max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/3D_plots.py
suryadheeshjith/episimmer
0
12793651
import sys import ReadFile import pickle import World import importlib.util import os.path as osp import policy_generator as pg import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator import numpy as np def module_from_file(module_name, file_path): spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def get_example_path(): return sys.argv[1] def get_config_path(path): config_filepath=osp.join(path,'config.txt') return config_filepath def get_file_paths(example_path,config_obj): # File Names locations_filename=None agents_filename=osp.join(example_path,config_obj.agents_filename) interactions_FilesList_filename=osp.join(example_path,config_obj.interactions_files_list) events_FilesList_filename=osp.join(example_path,config_obj.events_files_list) if config_obj.locations_filename=="": locations_filename=None else: locations_filename=osp.join(example_path,config_obj.locations_filename) return agents_filename, interactions_FilesList_filename, events_FilesList_filename, locations_filename def get_file_names_list(example_path,interactions_FilesList_filename,events_FilesList_filename,config_obj): # Reading through a file (for interactions/events) that contain file names which contain interactions and event details for a time step interactions_files_list=None events_files_list=None if config_obj.interactions_files_list=='': print('No Interaction files uploaded!') else: interactionFiles_obj=ReadFile.ReadFilesList(interactions_FilesList_filename) interactions_files_list=list(map(lambda x : osp.join(example_path,x) ,interactionFiles_obj.file_list)) if interactions_files_list==[]: print('No Interactions inputted') if config_obj.events_files_list=='': print('No Event files uploaded!') else: eventFiles_obj=ReadFile.ReadFilesList(events_FilesList_filename) events_files_list=list(map(lambda x : osp.join(example_path,x) ,eventFiles_obj.file_list)) if events_files_list==[]: print('No Events inputted') return interactions_files_list, events_files_list def get_model(example_path): UserModel = module_from_file("Generate_model", osp.join(example_path,'UserModel.py')) model = UserModel.UserModel() return model def get_policy(example_path): Generate_policy = module_from_file("Generate_policy", osp.join(example_path,'Generate_policy.py')) policy_list, event_restriction_fn=Generate_policy.generate_policy() return policy_list, event_restriction_fn if __name__=="__main__": example_path = get_example_path() config_filename = get_config_path(example_path) # Read Config file using ReadFile.ReadConfiguration config_obj=ReadFile.ReadConfiguration(config_filename) agents_filename, interactions_FilesList_filename,\ events_FilesList_filename, locations_filename = get_file_paths(example_path,config_obj) interactions_files_list, events_files_list = get_file_names_list(example_path,interactions_FilesList_filename,events_FilesList_filename,config_obj) # User Model model = get_model(example_path) # policy_list, event_restriction_fn=get_policy(example_path) ########################################################################################## num_tests = 90 ntpa_max=6 napt_max=6 X=np.arange(1, napt_max+1, 1) Y=np.arange(1, ntpa_max+1, 1) X,Y = np.meshgrid(X,Y) print(X) print(Y) data_list={'Infected':np.zeros((ntpa_max,napt_max)),'False Positives':np.zeros((ntpa_max,napt_max)),'Quarantined':np.zeros((ntpa_max,napt_max))} for i in range(napt_max): for j in range(ntpa_max): policy_list, event_restriction_fn = pg.generate_group_testing_tests_policy(num_tests, i+1, j+1) world_obj=World.World(config_obj,model,policy_list,event_restriction_fn,agents_filename,interactions_files_list,locations_filename,events_files_list) tdict, total_infection, total_quarantined_days, wrongly_quarantined_days, total_test_cost = world_obj.simulate_worlds(plot=False) data_list['Infected'][j][i]=total_infection data_list['False Positives'][j][i]=world_obj.total_false_positives data_list['Quarantined'][j][i]=total_quarantined_days print(data_list) fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['False Positives']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total false positives") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['Infected']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total infections") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) surf = ax.plot_surface(X, Y, np.array(data_list['Quarantined']), cmap=cm.coolwarm,linewidth=0, antialiased=False) plt.xlabel("Number of Agents per testtube") plt.ylabel("Number of testtubes per agent") plt.title("Pool testing strategies vs total quarantine") fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() ###############################################################################################
2.140625
2
odor_env/__init__.py
chinaheyu/pydog_training
0
12793652
from gym.envs.registration import register register( id='OdorEnvA-v0', entry_point='odor_env.odor_env:OdorEnvA' ) register( id='OdorEnvB-v0', entry_point='odor_env.odor_env:OdorEnvB' )
1.507813
2
support_functions.py
DataCentric1/ponpare
2
12793653
######################################################################################################### # Description: Collection of support functions that'll be used often # ######################################################################################################### import numpy as np ######################################################################################################### __author__ = 'DataCentric1' __pass__ = 1 __fail__ = 0 # Returns number of lines in a file in a memory / time efficient way def file_len(fname): i = -1 with open(fname) as f: for i, l in enumerate(f, 1): pass return i # Save numpy array from .npy file to txt file def save_npy_array_to_txt(npy_fname, txt_fname): np.savetxt(txt_fname, np.load(npy_fname), fmt='%s') return __pass__ # Save numpy array from .npy file to csv file. TODO - Doublce check fn def save_npy_array_to_csv(npy_fname, csv_fname): temp_array = np.load(npy_fname) index_row, index_col = temp_array.shape print index_row print index_col f = open(csv_fname, 'w') for i in range(index_row): f.write(temp_array[i, 0]) f.write(",") f.write(temp_array[i, 1]) f.write("\n") f.close() return __pass__
2.875
3
ARMODServers/Apps/ARExperiences/migrations/0005_auto_20210411_1029.py
Phantomxm2021/ARMOD-Dashboard
1
12793654
<reponame>Phantomxm2021/ARMOD-Dashboard # Generated by Django 3.1.4 on 2021-04-11 02:29 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ARExperiences', '0004_auto_20210411_1019'), ] operations = [ migrations.RenameField( model_name='arexperienceasset', old_name='arexperience_id', new_name='pid', ), ]
1.59375
2
pycgr/py_cgr_client.py
ewb4/HDTN
6
12793655
from py_cgr.py_cgr_lib.py_cgr_lib import * import zmq import time import sys import random import json import re import getopt argumentList = sys.argv[1:] # Options options = "hc" try: # Parsing argument arguments, values = getopt.getopt(argumentList, options) # checking each argument for currentArgument, currentValue in arguments: if currentArgument in ("-h"): print ("Use the option -m to specify the contact plan file location ") sys.exit(0) elif currentArgument in ("-c"): print ("Contact plan file :", sys.argv[2]) except getopt.error as err: # output error, and return with an error code print (str(err)) port = "4555" context = zmq.Context() socket = context.socket(zmq.PAIR) socket.bind("tcp://127.0.0.1:%s" % port) #localhost caused error contact_plan = cp_load(sys.argv[2], 5000) #contact_plan = cp_load('module/scheduler/src/contactPlan.json', 5000) curr_time = 0 while True: msg = socket.recv() print("message received by server") splitMessage = re.findall('[0-9]+', msg.decode('utf-8')) splitMessage = list(filter(None, splitMessage)) sourceId = int(splitMessage[0]) destinationId = int(splitMessage[1]) startTime = int(splitMessage[2]) root_contact = Contact(sourceId, sourceId, 0, sys.maxsize, 100, 1, 0) root_contact.arrival_time = startTime route = cgr_dijkstra(root_contact, destinationId, contact_plan) print("***Here's the route") print(route) print("***Sending next hop: " + str(route.next_node)) socket.send_string(str(route.next_node)) time.sleep(1)
2.484375
2
deployml/keras/load/base.py
deploy-ml/deploy-ml
18
12793656
<reponame>deploy-ml/deploy-ml from keras.preprocessing.image import img_to_array import numpy as np import pickle import keras import sys import cv2 class KerasLoader: def __init__(self, file_path): if file_path[-3:] == "sav": package = pickle.load(open(file_path, "rb")) else: print("error wrong format no 'sav' found") package = None self.model = package["model"] self.convolutional = package["convolutional"] if self.convolutional: self.dims_one, self.dims_two = package["image dims"] self.scaling_tool = package["scaler"] if self.scaling_tool: self.scaled_inputs = True else: self.scaled_inputs = False if package["system version"] != str(sys.version): print("warning! model was trained in {}. You're running {}".format(package["system version"], str(sys.version))) if package["Keras Version"] != str(keras.__version__): print("warning! model was trained on {}. You're running {}".format(package["Keras Version"], str(keras.__version__))) def calculate(self, input_array=None, happening=True, override=False, image=None): """ Calculates probability of outcome :param input_array: array of inputs (should be same order as training data) :param happening: if set False, returns probability of event not happening :param override: set to True if you want to override scaling :param image: image object that has been read :return: float between 0 and 1 """ if self.convolutional: image = cv2.resize(image, (self.dims_one, self.dims_two)) image = image.astype("float") / 255.0 image = img_to_array(image) image = np.expand_dims(image, axis=0) return self.model.predict(image)[0][0] else: if self.scaled_inputs and not override: input_array = self.scaling_tool.transform(input_array) if happening: return self.model.predict([input_array])[0][0] else: return self.model.predict([input_array])[0][0]
2.625
3
ex075.py
erikamaylim/Python-CursoemVideo
0
12793657
<filename>ex075.py<gh_stars>0 """Desenvolva um programa que leia quatro valores pelo teclado e guarde-os em uma tupla. No final, mostre: A) Quantas vezes apareceu o valor 9. B) Em que posição foi digitado o primeiro valor 3. C) Quais foram os números pares.""" tuplanum = (int(input('1º valor: ')), int(input('2º valor: ')), int(input('3º valor: ')), int(input('4º valor: '))) print('Números digitados:', end=' ') for n in tuplanum: print(n, end=' ') print(f'\nO nº 9 apareceu {tuplanum.count(9)} vez(es)') if 3 not in tuplanum: print('O nº 3 não apareceu em nenhuma posição') else: print(f'O valor 3 apareceu na {tuplanum.index(3) + 1}ª posição') print('Valores pares digitados:', end=' ') for c in tuplanum: if c % 2 == 0: print(c, end=' ')
3.71875
4
ja/code_snippets/results/result.api-tags-update.py
quotecenter/documentation-1
0
12793658
{'host': 'hostname', 'tags': ['role:database','environment:test']}
1.148438
1
external/metadata/core.py
jtackaberry/stagehand
8
12793659
# -*- coding: iso-8859-1 -*- # ----------------------------------------------------------------------------- # core.py # ----------------------------------------------------------------------------- # $Id$ # # ----------------------------------------------------------------------------- # kaa-Metadata - Media Metadata for Python # Copyright (C) 2003-2006 <NAME>, <NAME> # # First Edition: <NAME> <<EMAIL>> # Maintainer: <NAME> <<EMAIL>> # # Please see the file AUTHORS for a complete list of authors. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MER- # CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # ----------------------------------------------------------------------------- # python imports import re import logging from . import fourcc from . import language from . import utils UNPRINTABLE_KEYS = [ 'thumbnail', 'url', 'codec_private' ] # media type definitions MEDIA_AUDIO = 'MEDIA_AUDIO' MEDIA_VIDEO = 'MEDIA_VIDEO' MEDIA_IMAGE = 'MEDIA_IMAGE' MEDIA_AV = 'MEDIA_AV' MEDIA_SUBTITLE = 'MEDIA_SUBTITLE' MEDIA_CHAPTER = 'MEDIA_CHAPTER' MEDIA_DIRECTORY = 'MEDIA_DIRECTORY' MEDIA_DISC = 'MEDIA_DISC' MEDIA_GAME = 'MEDIA_GAME' MEDIACORE = ['title', 'caption', 'comment', 'size', 'type', 'subtype', 'timestamp', 'keywords', 'country', 'language', 'langcode', 'url', 'media', 'artist', 'mime', 'datetime', 'tags', 'hash'] EXTENSION_DEVICE = 'device' EXTENSION_DIRECTORY = 'directory' EXTENSION_STREAM = 'stream' # get logging object log = logging.getLogger('metadata') class ParseError(Exception): pass _features = { # Guess if a file is a recording of a TV series. It matches names in the # style of 'series 1x01 episode' and 'series s1e01 episode' where the # delimiter may not be a space but also point or minus. 'VIDEO_SERIES_PARSER': [ False, '(.+?)[\. _-]+[sS]?([0-9]|[0-9][0-9])[xeE]([0-9]|[0-9][0-9])[\. _-]+(.+)' ] } def enable_feature(var, value=None): """ Enable optional features defined in the _feature variable. Some feature have a value. These values are set to reasonable default values but can be overwritten by setting the optional parameter value. """ _features[var][0] = True if value: _features[var][1] = value def features(): """ List all optional features """ return list(_features.keys()) def feature_enabled(feature): """ Returns if a feature was activated """ return _features[feature][0] def feature_config(feature): """ Returns the configuration of the given feature """ return _features[feature][1] class Media(object): media = None """ Media is the base class to all Media Metadata Containers. It defines the basic structures that handle metadata. Media and its derivates contain a common set of metadata attributes that is listed in keys. Specific derivates contain additional keys to the dublin core set that is defined in Media. """ _keys = MEDIACORE table_mapping = {} def __init__(self, hash=None): if hash is not None: # create Media based on dict for key, value in list(hash.items()): if isinstance(value, list) and value and isinstance(value[0], dict): value = [ Media(x) for x in value ] self._set(key, value) return self._keys = self._keys[:] self.tables = {} # Tags, unlike tables, are more well-defined dicts whose values are # either Tag objects, other dicts (for nested tags), or lists of either # (for multiple instances of the tag, e.g. actor). Where possible, # parsers should transform tag names to conform to the Official # Matroska tags defined at http://www.matroska.org/technical/specs/tagging/index.html # All tag names will be lower-cased. self.tags = Tags() for key in self._keys: if key not in ('media', 'tags'): setattr(self, key, None) # # unicode and string convertion for debugging # def __str__(self): result = '' # print normal attributes lists = [] for key in self._keys: value = getattr(self, key, None) if value == None or key == 'url': continue if isinstance(value, list): if not value: continue elif isinstance(value[0], str): # Just a list of strings (keywords?), so don't treat it specially. value = ', '.join(value) else: lists.append((key, value)) continue elif isinstance(value, dict): # Tables or tags treated separately. continue if key in UNPRINTABLE_KEYS: value = '<unprintable data, size=%d>' % len(value) result += '| %10s: %s\n' % (str(key), str(value)) # print tags (recursively, to support nested tags). def print_tags(tags, suffix, show_label): result = '' for n, (name, tag) in enumerate(tags.items()): result += '| %12s%s%s = ' % ('tags: ' if n == 0 and show_label else '', suffix, name) if isinstance(tag, list): # TODO: doesn't support lists/dicts within lists. result += '%s\n' % ', '.join(subtag.value for subtag in tag) else: result += '%s\n' % (tag.value or '') if isinstance(tag, dict): result += print_tags(tag, ' ', False) return result result += print_tags(self.tags, '', True) # print lists for key, l in lists: for n, item in enumerate(l): label = '+-- ' + key.rstrip('s').capitalize() if key not in ('tracks', 'subtitles', 'chapters'): label += ' Track' result += '%s #%d\n' % (label, n+1) result += '| ' + re.sub(r'\n(.)', r'\n| \1', str(item)) # print tables if log.level >= 10: for name, table in list(self.tables.items()): result += '+-- Table %s\n' % str(name) for key, value in list(table.items()): try: value = str(value) if len(value) > 50: value = '<unprintable data, size=%d>' % len(value) except (UnicodeDecodeError, TypeError) as e: try: value = '<unprintable data, size=%d>' % len(value) except AttributeError: value = '<unprintable data>' result += '| | %s: %s\n' % (str(key), value) return result def __repr__(self): if hasattr(self, 'url'): return '<%s %s>' % (str(self.__class__)[8:-2], self.url) else: return '<%s>' % (str(self.__class__)[8:-2]) # # internal functions # def _appendtable(self, name, hashmap): """ Appends a tables of additional metadata to the Object. If such a table already exists, the given tables items are added to the existing one. """ if name not in self.tables: self.tables[name] = hashmap else: # Append to the already existing table for k in list(hashmap.keys()): self.tables[name][k] = hashmap[k] def _set(self, key, value): """ Set key to value and add the key to the internal keys list if missing. """ if value is None and getattr(self, key, None) is None: return if isinstance(value, str): value = utils.tostr(value) setattr(self, key, value) if not key in self._keys: self._keys.append(key) def _set_url(self, url): """ Set the URL of the source """ self.url = url def _finalize(self): """ Correct same data based on specific rules """ # make sure all strings are unicode for key in self._keys: if key in UNPRINTABLE_KEYS: continue value = getattr(self, key) if value is None: continue if key == 'image': if isinstance(value, str): setattr(self, key, utils.tobytes(value)) continue if isinstance(value, str): setattr(self, key, utils.tostr(value)) if isinstance(value, str): setattr(self, key, value.strip().rstrip().replace('\0', '')) if isinstance(value, list) and value and isinstance(value[0], Media): for submenu in value: submenu._finalize() # copy needed tags from tables for name, table in list(self.tables.items()): mapping = self.table_mapping.get(name, {}) for tag, attr in list(mapping.items()): if self.get(attr): continue value = table.get(tag, None) if value is not None: if not isinstance(value, str): value = utils.tostr(str(value)) elif isinstance(value, str): value = utils.tostr(value) value = value.strip().rstrip().replace('\0', '') setattr(self, attr, value) if 'fourcc' in self._keys and 'codec' in self._keys and self.codec is not None: # Codec may be a fourcc, in which case we resolve it to its actual # name and set the fourcc attribute. self.fourcc, self.codec = fourcc.resolve(self.codec) if 'language' in self._keys: self.langcode, self.language = language.resolve(self.language) # # data access # def __contains__(self, key): """ Test if key exists in the dict """ return hasattr(self, key) def get(self, attr, default = None): """ Returns the given attribute. If the attribute is not set by the parser return 'default'. """ return getattr(self, attr, default) def __getitem__(self, attr): """ Get the value of the given attribute """ return getattr(self, attr, None) def __setitem__(self, key, value): """ Set the value of 'key' to 'value' """ setattr(self, key, value) def has_key(self, key): """ Check if the object has an attribute 'key' """ return hasattr(self, key) def convert(self): """ Convert Media to dict. """ result = {} for k in self._keys: value = getattr(self, k, None) if isinstance(value, list) and value and isinstance(value[0], Media): value = [ x.convert() for x in value ] result[k] = value return result def keys(self): """ Return all keys for the attributes set by the parser. """ return self._keys class Collection(Media): """ Collection of Digial Media like CD, DVD, Directory, Playlist """ _keys = Media._keys + [ 'id', 'tracks' ] def __init__(self): Media.__init__(self) self.tracks = [] class Tag(object): """ An individual tag, which will be a value stored in a Tags object. Tag values are strings (for binary data), unicode objects, or datetime objects for tags that represent dates or times. """ def __init__(self, value=None, langcode='und', binary=False): super(Tag, self).__init__() self.value = value self.langcode = langcode self.binary = binary def __unicode__(self): return str(self.value) def __str__(self): return str(self.value) def __repr__(self): if not self.binary: return '<Tag object: %s>' % repr(self.value) else: return '<Binary Tag object: size=%d>' % len(self.value) @property def langcode(self): return self._langcode @langcode.setter def langcode(self, code): self._langcode, self.language = language.resolve(code) class Tags(dict, Tag): """ A dictionary containing Tag objects. Values can be other Tags objects (for nested tags), lists, or Tag objects. A Tags object is more or less a dictionary but it also contains a value. This is necessary in order to represent this kind of tag specification (e.g. for Matroska):: <Simple> <Name>LAW_RATING</Name> <String>PG</String> <Simple> <Name>COUNTRY</Name> <String>US</String> </Simple> </Simple> The attribute RATING has a value (PG), but it also has a child tag COUNTRY that specifies the country code the rating belongs to. """ def __init__(self, value=None, langcode='und', binary=False): super(Tags, self).__init__() self.value = value self.langcode = langcode self.binary = False
1.625
2
sacrerouge/tests/fixtures/data/simetrix/setup.py
danieldeutsch/decomposed-rouge
81
12793660
<reponame>danieldeutsch/decomposed-rouge<gh_stars>10-100 """ This script parses the sample data and output from the SIMetrix package and saves it for unit testing. """ import argparse import sys from glob import glob sys.path.append('.') from sacrerouge.io import JsonlWriter # noqa def load_sample_documents(input_dir: str): documents = {} for instance_id in ['input1', 'input2', 'input3']: documents[instance_id] = [] for file_path in glob(f'{input_dir}/{instance_id}/*.txt'): lines = open(file_path, 'r').read().splitlines() sentences = [] for line in lines: if line: sentences.append(line) documents[instance_id].append(sentences) return documents def load_sample_summaries(input_dir: str): summaries = {} for instance_id in ['input1', 'input2', 'input3']: summaries[instance_id] = {} for summarizer_id in ['fb', 'me', 'nb', 'rb', 'ts']: summaries[instance_id][summarizer_id] = open(f'{input_dir}/{instance_id}.{summarizer_id}.txt', 'r').read().splitlines() return summaries def save_instances(documents, summaries, file_path): with JsonlWriter(file_path) as out: for instance_id in ['input1', 'input2', 'input3']: for summarizer_id in ['fb', 'me', 'nb', 'rb', 'ts']: docs = documents[instance_id] summary = summaries[instance_id][summarizer_id] out.write({ 'instance_id': instance_id, 'summarizer_id': summarizer_id, 'documents': docs, 'summary': summary }) def load_expected_summary_level_output(file_path: str): metrics_list = [] lines = open(file_path, 'r').read().splitlines() for i, line in enumerate(lines): columns = line.split() if i == 0: header = columns else: metrics = { 'instance_id': columns[0], 'summarizer_id': columns[1], 'metrics': {} } for j, metric_name in enumerate(header[2:]): metrics['metrics'][metric_name] = float(columns[j + 2]) metrics_list.append(metrics) return metrics_list def load_expected_system_level_output(file_path: str): metrics_list = [] lines = open(file_path, 'r').read().splitlines() for i, line in enumerate(lines): columns = line.split() if i == 0: header = columns else: metrics = { 'summarizer_id': columns[0], 'metrics': {} } for j, metric_name in enumerate(header[1:]): metrics['metrics'][metric_name] = float(columns[j + 1]) metrics_list.append(metrics) return metrics_list def save_metrics(metrics_list, file_path): with JsonlWriter(file_path) as out: for metrics in metrics_list: out.write(metrics) def main(args): documents = load_sample_documents(f'{args.sample_eval_dir}/sampleInputs') summaries = load_sample_summaries(f'{args.sample_eval_dir}/sampleSummaries') save_instances(documents, summaries, f'{args.output_dir}/instances.jsonl') summary_level = load_expected_summary_level_output(f'{args.sample_eval_dir}/sampleMappings.txt.ieval.micro') system_level = load_expected_system_level_output(f'{args.sample_eval_dir}/sampleMappings.txt.ieval.macro') save_metrics(summary_level, f'{args.output_dir}/metrics.summary-level.jsonl') save_metrics(system_level, f'{args.output_dir}/metrics.system-level.jsonl') if __name__ == '__main__': argp = argparse.ArgumentParser() argp.add_argument('sample_eval_dir') argp.add_argument('output_dir') args = argp.parse_args() main(args)
2.5
2
atomtools/__init__.py
atomse/atomtools
0
12793661
<reponame>atomse/atomtools<filename>atomtools/__init__.py<gh_stars>0 """ independent chemical symbols """ __version__ = '1.9.4' def version(): return __version__
1.21875
1
src/python/pcmdi/misc.py
gleckler1/pcmdi_metrics
0
12793662
<gh_stars>0 import cdms2 as cdms import string, os import ESMP #### MAKE DIRECTORY def mkdir_fcn(path): try: os.mkdir(path) except: pass return #### GET INHOUSE DATA THAT HAS BEEN TRANSFORMED/INTERPOLATED def get_our_model_clim(data_location,var): pd = data_location # if var in ['tos','sos','zos']: pd = string.replace(pd,'atm.Amon','ocn.Omon') f = cdms.open(pd) try: dm = f(var + '_ac') except: dm = f(var) f.close() return dm #### GET CMIP5 DATA def get_cmip5_model_clim(data_location,model_version, var): lst = os.popen('ls ' + data_location + '*' + model_version + '*' + var + '.*.nc').readlines() pd = lst[0][:-1] #data_location # if var in ['tos','sos','zos']: pd = string.replace(pd,'atm.Amon','ocn.Omon') f = cdms.open(pd) try: dm = f(var + '_ac') except: dm = f(var) f.close() print pd return dm ######################################################################## #### GET OBSERVATIONAL DATA def output_model_clims(dm,var,Tdir,F, model_version, targetGrid): pathout = Tdir() try: os.mkdir(pathout) except: pass F.variable = var F.model_version = model_version nm = F() nm = string.replace(nm,'.nc','.' + targetGrid + '.nc') dm.id = var g = cdms.open(pathout + '/' + nm,'w+') g.write(dm) g.close() def model_output_structure(dir_template, file_template, model_version, variable): dir_template = "%(root_modeling_group_clim_directory)/%(test_case)/" ### CONSTRUCT PATH D=genutil.StringConstructor(dir_template) D.root_modeling_group_clim_directory = mod_data_path D.test_case = test_case data_location = D() ### CONSTRUCT FILENAME F = genutil.StringConstructor(file_template) F.model_version = model_version F.table_realm = 'atm.Amon' if variable in ['tos','sos','zos']: F.table_realm = 'ocn.Omon' F.variable = variable F.ext='nc' F.period = '1980-2005' filename = F() return data_location,filename def output_interpolated_model_data(dm, var, targetGrid,regrid_method,model_output_location): model_output_location = string.replace(model_output_location,'.nc','.' + regrid_method + '.' + targetGrid + '.nc') g = cdms.open(model_output_location,'w+') dm.id = var g.write(dm) g.close()
2.015625
2
AtCoder/ABC/150/A.500 Yen Coins.py
shinkeonkim/today-ps
2
12793663
K,X=map(int,input().split()) print("Yes" if K*500>=X else "No" )
3.109375
3
training.py
zhangsiyu1103/ESNAC
0
12793664
<reponame>zhangsiyu1103/ESNAC import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import options as opt import os import time import sys import numpy as np def init_model(model): for module in model.modules(): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.BatchNorm2d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, 0, 0.01) nn.init.constant_(module.bias, 0) return model def test_model(model, dataset): model.eval() correct = 0 total = 0 loader = None if hasattr(dataset, 'test_loader'): loader = dataset.test_loader elif hasattr(dataset, 'val_loader'): loader = dataset.val_loader else: raise NotImplementedError('Unknown dataset!') train_loader = dataset.train_loader train_correct = 0 train_total = 0 best_train_acc = 0 #print(len(loader)) with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) outputs = model(inputs) _, predicted = outputs.max(1) train_total += targets.size(0) train_correct += predicted.eq(targets).sum().item() train_acc = 100.0 * train_correct / train_total #print("train acc:", train_acc) #if train_acc > best_train_acc: # best_train_acc = train_acc # model_best = model.module # torch.save(model_best, 'temp_save/temp.pth') #if train_acc == 100: # torch.save(model.mudule, 'temp_save/base.pth') with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) outputs = model(inputs) _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() acc = 100.0 * correct / total return acc def test_model_regression(model, dataset): model.eval() loader = None loss_total = 0 batch_cnt = 0 criterion = nn.MSELoss() if hasattr(dataset, 'test_loader'): loader = dataset.test_loader elif hasattr(dataset, 'val_loader'): loader = dataset.val_loader else: raise NotImplementedError('Unknown dataset!') #loader = dataset.train_loader #print(len(loader)) train_loader = dataset.train_loader train_loss_total = 0 train_batch_cnt = 0 #print(len(loader)) with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) outputs = model(inputs) train_loss = criterion(outputs,targets) train_loss_total+=train_loss.item() train_batch_cnt += 1 train_loss_avg = train_loss_total / train_batch_cnt print("train loss:", train_loss_avg) with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) outputs = model(inputs) loss = criterion(outputs,targets) loss_total+=loss.item() batch_cnt += 1 #_, predicted = outputs.max(1) #total += targets.size(0) #correct += predicted.eq(targets).sum().item() #acc = 100.0 * correct / total return loss_total/batch_cnt def test_model_image(model, dataset): model.eval() correct = 0 total = 0 loader = None if hasattr(dataset, 'test_loader'): loader = dataset.test_loader elif hasattr(dataset, 'val_loader'): loader = dataset.val_loader else: raise NotImplementedError('Unknown dataset!') miss = set() with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) outputs = model(inputs) _, predicted = outputs.max(1) total += targets.size(0) equal_v = predicted.eq(targets) correct += equal_v.sum().item() j = 0 #print(equal_v for i in equal_v: if not i: miss.add(inputs[j]) #print(inputs[j]) j+=1 acc = 100.0 * correct / total return acc, miss def test_model_latency(model, dataset): model.eval() loader = None if hasattr(dataset, 'test_loader'): loader = dataset.test_loader elif hasattr(dataset, 'val_loader'): loader = dataset.val_loader else: raise NotImplementedError('Unknown dataset!') latency = [] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) start_time = time.time() outputs = model(inputs) torch.cuda.synchronize() time_taken = time.time() - start_time latency.append(time_taken * 1000) lat = np.mean(latency) return lat def train_model_teacher(model_, dataset, save_path, epochs=60, lr=0.005, momentum=0.9, weight_decay=5e-4): acc_best = 0 model_best = None model = torch.nn.DataParallel(model_.to(opt.device)) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1) for i in range(1, epochs + 1): print('epochs ', i) model.train() loss_total = 0 batch_cnt = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() loss_total += loss.item() batch_cnt += 1 scheduler.step() opt.writer.add_scalar('training/loss', loss_total / batch_cnt, i) acc = test_model(model, dataset) opt.writer.add_scalar('training/acc', acc, i) print("loss: ", loss_total/batch_cnt) print("test acc: ", acc) if acc > acc_best: acc_best = acc model.module.acc = acc model_best = model.module torch.save(model_best, save_path) return model_best, acc_best def train_model_student(model_, dataset, save_path, idx, optimization=opt.tr_fu_optimization, epochs=opt.tr_fu_epochs, lr=opt.tr_fu_lr, momentum=opt.tr_fu_momentum, weight_decay=opt.tr_fu_weight_decay, lr_schedule=opt.tr_fu_lr_schedule, from_scratch=opt.tr_fu_from_scratch): acc_best = 0 best_train_acc = 0 model_best = None model = torch.nn.DataParallel(model_.to(opt.device)) criterion = nn.CrossEntropyLoss() if optimization == 'SGD': optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) elif optimization == 'Adam': optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) if lr_schedule == 'step': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.2) elif lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) if from_scratch: init_model(model) for i in range(1, epochs + 1): print('epoch',i) model.train() #if lr_schedule == 'step': # scheduler.step() loss_total = 0 batch_cnt = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) optimizer.zero_grad() outputs = model(inputs) _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() loss = criterion(outputs, targets) loss.backward() optimizer.step() #if lr_schedule == 'linear': loss_total += loss.item() batch_cnt += 1 scheduler.step() opt.writer.add_scalar('training_%d/loss' % (idx), loss_total / batch_cnt, i) acc = test_model(model, dataset) opt.writer.add_scalar('training_%d/acc' % (idx), acc, i) print('loss: ', loss_total/batch_cnt) print('acc: ',acc) if acc > acc_best: acc_best = acc model.module.acc = acc model_best = model.module torch.save(model_best, save_path) return model_best, acc_best def train_model_student_regression(model_, dataset, save_path, idx, optimization=opt.tr_fu_optimization, epochs=opt.tr_fu_epochs, lr=opt.tr_fu_lr, momentum=opt.tr_fu_momentum, weight_decay=opt.tr_fu_weight_decay, lr_schedule=opt.tr_fu_lr_schedule, from_scratch=opt.tr_fu_from_scratch): loss_best = sys.maxsize model_best = None model = torch.nn.DataParallel(model_.to(opt.device)) criterion = nn.MSELoss() if optimization == 'SGD': optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) elif optimization == 'Adam': optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) if lr_schedule == 'step': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.4) elif lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) if from_scratch: init_model(model) for i in range(1, epochs + 1): print('epoch',i) model.train() #if lr_schedule == 'step': # scheduler.step() loss_total = 0 batch_cnt = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) optimizer.zero_grad() outputs = model(inputs) #i_, predicted = outputs.max(1) #total += targets.size(0) #correct += predicted.eq(targets).sum().item() loss = criterion(outputs, targets) loss.backward() optimizer.step() #if lr_schedule == 'linear': loss_total += loss.item() batch_cnt += 1 #print("train acc: ", 100*correct/total) scheduler.step() opt.writer.add_scalar('training_%d/loss' % (idx), loss_total/batch_cnt , i) test_loss = test_model_regression(model, dataset) #opt.writer.add_scalar('training_%d/acc' % (idx), acc, i) print('train loss: ', loss_total/batch_cnt) print('test loss: ',test_loss) if test_loss < loss_best: loss_best = test_loss model.module.loss = test_loss model_best = model.module torch.save(model_best, save_path) return model_best, loss_best def train_model_student_kd(teacher_, model_, dataset, save_path, idx, optimization=opt.tr_fu_optimization, epochs=opt.tr_fu_epochs, lr=opt.tr_fu_lr, momentum=opt.tr_fu_momentum, weight_decay=opt.tr_fu_weight_decay, lr_schedule=opt.tr_fu_lr_schedule, from_scratch=opt.tr_fu_from_scratch): acc_best = 0 model_best = None model = torch.nn.DataParallel(model_.to(opt.device)) teacher = torch.nn.DataParallel(teacher_.to(opt.device)) criterion1 = nn.CrossEntropyLoss() criterion2 = nn.MSELoss() if optimization == 'SGD': optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) elif optimization == 'Adam': optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) if lr_schedule == 'step': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1) elif lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) if from_scratch: init_model(model) for i in range(1, epochs + 1): model.train() #if lr_schedule == 'step': # scheduler.step() loss_total = 0 batch_cnt = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): teacher_outputs = None with torch.no_grad(): teacher_outputs = teacher(inputs) inputs = inputs.to(opt.device) targets = targets.to(opt.device) optimizer.zero_grad() outputs = model(inputs) loss1 = criterion1(outputs, targets) loss2 = criterion2(outputs, teacher_outputs) loss = loss1 + loss2 loss.backward() optimizer.step() #if lr_schedule == 'linear': scheduler.step() loss_total += loss.item() batch_cnt += 1 opt.writer.add_scalar('training_%d/loss' % (idx), loss_total / batch_cnt, i) acc = test_model(model, dataset) opt.writer.add_scalar('training_%d/acc' % (idx), acc, i) #print('loss: ', loss_total/batch_cnt) #print('acc: ',acc) if acc > acc_best: acc_best = acc model.module.acc = acc model_best = model.module torch.save(model_best, save_path) return model_best, acc_best def train_model_student_kd_reg(teacher_, model_, dataset, save_path, idx, optimization=opt.tr_fu_optimization, epochs=opt.tr_fu_epochs, lr=opt.tr_fu_lr, momentum=opt.tr_fu_momentum, weight_decay=opt.tr_fu_weight_decay, lr_schedule=opt.tr_fu_lr_schedule, from_scratch=opt.tr_fu_from_scratch): loss_best = sys.maxsize model_best = None model = torch.nn.DataParallel(model_.to(opt.device)) teacher = torch.nn.DataParallel(teacher_.to(opt.device)) criterion = nn.MSELoss() if optimization == 'SGD': optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) elif optimization == 'Adam': optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay) if lr_schedule == 'step': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1) elif lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) if from_scratch: init_model(model) for i in range(1, epochs + 1): model.train() #if lr_schedule == 'step': # scheduler.step() loss_total = 0 #batch_cnt = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): teacher_outputs = None with torch.no_grad(): teacher_outputs = teacher(inputs) inputs = inputs.to(opt.device) targets = targets.to(opt.device) optimizer.zero_grad() outputs = model(inputs) loss1 = criterion(outputs, targets) loss2 = criterion(outputs, teacher_outputs) loss = loss1 + loss2 loss.backward() optimizer.step() #if lr_schedule == 'linear': scheduler.step() loss_total += loss.item() #batch_cnt += 1 opt.writer.add_scalar('training_%d/loss' % (idx), loss_total, i) test_loss = test_model_regression(model, dataset) #opt.writer.add_scalar('training_%d/acc' % (idx), acc, i) #print('loss: ', loss_total/batch_cnt) #print('acc: ',acc) if test_loss > loss_best: loss_best = test_loss model.module.loss = test_loss model_best = model.module torch.save(model_best, save_path) return model_best, loss_best def train_model_search(teacher_, students_, dataset, optimization=opt.tr_se_optimization, epochs=opt.tr_se_epochs, lr=opt.tr_se_lr, momentum=opt.tr_se_momentum, weight_decay=opt.tr_se_weight_decay, lr_schedule=opt.tr_se_lr_schedule, loss_criterion=opt.tr_se_loss_criterion): n = len(students_) accs_best = [0.0] * n students_best = [None] * n teacher = torch.nn.DataParallel(teacher_.to(opt.device)) students = [None] * n for j in range(n): students[j] = torch.nn.DataParallel(students_[j].to(opt.device)) if loss_criterion == 'KD': criterion = nn.MSELoss() elif loss_criterion == 'CE': criterion = nn.CrossEntropyLoss() if optimization == 'SGD': optimizers = [optim.SGD(students[j].parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) for j in range(n)] elif optimization == 'Adam': optimizers = [optim.Adam(students[j].parameters(), lr=lr, weight_decay=weight_decay) for j in range(n)] if lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp schedulers = [optim.lr_scheduler.LambdaLR(optimizers[j], lr_lambda=lr_lambda) for j in range(n)] for i in range(1, epochs + 1): print("epochs:",i) teacher.eval() for j in range(n): students[j].train() loss_total = [0.0] * n batch_cnt = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): inputs = inputs.to(opt.device) if loss_criterion == 'KD': teacher_outputs = None with torch.no_grad(): teacher_outputs = teacher(inputs) elif loss_criterion == 'CE': targets = targets.to(opt.device) for j in range(n): if lr_schedule == 'linear': schedulers[j].step() optimizers[j].zero_grad() #print(students[j]) student_outputs = students[j](inputs) if loss_criterion == 'KD': loss = criterion(student_outputs, teacher_outputs) elif loss_criterion == 'CE': loss = criterion(student_outputs, targets) loss.backward() optimizers[j].step() loss_total[j] += loss.item() batch_cnt += 1 for j in range(n): opt.writer.add_scalar('step_%d/sample_%d_loss' % (opt.i, j), loss_total[j] / batch_cnt, i) acc = test_model(students[j], dataset) #print("acc"+str(j)+": ", acc) opt.writer.add_scalar('step_%d/sample_%d_acc' % (opt.i, j), acc, i) if acc > accs_best[j]: accs_best[j] = acc students_best[j] = students[j].module return students_best, accs_best def train_model_search_reg(teacher_, students_, dataset, optimization=opt.tr_se_optimization, epochs=opt.tr_se_epochs, lr=opt.tr_se_lr, momentum=opt.tr_se_momentum, weight_decay=opt.tr_se_weight_decay, lr_schedule=opt.tr_se_lr_schedule, loss_criterion=opt.tr_se_loss_criterion): n = len(students_) loss_best = [sys.maxsize] * n students_best = [None] * n teacher = torch.nn.DataParallel(teacher_.to(opt.device)) students = [None] * n for j in range(n): students[j] = torch.nn.DataParallel(students_[j].to(opt.device)) if loss_criterion == 'KD' or loss_criterion == 'l2': criterion = nn.MSELoss() elif loss_criterion == 'CE': criterion = nn.CrossEntropyLoss() if optimization == 'SGD': optimizers = [optim.SGD(students[j].parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) for j in range(n)] elif optimization == 'Adam': optimizers = [optim.Adam(students[j].parameters(), lr=lr, weight_decay=weight_decay) for j in range(n)] if lr_schedule == 'linear': batch_cnt = len(dataset.train_loader) n_total_exp = epochs * batch_cnt lr_lambda = lambda n_exp_seen: 1 - n_exp_seen/n_total_exp schedulers = [optim.lr_scheduler.LambdaLR(optimizers[j], lr_lambda=lr_lambda) for j in range(n)] for i in range(1, epochs + 1): print("epochs:",i) teacher.eval() for j in range(n): students[j].train() loss_total = [0.0] * n batch_cnt = 0 for batch_idx, (inputs, targets) in enumerate(dataset.train_loader): inputs = inputs.to(opt.device) targets = targets.to(opt.device) if loss_criterion == 'KD': teacher_outputs = None with torch.no_grad(): teacher_outputs = teacher(inputs) elif loss_criterion == 'CE': targets = targets.to(opt.device) for j in range(n): if lr_schedule == 'linear': schedulers[j].step() optimizers[j].zero_grad() #print(students[j]) student_outputs = students[j](inputs) if loss_criterion == 'KD': loss1 = criterion(student_outputs, teacher_outputs) loss2 = criterion(student_outputs, targets) loss = loss1+loss2 elif loss_criterion == 'CE': loss = criterion(student_outputs, targets) loss.backward() optimizers[j].step() loss_total[j] += loss.item() batch_cnt += 1 for j in range(n): opt.writer.add_scalar('step_%d/sample_%d_loss' % (opt.i, j), loss_total[j], i) test_loss = test_model_regression(students[j], dataset) #print("loss"+str(j)+": ", test_loss) #opt.writer.add_scalar('step_%d/sample_%d_acc' % (opt.i, j), acc, i) if test_loss < loss_best[j]: loss_best[j] = test_loss students_best[j] = students[j].module return students_best, loss_best
2.5
2
tests/test_jsonutil.py
bhlarson/pymlutil
0
12793665
import sys import os import numpy as np import cv2 import json from collections import defaultdict import unittest import torch sys.path.insert(0, os.path.abspath('')) # Test files from current path rather than installed module from pymlutil.jsonutil import * test_config = 'test.yaml' class Test(unittest.TestCase): def test_cmd(self): result, _, _ = cmd('ls -la', check=True, timeout=5) self.assertEqual(result, 0) def test_yaml(self): test = ReadDict(test_config) assert test is not None assert 'test_yaml' in test self.assertEqual(test['test_yaml'][0]['zero'], 0) self.assertEqual(test['test_yaml'][1]['one'], 1) self.assertEqual(test['test_yaml'][2]['two'], 2) if __name__ == '__main__': unittest.main()
2.546875
3
tests/test_proxy_digest_auth.py
untitaker/requests-toolbelt
0
12793666
# -*- coding: utf-8 -*- """Test proxy digest authentication """ import unittest import requests import requests_toolbelt class TestProxyDigestAuth(unittest.TestCase): def setUp(self): self.username = "username" self.password = "password" self.auth = requests_toolbelt.auth.HTTPProxyDigestAuth( self.username, self.password ) self.auth.last_nonce = "bH3FVAAAAAAg74rL3X8AAI3CyBAAAAAA" self.auth.chal = { 'nonce': self.auth.last_nonce, 'realm': '<EMAIL>', 'qop': 'auth' } self.prepared_request = requests.Request( 'GET', 'http://host.org/index.html' ).prepare() def test_proxy_digest(self): """Test if it will generate Proxy-Authorization header when nonce presents. Digest authentication's correctness will not be tested here. """ # prepared_request headers should be clear before calling auth assert not self.prepared_request.headers.get('Proxy-Authorization') self.auth(self.prepared_request) assert self.prepared_request.headers.get('Proxy-Authorization') if __name__ == '__main__': unittest.main()
2.9375
3
monotemplate.py
abderrahmen-hadjadj-aoul/monotemplate
1
12793667
""" """ import sys import re import shutil import json if len(sys.argv) < 3: print('Not enough input arguments') exit() ################################################################################ # Options comment = {'begin':'<!--', 'end':'-->'} ################################################################################ errors = [] in_file_path = sys.argv[1] out_file_path = in_file_path data_file_path = sys.argv[2] if len(sys.argv) >= 4: out_file_path = sys.argv[3] else: shutil.copyfile(out_file_path, out_file_path + '.tpl') # Data json1_file = open(data_file_path) json1_str = json1_file.read() data = json.loads(json1_str) in_file = open(in_file_path) in_lines = in_file.readlines() out_lines = [] for in_line in in_lines: if '<REPLACED>' in in_line or '<IGNORE>' in in_line or '<ERROR>' in in_line: continue # Find patterns out_lines.append(in_line) prog = re.compile(r'<REPLACE:([a-zA-Z0-9_]+)>') key_list = prog.findall(in_line) # Find number_of_elem = 0 is_list = False is_valid_list = False for key in key_list: if key in data and isinstance(data[key], list): if is_list: is_valid_list = is_valid_list and (len(data[key])==number_of_elem) else: number_of_elem = len(data[key]) is_valid_list = True is_list = True number_of_loop = number_of_elem if number_of_loop == 0: number_of_loop = 1 if is_list and not is_valid_list: number_of_loop = 0 error = '<ERROR> Data list length are not consistent.' errors.append(error) out_lines.append(comment['begin'] + ' ' + error + comment['end'] + '\n') for i in range(0,number_of_loop): out_line = in_line out_line = re.sub(r'^ *' + comment['begin'] + ' *(.*)' + comment['end'] + ' *', '\g<1>', out_line) out_line = out_line.replace('\n', '') for key in key_list: if key in data: if isinstance(data[key], list): value = data[key][i] else: value = data[key] out_line = out_line.replace('<REPLACE:' + key + '>', str(value)) else: out_line = out_line.replace('<REPLACE:' + key + '>', '') if len(key_list) > 0: if key in data: out_lines.append(out_line + ' ' + comment['begin'] + ' <REPLACED> ' + comment['end'] + '\n') else: error = '<ERROR> Key \'' + key + '\' not exiting.'; errors.append(error) out_lines.append(comment['begin'] + ' ' + error + ' ' + comment['end'] + '\n') out_file = open(out_file_path, 'w') for out_line in out_lines: out_file.write(out_line) if len(errors) > 0: print('\n***ERRORS***\n') print(str(len(errors)) + ' errors in templating process:') for error in errors: print('\t' + error) else: print('No error in templating process')
2.859375
3
GameRoom/clienttest.py
gaogaotiantian/GameHost
0
12793668
<filename>GameRoom/clienttest.py import socket import time if __name__ == "__main__": sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) conn = '/tmp/GameRoomConn' sock.connect(conn) time.sleep(1) sock.send('hello world') sock.close()
1.875
2
app/utils.py
mirsazzathossain/SPMS-Project
0
12793669
from django.db import connection import numpy as np def getstudentcoursewisePLO(studentID, courseID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum,100*(sum(e.obtainedMarks)/sum(a.totalMarks)) as plopercent FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' and co.course_id = '{}' GROUP BY p.ploID '''.format(studentID, courseID)) row = cursor.fetchall() return row def getcoursewiseavgPLO(courseID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum, avg(100*e.obtainedMarks/a.totalMarks) FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and co.course_id = '{}' GROUP BY p.ploID '''.format(courseID)) row = cursor.fetchall() return row def getcompletedcourses(studentID): with connection.cursor() as cursor: cursor.execute( ''' SELECT distinct s.course_id FROM app_registration_t r, app_evaluation_t e, app_section_t s WHERE r.registrationID = e.registration_id and r.section_id = s.sectionID and r.student_id = '{}' '''.format(studentID)) row = cursor.fetchall() return row def getcorrespondingstudentid(userID): with connection.cursor() as cursor: cursor.execute( ''' SELECT studentID FROM app_student_t s WHERE s.user_ptr_id = '{}' '''.format(userID)) row = cursor.fetchall() return row def getstudentprogramwisePLO(studentID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum,100*(sum(e.obtainedMarks)/sum(a.totalMarks)) as plopercent FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_student_t s, app_program_t pr WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' and s.studentID = r.student_id and s.program_id = pr.programID GROUP BY p.ploID '''.format(studentID)) row = cursor.fetchall() return row def getprogramwiseavgPLO(programID): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as plonum, avg(100*e.obtainedMarks/a.totalMarks) FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = '{}' GROUP BY p.ploID '''.format(programID)) row = cursor.fetchall() return row def getstudentprogramid(studentID): with connection.cursor() as cursor: cursor.execute(''' SELECT s.program_id FROM app_student_t s WHERE s.studentID = '{}' '''.format(studentID)) row = cursor.fetchall() return row def getstudentallcoursePLO(studentID, category): with connection.cursor() as cursor: cursor.execute(''' SELECT p.ploNum as ploNum,co.course_id,sum(e.obtainedMarks),sum(a.totalMarks), derived.Total FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, ( SELECT p.ploNum as ploNum,sum(a.totalMarks) as Total, r.student_id as StudentID FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and r.student_id = '{}' GROUP BY r.student_id,p.ploID) derived WHERE r.student_id = derived.StudentID and e.registration_id = r.registrationID and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum = derived.ploNum GROUP BY p.ploID,co.course_id '''.format(studentID)) row = cursor.fetchall() table = [] courses = [] for entry in row: if entry[1] not in courses: courses.append(entry[1]) courses.sort() plo = ["PLO1", "PLO2", "PLO3", "PLO4", "PLO5", "PLO6", "PLO7", "PLO8", "PLO9", "PLO10", "PLO11", "PLO12"] for i in courses: temptable = [] if category == 'report': temptable = [i] for j in plo: found = False for k in row: if j == k[0] and i == k[1]: if category == 'report': temptable.append(np.round(100 * k[2] / k[3], 2)) elif category == 'chart': temptable.append(np.round(100 * k[2] / k[4], 2)) found = True if not found: if category == 'report': temptable.append('N/A') elif category == 'chart': temptable.append(0) table.append(temptable) return plo, courses, table def getfacultycoursewisePLO(courseID, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.first_name, f.last_name, f.plonum, COUNT(*) as achieved_cnt FROM ( SELECT u.first_name, u.last_name, p.ploNum as plonum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, accounts_user u, app_employee_t emp WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.faculty_id IN ( SELECT DISTINCT s.faculty_id FROM app_section_t s WHERE s.course_id = '{}' ) and s.semester IN ({}) and s.course_id ='{}' and s.faculty_id = emp.employeeID and emp.user_ptr_id = u.id )f WHERE f.percentage >= 40 GROUP BY f.first_name, f.plonum; '''.format(courseID, sem, courseID)) row1 = cursor.fetchall() cursor.execute(''' SELECT COUNT(*) FROM ( SELECT u.first_name, u.last_name, p.ploNum as plonum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, accounts_user u, app_employee_t emp WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.faculty_id IN ( SELECT DISTINCT s.faculty_id FROM app_section_t s WHERE s.course_id = '{}' ) and s.semester IN ({}) and s.course_id ='{}' and s.faculty_id = emp.employeeID and emp.user_ptr_id = u.id )f GROUP BY f.first_name, f.plonum; '''.format(courseID, sem, courseID)) row2 = cursor.fetchall() faculty = [] plonum = [] plos1 = [] plos2 = [] for record in row1: faculty.append(record[0]+' '+record[1]) plonum.append(record[2]) plos1.append(record[3]) for record in row2: plos2.append(record[0]) plos = 100*(np.array(plos1)/np.array(plos2)) plos = plos.tolist() faculty = list(set(faculty)) plonum = list(set(plonum)) plonum.sort() plonum.sort(key=len, reverse=False) plos = np.array(plos) plos = np.split(plos, len(plos)/len(plonum)) new_plo=[] for plo in plos: new_plo.append(plo.tolist()) return faculty, plonum, new_plo def getsemestercoursewisePLO(courseID, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.semester, f.plonum, COUNT(*) as achieved_cnt FROM ( SELECT s.semester, p.ploNum as plonum, s.course_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.semester IN ({}) and co.course_id ='{}' and s.course_id = co.course_id )f WHERE f.percentage >= 40 GROUP BY f.semester, f.plonum; '''.format(sem, courseID)) row1 = cursor.fetchall() cursor.execute(''' SELECT COUNT(*) as all_cnt FROM ( SELECT s.semester, p.ploNum as plonum, s.course_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and a.section_id = s.sectionID and s.semester IN ({}) and co.course_id ='{}' and s.course_id = co.course_id )f GROUP BY f.semester, f.plonum; '''.format(sem, courseID)) row2 = cursor.fetchall() semester = [] plonum = [] acheived = [] all_cnt = [] for record in row1: semester.append(record[0]) plonum.append(record[1]) acheived.append(record[2]) for record in row2: all_cnt.append(record[0]) acheived_per = 100*(np.array(acheived)/np.array(all_cnt)) semester = list(set(semester)) plonum = list(set(plonum)) failed_per = 100 - acheived_per acheived_per = np.split(acheived_per, len(acheived_per)/len(semester)) failed_per = np.split(failed_per, len(failed_per)/len(semester)) acheived=[] for plo in acheived_per: acheived.append(plo.tolist()) failed=[] for plo in failed_per: failed.append(plo.tolist()) return semester, plonum, acheived, failed def getplowisecoursecomparism(plos, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] ploo = ''; for plo in plos: ploo += '"' ploo += plo ploo += '",' ploo = ploo[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.course_id, f.ploNum, COUNT(*) FROM ( SELECT s.course_id, p.ploNum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum in ({}) and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage >= 40 GROUP BY f.ploNum, f.course_id; '''.format(ploo, sem)) row1 = cursor.fetchall() with connection.cursor() as cursor: cursor.execute(''' SELECT COUNT(*) FROM ( SELECT s.course_id, p.ploNum, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.ploNum in ({}) and a.section_id = s.sectionID and s.semester IN ({}) )f GROUP BY f.ploNum, f.course_id; '''.format(ploo, sem)) row2 = cursor.fetchall() courses = [] plonum = [] acheived = [] all_cnt = [] for record in row1: courses.append(record[0]) plonum.append(record[1]) acheived.append(record[2]) for record in row2: all_cnt.append(record[0]) acheived_per = 100*(np.array(acheived)/np.array(all_cnt)) courses = list(set(courses)) plonum = list(set(plonum)) acheived_per = np.split(acheived_per, len(acheived_per)/len(plonum)) acheived=[] for plo in acheived_per: acheived.append(plo.tolist()) return courses, plonum, acheived def getprogramsemesterwiseplocount(program, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.plonum, COUNT(*) FROM ( SELECT p.ploNum as plonum, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage>=40 GROUP BY f.plonum; '''.format(program, sem)) row1 = cursor.fetchall() with connection.cursor() as cursor: cursor.execute(''' SELECT COUNT(*) FROM ( SELECT p.ploNum as plonum, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f GROUP BY f.plonum; '''.format(program, sem)) row2 = cursor.fetchall() plonum = [] acheived = [] attempted = [] for record in row1: plonum.append(record[0]) acheived.append(record[1]) for record in row2: attempted.append(record[0]) plonum = list(set(plonum)) acheived = np.array(acheived) attempted = np.array(attempted) new_acheived=[] for plo in acheived: new_acheived.append(plo.tolist()) new_attempted=[] for plo in attempted: new_attempted.append(plo.tolist()) plonum.sort() plonum.sort(key=len, reverse=False) return plonum, new_acheived, new_attempted def getprogramwiseploandcourses(program, semesters): sem = ''; for semester in semesters: sem += '"' sem += semester sem += '",' sem = sem[:-1] with connection.cursor() as cursor: cursor.execute(''' SELECT f.ploNum, f.course_id, COUNT(*) FROM ( SELECT p.ploNum as plonum, s.course_id, r.student_id, 100*e.obtainedMarks/a.totalMarks as percentage FROM app_registration_t r, app_assessment_t a, app_evaluation_t e, app_co_t co, app_plo_t p, app_section_t s, app_program_t prog WHERE r.registrationID = e.registration_id and e.assessment_id = a.assessmentID and a.co_id=co.coID and co.plo_id = p.ploID and p.program_id = prog.programID and prog.programName = '{}' and a.section_id = s.sectionID and s.semester IN ({}) )f WHERE f.percentage>=40 GROUP BY f.ploNum, f.course_id '''.format(program, sem)) row = cursor.fetchall() plonum = [] courses = [] counts = [] for record in row: plonum.append(record[0]) courses.append(record[1]) plonum = list(set(plonum)) plonum.sort() plonum.sort(key=len, reverse=False) courses = list(set(courses)) courses.sort() table = np.zeros((len(courses), len(plonum))) for record in row: table[courses.index(record[1])][plonum.index(record[0])] += record[2] table = table.tolist() return plonum, courses, table
2.28125
2
content_upload/get_marketo_email.py
tyron-pretorius/zapier
0
12793670
#input variables to Zapier Step 12: Get Marketo Email ID input={ 'token': 'Token' #from Step 3: Get Marketo Access Token 'pid': 'Pid' #from Step 9: Clone Latest Marketo Program 'c_type': 'Content Type' #from Step 1: Get Submission from Google Form } import requests import datetime import re if (input['c_type'] != 'Fact Sheet' and input['c_type'] != 'Infographic'): pid = input['pid'] #https://developers.marketo.com/rest-api/assets/emails/#browse url = 'https://###-xxx-###.mktorest.com/rest/asset/v1/emails.json?folder={\"id\":'+pid+',\"type\":\"Program\"}' payload = {} headers = { 'Authorization': 'Bearer ' + input['token'] } response = requests.request("GET", url, headers=headers, data = payload) raw=response.text eid = re.search('{"id":(\d*),',response.text).group(1) return {'email_id': eid}
2.59375
3
tests/test_logger.py
nimbinatus/python
0
12793671
<filename>tests/test_logger.py import json import unittest from http.server import BaseHTTPRequestHandler from logdna import LogDNAHandler from .mock.server import get_port, start_server from .mock.log import logger, info, LOGDNA_API_KEY expectedLines = [] class SuccessfulRequestHandler(BaseHTTPRequestHandler): def do_POST(self): content_length = int(self.headers['Content-Length']) body = self.rfile.read(content_length) self.send_response(200) self.end_headers() body = json.loads(body)['ls'] for keys in body: expectedLines.append(keys['line']) class FailedRequestHandler(BaseHTTPRequestHandler): def do_POST(self): content_length = int(self.headers['Content-Length']) self.rfile.read(content_length) self.send_response(400) self.end_headers() class LogDNAHandlerTest(unittest.TestCase): def server_recieves_messages(self): port = get_port() options = { 'hostname': 'localhost', 'url': 'http://localhost:{0}'.format(port), 'ip': '10.0.1.1', 'mac': 'C0:FF:EE:C0:FF:EE' } handler = LogDNAHandler(LOGDNA_API_KEY, options) logger.addHandler(handler) line = "python python python" server_thread = start_server(port, SuccessfulRequestHandler) logdna_thread = info(line) server_thread.join() logdna_thread.join() self.assertEqual(len(expectedLines), 1) self.assertIn(line, expectedLines) logger.removeHandler(handler) def messages_preserved_if_excp(self): port = get_port() options = { 'hostname': 'localhost', 'url': 'http://localhost:{0}'.format(port), 'ip': '10.0.1.1', 'mac': 'C0:FF:EE:C0:FF:EE' } handler = LogDNAHandler(LOGDNA_API_KEY, options) logger.addHandler(handler) line = "second test. server fails" server_thread = start_server(port, FailedRequestHandler) logdna_thread = info(line) server_thread.join() logdna_thread.join() self.assertEqual(len(handler.buf), 1) logger.removeHandler(handler) def stops_retention_when_buf_is_full(self): port = get_port() options = { 'hostname': 'localhost', 'url': 'http://localhost:{0}'.format(port), 'ip': '10.0.1.1', 'mac': 'C0:FF:EE:C0:FF:EE', 'buf_retention_limit': 50, 'equest_timeout': 10, 'flush_interval': 1, 'retry_interval_secs': 1 } handler = LogDNAHandler(LOGDNA_API_KEY, options) logger.addHandler(handler) line = "when buffer grows bigger than we want" lineTwo = "when buffer grows bigger than we want. And more and more" server_thread = start_server(port, FailedRequestHandler) logdna_thread = info(line, lineTwo) server_thread.join() logdna_thread.join() self.assertEqual(len(handler.buf), 1) self.assertNotEqual(handler.buf[0]['line'], lineTwo) logger.removeHandler(handler) def test_run_tests(self): self.server_recieves_messages() self.messages_preserved_if_excp() self.stops_retention_when_buf_is_full() if __name__ == '__main__': unittest.main()
2.6875
3
backend/src/pox/ext/gini/samples/packet_loss.py
anrl/gini4
11
12793672
<gh_stars>10-100 #!/usr/bin/python2 """ packet_loss.py: Simulates packet loss by dropping all packets with a probability of 25%. """ import random from pox.core import core import pox.openflow.libopenflow_01 as of def packet_in(event): if random.random() >= 0.25: msg = of.ofp_packet_out(data = event.ofp) msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) event.connection.send(msg) def launch(): core.openflow.addListenerByName("PacketIn", packet_in)
2.3125
2
ampa/cole/migrations/0023_entitat_codi_registre.py
jordiprats/django-ampa
0
12793673
<gh_stars>0 # Generated by Django 3.1.5 on 2021-03-06 17:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cole', '0022_auto_20210306_1528'), ] operations = [ migrations.AddField( model_name='entitat', name='codi_registre', field=models.CharField(blank=True, default='', max_length=256, null=True), ), ]
1.460938
1
apps/dashboard/migrations/0009_generalsettings_location.py
iamjdcollins/districtwebsite
0
12793674
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-05-17 15:50 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('taxonomy', '0009_boardprecinct_precinct_map'), ('dashboard', '0008_generalsettings_gatrackingid'), ] operations = [ migrations.AddField( model_name='generalsettings', name='location', field=models.ForeignKey(blank=True, help_text='<span>Select the primary location for the intity this site represents. This list is managed by the webmaster.</span>', null=True, on_delete=django.db.models.deletion.PROTECT, related_name='dashboard_generalsettings_location', to='taxonomy.Location', verbose_name='Primary Location'), ), ]
1.65625
2
unittests/constants.py
ga4gh/gsoc2018-ref-retrieval-api
6
12793675
GOOD_SERVER_URL = "http://0.0.0.0:8989/" BAD_SERVER_URL = "http://0.0.0.0:8988/" JSON_REPORT = "test_report.json" WEB_FILE_PATH = "test_web" DEFAULT_WEB_DIR = "web"
1.289063
1
openerp/addons/base_report_designer/plugin/openerp_report_designer/bin/script/NewReport.py
ntiufalara/openerp7
3
12793676
######################################################################### # # Copyright (c) 2003-2004 <NAME> <EMAIL> # Copyright (C) 2004-2010 OpenERP SA (<http://openerp.com>). # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # See: http://www.gnu.org/licenses/lgpl.html # ############################################################################# import uno import string import unohelper import xmlrpclib from com.sun.star.task import XJobExecutor if __name__<>"package": from lib.gui import * from lib.error import ErrorDialog from lib.functions import * from lib.logreport import * from LoginTest import * from lib.rpc import * database="test" uid = 3 # # # # Start OpenOffice.org, listen for connections and open testing document # # class NewReport(unohelper.Base, XJobExecutor): def __init__(self, ctx): self.ctx = ctx self.module = "openerp_report" self.version = "0.1" LoginTest() self.logobj=Logger() if not loginstatus and __name__=="package": exit(1) self.win=DBModalDialog(60, 50, 180, 115, "Open New Report") self.win.addFixedText("lblModuleSelection", 2, 2, 60, 15, "Module Selection") self.win.addComboListBox("lstModule", -2,13,176,80 , False) self.lstModule = self.win.getControl( "lstModule" ) self.aModuleName=[] desktop=getDesktop() doc = desktop.getCurrentComponent() docinfo=doc.getDocumentInfo() global passwd self.password = <PASSWORD> global url self.sock=RPCSession(url) ids = self.sock.execute(database, uid, self.password, 'ir.model' , 'search',[]) fields = [ 'model','name'] res = self.sock.execute(database, uid, self.password, 'ir.model' , 'read', ids, fields) res.sort(lambda x, y: cmp(x['name'],y['name'])) for i in range(len(res)): self.lstModule.addItem(res[i]['name'],self.lstModule.getItemCount()) self.aModuleName.append(res[i]['model']) self.win.addButton('btnOK',-2 ,-5, 70,15,'Use Module in Report' ,actionListenerProc = self.btnOk_clicked ) self.win.addButton('btnCancel',-2 - 70 - 5 ,-5, 35,15,'Cancel' ,actionListenerProc = self.btnCancel_clicked ) self.win.doModalDialog("",None) def btnOk_clicked(self, oActionEvent): desktop=getDesktop() doc = desktop.getCurrentComponent() docinfo=doc.getDocumentInfo() docinfo.setUserFieldValue(3,self.aModuleName[self.lstModule.getSelectedItemPos()]) self.logobj.log_write('Module Name',LOG_INFO, ':Module use in creating a report %s using database %s' % (self.aModuleName[self.lstModule.getSelectedItemPos()], database)) self.win.endExecute() def btnCancel_clicked(self, oActionEvent): self.win.endExecute() if __name__<>"package" and __name__=="__main__": NewReport(None) elif __name__=="package": g_ImplementationHelper.addImplementation( \ NewReport, "org.openoffice.openerp.report.opennewreport", ("com.sun.star.task.Job",),) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
1.40625
1
codes/pandas/pandas-1-loading-and-displaying-data.py
sandywadhwa/machine-learning-in-python
0
12793677
<filename>codes/pandas/pandas-1-loading-and-displaying-data.py<gh_stars>0 import pandas import numpy import matplotlib # READ CSV FILE df = pandas.read_csv("../../data/uci-pima-indian-diabetes-data-original.csv") # Print Dimensions of Data (Rows, Cols) print("Dimensions of Data", df.shape) # Print First n Rows n = 5 print(df.head(n)) # Print Last n Rows print(df.tail(n)) # Get One Particular Cell Value [col][row] print(df["age"][1])
3.875
4
csrf/luhack_csrf/site.py
nitros12/luhack-web-lab
0
12793678
<reponame>nitros12/luhack-web-lab<gh_stars>0 import os from collections import defaultdict from pathlib import Path from starlette.exceptions import HTTPException import aiohttp from dotenv import load_dotenv from furl import furl from starlette.applications import Starlette from starlette.endpoints import HTTPEndpoint from starlette.middleware.sessions import SessionMiddleware from starlette.requests import HTTPConnection from starlette.responses import RedirectResponse from starlette.routing import Mount, Router from wtforms import Form, StringField, IntegerField from luhack_csrf.templater import templates load_dotenv() flag = os.getenv("CSRF_FLAG") root_dir = Path(__file__).parent router = Router() class ClickForm(Form): link = StringField("link") @router.route("/") async def index(request: HTTPConnection): return templates.TemplateResponse("main.j2", {"request": request}) def redirect_response(*args, **kwargs): kwargs.setdefault("status_code", 303) return RedirectResponse(*args, **kwargs) @router.route("/kerry") class Kerry(HTTPEndpoint): async def get(self, request: HTTPConnection): form = ClickForm() return templates.TemplateResponse( "kerry.j2", {"request": request, "form": form} ) async def post(self, request: HTTPConnection): form = await request.form() form = ClickForm(form) link = furl(form.link.data) if link.path.segments and link.path.segments[0] == "csrf": link.netloc = "csrf:8080" cookies = {"username": flag} async with aiohttp.ClientSession(cookies=cookies) as session: async with session.get(link.url) as response: print(response.status) return templates.TemplateResponse( "kerry.j2", {"request": request, "form": form} ) transactions = defaultdict(list) class LoginForm(Form): user = StringField("Username") class TransferForm(Form): dest = StringField("Destination") amount = IntegerField("Amount") @router.route("/bank") async def bank(request: HTTPConnection): login_form = LoginForm() transfer_form = TransferForm() current_user = request.cookies.get("username") return templates.TemplateResponse( "bank.j2", { "request": request, "login_form": login_form, "transfer_form": transfer_form, "login_url": request.url_for("bank_login"), "transfer_url": request.url_for("bank_transfer"), "current_user": current_user, "transactions": [] if current_user is None else transactions[current_user], }, ) @router.route("/bank/login", methods=["POST"]) async def bank_login(request: HTTPConnection): form = await request.form() form = LoginForm(form) r = redirect_response(url=request.url_for("bank")) r.set_cookie("username", form.user.data) return r @router.route("/bank/transfer", methods=["GET", "POST"]) async def bank_transfer(request: HTTPConnection): form = TransferForm(request.query_params) if not form.validate(): login_form = LoginForm() current_user = request.cookies.get("username") return templates.TemplateResponse( "bank.j2", { "request": request, "login_form": login_form, "transfer_form": form, "login_url": request.url_for("bank_login"), "transfer_url": request.url_for("bank_transfer"), "current_user": current_user, "transactions": [] if current_user is None else transactions[current_user], }, ) from_ = request.cookies.get("username") if from_ is None: raise HTTPException(status_code=401, detail="Not logged in") transaction = (from_, form.dest.data, form.amount.data) print(transaction) transactions[form.dest.data].append(transaction) transactions[from_].append(transaction) return redirect_response(url=request.url_for("bank")) app = Starlette(routes=[ Mount("/csrf", app=router) ]) app.add_middleware(SessionMiddleware, secret_key="doesntmatter")
2.234375
2
pyaugmecon/__init__.py
vishalbelsare/pyaugmecon
5
12793679
from pyaugmecon.pyaugmecon import PyAugmecon
1.054688
1
feps/epitopeenergies.py
immunityproject/free-energy-post-substitution
0
12793680
<reponame>immunityproject/free-energy-post-substitution<gh_stars>0 """ main.py - main functionality for feps tool """ from __future__ import print_function import click import csv import sys from collections import defaultdict from feps.energy import load_db,combine_energy_mutations,codes,add_entropies from feps.entropy import mean def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def get_epitope_energies(energies): """Create a map of epitopes -> epitopeinfo, [wt -> energies] Users can then iterate via the peptide chain to grab the energies in order This includes the structural energie, which is the mean of the site entropies """ epitopedb = defaultdict(dict) for _,entry in energies.items(): # Keys for the epitope db are unique to the epitope, so: # name, peptide, startsite, endsite name = entry['epitope'] peptide = entry['peptide'] startsite = entry['start'] endsite = entry['end'] site = entry['site'] chain = entry['chains'] if not name: eprint('Skipping site {} as it does not match an epitope'.format( site)) continue key = '{},{},{},{},{}'.format(name, peptide, startsite, endsite, chain) epitopedb[key]['epitope'] = name epitopedb[key]['peptide'] = peptide epitopedb[key]['peptide_status'] = entry['peptide_status'] epitopedb[key]['startsite'] = int(startsite) epitopedb[key]['endsite'] = int(endsite) epitopedb[key]['protein'] = entry['protein'] epitopedb[key]['chains'] = chain wt = entry['wt'] peptide_state = list(epitopedb[key].get('peptide_state', ("-" * len(peptide)))) idx = int(site)-int(startsite) if peptide_state[idx] != '-': eprint('Overwriting peptide state {} at idx {}!'.format( ''.join(peptide_state), idx)) if peptide[idx] != wt: eprint('Peptide mismatch at {}: {} expected, got {}'.format( idx, peptide[idx], wt)) peptide_state[idx] = wt epitopedb[key]['peptide_state'] = ''.join(peptide_state) # Average energy for the wt at this peptide index wtk = '{},{}'.format(idx,wt) epitopedb[key][wtk] = mean([entry[x] for x in codes.values() if x in entry]) epitopedb[key][wtk + '-entropy'] = entry['shannon_entropy'] epitopedb[key][wtk + '-absolute-entropy'] = ( entry['absolute_shannon_entropy']) epitopedb[key][wtk + '-boltzman-entropy'] = ( entry['boltzman_shannon_entropy']) epitopedb[key][wtk + '-boltzman-absolute-entropy'] = ( entry['absolute_boltzman_shannon_entropy']) # Now average energy and structural entropy for _,v in epitopedb.items(): ps = v['peptide_state'] keys = ['{},{}'.format(i,ps[i]) for i in range(len(ps)) if ps[i] != '-'] v['structural_entropy'] = mean([v[k + '-entropy'] for k in keys]) v['absolute_structural_entropy'] = mean([v[k + '-absolute-entropy'] for k in keys]) v['boltzman_structural_entropy'] = mean([v[k + '-boltzman-entropy'] for k in keys]) v['boltzman_absolute_structural_entropy'] = mean( [v[k + '-boltzman-absolute-entropy'] for k in keys]) v['average_energy'] = mean([v[k] for k in keys]) return epitopedb @click.command() @click.option('--database', default='https://epitopedata.flowpharma.com/EpitopeData.json', help='URL to a jsonl encoded file to dump') @click.option('--ignore-mutation', default=[], multiple=True, type=click.Choice(codes.values()), help='Ignore these mutations') def epitope_energies(database, ignore_mutation): db = load_db(database) amino_codes = [aa for aa in codes.values() if aa not in ignore_mutation] energies = combine_energy_mutations(db, amino_codes) energies = add_entropies(energies, amino_codes, include_absolute_entropy = True, include_boltzman_entropy= True, include_absolute_boltzman_entropy= True) epitope_energies = get_epitope_energies(energies) sorted_keys = sorted(epitope_energies.keys(), key=lambda x: int(x.split(',')[2])) fieldnames = [ 'protein', 'epitope', 'peptide', 'peptide_status', 'peptide_state', 'startsite', 'endsite', 'chains', 'average_energy', 'structural_entropy', 'absolute_structural_entropy', 'boltzman_structural_entropy', 'boltzman_absolute_structural_entropy'] writer = None for k in sorted_keys: v = epitope_energies[k] # Print header if not writer: writer = csv.DictWriter(sys.stdout, fieldnames=fieldnames, extrasaction='ignore') writer.writeheader() writer.writerow(v) if __name__ == '__main__': epitope_energies()
2.640625
3
PWN/2018WangDing/2018WangDing-3/pwn3-note2/exp3.py
Cossack9989/SEC_LEARNING
13
12793681
<filename>PWN/2018WangDing/2018WangDing-3/pwn3-note2/exp3.py<gh_stars>10-100 # Pwned locally # After two big chunks freed and combined, the first chunk's size will emerge a bug that its size equals the sum of the two chunks # Use this bug to override and lead to UAF # And this UAF lead to AnyMemWrite with the fake_fd # Meanwhile, fsb can leak libc_base/ret_addr/canary from pwn import * from binascii import * r=process('./deathnote2') r.send('\n') #r.sendlineafter('tell me your name:','%p%p%p%p%p%p%p%p%p%p%p%p%p%p%p%p') r.sendlineafter('tell me your name:','%p%p%p%p%p%p%p%p%p%p%p%p%p\x00\x00\x00\x00\x00') log.success('fsb leak') r.recvuntil('0x70250x') leak0=int(r.recv(12),16) retaddr=leak0-0xd8 log.success('ReturnAddr='+str(hex(retaddr))) r.recvuntil('0x') leak1=int(r.recv(16),16) canary=leak1 log.success('Canary='+str(hex(canary))) r.recvuntil('(nil)0x') leak2=int(r.recv(12),16) libc_base=leak2-0x20830 og1=libc_base+0x45216 og2=libc_base+0x4526a og3=libc_base+0xf02a4 og4=libc_base+0xf1147 log.success('LibcBase='+str(hex(libc_base))) log.success('OneGadget='+str(hex(og1))) r.recvuntil('Invalid!\n') def WriteName(size,content): r.sendlineafter('choice>>','1') r.sendlineafter('Size:',str(size)) r.sendlineafter('Name:',content) def ShowName(index): r.sendlineafter('choice>>','3') r.sendlineafter('Page:',str(index)) def DeleteName(index): r.sendlineafter('choice>>','2') r.sendlineafter('Page:',str(index)) def Bye(): r.sendlineafter('choice>>','4') fake_fd=retaddr-0x1f payload=p64(canary>>8)+p64((og1&0xff)<<56)+p64((0x01<<56)+(og1>>8)) WriteName(32,'00000000')#0 WriteName(192,'11111111')#1 WriteName(192,'22222222')#2 WriteName(32,'33333333')#3 avoid combination DeleteName(2) DeleteName(1) WriteName(0x1a0,'1'*0xd0+p64(0xe0)+p64(fake_fd))#_1 WriteName(0xc0,'22222222')#_2 WriteName(0x50,payload)#4 Bye() r.interactive()
2
2
unittests/one_clock/gen.py
SubjeBilisim/anasymod
20
12793682
from pathlib import Path from argparse import ArgumentParser from msdsl import MixedSignalModel, VerilogGenerator from msdsl.expr.extras import if_ def main(): print('Running model generator...') # parse command line arguments parser = ArgumentParser() parser.add_argument('-o', '--output', type=str, default='build') parser.add_argument('--dt', type=float, default=0.1e-6) a = parser.parse_args() # create the model m = MixedSignalModel('osc', dt=a.dt) m.add_digital_input('emu_clk') m.add_digital_input('emu_rst') m.add_digital_output('dt_req', 32) m.add_digital_input('emu_dt', 32) m.add_digital_output('clk_val') m.add_digital_input('t_lo', 32) m.add_digital_input('t_hi', 32) # determine if the request was granted m.bind_name('req_grant', m.dt_req == m.emu_dt) # update the clock value m.add_digital_state('prev_clk_val') m.set_next_cycle(m.prev_clk_val, m.clk_val, clk=m.emu_clk, rst=m.emu_rst) m.set_this_cycle(m.clk_val, if_(m.req_grant, ~m.prev_clk_val, m.prev_clk_val)) # determine the next period m.bind_name('dt_req_next', if_(m.prev_clk_val, m.t_lo, m.t_hi)) # increment the time request m.bind_name('dt_req_incr', m.dt_req - m.emu_dt) # determine the next period m.bind_name('dt_req_imm', if_(m.req_grant, m.dt_req_next, m.dt_req_incr)) m.set_next_cycle(m.dt_req, m.dt_req_imm, clk=m.emu_clk, rst=m.emu_rst, check_format=False) # determine the output filename filename = Path(a.output).resolve() / f'{m.module_name}.sv' print(f'Model will be written to: {filename}') # generate the model m.compile_to_file(VerilogGenerator(), filename) if __name__ == '__main__': main()
2.4375
2
external/opensocdebug/software/src/bindings/python/examples/runelf.py
koenenwmn/optimsoc
0
12793683
<filename>external/opensocdebug/software/src/bindings/python/examples/runelf.py import opensocdebug import sys from optparse import OptionParser parser = OptionParser(usage="usage: %prog [options] <elffile>") parser.add_option("--verify-memload", action="store_true", dest="verify", default=False, help="verify loaded memory") parser.add_option("--no-ctm", action="store_false", dest="ctm", default=True, help="don't use CTM") parser.add_option("--no-stm", action="store_false", dest="stm", default=True, help="don't use STM") (options, args) = parser.parse_args() if len(args) != 1: parser.error("missing ELF file") elffile = args[0] osd = opensocdebug.Session() osd.reset(halt=True) if options.stm: for m in osd.get_modules("STM"): m.log("stm{:03d}.log".format(m.get_id())) if options.ctm: for m in osd.get_modules("CTM"): m.log("ctm{:03d}.log".format(m.get_id()), elffile) for m in osd.get_modules("MAM"): m.loadelf(elffile, options.verify) osd.start() osd.wait(120)
2.375
2
backend/pints/utils.py
ebunt/pulse
63
12793684
<reponame>ebunt/pulse<gh_stars>10-100 import os from cryptography.fernet import Fernet FERNET_KEY = os.environ.get('PAPER_FERNET_KEY') def encrypt(e): f = Fernet(FERNET_KEY) e = e.encode("utf-8") return f.encrypt(e).decode() def decrypt(d): f = Fernet(FERNET_KEY) d = f.decrypt(d.encode("utf-8")) return d.decode()
2.46875
2
main.py
Mike-n-ike/deep-learning-for-pkd-patients
0
12793685
<gh_stars>0 # This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. # importing important librarires import itertools import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pydicom def load_data(master_path, new_dimensions): ''' This function is used to transform dicom images into numpy arrays with the desired dimensions Parameters: master_path (str): the path to the directory containing the scans of all patients new_dimensions (list): a list containing the dimensions of the new scan [z,x,y] Returns: patients_resized (numpy.ndarray): a numpy array containing numpy arrays representing MRI scans of individual patients ''' master_path = master_path + '/MR/' patients_name = os.listdir(master_path) patients_dcm = [] # contains the samples in dicom format for patient in patients_name: if patient == '.DS_Store': continue path = master_path + patient + '/T2SPIR/DICOM_anon' patients_dcm.append(load_scan(path)) print("Dicom files loaded") scans_not_square = not_square(patients_dcm) [min_length, max_length], [min_width, max_width], [min_height, max_height] = get_extreme_dim(patients_dcm) patients = [] for patient in patients_dcm: patients.append(get_array(patient)) print("Dicom files converted to numpy array") patients_resized = [] for patient in patients: patients_resized.append(resize_data(patient, new_dimensions)) print("Scans have been resized to {size}".format(size=patients_resized[0].shape)) return patients_resized def load_scan(path): """ This function is used to load the MRI scans. Parameters: path (str): The path to the folder containing the MRI scans of THE patient Returns: slices (list): A list of the slices consisting the MRI scan """ # for s in os.listdir(path): # if s == '.DS_Store/': # print("found ds") # continue # else: # slices = [pydicom.read_file(path + '/' + s)] slices = [pydicom.read_file(path + '/' + s) for s in os.listdir(path)] slices.sort(key=lambda x: float(x.ImagePositionPatient[2])) try: slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) except Exception: print("error") slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation) for s in slices: s.SliceThickness = slice_thickness return slices def get_dimensions(patients_dcm): """ This function is used to get the dimensions of all scans Parameters: patients_dcm (list): A list containing the MRI scans. Each MRI scan is a list of the slices that make up the scan Returns: None """ for i in range(len(patients_dcm)): print(patients_dcm[i][0].pixel_array.shape, len(patients_dcm[i])) def not_square(patients_dcm): """ This function tells us if all the slices that make up a scan are squares. Parameters: patients_dcm (list): A list containing the MRI scans. Each MRI scan is a list of the slices that make up the scan Returns: scans_not_square (list): A list containing the indices of scans that contain non-square slices """ scans_not_square = [] for i in range(len(patients_dcm)): # we compare only the first slice because all of them in one scan have the same dimension if patients_dcm[i][0].pixel_array.shape[0] != patients_dcm[i][0].pixel_array.shape[1]: scans_not_square.append(i) print("Not all images are squares") return scans_not_square def get_array(scan): ''' This function converts a scan into a numpy array Parameters: scan (list): A list containing the slices that make up an MRI scan Returns: np_image (numpy.ndarray): A numpy array representing the MRI scan ''' image = np.stack([s.pixel_array for s in scan]) image = image.astype(np.int16) np_image = np.array(image, dtype=np.int16) return np_image def resize_data(data, new_dimensions): ''' This function resizes a numpy array. TO DO: method used for interpolation? Parameters: data (numpy.ndarray): a numpy array representing an MRI scan new_dimensions (list): a list containing the dimensions of the new scan [z,x,y] Returns: new_data (numpy.ndarray): a numpy array with the desired dimensions ''' initial_size_x = data.shape[1] initial_size_y = data.shape[2] initial_size_z = data.shape[0] new_size_z = new_dimensions[0] new_size_x = new_dimensions[1] new_size_y = new_dimensions[2] delta_x = initial_size_x / new_size_x delta_y = initial_size_y / new_size_y delta_z = initial_size_z / new_size_z new_data = np.zeros((new_size_z, new_size_x, new_size_y)) for x, y, z in itertools.product(range(new_size_x), range(new_size_y), range(new_size_z)): new_data[z][x][y] = data[int(z * delta_z)][int(x * delta_x)][int(y * delta_y)] return new_data def get_extreme_dim(patients_dcm): """ This function gets the minimum and maximum dimensions of all scans Paramters: patients_dcm (list): A list containing the MRI scans. Each MRI scan is a list of the slices that make up the scan Returns: [min_length, max_length], [min_width, max_width], [min_height, max_height] (list): These lists contain the minimum and maximum dimensions of all scans. """ lengths = [] widths = [] heights = [] square = True scans_not_square = not_square(patients_dcm) if len(scans_not_square) != 0: square = False # for i in range(len(patients_dcm)): # if patients_dcm[i][0].pixel_array.shape[0] != patients_dcm[i][0].pixel_array.shape[1]: # square = False # print("Not all images are squares") for i in range(len(patients_dcm)): lengths.append(patients_dcm[i][0].pixel_array.shape[0]) heights.append(len(patients_dcm[i])) if square == False: widths.append(patients_dcm[i][0].pixel_array.shape[1]) max_length = max(lengths) min_length = min(lengths) max_height = max(heights) min_height = min(heights) print("Min length: {min_l} \nMax length: {max_l}\n".format(max_l=max_length, min_l=min_length)) if square == False: max_width = max(widths) min_width = min(widths) print("Min width: {min_w} \nMax width: {max_w}\n".format(max_w=max_width, min_w=min_width)) else: min_width, max_width = -1, -1 print("All images are squares\n") print("Min height: {min_h} \nMax height: {max_h}\n".format(max_h=max_height, min_h=min_height)) return [min_length, max_length], [min_width, max_width], [min_height, max_height] # Press the green button in the gutter to run the script. if __name__ == '__main__': my_dir = os.getcwd() pat = load_data(my_dir, [20, 100, 100]) plt.imshow(pat[0][10, :, :]) plt.savefig('mri_scan.png') # See PyCharm help at https://www.jetbrains.com/help/pycharm/
3
3
Data Structure/Sort/Quick Sort/main.py
InnoFang/oh-my-algorithms
19
12793686
import random def partition(arr, left, right): l, r, tmp = left, right, arr[left] while l != r: while l < r and arr[r] >= tmp: r -= 1 while l < r and arr[l] <= tmp: l += 1 arr[l], arr[r] = arr[r], arr[l] arr[l], arr[left] = arr[left], arr[l] return l def quick_sort(arr, left, right): if left <= right: pivot = partition(arr, left, right) quick_sort(arr, left, pivot - 1) quick_sort(arr, pivot + 1, right) def main(): num = 20 range_left = 0 range_right = 10000 arr = [random.randint(range_left, range_right) for _ in range(num)] print('Original array:') print(arr) quick_sort(arr, 0, len(arr) - 1) print('Sorted array:') print(arr) if __name__ == '__main__': main()
3.890625
4
nyaa_updater.py
mhaidarh/nyaaupdater
7
12793687
<filename>nyaa_updater.py #!/usr/bin/env python """ Nyaa.eu Feed Auto Updater <NAME> (faizilham.com) 2013 """ from nyaa_parser import fetch, download from nyaa_db import NyaaSQLiteDB from threading import Thread import os, stat DBNAME = '/home/pi/db/nyaa.db' DOWNLOAD_DIR = '/home/pi/download/update/' NUM_UPDATER = 4 NUM_DOWNLOADER = 4 class DownloadJob(Thread): def __init__(self, links): Thread.__init__(self) self.links = links def run(self): for link in self.links: filename, url = DOWNLOAD_DIR + link[1] + ".torrent", link[2] download(url, filename) os.chmod(filename, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) class UpdaterJob(Thread): def __init__(self, db): Thread.__init__(self) self.db = db def run(self): self.links = [] self.updates = {} for series, val in self.db.items(): url, pattern, last = val[0], val[1], val[2] feeds = fetch(url, pattern) if (feeds): n = 0 while(n < len(feeds) and feeds[n]['name'] != last): self.links.append((series, feeds[n]['name'], feeds[n]['link'], feeds[n]['date'])) n = n + 1 if (n != 0): self.updates[series] = [None, None, feeds[0]['name']] def db_updates(db, links, updates): db.update(updates) # update `series` table # update `updates` table conn = db.connect() conn.execute('CREATE TABLE IF NOT EXISTS updates (id_update INTEGER PRIMARY KEY AUTOINCREMENT, series_name TEXT NOT NULL, filename TEXT NOT NULL, url TEXT NOT NULL, pubdate TEXT NOT NULL)') conn.executemany('INSERT INTO updates(series_name, filename, url, pubdate) VALUES (?, ?, ?, ?)', links) conn.commit() db.close() # divide .torrent downloads into NUM_DOWNLOADER threads item_per_job = len(links) / NUM_DOWNLOADER + (0 if len(links) % NUM_DOWNLOADER == 0 else 1) temp, jobs = [], [] n, total = 0, 0 for link in links: temp.append(link) n, total = n + 1, total + 1 if(n==item_per_job or total == len(links)): n = 0 job = DownloadJob(temp) jobs.append(job) job.start() temp = [] for job in jobs: job.join() # all download finish def update(db): data = db.load() # divide check series updates into NUM_UPDATER threads item_per_job = len(data) / NUM_UPDATER + (0 if len(data) % NUM_UPDATER == 0 else 1) temp, jobs = {}, [] n, total = 0, 0 for key, value in data.items(): temp[key] = value n = n + 1 total = total + 1 if (n==item_per_job or total == len(data)): n = 0 job = UpdaterJob(temp) jobs.append(job) job.start() temp = {} links, updates = [], {} for job in jobs: job.join() links = links + job.links updates.update(job.updates) # all series checked return links, updates if __name__ == "__main__": db = NyaaSQLiteDB(DBNAME) links, updates = update(db) if (links): print len(links), "new updates found" db_updates(db, links, updates) else: db.close()
2.59375
3
data/data_split.py
SCUT-AILab/DTQ
20
12793688
<filename>data/data_split.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/10/13 16:57 # @Author : xiezheng # @Site : # @File : data_split.py import os from scipy.io import loadmat import shutil def get_path_str(line): line = str(line) _, path, _ = line.split('\'') # print('line={}, path={}'.format(line, path)) return path def path_replace(line): return line.replace('/', '\\') def copy_img(root, list, save_path): for i in range(list.shape[0]): print('i={}'.format(i)) path = get_path_str(list[i][0]) source_img_path = path_replace(os.path.join(root, 'Images', path)) dir_, name = path.split('/') target_img_dir = path_replace(os.path.join(save_path, dir_)) if not os.path.exists(target_img_dir): os.makedirs(target_img_dir) target_img_path = path_replace(os.path.join(target_img_dir, name)) print('source_img_path={}, target_img_path={}'.format(source_img_path, target_img_path)) shutil.copy(source_img_path, target_img_path) if __name__ == '__main__': print() root = '\Stanford Dogs 120' train_list = loadmat(os.path.join(root, 'train_list.mat'))['file_list'] save_train_path = '\Stanford Dogs 120\\train' copy_img(root, train_list, save_train_path) # test_list = loadmat(os.path.join(root, 'test_list.mat'))['file_list'] # save_test_path = '\Stanford Dogs 120\\test' # copy_img(root, test_list, save_test_path)
2.796875
3
make_data.py
kazurayam/ks_LogViewerSlowsDownTests_HowToPrevent
0
12793689
print('ID') for number in range(1000): print("#" + format(number, '0>4'))
2.96875
3
scrap_phat.py
Astroua/LocalGroup-VLA
1
12793690
# Scrap all the brick mosaics for PHAT import os from os.path import join as osjoin output = "/home/ekoch/bigdata/ekoch/M31/PHAT/" baseurl = "https://archive.stsci.edu/pub/hlsp/phat/" # This is easier than webscraping right now. brick_dict = {1: 12058, 2: 12073, 3: 12109, 4: 12107, 5: 12074, 6: 12105, 7: 12113, 8: 12075, 9: 12057, 10: 12111, 11: 12115, 12: 12071, 13: 12114, 14: 12072, 15: 12056, 16: 12106, 17: 12059, 18: 12108, 19: 12110, 20: 12112, 21: 12055, 22: 12076, 23: 12070} for i in range(1, 24): if i < 10: brickurl = f"{baseurl}/brick0{i}" acs_475 = f"hlsp_phat_hst_acs-wfc_{brick_dict[i]}-m31-b0{i}_f475w_v1_drz.fits" acs_814 = f"hlsp_phat_hst_acs-wfc_{brick_dict[i]}-m31-b0{i}_f814w_v1_drz.fits" wfcir_110 = f"hlsp_phat_hst_wfc3-ir_{brick_dict[i]}-m31-b0{i}_f110w_v1_drz.fits" wfcir_160 = f"hlsp_phat_hst_wfc3-ir_{brick_dict[i]}-m31-b0{i}_f160w_v1_drz.fits" wfcuv_275 = f"hlsp_phat_hst_wfc3-uvis_{brick_dict[i]}-m31-b0{i}_f275w_v1_drz.fits" wfcuv_336 = f"hlsp_phat_hst_wfc3-uvis_{brick_dict[i]}-m31-b0{i}_f336w_v1_drz.fits" else: brickurl = f"{baseurl}/brick{i}" acs_475 = f"hlsp_phat_hst_acs-wfc_{brick_dict[i]}-m31-b{i}_f475w_v1_drz.fits" acs_814 = f"hlsp_phat_hst_acs-wfc_{brick_dict[i]}-m31-b{i}_f814w_v1_drz.fits" wfcir_110 = f"hlsp_phat_hst_wfc3-ir_{brick_dict[i]}-m31-b{i}_f110w_v1_drz.fits" wfcir_160 = f"hlsp_phat_hst_wfc3-ir_{brick_dict[i]}-m31-b{i}_f160w_v1_drz.fits" wfcuv_275 = f"hlsp_phat_hst_wfc3-uvis_{brick_dict[i]}-m31-b{i}_f275w_v1_drz.fits" wfcuv_336 = f"hlsp_phat_hst_wfc3-uvis_{brick_dict[i]}-m31-b{i}_f336w_v1_drz.fits" print(f"Downloading brick {i}") brick_path = osjoin(output, f"brick{i}") if not os.path.exists(brick_path): os.mkdir(brick_path) os.chdir(brick_path) for file in [acs_475, acs_814, wfcir_110, wfcir_160, wfcuv_275, wfcuv_336]: # Check if we need to download again if os.path.exists(file): continue os.system(f"wget {osjoin(brickurl, file)}") # os.system(f"wget {osjoin(brickurl, acs_814)}") # os.system(f"wget {osjoin(brickurl, wfcir_110)}") # os.system(f"wget {osjoin(brickurl, wfcir_160)}") # os.system(f"wget {osjoin(brickurl, wfcuv_275)}") # os.system(f"wget {osjoin(brickurl, wfcuv_336)}")
2.375
2
test_pipeline/utils/visualize.py
Garvit-32/LPRNet-Pytorch
0
12793691
#Color dict import numpy as np # import wandb import cv2 import torch import os colors = { '0':[(128, 64, 128), (244, 35, 232), (0, 0, 230), (220, 190, 40), (70, 70, 70), (70, 130, 180), (0, 0, 0)], '1':[(128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140), (220, 20, 60), (255, 0, 0), (0, 0, 230), (255, 204, 54), (0, 0, 70), (220, 190, 40), (190, 153, 153), (174, 64, 67), (153, 153, 153), (70, 70, 70), (107, 142, 35), (70, 130, 180)], '2':[(128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140), (220, 20, 60), (255, 0, 0), (0, 0, 230), (119, 11, 32), (255, 204, 54), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (220, 190, 40), (102, 102, 156), (190, 153, 153), (180, 165, 180), (174, 64, 67), (220, 220, 0), (250, 170, 30), (153, 153, 153), (169, 187, 214), (70, 70, 70), (150, 100, 100), (107, 142, 35), (70, 130, 180)], '3':[(128, 64, 128), (250, 170, 160), (81, 0, 81), (244, 35, 232), (230, 150, 140), (152, 251, 152), (220, 20, 60), (246, 198, 145), (255, 0, 0), (0, 0, 230), (119, 11, 32), (255, 204, 54), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (136, 143, 153), (220, 190, 40), (102, 102, 156), (190, 153, 153), (180, 165, 180), (174, 64, 67), (220, 220, 0), (250, 170, 30), (153, 153, 153), (153, 153, 153), (169, 187, 214), (70, 70, 70), (150, 100, 100), (150, 120, 90), (107, 142, 35), (70, 130, 180), (169, 187, 214), (0, 0, 142)] } def visualize(mask,n_classes,ignore_label,gt = None): if(n_classes<len(colors['0'])): id = 0 elif(n_classes<len(colors['1'])): id = 1 elif(n_classes<len(colors['2'])): id = 2 else: id = 3 out_mask = np.zeros((mask.shape[0],mask.shape[1],3)) for i in range(n_classes): out_mask[mask == i] = colors[str(id)][i] if(gt is not None): out_mask[gt == ignore_label] = (255,255,255) out_mask[np.where((out_mask == [0, 0, 0]).all(axis=2))] = (255,255,255) return out_mask def error_map(pred,gt,cfg): canvas = pred.copy() canvas[canvas == gt] = 255 canvas[gt == cfg.Loss.ignore_label] = 255 return canvas # def segmentation_validation_visualization(epoch,sample,pred,batch_size,class_labels,wandb_image,cfg): # os.makedirs(os.path.join(cfg.train.output_dir,'Visualization',str(epoch)),exist_ok = True) # input = sample['image'].permute(0,2,3,1).detach().cpu().numpy() # label = sample['label'].detach().cpu().numpy().astype(np.uint8) # pred = torch.argmax(pred[0],dim = 1).detach().cpu().numpy().astype(np.uint8) # for i in range(batch_size): # errormap = error_map(pred[i],label[i],cfg) # wandb_image.append(wandb.Image(cv2.resize(cv2.cvtColor(input[i], cv2.COLOR_BGR2RGB),(cfg.dataset.width//4,cfg.dataset.height//4)), masks={ # "predictions" : { # "mask_data" : cv2.resize(pred[i],(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # }, # "ground_truth" : { # "mask_data" : cv2.resize(label[i],(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # } # , # "error_map" : { # "mask_data" : cv2.resize(errormap,(cfg.dataset.width//4,cfg.dataset.height//4)), # "class_labels" : class_labels # } # })) # if(cfg.valid.write): # prediction = visualize(pred[i],cfg.model.n_classes,cfg.Loss.ignore_label,gt = label[i]) # mask = visualize(label[i],cfg.model.n_classes,cfg.Loss.ignore_label,gt = label[i]) # out = np.concatenate([((input[i]* np.array(cfg.dataset.mean) + np.array(cfg.dataset.std))*255).astype(int),mask,prediction,visualize(errormap,cfg.model.n_classes,cfg.Loss.ignore_label,label[i])],axis = 1) # cv2.imwrite(os.path.join(cfg.train.output_dir,'Visualization',str(epoch),sample['img_name'][i]),out) # return wandb_image
2.40625
2
Sketches/RJL/bittorrent/BitTorrent/BitTorrent/LaunchPath.py
sparkslabs/kamaelia_orig
12
12793692
<reponame>sparkslabs/kamaelia_orig # The contents of this file are subject to the BitTorrent Open Source License # Version 1.1 (the License). You may not copy or use this file, in either # source code or executable form, except in compliance with the License. You # may obtain a copy of the License at http://www.bittorrent.com/license/. # # Software distributed under the License is distributed on an AS IS basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # LaunchPath -- a cross platform way to "open," "launch," or "start" # files and directories # written by <NAME> import os can_launch_files = False posix_browsers = ('gnome-open','konqueror',) #gmc, gentoo only work on dirs default_posix_browser = '' def launchpath_nt(path): os.startfile(path) def launchpath_mac(path): # BUG: this is untested os.spawnlp(os.P_NOWAIT, 'open', 'open', path) def launchpath_posix(path): if default_posix_browser: os.spawnlp(os.P_NOWAIT, default_posix_browser, default_posix_browser, path) def launchpath(path): pass def launchdir(path): if os.path.isdir(path): launchpath(path) if os.name == 'nt': can_launch_files = True launchpath = launchpath_nt elif os.name == 'mac': can_launch_files = True launchpath = launchpath_mac elif os.name == 'posix': for b in posix_browsers: if os.system("which '%s' >/dev/null 2>&1" % b.replace("'","\\'")) == 0: can_launch_files = True default_posix_browser = b launchpath = launchpath_posix break
2.0625
2
python/mxnet/gluon/probability/transformation/domain_map.py
pioy/incubator-mxnet
211
12793693
<filename>python/mxnet/gluon/probability/transformation/domain_map.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 """Classes for registering and storing bijection/transformations from unconstrained space to a given domain. """ from numbers import Number from .transformation import ( ExpTransform, AffineTransform, SigmoidTransform, ComposeTransform) from ..distributions.constraint import (Constraint, Positive, GreaterThan, GreaterThanEq, LessThan, Interval, HalfOpenInterval) __all__ = ['domain_map', 'biject_to', 'transform_to'] class domain_map(): """ Abstract Class for registering and storing mappings from domain to bijections/transformations """ def __init__(self): # constraint -> constraint -> transformation self._storage = {} super(domain_map, self).__init__() def register(self, constraint, factory=None): """Register a bijection/transformation from unconstrained space to the domain specified by `constraint`. Parameters ---------- constraint : Type or Object A class of constraint or an object of constraint factory : callable A function that outputs a `transformation` given a `constraint`, by default None. """ # Decorator mode if factory is None: return lambda factory: self.register(constraint, factory) if isinstance(constraint, Constraint): constraint = type(constraint) if not isinstance(constraint, type) or not issubclass(constraint, Constraint): raise TypeError('Expected constraint to be either a Constraint subclass or instance, ' 'but got {}'.format(constraint)) self._storage[constraint] = factory return factory def __call__(self, constraint): try: factory = self._storage[type(constraint)] except KeyError: raise NotImplementedError( 'Cannot transform {} constraints'.format(type(constraint).__name__)) return factory(constraint) biject_to = domain_map() transform_to = domain_map() @biject_to.register(Positive) @transform_to.register(Positive) def _transform_to_positive(constraint): # Although `constraint` is not used in this factory function, # we decide to keep it for the purpose of consistency. # pylint: disable=unused-argument return ExpTransform() @biject_to.register(GreaterThan) @biject_to.register(GreaterThanEq) @transform_to.register(GreaterThan) @transform_to.register(GreaterThanEq) def _transform_to_greater_than(constraint): return ComposeTransform([ExpTransform(), AffineTransform(constraint._lower_bound, 1)]) @biject_to.register(LessThan) @transform_to.register(LessThan) def _transform_to_less_than(constraint): return ComposeTransform([ExpTransform(), AffineTransform(constraint._upper_bound, -1)]) @biject_to.register(Interval) @biject_to.register(HalfOpenInterval) @transform_to.register(Interval) @transform_to.register(HalfOpenInterval) def _transform_to_interval(constraint): # Handle the special case of the unit interval. lower_is_0 = isinstance(constraint._lower_bound, Number) and constraint._lower_bound == 0 upper_is_1 = isinstance(constraint._upper_bound, Number) and constraint._upper_bound == 1 if lower_is_0 and upper_is_1: return SigmoidTransform() loc = constraint._lower_bound scale = constraint._upper_bound - constraint._lower_bound return ComposeTransform([SigmoidTransform(), AffineTransform(loc, scale)])
1.96875
2
chains/front/network.py
thirionjl/chains
2
12793694
<filename>chains/front/network.py import abc from ..core import node_factory as f, initializers as init from ..core.graph import Node, Graph from ..core.static_shape import Dim from ..utils import validate from ..utils.naming import NameGenerator class Network(abc.ABC): def __init__(self): self.cost_graph = None self.predict_graph = None self.inputs = None self.labels = None self.label_size = None self.cnt_classes = None def evaluate(self, x_test): self.predict_graph.placeholders = {self.inputs: x_test} return self.predict_graph.evaluate() def evaluate_cost(self, x_train, y_train): self.feed_cost_graph(x_train, y_train) return self.cost_graph.evaluate() def initialize_variables(self): self.cost_graph.initialize_variables() def feed_cost_graph(self, x_train, y_train): self.cost_graph.placeholders = {self.inputs: x_train, self.labels: y_train} class Sequence(Network): def __init__(self, cnt_features: int, layers, classifier, regularizer=None): super().__init__() self.layer_names = NameGenerator() self.cnt_features = Dim.of(cnt_features) self.cnt_samples = Dim.unknown() self.inputs = f.placeholder( shape=(self.cnt_features, self.cnt_samples)) cost_graph, predict_graph, regularizable_vars = \ self.inputs, self.inputs, [] for pos, layer in enumerate(layers): cost_graph, predict_graph, vars = layer.append(pos, self.layer_names, cost_graph, predict_graph) regularizable_vars.extend(vars) self.cnt_classes = classifier.cnt_classes self.label_size = classifier.label_size self.labels = f.placeholder( shape=(self.label_size, self.cnt_samples)) cost_graph, predict_graph = classifier.append(self.layer_names, cost_graph, predict_graph, self.labels) if regularizer is not None: cost_graph = regularizer.append(self.layer_names, cost_graph, regularizable_vars, self.inputs) self.cost_graph = Graph(cost_graph) self.predict_graph = Graph(predict_graph) class SequenceElement(abc.ABC): def __init__(self): self.layer_name = None self.var_name_generator = None def new_var_name(self, prefix): return self.var_name_generator.generate(prefix) def prepare_names(self, name_generator: NameGenerator): self.layer_name = name_generator.generate( self.__class__.__name__).lower() self.var_name_generator = NameGenerator(self.layer_name) class Layer(SequenceElement, abc.ABC): def append(self, pos: int, name_generator: NameGenerator, logits: Node, labels: Node): self.prepare_names(name_generator) return self.do_append(pos, logits, labels) @abc.abstractmethod def do_append(self, pos: int, logits: Node, labels: Node): pass class Dense(Layer): default_weight_initializer = init.HeInitializer() default_bias_initializer = init.ZeroInitializer() def __init__(self, neurons: int, weight_initializer=None, bias_initializer=None): self.neurons = neurons self.weight_initializer = self.default_weight_initializer \ if weight_initializer is None else weight_initializer self.bias_initializer = self.default_bias_initializer \ if bias_initializer is None else bias_initializer def do_append(self, pos, cost_g, predict_g): # TODO Allow different axis for the "features" and "examples" dimension cnt_features = cost_g.shape[0] w_name = self.new_var_name("W") b_name = self.new_var_name("b") w = f.var(w_name, self.weight_initializer, shape=(self.neurons, cnt_features)) b = f.var(b_name, self.bias_initializer, shape=(self.neurons, 1)) cost_fc = f.fully_connected(cost_g, w, b, first_layer=(pos == 0), name=self.layer_name) predict_fc = f.fully_connected(predict_g, w, b, first_layer=(pos == 0), name=self.layer_name + "_p") return cost_fc, predict_fc, [w] class ReLu(Layer): def do_append(self, pos, cost_graph, predict_graph): return f.relu(cost_graph, name=self.layer_name), \ f.relu(predict_graph, name=self.layer_name + "_p"), [] class LeakyReLu(Layer): def do_append(self, pos, cost_graph, predict_graph): return f.leaky_relu(cost_graph, name=self.layer_name), \ f.leaky_relu(predict_graph, name=self.layer_name + "_p"), \ [] class Dropout(Layer): def __init__(self, keep_prob=0.8): if not (0 < keep_prob <= 1): raise ValueError(f"Keep probability should be between 0 and 1") self.keep_prob = keep_prob def do_append(self, pos, cost_graph, predict_graph): return f.dropout(self.keep_prob, cost_graph, name=self.layer_name), \ predict_graph, [] class BatchNorm(Layer): default_beta_initializer = init.ZeroInitializer() default_gamma_initializer = init.OneInitializer() def __init__(self, beta_initializer=None, gamma_initializer=None): self.beta_initializer = self.default_beta_initializer \ if beta_initializer is None else beta_initializer self.gamma_initializer = self.default_gamma_initializer \ if gamma_initializer is None else gamma_initializer def do_append(self, pos, cost_graph, predict_graph): cnt_features = cost_graph.shape[0] beta_name = self.new_var_name("beta") gamma_name = self.new_var_name("gamma") beta = f.var(beta_name, self.beta_initializer, shape=(cnt_features, 1)) gamma = f.var(gamma_name, self.gamma_initializer, shape=(cnt_features, 1)) bnt = f.batch_norm_train(cost_graph, beta, gamma, name=self.layer_name) bnp = f.batch_norm_predict(bnt.op, predict_graph, beta, gamma, name=self.layer_name + "_p") return bnt, bnp, [beta, gamma] class Classifier(SequenceElement, abc.ABC): def __init__(self, label_size, cnt_classes): self.layer_name = None self.label_size = label_size self.cnt_classes = cnt_classes def append(self, name_generator, cost_graph: Node, predict_graph: Node, labels: Node): self.prepare_names(name_generator) return self.do_append(cost_graph, predict_graph, labels) @abc.abstractmethod def do_append(self, cost_graph: Node, predict_graph: Node, labels: Node): pass class SigmoidBinaryClassifier(Classifier): def __init__(self): super().__init__(label_size=1, cnt_classes=2) def do_append(self, cost_graph: Node, predict_graph: Node, labels: Node): sigmoid = f.sigmoid(predict_graph, name=self.layer_name + "_sigmoid") cross_entropy = f.sigmoid_cross_entropy(cost_graph, labels, name=self.layer_name) gt = f.is_greater_than(sigmoid, 0.5, name=self.layer_name + "_gt") return cross_entropy, gt class SoftmaxClassifier(Classifier): # TODO axis def __init__(self, classes: int): validate.is_strictly_greater_than("classes", classes, 2) super().__init__(label_size=classes, cnt_classes=classes) def do_append(self, cost_graph: Node, predict_graph: Node, labels: Node): entropy = f.softmax_cross_entropy(cost_graph, labels, name=self.layer_name) softmax = f.softmax(predict_graph, name=self.layer_name + "_softmax") argmax = f.argmax(softmax, name=self.layer_name + "_argmax") return entropy, argmax class Regularizer(SequenceElement, abc.ABC): def append(self, name_generator, cost_graph: Node, vars, inputs): self.prepare_names(name_generator) return self.do_append(cost_graph, vars, inputs) @abc.abstractmethod def do_append(self, cost_graph: Node, vars, inputs): pass class L2Regularizer(Regularizer): def __init__(self, lambd=0.8): self.lambd = lambd def do_append(self, cost_graph: Node, vars, inputs): dim = f.dim(inputs, name=self.layer_name + "_dim") reg = f.l2_norm_regularizer(self.lambd, dim, vars, name=self.layer_name) if self.lambd > 0: return cost_graph + reg else: return cost_graph
2.625
3
tests/browser/pages/external/events_registration.py
mayank-sfdc/directory-tests
4
12793695
<filename>tests/browser/pages/external/events_registration.py # -*- coding: utf-8 -*- """Event Registration Page Object.""" from selenium.webdriver.remote.webdriver import WebDriver from directory_tests_shared import URLs from directory_tests_shared.enums import PageType, Service from directory_tests_shared.utils import check_url_path_matches_template NAME = "Registration" SERVICE = Service.EVENTS TYPE = PageType.FORM URL = URLs.EVENTS_REGISTRATION.absolute_template SELECTORS = {} def should_be_here(driver: WebDriver): check_url_path_matches_template(URL, driver.current_url)
2.015625
2
server/empous/utils.py
Slruh/Empous-Control-The-World
1
12793696
<reponame>Slruh/Empous-Control-The-World #Takes in a list of games def dictify_games(games, empous_user): game_list = dict() for game in games: game_stats = dict() game_stats["id"] = game.id if game.victor == empous_user: game_stats['isVictor'] = "yes" else: game_stats['isVictor'] = "no" if game.current_player == empous_user: game_stats['isTurn'] = "yes" else: game_stats['isTurn'] = "no" game_stats['current_player'] = game.current_player.first_name #Go through the enemies to give more info players = list() for player in game.players.all(): if player != empous_user: players.append(player.first_name) game_stats['enemies'] = players game_stats['screenshot_url'] = game.screenshot_file.url game_stats['json_state'] = game.json_serialized_game game_list[game.id] = game_stats return game_list def join_with_commas_with_and(string_list): if len(string_list) == 1: return "".join(string_list) elif len(string_list) == 2: return " and ".join(string_list) else: joined_string = ", ".join(string_list[:-1]) joined_string = joined_string + ", and " + string_list[-1] return joined_string
2.96875
3
lnxproc/netsnmp.py
eccles/lnxproc
1
12793697
''' Contains the NetSnmp() class Typical contents of file /proc/net/snmp:: Ip: Forwarding DefaultTTL InReceives InHdrErrors InAddrErrors ForwDatagrams InUnknownProtos InDiscards InDelivers OutRequests OutDiscards OutNoRoutes ReasmTimeout ReasmReqds ReasmOKs ReasmFails FragOKs FragFails FragCreates Ip: 1 64 2354322 0 0 0 0 0 2282006 2066446 0 0 0 0 0 0 0 0 0 Icmp: InMsgs InErrors InDestUnreachs InTimeExcds InParmProbs InSrcQuenchs InRedirects InEchos InEchoReps InTimestamps InTimestampReps InAddrMasks InAddrMaskReps OutMsgs OutErrors OutDestUnreachs OutTimeExcds OutParmProbs OutSrcQuenchs OutRedirects OutEchos OutEchoReps OutTimestamps OutTimestampReps OutAddrMasks OutAddrMaskReps Icmp: 172 0 91 0 0 0 0 81 0 0 0 0 0 168 0 87 0 0 0 0 0 81 0 0 0 0 IcmpMsg: InType3 InType8 OutType0 OutType3 IcmpMsg: 91 81 81 87 Tcp: RtoAlgorithm RtoMin RtoMax MaxConn ActiveOpens PassiveOpens AttemptFails EstabResets CurrEstab InSegs OutSegs RetransSegs InErrs OutRsts Tcp: 1 200 120000 -1 70054 4198 337 2847 43 1880045 1741596 7213 0 3044 Udp: InDatagrams NoPorts InErrors OutDatagrams RcvbufErrors SndbufErrors Udp: 344291 8 376 317708 0 0 UdpLite: InDatagrams NoPorts InErrors OutDatagrams RcvbufErrors SndbufErrors UdpLite: 0 0 0 0 0 0 ''' from logging import getLogger from os import path as ospath from .readfile import ReadFile LOGGER = getLogger(__name__) class NetSnmp(ReadFile): ''' NetSnmp handling ''' FILENAME = ospath.join('proc', 'net', 'snmp') KEY = 'netsnmp' def normalize(self): ''' Translates data into dictionary The net/snmp file is a series of records keyed on subcategories ''' LOGGER.debug("Normalize") lines = self.lines ret = {} fkey = '' fvals = [] for i, line in enumerate(lines): top, tail = line.split(':') key = top.lstrip() vals = tail.lstrip().split() if i % 2: if fkey == key: ret[key] = dict( zip( fvals, [int(val) for val in vals] ) ) else: fkey = key fvals = vals return ret
1.773438
2
models/cae.py
TimCJanke/ImplicitGenerativeCopulas
0
12793698
""" @author: <NAME>, Energy Information Networks & Systems @ TU Darmstadt """ import numpy as np import tensorflow as tf from models.igc import ImplicitGenerativeCopula, GMMNCopula from models.utils import cdf_interpolator import pyvinecopulib as pv from models import mv_copulas import matplotlib.pyplot as plt class CopulaAutoEncoder(object): def __init__(self, x, ae_model): if isinstance(ae_model, str): ae_model = tf.keras.models.load_model(ae_model) self.encoder_model = ae_model.encoder self.decoder_model = ae_model.decoder self.z = self._encode(x) self.margins = self._fit_margins(self.z) self.u = self._cdf(self.z) def _encode(self, x): # encode images to latent space return self.encoder_model(x).numpy() def _decode(self, z): # decode latent space samples to images return self.decoder_model(z).numpy() def _cdf(self, z): # get pseudo obs u = np.zeros_like(z) for i in range(u.shape[1]): u[:,i] = self.margins[i].cdf(z[:,i]) return u def _ppf(self, u): # inverse marginal cdf z = np.zeros_like(u) for i in range(z.shape[1]): z[:,i] = self.margins[i].ppf(u[:,i]) return z def _fit_margins(self, z): # get the marginal distributions via ecdf interpolation margins = [] for i in range(z.shape[1]): margins.append(cdf_interpolator(z[:,i], kind="linear", x_min=np.min(z[:,i])-np.diff(np.sort(z[:,i])[0:2])[0], x_max=np.max(z[:,i])+np.diff(np.sort(z[:,i])[-2:])[0])) return margins def _sample_u(self, n_samples=1): # sample from copula return self.copula.simulate(n_samples) def _sample_z(self, n_samples=1, u=None): # sample from latent space if u is None: return self._ppf(self._sample_u(n_samples)) else: return self._ppf(u) def sample_images(self, n_samples=1, z=None): # sample an image if z is None: return self._decode(self._sample_z(n_samples)) else: return self._decode(z) def show_images(self, n=5, imgs=None, cmap="gray", title=None): if imgs is None: imgs = self.sample_images(n) plt.figure(figsize=(16, 3)) for i in range(n): ax = plt.subplot(1, n, i+1) plt.imshow(np.squeeze(imgs[i]*255), vmin=0, vmax=255, cmap=cmap) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.suptitle(title) plt.tight_layout() class IGCAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Implicit Generative Copula """ def fit(self, epochs=100, batch_size=100, n_samples_train=200, regen_noise=1000000, validation_split=0.0, validation_data=None): if validation_data is not None: u_test = self._cdf((self._encode(validation_data))) else: u_test = None #self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2, n_layers=3, n_neurons=200) hist = self.copula.fit(self.u, epochs=epochs, batch_size=batch_size, validation_data=u_test, regen_noise=regen_noise, validation_split=0.0) return hist def save_copula_model(self, path): self.copula.save_model(path) def load_copula_model(self, path, n_samples_train=200): self.copula = ImplicitGenerativeCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula.load_model(path) print("Loaded saved copula model.") class GMMNCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with GMMN Copula """ def fit(self, epochs=100, batch_size=100, n_samples_train=200, regen_noise=10000000, validation_split=0.0, validation_data=None): if validation_data is not None: u_test = self._cdf((self._encode(validation_data))) else: u_test = None #self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2, n_layers=3, n_neurons=200) hist = self.copula.fit(self.u, epochs=epochs, batch_size=batch_size, validation_data=u_test, regen_noise=regen_noise, validation_split=0.0) return hist def save_copula_model(self, path): self.copula.save_model(path) def load_copula_model(self, path, n_samples_train=200): self.copula = GMMNCopula(dim_out = self.z.shape[1], n_samples_train=n_samples_train, dim_latent=self.z.shape[1]*2) self.copula.load_model(path) print("Loaded saved copula model.") class VineCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Vine Copula """ def fit(self, families="nonparametric", show_trace=False, trunc_lvl=18446744073709551615): if families == "nonparametric": controls = pv.FitControlsVinecop(family_set=[pv.BicopFamily.tll], trunc_lvl=trunc_lvl, show_trace=show_trace) elif families == "parametric": controls = pv.FitControlsVinecop(family_set=[pv.BicopFamily.indep, pv.BicopFamily.gaussian, pv.BicopFamily.student, pv.BicopFamily.clayton, pv.BicopFamily.gumbel, pv.BicopFamily.frank, pv.BicopFamily.joe, pv.BicopFamily.bb1, pv.BicopFamily.bb6, pv.BicopFamily.bb7, pv.BicopFamily.bb8], trunc_lvl=trunc_lvl, show_trace=show_trace) else: controls = pv.FitControlsVinecop(trunc_lvl=trunc_lvl, show_trace=show_trace) self.copula = pv.Vinecop(data=self.u, controls=controls) def save_model(self, path): self.copula.to_json(path) print(f"Saved vine copula model to {path}.") def load_model(self, path): self.copula = pv.Vinecop(filename=path) print("Loaded vine copula model.") class GaussianCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Gaussian Copula """ def fit(self): self.copula = mv_copulas.GaussianCopula() self.copula.fit(self.u) class IndependenceCopulaCopulaAutoEncoder(CopulaAutoEncoder): """ Copula Auto Encoder with Independence Copula """ def fit(self): pass def _sample_u(self, n_samples): return np.random.uniform(0.0, 1.0, size=(n_samples, self.u.shape[1])) class VariationalAutoEncoder(object): def __init__(self, decoder_model="models/autoencoder/VAE_decoder_fashion_mnist_100epochs", latent_dim=25): if isinstance(decoder_model, str): self.decoder_model = tf.keras.models.load_model(decoder_model) else: self.decoder_model = decoder_model self.decoder_model.compile() self.latent_dim = 25 def _sample_z(self, n_samples): # sample from latent space return np.random.normal(loc=0.0, scale=1.0, size=(n_samples, self.latent_dim)) def _decode(self,z): return self.decoder_model.predict(z) def fit(self): pass def sample_images(self, n_samples): # sample an image return self._decode(self._sample_z(n_samples)) def show_images(self, n=5, imgs=None, cmap="gray", title=None): if imgs is None: imgs = self.sample_images(n) plt.figure(figsize=(16, 3)) for i in range(n): ax = plt.subplot(1, n, i+1) plt.imshow(np.squeeze(imgs[i]*255), vmin=0, vmax=255, cmap=cmap) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.suptitle(title) plt.tight_layout()
2.34375
2
Examples/Actor.py
VincentsCode/Smart-Room-Projekt
0
12793699
import socket import Constants # Create a TCP/IP socket socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket.bind(('', 1339)) socket.listen(1) while True: connection, client_address = socket.accept() print('connection from', client_address) while True: # noinspection PyBroadException try: data = connection.recv(16) msg = str(data, "utf8") msg = msg.replace("#", "") print(msg) connection.sendall(bytes(Constants.ANSWER_POSITIVE, "utf8")) except: break
2.96875
3
pytools/lib/readqc_report.py
virtualparadox/bbmap
134
12793700
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Readqc report: record stat key-value in readqc-stats.txt ### JGI_Analysis_Utility_Illumina::illumina_read_level_report Created: Jul 24 2013 sulsj (<EMAIL>) """ import os import sys ## custom libs in "../lib/" srcDir = os.path.dirname(__file__) sys.path.append(os.path.join(srcDir, 'tools')) ## ./tools sys.path.append(os.path.join(srcDir, '../lib')) ## rqc-pipeline/lib sys.path.append(os.path.join(srcDir, '../tools')) ## rqc-pipeline/tools from readqc_constants import RQCReadQcConfig, ReadqcStats from rqc_constants import RQCExitCodes from os_utility import run_sh_command from common import append_rqc_stats, append_rqc_file statsFile = RQCReadQcConfig.CFG["stats_file"] filesFile = RQCReadQcConfig.CFG["files_file"] """ Title : read_megablast_hits Function : This function generates tophit list of megablast against different databases. Usage : read_megablast_hits(db_name, log) Args : blast db name or full path Returns : SUCCESS FAILURE Comments : """ def read_megablast_hits(db, log): currentDir = RQCReadQcConfig.CFG["output_path"] megablastDir = "megablast" megablastPath = os.path.join(currentDir, megablastDir) statsFile = RQCReadQcConfig.CFG["stats_file"] filesFile = RQCReadQcConfig.CFG["files_file"] ## ## Process blast output files ## matchings = 0 hitCount = 0 parsedFile = os.path.join(megablastPath, "megablast.*.%s*.parsed" % (db)) matchings, _, exitCode = run_sh_command("grep -v '^#' %s 2>/dev/null | wc -l " % (parsedFile), True, log) if exitCode == 0: ## if parsed file found. t = matchings.split() if len(t) == 1 and t[0].isdigit(): hitCount = int(t[0]) append_rqc_stats(statsFile, ReadqcStats.ILLUMINA_READ_MATCHING_HITS + " " + db, hitCount, log) ## ## add .parsed file ## parsedFileFound, _, exitCode = run_sh_command("ls %s" % (parsedFile), True, log) if parsedFileFound: parsedFileFound = parsedFileFound.strip() append_rqc_file(filesFile, ReadqcStats.ILLUMINA_READ_PARSED_FILE + " " + db, os.path.join(megablastPath, parsedFileFound), log) else: log.error("- Failed to add megablast parsed file of %s." % (db)) return RQCExitCodes.JGI_FAILURE ## ## wc the top hits ## topHit = 0 tophitFile = os.path.join(megablastPath, "megablast.*.%s*.parsed.tophit" % (db)) tophits, _, exitCode = run_sh_command("grep -v '^#' %s 2>/dev/null | wc -l " % (tophitFile), True, log) t = tophits.split() if len(t) == 1 and t[0].isdigit(): topHit = int(t[0]) append_rqc_stats(statsFile, ReadqcStats.ILLUMINA_READ_TOP_HITS + " " + db, topHit, log) ## ## wc the taxonomic species ## spe = 0 taxlistFile = os.path.join(megablastPath, "megablast.*.%s*.parsed.taxlist" % (db)) species, _, exitCode = run_sh_command("grep -v '^#' %s 2>/dev/null | wc -l " % (taxlistFile), True, log) t = species.split() if len(t) == 1 and t[0].isdigit(): spe = int(t[0]) append_rqc_stats(statsFile, ReadqcStats.ILLUMINA_READ_TAX_SPECIES + " " + db, spe, log) ## ## wc the top 100 hit ## top100hits = 0 top100hitFile = os.path.join(megablastPath, "megablast.*.%s*.parsed.top100hit" % (db)) species, _, exitCode = run_sh_command("grep -v '^#' %s 2>/dev/null | wc -l " % (top100hitFile), True, log) t = species.split() if len(t) == 1 and t[0].isdigit(): top100hits = int(t[0]) append_rqc_stats(statsFile, ReadqcStats.ILLUMINA_READ_TOP_100HITS + " " + db, top100hits, log) ## ## Find and add taxlist file ## taxListFound, _, exitCode = run_sh_command("ls %s" % (taxlistFile), True, log) taxListFound = taxListFound.strip() if taxListFound: append_rqc_file(filesFile, ReadqcStats.ILLUMINA_READ_TAXLIST_FILE + " " + db, os.path.join(megablastPath, taxListFound), log) else: log.error("- Failed to add megablast taxlist file of %s." % (db)) return RQCExitCodes.JGI_FAILURE ## ## Find and add tophit file ## tophitFound, _, exitCode = run_sh_command("ls %s" % (tophitFile), True, log) tophitFound = tophitFound.strip() if tophitFound: append_rqc_file(filesFile, ReadqcStats.ILLUMINA_READ_TOPHIT_FILE + " " + db, os.path.join(megablastPath, tophitFound), log) else: log.error("- Failed to add megablast tophit file of %s." % (db)) return RQCExitCodes.JGI_FAILURE ## ## Find and add top100hit file ## top100hitFound, _, exitCode = run_sh_command("ls %s" % (top100hitFile), True, log) top100hitFound = top100hitFound.strip() if top100hitFound: append_rqc_file(filesFile, ReadqcStats.ILLUMINA_READ_TOP100HIT_FILE + " " + db, os.path.join(megablastPath, top100hitFound), log) else: log.error("- Failed to add megablast top100hit file of %s." % (db)) return RQCExitCodes.JGI_FAILURE else: log.info("- No blast hits for %s." % (db)) return RQCExitCodes.JGI_SUCCESS """ Title : read_level_qual_stats Function : Generate qual scores and plots of read level 20mer sampling Usage : read_level_mer_sampling($analysis, $summary_file_dir) Args : 1) A reference to an JGI_Analysis object 2) current working folder wkdir/uniqueness Returns : JGI_SUCCESS: Illumina read level report could be successfully generated. JGI_FAILURE: Illumina read level report could not be generated. Comments : This function is intended to be called at the very end of the illumina read level data processing script. """ def read_level_mer_sampling(dataToRecordDict, dataFile, log): retCode = RQCExitCodes.JGI_FAILURE ## Old data #nSeq nStartUniMer fracStartUniMer nRandUniMer fracRandUniMer ## 0 1 2 3 4 ##25000 2500 0.1 9704 0.3882 ## New data #count first rand first_cnt rand_cnt # 0 1 2 3 4 #25000 66.400 76.088 16600 19022 #50000 52.148 59.480 13037 14870 #75000 46.592 53.444 11648 13361 #100000 43.072 49.184 10768 12296 ... if os.path.isfile(dataFile): with open(dataFile, "r") as merFH: lines = merFH.readlines() ## last line t = lines[-1].split('\t') # breaks 2016-09-07 #assert len(t) == 5 totalMers = int(t[0]) ## new by bbcountunique uniqStartMerPer = float("%.2f" % (float(t[1]))) uniqRandtMerPer = float("%.2f" % (float(t[2]))) dataToRecordDict[ReadqcStats.ILLUMINA_READ_20MER_SAMPLE_SIZE] = totalMers dataToRecordDict[ReadqcStats.ILLUMINA_READ_20MER_PERCENTAGE_STARTING_MERS] = uniqStartMerPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_20MER_PERCENTAGE_RANDOM_MERS] = uniqRandtMerPer retCode = RQCExitCodes.JGI_SUCCESS else: log.error("- qhist file not found: %s" % (dataFile)) return retCode """ Title : base_level_qual_stats Function : Generate qual scores and plots of read level QC Usage : base_level_qual_stats($analysis, $) Args : 1) A reference to an JGI_Analysis object 2) current working folder wkdir/qual Returns : JGI_SUCCESS: Illumina read level report could be successfully generated. JGI_FAILURE: Illumina read level report could not be generated. Comments : This function is intended to be called at the very end of the illumina base level data processing script. """ def base_level_qual_stats(dataToRecordDict, reformatObqhistFile, log): cummlatPer = 0 cummlatBase = 0 statsPerc = {30:0, 25:0, 20:0, 15:0, 10:0, 5:0} statsBase = {30:0, 25:0, 20:0, 15:0, 10:0, 5:0} Q30_seen = 0 Q25_seen = 0 Q20_seen = 0 Q15_seen = 0 Q10_seen = 0 Q5_seen = 0 ## New format ##Median 38 ##Mean 37.061 ##STDev 4.631 ##Mean_30 37.823 ##STDev_30 1.699 ##Quality bases fraction #0 159 0.00008 #1 0 0.00000 #2 12175 0.00593 #3 0 0.00000 #4 0 0.00000 #5 0 0.00000 #6 0 0.00000 allLines = open(reformatObqhistFile).readlines() for l in allLines[::-1]: l = l.strip() ## ## obqhist file format example ## # #Median 36 # #Mean 33.298 # #STDev 5.890 # #Mean_30 35.303 # #STDev_30 1.517 # #Quality bases fraction # 0 77098 0.00043 # 1 0 0.00000 # 2 0 0.00000 # 3 0 0.00000 # 4 0 0.00000 # 5 0 0.00000 # 6 0 0.00000 if len(l) > 0: if l.startswith("#"): if l.startswith("#Mean_30"): dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q30_SCORE_MEAN] = l.split('\t')[1] elif l.startswith("#STDev_30"): dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q30_SCORE_STD] = l.split('\t')[1] elif l.startswith("#Mean"): dataToRecordDict[ReadqcStats.ILLUMINA_BASE_OVERALL_BASES_Q_SCORE_MEAN] = l.split('\t')[1] elif l.startswith("#STDev"): dataToRecordDict[ReadqcStats.ILLUMINA_BASE_OVERALL_BASES_Q_SCORE_STD] = l.split('\t')[1] continue qavg = None nbase = None percent = None t = l.split() try: qavg = int(t[0]) nbase = int(t[1]) percent = float(t[2]) except IndexError: log.warn("parse error in base_level_qual_stats: %s %s %s %s" % (l, qavg, nbase, percent)) continue log.debug("base_level_qual_stats(): qavg and nbase and percent: %s %s %s" % (qavg, nbase, percent)) cummlatPer += percent * 100.0 cummlatPer = float("%.f" % (cummlatPer)) if cummlatPer > 100: cummlatPer = 100.0 ## RQC-621 cummlatBase += nbase if qavg == 30: Q30_seen = 1 statsPerc[30] = cummlatPer statsBase[30] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q30] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C30] = cummlatBase elif qavg == 25: Q25_seen = 1 statsPerc[25] = cummlatPer statsBase[25] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q25] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C25] = cummlatBase elif qavg == 20: Q20_seen = 1 statsPerc[20] = cummlatPer statsBase[20] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q20] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C20] = cummlatBase elif qavg == 15: Q15_seen = 1 statsPerc[15] = cummlatPer statsBase[15] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q15] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C15] = cummlatBase elif qavg == 10: Q10_seen = 1 statsPerc[10] = cummlatPer statsBase[10] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q10] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C10] = cummlatBase elif qavg == 5: Q5_seen = 1 statsPerc[5] = cummlatPer statsBase[5] = cummlatBase dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q5] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C5] = cummlatBase ## Double check that no value is missing. if Q25_seen == 0 and Q30_seen != 0: Q25_seen = 1 statsPerc[25] = statsPerc[30] statsBase[25] = statsBase[30] dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q25] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C25] = cummlatBase if Q20_seen == 0 and Q25_seen != 0: Q20_seen = 1 statsPerc[20] = statsPerc[25] statsBase[20] = statsBase[25] dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q20] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C20] = cummlatBase if Q15_seen == 0 and Q20_seen != 0: Q15_seen = 1 statsPerc[15] = statsPerc[20] statsBase[15] = statsBase[20] dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q15] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C15] = cummlatBase if Q10_seen == 0 and Q15_seen != 0: Q10_seen = 1 statsPerc[10] = statsPerc[15] statsBase[10] = statsBase[15] dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q10] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C10] = cummlatBase if Q5_seen == 0 and Q10_seen != 0: Q5_seen = 1 statsPerc[5] = statsPerc[10] statsBase[5] = statsBase[10] dataToRecordDict[ReadqcStats.ILLUMINA_BASE_Q5] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_BASE_C5] = cummlatBase if Q30_seen == 0: log.error("Q30 is 0. Base quality values are ZERO.") log.debug("Q and C values: %s" % (dataToRecordDict)) return RQCExitCodes.JGI_SUCCESS """ Title : q20_score Function : this method returns Q20 using a qrpt file as input Usage : JGI_QC_Utility::qc20_score($qrpt) Args : $_[0] : qrpt file. Returns : a number of Q20 score Comments : """ # def q20_score(qrpt, log): # log.debug("qrpt file %s" % (qrpt)) # # q20 = None # num = 0 # # if os.path.isfile(qrpt): # with open(qrpt, "r") as qrptFH: # for l in qrptFH: # num += 1 # # if num == 1: # continue # # ############## # ## Old format # ## READ1.qrpt # ## column count min max sum mean Q1 med Q3 IQR lW rW A_Count C_Count G_Count T_Count N_Count Max_count # ## 1 378701 2 34 12447306 32.87 31 34 34 3 27 34 108573 83917 81999 104127 85 378701 # ## 2 378701 2 34 12515957 33.05 33 34 34 1 32 34 112178 83555 84449 98519 0 378701 # ## 3 378701 2 34 12519460 33.06 33 34 34 1 32 34 104668 72341 80992 120700 0 378701 # ## 4 378701 2 37 13807944 36.46 37 37 37 0 37 37 96935 95322 83958 102440 46 378701 # ## 5 378701 2 37 13790443 36.42 37 37 37 0 37 37 114586 68297 78020 117740 58 378701 # ## # ## or # ## # ## READ2.qrpt # ## column count min max sum mean Q1 med Q3 IQR lW rW A_Count C_Count G_Count T_Count N_Count Max_count # ## 1 378701 2 34 8875097 23.44 25 26 28 3 21 32 106904 84046 81795 105956 0 378701 # ## 2 378701 2 34 6543224 17.28 15 16 26 11 2 34 107573 77148 97953 88998 7029 378701 # ## 3 378701 2 34 7131741 18.83 16 16 26 10 2 34 96452 83003 107891 91355 0 378701 # ## 4 378701 2 37 9686653 25.58 19 32 33 14 2 37 97835 78304 87944 114618 0 378701 # ## 5 378701 2 37 10208226 26.96 25 33 35 10 10 37 98021 90611 89040 101029 0 378701 # # pos = None # mean = None # t = l.split("\t") # assert len(t) > 6 # pos = int(t[0]) # mean = float(t[5]) # # if mean and pos: # if mean < 20: # return pos - 1 # else: # q20 = pos # # else: # log.error("- qhist file not found: %s" % (qrpt)) # return None # # # return q20 def q20_score_new(bqHist, readNum, log): log.debug("q20_score_new(): bqHist file = %s" % (bqHist)) q20 = None if os.path.isfile(bqHist): with open(bqHist, "r") as qrptFH: for l in qrptFH: if l.startswith('#'): continue ## New data # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ##BaseNum count_1 min_1 max_1 mean_1 Q1_1 med_1 Q3_1 LW_1 RW_1 count_2 min_2 max_2 mean_2 Q1_2 med_2 Q3_2 LW_2 RW_2 # 0 6900 0 36 33.48 33 34 34 29 36 6900 0 36 33.48 33 34 34 29 36 pos = None mean = None t = l.split("\t") pos = int(t[0]) + 1 if readNum == 1: mean = float(t[4]) else: mean = float(t[13]) if mean and pos: if mean < 20: return pos - 1 else: q20 = pos else: log.error("- bqHist file not found: %s" % (bqHist)) return None return q20 """ Title : read_level_qual_stats Function : Generate qual scores and plots of read level QC Usage : read_level_qual_stats($analysis, $) Args : 1) A reference to an JGI_Analysis object 2) current working folder wkdir/qual Returns : JGI_SUCCESS: Illumina read level report could be successfully generated. JGI_FAILURE: Illumina read level report could not be generated. Comments : This function is intended to be called at the very end of the illumina read level data processing script. """ def read_level_qual_stats(dataToRecordDict, qhistTxtFullPath, log): retCode = RQCExitCodes.JGI_FAILURE cummlatPer = 0.0 Q30_seen = 0 Q25_seen = 0 Q20_seen = 0 Q15_seen = 0 Q10_seen = 0 Q5_seen = 0 if os.path.isfile(qhistTxtFullPath): stats = {30:0, 25:0, 20:0, 15:0, 10:0, 5:0} allLines = open(qhistTxtFullPath).readlines() for l in allLines[::-1]: if not l: break if l.startswith('#'): continue t = l.split() assert len(t) == 3 qavg = int(t[0]) percent = float(t[2]) * 100.0 ## 20140826 Changed for bbtools cummlatPer = cummlatPer + percent cummlatPer = float("%.2f" % cummlatPer) if qavg <= 30 and qavg > 25 and Q30_seen == 0: Q30_seen = 1 stats[30] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q30] = cummlatPer elif qavg <= 25 and qavg > 20 and Q25_seen == 0: Q25_seen = 1 stats[25] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q25] = cummlatPer elif qavg <= 20 and qavg > 15 and Q20_seen == 0: Q20_seen = 1 stats[20] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q20] = cummlatPer elif qavg <= 15 and qavg > 10 and Q15_seen == 0: Q15_seen = 1 stats[15] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q15] = cummlatPer elif qavg <= 10 and qavg > 5 and Q10_seen == 0: Q10_seen = 1 stats[10] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q10] = cummlatPer elif qavg <= 5 and Q5_seen == 0: Q5_seen = 1 stats[5] = cummlatPer dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q5] = cummlatPer ### Double check that no value is missing. if Q25_seen == 0 and Q30_seen != 0: Q25_seen = 1 stats[25] = stats[30] dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q25] = cummlatPer if Q20_seen == 0 and Q25_seen != 0: Q20_seen = 1 stats[20] = stats[25] dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q20] = cummlatPer if Q15_seen == 0 and Q20_seen != 0: Q15_seen = 1 stats[15] = stats[20] dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q15] = cummlatPer if Q10_seen == 0 and Q15_seen != 0: Q10_seen = 1 stats[10] = stats[15] dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q10] = cummlatPer if Q5_seen == 0 and Q10_seen != 0: Q5_seen = 1 stats[5] = stats[10] dataToRecordDict[ReadqcStats.ILLUMINA_READ_Q5] = cummlatPer if Q30_seen == 0: log.error("Q30 is 0 . Read quality values are ZERO.") log.debug("Q30 %s, Q25 %s, Q20 %s, Q15 %s, Q10 %s, Q5 %s" % \ (stats[30], stats[25], stats[20], stats[15], stats[10], stats[5])) retCode = RQCExitCodes.JGI_SUCCESS else: log.error("- qhist file not found: %s" % (qhistTxtFullPath)) return retCode """ Title : read_gc_mean Function : This function generates average GC content % and its standard deviation and put them into database. Usage : read_gc_mean($analysis) Args : 1) A reference to an JGI_Analysis object Returns : JGI_SUCCESS: JGI_FAILURE: Comments : """ def read_gc_mean(histFile, log): mean = 0.0 stdev = 0.0 retCode = RQCExitCodes.JGI_FAILURE if os.path.isfile(histFile): with open(histFile, "r") as histFH: line = histFH.readline() ## we only need the first line # Ex) #Found 1086 total values totalling 420.3971. <0.387106 +/- 0.112691> if len(line) == 0 or not line.startswith("#Found"): log.error("- GC content hist text file does not contains right results: %s, %s" % (histFile, line)) retCode = RQCExitCodes.JGI_FAILURE else: toks = line.split() assert len(toks) == 9 mean = float(toks[6][1:]) * 100.0 stdev = float(toks[8][:-1]) * 100.0 log.debug("mean, stdev = %.2f, %.2f" % (mean, stdev)) retCode = RQCExitCodes.JGI_SUCCESS else: log.error("- gc hist file not found: %s" % (histFile)) return retCode, mean, stdev if __name__ == "__main__": exit(0) ## EOF
1.96875
2
deathgod/directions.py
wmakley/deathgod
0
12793701
"""Constants indicating compass directions used throughout deathgod.""" (NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, NORTHWEST) = list(range(8))
1.710938
2
twitter_crawler/got/manager/TweetGenerator.py
AlexHtZhang/A-billion-dollar-deal
0
12793702
import json,sys,cookielib from pyquery import PyQuery from .. import models from . import TweetCriteria from . import TweetHelper class TweetGenerator(object): def __init__(self, noTweets = sys.maxint, tweetCriteria = TweetCriteria()): assert isinstance(tweetCriteria, dict) self.noTweets = noTweets self.tweetCriteria = tweetCriteria self.tweetIter = getTweetsGen(self.tweetCriteria, self.noTweets) def __iter__(self): return self.tweetIter def __next__(self): return self.tweetIter.next() @staticmethod def getTweets(tweetCriteria, noTweets, receiveBuffer=None, bufferLength=100, proxy=None): ''' param tweetCriteria: input type tweetCriteria: TweetCriteria param noTweets: input type noTweets: int yields tweets that satisfy the criteria ''' assert isinstance(noTweets, int) assert isinstance(tweetCriteria, TweetCriteria) refreshCursor = '' results = [] resultsAux = [] cookieJar = cookielib.CookieJar() if hasattr(tweetCriteria, 'username') and (tweetCriteria.username.startswith("\'") or tweetCriteria.username.startswith("\"")) and (tweetCriteria.username.endswith("\'") or tweetCriteria.username.endswith("\"")): tweetCriteria.username = tweetCriteria.username[1:-1] active = True while active: json = TweetHelper.getJsonResponse(tweetCriteria, refreshCursor, cookieJar, proxy) if len(json['items_html'].strip()) == 0: break refreshCursor = json['min_position'] scrapedTweets = PyQuery(json['items_html']) # Remove incomplete tweets withheld by Twitter Guidelines scrapedTweets.remove('div.withheld-tweet') tweets = scrapedTweets('div.js-stream-tweet') if len(tweets) == 0: break while len(results) >= noTweets: tmp = results[:noTweets] results = results[noTweets:] tweetCriteria.maxTweets = tweetCriteria.maxTweets - noTweets yield tmp for tweetHTML in tweets: tweet = TweetHelper().parseTweet(tweetHTML) results.append(tweet) resultsAux.append(tweet) if receiveBuffer and len(resultsAux) >= bufferLength: receiveBuffer(resultsAux) resultsAux = [] if tweetCriteria.maxTweets > 0 and len(results) >= tweetCriteria.maxTweets: active = False break if receiveBuffer and len(resultsAux) > 0: receiveBuffer(resultsAux) while len(results) >= noTweets: tmp = results[:noTweets] results = results[noTweets:] tweetCriteria.maxTweets = tweetCriteria.maxTweets - noTweets yield tmp
2.8125
3
controllers/default.py
orbnauticus/metabase
0
12793703
# -*- coding: utf-8 -*- # this file is released under public domain and you can use without limitations ######################################################################### ## This is a sample controller ## - index is the default action of any application ## - user is required for authentication and authorization ## - download is for downloading files uploaded in the db (does streaming) ######################################################################### def readable_id(id): return id.replace('_', ' ').title() class Bijection(dict): def __init__(self, mapping=None): super(Bijection, self).__init__() if mapping: for key in mapping: self[key] = mapping[key] def __setitem__(self, key, value): super(Bijection, self).__setitem__(key, value) super(Bijection, self).__setitem__(value, key) def __delitem__(self, key): value = self[key] super(Bijection, self).__delitem__(key) super(Bijection, self).__delitem__(value) class a62: mapping = Bijection({j: i for j, i in zip( range(62), '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' )}) base = 62 @classmethod def encode(cls, value, length): return ''.join([ cls.mapping[x] for x in ( (value // cls.base**i) % cls.base for i in range(length - 1, -1, -1) ) ]) @classmethod def decode(cls, text): return sum( cls.mapping[c] * cls.base**(len(text)-i-1) for i, c in enumerate(text) ) class ListView: def __init__(self, table, names, query=None, orderby=None, title=None, controller=None, function=None): self.table = table self.names = names self.query = query or (self.table.id > 0) self.orderby = orderby or self.table.id self.title = title or readable_id(table._id.tablename) self.controller = controller or request.controller self.function = function or request.function def headers(self): for name in self.names: yield readable_id(name) if name != 'id' else XML('&nbsp;') def columns(self): for name in self.names: yield self.table[name] def rows(self): properties = dict( orderby=self.orderby, ) return db(self.query).iterselect(*self.columns(), **properties) def view_url(self, id): return URL(self.controller, self.function, args=[id]) def edit_url(self, id): return URL(self.controller, self.function, args=[id, 'edit'], vars={'next': request.env.path_info}) def delete_url(self, id): return URL(self.controller, self.function, args=[id, 'delete'], vars={'next': request.env.path_info}) def new_url(self): return URL(self.controller, self.function, args=['new']) class Form: def __init__(self, table, record=None, default_redirect=None): self.form = SQLFORM( table, record, fields=[field.name for field in table if field.name not in {'created', 'created_by', 'modified', 'modified_by'}], ) self.default_redirect = default_redirect def process(self): if self.form.process().accepted: redirect(request.get_vars.next or self.default_redirect(self.form.vars)) return self.form class Itemview: def __init__(self, table, record): self.table = table self.record = record def related(self): for field in self.table._extra['related']: table = field.table names = table._extra['columns'] query = (field == self.record.id) yield ListView(table, names, query) class Delegate(dict): def __init__(self, function, reference, verb=None): self.function = function self.table = mb.handlers[self.function] self.list_orderby = self.table._extra['primary'] self.list_columns = self.table._extra['columns'] dict.__init__(self, display=self.display, url=self.url, function=self.function, ) record = self.table(reference) if record and verb is None: response.view = 'itemview.html' self['itemview'] = self.build_itemview(record) elif record is None and verb is None: response.view = 'listview.html' self['listview'] = self.build_listview() elif record is None and verb == 'new' or verb == 'edit': response.view = 'form.html' self['form'] = self.build_form(record) elif record and verb == 'delete': response.view = 'delete.html' self['form'] = self.build_delete() else: raise HTTP(404) def display(self, field, row, primary_reference=True): text = row[field] link = '' type, is_reference, table_name = field.type.partition(' ') if type == 'reference' and text is not None: table = db[table_name] reference = text text = (table._format(table[text]) if callable(table._format) else table._format % table[text].as_dict()) if 'urls' in table._extra: link = self.url(table._extra['function'], reference) elif field.represent is not None: text = field.represent(text, row) if text is None and hasattr(field, 'extra') and 'null_value' in field.extra: text = field.extra['null_value'] if primary_reference: if hasattr(field, 'extra') and field.extra.get('primary'): link = self.url(field.table._extra['function'], row.id) if link: return A(text, _title=text, _href=link, _class=type) else: return SPAN(text, _title=text, _class=type) def default_redirect(self, vars): return self.url(self.function, vars.id) def build_itemview(self, record): return Itemview(self.table, record) def build_listview(self): return ListView(self.table, self.list_columns, orderby=self.list_orderby) def build_form(self, record): return Form(self.table, record, default_redirect=self.default_redirect).process() def build_delete(self): return @classmethod def url(cls, table, reference=None, verb=None): args = [a62.encode(mb.handlers[table]._extra['index'], 4)] if reference is not None: args[0] += a62.encode(reference, 10) if verb: args.append(verb) return URL(r=request, args=args) @auth.requires_login() def index(): tables = Bijection({table._extra['index']: key for key, table in mb.handlers.items()}) first = request.args(0) if first is None: redirect(Delegate.url('object')) if len(first) not in (4, 14): raise HTTP(404) function = tables.get(a62.decode(first[:4]), 'not found') reference = a62.decode(first[4:]) if first[4:] else None verb = { None: None, 'e': 'edit', 'd': 'delete', 'n': 'new', }[request.args(1)] response.flash = CAT( P('function: ', function), P('reference: ', reference), P('verb: ', verb), ) return Delegate(function, reference, verb) def user(): """ exposes: http://..../[app]/default/user/login http://..../[app]/default/user/logout http://..../[app]/default/user/register http://..../[app]/default/user/profile http://..../[app]/default/user/retrieve_password http://..../[app]/default/user/change_password http://..../[app]/default/user/bulk_register use @auth.requires_login() @auth.requires_membership('group name') @auth.requires_permission('read','table name',record_id) to decorate functions that need access control also notice there is http://..../[app]/appadmin/manage/auth to allow administrator to manage users """ return dict(form=auth()) @cache.action() def download(): """ allows downloading of uploaded files http://..../[app]/default/download/[filename] """ return response.download(request, db) ''' def call(): """ exposes services. for example: http://..../[app]/default/call/jsonrpc decorate with @services.jsonrpc the functions to expose supports xml, json, xmlrpc, jsonrpc, amfrpc, rss, csv """ return service() ''' def debug(): return dict(debug=dict( user=auth.user, ))
2.359375
2
openstack_dashboard/dashboards/idm/organizations/tests.py
agaldemas/horizon
0
12793704
# Copyright (C) 2014 Universidad Politecnica de Madrid # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest from mox import IsA # noqa from django import http from django.core.urlresolvers import reverse from openstack_dashboard import api from openstack_dashboard.test import helpers as test from openstack_dashboard.dashboards.idm import tests as idm_tests from openstack_dashboard.dashboards.idm.organizations \ import forms as organizations_forms INDEX_URL = reverse('horizon:idm:organizations:index') CREATE_URL = reverse('horizon:idm:organizations:create') class BaseOrganizationsTests(idm_tests.BaseTestCase): def _get_project_info(self, project): project_info = { "name": unicode(project.name), "description": unicode(project.description), "enabled": project.enabled, "domain": IsA(api.base.APIDictWrapper), "city": '', "email": '', "img":IsA(str), # '/static/dashboard/img/logos/small/group.png', "website" : '' } return project_info class IndexTests(BaseOrganizationsTests): @test.create_stubs({api.keystone: ('tenant_list',)}) def test_index(self): user_organizations = self.list_organizations() # Owned organizations mockup # Only calls the default/first tab, no need to mock the others tab api.keystone.tenant_list(IsA(http.HttpRequest), user=self.user.id, admin=False).AndReturn((user_organizations, False)) self.mox.ReplayAll() response = self.client.get(INDEX_URL) self.assertTemplateUsed(response, 'idm/organizations/index.html') self.assertItemsEqual(response.context['table'].data, user_organizations) self.assertNoMessages() @test.create_stubs({api.keystone: ('tenant_list',)}) def test_other_organizations_tab(self): all_organizations = self.list_organizations() user_organizations = all_organizations[len(all_organizations)/2:] other_organizations = all_organizations[:len(all_organizations)/2] # Other organizations mockup api.keystone.tenant_list(IsA(http.HttpRequest), admin=False).AndReturn((all_organizations, False)) api.keystone.tenant_list(IsA(http.HttpRequest), user=self.user.id, admin=False).AndReturn((user_organizations, False)) self.mox.ReplayAll() response = self.client.get(INDEX_URL + '?tab=panel_tabs__organizations_tab') self.assertTemplateUsed(response, 'idm/organizations/index.html') self.assertItemsEqual(response.context['table'].data, other_organizations) self.assertNoMessages() class DetailTests(BaseOrganizationsTests): @test.create_stubs({ api.keystone: ( 'tenant_get', 'user_list', ) }) def test_detail(self): project = self.get_organization() users = self.users.list() api.keystone.user_list(IsA(http.HttpRequest), project=project.id, filters={'enabled':True}).AndReturn(users) api.keystone.tenant_get(IsA(http.HttpRequest), project.id, admin=True).AndReturn(project) self.mox.ReplayAll() url = reverse('horizon:idm:organizations:detail', args=[project.id]) response = self.client.get(url) self.assertTemplateUsed(response, 'idm/organizations/detail.html') self.assertItemsEqual(response.context['members_table'].data, users) self.assertNoMessages() class CreateTests(BaseOrganizationsTests): @test.create_stubs({api.keystone: ('tenant_create',)}) def test_create_organization(self): project = self.get_organization() project_details = self._get_project_info(project) api.keystone.tenant_create(IsA(http.HttpRequest), **project_details).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'CreateOrganizationForm', 'name': project._info["name"], 'description': project._info["description"], } response = self.client.post(CREATE_URL, form_data) self.assertNoFormErrors(response) def test_create_organization_required_fields(self): form_data = { 'method': 'CreateOrganizationForm', 'name': '', 'description': '', } response = self.client.post(CREATE_URL, form_data) self.assertFormError(response, 'form', 'name', ['This field is required.']) self.assertNoMessages() class UpdateInfoTests(BaseOrganizationsTests): @test.create_stubs({ api.keystone: ( 'tenant_update', 'tenant_get', ), }) def test_update_info(self): project = self.get_organization() updated_project = {"name": 'Updated organization', "description": 'updated organization', "enabled": True, "city": 'Madrid'} api.keystone.tenant_get(IsA(http.HttpRequest), project.id).AndReturn(project) api.keystone.tenant_update(IsA(http.HttpRequest), project.id, **updated_project).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'InfoForm', 'orgID':project.id, 'name': updated_project["name"], 'description': updated_project["description"], 'city':updated_project["city"], } url = reverse('horizon:idm:organizations:info', args=[project.id]) response = self.client.post(url, form_data) self.assertNoFormErrors(response) @unittest.skip('not ready') @test.create_stubs({api.keystone: ('tenant_get',)}) def test_update_info_required_fields(self): project = self.get_organization() api.keystone.tenant_get(IsA(http.HttpRequest), project.id).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'InfoForm', 'orgID': project.id, 'name': '', 'description': '', 'city': '', } url = reverse('horizon:idm:organizations:info', args=[project.id]) response = self.client.post(url, form_data) # FIXME(garcianavalon) form contains the last form in forms, not the one # we want to test. The world is tought for multiforms :( self.assertFormError(response, 'form', 'name', ['This field is required.']) self.assertFormError(response, 'form', 'description', ['This field is required.']) self.assertNoMessages() class UpdateContactTests(BaseOrganizationsTests): @test.create_stubs({ api.keystone: ( 'tenant_update', 'tenant_get', ), }) def test_update_contact(self): project = self.get_organization() updated_project = { "email": '<EMAIL>', "website": 'http://www.organization.com/', } api.keystone.tenant_get(IsA(http.HttpRequest), project.id).AndReturn(project) api.keystone.tenant_update(IsA(http.HttpRequest), project.id, **updated_project).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'ContactForm', 'orgID':project.id, 'email': updated_project["email"], 'website': updated_project["website"], } url = reverse('horizon:idm:organizations:contact', args=[project.id]) response = self.client.post(url, form_data) self.assertNoFormErrors(response) @test.create_stubs({api.keystone: ('tenant_get',)}) def test_update_contact_required_fields(self): project = self.get_organization() api.keystone.tenant_get(IsA(http.HttpRequest), project.id).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'ContactForm', 'orgID':project.id, 'email': '', 'website': '', } url = reverse('horizon:idm:organizations:contact', args=[project.id]) response = self.client.post(url, form_data) self.assertNoMessages() class DeleteTests(BaseOrganizationsTests): @test.create_stubs({ api.keystone: ( 'tenant_delete', 'tenant_get', ), }) def test_delete_organization(self): project = self.get_organization() api.keystone.tenant_get(IsA(http.HttpRequest), project.id).AndReturn(project) api.keystone.tenant_delete(IsA(http.HttpRequest), project).AndReturn(None) self.mox.ReplayAll() form_data = { 'method': 'CancelForm', 'orgID': project.id, } url = reverse('horizon:idm:organizations:cancel', args=[project.id]) response = self.client.post(url, form_data) self.assertNoFormErrors(response) class UpdateAvatarTests(BaseOrganizationsTests): # https://docs.djangoproject.com/en/1.7/topics/testing/tools/#django.test.Client.post # https://code.google.com/p/pymox/wiki/MoxDocumentation @unittest.skip('not ready') @test.create_stubs({ api.keystone: ( 'tenant_update', ), }) def test_update_avatar(self): project = self.get_organization() mock_file = self.mox.CreateMock(file) updated_project = {"image": 'image',} api.keystone.tenant_update(IsA(http.HttpRequest), project.id, **updated_project).AndReturn(project) self.mox.ReplayAll() form_data = { 'method': 'AvatarForm', 'orgID':project.id, 'image': updated_project["image"], } url = reverse('horizon:idm:organizations:avatar', args=[project.id]) response = self.client.post(url, form_data) self.assertNoFormErrors(response)
1.742188
2
PythonDesafios/d049.py
adaatii/Python-Curso-em-Video-
0
12793705
<filename>PythonDesafios/d049.py #Refaça o DESAFIO 9, mostrando a tabuada # de um número que o usuário escolher, # só que agora utilizando um laço for. num = int(input('Digite o numero da tabuada que deseja ver: ')) for i in range(1, 11): print('{} X {} = {}'.format(i, num, i*num))
4.0625
4
bookwyrm/tests/templatetags/test_notification_page_tags.py
mouse-reeve/fedireads
270
12793706
<gh_stars>100-1000 """ style fixes and lookups for templates """ from unittest.mock import patch from django.test import TestCase from bookwyrm import models from bookwyrm.templatetags import notification_page_tags @patch("bookwyrm.activitystreams.add_status_task.delay") @patch("bookwyrm.activitystreams.remove_status_task.delay") class NotificationPageTags(TestCase): """lotta different things here""" def setUp(self): """create some filler objects""" with patch("bookwyrm.suggested_users.rerank_suggestions_task.delay"), patch( "bookwyrm.activitystreams.populate_stream_task.delay" ), patch("bookwyrm.lists_stream.populate_lists_task.delay"): self.user = models.User.objects.create_user( "<EMAIL>", "<EMAIL>", "mouseword", local=True, localname="mouse", ) def test_related_status(self, *_): """gets the subclass model for a notification status""" with patch("bookwyrm.models.activitypub_mixin.broadcast_task.apply_async"): status = models.Status.objects.create(content="hi", user=self.user) notification = models.Notification.objects.create( user=self.user, notification_type="MENTION", related_status=status ) result = notification_page_tags.related_status(notification) self.assertIsInstance(result, models.Status)
2.234375
2
programming_ex/ex-11/POplanning/numbers.py
nnhjy/AI-python
0
12793707
<gh_stars>0 # State space problems with observability # # States # applActions actions applicabable in the state # succs successor states of the state w.r.t. action # preds predecessor states of the state w.r.t. action # compatible Is the state compatible with an observation? # Actions # observations observations possible after the action ### Description # # In this problem, there is a randomly picked number as the initial # state, and the goal is to transform that number to 1 by # actions -1, +2, and Mod 2, which have different observations # which test whether the number is a prime or composite, or # if it is even or odd. # ### Observations for the weighing problem class OBSprime: def __init__(self): self.dummy = 1 def __str__(self): return "prime" class OBScomposite: def __init__(self): self.dummy = 1 def __str__(self): return "composite" class OBSodd: def __init__(self): self.dummy = 1 def __str__(self): return "odd" class OBSeven: def __init__(self): self.dummy = 1 def __str__(self): return "even" class OBSnothingN: def __init__(self): self.dummy = 1 def __str__(self): return "NOOBS" ### Actions for the weighing problem class NumMinus1: def __init__(self): self.dummy = 0 def __str__(self): return "Minus1" def __eq__(self,other): return isinstance(other,NumMinus1) def __hash__(self): return 0 def observations(self): return [OBSprime(),OBScomposite()] class NumPlus2: def __init__(self): self.dummy = 0 def __str__(self): return "Plus2" def __eq__(self,other): return isinstance(other,NumPlus2) def __hash__(self): return 1 def observations(self): return [OBSodd(),OBSeven()] class NumMod2: def __init__(self): self.dummy = 0 def __str__(self): return "Mod2" def __eq__(self,other): return isinstance(other,NumMod2) def __hash__(self): return 1 def observations(self): return [OBSnothingN()] ### States for the weighing problem class NumState: def __init__(self,n): self.n = n def __hash__(self): return self.n def __eq__(self,other): return isinstance(other,NumState) and self.n == other.n def __str__(self): return str(self.n) def clonestate(self): return NumState(self.n) # Which actions applicable in a state? # Both actions can only be taken if no package has been chosen, # so the last action in every execution is always WeightChoose. def applActions(self): actions1 = [] actions2 = [] actions3 = [] if self.n >= 1 and self.n <= 7: actions1 = [ NumMinus1() ] if self.n >= 0 and self.n <= 5: actions2 = [ NumPlus2() ] if self.n >= 1 and self.n <= 7: actions3 = [ NumMod2() ] return actions1 + actions2 + actions3 # Successors of a state w.r.t. an action def succs(self,action): if isinstance(action,NumMod2): s = self.clonestate() s.n = self.n % 2 return {s} if isinstance(action,NumMinus1): s = self.clonestate() s.n = self.n - 1 return {s} if isinstance(action,NumPlus2): s = self.clonestate() s.n = self.n + 2 return {s} raise Exception("Unrecognized action " + str(action)) # Predecessors of a state w.r.t. an action def preds(self,action): if isinstance(action,NumMod2): if self.n == 0: return set([ NumState(i) for i in [0,2,4,6]]) else: return set([ NumState(i) for i in [1,3,5,7]]) if isinstance(action,NumMinus1): if self.n > 6: return set() s = self.clonestate() s.n = self.n + 1 return {s} if isinstance(action,NumPlus2): if self.n < 2: return set() s = self.clonestate() s.n = self.n - 2 return {s} raise Exception("Unrecognized action " + str(action)) # Is the state compatible with the observation? def compatible(self,observation): if isinstance(observation,OBSeven): return (self.n % 2 == 0) if isinstance(observation,OBSodd): return (self.n % 2 == 1) if isinstance(observation,OBSprime): return (self.n in [0,1,2,3,5,7]) if isinstance(observation,OBScomposite): return (self.n in [4,6]) if isinstance(observation,OBSnothingN): return True raise Exception("Unrecognized observation " + str(observation)) import itertools # For every permutation of the weights [1,2,3,...,N] there is # one initial state. Initially the 'chosen' package is -1. def NUMinit(): return { NumState(i) for i in range(0,6) } # Goal states are all permutations of the packages, but # the chosen package must be the one with weight N. def NUMgoal(): return { NumState(1) } # Generate a weighing problem with N packages def NUMproblem(): actions = [ NumPlus2(), NumMinus1(), NumMod2() ] return (NUMinit(),NUMgoal(),actions) # Testing the algorithm with the weighing problem. from POplanFwd import POsolver import sys if __name__ == "__main__": instance = NUMproblem() inits,goals,actions = instance for s in inits: print(str(s)) print("Number of initial states is " + str(len(inits))) plan = POsolver(instance) if plan == None: print("No plan found") else: # Show plan's text representation (a list of strings). for s in plan.plan2str(): print(s) # Show plan statistics print("Plan found: size " + str(plan.plansize()) + " depth " + str(plan.plandepth())) # Test that execution from every initial state reaches goals. for state in inits: plan.validate(state,goals)
3.375
3
boxm/update_downtown.py
mirestrepo/voxels-at-lems
2
12793708
<reponame>mirestrepo/voxels-at-lems import boxm_batch; import os; import time; boxm_batch.register_processes(); boxm_batch.register_datatypes(); #time.sleep(10); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string # Capitol model_dir = "/Users/isa/Experiments/DowntownBOXM_12_12_4"; model_imgs_dir = "/Users/isa/Experiments/DowntownBOXM_12_12_4/imgs" around_imgs_dir = "/Users/isa/Experiments/DowntownBOXM_12_12_4/imgs360_%03d" if not os.path.isdir( model_imgs_dir + "/"): os.mkdir( model_imgs_dir + "/"); image_fnames = "/Volumes/vision/video/dec/Downtown/video/frame_%05d.png"; camera_fnames = "/Volumes/vision/video/dec/Downtown/cameras_KRT/camera_%05d.txt"; expected_fname = model_imgs_dir + "/expected_%05d.tiff"; image_id_fname = model_imgs_dir + "/schedule.txt"; expected_fname_no_dir = "/expected_%05d.tiff" print("Creating a Scene"); boxm_batch.init_process("boxmCreateSceneProcess"); boxm_batch.set_input_string(0, model_dir +"/downtown_scene.xml"); boxm_batch.run_process(); (scene_id, scene_type) = boxm_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Loading Virtual Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % 40); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); vcam = dbvalue(id,type); nframes =181; import random; schedule = [i for i in range(0,nframes)]; random.shuffle(schedule); #schedule = [176, 158, 146, 174, 9, 96, 89, 40, 152, 41, 58, 51, 175, 125, 155, 42, 10, 75, 173, 34, 145, 135, 163, 6, 11, 104, 3, 121, 52, 102, 46, 60, 117, 93, 126, 67, 16, 166, 13, 107, 164, 38, 78, 33, 56, 100, 24, 43, 120, 27, 113, 84, 151, 165, 147, 71, 131, 109, 124, 141, 105, 21, 129, 112, 137, 87, 26, 128, 180, 68, 142, 47, 48, 77, 150, 50, 91, 161, 144, 83, 64, 140, 81, 36, 167, 72, 45, 98, 88, 85, 156, 39, 12, 103, 2, 55, 61, 148, 80, 157, 136, 70, 23, 92, 8, 73, 172, 111, 116, 177, 29, 178, 49, 14, 138, 1, 115, 94, 22, 20, 66, 35, 17, 160, 154, 132, 99, 31, 18, 28, 57, 133, 54, 32, 127, 171, 76, 79, 168, 122, 143, 90, 149, 62, 108, 170, 37, 101, 179, 82, 106, 114, 5, 110, 169, 97, 44, 25, 118, 95, 7, 19, 162, 119, 134, 159, 15, 59, 63, 123, 130, 65, 69, 86, 139, 0, 53, 153, 74, 4, 30]; bad_frames = [34, 49, 63, 76, 113, 118, 127, 148] print "schedule is ", schedule; # write schedule file fd = open(image_id_fname,"w"); print >>fd, len(schedule); print >>fd, schedule; fd.close() print schedule; for x in range(0,len(schedule),1): #for x in range(63,64,1): i = schedule[x]; is_good_frame = 1; for b in range(0, len(bad_frames),1): if (bad_frames[b]== i): is_good_frame = 0; print ("Skiping frame: "); print(i); break; if(is_good_frame): print("Loading Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % i); status = boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); cam = dbvalue(id,type); print("Loading Image"); boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,image_fnames % i); status = status & boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); image = dbvalue(id,type); if(status): print("Updating Scene"); boxm_batch.init_process("boxmUpdateRTProcess"); boxm_batch.set_input_from_db(0,image); boxm_batch.set_input_from_db(1,cam); boxm_batch.set_input_from_db(2,scene); boxm_batch.set_input_unsigned(3,0); boxm_batch.set_input_bool(4, 0); boxm_batch.run_process(); #refine only for first 140 images if(x < 140 ): print("Refine Scene"); boxm_batch.init_process("boxmRefineSceneProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_float(1,0.2); boxm_batch.set_input_bool(2,1); boxm_batch.run_process(); # Generate Expected Image print("Generating Expected Image"); boxm_batch.init_process("boxmRenderExpectedRTProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_from_db(1,vcam); boxm_batch.set_input_unsigned(2,1280); boxm_batch.set_input_unsigned(3,720); boxm_batch.set_input_bool(4,0); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); expected = dbvalue(id,type); (id,type) = boxm_batch.commit_output(1); mask = dbvalue(id,type); print("saving expected image"); boxm_batch.init_process("vilSaveImageViewProcess"); boxm_batch.set_input_from_db(0,expected); boxm_batch.set_input_string(1,expected_fname % i); boxm_batch.run_process(); if(((x+1) % 50 == 0) or (x == 180)): temp_dir = around_imgs_dir % x; os.mkdir( temp_dir + "/"); for j in range(0,nframes,8): print("Loading Camera"); boxm_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm_batch.set_input_string(0,camera_fnames % j); status = boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); cam = dbvalue(id,type); # Generate Expected Image print("Generating Expected Image"); boxm_batch.init_process("boxmRenderExpectedRTProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_from_db(1,cam); boxm_batch.set_input_unsigned(2,1280); boxm_batch.set_input_unsigned(3,720); boxm_batch.set_input_bool(4,0); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); expected = dbvalue(id,type); (id,type) = boxm_batch.commit_output(1); mask = dbvalue(id,type); image_name = expected_fname_no_dir % j print("saving expected image"); boxm_batch.init_process("vilSaveImageViewProcess"); boxm_batch.set_input_from_db(0,expected); boxm_batch.set_input_string(1, temp_dir + image_name); boxm_batch.run_process(); #print("Save Scene"); #boxm_batch.init_process("boxmSaveOccupancyRawProcess"); #boxm_batch.set_input_from_db(0,scene); #boxm_batch.set_input_string(1,model_dir + "/sample_scene.raw"); #boxm_batch.set_input_unsigned(2,0); #boxm_batch.set_input_unsigned(3,0); #boxm_batch.run_process(); print("Save Scene"); boxm_batch.init_process("boxmSaveOccupancyRawProcess"); boxm_batch.set_input_from_db(0,scene); boxm_batch.set_input_string(1,model_dir + "/all_sample_scene.raw"); boxm_batch.set_input_unsigned(2,0); boxm_batch.set_input_unsigned(3,1); boxm_batch.run_process();
2.1875
2
sftpsync/command_line.py
marccarre/sftpsync
1
12793709
import sys from sys import argv, exit import os from os import linesep from getopt import getopt, GetoptError import re import socks from getpass import getuser ERROR_ILLEGAL_ARGUMENTS = 2 def usage(error_message=None): if error_message: sys.stderr.write('ERROR: ' + error_message + linesep) sys.stdout.write(linesep.join([ 'Usage:', ' sftpsync.py [OPTION]... SOURCE DESTINATION', 'Pull:', ' sftpsync.py [OPTION]... [s]ftp://[user[:password]@]host[:port][/path] /path/to/local/copy', 'Push:', ' sftpsync.py [OPTION]... /path/to/local/copy [s]ftp://[user[:password]@]host[:port][/path]', '', 'Defaults:', ' user: anonymous', ' password: <PASSWORD>', ' port: 22', ' path: /', '', 'Options:', '-f/--force Force the synchronization regardless of files\' presence or timestamps.', '-F config_file Specifies an alternative per-user configuration file.', ' If a configuration file is given on the command line, the system-wide configuration file (/etc/ssh/ssh_config) will be ignored.', ' The default for the per-user configuration file is ~/.ssh/config.', '-h/--help Prints this!', '-i/--identity identity_file', ' Selects the file from which the identity (private key) for public key authentication is read.', '-o ssh_option', ' Can be used to pass options to ssh in the format used in ssh_config(5). This is useful for specifying options for which there is no separate sftpsync command-line flag.', ' For full details of the options listed below, and their possible values, see ssh_config(5).', ' ProxyCommand', '-p/--preserve: Preserves modification times, access times, and modes from the original file.', '--proxy [user[:password]@]host[:port]', ' SOCKS proxy to use. If not provided, port will be defaulted to 1080.', '--proxy-version SOCKS4|SOCKS5', ' Version of the SOCKS protocol to use. Default is SOCKS5.', '-q/--quiet: Quiet mode: disables the progress meter as well as warning and diagnostic messages from ssh(1).', '-r/--recursive: Recursively synchronize entire directories.', '-v/--verbose: Verbose mode. Causes sftpsync to print debugging messages about their progress. This is helpful in debugging connection, authentication, and configuration problems.', '' ])) def configure(argv): try: # Default configuration: config = { 'force': False, 'preserve': False, 'quiet': False, 'recursive': False, 'verbose': False, 'private_key': None, 'proxy': None, 'proxy_version': socks.SOCKS5, 'ssh_config' : '~/.ssh/config', 'ssh_options': {}, } opts, args = getopt(argv, 'fF:hi:o:pqrv', ['force', 'help', 'identity=', 'preserve', 'proxy=', 'proxy-version=', 'quiet', 'recursive', 'verbose']) for opt, value in opts: if opt in ('-h', '--help'): usage() exit() if opt in ('-f', '--force'): config['force'] = True if opt in ('-p', '--preserve'): config['preserve'] = True if opt in ('-q', '--quiet'): config['quiet'] = True if opt in ('-r', '--recursive'): config['recursive'] = True if opt in ('-v', '--verbose'): config['verbose'] = True if opt in ('-i', '--identity'): config['private_key'] = _validate_private_key_path(value) if opt == '--proxy': config['proxy'] = _validate_and_parse_socks_proxy(value) if opt == '--proxy-version': config['proxy_version'] = _validate_and_parse_socks_proxy_version(value) if opt == '-F': config['ssh_config'] = _validate_ssh_config_path(value) if opt == '-o': k, v = _validate_ssh_option(value) config['ssh_options'][k] = v if config['verbose'] and config['quiet']: raise ValueError('Please provide either -q/--quiet OR -v/--verbose, but NOT both at the same time.') if len(args) != 2: raise ValueError('Please provide a source and a destination. Expected 2 arguments but got %s: %s.' % (len(args), args)) (source, destination) = args config['source'] = _validate_source(source) config['destination'] = _validate_destination(destination) return config except GetoptError as e: usage(str(e)) exit(ERROR_ILLEGAL_ARGUMENTS) except ValueError as e: usage(str(e)) exit(ERROR_ILLEGAL_ARGUMENTS) def _validate_private_key_path(path): if not path: raise ValueError('Invalid path: "%s". Please provide a valid path to your private key.' % path) if not os.path.exists(path): raise ValueError('Invalid path: "%s". Provided path does NOT exist. Please provide a valid path to your private key.' % path) return path def _validate_ssh_config_path(path): if not path: raise ValueError('Invalid path: "%s". Please provide a valid path to your SSH configuration.' % path) if not os.path.exists(path): raise ValueError('Invalid path: "%s". Provided path does NOT exist. Please provide a valid path to your SSH configuration.' % path) return path def _validate_ssh_option(option, white_list=['ProxyCommand']): key_value = option.split('=', 1) if '=' in option else option.split(' ', 1) if not key_value or not len(key_value) == 2: raise ValueError('Invalid SSH option: "%s".' % option) key, value = key_value if not key or not value: raise ValueError('Invalid SSH option: "%s".' % option) if key not in white_list: raise ValueError('Unsupported SSH option: "%s". Only the following SSH options are currently supported: %s.' % (key, ', '.join(white_list))) return key, value _USER = 'user' _PASS = '<PASSWORD>' _HOST = 'host' _PORT = 'port' _PATH = 'path' _DRIVE = 'drive' _FILEPATH = 'filepath' _PATTERNS = { _USER: r'.+?', _PASS: r'.+?', _HOST: r'[\w\-\.]{3,}?', _PORT: r'|\d{1,4}|6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|[0-5]\d{4}', _PATH: r'/.*', _DRIVE: r'[a-zA-Z]{1}:', _FILEPATH: r'.*?', } def _group(name, patterns=_PATTERNS): return '(?P<%s>%s)' % (name, patterns[name]) _PROXY_PATTERN = '^(%s(:%s)?@)?%s(:%s)?$' % (_group(_USER), _group(_PASS), _group(_HOST), _group(_PORT)) _SFTP_PATTERN = '^s?ftp://(%s(:%s)?@)?%s(:%s)?%s?$' % (_group(_USER), _group(_PASS), _group(_HOST), _group(_PORT), _group(_PATH)) _PATH_PATTERN = '^%s?%s$' % (_group(_DRIVE), _group(_FILEPATH)) def _validate_and_parse_socks_proxy(proxy): return _validate_and_parse_connection_string(proxy, _PROXY_PATTERN, 'Invalid proxy: "%s".' % proxy) def _validate_and_parse_sftp(sftp): return _validate_and_parse_connection_string(sftp, _SFTP_PATTERN, 'Invalid SFTP connection details: "%s".' % sftp) def _validate_and_parse_connection_string(connection_string, pattern, error_message): ''' Parses the provided connection string against the provided pattern into a dictionary, if there is a match, or raises exception if no match. ''' match = re.search(pattern, connection_string) if not match: raise ValueError(error_message) return dict((key, value) for (key, value) in match.groupdict().items() if value) def _validate_and_parse_socks_proxy_version(socks_version, white_list=['SOCKS4', 'SOCKS5']): if socks_version not in white_list: raise ValueError('Invalid SOCKS proxy version: "%s". Please choose one of the following values: { %s }.' % (socks_version, ', '.join(white_list))) return eval('socks.%s' % socks_version) def _validate_source(source): if _is_sftp(source): return _validate_and_parse_sftp(source) if _is_path(source): return _validate_is_readable_path(source) raise ValueError('Invalid source. Please provide either SFTP connection details or a path to a local, existing and readable folder: %s.' % source) def _validate_destination(destination): if _is_sftp(destination): return _validate_and_parse_sftp(destination) if _is_path(destination): return _validate_is_writable_path(destination) raise ValueError('Invalid destination. Please provide either SFTP connection details or a path to a local, existing and writable folder: %s.' % destination) def _is_sftp(sftp): return re.search(_SFTP_PATTERN, sftp) def _is_path(path): return re.search(_PATH_PATTERN, path) def _validate_is_readable_path(path): if not os.path.exists(path): raise ValueError('Invalid path. "%s" does NOT exist.' % path) if not os.access(os.path.abspath(path), os.R_OK): raise ValueError('Invalid path. "%s" exists but user "%s" does NOT have read access.' % (path, getuser())) return path def _validate_is_writable_path(path): if not os.path.exists(path): raise ValueError('Invalid path. "%s" does NOT exist.' % path) if not os.access(os.path.abspath(path), os.W_OK): raise ValueError('Invalid path. "%s" exists but user "%s" does NOT have write access.' % (path, getuser())) return path
2.53125
3
test_flexipy/test_faktura.py
Vitexus/flexipy
3
12793710
# -*- coding: utf-8 -*- from flexipy import Faktura from flexipy import config import requests import json class TestFaktura: def setup(self): self.conf = config.TestingConfig() server_settings = self.conf.get_server_config() self.username = str(server_settings['username']) self.password = str(server_settings['password']) self.url = str(server_settings['url']) self.faktura = Faktura(self.conf) def test_get_all_vydane_faktury(self): r = requests.get(self.url+'faktura-vydana.json' ,auth=(self.username,self.password), verify=False) d = r.json() if len(d['winstrom']['faktura-vydana']): list_of_invoices_expected = d['winstrom']['faktura-vydana'][0] else: list_of_invoices_expected = d['winstrom']['faktura-vydana'] list_of_invoices_actual = self.faktura.get_all_vydane_faktury() assert list_of_invoices_expected == list_of_invoices_actual def test_get_all_prijate_faktury(self): r = requests.get(self.url+'faktura-prijata.json' ,auth=(self.username,self.password), verify=False) d = r.json() if(len(d['winstrom']['faktura-prijata']) == 1): list_of_invoices_expected = d['winstrom']['faktura-prijata'][0] else: list_of_invoices_expected = d['winstrom']['faktura-prijata'] list_of_invoices_actual = self.faktura.get_all_prijate_faktury() assert list_of_invoices_expected == list_of_invoices_actual def test_create_vydana_faktura(self): expected_data = {'kod':'flex11','typDokl':'code:FAKTURA','firma':'code:201','popis':'Flexipy test invoice', 'sumDphZakl':'0.0','bezPolozek':'true', 'varSym':'11235484','zdrojProSkl':'false'} dalsi_param = {'popis':'Flexipy test invoice','firma':'code:201'} result = self.faktura.create_vydana_faktura(kod='flex11', var_sym='11235484', datum_vyst='2013-02-28', zdroj_pro_sklad=False, typ_dokl=self.conf.get_typy_faktury_vydane()[0], dalsi_param=dalsi_param) assert result[0] == True #expected True id = result[1] actualData = self.faktura.get_vydana_faktura(id, detail='full') assert actualData['kod'].lower() == expected_data['kod'].lower() assert actualData['typDokl'] == expected_data['typDokl'] assert actualData['firma'] == expected_data['firma'] assert actualData['popis'] == expected_data['popis'] assert actualData['sumDphZakl'] == expected_data['sumDphZakl'] #uklid po sobe self.faktura.delete_vydana_faktura(id) def test_create_vydana_faktura_polozky(self): polozky = [{'typPolozkyK':self.conf.get_typ_polozky_vydane()[0],'zdrojProSkl':False,'nazev':'vypujceni auta','ucetni':True,'cenaMj':'4815.0'}] expected_data = {'kod':'flex12','typDokl':'code:FAKTURA','firma':'code:201','popis':'Flexipy test invoice', 'varSym':'11235484','zdrojProSkl':'false','polozkyFaktury':polozky} expected_polozky = [{'typPolozkyK':'typPolozky.obecny','zdrojProSkl':'false','nazev':'vypujceni auta','ucetni':'true','cenaMj':'4815.0'}] dalsi_param = {'popis':'Flexipy test invoice','firma':'code:201','typUcOp':u'code:TRŽBA SLUŽBY'} result = self.faktura.create_vydana_faktura(kod='flex12', var_sym='11235484', datum_vyst='2013-02-28', zdroj_pro_sklad=False, typ_dokl=self.conf.get_typy_faktury_vydane()[0], dalsi_param=dalsi_param, polozky_faktury=polozky) assert result[0] == True #expected True id = result[1] actualData = self.faktura.get_vydana_faktura(id, detail='full') assert actualData['kod'].lower() == expected_data['kod'].lower() assert actualData['typDokl'] == expected_data['typDokl'] assert actualData['firma'] == expected_data['firma'] assert actualData['popis'] == expected_data['popis'] #pocet polozek se musi rovnat assert len(actualData['polozkyFaktury']) == len(expected_polozky) actual_polozky = actualData['polozkyFaktury'][0] assert actual_polozky['typPolozkyK'] == expected_polozky[0]['typPolozkyK'] assert actual_polozky['nazev'] == expected_polozky[0]['nazev'] assert actual_polozky['cenaMj'] == expected_polozky[0]['cenaMj'] #uklid po sobe self.faktura.delete_vydana_faktura(id)
2.609375
3
note-input/main.py
hyper-neutrino/hack-the-north-2017
0
12793711
<filename>note-input/main.py import subprocess import sys import re import json import os import requests requests.get("http://localhost:5000/recorder/set_killee_process?pid=%s" % os.getpid()) try: port = int(sys.argv[-1]) except: print("Usage:\npython3 main.py <port>") sys.exit(-1) process = subprocess.Popen(["aseqdump", "-p", str(port)], stdout=subprocess.PIPE) def parse_line(line): # line = re.sub(" +", "^", line.decode().strip()) parts = re.split(" +", line.decode().strip()) evt = parts[1] # Such as `Note on`, etc if len(parts) >= 3: properties = parts[2].split(", ")[1:] else: properties = [] properties_dict = dict() for prop in properties: properties_dict[prop[:prop.index(" ")]] = prop[prop.index(" ") + 1:] if "velocity" in properties_dict: properties_dict["velocity"] = int(properties_dict["velocity"]) # Hack return dict(type=evt, pitch=int(properties_dict["note"]), **properties_dict) process.stdout.readline() process.stdout.readline() # print(json.dumps(pid=os.getpid(), type="pid_headsup")) for line in process.stdout: if "active sensing" not in line.decode().lower() and "clock" not in line.decode().lower(): print(json.dumps(parse_line(line))) sys.stdout.flush()
2.46875
2
Chinchira19041.py
fujisaki-tamago/anime2021
2
12793712
from anime2021.anime import * chinchira_url = 'https://1.bp.blogspot.com/-OBrXImM0Sd4/X5OcFkxjEnI/AAAAAAABb40/HSDcWu_nYSUbAmRlWro9bHF6pkZJEyFngCNcBGAsYHQ/s789/animal_mawashi_guruma_chinchira.png' class RollingChinchira(AImage): def __init__(self, width=100, height=100, cx=None, cy=None, image=chinchira_url, scale=1.0): self.width = width self.height = height self.scale = scale if image.startswith('http'): self.pic = Image.open(io.BytesIO(requests.get(image).content)) else: self.pic = Image.open(image) def render(self, canvas: ACanvas, tick: int): ox, oy, w, h = self.bounds() pic = self.pic.resize((int(w), int(h))) r = min(self.width, self.height)/2 for i in range(180): slope = math.pi * 2 * 10 * (tick/180) ox = self.cx + r * math.cos(i * slope) oy = self.cy + r * math.sin(i * slope) canvas.image.paste(pic, (int(ox), int(oy)), pic) def chinchira_shape(shape): studio = AStudio(400,300) studio.append(shape) frames = 50 for t in range(frames): x = 400 - 8*t y = 150 shape.cx = x shape.cy = y studio.render() return studio.create_anime(delay=50)
2.890625
3
eland/tests/field_mappings/test_metric_source_fields_pytest.py
redNixon/eland
0
12793713
<reponame>redNixon/eland # Copyright 2019 Elasticsearch BV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # File called _pytest for PyCharm compatability import numpy as np import eland as ed from eland.tests import ES_TEST_CLIENT, ECOMMERCE_INDEX_NAME, FLIGHTS_INDEX_NAME from eland.tests.common import TestData class TestMetricSourceFields(TestData): def test_flights_all_metric_source_fields(self): ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=FLIGHTS_INDEX_NAME ) pd_flights = self.pd_flights() ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields() pd_metric = pd_flights.select_dtypes(include=np.number) assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == {None} def test_flights_all_metric_source_fields_and_bool(self): ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=FLIGHTS_INDEX_NAME ) pd_flights = self.pd_flights() ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields( include_bool=True ) pd_metric = pd_flights.select_dtypes(include=[np.number, "bool"]) assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == {None} def test_flights_all_metric_source_fields_bool_and_timestamp(self): ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=FLIGHTS_INDEX_NAME ) pd_flights = self.pd_flights() ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields( include_bool=True, include_timestamp=True ) pd_metric = pd_flights.select_dtypes(include=[np.number, "bool", "datetime"]) assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == set( {"strict_date_hour_minute_second", None} ) # TODO - test position of date_format def test_ecommerce_selected_non_metric_source_fields(self): field_names = [ "category", "currency", "customer_birth_date", "customer_first_name", "user", ] """ Note: non of there are metric category object currency object customer_birth_date datetime64[ns] customer_first_name object user object """ ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=ECOMMERCE_INDEX_NAME, display_names=field_names, ) pd_ecommerce = self.pd_ecommerce()[field_names] ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields() pd_metric = pd_ecommerce.select_dtypes(include=np.number) assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == set() def test_ecommerce_selected_mixed_metric_source_fields(self): field_names = [ "category", "currency", "customer_birth_date", "customer_first_name", "total_quantity", "user", ] """ Note: one is metric category object currency object customer_birth_date datetime64[ns] customer_first_name object total_quantity int64 user object """ ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=ECOMMERCE_INDEX_NAME, display_names=field_names, ) pd_ecommerce = self.pd_ecommerce()[field_names] ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields() pd_metric = pd_ecommerce.select_dtypes(include=np.number) assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == {None} assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields def test_ecommerce_selected_all_metric_source_fields(self): field_names = ["total_quantity", "taxful_total_price", "taxless_total_price"] """ Note: all are metric total_quantity int64 taxful_total_price float64 taxless_total_price float64 """ ed_field_mappings = ed.FieldMappings( client=ed.Client(ES_TEST_CLIENT), index_pattern=ECOMMERCE_INDEX_NAME, display_names=field_names, ) pd_ecommerce = self.pd_ecommerce()[field_names] ed_dtypes, ed_fields, es_date_formats = ed_field_mappings.metric_source_fields() pd_metric = pd_ecommerce.select_dtypes(include=np.number) assert pd_metric.dtypes.to_list() == ed_dtypes assert pd_metric.columns.to_list() == ed_fields assert len(es_date_formats) == len(ed_dtypes) assert set(es_date_formats) == {None}
2.125
2
runfiles/internal/codegen.bzl
fmeum/rules_runfiles
7
12793714
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. load(":common.bzl", "escape") def generate_nested_structure(runfile_structs, begin_group, end_group, emit, indent_per_level = 0): runfiles_per_path = {} for runfile in runfile_structs: segments = [runfile.repo] + (runfile.pkg.split("/") if runfile.pkg else []) segments = [escape(s) for s in segments] segments = tuple(segments) runfiles_per_path.setdefault(segments, []).append(runfile) paths = sorted(runfiles_per_path.keys()) # Sentinel values to close the last group. paths.append(tuple()) runfiles_per_path[tuple()] = [] # Sentinel value to open the first group. previous_segments = [] code = [] for segments in paths: mismatch_pos = _mismatch(previous_segments, segments) if mismatch_pos != -1: for pos in range(len(previous_segments) - 1, mismatch_pos - 1, -1): code.append(_indent(end_group(previous_segments[pos]), indent_per_level * pos)) for pos in range(mismatch_pos, len(segments)): code.append(_indent(begin_group(segments[pos]), indent_per_level * pos)) definitions = [] for runfile in runfiles_per_path[segments]: definitions.append(_indent(emit(runfile), indent_per_level * len(segments))) if definitions: code.append("\n\n".join(definitions)) previous_segments = segments return "\n".join(code) def _mismatch(l1, l2): min_length = min(len(l1), len(l2)) for i in range(min_length): if l1[i] != l2[i]: return i if len(l1) == len(l2): return -1 else: return min_length def _indent(s, level): if level == 0: return s indent = level * " " return "\n".join([indent + line for line in s.split("\n")])
2.109375
2
workplace_extractor/Nodes/__init__.py
denisduarte/workplace_extractor
0
12793715
<reponame>denisduarte/workplace_extractor # from workplace_extractor.Nodes.Node import Node # from workplace_extractor.Nodes.NodeCollection import NodeCollection, PostCollection # from workplace_extractor.Nodes.Post import Post # from workplace_extractor.Nodes.Group import Group
1.171875
1
src/debruijnextend/utils.py
Dreycey/DebruijnExtend
0
12793716
""" This module contains methods/objects that facilitate basic operations. """ # std pkgs import numpy as np import random from typing import Dict, List, Optional, Union from pathlib import Path import pickle # non-std pkgs import matplotlib.pyplot as plt def hamming_dist(k1, k2): val = 0 for ind, char in enumerate(k1): if char != k2[ind]: val += 1 return val def clean_input_sequences(input_seq): """ This method cleans all input sequences to ensure they will be compatible with the precomputed hash table. """ seq_list = [] for aa in input_seq: if aa not in ["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"]: print(aa) if aa == "*": amino_chosen = "G" elif aa == "B": amino_chosen = np.random.choice(["N", "D"], 1, p=[0.5, 0.5])[0] elif aa == "Z": amino_chosen = np.random.choice(["Q", "E"], 1, p=[0.5, 0.5])[0] elif aa == "J": amino_chosen = np.random.choice(["L", "I"], 1, p=[0.5, 0.5])[0] elif aa == "X": amino_chosen = random.choice(["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"])[0] else: amino_chosen = aa seq_list.append(amino_chosen) return ''.join(seq_list) #+ input_seq[kmer_size+1:] def readFasta(fasta_file_path: Union[str, Path]): """ This function reads a fasta file Parameters ---------- fasta file path: string OR Path Returns ------- proteins : array of protein sequence (ordered) protein_names : array of protein names (ordered) """ proteins, protein_names = [], [] with open(fasta_file_path) as fasta_file: fasta_file_array = fasta_file.readlines() for line_count, fasta_line in enumerate(fasta_file_array): if (fasta_line[0] == ">"): name = fasta_line.strip("\n") protein_names.append(name) proteins.append(protein_seq) if line_count > 0 else None protein_seq = "" # renew sequence everytime fasta name is added. else: protein_seq += fasta_line.strip("\n") proteins.append(protein_seq) return proteins, protein_names def get_kmer_size(hash_table) -> int: """ This function extracts the kmer size from the hash table. """ kmer_size = 0 with open(hash_table, "rb") as hash_tb: hash = pickle.load(hash_tb) kmer_size = len(list(hash.keys())[0]) return kmer_size
3.15625
3
ESP8266/WIFI/httpcc/WebControl.py
1021256354/ELE-Clouds
3
12793717
<gh_stars>1-10 # -*- coding: UTF-8 -*- u''' ****************************************************************************** * 文 件:WebControl.py * 概 述:Web页面控制设备 * 版 本:V0.10 * 作 者:<NAME> * 日 期:2018年5月8日 * 历 史: 日期 编辑 版本 记录 2018年5月8日 <NAME> V0.10 创建文件 ******************************************************************************''' from ESP8266.WIFI.httpcc import netConnect # 此处引用为获取netConnect文件中的全局变量“wlan”。 import socket from machine import Pin # 读取WEB页面代码文件 htmls = open("ESP8266/WIFI/httpcc/WebKZ.html") html= htmls.read() #此处直接由文件读取,如果直接在此处写入页面代码,须使用 ''' ''' 将代码包含,否则无法显示 htmls.close() #Wemos Dpin to GPIO #D1->GPIO5 ---- 红色 #D2->GPIO4 ---- 绿色 #D5->GPIO14 ---- 蓝色 ledBlue = Pin(14, Pin.OUT) # 蓝色 ledGrean = Pin(4, Pin.OUT) # 绿色 ledRed = Pin(5, Pin.OUT) # 红色 # 只亮绿色 def greanOnly(): ledBlue.off() ledGrean.on() ledRed.off() # 全开 def allOn(): ledBlue.on() ledGrean.on() ledRed.on() # 只亮红色 def redOnly(): ledBlue.off() ledGrean.off() ledRed.on() # 只亮蓝色 def blueOnly(): ledBlue.on() ledGrean.off() ledRed.off() # 全关 def allOff(): ledBlue.off() ledGrean.off() ledRed.off() port=80 listenSocket=None ip=netConnect.wlan.ifconfig()[0] listenSocket = socket.socket() #建立一个实例 listenSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listenSocket.bind((ip,port)) #绑定建立网路连接的ip地址和端口 listenSocket.listen(5) #开始侦听 print ('等待TCP连接...') while True: print("连接中.....") conn, addr = listenSocket.accept() print("已连接 %s" % str(addr)) request = conn.recv(1024) print("内容: %s" % str(request)) request = str(request) CMD_grean = request.find('/?CMD=greenlight') #如果在请求的包中,发现有?CMD=greenlight,下同 CMD_allon = request.find('/?CMD=allon') CMD_red = request.find('/?CMD=redlight') CMD_blue = request.find('/?CMD=bluelight') CMD_alloff = request.find('/?CMD=alloff') print("Data: " + str(CMD_grean)) print("Data: " + str(CMD_allon)) print("Data: " + str(CMD_red)) print("Data: " + str(CMD_blue)) print("Data: " + str(CMD_alloff)) if CMD_grean == 6: #如果此命令有效,下同 print('+grean') greanOnly() #调用仅点亮绿灯函数,下同 if CMD_allon == 6: print('+allon') allOn() if CMD_red == 6: print('+red') redOnly() if CMD_blue == 6: print('+blue') blueOnly() if CMD_alloff == 6: print('+alloff') allOff() response = html #将html的网页定义装载在回应字段 conn.send(response) #send到浏览器上,就形成了控制界面 conn.close()
2.125
2
taiseia101/dehumidifier.py
slee124565/pytwseia
3
12793718
<reponame>slee124565/pytwseia from taiseia101.core import * logger = logging.getLogger(__name__) class Dehumidifier(GeneralDevice): dev_type = {'id': DeviceTypeCode.DEHUMIDIFIER, 'name': 'DEHUMIDIFIER'} class ServiceCode(BaseObject): POWER_RW = 0x00 OP_MODE_RW = 0x01 OP_TIMER_RW = 0x02 HUMIDITY_CFG_RW = 0x03 DEHUMIDIFIER_LEVEL_RW = 0x04 DRY_CLOTHE_LEVEL_RW = 0x05 TEMPERATURE_R = 0x06 HUMIDITY_R = 0x07 FAN_DIRECTION_AUTO_RW = 0x08 FAN_DIRECTION_LEVEL_RW = 0x09 WATER_FULL_ALARM_R = 0x0a FILTER_CLEAN_NOTIFY_RW = 0x0b MOOD_LED_RW = 0x0c AIR_CLEAN_MODE_RW = 0x0d FAN_LEVEL_RW = 0x0e SIDE_FAN_R = 0x0f AUDIO_RW = 0x10 DEFROST_DISPLAY_R = 0x11 DISPLAY_ERR_R = 0x12 DEV_MILDEW_RW = 0x13 HUMIDITY_HIGH_NOTIFY_RW = 0x14 HUMIDITY_HIGH_CFG_RW = 0x15 KEYPAD_LOCK_RW = 0x16 REMOTE_CTRL_LOCK_RW = 0x17 SAA_CTRL_AUDIO_RW = 0x18 OP_CURRENT_R = 0x19 OP_VOLTAGE_R = 0x1a OP_POWER_FACTOR_R = 0x1b OP_POWER_WATT_RW = 0x1c TOTAL_WATT_RW = 0x1d ERR_HISTORY_1_R = 0x1e ERR_HISTORY_2_R = 0x1f ERR_HISTORY_3_R = 0x20 ERR_HISTORY_4_R = 0x21 ERR_HISTORY_5_R = 0x22 # ENG_MODE = 0x50 # RESERVED = 0x7f def __init__(self): super(Dehumidifier, self).__init__() self.set_dev_type(DeviceTypeCode.DEHUMIDIFIER) @classmethod def module_name(cls): return __name__ class DevicePowerService(DeviceCommonOnOffService): """ status off: 06,04,00,00,00,02 status on: 06,04,00,00,01,03 power on: 06,04,80,00,01,83 power off: 06,04,80,00,00,82 """ # POWER_RW = 0x00 class DeviceOpModeService(DeviceEnum16Service): # OP_MODE_RW = 0x01 class ParamCode(BaseObject): AUTO = 0 CFG_DEHUMIDIFIER = 1 CONTINUE_DEHUMIDIFIER = 2 DRY_CLOTHE = 3 AIR_CLEAN = 4 DEV_MILDEW = 5 FAN_ONLY = 6 SUPER_DRY = 7 class DeviceOpTimerService(DeviceUint8Service): # OP_TIMER_RW = 0x02 class ParamCode(BaseObject): HR_1 = 1 HR_2 = 2 HR_4 = 4 HR_6 = 6 HR_8 = 8 HR_10 = 10 HR_12 = 12 @classmethod def text(cls, code): return '{} hr'.format(code) class DeviceHumidityCfgService(DeviceUint8Service): # HUMIDITY_CFG_RW = 0x03 class ParamCode(BaseObject): HUMI_40 = 40 HUMI_45 = 45 HUMI_50 = 50 HUMI_55 = 55 HUMI_60 = 60 HUMI_65 = 65 HUMI_70 = 70 HUMI_75 = 75 @classmethod def text(cls, code): return '{} %'.format(code) class DeviceDehumidifierLevelService(DeviceFeatureLevelService): # DEHUMIDIFIER_LEVEL_RW = 0x04 pass class DeviceDryClotheLevelService(DeviceFeatureLevelService): # DRY_CLOTHE_LEVEL_RW = 0x05 pass class DeviceTemperatureRService(DeviceInt8Service): # TEMPERATURE_R = 0x06 pass class DeviceHumidityRService(DeviceUint8Service): # HUMIDITY_R = 0x07 pass class DeviceFanDirectionAutoService(DeviceCommonOnOffService): # FAN_DIRECTION_AUTO_RW = 0x08 pass class DeviceFanDirectionLevelService(DeviceFeatureLevelService): # FAN_DIRECTION_LEVEL_RW = 0x09 pass class DeviceWaterFullAlarmRService(DeviceEnum16Service): # WATER_FULL_ALARM_R = 0x0a class ParamCode(BaseObject): NORMAL = 0x00 FULL = 0x01 pass class DeviceFilterCleanNotifyService(DeviceEnum16Service): # FILTER_CLEAN_NOTIFY_RW = 0x0b class ParamCode(BaseObject): NORMAL = 0x00 CLEAN_NEED = 0x01 pass class DeviceMoodLedService(DeviceCommonOnOffService): # MOOD_LED_RW = 0x0c pass class DeviceAirCleanModeService(DeviceFeatureLevelService): # AIR_CLEAN_MODE_RW = 0x0d pass class DeviceFanLevelService(DeviceFeatureLevelService): pass # FAN_LEVEL_RW = 0x0e class DeviceSideFanRService(DeviceEnum16Service): # SIDE_FAN_R = 0x0f class ParamCode(BaseObject): NORMAL = 0x00 SIDE = 0x01 pass class DeviceAudioService(DeviceEnum16Service): # AUDIO_RW = 0x10 class ParamCode(BaseObject): QUIET = 0x00 BUTTON = 0x01 WATER_FULL_BUTTON = 0x02 pass class DeviceDefrostDisplayRService(DeviceEnum16Service): # DEFROST_DISPLAY_R = 0x11 class ParamCode(BaseObject): NORMAL = 0x00 DEFROST = 0x01 pass class DeviceDisplayErrRService(DeviceEnum16BitService): # DISPLAY_ERR_R = 0x12 pass class DeviceDevMildewService(DeviceCommonOnOffService): # DEV_MILDEW_RW = 0x13 pass class DeviceHumidityHighNotifyService(DeviceCommonOnOffService): # HUMIDITY_HIGH_NOTIFY_RW = 0x14 pass class DeviceHumidityHighCfgService(DeviceUint8Service): # HUMIDITY_HIGH_CFG_RW = 0x15 pass class DeviceKeypadLockService(DeviceCommonOnOffService): # KEYPAD_LOCK_RW = 0x16 pass class DeviceRemoteCtrlLockService(DeviceEnum16BitService): # REMOTE_CTRL_LOCK_RW = 0x17 pass class DeviceSaaCtrlAudioService(DeviceCommonOnOffService): # SAA_CTRL_AUDIO_RW = 0x18 pass class DeviceOpCurrentRService(DeviceUint16Service): # OP_CURRENT_R = 0x19 pass class DeviceOpVoltageRService(DeviceUint16Service): # OP_VOLTAGE_R = 0x1a pass class DeviceOpPowerFactorRService(DeviceUint16Service): # OP_POWER_FACTOR_R = 0x1b pass class DeviceOpPowerWattService(DeviceUint16Service): # OP_POWER_WATT_RW = 0x1c pass class DeviceTotalWattService(DeviceUint16Service): # TOTAL_WATT_RW = 0x1d pass class DeviceErrHistory1RService(DeviceEnum16BitService): # ERR_HISTORY_1_R = 0x1e pass class DeviceErrHistory2RService(DeviceEnum16BitService): # ERR_HISTORY_2_R = 0x1f pass class DeviceErrHistory3RService(DeviceEnum16BitService): # ERR_HISTORY_3_R = 0x20 pass class DeviceErrHistory4RService(DeviceEnum16BitService): # ERR_HISTORY_4_R = 0x21 pass class DeviceErrHistory5RService(DeviceEnum16BitService): # ERR_HISTORY_5_R = 0x22 pass if __name__ == '__main__': FORMAT = '%(asctime)s [%(levelname)s] %(name)s: %(message)s' logging.basicConfig(level=logging.DEBUG, format=FORMAT) dev_cls = Dehumidifier # dev_cls.print_service_cls_template() dev_obj = dev_cls() logger.info('{}'.format(dev_obj.device_detail(cmd_check_serv=False)))
2.09375
2
tcp_connectors/gmqtt_connector.py
evocount/connectors
2
12793719
import asyncio import logging import uuid import ssl from gmqtt import Client as MQTTClient from .exceptions import ConnectionFailed, DestinationNotAvailable from .base import BaseConnector logger = logging.getLogger(__name__) class GMQTTConnector(BaseConnector): """GMQTTConnector uses gmqtt library for connectors running over MQTT. """ def __init__(self, host, port, subscribe_topic, publish_topic, **kwargs): self.host = host self.port = port # topics self.subscribe_topic = subscribe_topic self.publish_topic = publish_topic # connection self.connection_id = uuid.uuid4().hex[:8] self.is_connected = False self.client = MQTTClient(self.connection_id) # callbacks self.client.on_connect = self.on_connect self.client.on_message = self.on_message self.client.on_disconnect = self.on_disconnect self.client.on_subscribe = self.on_subscribe self.STOP = asyncio.Event() # options self.ack_topic = kwargs.get('ack_topic') self.enable_ssl = kwargs.get('enable_ssl', False) self.enable_auth = kwargs.get('enable_auth', False) self.username = kwargs.get('username') self.password = kwargs.get('password') self.client_cert = kwargs.get('client_cert') self.client_key = kwargs.get('client_key') self.qos = kwargs.get('qos', 2) def get_connection_details(self): """get_connection_details returns the details about the current MQTT connection. """ return dict( connection_id=self.connection_id, host=self.host, port=self.port, is_connected=self.is_connected, subscribe_topic=self.subscribe_topic, publish_topic=self.publish_topic ) def on_connect(self, *args): """on_connect is a callback that gets exectued after the connection is made. Arguments: client {MQTTClient} -- gmqtt.MQTTClient flags {int} -- connection flags rc {int} -- connection result code properties {dict} -- config of the current connection """ logger.info("Connected with result code %s", str(args[2])) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. # client.subscribe("$SYS/#", qos=0) if isinstance(self.subscribe_topic, str): self.client.subscribe(self.subscribe_topic, qos=self.qos) elif isinstance(self.subscribe_topic, list): for topic in self.subscribe_topic: self.client.subscribe(topic, qos=self.qos) else: logger.warning('subscribe_topic is either None or an unknown data type.' ' Currently subscribed to 0 topics.') async def on_message(self, *args): """on_message callback gets executed when the connection receives a message. Arguments: client {MQTTClient} -- gmqtt.MQTTClient topic {string} -- topic from which message was received payload {bytes} -- actual message bytes received qos {string} -- message QOS level (0,1,2) properties {dict} -- message properties """ logger.info("%s %s", args[1], str(args[2])) return 0 @staticmethod def on_disconnect(*args): """on_disconnect is a callback that gets executed after a disconnection occurs""" logger.info('Disconnected') @staticmethod def on_subscribe(*args): """on_subscribe is a callback that gets executed after a subscription is succesful""" logger.info('Subscribed') def ask_exit(self): """sets the STOP variable so that a signal gets sent to disconnect the client """ self.STOP.set() async def start(self): """starts initiates the connnection with the broker Raises: DestinationNotAvailable: If broker is not available ConnectionFailed: If connection failed due to any other reason """ try: conn_kwargs = dict(host=self.host, port=self.port) if self.enable_auth: self.client.set_auth_credentials(self.username, self.password) if self.enable_ssl: assert self.client_cert and self.client_key, \ "Cannot enable ssl without specifying client_cert and client_key" ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) ssl_context.load_cert_chain(self.client_cert, keyfile=self.client_key) conn_kwargs.update(dict(ssl=ssl_context)) await self.client.connect(**conn_kwargs) self.is_connected = True except ConnectionRefusedError as e: # raising from None suppresses the exception chain raise DestinationNotAvailable( f'Connection Failed: Error connecting to' f' {self.host}:{self.port} - {e}' ) from None except Exception as e: raise ConnectionFailed(e) async def publish(self, *args, **kwargs): """publishes the message to the topic using client.publish""" self.client.publish(*args, **kwargs) async def stop(self): """force stop the connection with the MQTT broker.""" await self.client.disconnect() self.is_connected = False
2.546875
3
server/tests/steps/__init__.py
JeremyJacquemont/weaverbird
54
12793720
<reponame>JeremyJacquemont/weaverbird """ This module contains unit tests for every supported pipeline step """
0.71875
1
docs/tutorials/scripts/pure_scattering_plot.py
christopherlovell/hyperion
37
12793721
import matplotlib.pyplot as plt from hyperion.model import ModelOutput from hyperion.util.constants import pc mo = ModelOutput('pure_scattering.rtout') image_fnu = mo.get_image(inclination=0, units='MJy/sr', distance=300. * pc) image_pol = mo.get_image(inclination=0, stokes='linpol') fig = plt.figure(figsize=(8, 8)) # Make total intensity sub-plot ax = fig.add_axes([0.1, 0.3, 0.4, 0.4]) ax.imshow(image_fnu.val[:, :, 0], extent=[-13, 13, -13, 13], interpolation='none', cmap=plt.cm.gist_heat, origin='lower', vmin=0., vmax=4e9) ax.set_xlim(-13., 13.) ax.set_ylim(-13., 13.) ax.set_xlabel("x (solar radii)") ax.set_ylabel("y (solar radii)") ax.set_title("Surface brightness") # Make linear polarization sub-plot ax = fig.add_axes([0.51, 0.3, 0.4, 0.4]) im = ax.imshow(image_pol.val[:, :, 0] * 100., extent=[-13, 13, -13, 13], interpolation='none', cmap=plt.cm.gist_heat, origin='lower', vmin=0., vmax=100.) ax.set_xlim(-13., 13.) ax.set_ylim(-13., 13.) ax.set_xlabel("x (solar radii)") ax.set_title("Linear Polarization") ax.set_yticklabels('') axcb = fig.add_axes([0.92, 0.3, 0.02, 0.4]) cb=plt.colorbar(im, cax=axcb) cb.set_label('%') fig.savefig('pure_scattering_inner_disk.png', bbox_inches='tight')
2.3125
2
hug_peewee/__init__.py
timothycrosley/hug_peewee
7
12793722
"""Defines how the hug_peewee package exposes modules as well as exposes it's version number""" from hug_peewee._version import current from hug_peewee.connection import ENGINES from hug_peewee import connection __version__ = current
1.539063
2
aoc2021/day05-hydrotermal_venture/solution2021d05.py
carloscabello/AoC
0
12793723
"""Day 4: Giant Squid""" import sys, os, inspect # necessary to import aoc2021/utils.py moudule currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(1, os.path.join(sys.path[0], '..')) import utils exampledata = ['0,9 -> 5,9', '8,0 -> 0,8', '9,4 -> 3,4', '2,2 -> 2,1', '7,0 -> 7,4', '6,4 -> 2,0', '0,9 -> 2,9', '3,4 -> 1,4', '0,0 -> 8,8', '5,5 -> 8,2'] def input_parser(inputdata): """Given the input of the puzzle represent it with a list of tuples Parameters ---------- inputdata : list A list of strings, each being a line of the raw input file. Returns ---------- inputdata : list A list of strings, each being a line of the raw input file. max_x : int Max x coordinate value from all points max_y : int Max y coordinate value from all points """ res = [] max_x = 0 max_y = 0 for line in inputdata: pointpair = () for strpoint in line.split('->'): strpoint = strpoint.strip() point = () for indexcoord, strcoord in enumerate(strpoint.split(',')): valuecoord = int(strcoord) point += (valuecoord,) if(indexcoord==0 and max_x<valuecoord): max_x = valuecoord elif(0<indexcoord and max_y<valuecoord): max_y = valuecoord pointpair += (point,) res.append(pointpair) # return a list of points-pair (x1,y1) and (x2,y2) # each point is a pair x,y coordinates return res, max_x, max_y def closedrange(start, stop): "Return all values in the interval [start,stop] no matter which one is greater" step = 1 if (start<=stop) else -1 return range(start, stop + step, step) def vent_mapper(inputdata, include_diagonal_lines=False): """Given the already parsed input data from puzzle aoc2021day05 return the final solution Parameters ---------- inputdata : list A list of tuples, each tuple representing a pair of points. Each point itself is a tuple (int,int). include_diagonal_lines : bool (Default=False) If points describe a diagonal line, include them in the mapping. The default behavior is to only include vertical o diagonal lines """ ventpointpairs, max_x, max_y = input_parser(inputdata) ventmap = [[0]*(max_x+1) for i in range(max_y+1)] # to index the ventmap: ventmap[y][x] for ventsegment in ventpointpairs: x1,y1 = ventsegment[0] x2,y2 = ventsegment[1] # only horizontal and vertical lines if(x1 == x2): for y in closedrange(y1, y2): ventmap[y][x1] += 1 elif(y1 == y2): for x in closedrange(x1, x2): ventmap[y1][x] += 1 # diagonal line at exactly 45 degrees elif (include_diagonal_lines): for x,y in closedrange_diag( (x1,y1), (x2,y2) ): ventmap[y][x] += 1 return vent_counter(ventmap,2) def closedrange_diag(start, stop): "Return all points (x,y) from a 45º diagonal line from (x1,y1) to (x2,y2)" x1, y1 = start x2, y2 = stop return zip(closedrange(x1, x2), closedrange(y1, y2)) def vent_counter(ventmap, overlap): res = 0 for ventrow in ventmap: for ventelem in ventrow: if (overlap <= ventelem): res +=1 return res def main(): inputdata = [] # run script with arguments: load the input file if(2 <= len(sys.argv)): inputdata = utils.loadinput(sys.argv[1]) # run script with no arguments: load example data else: inputdata = exampledata print(f"Puzzle input (example)") print(f"{exampledata}\n") print(f"Answer (part 1): {vent_mapper(inputdata)}\n") # Correct example answer: 5 print(f"Answer (part 2): {vent_mapper(inputdata, True)}") # Correct example answer: 12 pass if __name__ == "__main__": main()
3.234375
3
enabling_addons/enabling_addons_example_2.py
CGArtPython/bpy_building_blocks_examples
0
12793724
<gh_stars>0 import bpy import addon_utils def enable_addon(addon_module_name): loaded_default, loaded_state = addon_utils.check(addon_module_name) if not loaded_state: addon_utils.enable(addon_module_name) ########################################################## # _____ _ _ _ _____ # | ___| | | _| || |_ / __ \ # | |____ ____ _ _ __ ___ _ __ | | ___ |_ __ _| `' / /' # | __\ \/ / _` | '_ ` _ \| '_ \| |/ _ \ _| || |_ / / # | |___> < (_| | | | | | | |_) | | __/ |_ __ _| ./ /___ # \____/_/\_\__,_|_| |_| |_| .__/|_|\___| |_||_| \_____/ # | | # |_| ########################################################## enable_addon(addon_module_name="add_mesh_extra_objects") for i in range(10): bpy.ops.mesh.primitive_solid_add(source='12', size=i*0.1) bpy.ops.object.modifier_add(type='WIREFRAME')
1.953125
2
src/15/15953.py
youngdaLee/Baekjoon
11
12793725
""" 15953. 상금 헌터 작성자: xCrypt0r 언어: Python 3 사용 메모리: 29,380 KB 소요 시간: 160 ms 해결 날짜: 2020년 9월 25일 """ def main(): for _ in range(int(input())): a, b = map(int, input().split()) money = 0 if a == 1: money += 5000000 elif 2 <= a <= 3: money += 3000000 elif 4 <= a <= 6: money += 2000000 elif 7 <= a <= 10: money += 500000 elif 11 <= a <= 15: money += 300000 elif 16 <= a <= 21: money += 100000 if b == 1: money += 5120000 elif 2 <= b <= 3: money += 2560000 elif 4 <= b <= 7: money += 1280000 elif 8 <= b <= 15: money += 640000 elif 16 <= b <= 31: money += 320000 print(money) if __name__ == '__main__': main()
3.609375
4
srcs/sg/objects/abstract_object.py
pomponchik/computor_v2
0
12793726
<reponame>pomponchik/computor_v2 from srcs.errors import RuntimeASTError class AbstractObject: def __init__(self): raise NotImplementedError @classmethod def create_from_node(cls, node): raise NotImplementedError('operation not defined') def representation(self, context): raise NotImplementedError('operation not defined') def type_representation(self): raise NotImplementedError('operation not defined') def one_string_representation(self, context): return self.representation(context) def operation(self, other, operation, operation_node): if operation in ('*', '+', '**'): try: return self.real_operation(other, operation, operation_node) except RuntimeASTError as e: if not self.type_mark == 'm': return other.real_operation(self, operation, operation_node) raise e else: return self.real_operation(other, operation, operation_node) def real_operation(self, other, operation, operation_node): raise RuntimeASTError(f'the "{operation}" operation between {self.type_representation()} and {other.type_representation()} is not defined', operation_node)
2.5
2
utils/cal_normalize.py
qaz670756/LSNet
3
12793727
import numpy as np import cv2 import os from glob import glob from tqdm import tqdm img_h, img_w = 256, 256 means, stdevs = [], [] img_list = [] TRAIN_DATASET_PATH = 'data/Real/subset/train/B' image_fns = glob(os.path.join(TRAIN_DATASET_PATH, '*.*')) for single_img_path in tqdm(image_fns): img = cv2.imread(single_img_path) img = cv2.resize(img, (img_w, img_h)) img = img[:, :, :, np.newaxis] img_list.append(img) imgs = np.concatenate(img_list, axis=3) imgs = imgs.astype(np.float32) / 255. for i in range(3): pixels = imgs[:, :, i, :].ravel() # 拉成一行 means.append(np.mean(pixels)) stdevs.append(np.std(pixels)) # BGR --> RGB , CV读取的需要转换,PIL读取的不用转换 means.reverse() stdevs.reverse() print("normMean = {}".format(means)) print("normStd = {}".format(stdevs)) # normMean = [0.35389897, 0.39104056, 0.34307468] # normStd = [0.2158508, 0.23398565, 0.20874721] # normMean1 = [0.47324282, 0.498616, 0.46873462] # normStd1 = [0.2431127, 0.2601882, 0.25678185] # [0.413570895, 0.44482827999999996, 0.40590465] # [0.22948174999999998, 0.24708692499999999, 0.23276452999999997]
2.46875
2
iniciante/python/2493-jogo-do-operador.py
tfn10/beecrowd
0
12793728
<gh_stars>0 def jogo_do_operador(): while True: expressoes = list() resposta_dos_jogadores = list() jogadores_que_erraram = list() try: quantidade_de_expressoes = int(input()) for expre in range(quantidade_de_expressoes): expressoes.append(list(map(str, input().split()))) for resposta in range(quantidade_de_expressoes): resposta_dos_jogadores.append(list(map(str, input().split()))) for i in resposta_dos_jogadores: nome_do_jogador = i[0] indice = int(i[1]) - 1 expressao = i[2] operador_x = int(expressoes[indice][0]) operador_y = int(expressoes[indice][1].replace('=', ' ').split()[0]) operador_z = int(expressoes[indice][1].replace('=', ' ').split()[1]) if expressao == '+': if operador_x + operador_y != operador_z: jogadores_que_erraram.append(nome_do_jogador) elif expressao == '-': if operador_x - operador_y != operador_z: jogadores_que_erraram.append(nome_do_jogador) elif expressao == '*': if operador_x * operador_y != operador_z: jogadores_que_erraram.append(nome_do_jogador) jogadores_que_erraram.sort() if jogadores_que_erraram: if len(jogadores_que_erraram) != quantidade_de_expressoes: for jogador in jogadores_que_erraram: if jogador == jogadores_que_erraram[len(jogadores_que_erraram)-1]: print(jogador) else: print(jogador, end=' ') else: print('None Shall Pass!') else: print('You Shall All Pass!') except EOFError: break except ValueError: break jogo_do_operador()
3.578125
4
a06_Seq2seqWithAttention/a1_seq2seq.py
sunshinenum/text_classification
7,723
12793729
# -*- coding: utf-8 -*- import tensorflow as tf # 【该方法测试的时候使用】返回一个方法。这个方法根据输入的值,得到对应的索引,再得到这个词的embedding. def extract_argmax_and_embed(embedding, output_projection=None): """ Get a loop_function that extracts the previous symbol and embeds it. Used by decoder. :param embedding: embedding tensor for symbol :param output_projection: None or a pair (W, B). If provided, each fed previous output will first be multiplied by W and added B. :return: A loop function """ def loop_function(prev, _): if output_projection is not None: prev = tf.matmul(prev, output_projection[0]) + output_projection[1] prev_symbol = tf.argmax(prev, 1) #得到对应的INDEX emb_prev = tf.gather(embedding, prev_symbol) #得到这个INDEX对应的embedding return emb_prev return loop_function # RNN的解码部分。 # 如果是训练,使用训练数据的输入;如果是test,将t时刻的输出作为t+1时刻的s输入 def rnn_decoder_with_attention(decoder_inputs, initial_state, cell, loop_function,attention_states,scope=None):#3D Tensor [batch_size x attn_length x attn_size] """RNN decoder for the sequence-to-sequence model. Args: decoder_inputs: A list of 2D Tensors [batch_size x input_size].it is decoder input. initial_state: 2D Tensor with shape [batch_size x cell.state_size].it is the encoded vector of input sentences, which represent 'thought vector' cell: core_rnn_cell.RNNCell defining the cell function and size. loop_function: If not None, this function will be applied to the i-th output in order to generate the i+1-st input, and decoder_inputs will be ignored, except for the first element ("GO" symbol). This can be used for decoding, but also for training to emulate http://arxiv.org/abs/1506.03099. Signature -- loop_function(prev, i) = next * prev is a 2D Tensor of shape [batch_size x output_size], * i is an integer, the step number (when advanced control is needed), * next is a 2D Tensor of shape [batch_size x input_size]. attention_states: 3D Tensor [batch_size x attn_length x attn_size].it is represent input X. scope: VariableScope for the created subgraph; defaults to "rnn_decoder". Returns: A tuple of the form (outputs, state), where: outputs: A list of the same length as decoder_inputs of 2D Tensors with shape [batch_size x output_size] containing generated outputs. state: The state of each cell at the final time-step. It is a 2D Tensor of shape [batch_size x cell.state_size]. (Note that in some cases, like basic RNN cell or GRU cell, outputs and states can be the same. They are different for LSTM cells though.) """ with tf.variable_scope(scope or "rnn_decoder"): print("rnn_decoder_with_attention started...") state = initial_state #[batch_size x cell.state_size]. _, hidden_size = state.get_shape().as_list() #200 attention_states_original=attention_states batch_size,sequence_length,_=attention_states.get_shape().as_list() outputs = [] prev = None ################################################# for i, inp in enumerate(decoder_inputs):#循环解码部分的输入。如sentence_length个[batch_size x input_size] # 如果是训练,使用训练数据的输入;如果是test, 将t时刻的输出作为t + 1 时刻的s输入 if loop_function is not None and prev is not None:#测试的时候:如果loop_function不为空且前一个词的值不为空,那么使用前一个的值作为RNN的输入 with tf.variable_scope("loop_function", reuse=True): inp = loop_function(prev, i) if i > 0: tf.get_variable_scope().reuse_variables() ##ATTENTION################################################################################################################################################# # 1.get logits of attention for each encoder input. attention_states:[batch_size x attn_length x attn_size]; query=state:[batch_size x cell.state_size] query=state W_a = tf.get_variable("W_a", shape=[hidden_size, hidden_size],initializer=tf.random_normal_initializer(stddev=0.1)) query=tf.matmul(query, W_a) #[batch_size,hidden_size] query=tf.expand_dims(query,axis=1) #[batch_size, 1, hidden_size] U_a = tf.get_variable("U_a", shape=[hidden_size, hidden_size],initializer=tf.random_normal_initializer(stddev=0.1)) U_aa = tf.get_variable("U_aa", shape=[ hidden_size]) attention_states=tf.reshape(attention_states,shape=(-1,hidden_size)) #[batch_size*sentence_length,hidden_size] attention_states=tf.matmul(attention_states, U_a) #[batch_size*sentence_length,hidden_size] #print("batch_size",batch_size," ;sequence_length:",sequence_length," ;hidden_size:",hidden_size) #print("attention_states:", attention_states) #(?, 200) attention_states=tf.reshape(attention_states,shape=(-1,sequence_length,hidden_size)) # TODO [batch_size,sentence_length,hidden_size] #query_expanded: [batch_size,1, hidden_size] #attention_states_reshaped: [batch_size,sentence_length,hidden_size] attention_logits=tf.nn.tanh(query+attention_states+U_aa) #[batch_size,sentence_length,hidden_size]. additive style # 2.get possibility of attention attention_logits=tf.reshape(attention_logits,shape=(-1,hidden_size)) #batch_size*sequence_length [batch_size*sentence_length,hidden_size] V_a = tf.get_variable("V_a", shape=[hidden_size,1],initializer=tf.random_normal_initializer(stddev=0.1)) #[hidden_size,1] attention_logits=tf.matmul(attention_logits,V_a) #最终需要的是[batch_size*sentence_length,1]<-----[batch_size*sentence_length,hidden_size],[hidden_size,1] attention_logits=tf.reshape(attention_logits,shape=(-1,sequence_length)) #attention_logits:[batch_size,sequence_length] ########################################################################################################################################################## #attention_logits=tf.reduce_sum(attention_logits,2) #[batch_size x attn_length] attention_logits_max=tf.reduce_max(attention_logits,axis=1,keep_dims=True) #[batch_size x 1] # possibility distribution for each encoder input.it means how much attention or focus for each encoder input p_attention=tf.nn.softmax(attention_logits-attention_logits_max)#[batch_size x attn_length] # 3.get weighted sum of hidden state for each encoder input as attention state p_attention=tf.expand_dims(p_attention,axis=2) #[batch_size x attn_length x 1] # attention_states:[batch_size x attn_length x attn_size]; p_attention:[batch_size x attn_length]; attention_final=tf.multiply(attention_states_original,p_attention) #[batch_size x attn_length x attn_size] context_vector=tf.reduce_sum(attention_final,axis=1) #[batch_size x attn_size] ############################################################################################################################################################ #inp:[batch_size x input_size].it is decoder input; attention_final:[batch_size x attn_size] output, state = cell(inp, state,context_vector) #attention_final TODO 使用RNN走一步 outputs.append(output) # 将输出添加到结果列表中 if loop_function is not None: prev = output print("rnn_decoder_with_attention ended...") return outputs, state
3.21875
3
kitsune/users/migrations/0025_auto_20200926_0638.py
The-smooth-operator/kitsune
929
12793730
# Generated by Django 2.2.14 on 2020-09-26 06:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0024_auto_20200914_0433'), ] operations = [ migrations.AlterModelOptions( name='profile', options={'permissions': (('view_karma_points', 'Can view karma points'), ('deactivate_users', 'Can deactivate users'))}, ), ]
1.375
1
mysite/services/plot_bound_service.py
mscibxablach/PhotoApp2
0
12793731
<gh_stars>0 from mysite.plot_bound_detector.PlotBoundCalculator import PlotBoundCalculator class PlotBoundService: def __init__(self, plot_bound_detector): self.plot_bound_detector = plot_bound_detector def get_plot_bound_ratio(self, image): top_chunks, bottom_chunks = self.plot_bound_detector.get_plot_bound(image) top, bottom, ratio = PlotBoundCalculator.calculate_distance_ratio(top_chunks, bottom_chunks) return top, bottom, ratio
2.515625
3
main.py
csepy/csepy
1
12793732
<filename>main.py<gh_stars>1-10 #!/usr/bin/python3 import sys from csepy.csepy import Start if len(sys.argv) > 1: Start(sysargs=sys.argv) elif __name__ == '__main__': Start()
1.875
2
handlers/other/clan.py
roomdie/KingsEmpiresBot
0
12793733
<gh_stars>0 import typing import keyboards import states import re import random from loader import dp from aiogram import types from aiogram.dispatcher import filters from aiogram import exceptions from aiogram.dispatcher import FSMContext from utils.misc.read_file import read_txt_file from utils.db_api import tables, db_api from utils.classes import kb_constructor, timer from sqlalchemy import desc, and_ from utils.classes.regexps import ClanRegexp @dp.message_handler(state="*", commands="clan") async def clan_command_handler(message: types.Message, state: FSMContext): user_id = message.from_user.id session = db_api.CreateSession() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).join(tables.Clan).first() buildings: tables.Buildings = session.db.query( tables.Buildings).filter_by(user_id=user_id).first() if buildings.clan_building_lvl == 0: sticker = read_txt_file("sticker/sad_knight") await message.answer_sticker(sticker=sticker) msg_text = read_txt_file("text/clan/destroyed_clan") await message.answer( text=msg_text, ) session.close() return if clan_member is None: msg_text = read_txt_file("text/clan/without_clan") clan_msg = await message.answer( text=msg_text, reply_markup=keyboards.clan.kb_none_clan ) await state.update_data({ "user_id": user_id, "clan_msg": clan_msg }) session.close() return clan_members: typing.List[tables.ClanMember] = session.db.query( tables.ClanMember).filter_by(clan_id=clan_member.clan_id).all() clan_creator: tables.User = session.db.query( tables.User).filter_by(user_id=clan_member.clan.creator).first() keyboard = kb_constructor.StandardKeyboard(user_id=user_id).create_clan_keyboard() msg_text = read_txt_file("text/clan/in_clan") clan_msg = await message.answer( text=msg_text.format( clan_member.clan.emoji, clan_member.clan.name, clan_member.clan.description[:21], clan_member.clan.rating, len(clan_members), clan_creator.first_name, clan_member.rank), reply_markup=keyboard ) await state.update_data({ "user_id": user_id, "clan_msg": clan_msg }) session.close() @dp.callback_query_handler(regexp=ClanRegexp.back) async def clan_back_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) await clan_msg.edit_text( text=clan_msg.html_text, reply_markup=clan_msg.reply_markup, ) await callback.answer() @dp.callback_query_handler(regexp=ClanRegexp.without_clan) async def none_clan_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) session = db_api.CreateSession() townhall: tables.TownHall = session.db.query( tables.TownHall).filter_by(user_id=user_id).first() if callback.data == "create_clan": if townhall.money >= 5000: townhall.money -= 5000 else: await callback.answer( "Для создания клана не хватает {} 💰".format( 5000 - townhall.money) ) session.close() return clan_msg = await clan_msg.edit_text( text="Придумайте <b>название</b> для своего\n" "клана. (макс. 16 символов)\n" "<i>Ответив на это сообщение.</i>" ) await state.update_data({ "message_id": clan_msg.message_id }) await states.Clan.set_name.set() elif callback.data == "clans_rating": clan_table: typing.List[tables.Clan] = session.db.query( tables.Clan).order_by(desc(tables.Clan.rating)).all() text = "" clan_num = 1 for clan in clan_table[:10]: text += "{}. <b>{}</b> [ <code>{}</code> ⭐ ]\n".format(clan_num, clan.name, clan.rating) clan_num += 1 msg_text = read_txt_file("text/clan/rating") await clan_msg.edit_text( text=msg_text.format(text), reply_markup=keyboards.clan.kb_back ) elif callback.data == "clan_invitation": keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_invitation_keyboard() msg_text = read_txt_file("text/clan/clan_invitations") clan_invitation_msg = await clan_msg.edit_text( text=msg_text, reply_markup=keyboard ) await state.update_data({ "clan_invitation_msg": clan_invitation_msg }) await callback.answer() session.close() @dp.callback_query_handler(regexp=ClanRegexp.menu) async def clan_menu_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) session = db_api.CreateSession() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).join(tables.Clan).first() clan_members: typing.List[tables.ClanMember] = session.db.query( tables.ClanMember).filter_by(clan_id=clan_member.clan_id).all() clans_search: typing.List[tables.Clan] = session.db.query( tables.Clan).filter(and_( tables.Clan.state == "search", tables.Clan.clan_id != clan_member.clan_id)).all() if callback.data == "clan_war": if clan_member.clan.state == "search": if clans_search: clan_1: tables.Clan = clan_member.clan clan_2: tables.Clan = random.choice(clans_search) clan_1.state = "contest" clan_2.state = "contest" new_contest = tables.Contest( clan_id_1=clan_1.clan_id, clan_id_2=clan_2.clan_id, recent_log=["Война началась."], log=["Война началась."], state_timer=None, territory_names=["Russia", "Germany"], territory_owners=[None, None], territory_units=[0, 0], territory_captures=[None, None], clans_rating=[0, 0], colors=["blue", "red"] ) session.db.add(new_contest) msg_text = read_txt_file("text/clan/contest") await clan_msg.edit_text( text=msg_text.format(clan_member.clan.contest_count), reply_markup=keyboards.clan.kb_back ) session.close() return msg_text = read_txt_file("text/clan/search_contest") await clan_msg.edit_text( text=msg_text.format(clan_member.clan.contest_count), reply_markup=keyboards.clan.kb_cancel_contest ) elif clan_member.clan.state == "contest": msg_text = read_txt_file("text/clan/contest") await clan_msg.edit_text( text=msg_text.format(clan_member.clan.contest_count), reply_markup=keyboards.clan.kb_back ) elif clan_member.clan.state == "ending": msg_text = read_txt_file("text/clan/ending_contest") await clan_msg.edit_text( text=msg_text.format(clan_member.clan.contest_count), reply_markup=keyboards.clan.kb_back ) else: msg_text = read_txt_file("text/clan/none_contest") await clan_msg.edit_text( text=msg_text.format(clan_member.clan.contest_count), reply_markup=keyboards.clan.kb_search_contest ) elif callback.data == "clan_members": keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_members_keyboard() msg_text = read_txt_file("text/clan/members") clan_members_msg = await clan_msg.edit_text( text=msg_text.format( clan_member.clan.name, clan_member.clan.description[:21], len(clan_members), ), reply_markup=keyboard ) await state.update_data({ "clan_members_msg": clan_members_msg }) elif callback.data == "clan_settings": await callback.answer("В разработке...") await callback.answer() session.close() @dp.callback_query_handler(regexp=ClanRegexp.invitation_page) async def clan_invitation_pages_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) page_move = re.findall(r"invitation_page_(\d+)", callback.data)[0] page = int(page_move) keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_invitation_keyboard(page) try: msg_text = read_txt_file("text/clan/clan_invitations") await clan_msg.edit_text( text=msg_text, reply_markup=keyboard ) except exceptions.MessageNotModified: pass @dp.callback_query_handler(regexp=ClanRegexp.invitation) async def clan_invitation_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) invitation = re.findall(r"open_invitation_(\d+)", callback.data) accept_invitation = re.findall(r"accept_invitation_(\d+)", callback.data) cancel_invitation = re.findall(r"cancel_invitation_(\d+)", callback.data) session = db_api.CreateSession() if invitation: invitation_id = int(invitation[0]) clan_invitation_table: tables.ClanInvitation = session.db.query( tables.ClanInvitation).filter_by(id=invitation_id).join(tables.Clan).first() keyboard = kb_constructor.StandardKeyboard( user_id=user_id).create_invitation_keyboard(invitation_id=invitation_id) await clan_msg.edit_text( text="{}\n\n" "Рейтинг: \n" "Лидер: \n" "Участников: \n" "Осталось: ".format(clan_invitation_table.clan.name), reply_markup=keyboard ) elif accept_invitation: invitation_id = int(accept_invitation[0]) clan_invitation_table: tables.ClanInvitation = session.db.query( tables.ClanInvitation).filter_by(id=invitation_id).join(tables.Clan).first() if clan_invitation_table.clan.creator == user_id: rank = "Лидер" else: rank = "Рекрут" new_clan_member = tables.ClanMember( clan_id=clan_invitation_table.clan_id, user_id=user_id, rank=rank, contest_score=0, clan_units=0, units_donate=0, donate_timer=0 ) session.db.add(new_clan_member) session.db.query(tables.ClanInvitation).filter_by( id=invitation_id).delete() session.db.commit() await callback.answer("Вы вступили в клан!") keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_invitation_keyboard() msg_text = read_txt_file("text/clan/clan_invitations") await clan_msg.edit_text( text=msg_text, reply_markup=keyboard ) elif cancel_invitation: invitation_id = int(cancel_invitation[0]) session.db.query(tables.ClanInvitation).filter_by( id=invitation_id).delete() session.db.commit() keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_invitation_keyboard() msg_text = read_txt_file("text/clan/clan_invitations") await clan_msg.edit_text( text=msg_text, reply_markup=keyboard ) await callback.answer() session.close() @dp.callback_query_handler(regexp=ClanRegexp.get_clan_units) async def clan_getting_units_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) session = db_api.CreateSession() townhall: tables.TownHall = session.db.query( tables.TownHall).filter_by(user_id=user_id).first() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).first() if callback.data == "get_clan_units": if clan_member.donate_timer != 0: await callback.answer("Станет доступно позже.") session.close() return msg_text = read_txt_file("text/clan/get_clan_units") keyboard = kb_constructor.StandardKeyboard( user_id=user_id).create_get_clan_units_keyboard() sticker = read_txt_file("sticker/get_clan_units") await callback.message.answer_sticker(sticker=sticker) await callback.message.answer( text=msg_text.format(townhall.country_name, callback.from_user.get_mention()), reply_markup=keyboard ) clan_member.donate_timer = timer.Timer.set_timer(28800) session.db.commit() await callback.answer() session.close() @dp.callback_query_handler(regexp=ClanRegexp.member) async def clan_members_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") clan_members_msg: types.Message = data.get("clan_members_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) session = db_api.CreateSession() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).first() clan_member_id = re.findall(r"check_clan_member_(\d+)", callback.data) raise_member = re.findall(r"raise_clan_member_(\d+)", callback.data) kick_member = re.findall(r"kick_clan_member_(\d+)", callback.data) if clan_member_id: member_id = int(clan_member_id[0]) checked_clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(id=member_id).join(tables.User).first() keyboard = kb_constructor.StandardKeyboard( user_id=user_id).create_member_keyboard(member_id, clan_member) msg_text = read_txt_file("text/clan/member") await clan_msg.edit_text( text=msg_text.format( checked_clan_member.user.first_name, checked_clan_member.contest_score, checked_clan_member.rank, ), reply_markup=keyboard ) elif raise_member: member_id = int(raise_member[0]) checked_clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(id=member_id).first() if clan_member.rank in ("Заместитель", "Лидер"): if checked_clan_member.rank == "Рекрут": checked_clan_member.rank = "Старейшина" elif checked_clan_member.rank == "Старейшина": checked_clan_member.rank = "Заместитель" session.db.commit() keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_members_keyboard() await clan_msg.edit_text( text=clan_members_msg.html_text, reply_markup=keyboard ) elif kick_member: member_id = int(kick_member[0]) checked_clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(id=member_id).first() if clan_member.rank in ("Заместитель", "Лидер"): if checked_clan_member.rank != "Лидер" and clan_member.rank != checked_clan_member.rank: session.db.query( tables.ClanMember).filter_by(id=member_id).delete() session.db.commit() keyboard = kb_constructor.PaginationKeyboard( user_id=user_id).create_members_keyboard() await clan_msg.edit_text( text=clan_members_msg.html_text, reply_markup=keyboard ) elif callback.data == "leave_clan": await clan_msg.edit_text( text="Вы уверены,\n что хотите покинуть клан?", reply_markup=keyboards.clan.kb_leave_clan ) elif callback.data == "yes_leave_clan": session.db.query( tables.ClanMember).filter_by(user_id=user_id).delete() session.db.commit() await clan_msg.edit_text( text="Клан", reply_markup=keyboards.clan.kb_none_clan ) elif callback.data == "no_leave_clan": await clan_msg.edit_text( text=clan_msg.html_text, reply_markup=clan_msg.reply_markup ) await callback.answer() session.close() @dp.callback_query_handler(regexp=ClanRegexp.contest) async def clan_contest_handler(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id clan_msg: types.Message = data.get("clan_msg") if data.get("user_id") != user_id: msg_text = read_txt_file("text/hints/foreign_button") return await callback.answer(msg_text) session = db_api.CreateSession() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).join(tables.Clan).first() if callback.data == "start_search_contest": msg_text = read_txt_file("text/clan/search_contest") await clan_msg.edit_text( text=msg_text, reply_markup=keyboards.clan.kb_cancel_contest ) clan_member.clan.state = "search" elif callback.data == "cancel_search_contest": msg_text = read_txt_file("text/clan/none_contest") await clan_msg.edit_text( text=msg_text, reply_markup=keyboards.clan.kb_search_contest ) clan_member.clan.state = None await callback.answer() session.close() @dp.message_handler(filters.IsReplyFilter(True), state=states.Clan.set_name) async def set_clan_name(message: types.Message, state: FSMContext): data = await state.get_data() if message.reply_to_message.message_id == data.get("message_id"): clan_name = message.text[:16] clan_msg = await message.reply( text="Придумайте <b>описание</b> для \n" "клана. (макс. 21 символ)\n" "<i>Ответив на это сообщение.</i>" ) await state.update_data({ "clan_name": clan_name, "message_id": clan_msg.message_id }) await states.Clan.set_description.set() @dp.message_handler(filters.IsReplyFilter(True), state=states.Clan.set_description) async def set_clan_description(message: types.Message, state: FSMContext): data = await state.get_data() user_id = message.from_user.id if message.reply_to_message.message_id == data.get("message_id"): clan_description = message.text[:21] await state.update_data({ "clan_description": clan_description, }) keyboard = kb_constructor.StandardKeyboard( user_id=user_id).create_emoji_clan_keyboard() set_emoji_msg = await message.answer( text="Выберите <b>логотип</b> вашего клана.", reply_markup=keyboard ) await state.update_data({ "set_emoji_msg": set_emoji_msg }) await states.Clan.set_emoji.set() @dp.callback_query_handler(state=states.Clan.set_emoji) async def set_clan_emoji(callback: types.CallbackQuery, state: FSMContext): data = await state.get_data() user_id = callback.from_user.id emojis = [ "❤", "‍🔥", "💖", "🍩", "🌶", "💩", "💧", "🌈", "🌞", "🌻", "🌹", "☠", "🥀", "🦄", "🐙", "🎃", "👾", "🔱" ] session = db_api.CreateSession() if callback.data in emojis: set_emoji_msg: types.Message = data.get("set_emoji_msg") await set_emoji_msg.delete() clan_name = data.get("clan_name") clan_description = data.get("clan_description") clan_emoji = callback.data new_clan = tables.Clan( name=clan_name, description=clan_description, emoji=clan_emoji, rating=0, money=0, units=0, creator=user_id ) session.db.add(new_clan) session.db.commit() clan: tables.Clan = session.db.query( tables.Clan).filter_by(creator=user_id).first() if clan is not None: new_clan_member = tables.ClanMember( clan_id=clan.clan_id, user_id=user_id, clan_units=0, rank="Лидер" ) session.db.add(new_clan_member) session.db.commit() clan_member: tables.ClanMember = session.db.query( tables.ClanMember).filter_by(user_id=user_id).first() clan_members: typing.List[tables.ClanMember] = session.db.query( tables.ClanMember).filter_by(clan_id=clan_member.clan_id).all() clan_creator: tables.User = session.db.query( tables.User).filter_by(user_id=clan_member.clan.creator).first() keyboard = kb_constructor.StandardKeyboard( user_id=user_id).create_clan_keyboard() msg_text = read_txt_file("text/clan/in_clan") clan_msg = await callback.message.answer( text=msg_text.format( clan.emoji, clan.name, clan.description[:21], clan.rating, len(clan_members), clan_creator.first_name, clan_member.rank), reply_markup=keyboard ) await state.reset_state(with_data=True) await state.set_data({ "user_id": user_id, "clan_msg": clan_msg }) session.close() @dp.message_handler(filters.IsReplyFilter(True), regexp=ClanRegexp.invite, state="*") async def invite_user_clan_handler(message: types.Message): user_id = message.from_user.id replied_user = message.reply_to_message.from_user session = db_api.CreateSession() clan_member_table: tables.ClanMember = session.filter_by_user_id( user_id=user_id, table=tables.ClanMember ) if clan_member_table is None: return if clan_member_table.rank in ("Лидер", "Заместитель", "Старейшина"): invited_clan_member_table: tables.ClanMember = session.filter_by_user_id( user_id=replied_user.id, table=tables.ClanMember ) invited_user_table: tables.User = session.filter_by_user_id( user_id=replied_user.id, table=tables.User) invited_clan_invitation_table: tables.ClanInvitation = session.db.query( tables.ClanInvitation).filter_by( clan_id=clan_member_table.clan_id, user_id=replied_user.id).first() if invited_user_table is None or invited_clan_invitation_table is not None: return if (invited_clan_member_table is None) and (not replied_user.is_bot): time_set = timer.Timer.set_timer(86400) new_invitation = tables.ClanInvitation( user_id=replied_user.id, clan_id=clan_member_table.clan_id, timer=time_set ) session.db.add(new_invitation) session.close()
2.171875
2
trojsten/settings/wiki.py
MvonK/web
5
12793734
from trojsten.settings.production import * SITE_ID = 6 NAVBAR_SITES = [1, 3, 4, 5] ROOT_URLCONF = "trojsten.urls.wiki"
1.265625
1
bubblegum/backend/mpl/contour.py
danielballan/xray-vision
4
12793735
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from .. import QtCore, QtGui from . import AbstractMPLDataView from .. import AbstractDataView2D import logging logger = logging.getLogger(__name__) class ContourView(AbstractDataView2D, AbstractMPLDataView): """ The ContourView provides a UI widget for viewing a number of 1-D data sets as a contour plot, starting from dataset 0 at y = 0 """ def __init__(self, fig, data_list=None, cmap=None, norm=None, *args, **kwargs): """ __init__ docstring Parameters ---------- fig : figure to draw the artists on x_data : list list of vectors of x-coordinates y_data : list list of vectors of y-coordinates lbls : list list of the names of each data set cmap : colormap that matplotlib understands norm : mpl.colors.Normalize """ # set some defaults # no defaults yet # call the parent constructors super(ContourView, self).__init__(data_list=data_list, fig=fig, cmap=cmap, norm=norm, *args, **kwargs) # create the matplotlib axes self._ax = self._fig.add_subplot(1, 1, 1) self._ax.set_aspect('equal') # plot the data self.replot() def replot(self): """ Override Replot the data after modifying a display parameter (e.g., offset or autoscaling) or adding new data """ # TODO: This class was originally written to convert a 1-D stack into a # 2-D contour. Rewrite this replot method # get the keys from the dict keys = list(six.iterkeys(self._data)) # number of datasets in the data dict num_keys = len(keys) # cannot plot data if there are no keys if num_keys < 1: return # set the local counter counter = num_keys - 1 # @tacaswell Should it be required that all datasets are the same # length? num_coords = len(self._data[keys[0]][0]) # declare the array self._data_arr = np.zeros((num_keys, num_coords)) # add the data to the main axes for key in self._data.keys(): # get the (x,y) data from the dictionary (x, y) = self._data[key] # add the data to the array self._data_arr[counter] = y # decrement the counter counter -= 1 # get the first dataset to get the x axis and number of y datasets x, y = self._data[keys[0]] y = np.arange(len(keys)) # TODO: Colormap initialization is not working properly. self._ax.contourf(x, y, self._data_arr) # , cmap=colors.Colormap(self._cmap))
0.855469
1
utilities/GraphLoss.py
adik0861/RetinaNet
0
12793736
import matplotlib.pyplot as plt import numpy as np import pandas as pd from pathlib import Path import re import io loss = Path.cwd().parent.joinpath('savefiles', 'checkpoints', 'loss.log').read_text() loss = re.sub(r'[\]\[]', '', loss) df = pd.read_csv(io.StringIO(loss), names=['epoch', 'iteration', 'cls_loss', 'box_loss', 'run_loss']) def avg_loss(period): _df = df.groupby(df.index // period).mean() x = np.array(list(_df.index)) y_cls = np.array(_df['cls_loss'].to_list()) y_box = np.array(_df['box_loss'].to_list()) plt.plot(x, y_cls, y_box) plt.show()
2.671875
3
uam_simulator/agent.py
colineRamee/UAM_simulator_scitech2021
1
12793737
import math import numpy as np from uam_simulator import my_utils from uam_simulator import pathPlanning from uam_simulator import orca import gurobipy as grb from gurobipy import GRB import time as python_time class Flightplan: def __init__(self, t0, dt, positions, times=None): self.start_time = t0 self.positions = positions self.time_step = dt self.times = None if times is not None: self.time_step = None self.times = np.array(times) else: self.times = np.array([self.start_time + i * self.time_step for i in range(0, len(self.positions))]) if self.time_step is not None: self.end_time = self.start_time + (len(self.positions) - 1) * self.time_step else: self.end_time=self.times[-1] def get_planned_position_at(self, time, return_velocity=False, ignore_timed_out=False, debug=False): """ Interpolates between the flight points """ if ignore_timed_out and time > self.end_time: if return_velocity: return None, None else: return None n = len(self.positions) if self.time_step is not None: idx_float = (float(time) - float(self.start_time)) / float(self.time_step) idx_low = min(math.floor(idx_float), n - 1) idx_high = min(math.ceil(idx_float), n - 1) if idx_low == idx_high: # Indices are equal because idx_float is an int if return_velocity: if idx_high == n-1: velocity = np.array([0, 0]) else: velocity = (self.positions[idx_high+1]-self.positions[idx_high])/(self.times[idx_high+1]-self.times[idx_high]) return self.positions[idx_high], velocity else: return self.positions[idx_high] else: if time > self.times[-1]: return np.copy(self.positions[-1]) idx_high = np.searchsorted(self.times, time) idx_low = max(0, idx_high - 1) if self.times[idx_high] == time or idx_low == idx_high: if return_velocity: if idx_high == n-1: velocity = np.array([0, 0]) else: velocity = (self.positions[idx_high+1]-self.positions[idx_high])/(self.times[idx_high+1]-self.times[idx_high]) return self.positions[idx_high], velocity else: return self.positions[idx_high] idx_float = idx_low + (time - self.times[idx_low]) / (self.times[idx_high] - self.times[idx_low]) pos_high = self.positions[idx_high] pos_low = self.positions[idx_low] # if time is exactly integer then returns the exact pos if debug: print(idx_float) print(pos_high) print(pos_low) if return_velocity: return pos_low + (pos_high - pos_low) * (idx_float - idx_low), (pos_high-pos_low)/(self.times[idx_high]-self.times[idx_low]) else: return pos_low + (pos_high - pos_low) * (idx_float - idx_low) def get_planned_trajectory_between(self, start_time, end_time, debug=False): """ Returns trajectory between start_time and end_time""" if (start_time - self.end_time) >= -1e-4 or (end_time - self.start_time) <= 1e-4: return None, None trajectory_end_time = min(end_time, self.end_time) trajectory_start_time = max(start_time, self.start_time) trajectory = [] times = [] if debug: print('time step is '+str(self.time_step)) print('start_time is '+str(start_time)) print('end_time '+str(end_time)) print('positions '+str(self.positions)) print('times '+str(self.times)) print(start_time-self.end_time) if self.time_step is None: # self.times is sorted [start_index, end_index] = np.searchsorted(self.times, [trajectory_start_time, trajectory_end_time]) temp = self.times[start_index] if abs(self.times[start_index]-trajectory_start_time) > 1e-4: # requires interpolation # Since we already now the index we could avoid a second call to search sorted trajectory.append(self.get_planned_position_at(trajectory_start_time)) times.append(trajectory_start_time) for i in range(start_index, end_index): trajectory.append(self.positions[i]) times.append(self.times[i]) # trajectory_end_time <= times[end_index] if abs(self.times[end_index]-trajectory_end_time) > 1e-4: # requires interpolation trajectory.append(self.get_planned_position_at(trajectory_end_time)) times.append(trajectory_end_time) else: trajectory.append(self.positions[end_index]) times.append(trajectory_end_time) else: start_index_float = float((trajectory_start_time - self.start_time) / self.time_step) end_index_float = float((trajectory_end_time - self.start_time) / self.time_step) lower = math.ceil(start_index_float) upper = min(math.floor(end_index_float), len(self.positions) - 1) if lower != start_index_float: pos_0 = self.get_planned_position_at(start_time) trajectory.append(np.copy(pos_0)) times.append(trajectory_start_time) for index in range(lower, upper + 1): trajectory.append(self.positions[index]) # times.append(self.start_time+index*self.time_step) times.append(self.times[index]) if upper != end_index_float: pos_end = self.get_planned_position_at(end_time) trajectory.append(pos_end) times.append(trajectory_end_time) return trajectory, times def get_end_time(self): if self.time_step is not None: return self.start_time + (len(self.positions) - 1) * self.time_step else: return self.times[-1] class Agent: def __init__(self, env, radius, max_speed, start=None, end=None, start_time=0, agent_logic='dumb', centralized_manager=None, algo_type=None, agent_dynamics=None, id=0, sensing_radius=10000, flight_leg='initial'): self.id = id self.environment = env self.centralized_manager = centralized_manager self.agent_dynamics = agent_dynamics if agent_logic == 'dumb': protected_area = self.environment.get_protected_area() else: # All other agents can wait in place protected_area = None # Can't have random start and not random end (or vice versa) if start is None or end is None: self.start, self.goal = self.environment.get_random_start_and_end(protected_area_start=protected_area) if np.linalg.norm(self.start - self.goal) < 10: # Play one more time # print('agent start and goal are close, redrawing at random') self.start, self.goal = self.environment.get_random_start_and_end(protected_area_start=protected_area) if np.linalg.norm(self.start - self.goal) < 10: print('unlikely, agent start and goal are still close') else: self.start = start self.goal = end self.position = np.copy(self.start) # Passed by reference self.new_position = np.copy(self.start) self.radius = radius self.orientation = 0 self.minSpeed = 0.0 self.maxSpeed = max_speed self.sensing_radius = sensing_radius self.desired_start_time = start_time self.start_time = start_time # actual start time if a ground delay is planned if np.linalg.norm(self.goal - self.start) == 0: print(agent_logic) print(start) print(end) print(np.linalg.norm(self.goal - self.start)) self.velocity = self.maxSpeed * (self.goal - self.start) / (np.linalg.norm(self.goal - self.start)) self.new_velocity = self.velocity self.trajectory = [] self.trajectory_times = [] self.collision_avoidance_time = [] self.preflight_time = None self.flightPlan = None self.status = 'ok' self.agent_logic = agent_logic self.tolerance = self.environment.tolerance self.t_removed_from_sim=None if agent_logic == 'dumb': self.ownship = False else: self.ownship = True self.flight_status = 'initialized' self.algo_type = algo_type self.cumulative_density=0 self.density=0 self.n_steps=0 self.flight_leg=flight_leg def get_predicted_end_time(self): if self.flightPlan is not None: return self.flightPlan.end_time else: print('Agent: in order to get the predicted end time a flight plan must exist') return self.start_time def compute_next_move(self, current_time, dt, debug=False, density=0): """ Store the next position in self.new_position. The position is updated when move is called """ if self.agent_logic == 'dumb': self.new_position = self.compute_straight_move(self.position, self.goal, self.maxSpeed, dt) self.new_velocity = (self.new_position - self.position) / dt if self.agent_logic == 'reactive': self.cumulative_density += density self.n_steps += 1 if self.algo_type is None: self.algo_type = 'MVP' self.new_velocity = self.collision_avoidance(dt, algo_type=self.algo_type) self.new_velocity = self.velocity_update(self.new_velocity) self.new_position += self.new_velocity * dt if self.agent_logic == 'strategic': # Follow flight plan (without consideration for kinematic properties) self.new_position = self.flightPlan.get_planned_position_at(current_time + dt, debug=debug) self.new_velocity = (self.new_position - self.position) / dt if debug: print('New position ' + str(self.new_position)) print('old position ' + str(self.position)) if self.trajectory == []: self.trajectory.append(np.copy(self.position)) self.trajectory_times.append(current_time) self.trajectory.append(np.copy(self.new_position)) self.trajectory_times.append(current_time + dt) self.flight_status = 'ongoing' def compute_straight_move(self, current_position, goal, speed, dt): orientation = math.atan2(goal[1] - current_position[1], goal[0] - current_position[0]) d = np.linalg.norm(goal - current_position) max_step_length = min(speed * dt, d) # slow down to arrive at the goal on the next time step return current_position + np.array([math.cos(orientation), math.sin(orientation)]) * max_step_length def move(self): self.position = np.copy(self.new_position) self.velocity = np.copy(self.new_velocity) return self.position def velocity_update(self, new_velocity): # Introduce kinematic constraints # For now just clamp the velocity and instantly change the orientation v = np.linalg.norm(new_velocity) v_clamped = my_utils.clamp(self.minSpeed, self.maxSpeed, v) if self.agent_dynamics is None: return new_velocity * v_clamped / v else: turn_angle = my_utils.get_angle(self.velocity, new_velocity) max_angle=30*math.pi/180 if abs(turn_angle)>max_angle: vel = self.velocity * v_clamped / np.linalg.norm(self.velocity) theta=math.copysign(max_angle,turn_angle) return vel @ np.asarray([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]]) else: return new_velocity * v_clamped / v def preflight(self, dt, algo_type='Straight', density=0): # Given, the start/goals and published flight plans of other agents find a free path and publish it self.density = density if self.centralized_manager is None: print('agent.py preflight error, a centralized manager must exist') if algo_type == 'Straight': timer_start = python_time.time() plan = [] plan.append(self.start) pos = np.copy(self.start) d = np.linalg.norm(self.goal - pos) # Larger time steps require larger tolerance # TODO tolerances are a bit of a mess while d > self.maxSpeed * dt: pos = self.compute_straight_move(pos, self.goal, self.maxSpeed, dt) d = np.linalg.norm(self.goal - pos) plan.append(pos) if d != 0: plan.append(self.goal) self.flightPlan = Flightplan(self.start_time, dt, plan) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'LocalVO': timer_start = python_time.time() local_planner = pathPlanning.Local_VO(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = local_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] ## Debug if len(times) < 2: print('the plan is too short') print('agent start '+ str(self.start)) print('agent goal '+str(self.goal)) print('agent plan pos '+str(plan)) print('agent plan times ' + str(times)) self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'Decoupled': timer_start = python_time.time() decoupled_planner = pathPlanning.DecoupledApproach(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = decoupled_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'SIPP': timer_start = python_time.time() sipp_planner = pathPlanning.SIPP(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager, self.tolerance) success, plan, times = sipp_planner.search() if not success: self.flight_status = 'cancelled' return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan if algo_type == 'A_star_8': timer_start = python_time.time() astar_planner = pathPlanning.AStar_8grid(self.start, self.goal, self.start_time, self.maxSpeed, self.centralized_manager) success, plan, times = astar_planner.search() if not success: self.flight_status = 'cancelled' timer_end = python_time.time() self.preflight_time = timer_end - timer_start return None self.start_time = times[0] self.flightPlan = Flightplan(times[0], times[1] - times[0], plan, times=np.array(times)) timer_end = python_time.time() self.preflight_time = timer_end - timer_start return self.flightPlan else: print('The algo type ' + algo_type + ' is not implemented') def can_safely_take_off(self, t): if self.algo_type == 'straight': return True neighbors = self.environment.get_neighbors(self.position, self.radius) for vehicle in neighbors: if t >= vehicle.start_time and vehicle.id != self.id: # if np.linalg.norm(self.position - vehicle.position) <= self.radius: self.flight_status = 'waiting' return False self.start_time = t return True def collision_avoidance(self, dt, algo_type='MVP'): # Given current position, next flight plan goal and surrounding vehicles decide where to go # Based on Hoekstra Bluesky simulator # The returned velocity might not be feasible if algo_type == 'MVP_Bluesky': timer_start = python_time.time() neighbors = self.get_neighbors() velocity_change = np.asarray([0.0, 0.0]) direction = self.goal - self.position d = np.linalg.norm(direction) desired_velocity = min(self.maxSpeed, d / dt) * direction / d safety_factor = 1.10 # 10% safety factor (as in The effects of Swarming on a Voltage Potential-Based Conflict Resolution Algorithm, <NAME>) # if d<=self.radius: # dV=0 # else: for neighbor in neighbors: # Find Time of Closest Approach delta_pos = self.position - neighbor.position dist=np.linalg.norm(delta_pos) delta_vel = desired_velocity - neighbor.velocity if np.linalg.norm(delta_vel)==0: t_cpa=0 else: t_cpa=-np.dot(delta_pos, delta_vel) / np.dot(delta_vel, delta_vel) dcpa = delta_pos+delta_vel*t_cpa dabsH = np.linalg.norm(dcpa) # If there is a conflict if dabsH < self.radius: # If head-on conflict if dabsH<=10: dabsH=10 dcpa[0] = delta_pos[1] / dist * dabsH dcpa[1] = -delta_pos[0] / dist * dabsH if self.radius*safety_factor < dist: erratum = np.cos(np.arcsin((self.radius*safety_factor) / dist) - np.arcsin(dabsH / dist)) dV =(((self.radius*safety_factor) / erratum - dabsH) * dcpa)/(abs(t_cpa)*dabsH) else: # If already moving away from conflict (tcpa is negative) then just keep going if t_cpa<=0: dV = 0 else: dV =(self.radius*safety_factor - dabsH)*dcpa/(abs(t_cpa)*dabsH) velocity_change += dV timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return desired_velocity + velocity_change elif algo_type == 'VO': timer_start = python_time.time() intruders = self.get_neighbors() d = np.linalg.norm(self.goal - self.position) speed = min(d / dt, self.maxSpeed) if d == 0: print('VO, this should not happen') print('distance to goal is 0') desired_velocity = (self.goal - self.position) * speed / d model = setupMIQCP(intruders, desired_velocity, self) model.optimize() if model.status != GRB.Status.OPTIMAL: print('Error gurobi failed to find a solution') print(model.status) vars = model.getVars() if intruders != []: # plotter([-1000,1000],[-1000,1000],100,[get_VO(intruders[0],self)],chosen_v=np.array([vars[0].x,vars[1].x])) pass timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return np.array([vars[0].x, vars[1].x]) elif algo_type == 'ORCA': timer_start = python_time.time() reactive_solver = orca.ORCA() vel=reactive_solver.compute_new_velocity(self, dt) timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return vel elif algo_type == 'straight': timer_start = python_time.time() d = np.linalg.norm(self.goal - self.position) speed = min(d / dt, self.maxSpeed) desired_velocity = (self.goal - self.position) * speed / d timer_end = python_time.time() self.collision_avoidance_time.append(timer_end - timer_start) return desired_velocity else: print(algo_type+' not implemented ') def get_neighbors(self): neighbors = self.environment.get_neighbors(self.position, self.sensing_radius) if neighbors == []: return [] else: return neighbors[neighbors != self] def get_nearest_neighbors(self, k, max_radius): # Will return itself so query one more neighbor neighbors = self.environment.get_nearest_neighbors(self.position, k+1, max_radius) if neighbors == []: return [] else: return neighbors[neighbors != self] def finish_flight(self, t,goal_pos=None, t_removed_from_sim=None): self.flight_status = 'finished' self.arrival_time = t self.t_removed_from_sim=t_removed_from_sim if goal_pos is not None: self.trajectory.append(np.copy(goal_pos)) self.trajectory_times.append(t) def log_agent(self): agent_log = {'flight_status': self.flight_status, 'agent_type': self.agent_logic, 'desired_time_of_departure': self.desired_start_time, 'agent_id':self.id} if self.flight_status== 'finished' or self.flight_status == 'ongoing': agent_log['actual_time_of_departure'] = self.start_time if self.flight_status == 'finished': ideal_length = float(np.linalg.norm(self.goal - self.start)) actual_length = 0 if self.trajectory == []: print('agent, empty trajectory ') # happens if start and goal are really close print(self.start) print(self.goal) pos_0 = self.trajectory[0] for pos in self.trajectory: d = np.linalg.norm(pos - pos_0) actual_length += d pos_0 = np.copy(pos) direction = self.goal - self.start heading = math.atan2(direction[1], direction[0]) if self.agent_logic == 'reactive': self.density = self.cumulative_density/self.n_steps - 1 agent_log['flight_status']= self.flight_status agent_log['agent_type']= self.agent_logic agent_log['length_ideal']= ideal_length agent_log['actual_length']= actual_length agent_log['ideal_time_of_arrival']= self.desired_start_time+ideal_length / self.maxSpeed agent_log['actual_time_of_arrival']= self.arrival_time if self.t_removed_from_sim is not None: agent_log['time_removed_from_sim']=self.t_removed_from_sim agent_log['heading']= heading agent_log['density']= self.density if self.agent_logic == 'strategic': agent_log['time_to_preflight'] = self.preflight_time elif self.agent_logic == 'reactive': agent_log['average_time_to_plan_avoidance'] = sum(self.collision_avoidance_time) / len(self.collision_avoidance_time) agent_log['total_planning_time'] = sum(self.collision_avoidance_time) return agent_log def get_VO(intruder_agent, ownship_agent): if intruder_agent == ownship_agent: print('get_VO this should not happen intruder and ownship are the same') rel_pos = intruder_agent.position - ownship_agent.position d = np.linalg.norm(rel_pos) if d == 0: print('the distance between the two agents is 0') if ownship_agent.radius > d: print('there is an intruder in the protected radius') print(ownship_agent.position) print(intruder_agent.position) alpha = math.asin(ownship_agent.radius / d) # VO cone half-angle (>=0) theta = math.atan2(rel_pos[1], rel_pos[0]) vector1 = [math.cos(theta + alpha), math.sin(theta + alpha)] vector2 = [math.cos(theta - alpha), math.sin(theta - alpha)] # must be greater normal_1 = np.array([vector1[1], -vector1[0]]) # Rotated +90 degrees constraint1 = lambda x, y: np.dot((np.array([x, y]) - intruder_agent.velocity) + 0.1 * normal_1, normal_1) # must be smaller normal_2 = np.array([-vector2[1], vector2[0]]) # Rotated -90 degrees constraint2 = lambda x, y: np.dot((np.array([x, y]) - intruder_agent.velocity) + 0.1 * normal_2, normal_2) return constraint1, constraint2 def setupMIQCP(intruders, desired_vel, ownship_agent): """ Intruders should be an array of agents """ model = grb.Model('VO') max_vel = ownship_agent.maxSpeed model.addVar(lb=-max_vel, ub=max_vel, name='x') model.addVar(lb=-max_vel, ub=max_vel, name='y') model.addVars(2 * len(intruders), vtype=GRB.BINARY) model.update() X = model.getVars() n_intruder = 0 for intruder in intruders: constraints_or = get_VO(intruder, ownship_agent) n_constraint = 0 for constraint in constraints_or: c = constraint(0, 0) a = constraint(1, 0) - c b = constraint(0, 1) - c # K must be arbitrarily large so that when the binary constraint is 1 the constraint is always respected K = abs(a * max_vel) + abs(b * max_vel) + c model.addConstr(a * X[0] + b * X[1] - K * X[2 + 2 * n_intruder + n_constraint] <= -c) n_constraint += 1 model.addConstr(X[2 + 2 * n_intruder] + X[2 + 2 * n_intruder + 1] <= 1) n_intruder += 1 model.addConstr(X[0] * X[0] + X[1] * X[1] <= max_vel ** 2) model.setObjective( (X[0] - desired_vel[0]) * (X[0] - desired_vel[0]) + (X[1] - desired_vel[1]) * (X[1] - desired_vel[1]), GRB.MINIMIZE) model.setParam("OutputFlag", 0) model.setParam("FeasibilityTol", 1e-9) model.update() return model
2.796875
3
authentik/stages/user_delete/apps.py
BeryJu/passbook
15
12793738
<reponame>BeryJu/passbook """authentik delete stage app config""" from django.apps import AppConfig class AuthentikStageUserDeleteConfig(AppConfig): """authentik delete stage config""" name = "authentik.stages.user_delete" label = "authentik_stages_user_delete" verbose_name = "authentik Stages.User Delete"
1.5625
2
analyze.py
satamame/pscscrape
0
12793739
# %% import os import matplotlib.pyplot as plt # %% 設定 datasets = ['hariko/scripts',] # %% "「" を含む行数をカウントする関数 def count_kakko(f_path): '''行数と "「" を含む行数を取得する parameters ---------- f_path : str 調査するファイルのパス名 returns ------- lines : int ファイルの行数 lines_with_kakko "「" を含む行数 ''' lines = 0 lines_with_kakko = 0 with open(f_path, encoding='utf-8') as f: while True: l = f.readline() if not l: break if '「' in l: lines_with_kakko += 1 lines += 1 return (lines, lines_with_kakko) # %% すべてのファイルについて調べる params = [] for set_dir in datasets: files = os.listdir(path=set_dir) for f in files: f_path = os.path.abspath(os.path.join(set_dir, f)) if os.path.isfile(f_path): params.append(count_kakko(f_path)) # %% 可視化する (x, y) = zip(*params) plt.scatter(x, y) # %% y を行数ではなく割合で表示 y = [y/x for (x, y) in params] plt.scatter(x, y, alpha=0.3)
2.40625
2
source/cognidron/interfaces/eeg/eegInterfaz.py
dregmli/cognidron
1
12793740
<gh_stars>1-10 # Para usar esta clase como una interfaz en POO se utiliza esta libreria # mas info en: https://www.python-course.eu/python3_abstract_classes.php from abc import ABC, abstractmethod class EegInterfaz(ABC): """ Interfaz abstracta que debe implementarse para conectar el cognidron con el dispositivo de EEG. """ conectado = False # para saber si se encuentra conectado con el dispositivo EEG def __init__(self): pass @abstractmethod def iniciarConexion(self): pass @abstractmethod def cerrarConexion(self): pass @abstractmethod def enviarMensaje(self, mensaje): pass @abstractmethod def recibirMensaje(self): return ""
3.328125
3
tpDcc/tools/unittests/core/toolset.py
tpDcc/tpDcc-tools-unittest
0
12793741
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Toolset implementation for tpDcc-tools-unittests """ from __future__ import print_function, division, absolute_import from tpDcc.libs.qt.widgets import toolset class UnitTestsToolsetWidget(toolset.ToolsetWidget, object): def __init__(self, *args, **kwargs): self._unit_test_paths = kwargs.get('unit_test_paths', list()) self._unit_test_paths.extend([r'D:\tpDcc\tpDcc-libs-nameit\tests']) super(UnitTestsToolsetWidget, self).__init__(*args, **kwargs) def contents(self): from tpDcc.tools.unittests.core import model, view, controller unit_test_model = model.UnitTestModel() unit_test_controller = controller.UnitTestController(client=self._client, model=unit_test_model) unit_test_view = view.UnitTestView( unit_test_paths=self._unit_test_paths, model=unit_test_model, controller=unit_test_controller, parent=self) return [unit_test_view]
2.015625
2
examples/example_GenericSignal.py
ishine/acoular
294
12793742
# -*- coding: utf-8 -*- """ """ from pylab import * from acoular import * # files datafile = 'example_data.h5' t1 = MaskedTimeSamples(name=datafile) t1.start = 0 # first sample, default t1.stop = 16000 # last valid sample = 15999 invalid = [1,7] # list of invalid channels (unwanted microphones etc.) t1.invalid_channels = invalid t2 = ChannelMixer(source=t1) sig = GenericSignalGenerator(source=t2) plot(sig.signal()) show()
2.25
2
gcn/subsample.py
floregol/gcn
1
12793743
import random import time import numpy as np import copy from itertools import compress random.seed(123) #remove columns from adj matrix. #TODO needs additional scaling? #Be carefull too not modify the initial complete support matrix def get_sub_sampled_support(complete_support, node_to_keep): index_array = complete_support[0][:] # make a copy to avoid modifying complete support values = np.zeros(complete_support[1].shape) index_array_sorted = index_array[:, 1].argsort() j = 0 node_to_keep.sort() for index_to_keep in node_to_keep: while (j < len(index_array_sorted) and index_to_keep >= index_array[index_array_sorted[j]][1]): if (index_to_keep == index_array[index_array_sorted[j]][1]): values[index_array_sorted[j]] = complete_support[1][index_array_sorted[j]] j += 1 sub_sampled_support = (index_array, values, complete_support[2]) return sub_sampled_support # Return a train mask for label_percent of the trainig set. # if maintain_label_balance, keep smallest number of labels per class in training set that respect the label_percent, except for 100 % def get_train_mask(label_percent, y_train, initial_train_mask, maintain_label_balance=False): train_index = np.argwhere(initial_train_mask).reshape(-1) train_mask = np.zeros((initial_train_mask.shape), dtype=bool) # list of False if maintain_label_balance: ones_index = [] for i in range(y_train.shape[1]): # find the ones for each class ones_index.append(train_index[np.argwhere(y_train[train_index, i] > 0).reshape(-1)]) if label_percent < 100: smaller_num = min( int(len(l) * (label_percent / 100)) for l in ones_index) # find smaller number of ones per class that respect the % constraint for ones in ones_index: random_index = random.sample(list(ones), smaller_num) train_mask[random_index] = True # set the same number of ones for each class, so the set is balanced else: for ones in ones_index: train_mask[ones] = True else: random_sampling_set_size = int((label_percent / 100) * train_index.shape[0]) random_list = random.sample(list(train_index), random_sampling_set_size) train_mask[random_list] = True label_percent = (100 * np.sum(train_mask) / train_index.shape[0]) return train_mask, label_percent #returns a random list of indexes of the node to be kept at random. def get_random_percent(num_nodes, percent): if percent > 100: print("This is not how percentage works.") exit() random_sampling_set_size = int((percent * num_nodes) / 100) return random.sample(range(num_nodes), random_sampling_set_size) #returns a list of indexes for the mask def get_list_from_mask(mask): return list(compress(range(len(mask)), mask)) # Set features of node that shouldn't be in the set to crazy things to make sure they are not in the gcnn def modify_features_that_shouldnt_change_anything(features, note_to_keep): note_doesnt_exist = [x for x in range(features[2][0]) if x not in note_to_keep] a = np.where(np.isin(features[0][:, 0], note_doesnt_exist)) features[1][a[0]] = 10000000
2.28125
2
utils/add_entry.py
capitanu/DD2477-project
0
12793744
<gh_stars>0 #!/usr/bin/env python from elasticsearch import Elasticsearch es = Elasticsearch() entry = { "word" : "the", "list": [ { "docID" : "3", "offsetlist" : ["3", "5", "14", "15"] }, { "docID" : "14", "offsetlist" : ["2", "8", "27", "108"] } ], } es.delete(index="summary-index", id="8babHoABsMW6PCgq_YhM") es.delete(index="summary-index", id="8LaaHoABsMW6PCgqW4iw") es.index(index="summary-index", body=entry)
2.578125
3
features/steps/fizz_buzz_steps.py
lazaromer97/fizz-buzz-test
1
12793745
<gh_stars>1-10 from behave import given, when, then def fizz_buzz(since: int, until: int) -> dict: data = {} for num in range(since, until+1): if num % 15 == 0: data[str(num)] = 'FizzBuzz' elif num % 5 == 0: data[str(num)] = 'Buzz' elif num % 3 == 0: data[str(num)] = 'Fizz' else: data[str(num)] = num return data @then(u'the fizz_buzz(1, 3) test run') def test_1_3(context): assert fizz_buzz(1, 3) == {'1':1, '2':2, '3':'Fizz'} @then(u'the fizz_buzz(4, 6) test run') def test_4_6(context): assert fizz_buzz(4, 6) == {'4':4, '5':'Buzz', '6':'Fizz'} @then(u'the fizz_buzz(14, 16) test run') def test_14_16(context): assert fizz_buzz(14, 16) == {'14':14, '15':'FizzBuzz', '16':16}
2.90625
3
openspeech/datasets/librispeech/preprocess/subword.py
CanYouImagine/openspeech
207
12793746
# MIT License # # Copyright (c) 2021 <NAME> and <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import sentencepiece as spm import shutil from typing import Tuple from openspeech.datasets.librispeech.preprocess.preprocess import collect_transcripts SENTENCEPIECE_MODEL_NAME = "sp" def _prepare_tokenizer(train_transcripts, vocab_size): """ Prepare sentencepice tokenizer """ input_file = 'spm_input.txt' model_type = 'unigram' with open(input_file, 'w') as f: for transcript in train_transcripts: f.write(f"{transcript.split('|')[-1]}\n") spm.SentencePieceTrainer.Train(f"--input={input_file} " f"--model_prefix={SENTENCEPIECE_MODEL_NAME} " f"--vocab_size={vocab_size} " f"--model_type={model_type} " f"--pad_id=0 " f"--bos_id=1 " f"--eos_id=2 " f"--unk_id=3 " f"--user_defined_symbols=<blank>") def generate_manifest_files(dataset_path: str, manifest_file_path: str, vocab_path: str, vocab_size: int) -> None: """ Generate manifest files. Format: {audio_path}\t{transcript}\t{numerical_label} Args: vocab_size (int): size of subword vocab Returns: None """ transcripts_collection = collect_transcripts(dataset_path) _prepare_tokenizer(transcripts_collection[0], vocab_size) shutil.copy(f"{SENTENCEPIECE_MODEL_NAME}.model", os.path.join(vocab_path, f"{SENTENCEPIECE_MODEL_NAME}.model")) shutil.copy(f"{SENTENCEPIECE_MODEL_NAME}.vocab", os.path.join(vocab_path, f"{SENTENCEPIECE_MODEL_NAME}.vocab")) sp = spm.SentencePieceProcessor() sp.Load(os.path.join(vocab_path, f"{SENTENCEPIECE_MODEL_NAME}.model")) with open(manifest_file_path, 'w') as f: for idx, part in enumerate(['train-960', 'dev-clean', 'dev-other', 'test-clean', 'test-other']): for transcript in transcripts_collection[idx]: audio_path, transcript = transcript.split('|') text = " ".join(sp.EncodeAsPieces(transcript)) label = " ".join([str(item) for item in sp.EncodeAsIds(transcript)]) f.write(f"{audio_path}\t{text}\t{label}\n")
2.09375
2
appg/views/admin_list_examples.py
poxstone/appg
0
12793747
<filename>appg/views/admin_list_examples.py # -*- coding: utf-8 -*- from flask.views import View from flask import flash, redirect, url_for, jsonify, render_template, request import json from google.appengine.api import users from google.appengine.runtime.apiproxy_errors import CapabilityDisabledError from forms import ExampleForm from models import ExampleModel from decorators import login_required from utils import to_dict class PIni(View): @login_required def dispatch_request(self): examples = ExampleModel.query() return render_template('ini.html', examples=examples ) class PIni_list(View): #@login_required def dispatch_request(self): list = ExampleModel.query().fetch() list = to_dict(list) return jsonify(results = list) class PIni_delete(View): @login_required def dispatch_request(self): if request.method == "POST": form = request.get_json() example_id = form['example_id'] if example_id: example = ExampleModel.get_by_id( int(example_id) ) if example: try: example.key.delete() return jsonify(result = {'status':'ok'}) except CapabilityDisabledError: return jsonify(result = {'status':'Error to save'}) else: return jsonify(result = {'status':'NOT item found'}) else: return jsonify(result = {'status':'no example_example send'}) else: return jsonify(result = {'status':'NOT is correct method'}) class PIni_put(View): @login_required def dispatch_request(self): if request.method == "POST": form = request.get_json() example = ExampleModel( example_name = form['example_name'], example_description = form['example_description'], added_by = users.get_current_user() ) try: example.put() example_id = example.key.id() return jsonify(result = {'status':'ok'}) except CapabilityDisabledError: return jsonify(result = {'status':'DONT cant save'}) else: return jsonify(result = {'status':'NOT is correct method'}) class PIni_update(View): @login_required def dispatch_request(self): if request.method == "POST": form = request.get_json() example_id = form['example_id'] if example_id: example = ExampleModel.get_by_id( int(example_id) ) if example: try: example.example_name = form['example_name'] example.example_description = form['example_description'] example.put() return jsonify(result = {'status':'ok'}) except CapabilityDisabledError: return jsonify(result = {'status':'Error to update'}) else: return jsonify(result = {'status':'NOT item found'}) else: return jsonify(result = {'status':'no example_example send'}) else: return jsonify(result = {'status':'NOT is correct method'})
2.1875
2
tests/auth/test_auth_models.py
ethanaggor/twitter-clone
0
12793748
<reponame>ethanaggor/twitter-clone """Tests for `app.auth.models.User` class.""" import pytest from werkzeug.exceptions import HTTPException from app import db from app.auth.models import User from tests.conftest import CleanTestingMixin class TestUserExistence(CleanTestingMixin): """Test the existence of our `User` class.""" def test_model_exists(self): """Does our model exist?""" assert User.__table__ is not None def test_model_write(self, app): """Can our model be used to write data to the DB?""" with app.app_context(): new_user = User( username='Test', email='<EMAIL>', password='', ) db.session.add(new_user) db.session.commit() extracted_user = User.query.first() assert extracted_user is not None assert extracted_user.username == 'Test' assert extracted_user.email == '<EMAIL>' class TestUserFields(CleanTestingMixin): """Test the fields on the `User` class.""" @pytest.fixture() def columns(self): """All columns on the `User` table.""" return list(User.__table__.columns) @pytest.fixture() def column_keys(self, columns): """All keys for the columns on the `User` table.""" return list(map(lambda c: c.key, columns)) def test_model_id(self, columns, column_keys): """Does our model have our specified `id` field?""" column = columns[column_keys.index('id')] assert 'id' in column_keys assert isinstance(column.type, db.Integer) assert column.primary_key assert column.autoincrement def test_model_username(self, columns, column_keys): """Does our model have our specified `username` field?""" column = columns[column_keys.index('username')] assert 'username' in column_keys assert isinstance(column.type, db.String) assert column.type.length == 15 assert column.unique """ def test_model_phone(self, columns, column_keys): \"\"\"Does our model have our specified `phone` field?\"\"\" column = columns[column_keys.index('phone')] assert 'phone' in column_keys assert isinstance(column.type, db.String) assert column.type.length == 30 assert column.unique """ def test_model_email(self, columns, column_keys): """Does our model have our specified `email` field?""" column = columns[column_keys.index('email')] assert 'email' in column_keys assert isinstance(column.type, db.String) assert column.type.length == 100 assert column.unique def test_model_password(self, columns, column_keys): """Does our model have our specified `password` field?""" column = columns[column_keys.index('password')] assert 'password' in column_keys assert isinstance(column.type, db.String) assert column.type.length == 256 class TestUserHelpers(CleanTestingMixin): """Test the helper methods for the `User` class.""" def test_model_create(self, app): """Does our static method `User.create()` store information in the DB?""" with app.app_context(): User.create(name='tester', username='testing', email='<EMAIL>', password='<PASSWORD>' ) user = User.query.first() assert user is not None assert user.name == 'tester' assert user.username == 'testing' assert user.email == '<EMAIL>' assert user.password != '<PASSWORD>' def test_model_pwd_hash(self, app): """Does our static method `User.create()` use bcrypt to hash the password?""" with app.app_context(): user = User.query.first() assert user is not None # This is the current bcrypt algorithm signature (Dec. 2020) assert user.password[0:4] == <PASSWORD>$' def test_model_authenticate(self, app): """Does our static method `User.authenticate()` retrieve an existing user given a correct username/PW combo?""" with app.app_context(): user = User.query.first() att_user = User.authenticate('testing', '<PASSWORD>') assert att_user is not None assert user.id == att_user.id assert user.username == att_user.username assert user.password == att_user.password def test_model_unauth(self, app): """Does our static method `User.authenticate()` fail properly when given an invalid username/PW combo?""" with app.app_context(): # Non existent username: att_user = User.authenticate('asdf', 'asdf') assert att_user is None # Existing username but bad password: att_user = User.authenticate('testing', 'asdf') assert att_user is None # Correct password but non existing username: att_user = User.authenticate('asdf', '<PASSWORD>') assert att_user is None def test_model_get_by_username(self, app): """Does our static method `User.get_by_username_or_404` retrieve an existing user given a correct username?""" with app.app_context(): user = User.query.first() testing_user = User.get_by_username_or_404('testing') assert testing_user == user def test_model_get_by_username_fail(self, app): """Does our static method `User.get_by_username_or_404` correctly 404 given a non-existing username?""" with app.app_context(): try: User.get_by_username_or_404('asdf') except HTTPException as e: assert e.response is None assert e.description == "Resource not found."
2.796875
3
openmdao/examples/subproblem_example.py
naylor-b/OpenMDAO1
17
12793749
import sys from math import pi from openmdao.api import Problem, Group, Component, IndepVarComp, ExecComp, \ ScipyOptimizer, SubProblem, CaseDriver class MultiMinGroup(Group): """ In the range -pi <= x <= pi function has 2 local minima, one is global global min is: f(x) = -1.31415926 at x = pi local min at: f(x) = -0.69084489952 at x = -3.041593 """ def __init__(self): super(MultiMinGroup, self).__init__() self.add('indep', IndepVarComp('x', 0.0)) self.add("comp", ExecComp("fx = cos(x)-x/10.")) self.connect("indep.x", "comp.x") def main(num_par_doe): # First, define a Problem to be able to optimize our function. sub = Problem(root=MultiMinGroup()) # set up our SLSQP optimizer sub.driver = subdriver = ScipyOptimizer() subdriver.options['optimizer'] = 'SLSQP' subdriver.options['disp'] = False # disable optimizer output # In this case, our design variable is indep.x, which happens # to be connected to the x parameter on our 'comp' component. subdriver.add_desvar("indep.x", lower=-pi, upper=pi) # We are minimizing comp.fx, so that's our objective. subdriver.add_objective("comp.fx") # Now, create our top level problem prob = Problem(root=Group()) prob.root.add("top_indep", IndepVarComp('x', 0.0)) # add our subproblem. Note that 'indep.x' is actually an unknown # inside of the subproblem, but outside of the subproblem we're treating # it as a parameter. prob.root.add("subprob", SubProblem(sub, params=['indep.x'], unknowns=['comp.fx'])) prob.root.connect("top_indep.x", "subprob.indep.x") # use a CaseDriver as our top level driver so we can run multiple # separate optimizations concurrently. We'll run 'num_par_doe' # concurrent cases. In this case we need no more than 2 because # we're only running 2 total cases. prob.driver = CaseDriver(num_par_doe=num_par_doe) prob.driver.add_desvar('top_indep.x') prob.driver.add_response(['subprob.indep.x', 'subprob.comp.fx']) # these are the two cases we're going to run. The top_indep.x values of # -1 and 1 will end up at the local and global minima when we run the # concurrent subproblem optimizers. prob.driver.cases = [ [('top_indep.x', -1.0)], [('top_indep.x', 1.0)] ] prob.setup(check=False) # run the concurrent optimizations prob.run() # collect responses for all of our input cases optvals = [dict(resp) for resp, success, msg in prob.driver.get_responses()] # find the minimum value of subprob.comp.fx in our responses global_opt = sorted(optvals, key=lambda x: x['subprob.comp.fx'])[0] return global_opt if __name__ == '__main__': global_opt = main(2) print("\nGlobal optimum:\n subprob.comp.fx = %s at subprob.indep.x = %s" % (global_opt['subprob.comp.fx'], global_opt['subprob.indep.x']))
3.09375
3
modules/utils/br_feat_orc_creator.py
guilhermemg/trace-links-tc-br
0
12793750
# utilitary functions to create the expert and volunteers oracles from the taskruns dataset import pandas as pd from modules.utils import aux_functions from modules.utils import firefox_dataset_p2 as fd class Br_Feat_Oracle_Creator: def __init__(self, bugreports, features): self.bugreports = bugreports self.features = features def __shift_taskruns_answers(self, taskruns): new_answers = list(taskruns.answers.values) new_answers = [new_answers[-1]] + new_answers del new_answers[-1] taskruns['new_answers'] = new_answers return taskruns def __create_exp_feat_br_matrix(self, expert_taskruns): taskruns_expert = self.__shift_taskruns_answers(expert_taskruns) taskruns_expert.sort_values(by='bug_id', inplace=True) taskruns_expert = taskruns_expert[(taskruns_expert.bug_id != 1181835) & (taskruns_expert.bug_id != 1315514)] # drop taskrun lost during empirical study feat_br_matrix = pd.DataFrame(columns=self.features.feat_name.values, index=self.bugreports.Bug_Number) feat_br_matrix.index.names = ['bug_number'] for idx,row in taskruns_expert.iterrows(): ans = row.new_answers.split(" ") for i in range(len(ans)-2): # -2 ==> dropped features from branch 65 feat_name = feat_br_matrix.columns[i] feat_br_matrix.at[row.bug_id, feat_name] = int(ans[i]) return feat_br_matrix def create_br_feat_expert_matrix(self, expert_taskruns): feat_br_matrix = self.__create_exp_feat_br_matrix(expert_taskruns) fd.Feat_BR_Oracles.write_feat_br_expert_df(feat_br_matrix) def create_br_feat_expert_2_matrix(self, expert_taskruns): feat_br_matrix = self.__create_exp_feat_br_matrix(expert_taskruns) fd.Feat_BR_Oracles.write_feat_br_expert_2_df(feat_br_matrix) def create_br_feat_volunteers_matrix(self, taskruns_volunteers_1, taskruns_volunteers_2): ignored_taskruns = [154, 155, 156, 157, 169, 170, 171, 172, 183, 184, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 241, 242, 253, 264, 265, 266, 267, 268, 269, 270] taskruns_volunteers_1 = self.__shift_taskruns_answers(taskruns_volunteers_1) taskruns_volunteers_2 = self.__shift_taskruns_answers(taskruns_volunteers_2) taskruns = pd.concat([taskruns_volunteers_1, taskruns_volunteers_2]) taskruns.sort_values(by='bug_id', inplace=True) taskruns = taskruns[(taskruns.bug_id != 1181835) & (taskruns.bug_id != 1315514)] # drop taskrun lost during empirical study not_ignored_taskruns = [t_id for t_id in taskruns.id.values if t_id not in ignored_taskruns] taskruns = taskruns[taskruns.id.isin(not_ignored_taskruns)] feat_br_matrix = pd.DataFrame(columns=self.features.feat_name.values, index=self.bugreports.Bug_Number) feat_br_matrix.index.names = ['bug_number'] for idx,row in taskruns.iterrows(): ans = row.new_answers.split(" ") for i in range(len(ans)-2): # -2 ==> dropped features from branch 65 feat_name = feat_br_matrix.columns[i] feat_br_matrix.at[row.bug_id, feat_name] = int(ans[i]) fd.Feat_BR_Oracles.write_feat_br_volunteers_df(feat_br_matrix)
2.515625
3