( 'off_map_obstacles_filter_param_file', default_value=off_map_obstacles_filter_param_file, description='Path to parameter file for off-map obstacle filter' ) ray_ground_classifier_param = DeclareLaunchArgument( 'ray_ground_classifier_param_file', default_value=ray_ground_classifier_param_file, description='Path to config file for Ray Ground Classifier' ) # Nodes euclidean_clustering = Node( package='euclidean_cluster_nodes', executable='euclidean_cluster_node_exe', namespace='perception', condition=IfCondition(LaunchConfiguration('with_obstacles')), parameters=[LaunchConfiguration('euclidean_cluster_param_file')], remappings=[ ("points_in", "points_nonground") ] ) off_map_obstacles_filter = Node( package='off_map_obstacles_filter_nodes', name='off_map_obstacles_filter_node', namespace='perception', executable='off_map_obstacles_filter_nodes_exe', condition=IfCondition(LaunchConfiguration('with_obstacles')), parameters=[LaunchConfiguration('off_map_obstacles_filter_param_file')], output='screen', remappings=[ ('bounding_boxes_in', 'lidar_bounding_boxes'), ('bounding_boxes_out', 'lidar_bounding_boxes_filtered'), ('HAD_Map_Service', '/had_maps/HAD_Map_Service'), ] ) ray_ground_classifier = Node( package='ray_ground_classifier_nodes', executable='ray_ground_classifier_cloud_node_exe', namespace='perception', condition=IfCondition(LaunchConfiguration('with_obstacles')), parameters=[LaunchConfiguration('ray_ground_classifier_param_file')], remappings=[("points_in", "/lidars/points_fused")] ) return LaunchDescription([ euclidean_cluster_param, ray_ground_classifier_param, with_obstacles_param, off_map_obstacles_filter_param, euclidean_clustering, ray_ground_classifier, off_map_obstacles_filter, ])
1.90625
2
peon/src/lint/principles/definition/no_public_methods_without_a_contract_interface.py
roch1990/peon
32
12793624
"""Nothing to do here...."""
1.070313
1
AlphaPose/Alphapose.py
Nadern96/Realtime-Action-Recognition
0
12793625
<reponame>Nadern96/Realtime-Action-Recognition import os import json path = r"../data/source_images3" # f= open("../data_proc/raw_skeletons/skeletons_info.txt", 'w+') count = 0 couldRename = 0 Classes = {'clap':1, 'hit':2, 'jump':3, 'kick':4, 'punch':5, 'push':6, 'run':7, 'shake':8, 'sit':9, 'situp':10, 'stand':11, 'turn':12, 'walk':13, 'wave':14, } imagecount = 1 for subdir, dirs, files in os.walk(path,topdown=True): dirs.sort() for dir in dirs: try: FullList = [] if str(dir).endswith('.json'): continue count += 1 print("proccessing file#" + str(count)) print(dir) pathtofile = os.path.join(subdir,dir) command = "python3 /home/mina_atef0/Desktop/AlphaPose/demo.py --indir {} --outdir {} --detbatch 4 ".format(pathtofile,subdir) os.system(command) with open('data_proc/alphapose-results.json') as f: items = json.load(f) for item in items: itemList = [] class_name = dir.split('_')[0] itemList.append(Classes[class_name]) itemList.append(count) itemList.append(int(item['image_id'][:5]) + 1) itemList.append(class_name) itemList.append(dir + '/' + item['image_id']) itemList = itemList + item['keypoints'] FullList.append(itemList) FullList = sorted(FullList, key= lambda x: x[2]) with open('../data_proc/raw_skeletons/skeletons_info/'+dir + '.txt', 'w+') as outfile: json.dump(FullList, outfile) except: pass print("couldn't rename " +str(couldRename) ) print("made " +str(count) )
2.421875
2
src/fal/cli/fal_runner.py
emekdahl/fal
360
12793626
<gh_stars>100-1000 import argparse from pathlib import Path from typing import Any, Dict, List import os from dbt.config.profile import DEFAULT_PROFILES_DIR from fal.run_scripts import raise_for_run_results_failures, run_scripts from fal.fal_script import FalScript from faldbt.project import DbtModel, FalDbt, FalGeneralException def create_fal_dbt(args: argparse.Namespace): real_project_dir = os.path.realpath(os.path.normpath(args.project_dir)) real_profiles_dir = None env_profiles_dir = os.getenv("DBT_PROFILES_DIR") if args.profiles_dir is not None: real_profiles_dir = os.path.realpath(os.path.normpath(args.profiles_dir)) elif env_profiles_dir: real_profiles_dir = os.path.realpath(os.path.normpath(env_profiles_dir)) else: real_profiles_dir = DEFAULT_PROFILES_DIR if hasattr(args, "state") and args.state is not None: real_state = Path(os.path.realpath(os.path.normpath(args.state))) else: real_state = None return FalDbt( real_project_dir, real_profiles_dir, args.select, args.exclude, args.selector, args.keyword, args.threads, real_state, args.target, ) def fal_run(args: argparse.Namespace): "Runs the fal run command in a subprocess" selector_flags = args.select or args.exclude or args.selector if args.all and selector_flags: raise FalGeneralException( "Cannot pass --all flag alongside selection flags (--select/--models, --exclude, --selector)" ) faldbt = create_fal_dbt(args) models = _get_filtered_models(faldbt, args.all, selector_flags, args.before) scripts = _select_scripts(args, models, faldbt) if args.before: if not _scripts_flag(args): # run globals when no --script is passed _run_global_scripts(faldbt, args.before) results = run_scripts(scripts, faldbt) raise_for_run_results_failures(scripts, results) else: results = run_scripts(scripts, faldbt) raise_for_run_results_failures(scripts, results) if not _scripts_flag(args): # run globals when no --script is passed _run_global_scripts(faldbt, args.before) def _scripts_flag(args: argparse.Namespace) -> bool: return bool(args.scripts) def _select_scripts( args: argparse.Namespace, models: List[DbtModel], faldbt: FalDbt ) -> List[FalScript]: scripts = [] scripts_flag = _scripts_flag(args) for model in models: model_scripts = model.get_scripts(args.keyword, bool(args.before)) for path in model_scripts: if not scripts_flag: # run all scripts when no --script is passed scripts.append(FalScript(faldbt, model, path)) elif path in args.scripts: # if --script selector is there only run selected scripts scripts.append(FalScript(faldbt, model, path)) return scripts def _run_global_scripts(faldbt: FalDbt, is_before: bool): global_scripts = list( map( lambda path: FalScript(faldbt, None, path), faldbt._global_script_paths["before" if is_before else "after"], ) ) results = run_scripts(global_scripts, faldbt) raise_for_run_results_failures(global_scripts, results) def _get_models_with_keyword(faldbt: FalDbt) -> List[DbtModel]: return list( filter(lambda model: faldbt.keyword in model.meta, faldbt.list_models()) ) def _get_filtered_models(faldbt: FalDbt, all, selected, before) -> List[DbtModel]: selected_ids = _models_ids(faldbt._compile_task._flattened_nodes) filtered_models: List[DbtModel] = [] if ( not all and not selected and not before and faldbt._run_results.nativeRunResult is None ): from faldbt.parse import FalParseError raise FalParseError( "Cannot define models to run without selection flags or dbt run_results artifact or --before flag" ) models = _get_models_with_keyword(faldbt) for node in models: if selected: if node.unique_id in selected_ids: filtered_models.append(node) elif before: if node.get_scripts(faldbt.keyword, before) != []: filtered_models.append(node) elif all: filtered_models.append(node) elif node.status != "skipped": filtered_models.append(node) return filtered_models def _models_ids(models): return list(map(lambda r: r.unique_id, models))
2.078125
2
Compute resonances/calc_cxroots.py
zmoitier/Asymptotic_metacavity
0
12793627
""" Compute resonances using the cxroots library (contour integration techniques) Authors: <NAME>, <NAME> Karlsruhe Institute of Technology, Germany University of California, Merced Last modified: 20/04/2021 """ from sys import argv import matplotlib.pyplot as plt import numpy as np from cxroots import AnnulusSector, Circle from scipy.special import h1vp, hankel1, iv, ivp ## Entries ## ε = float(argv[1]) # For example -1.1 + 1e-2 * 1j η = np.sqrt(-ε) print(f"η = {η}") c = η + 1 / η ## Internal functions ## def rootsAnnSec(m, rMin, rMax, aMin, aMax): f0 = lambda k: ivp(m, η * k) * hankel1(m, k) / η + iv(m, η * k) * h1vp(m, k) f1 = ( lambda k: ivp(m, η * k, 2) * hankel1(m, k) + c * ivp(m, η * k) * h1vp(m, k) + iv(m, η * k) * h1vp(m, k, 2) ) A = AnnulusSector(center=0.0, radii=(rMin, rMax), phiRange=(aMin, aMax)) z = A.roots(f0, df=f1) return z.roots def writeFile(myFile, m, z): if np.size(z, 0): for i in range(np.size(z, 0)): myFile.write(f"{m} {z[i].real} {z[i].imag}\n") def calcInt(): plaTrue = ε > -1.0 if plaTrue: Int = open(f"eps_{ε}_int", "w") Pla = open(f"eps_{ε}_pla", "w") else: Int = open(f"eps_{ε}_int", "w") for m in range(65): print(f"m = {m}") f0 = lambda k: ivp(m, η * k) * hankel1(m, k) / η + iv(m, η * k) * h1vp(m, k) f1 = ( lambda k: ivp(m, η * k, 2) * hankel1(m, k) + c * ivp(m, η * k) * h1vp(m, k) + iv(m, η * k) * h1vp(m, k, 2) ) t = np.linspace(0.2, 65.0, num=1024) k = 1j * t rf = np.real(f0(k)) ind = np.where(rf[1:] * rf[:-1] < 0.0)[0] roots = np.zeros(np.shape(ind), dtype=complex) for a, i in enumerate(ind): C = Circle(center=1j * (t[i] + t[i + 1]) / 2.0, radius=(t[i + 1] - t[i])) z = C.roots(f0, df=f1) roots[a] = z.roots[0] if plaTrue: if m: writeFile(Int, m, roots[1:]) writeFile(Pla, m, roots[[0]]) else: writeFile(Int, m, roots) else: writeFile(Int, m, roots) if plaTrue: Int.close() Pla.close() else: Int.close() calcInt() def calcResPla(): if ε < -1.0: Pla = open(f"eps_{ε}_pla", "w") angle = -np.pi / 4.0 for m in range(1, 65): r = max(0.1, 0.9 * np.sqrt(1.0 - η ** (-2)) * m - 1.0) R = max(2.0, 1.1 * np.sqrt(1.0 - η ** (-2)) * m + 1.0) a = min(angle, -1e-3) z = rootsAnnSec(m, r, R, a, 1e-3) writeFile(Pla, m, z) angle = np.angle(z[0]) Pla.close() calcResPla() def calcResOut(): Out = open(f"eps_{ε}_out", "w") rMin = 0.2 rMax = 5.0 aMin = -np.pi + 0.01 aMax = 0.0 for m in range(33, 65): print(f"m = {m}") z = rootsAnnSec(m, rMin, rMax, aMin, aMax) writeFile(Out, m, z) if m > 3: zMod = np.abs(z) zArg = np.angle(z) rMin = max(0.2, np.amin(zMod) * 0.75) rMax = max(rMax, np.amax(zMod) + 3.0) aMin = min(aMin, (-np.pi + np.amin(zArg)) / 2.0) aMax = np.amax(zArg) / 2.0 Out.close() calcResOut() def calc_cx_pla(): with open(f"eps_{ε}_pla", "w") as file: rMin, rMax = 0.1, 0.5 aMin = -np.pi / 4 for m in range(1, 65): z = rootsAnnSec(m, rMin, rMax, aMin, 1e-3)[0] file.write(f"{m} {z.real} {z.imag}\n") rMin = abs(z) rMax = abs(z) * (m + 1) / m + 1 aMin = min(2.5 * np.angle(z), -1e-3) print(m, rMin, rMax, aMin) calc_cx_pla() def rewriteSave(): Int = np.loadtxt(f"eps_{ε}_int") Pla = np.loadtxt(f"eps_{ε}_pla") Out = np.loadtxt(f"eps_{ε}_out") ind = np.argsort(Out[:, 1])[::-1] out2 = Out[ind] rep = out2[:, 1] > -1e-3 np.savez(f"eps_{ε}.npz", inner=Int, plasmon=Pla, outer=out2[rep]) rewriteSave() def rewriteSave_pla(): Pla = np.loadtxt(f"eps_{ε}_pla") np.savez(f"eps_{ε}.npz", plasmon=Pla) # rewriteSave_pla()
2.828125
3
wolk/interfaces/OutboundMessageFactory.py
iperformance/WolkConnect-Python
0
12793628
# Copyright 2018 WolkAbout Technology s.r.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod """ OutboundMessageFactory Module. """ class OutboundMessageFactory(ABC): """Serialize messages to be sent to WolkAbout IoT Platform.""" @abstractmethod def make_from_sensor_reading(self, reading): """ Serialize a sensor reading to be sent to WolkAbout IoT Platform. :param reading: Reading to be serialized :type reading: wolk.models.SensorReading.SensorReading :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_alarm(self, alarm): """ Serialize an alarm event to be sent to WolkAbout IoT Platform. :param alarm: Alarm to be serialized :type alarm: wolk.models.Alarm.Alarm :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_actuator_status(self, actuator): """ Serialize an actuator status to be sent to WolkAbout IoT Platform. :param actuator: Actuator status to be serialized :type actuator: wolk.models.ActuatorStatus.ActuatorStatus :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_firmware_status(self, firmware_status): """ Report the current status of the firmware update process. :param firmware_status: Current status of the firmware update process :type firmware_status: wolk.models.FirmwareStatus.FirmwareStatus :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_chunk_request(self, file_name, chunk_index, chunk_size): """ Request a chunk of the firmware file from WolkAbout IoT Platform. :param file_name: Name of the file that contains the requested chunk :type file_name: str :param chunk_index: Index of the requested chunk :type chunk_index: int :param chunk_size: Size of the requested chunk :type chunk_size: int :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_firmware_version(self, version): """ Report the current firmware version to WolkAbout IoT Platform. :param version: Current firmware version :type version: str :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_keep_alive_message(self): """ Make a ping message to be sent to WolkAbout IoT Platform. :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass @abstractmethod def make_from_configuration(self, configuration): """ Serialize device's configuration to be sent to WolkAbout IoT Platform. :param configuration: Device's current configuration :type configuration: dict :returns: message :rtype: wolk.models.OutboundMessage.OutboundMessage """ pass
2.140625
2
Ilya and Bank Account.py
mdhasan8/Problem_Solving
0
12793629
<reponame>mdhasan8/Problem_Solving<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Mon Sep 13 20:23:31 2021 @author: Easin """ in1 = input() in1 = int(in1) list1 = [] if in1 >= 0: print(in1) else: x = abs(in1)//10 list1.append(-x) y = abs(in1) % 10 #print(y) z = abs(in1)//100 #print(z) m = str(z)+str(y) list1.append(-int(m)) print(max(list1))
3.328125
3
Chapter 2/wall_time.py
indrag49/Computational-Stat-Mech
19
12793630
from sympy import oo def wall_time(pos, vel, radius): return (1.0-radius-pos)/vel if vel>0.0 else (pos-radius)/abs(vel) if vel<0.0 else float(oo)
2.890625
3
users/migrations/0002_auto_20150708_1621.py
moshthepitt/answers
6
12793631
<filename>users/migrations/0002_auto_20150708_1621.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserGroup', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created_on', models.DateTimeField(auto_now_add=True, verbose_name='Created on')), ('updated_on', models.DateTimeField(auto_now=True, verbose_name='Updated on')), ('name', models.CharField(max_length=300, verbose_name='Group Name')), ], options={ 'ordering': ['name'], 'verbose_name': 'User Group', 'verbose_name_plural': 'User Groups', }, ), migrations.AlterModelOptions( name='userprofile', options={'ordering': ['user__first_name', 'created_on'], 'verbose_name': 'User Profile', 'verbose_name_plural': 'User Profiles'}, ), migrations.AddField( model_name='usergroup', name='manager', field=models.ForeignKey(default=None, blank=True, to='users.UserProfile', null=True, verbose_name='Group Manager'), ), migrations.AddField( model_name='usergroup', name='parent', field=models.ForeignKey(default=None, blank=True, to='users.UserGroup', null=True, verbose_name='Parent Group'), ), migrations.AddField( model_name='userprofile', name='group', field=models.ManyToManyField(default=None, to='users.UserGroup', blank=True), ), ]
1.796875
2
swagger_marshmallow_codegen/tests/dst/00default.py
dotness/swagger-marshmallow-codegen
0
12793632
<reponame>dotness/swagger-marshmallow-codegen<filename>swagger_marshmallow_codegen/tests/dst/00default.py from marshmallow import ( Schema, fields ) import datetime from collections import OrderedDict class X(Schema): string = fields.String(missing=lambda: 'default') integer = fields.Integer(missing=lambda: 10) boolean = fields.Boolean(missing=lambda: True) datetime = fields.DateTime(missing=lambda: datetime.datetime(2000, 1, 1, 1, 1, 1)) object = fields.Nested('XObject', missing=lambda: OrderedDict([('name', 'foo'), ('age', 20)])) array = fields.List(fields.Integer(), missing=lambda: [1, 2, 3]) class XObject(Schema): name = fields.String(missing=lambda: 'foo') age = fields.Integer(missing=lambda: 20)
2.21875
2
app/modules/typos.py
Centaurus-dj/Calculonv
0
12793633
#!/usr/bin/env python3 # -*- coding: utf-8 -*- try: import modules.typo_colors as c; except Exception as e: print(e) ############################################################################## #### #### CLASS OF TYPOS USED FOR WRITING #### ############################################################################## class typo: def __init__(self, warning=False): self.type = self self.warn = warning if self.warn: ## We print this warning if self.warn is True print("You initialised a typo class, be sure to understand the fact that it creates spaces only in the vertical alignment") print("If you don't want it to appear again enter") print(" ") def vspace(self, text=None, times=33): ## It creates a space letting the dev print(" ") ## to have spaces between text. if text != None: ## We can also write some text print(text) ## to write some informations. print(" ") def hashsep(self, text=None, times=33): ## It creates a div with hash. times = int(times) ## It adds spaces between this div print(" ") ## the text before and after him. print(times*"#") ## We have the possibility to write if text != None: ## some text as args to write informations print(text) print(times*"#") print(" ") def barsep(self, text=None, times=33): ## It creates a div with bars. times = int(times) ## It adds spaces between this div print(" ") ## the text before and after him. print(times*"/") ## We have the possibility to write if text != None: ## some text as args to write informations print(text) print(times*"/") print(" ") ### Functions for printing text def printg(self, text="Text Sample"): ## It's still in development try: print(c.color.bold + ' Hello World ! ' + c.color.end) ##Normally, it prints the text in bold except Exception as e: ## It's actually not working self.ErrorPrecisedPrint(e) def ErrorPrint(self): print(" ") ## It's executed if any error occurs print("We're sorry but an error occured.... Please retry") print("If this error persists or if you encounter another error") print("please contact us at <EMAIL>") print(" ") def ErrorPrecisedPrint(self, error): print(" ") ## It's executed if any error occurs print("We're sorry but this error occured:") ## and if we want more informations print(error) print("If this error persists or if you encounter another error") print("please contact us at <EMAIL>") print(" ")
3.90625
4
2020/04_2/solution.py
budavariam/advent_of_code
0
12793634
""" Advent of code 2020 day 4/2 """ import logging import math from os import path import re record_splitter = re.compile(' |\n') # Field info: # byr (Birth Year) - four digits; at least 1920 and at most 2002. # iyr (Issue Year) - four digits; at least 2010 and at most 2020. # eyr (Expiration Year) - four digits; at least 2020 and at most 2030. # hgt (Height) - a number followed by either cm or in: # If cm, the number must be at least 150 and at most 193. # If in, the number must be at least 59 and at most 76. # hcl (Hair Color) - a # followed by exactly six characters 0-9 or a-f. # ecl (Eye Color) - exactly one of: amb blu brn gry grn hzl oth. # pid (Passport ID) - a nine-digit number, including leading zeroes. # cid (Country ID) - ignored, missing or not. def height_validator(x): match = re.match(r'^(\d+)(cm|in)$', x) if match is not None: value = match.group(1) unit = match.group(2) if unit == "cm": return 150 <= int(value) <= 193 elif unit == "in": return 59 <= int(value) <= 76 expected_fields = [ {"key": 'byr', "validator": lambda x: re.match(r'^\d{4}$', x) is not None and (1920 <= int(x) <= 2002)}, # (Birth Year) {"key": 'iyr', "validator": lambda x: \ re.match(r'^\d{4}$', x) is not None and (2010 <= int(x) <= 2020)}, # (Issue Year) {"key": 'eyr', "validator": lambda x: \ re.match(r'^\d{4}$', x) is not None and (2020 <= int(x) <= 2030)}, # (Expiration Year) {"key": 'hgt', "validator": height_validator}, # (Height) {"key": 'hcl', "validator": lambda x: \ re.match(r'^#[a-f0-9]{6}$', x) is not None}, # (Hair Color) {"key": 'ecl', "validator": lambda x: \ re.match(r'^amb|blu|brn|gry|grn|hzl|oth$', x) is not None}, # (Eye Color) {"key": 'pid', "validator": lambda x: \ re.match(r'^\d{9}$', x) is not None}, # (Passport ID) # {"key": 'cid', "validator": lambda x: \ # True}, # (Country ID), ] class PassportProcessor(object): def __init__(self, records): self.records = records def validate_field(self, record, field): result = field["key"] in record and field["validator"](record[field["key"]]) # print(result, record) return result def solve(self): result = 0 for record in self.records: result += 1 if all([self.validate_field(record, field) for field in expected_fields]) else 0 return result def solution(data): """ Solution to the problem """ # split records by empty lines, split fields by ":"-s, create a list of dictionaries from the records. lines = [{key: value for [key, value] in [field.split( ":") for field in record_splitter.split(record)]} for record in data.split("\n\n")] solver = PassportProcessor(lines) return solver.solve() if __name__ == "__main__": with(open(path.join(path.dirname(__file__), 'input.txt'), 'r')) as input_file: print(solution(input_file.read()))
3.34375
3
src/storage-preview/azext_storage_preview/_help.py
mboersma/azure-cli-extensions
1
12793635
<reponame>mboersma/azure-cli-extensions # coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=line-too-long, too-many-lines helps['storage account create'] = """ type: command short-summary: Create a storage account. long-summary: > The SKU of the storage account defaults to 'Standard_RAGRS'. examples: - name: Create a storage account 'MyStorageAccount' in resource group 'MyResourceGroup' in the West US region with locally redundant storage. text: az storage account create -n MyStorageAccount -g MyResourceGroup -l westus --sku Standard_LRS """ helps['storage account update'] = """ type: command short-summary: Update the properties of a storage account. """ helps['storage blob service-properties'] = """ type: group short-summary: Manage storage blob service properties. """ helps['storage blob service-properties update'] = """ type: command short-summary: Update storage blob service properties. """ helps['storage account management-policy'] = """ type: group short-summary: Manage storage account management policies. """ helps['storage account management-policy create'] = """ type: command short-summary: Creates the data policy rules associated with the specified storage account. """ helps['storage account management-policy update'] = """ type: command short-summary: Updates the data policy rules associated with the specified storage account. """ helps['storage azcopy'] = """ type: group short-summary: | [EXPERIMENTAL] Manage storage operations utilizing AzCopy. long-summary: | Open issues here: https://github.com/Azure/azure-storage-azcopy """ helps['storage azcopy blob'] = """ type: group short-summary: Manage object storage for unstructured data (blobs) using AzCopy. """ helps['storage azcopy blob upload'] = """ type: command short-summary: Upload blobs to a storage blob container using AzCopy. examples: - name: Upload a single blob to a container. text: az storage azcopy blob upload -c MyContainer --account-name MyStorageAccount -s "path/to/file" -d NewBlob - name: Upload a directory to a container. text: az storage azcopy blob upload -c MyContainer --account-name MyStorageAccount -s "path/to/directory" --recursive - name: Upload the contents of a directory to a container. text: az storage azcopy blob upload -c MyContainer --account-name MyStorageAccount -s "path/to/directory/*" --recursive """ helps['storage azcopy blob download'] = """ type: command short-summary: Download blobs from a storage blob container using AzCopy. examples: - name: Download a single blob from a container. text: az storage azcopy blob download -c MyContainer --account-name MyStorageAccount -s "path/to/blob" -d "path/to/file" - name: Download a virtual directory from a container. text: az storage azcopy blob download -c MyContainer --account-name MyStorageAccount -s "path/to/virtual_directory" -d "download/path" --recursive - name: Download the contents of a container onto a local file system. text: az storage azcopy blob download -c MyContainer --account-name MyStorageAccount -s * -d "download/path" --recursive """ helps['storage azcopy blob delete'] = """ type: command short-summary: Delete blobs from a storage blob container using AzCopy. examples: - name: Delete a single blob from a container. text: az storage azcopy blob delete -c MyContainer --account-name MyStorageAccount -t TargetBlob - name: Delete all blobs from a container. text: az storage azcopy blob delete -c MyContainer --account-name MyStorageAccount --recursive - name: Delete all blobs in a virtual directory. text: az storage azcopy blob delete -c MyContainer --account-name MyStorageAccount -t "path/to/virtual_directory" --recursive """ helps['storage azcopy run-command'] = """ type: command short-summary: Run a command directly using the AzCopy CLI. Please use SAS tokens for authentication. """
1.601563
2
gencode/python/udmi/schema/reflect_config.py
johnrandolph/udmi
1
12793636
<filename>gencode/python/udmi/schema/reflect_config.py<gh_stars>1-10 """Generated class for reflect_config.json""" class SetupReflectorConfig: """Generated schema class""" def __init__(self): self.last_state = None self.deployed_at = None @staticmethod def from_dict(source): if not source: return None result = SetupReflectorConfig() result.last_state = source.get('last_state') result.deployed_at = source.get('deployed_at') return result @staticmethod def map_from(source): if not source: return None result = {} for key in source: result[key] = SetupReflectorConfig.from_dict(source[key]) return result @staticmethod def expand_dict(input): result = {} for property in input: result[property] = input[property].to_dict() if input[property] else {} return result def to_dict(self): result = {} if self.last_state: result['last_state'] = self.last_state # 5 if self.deployed_at: result['deployed_at'] = self.deployed_at # 5 return result class ReflectorConfig: """Generated schema class""" def __init__(self): self.timestamp = None self.version = None self.setup = None @staticmethod def from_dict(source): if not source: return None result = ReflectorConfig() result.timestamp = source.get('timestamp') result.version = source.get('version') result.setup = SetupReflectorConfig.from_dict(source.get('setup')) return result @staticmethod def map_from(source): if not source: return None result = {} for key in source: result[key] = ReflectorConfig.from_dict(source[key]) return result @staticmethod def expand_dict(input): result = {} for property in input: result[property] = input[property].to_dict() if input[property] else {} return result def to_dict(self): result = {} if self.timestamp: result['timestamp'] = self.timestamp # 5 if self.version: result['version'] = self.version # 5 if self.setup: result['setup'] = self.setup.to_dict() # 4 return result
2.015625
2
lib/scRNA/clonotype_split.py
shengqh/ngsperl
6
12793637
<filename>lib/scRNA/clonotype_split.py import argparse import logging import os import os.path import sys import re import json import pandas as pd from collections import OrderedDict def initialize_logger(logfile, args): logger = logging.getLogger('clonotype_split') loglevel = logging.INFO logger.setLevel(loglevel) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)-8s - %(message)s') # create console handler and set level to info handler = logging.StreamHandler() handler.setLevel(loglevel) handler.setFormatter(formatter) logger.addHandler(handler) # create error file handler and set level to error handler = logging.FileHandler(logfile, "w") handler.setLevel(loglevel) handler.setFormatter(formatter) logger.addHandler(handler) return(logger) def check_file(filename, parser): if not os. path. isfile(filename): print("error: file not exists: " + filename) parser.print_help() sys.exit(1) def split(json_file, cell_hashtag_file, hashtag_sample_file, output_folder, logger): logger.info("reading %s" % cell_hashtag_file) cells=pd.read_csv(cell_hashtag_file) cells=cells.loc[cells['HTO.global'] == 'Singlet'] barcode_dict = dict(zip(cells.iloc[:, 0], cells.HTO)) #print(barcode_dict) logger.info("reading %s" % hashtag_sample_file) samples=pd.read_table(hashtag_sample_file, header=None) samples_dict = dict(zip(samples.iloc[:, 1], samples.iloc[:, 0])) print(samples_dict) logger.info("reading %s" % json_file) json_data = [] with open(json_file, "rt") as fin: data = json.load(fin) for record in data: json_data.append(record) for sample_name in samples_dict.values(): sample_folder = os.path.join(output_folder, sample_name) if not os.path.isdir(sample_folder): os.mkdir(sample_folder) sample_file = os.path.join(sample_folder, "all_contig_annotations.json") sample_data = [record for record in json_data if record['barcode'] in barcode_dict and samples_dict[barcode_dict[record['barcode']]] == sample_name] logger.info("writing %s" % sample_file) with open(sample_file, "wt") as fout: json.dump(sample_data, fout, indent=4) logger.info("done") def main(): parser = argparse.ArgumentParser(description="merge clonotype data", formatter_class=argparse.ArgumentDefaultsHelpFormatter) DEBUG = False NOT_DEBUG = not DEBUG parser.add_argument('-i', '--input', action='store', nargs='?', help="Input clone type json file", required=NOT_DEBUG) parser.add_argument('-c', '--cell_hashtag', action='store', nargs='?', help="Input cell hashtag file", required=NOT_DEBUG) parser.add_argument('-s', '--hashtag_sample', action='store', nargs='?', help="Input hashtag sample file", required=NOT_DEBUG) parser.add_argument('-o', '--output', action='store', nargs='?', help="Output folder") if not DEBUG and len(sys.argv)==1: parser.print_help() sys.exit(1) args = parser.parse_args() if DEBUG: args.input="/data/cqs/alexander_gelbard_data/AG_5126_10X/VDJ/5126-AG-4/all_contig_annotations.json" args.cell_hashtag="/scratch/cqs/alexander_gelbard_projects/20201202_5126_scRNA_split/split_samples/result/COVID/COVID.HTO.csv" args.hashtag_sample="/scratch/cqs/alexander_gelbard_projects/20201202_5126_scRNA_split/split_bam/result/fileList_3_COVID.txt" args.output="/scratch/cqs/alexander_gelbard_projects/20201202_5126_scRNA_split/clonotype_split/result/" check_file(args.input, parser) check_file(args.cell_hashtag, parser) check_file(args.hashtag_sample, parser) logger = initialize_logger(os.path.join(args.output, "clonotype_split.log"), args) split(args.input, args.cell_hashtag, args.hashtag_sample, args.output, logger) if __name__ == "__main__": main()
2.40625
2
week 12/w12_group.py
belarminobrunoz/BYUI-CSE-110
0
12793638
with open("week 12/books_and_chapters.txt") as scripture_list: largest_book = 0 largest_book_name = "" chosen_b_section = "" user_choice = input(""" What volume of scripture do you want to look at? 1. Old Testament 2. New Testament 3. Book of Mormon 4. Doctrine and Covenants 5. Pearl of Great Price """) if user_choice == "1": chosen_b_section = "Old Testament" elif user_choice == "2": chosen_b_section = "New Testament" elif user_choice == "3": chosen_b_section = "Book of Mormon" elif user_choice == "4": chosen_b_section = "Doctrine and Covenants" elif user_choice == "5": chosen_b_section = "Pearl of Great Price" for line in scripture_list: #Genesis:50:Old Testament clean_list = line.strip() book = clean_list.split(":") book_name = book[0] book_chapters = int(book[1]) book_section = book[2] if book_section == chosen_b_section: print(f"Scripture: {book_section}, Book: {book_name}, Chapters: {book_chapters}") if book_chapters > largest_book: largest_book = book_chapters largest_book_name = book_name print("*"*20) print(f"The largest book is {largest_book_name} with {largest_book} chapters")
3.859375
4
smpl/exec.py
robertblackwell/smpl
0
12793639
import os import sys import subprocess from typing import Union, TextIO, List, AnyStr import smpl.log_module as logger # # This module executes commands, manages output from those commands and provides a dry-run capability. # # The primary function is # # def run(cmd, where) # # dry-run and output options are controlled by: # # def configure(arg_dry_run, arg_reporting_option) # # both arguments can ge provided as kw-args and have defaults; no dry-run and report everything # configure() should be called before any calls to run() # # Output options are: # REPORTING_OPTION_STDOUT_STDERR : simple pass through stdout and stderr # REPORTING_OPTION_STDOUT_ONLY : simple pass through stdout and show any stderr output only on a failure # REPORTING_OPTION_STDERR_ONLY : show stderr only on a failure and does not show any stdout # REPORTING_OPTION_NEITHER : shows no output either from stdout or stderr # REPORTING_OPTION_STDERR_STDOUT_PROGRESS : shows stderr only on a failure and prints an X for each line # of stdout - does this in realtime while the command is executing # REPORTING_OPT_STDOUT_STDERR = 1 REPORTING_OPT_STDOUT_ONLY = 2 REPORTING_OPT_STDERR_ONLY = 3 REPORTING_OPT_STDERR_STDOUT_PROGRESS = 5 REPORTING_OPT_NEITHER = 4 class Options: def __init__(self): self.reporting_option = REPORTING_OPT_STDOUT_ONLY self.dry_run = False options: Options = Options() def configure(arg_reporting_option = REPORTING_OPT_STDOUT_STDERR, arg_dry_run: bool = False) -> None: options.reporting_option = arg_reporting_option options.dry_run = arg_dry_run logger.debugln("dry_run: {} reporting: {}".format(options.dry_run, options.reporting_option)) def exec_cmd(cmd, where: Union[str, None]) -> None: """ Does the hard work of executing commands, optionally in the given directory with the reporting global reporting option. On failure of the command it quits the program """ logger.debugln(" cmd: {} where: {} dry_run: {}".format(",".join(cmd), where, options.dry_run)) if options.dry_run: return if where is None: where = os.getcwd() try: stderr_output = "unassigned" if options.reporting_option == REPORTING_OPT_STDOUT_STDERR: result = subprocess.run(cmd, cwd = where) retcode = result.returncode elif options.reporting_option == REPORTING_OPT_STDOUT_ONLY: result = subprocess.run(cmd, cwd = where, stderr=subprocess.PIPE) retcode = result.returncode stderr_output = result.stderr elif options.reporting_option == REPORTING_OPT_STDERR_ONLY: result = subprocess.run(cmd, cwd = where, stdout=subprocess.PIPE) retcode = result.returncode stderr_output = result.stderr elif options.reporting_option == REPORTING_OPT_STDERR_STDOUT_PROGRESS: count = 0 result = subprocess.Popen(cmd, cwd = where, stdout=subprocess.PIPE, stderr=subprocess.PIPE) while result.poll() is None: if count == 0: sys.stdout.write("\n") stdoutline = result.stdout.readline() sys.stdout.write("X") count = (count + 1) % 50 flush = result.stdout.read() sys.stdout.write("YY\n") # sys.stdout.write("\n") result.stdout.close() # print("result.stdout closed") retcode = result.returncode stderr_output = result.stderr else: result = subprocess.run(cmd, cwd = where, stdout=subprocess.PIPE, stderr=subprocess.PIPE) retcode = result.returncode stderr_output = result.stderr if retcode > 0: sys.stderr.write("ERROR cmd: {} return code {}\n".format(", ".join(cmd), retcode)) sys.stderr.write("stderr {}\n".format(stderr_output)) raise RuntimeError("bad return code") except Exception as exception: sys.stderr.write("Cmd was {}\n".format(", ".join(cmd))) sys.stderr.write( "An error occurred while running command [{}] error type: {}\n".format(", ".join(cmd), type(exception).__name__)) sys.stderr.write("Details: \n{}\n".format(str(exception))) quit() def run(cmd: List[str], where: Union[str, None] = None) -> None: logger.debugln(" cmd: {} where: {}".format(",".join(cmd), where)) if not isinstance(cmd, list): raise ValueError("cmd must be a list") # exec_cmd handles failure of the command exec_cmd(cmd, where) if __name__ == '__main__': logger.init(logger.LOG_LEVEL_WARN) logger.set_stdout_logfile() configure(arg_dry_run=False, arg_reporting_option=REPORTING_OPT_STDOUT_ONLY) run(["wget", "http://whiteacorn.com"], None) run(["tree", "/home/robert/Projects/smpl"]) configure(arg_dry_run=False, arg_reporting_option=REPORTING_OPT_STDERR_STDOUT_PROGRESS) run(["tree", "/home/robert/Projects/smpl"]) configure(arg_dry_run=False, arg_reporting_option=REPORTING_OPT_STDOUT_ONLY) run(["tree", "/xhome/robert/Projects/smpl"])
2.609375
3
src/backend/connector/server.py
JDaniloC/Electronpy
0
12793640
<reponame>JDaniloC/Electronpy from .handler import connect_websocket, spawn, _javascript_call from bottle.ext import websocket as bottle_websocket import bottle def start(port = 4949, block = True, quiet = True): def run_server(): return bottle.run( port = port, quiet = quiet, host = "0.0.0.0", app = bottle.default_app(), server = bottle_websocket.GeventWebSocketServer, ) if block: run_server() else: spawn(run_server) bottle.route( path = '/', callback = connect_websocket, apply = (bottle_websocket.websocket,))
2.328125
2
lightbus/utilities/io.py
gcollard/lightbus
178
12793641
import logging logger = logging.getLogger(__name__) def make_file_safe_api_name(api_name): """Make an api name safe for use in a file name""" return "".join([c for c in api_name if c.isalpha() or c.isdigit() or c in (".", "_", "-")])
2.90625
3
dependencies/svgwrite/tests/test_clock_val_parser.py
charlesmchen/typefacet
21
12793642
#!/usr/bin/env python #coding:utf-8 # Author: mozman --<<EMAIL>> # Purpose: test clock_val_parser # Created: 03.11.2010 # Copyright (C) 2010, <NAME> # License: GPLv3 import sys import unittest PYTHON3 = sys.version_info[0] > 2 if PYTHON3: import svgwrite.data.pyparsing_py3 as pp else: import svgwrite.data.pyparsing_py2 as pp from svgwrite.data.svgparser import _build_clock_val_parser from svgwrite.data.svgparser import _build_wall_clock_val_parser class TestClockValParser(unittest.TestCase): clock_val_parser = _build_clock_val_parser() def is_valid(self, value): try: self.clock_val_parser.parseString(value, parseAll=True) return True except pp.ParseException: return False def test_full_clock_values(self): self.assertTrue(self.is_valid("02:30:03")) self.assertTrue(self.is_valid("01:00:00")) self.assertTrue(self.is_valid("50:00:10.25")) def test_partial_clock_values(self): self.assertTrue(self.is_valid("02:33")) self.assertTrue(self.is_valid("00:10.5")) def test_time_count_values(self): self.assertTrue(self.is_valid("3.2h")) self.assertTrue(self.is_valid("45min")) self.assertTrue(self.is_valid("30s")) self.assertTrue(self.is_valid("5ms")) self.assertTrue(self.is_valid("12.467")) class TestWallClockValParser(unittest.TestCase): wallclock_parser = _build_wall_clock_val_parser() def is_valid(self, value): try: self.wallclock_parser.parseString(value, parseAll=True) return True except pp.ParseException: return False def test_date_plus_hhmm(self): # Complete date plus hours and minutes: # YYYY-MM-DDThh:mmTZD (e.g. 1997-07-16T19:20+01:00) self.assertTrue(self.is_valid("1997-07-16T19:20+01:00")) def test_date_plus_hhmmss(self): # Complete date plus hours, minutes and seconds: # YYYY-MM-DDThh:mm:ssTZD (e.g. 1997-07-16T19:20:30+01:00) self.assertTrue(self.is_valid("1997-07-16T19:20:30+01:00")) def test_date_plus_hhmmss_frac(self): # Complete date plus hours, minutes, seconds and a decimal fraction of a second # YYYY-MM-DDThh:mm:ss.sTZD (e.g. 1997-07-16T19:20:30.45+01:00) self.assertTrue(self.is_valid("1997-07-16T19:20:30.45+01:00")) if __name__=='__main__': unittest.main()
2.625
3
manager.py
zhangmingkai4315/Flask-Web-App
0
12793643
<reponame>zhangmingkai4315/Flask-Web-App #!/usr/bin/env python import os from app import create_app,db from app.models import User,Role from flask.ext.script import Manager,Shell from flask.ext.migrate import Migrate,MigrateCommand app=create_app(os.getenv('FLASK_CONFIG') or 'default') manager=Manager(app) migrate=Migrate(app,db) manager.add_command('db',MigrateCommand) if __name__=='__main__': manager.run()
2.0625
2
ssguan/ignitor/etl/service.py
samuelbaizg/ssguan
1
12793644
# -*- coding: utf-8 -*- # Copyright 2015 www.suishouguan.com # # Licensed under the Private License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://github.com/samuelbaizg/ssguan/blob/master/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from ssguan.ignitor.base import context from ssguan.ignitor.base.error import NoFoundError from ssguan.ignitor.etl.model import IncrExtract, IncrExtractLog from ssguan.ignitor.utility import kind, parallel __lock = parallel.create_lock() def get_extract_timespan(ie_name, code_path, first_time=None, start_delta=IncrExtract.DEFAULT_START_DELTA, end_delta=IncrExtract.DEFAULT_END_DELTA): """ Get extract timespan. :param ie_name|str: the incrment extract job name. :param code_path|str: the increment job code path. :param first_time|datetime: it will be converted to utc time to save. :param start_delta|float: the delta to compute extract start time. :param end_delta|float: the delta to compute extract end time. :return tuple(datetime,datetime): return (start_time,end_time) """ query = IncrExtract.all() query.filter("ie_name =", ie_name) __lock.acquire() try: incrextr = query.get() if incrextr is None: start_delta = IncrExtract.DEFAULT_START_DELTA if start_delta is None else float(start_delta) end_delta = IncrExtract.DEFAULT_END_DELTA if end_delta is None else float(end_delta) first_time = (kind.utcnow() - datetime.timedelta(seconds=end_delta)) if first_time is None else first_time first_time = kind.local_to_utc(first_time) first_time = kind.datetime_floor(first_time) last_time = first_time - datetime.timedelta(seconds=start_delta) last_time = kind.datetime_floor(first_time) incrextr = IncrExtract(ie_name=ie_name, code_path=code_path, first_time=first_time, start_delta=start_delta, end_delta=end_delta, last_time=last_time) incrextr = incrextr.create(context.get_user_id()) start_time = incrextr.last_time - datetime.timedelta(seconds=incrextr.start_delta) end_time = kind.utcnow() - datetime.timedelta(seconds=incrextr.end_delta) end_time = kind.datetime_floor(end_time) return (start_time, end_time) finally: __lock.release() def update_last_extr_time(ie_name, last_extr_time): """ Update last extract time :param ie_nme|str: the extractor name :param last_extr_time|datetime: the last extract time """ query = IncrExtract.all() query.filter("ie_name =", ie_name) incrextr = query.get() if incrextr is None: raise NoFoundError('Extractor', ie_name) log = IncrExtractLog(ie_id=incrextr.key(), ie_name=ie_name, extr_time=last_extr_time) log.create(context.get_user_id()) query.set("last_time set", last_extr_time) query.update(context.get_user_id()) return True
1.804688
2
tests/_async/test_client_with_auto_confirm_enabled.py
zodman/gotrue-py
13
12793645
<filename>tests/_async/test_client_with_auto_confirm_enabled.py from typing import AsyncIterable, Optional import pytest from faker import Faker from gotrue import AsyncGoTrueClient from gotrue.exceptions import APIError from gotrue.types import Session, User, UserAttributes GOTRUE_URL = "http://localhost:9998" TEST_TWILIO = False @pytest.fixture(name="client") async def create_client() -> AsyncIterable[AsyncGoTrueClient]: async with AsyncGoTrueClient( url=GOTRUE_URL, auto_refresh_token=False, persist_session=True, ) as client: yield client @pytest.fixture(name="client_with_session") async def create_client_with_session() -> AsyncIterable[AsyncGoTrueClient]: async with AsyncGoTrueClient( url=GOTRUE_URL, auto_refresh_token=False, persist_session=False, ) as client: yield client @pytest.fixture(name="new_client") async def create_new_client() -> AsyncIterable[AsyncGoTrueClient]: async with AsyncGoTrueClient( url=GOTRUE_URL, auto_refresh_token=False, persist_session=False, ) as client: yield client fake = Faker() email = f"client_ac_enabled_{fake.email().lower()}" set_session_email = f"client_ac_session_{fake.email().lower()}" refresh_token_email = f"client_refresh_token_signin_{fake.email().lower()}" password = <PASSWORD>() access_token: Optional[str] = None @pytest.mark.asyncio async def test_sign_up(client: AsyncGoTrueClient): try: response = await client.sign_up( email=email, password=password, data={"status": "alpha"}, ) assert isinstance(response, Session) global access_token access_token = response.access_token assert response.access_token assert response.refresh_token assert response.expires_in assert response.expires_at assert response.user assert response.user.id assert response.user.email == email assert response.user.email_confirmed_at assert response.user.last_sign_in_at assert response.user.created_at assert response.user.updated_at assert response.user.app_metadata assert response.user.app_metadata.get("provider") == "email" assert response.user.user_metadata assert response.user.user_metadata.get("status") == "alpha" except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_set_session_should_return_no_error( client_with_session: AsyncGoTrueClient, ): try: response = await client_with_session.sign_up( email=set_session_email, password=password, ) assert isinstance(response, Session) assert response.refresh_token await client_with_session.set_session(refresh_token=response.refresh_token) data = {"hello": "world"} response = await client_with_session.update( attributes=UserAttributes(data=data) ) assert response.user_metadata == data except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_up.__name__]) async def test_sign_up_the_same_user_twice_should_throw_an_error( client: AsyncGoTrueClient, ): expected_error_message = "User already registered" try: await client.sign_up( email=email, password=password, ) assert False except APIError as e: assert expected_error_message in e.msg except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_up.__name__]) async def test_set_auth_should_set_the_auth_headers_on_a_new_client( new_client: AsyncGoTrueClient, ): try: assert access_token await new_client.set_auth(access_token=access_token) assert new_client.current_session assert new_client.current_session.access_token == access_token except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends( on=[test_set_auth_should_set_the_auth_headers_on_a_new_client.__name__] ) async def test_set_auth_should_set_the_auth_headers_on_a_new_client_and_recover( new_client: AsyncGoTrueClient, ): try: assert access_token await new_client.init_recover() await new_client.set_auth(access_token=access_token) assert new_client.current_session assert new_client.current_session.access_token == access_token except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_up.__name__]) async def test_sign_in(client: AsyncGoTrueClient): try: response = await client.sign_in(email=email, password=password) assert isinstance(response, Session) assert response.access_token assert response.refresh_token assert response.expires_in assert response.expires_at assert response.user assert response.user.id assert response.user.email == email assert response.user.email_confirmed_at assert response.user.last_sign_in_at assert response.user.created_at assert response.user.updated_at assert response.user.app_metadata assert response.user.app_metadata.get("provider") == "email" except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_sign_in_with_refresh_token(client_with_session: AsyncGoTrueClient): try: response = await client_with_session.sign_up( email=refresh_token_email, password=password, ) assert isinstance(response, Session) assert response.refresh_token response2 = await client_with_session.sign_in( refresh_token=response.refresh_token ) assert isinstance(response2, Session) assert response2.access_token assert response2.refresh_token assert response2.expires_in assert response2.expires_at assert response2.user assert response2.user.id assert response2.user.email == refresh_token_email assert response2.user.email_confirmed_at assert response2.user.last_sign_in_at assert response2.user.created_at assert response2.user.updated_at assert response2.user.app_metadata assert response2.user.app_metadata.get("provider") == "email" except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_in.__name__]) async def test_get_user(client: AsyncGoTrueClient): try: await client.init_recover() response = client.user() assert isinstance(response, User) assert response.id assert response.email == email assert response.email_confirmed_at assert response.last_sign_in_at assert response.created_at assert response.updated_at assert response.app_metadata provider = response.app_metadata.get("provider") assert provider == "email" except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_in.__name__]) async def test_get_session(client: AsyncGoTrueClient): try: await client.init_recover() response = client.session() assert isinstance(response, Session) assert response.access_token assert response.refresh_token assert response.expires_in assert response.expires_at except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_in.__name__]) async def test_update_user(client: AsyncGoTrueClient): try: await client.init_recover() response = await client.update( attributes=UserAttributes(data={"hello": "world"}) ) assert isinstance(response, User) assert response.id assert response.email == email assert response.email_confirmed_at assert response.last_sign_in_at assert response.created_at assert response.updated_at assert response.user_metadata assert response.user_metadata.get("hello") == "world" except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_update_user.__name__]) async def test_get_user_after_update(client: AsyncGoTrueClient): try: await client.init_recover() response = client.user() assert isinstance(response, User) assert response.id assert response.email == email assert response.email_confirmed_at assert response.last_sign_in_at assert response.created_at assert response.updated_at assert response.user_metadata assert response.user_metadata.get("hello") == "world" except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_get_user_after_update.__name__]) async def test_sign_out(client: AsyncGoTrueClient): try: await client.init_recover() await client.sign_out() response = client.session() assert response is None except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_out.__name__]) async def test_get_user_after_sign_out(client: AsyncGoTrueClient): try: await client.init_recover() response = client.user() assert not response except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_out.__name__]) async def test_get_update_user_after_sign_out(client: AsyncGoTrueClient): expected_error_message = "Not logged in." try: await client.init_recover() await client.update(attributes=UserAttributes(data={"hello": "world"})) assert False except ValueError as e: assert str(e) == expected_error_message except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_get_user_after_sign_out.__name__]) async def test_sign_in_with_the_wrong_password(client: AsyncGoTrueClient): try: await client.sign_in(email=email, password=password + "2") assert False except APIError: assert True except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_sign_up_with_password_none(client: AsyncGoTrueClient): expected_error_message = "Password must be defined, can't be None." try: await client.sign_up(email=email) assert False except ValueError as e: assert str(e) == expected_error_message except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_sign_up_with_email_and_phone_none(client: AsyncGoTrueClient): expected_error_message = "Email or phone must be defined, both can't be None." try: await client.sign_up(password=password) assert False except ValueError as e: assert str(e) == expected_error_message except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_sign_in_with_all_nones(client: AsyncGoTrueClient): expected_error_message = ( "Email, phone, refresh_token, or provider must be defined, " "all can't be None." ) try: await client.sign_in() assert False except ValueError as e: assert str(e) == expected_error_message except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_sign_in_with_magic_link(client: AsyncGoTrueClient): try: response = await client.sign_in(email=email) assert response is None except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_sign_up.__name__]) async def test_get_session_from_url(client: AsyncGoTrueClient): try: assert access_token dummy_url = ( "https://localhost" f"?access_token={access_token}" "&refresh_token=refresh_token" "&token_type=bearer" "&expires_in=3600" "&type=recovery" ) response = await client.get_session_from_url(url=dummy_url, store_session=True) assert isinstance(response, Session) except Exception as e: assert False, str(e) @pytest.mark.asyncio async def test_get_session_from_url_errors(client: AsyncGoTrueClient): try: dummy_url = "https://localhost" error_description = fake.email() try: await client.get_session_from_url( url=dummy_url + f"?error_description={error_description}" ) assert False except APIError as e: assert e.code == 400 assert e.msg == error_description try: await client.get_session_from_url(url=dummy_url) assert False except APIError as e: assert e.code == 400 assert e.msg == "No access_token detected." dummy_url += "?access_token=access_token" try: await client.get_session_from_url(url=dummy_url) assert False except APIError as e: assert e.code == 400 assert e.msg == "No refresh_token detected." dummy_url += "&refresh_token=refresh_token" try: await client.get_session_from_url(url=dummy_url) assert False except APIError as e: assert e.code == 400 assert e.msg == "No token_type detected." dummy_url += "&token_type=bearer" try: await client.get_session_from_url(url=dummy_url) assert False except APIError as e: assert e.code == 400 assert e.msg == "No expires_in detected." dummy_url += "&expires_in=str" try: await client.get_session_from_url(url=dummy_url) assert False except APIError as e: assert e.code == 400 assert e.msg == "Invalid expires_in." except Exception as e: assert False, str(e) @pytest.mark.asyncio @pytest.mark.depends(on=[test_get_update_user_after_sign_out.__name__]) async def test_refresh_session(client: AsyncGoTrueClient): try: response = await client.sign_in(email=email, password=password) assert isinstance(response, Session) assert response.refresh_token response = await client.set_session(refresh_token=response.refresh_token) assert isinstance(response, Session) response = await client.refresh_session() assert isinstance(response, Session) await client.sign_out() try: await client.refresh_session() assert False except ValueError as e: assert str(e) == "Not logged in." except Exception as e: assert False, str(e)
2.03125
2
CodeChef/COMPETE/ZCO Practice Contest - ZCOPRAC/Covering - ZCO15003.py
IshanManchanda/competitive-python
6
12793646
<gh_stars>1-10 # https://www.codechef.com/ZCOPRAC/problems/ZCO15003 def main(): from sys import stdin, stdout rl = stdin.readline n = int(rl()) a = [[int(x) for x in rl().split()] for _ in range(n)] a.sort() i = s = 0 while i < n: end = a[i][1] while i < n and end >= a[i][0]: i += 1 end = min(end, a[i][1]) if i < n else end s += 1 stdout.write(str(s)) main()
2.640625
3
controllers/accounting_controllers.py
rbaylon/ngi
0
12793647
from models import ChapterPayments from baseapp import db class ChapterPaymentsController: def __init__(self): pass def add(self, payment): existing = False payments = ChapterPayments.query.filter_by(received_date=payment['received_date']).all() for existing_payment in payments: if existing_payment.received_from == payment['received_from'] \ and existing_payment.received_amount == payment['received_amount'] \ and existing_payment.payment_type == payment['payment_type']: existing = True break if not existing: new_payment = ChapterPayments() new_payment.received_from = payment['received_from'] new_payment.received_date = payment['received_date'] new_payment.received_amount = payment['received_amount'] new_payment.payment_type = payment['payment_type'] new_payment.cpc = payment['cpc'] new_payment.chapter = payment['chapter'] db.session.add(new_payment) db.session.commit() return True return False def edit(self, payment): existing_payment = ChapterPayments.query.filter_by(id=payment['id']).first() if existing_payment: existing_payment.received_from = payment['received_from'] existing_payment.received_date = payment['received_date'] existing_payment.received_amount = payment['received_amount'] existing_payment.payment_type = payment['payment_type'] existing_payment.cpc = payment['cpc'] existing_payment.chapter = payment['chapter'] db.session.commit() return True return False def delete(self, payment): existing_payment = ChapterPayments.query.filter_by(id=payment['id']).first() if existing_payment: db.session.delete(existing_payment) db.session.commit() return True return False
2.46875
2
src/fhir_types/FHIR_DataRequirement.py
anthem-ai/fhir-types
2
12793648
from typing import Any, List, Literal, TypedDict from .FHIR_canonical import FHIR_canonical from .FHIR_code import FHIR_code from .FHIR_CodeableConcept import FHIR_CodeableConcept from .FHIR_DataRequirement_CodeFilter import FHIR_DataRequirement_CodeFilter from .FHIR_DataRequirement_DateFilter import FHIR_DataRequirement_DateFilter from .FHIR_DataRequirement_Sort import FHIR_DataRequirement_Sort from .FHIR_Element import FHIR_Element from .FHIR_positiveInt import FHIR_positiveInt from .FHIR_Reference import FHIR_Reference from .FHIR_string import FHIR_string # Describes a required data item for evaluation in terms of the type of data, and optional code or date-based filters of the data. FHIR_DataRequirement = TypedDict( "FHIR_DataRequirement", { # Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. "id": FHIR_string, # May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. "extension": List[Any], # The type of the required data, specified as the type name of a resource. For profiles, this value is set to the type of the base resource of the profile. "type": FHIR_code, # Extensions for type "_type": FHIR_Element, # The profile of the required data, specified as the uri of the profile definition. "profile": List[FHIR_canonical], # The intended subjects of the data requirement. If this element is not provided, a Patient subject is assumed. "subjectCodeableConcept": FHIR_CodeableConcept, # The intended subjects of the data requirement. If this element is not provided, a Patient subject is assumed. "subjectReference": FHIR_Reference, # Indicates that specific elements of the type are referenced by the knowledge module and must be supported by the consumer in order to obtain an effective evaluation. This does not mean that a value is required for this element, only that the consuming system must understand the element and be able to provide values for it if they are available. The value of mustSupport SHALL be a FHIRPath resolveable on the type of the DataRequirement. The path SHALL consist only of identifiers, constant indexers, and .resolve() (see the [Simple FHIRPath Profile](fhirpath.html#simple) for full details). "mustSupport": List[FHIR_string], # Extensions for mustSupport "_mustSupport": List[FHIR_Element], # Code filters specify additional constraints on the data, specifying the value set of interest for a particular element of the data. Each code filter defines an additional constraint on the data, i.e. code filters are AND'ed, not OR'ed. "codeFilter": List[FHIR_DataRequirement_CodeFilter], # Date filters specify additional constraints on the data in terms of the applicable date range for specific elements. Each date filter specifies an additional constraint on the data, i.e. date filters are AND'ed, not OR'ed. "dateFilter": List[FHIR_DataRequirement_DateFilter], # Specifies a maximum number of results that are required (uses the _count search parameter). "limit": FHIR_positiveInt, # Extensions for limit "_limit": FHIR_Element, # Specifies the order of the results to be returned. "sort": List[FHIR_DataRequirement_Sort], }, total=False, )
1.65625
2
gateways/cms_gateway.py
project-lolquiz/the-backend
0
12793649
import requests import json from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry LOLQUIZ_CMS_URL = 'https://lolquiz-cms.herokuapp.com/questions?_sort=id&_limit={}&_start={}' HTTP_STATUS_ERROR_CODES = [408, 502, 503, 504] TOTAL_QUESTIONS = 100 INIT_OFFSET = 0 def get_questions(url=LOLQUIZ_CMS_URL): s = requests.Session() retries = Retry(total=5, backoff_factor=1, status_forcelist=HTTP_STATUS_ERROR_CODES) s.mount('https://', HTTPAdapter(max_retries=retries)) offset = INIT_OFFSET all_questions = [] while True: url = LOLQUIZ_CMS_URL.format(TOTAL_QUESTIONS, offset) response = s.get(url) if not has_content(response): break all_questions.append(json.loads(response.content)) offset += TOTAL_QUESTIONS return [set_question(question) for outer_questions in all_questions for question in outer_questions if valid_question(question)] def has_content(response): return len(json.loads(response.content)) > 0 def valid_question(question): return 'id' in question \ and 'title' in question \ and 'game_type' in question and question['game_type'] is not None \ and 'game_modes' in question and len(question['game_modes']) > 0 \ and 'options' in question def set_question(question): return {'id': question['id'], 'title': question['title'], 'game_type': question['game_type'], 'options': question['options'], 'game_modes': question['game_modes']}
2.953125
3
hitblow/hitblow_solo_manual.py
HayatoNatural/NEDO-Hit-Blow-teamF
1
12793650
<reponame>HayatoNatural/NEDO-Hit-Blow-teamF # coding : UTF-8 """ File Name: hitblow_solo_manual.py Description: Hit&Blowの手動一人対戦モード Created on october 13,2021 Created by <NAME>, <NAME>, <NAME> """ import random import argparse import time from PIL import Image import streamlit as st import pygame st.set_page_config(layout="wide") col1,col2 =st.columns([4,1]) col4,space,col6 =st.columns([7,1,4]) button_num = 0 def initialize_streamlit() -> None: """クラスを定義する前にweb上で画面を出しておく 状態量として, 試合数, 経験値, レベル, 連勝数を定義し, 初期化しておく(マジックコマンド的な) : rtype : None : return : なし """ col1.title("Welcome to Hit&Blow Game!16進数5桁の秘密の数字を当てよう!") col1.subheader("対戦すると経験値がもらえるよ. 経験値は当てた回数や連勝数に応じて増えるぞ!") col1.subheader("経験値が貯まるとレベルアップだ!いずれはキャラが進化するかも‥?") if 'game_count' not in st.session_state: st.session_state.game_count = 1 if 'exp' not in st.session_state: st.session_state.exp = 0 if 'level' not in st.session_state: st.session_state.level = 1 if 'win_in_a_row' not in st.session_state: st.session_state.win_in_a_row = 1 if 'turn_count' not in st.session_state: st.session_state.turn_count= 0 if 'history' not in st.session_state: st.session_state.history= {} name = col4.selectbox("キャラクターを選んでね",["ジャック","クリス","フローラ","ドロシー"]) st.session_state.chara_name = name pic_url1 = "picture/"+name+"-1.jpg" pic_url2 = "picture/"+name+"-2.jpg" if st.session_state.level < 20: image = Image.open(pic_url1) col4.image(image) else: image = Image.open(pic_url2) col4.image(image) col6.subheader("{}の現在のレベル : {}".format(st.session_state.chara_name,st.session_state.level)) col6.write("対戦回数 : {}".format(st.session_state.game_count-1)) class Playgame_solo_manual: """16進数5桁のHit&Blow 自動一人対戦の数当てモード :param int digits : 数の桁数 :param set Tuple_16 : 数に使う16進数の数字の集合 :param str ans : comの答え(自分が当てる数字) :param List[dict] my_history : 自分が相手の数当をした時の履歴 :param str num : こちらが予想した相手の数字 :param int hit : 数字のhit数 :param int blow : 数字のblow数 :param int volume:音量(0~1で変更) """ def __init__(self,ans=None,num=None) -> None: self.digits = 5 self.Tuple_16 = ("0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f") self.hit = None self.blow = None self.volume = 0.3 if ans is not None: self.ans = ans else: self.ans = self._define_answer() if 'ans' not in st.session_state: st.session_state.ans= self.ans self.num = num def _define_answer(self) -> str: """自分が当てる答えをつくる : rtype : str : return : ans """ ans_list = random.sample(self.Tuple_16, self.digits) ans = "".join(ans_list) return ans def _play_song(self,num:int, title): """待機時間中音楽再生 :param int num:再生回数(-1で無限ループ,これを使って止めたいときにstopするのが良いかと) :param int playtime:再生時間(基本-1で無限ループしてるので、使わない.デフォルト値Noneで良い) : rtype : None : return : なし """ pygame.mixer.init() # 初期設定 pygame.mixer.music.load(title) # 音楽ファイルの読み込み pygame.mixer.music.set_volume(self.volume) pygame.mixer.music.play(num) # 音楽の再生回数(1回) def _music_stop(self) -> None: """再生中の音楽停止 : rtype : None : return : なし """ pygame.mixer.music.stop() # 再生の終了 def _voice_play(self,num:int, title): """音楽再生中のキャラボイス再生用 : rtype : None : return : なし """ pygame.mixer.init() # 初期設定 sound = pygame.mixer.Sound(title) # 音楽ファイルの読み込み sound.set_volume(self.volume) sound.play() def _check_hit_blow(self,num,ans) -> None: """メインで使用 2つの引数を入力し, その2数のhit,blowを計算してself.hit, self.blowに格納 : rtype : None : return : なし """ self.hit = 0 self.blow = 0 for i in range(self.digits): if num[i] == ans[i]: self.hit += 1 else: if num[i] in ans: self.blow += 1 def _play_game_manual(self) -> None: """ 手動一人対戦の数当てゲーム 対戦中の表示を出してから部屋を作成して答えをポストして対戦開始, 終わったら対戦終了と結果の表示 : rtype : None : return : なし """ #self._music_stop() place = col6.empty() place.write("対戦中・・・") if st.session_state.turn_count == 0: self._music_stop() time.sleep(3) self._play_song(num = 1,title = "bgm/game_start.wav") self._voice_play(num = 1, title ='voice/'+st.session_state.chara_name+'/game_start.wav') time.sleep(3) self._play_song(num = -1,title = "bgm/Battle.wav") print("aaaaa") self._check_hit_blow(self.num,st.session_state.ans) st.session_state.history[self.num] = [str(self.hit)+"hit", str(self.blow)+"blow"] st.session_state.turn_count += 1 print("!! {} Hit, {} Blow !!".format(self.hit,self.blow)) col6.subheader("{} Hit, {} Blowだ!".format(self.hit,self.blow)) col6.write("現在のターン数,{}".format(st.session_state.turn_count)) col6.write("今までの入力履歴,{}".format(st.session_state.history)) if self.hit == self.digits: print("!! 正解です !!") place.write("対戦終了!") self._show_result_vscode() self._show_result_streamlit() def _show_result_vscode(self) -> None: """対戦終了後, お互いの結果を表示(vscode上に表示する分) : rtype : None : return : なし """ print("------------------------") print("show history") print(st.session_state.history) print("------------------------") print("正解は{}です. おめでとうございます! {}回で正解しました.".format(st.session_state.ans,st.session_state.turn_count)) print("------------------------") def _get_information(self) -> str: """対戦終了後,web画面に表示する内容を計算 勝敗,連勝に応じて獲得経験値を求め, 経験値に加える.レベルや次のレベルまでの必要経験値も求める 進化やレベルアップの判定も行う : rtype : str : return : 獲得経験値と次のレベルまでの必要経験値 """ # st.session_state.win_in_a_row += 1 level_up = False evolution = False new_exp = round(3000*(1+(st.session_state.win_in_a_row-1)/4)/st.session_state.turn_count) st.session_state.exp += new_exp for i in range(200): if i**3/3 <= st.session_state.exp and st.session_state.exp < (i+1)**3/3: remaining_exp = round((i+1)**3/3 - st.session_state.exp) new_level = i if new_level != st.session_state.level: level_up = True if new_level == 20: evolution = True st.session_state.level = new_level break return new_exp,remaining_exp,level_up,evolution def _show_result_streamlit(self) -> None: """対戦終了後, お互いの結果を表示(web画面上に表示する分) 勝敗、連勝数に応じて表示を変える, 経験値やレベル, 対戦回数も表示 進化とレベルアップの時は追加エフェクト : rtype : None : return : なし """ new_exp,remaining_exp,level_up,evolution = self._get_information() self._music_stop() self._play_song(num = -1, title = "bgm/winner.wav") self._voice_play(num = 1, title ='voice/'+st.session_state.chara_name+'/winner.wav') col6.subheader("") col6.subheader("勝利だ,おめでとう!") col6.subheader("正解は‥【{}】{}回で正解できた!".format(self.num,st.session_state.turn_count)) col6.subheader("") # if st.session_state.win_in_a_row >= 2: # col6.subheader("すごいぞ,{}連勝だ!その調子!".format(st.session_state.win_in_a_row)) time.sleep(3) st.balloons() col6.write("{}は{}経験値を得た!".format(st.session_state.chara_name,new_exp)) col6.write("") time.sleep(13) if level_up: if evolution: col4.subheader("おや?{}の様子が...".format(st.session_state.chara_name)) image_light = Image.open('picture/evolution_light.png') col4.image(image_light) self._play_song(num = 1,title = "bgm/evolution_light.mp3") time.sleep(3) col4.subheader("やったね, 進化した!") pic_url2 = "picture/"+st.session_state.chara_name+"-2.jpg" image = Image.open(pic_url2) col4.image(image) img = Image.open('picture/evolution.gif') col6.image(img) self._play_song(num = 1,title = "bgm/evolution.mp3") time.sleep(3) else: col6.subheader("レベルアップだ!") self._music_stop() self._play_song(num = 1,title = "bgm/level_up.wav") img = Image.open('picture/level-up.gif') time.sleep(1) col6.image(img) col6.write("次のレベルまでの経験値:{}".format(remaining_exp)) col6.write("今まで得た合計経験値:{}".format(st.session_state.exp)) col6.subheader("") col6.subheader("{}の現在のレベル : {}".format(st.session_state.chara_name,st.session_state.level)) col6.write("対戦回数 : {}".format(st.session_state.game_count)) col6.subheader("また新たな秘密の数字が現れた!当てに行こう!") st.session_state.game_count += 1 st.session_state.turn_count = 0 st.session_state.history = {} st.session_state.ans = self._define_answer() def get_parser() -> argparse.Namespace: """コマンドライン引数を解析したものを持つ :rtype : argparse.Namespace :return : コマンド値 """ parser = argparse.ArgumentParser(description="Hit&Blow, 数当てゲーム") parser.add_argument("--ans",default=None) args = parser.parse_args() return args def main() -> None: """Hit&Blowのメイン """ args = get_parser() ans= args.ans num = col6.text_input("予想する数字を入力してね") print(button_num) initialize_streamlit() if args.ans is not None: runner = Playgame_solo_manual(ans=ans,num=num) else: runner = Playgame_solo_manual(num=num) if st.session_state.turn_count == 0: runner._play_song(num = -1,title = 'bgm/waiting.wav') runner._voice_play(num = 1, title ='voice/'+st.session_state.chara_name+'/waiting.wav') if col6.button("クリックすると数字をチェックするよ!"): runner._play_game_manual() if __name__ == "__main__": main()
2.234375
2