max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
seurat/generation/maya/seurat_rig.py
Asteur/vrhelper
819
12793751
<reponame>Asteur/vrhelper # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates a JSON manifest and a Maya camera rig for Seurat. Example usage: CreateRig(headbox_min=[-0.5, -0.5, -0.5], headbox_max=[0.5, 0.5, 0.5], num_view_groups=16, # Should be a power of two. image_size=1024, near_clip=0.1, far_clip=100.0, depth_type='EYE_Z', depth_channel_name='A', color_file_path_pattern='%s_color.%04d.exr', depth_file_path_pattern='%s_depth.%04d.exr', json_file_path='./manifest.json') """ import json import math import operator def ProjectPoint(matrix, point): """Projects a 3D point using a 4x4 matrix. Args: matrix: A 4x4 matrix represented as a list of 16 floats. point: A 3D point represented as a list of 3 floats. Returns: The projected point, represented as a list of 3 floats. """ result_hom = [0.0, 0.0, 0.0, 0.0] for row in xrange(4): for col in xrange(3): result_hom[row] += matrix[4 * row + col] * point[col] # point.w = 1.0 implicitly result_hom[row] += matrix[4 * row + 3] w = result_hom[3] return map(operator.div, result_hom[0:3], [w, w, w]) def WorldFromEyeMatrixFromFace(face_name): """Creates world-from-eye matrix for the given face of a cube map. Args: face_name: Name of the face. Must be one of 'front', 'back', 'left', 'right', 'bottom', 'top'. Returns: The world-from-eye matrix for the given face as a list in row-major order. Raises: ValueError: face_name is not the name of a cube map face. """ # pylint: disable=bad-whitespace # pylint: disable=bad-continuation if face_name is 'front': return [ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable elif face_name is 'back': return [-1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable elif face_name is 'left': return [ 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable elif face_name is 'right': return [ 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable elif face_name is 'bottom': return [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable elif face_name is 'top': return [ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] # pyformat: disable else: raise ValueError('Invalid face_name') def CubeFaceProjectionMatrix(near, far): """Creates a cube-face 90 degree FOV projection matrix. The created matrix is an OpenGL-style projection matrix. Args: near: Eye-space Z position of the near clipping plane. far: Eye-space Z position of the far clipping plane. Returns: The clip-from-eye matrix as a list in row-major order. Raises: ValueError: Invalid clip planes. near <= 0.0 or far <= near. """ if near <= 0.0: raise ValueError('near must be positive.') if far <= near: raise ValueError('far must be greater than near.') left = -near right = near bottom = -near top = near a = (2.0 * near) / (right - left) b = (2.0 * near) / (top - bottom) c = (right + left) / (right - left) d = (top + bottom) / (top - bottom) e = (near + far) / (near - far) f = (2.0 * near * far) / (near - far) # pylint: disable=bad-whitespace return [a, 0.0, c, 0.0, 0.0, b, d, 0.0, 0.0, 0.0, e, f, 0.0, 0.0, -1.0, 0.0] # pyformat: disable def RadicalInverse(a, base): """Computes the radical inverse of |a| in base |base|. Args: a: The integer number for which the radical inverse is computed. base: The radical inverse is computed in this base (integer). Returns: The radical inverse as a float in the range [0.0, 1.0). """ reversed_digits = 0 base_n = 1 # Compute the reversed digits, base b. while a > 0: next_a = a / base digit = a - next_a * base reversed_digits = reversed_digits * base + digit base_n *= base a = next_a # Only when done are the reversed digits divided by b^n. return min(reversed_digits / float(base_n), 1.0) def PointInBox(box_min, box_max, sample): """Computes a sample point inside a box with arbitrary number of dimensions. Args: box_min: A list of floats representing the lower bounds of the box. box_max: A list of floats representing the upper bounds of the box. sample: A list of floats in the range [0.0, 1.0] representing the relative sample position in the box. Returns: A list of floats, representing the absolute position of the sample in the box. """ delta = map(operator.sub, box_max, box_min) offset = map(operator.mul, delta, sample) position = map(operator.add, box_min, offset) return position def Distance(point_a, point_b): """Computes the euclidean distance between two points. The points can have an aribtrary number of dimensions. Args: point_a: A list of numbers representing the first point. point_b: A list of numbers representing the second point. Returns: The euclidean distance as a float. """ delta = map(operator.sub, point_a, point_b) delta_sqr = map(operator.mul, delta, delta) distance_sqr = 0.0 for element in delta_sqr: distance_sqr += element return math.sqrt(distance_sqr) def RotateCamera(camera_name, face_name): """Rotates a Maya camera node to look at a given cube map face. Args: camera_name: Name of the Maya camera's transform node. face_name: Name of the cube map face. Raises: ValueError: face is not a valid cube map face name. """ # Disable the undefined-variable lint error, because the Maya package is not # defined in the environment where the linter runs. # # pylint: disable=undefined-variable if face_name is 'front': pass elif face_name is 'back': maya.cmds.setAttr(camera_name + '.rotateY', 180) elif face_name is 'left': maya.cmds.setAttr(camera_name + '.rotateY', 90) elif face_name is 'right': maya.cmds.setAttr(camera_name + '.rotateY', -90) elif face_name is 'bottom': maya.cmds.setAttr(camera_name + '.rotateX', -90) elif face_name is 'top': maya.cmds.setAttr(camera_name + '.rotateX', 90) else: raise ValueError('Invalid face_name') def GenerateCameraPositions(headbox_min, headbox_max, num_cameras): """Generates camera positions in a headbox. Camera posittions are computed as a 3D Hammersley point set. The points are transformed such that their bounding box is exactly equal to the headbox. The points are then sorted according to distance to the headbox center. Finally, the point that is closest to the headbox center is replaced by the headbox center itself to include a view from the reference camera. Args: headbox_min: The lower bounds of the headbox as a list of 3 floats. headbox_max: The upper bounds of the headbox as a list of 3 floats. num_cameras: The number of cameras to generate. Should be a power of two. Returns: A list of 3D points (each a list of 3 floats), representing the positions of the generated cameras. Raises: ValueError: num_cameras is not positive. """ if num_cameras <= 0: raise ValueError('num_cameras must be positive') if num_cameras == 1: # Use the headbox center if a single camera position is requested. return [PointInBox(headbox_min, headbox_max, [0.5, 0.5, 0.5])] samples = [] max_sample = [0.0, 0.0, 0.0] for i in xrange(num_cameras): # Use a 3D Hammersley point set for the samples. sample = [ i / float(num_cameras), RadicalInverse(i, 2), RadicalInverse(i, 3) ] for dim in xrange(3): max_sample[dim] = max(max_sample[dim], sample[dim]) samples.append(sample) headbox_center = PointInBox(headbox_min, headbox_max, [0.5, 0.5, 0.5]) camera_positions = [] for sample in samples: # Normalize the samples so that their bounding box is the unit cube. for dim in xrange(3): sample[dim] /= max_sample[dim] position = PointInBox(headbox_min, headbox_max, sample) camera_positions.append(position) sorted_positions = sorted( camera_positions, key=lambda point: Distance(point, headbox_center)) # Replace the point closest to the headbox center by the headbox center # itself. sorted_positions[0] = PointInBox(headbox_min, headbox_max, [0.5, 0.5, 0.5]) return sorted_positions def CreateCameras(camera_positions, near_clip, far_clip): """Creates and animates the Maya cameras for the rig. Six cameras, one for each cube face, are generated. Each camera is configured with a square viewport and the given near and far clipping planes. This method also adjusts the Maya timeline to exactly contain the frames for the rig animation. Each of the six cameras will get one keyframe per camera position. Args: camera_positions: A list of 3D points (each a list of 3 floats) representing the positions of the cameras. near_clip: Eye-space Z position of the near clipping planes. far_clip: Eye-space Z position of the far clipping planes. """ # Disable the undefined-variable lint error, because the Maya package is not # defined in the environment where the linter runs. # # pylint: disable=undefined-variable start_time = 0 end_time = len(camera_positions) - 1 maya.cmds.playbackOptions( animationStartTime=start_time, animationEndTime=end_time, minTime=start_time, maxTime=end_time) for face in ['front', 'back', 'left', 'right', 'bottom', 'top']: # Create a cube face camera and rotate it. camera_name = maya.cmds.camera( name='seurat_' + face, focalLength=12.7, horizontalFilmAperture=1, verticalFilmAperture=1, nearClipPlane=near_clip, farClipPlane=far_clip)[0] RotateCamera(camera_name, face) # Set translation keyframes for all positions on this camera. for view_group_index, position in enumerate(camera_positions): maya.cmds.setKeyframe( camera_name, at='translateX', t=view_group_index, v=position[0]) maya.cmds.setKeyframe( camera_name, at='translateY', t=view_group_index, v=position[1]) maya.cmds.setKeyframe( camera_name, at='translateZ', t=view_group_index, v=position[2]) def CreateViewGroups(headbox_center, camera_positions, image_size, near_clip, far_clip, depth_type, depth_channel_name, color_file_path_pattern, depth_file_path_pattern): """Creates and returns the view groups for the JSON output. Args: headbox_center: Center of the headbox as a list of 3 floats. camera_positions: Positions of the cameras as a list of 3D points (each a list of 3 floats). image_size: Size of the output images in pixels. near_clip: Eye-space Z position of the near clipping planes. far_clip: Eye-space Z position of the far clipping planes. depth_type: A string representing the depth encoding. Valid values are: 'WINDOW_Z' (window-space Z coordinate in the range [0.0, 1.0]), 'EYE_Z' (negated eye-space Z coordinate in the range [0.0, inf); Arnold's encoding), 'RAY_DEPTH' (distance to eye). depth_channel_name: Name of the depth channel in the output file. Commonly used values are 'R' (VRay) and 'A' (Arnold). color_file_path_pattern: File name pattern for color images. Must contain a placeholder for a string (face name) and an integer (view group number). Example: '%s.%04d.exr' for file names 'front.0000.exr', 'front.0001.exr', ... , 'top.9999.exr'. depth_file_path_pattern: File name pattern for depth images. Must contain a placeholder for a string (face name) and an integer (view group number). Example: '%s.%04d.exr' for file names 'front.0000.exr', 'front.0001.exr', ... , 'top.9999.exr'. Returns: A dictionary representing the view groups. """ view_groups = [] for view_group_index, absolute_position in enumerate(camera_positions): views = [] for face in ['front', 'back', 'left', 'right', 'bottom', 'top']: # Camera position relative to headbox center. position = map(operator.sub, absolute_position, headbox_center) clip_from_eye_matrix = CubeFaceProjectionMatrix(near_clip, far_clip) world_from_eye_matrix = WorldFromEyeMatrixFromFace(face) # Set translation component of world-from-eye matrix. for i in xrange(3): world_from_eye_matrix[4 * i + 3] = position[i] # Create camera object camera = { 'image_width': image_size, 'image_height': image_size, 'clip_from_eye_matrix': clip_from_eye_matrix, 'world_from_eye_matrix': world_from_eye_matrix, 'depth_type': depth_type } # Create view object and add it to the view groups color_image_path = (color_file_path_pattern % (face, view_group_index)) depth_image_path = (depth_file_path_pattern % (face, view_group_index)) view = { 'projective_camera': camera, 'depth_image_file': { 'color': { 'path': color_image_path, 'channel_0': 'R', 'channel_1': 'G', 'channel_2': 'B', 'channel_alpha': 'A' }, 'depth': { 'path': depth_image_path, 'channel_0': depth_channel_name } } } views.append(view) view_group = {'views': views} view_groups.append(view_group) # Return the view_groups as a Python list. return view_groups def CreateRig(headbox_min, headbox_max, num_view_groups, image_size, near_clip, far_clip, depth_type, depth_channel_name, color_file_path_pattern, depth_file_path_pattern, json_file_path, json_only=False): """Creates a Maya camera rig and JSON manifest for Seurat. Args: headbox_min: List of three floats representing the lower bounds of the headbox in world-space. headbox_max: List of three floats representing the upper bounds of the headbox in world-space. num_view_groups: Number of view groups (camera positions) to generate. Must be a power of two. image_size: Resolution of the output images in pixels. near_clip: Eye-space Z position of the near clipping planes. far_clip: Eye-space Z position of the far clipping planes. depth_type: A string representing the depth encoding. Valid values are: 'WINDOW_Z' (window-space Z coordinate in the range [0.0, 1.0]), 'EYE_Z' (negated eye-space Z coordinate in the range [0.0, inf); Arnold's encoding), 'RAY_DEPTH' (distance to eye). depth_channel_name: Name of the depth channel in the output file. Commonly used values are 'R' (VRay) and 'A' (Arnold). color_file_path_pattern: File name pattern for color images. Must contain a placeholder for a string (face name) and an integer (view group number). Example: '%s.%04d.exr' for file names 'front.0000.exr', 'front.0001.exr', ... , 'top.9999.exr'. depth_file_path_pattern: File name pattern for depth images. Must contain a placeholder for a string (face name) and an integer (view group number). Example: '%s.%04d.exr' for file names 'front.0000.exr', 'front.0001.exr', ... , 'top.9999.exr'. json_file_path: Path to the output JSON manifest file. json_only: A boolean value. If true, the Maya camera generation step is bypassed. """ # Compute the positions of the cameras. camera_positions = GenerateCameraPositions(headbox_min, headbox_max, num_view_groups) # Generate the six Maya cameras and keyframe their positions. if not json_only: CreateCameras(camera_positions, near_clip, far_clip) # Compute the headbox center. headbox_center = PointInBox(headbox_min, headbox_max, [0.5, 0.5, 0.5]) # Generate the JSON manifest and write it to the file. view_groups = CreateViewGroups(headbox_center, camera_positions, image_size, near_clip, far_clip, depth_type, depth_channel_name, color_file_path_pattern, depth_file_path_pattern) json_string = json.dumps({'view_groups': view_groups}, indent=2) with open(json_file_path, 'w') as json_file: json_file.write(json_string)
2.15625
2
cse/migrations/0009_auto_20210418_0602.py
Kunal614/Resources
1
12793752
<gh_stars>1-10 # Generated by Django 3.0.5 on 2021-04-18 06:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cse', '0008_problemset_name'), ] operations = [ migrations.DeleteModel( name='cp', ), migrations.DeleteModel( name='problemofday', ), migrations.DeleteModel( name='problemset', ), ]
1.546875
2
smartcross/envs/obs/__init__.py
opendilab/DI-smartcross
49
12793753
from .sumo_obs import SumoObs from .sumo_obs_runner import SumoObsRunner
1.054688
1
Answer3.py
AshishK199/HackerRank
0
12793754
<gh_stars>0 count=0 r=[] def func1(c): global r global count if c in r: return else: r.append(c) c=c+1 c=str(c) c=c.rstrip('0') c=int(c) count=count+1 func1(c) n=int(input()) count=0 func1(n) print(count)
3.28125
3
print_lending_stats.py
m-Ferstl/bitfinex_lending_stats
1
12793755
<gh_stars>1-10 import argparse from funding_earnings_stats import FundingEarningsCalculator arg_parser = argparse.ArgumentParser() arg_parser.add_argument("funding_earnings_file", help="The path to the bitfinex funding earnings csv file.") args = arg_parser.parse_args() csv_parser = FundingEarningsCalculator(args.funding_earnings_file) currencies = csv_parser.get_currencies() print("Found earnings for {} currencies in file {} ".format(len(currencies), args.funding_earnings_file)) currency_stats = csv_parser.get_currency_stats() for currency in currencies: print("Earnings for {}".format(currency)) print() print(currency_stats[currency]) print() print() print() print("---------------------") print() monthly_earnings = csv_parser.get_monthly_earnings() print("Monthly Earnings") print() print(csv_parser.get_monthly_earnings()) # TODO Monthly earnings sum col, Testing with multiple months # TODO FundingEarningsCalculator so umstrukturieren, dass parsen ausgelagert ist
2.953125
3
auto-labeler/MATCH/analysis/precision_and_recall.py
nasa-petal/PeTaL-labeller
3
12793756
''' precision_and_recall.py Run MATCH with PeTaL data. Last modified on 10 August 2021. DESCRIPTION precision_and_recall.py produces three plots from results in MATCH/PeTaL. These three plots appear in plots/YYYYMMDD_precision_recall and are as follows: - HHMMSS_labels_MATCH_PeTaL.png, which varies threshold and plots number of labels predicted. Higher threshold means fewer labels get past the threshold. - HHMMSS_prc_MATCH_PeTaL.png, which plots a precision-recall curve by varying the threshold. As threshold decreases from 1 to 0, precision goes down but recall goes up (because more labels get past the threshold). - HHMMSS_prf1_MATCH_PeTaL.png, which plots how precision, recall, and F1 score vary as threshold varies from 0 to 1. OPTIONS -m, --match PATH/TO/MATCH Path of MATCH folder. -p, --plots PATH/TO/plots Path of plots folder. -d, --dataset PeTaL Name of dataset, e.g., "PeTaL". -v, --verbose Enable verbosity. USAGE python3 precision_and_recall.py -m ../src/MATCH -p ../plots --verbose Authors: <NAME> (<EMAIL>, <EMAIL>) ''' import click import os import numpy as np import pandas as pd from matplotlib import pyplot as plt from datetime import datetime import logging from collections import namedtuple from tqdm import tqdm Stats = namedtuple("Stats", "threshold topk precision recall f1") @click.command() @click.option('--match', '-m', 'match_path', type=click.Path(exists=True), help='Path of MATCH folder.') @click.option('--plots', '-p', 'plots_path', type=click.Path(exists=True), help='Path of plots folder.') @click.option('--dataset', '-d', 'dataset', default='PeTaL', help='Name of dataset, e.g., "PeTaL".') @click.option('--verbose', '-v', type=click.BOOL, is_flag=True, default=False, required=False, help='Verbose output.') def main(match_path, plots_path, dataset, verbose): """Plots precision and recall and other statistics on graphs. Args: match_path (str): Path of MATCH folder. plots_path (str): Path of plots folder. verbose (bool): Verbose output. """ logging.basicConfig( level=logging.INFO, format="[%(asctime)s:%(name)s] %(message)s" ) PRlogger = logging.getLogger("P&R") DATASET = dataset MODEL = 'MATCH' res_labels = np.load(f"{match_path}/{DATASET}/results/{MODEL}-{DATASET}-labels.npy", allow_pickle=True) res_scores = np.load(f"{match_path}/{DATASET}/results/{MODEL}-{DATASET}-scores.npy", allow_pickle=True) test_labels = np.load(f"{match_path}/{DATASET}/test_labels.npy", allow_pickle=True) train_labels = np.load(f"{match_path}/{DATASET}/train_labels.npy", allow_pickle=True) if verbose: PRlogger.info(f"Computing statistics by varying threshold for {MODEL} on {DATASET}.") thresholds = list(x / 10000 for x in range(1, 10)) + \ list(x / 1000 for x in range(1, 10)) + \ list(x / 100 for x in range(1, 10)) + \ list(x / 20 for x in range(2, 19)) + \ list((90 + x) / 100 for x in range(1, 10)) + \ list((990 + x) / 1000 for x in range(1, 10)) + \ list((9990 + x) / 10000 for x in range(1, 10)) ps = [] rs = [] ts = [] f1s = [] topks = [] for threshold in tqdm(thresholds): stats = compute_stats(threshold, res_labels, res_scores, test_labels) ps.append(stats.precision) rs.append(stats.recall) ts.append(threshold) f1s.append(stats.f1) topks.append(stats.topk) ''' Make the following plots to assess the performance of the model. Precision-recall curve Precision, recall, and F1 score by varying threshold Numbers of labels predicted by varying threshold ''' ALL_PLOTS_PATH = plots_path if not os.path.exists(ALL_PLOTS_PATH): os.mkdir(ALL_PLOTS_PATH) else: if verbose: PRlogger.info(f"You already have a plots directory at {ALL_PLOTS_PATH}.") now = datetime.now() date_str = now.strftime("%Y%m%d") time_str = now.strftime("%H%M%S") comment = f"precision_recall" # "_on_{DATASET}" PLOTS_PATH = os.path.join(ALL_PLOTS_PATH, f"{date_str}_{comment}") if not os.path.exists(PLOTS_PATH): os.mkdir(PLOTS_PATH) if verbose: PRlogger.info(f"New plots directory at {PLOTS_PATH}") else: if verbose: PRlogger.info(f"You already have a plots directory at {PLOTS_PATH}") ######################################## # PRECISION-RECALL CURVE ######################################## plt.grid() plt.title(f'Precision-Recall Curve for {MODEL} on {DATASET}, varying threshold') plt.plot(ps, rs, linestyle='-') plt.xlabel('Recall') plt.xlim(0, 1) plt.ylabel('Precision') plt.ylim(0, 1) PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_prc_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() ######################################## # PRECISION, RECALL, AND F1 SCORE BY THRESHOLD ######################################## plt.grid() plt.title(f'Precision, Recall, and F1 Score by Threshold for {MODEL} on {DATASET}') plt.plot(ts, ps, linestyle='-', label='Precision') plt.plot(ts, rs, linestyle='-', label='Recall') plt.plot(ts, f1s, linestyle='-', label='F1 score') plt.xlabel('Threshold') plt.xlim(0, 1) plt.ylabel('Metrics') plt.ylim(0, 1) plt.legend() PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_prf1_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() ######################################## # NUMBER OF LABELS PREDICTED BY THRESHOLD ######################################## plt.grid() plt.title(f'Number of Labels Predicted by Threshold for {MODEL} on {DATASET}') plt.plot(ts, topks, linestyle='-', label='Number of Labels') plt.xlabel('Threshold') plt.xlim(0, 1) plt.ylabel('Labels') plt.legend() PLOT_PATH = os.path.join(PLOTS_PATH, f'{time_str}_labels_{MODEL}_{DATASET}.png') plt.savefig(fname=PLOT_PATH, facecolor='w', transparent=False) PRlogger.info(f"Your plot is saved as {PLOT_PATH}") plt.clf() def compute_stats(threshold, res_labels, res_scores, test_labels): """ compute_stats(threshold) Parameters: threshold: float, 0.0 < threshold < 1.0 res_labels: numpy array of predicted labels res_scores: numpy array of predicted label scores test_labels: numpy array of target labels Returns: Stats object containing threshold topk: average number of labels above threshold precision: average precision across examples recall: average recall across examples f1: average F1 score across examples Note: precision, recall, and F1 scores are macro (averaged across examples, not labels) """ precisions = [] recalls = [] topks = [] f1s = [] for res_label, res_score, test_label in zip(res_labels, res_scores, test_labels): topk = np.argmax(res_score < threshold) # topk becomes the number of labels scoring above the threshold precision = 1.0 if topk == 0 else np.mean([1 if x in test_label else 0 for x in res_label[:topk]]) recall = np.mean([1 if x in res_label[:topk] else 0 for x in test_label]) f1 = 0 if (precision + recall) == 0 else (2 * precision * recall) / (precision + recall) topks.append(topk) precisions.append(precision) recalls.append(recall) f1s.append(f1) # print(res_label[:topk], precision, recall) return Stats(threshold, np.mean(topks), np.mean(precisions), np.mean(recalls), np.mean(f1s)) if __name__ == '__main__': main()
2.984375
3
20_1.py
yunjung-lee/class_python_numpy
0
12793757
####################데이터프레임의 문자열 컬럼들을 합치는 등의 작업으로 새로운 컬럼 생성####################################### #이용함수 apply import pandas as pd import numpy as np from pandas import DataFrame, Series # df = pd.DataFrame({'id' : [1,2,10,20,100,200], # "name":['aaa','bbb','ccc','ddd','eee','fff']}) # print(df) # # #컬럼을 변경하여 새로운 컬럼을 생성 # #새로운 id 컬럼을 원래의 id 컬럼을 기준으로 자리수를 맞춰주기 위해 5자리로 통일(부족한 자릿수는 앞자리에 0을 채워 넣는다.)하며 만듬 # df['id_2']=df['id'].apply(lambda x:"{:0>5d}".format(x)) # print(df) # # id name id_2 # # 0 1 aaa 00001 # # 1 2 bbb 00002 # # 2 10 ccc 00010 # # 3 20 ddd 00020 # # 4 100 eee 00100 # # 5 200 fff 00200 # # # #format():앞자리의 형식으로 ()안의 인자의 모양을 바꿔준다. # # # # x=3.141592 # # print("{:.2f}".format(x)) # # # 3.14 # # # # print("{:+.2f}".format(x)) # # # +3.14 # # # # x=-3.141592 # # print("{:+.2f}".format(x)) # # # -3.14 # # # # x=2.718 # # print("{:.0f}".format(x)) # 정수를 출력하라(소수 점 첫째자리에서 반올림) # # # 3 # # # # x=3.147592 # # print("{:.2f}".format(x)) # .2f(소수 점 셋째자리에서 반올림) # # # 3.15 # # # # x=5 # # print("{:0>2d}".format(x)) # 0>2D(D: 너비가 2, 0으로 채워라 ) # # # 05 # # # # x=7777777777 # # print("{:0>5d}".format(x)) # 0>2D(D: 너비가 5, 0으로 채워라 ,너비 이상은 무시=>원 형태 유지) # # # 7777777777 # # print("{:,}".format(x)) # # # 7,777,777,777 # # # # x=0.25 # # print("{:.2%}".format(x)) # # # 25.00% # # # # #name + id_2 :재구성 => 두개의 컬럼이 결합(apply대상이 2개의 컬럼이 됨) # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x)) #축을 지정 하지 않으면 안됨 # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 NaN # # 1 2 bbb 00002 NaN # # 2 10 ccc 00010 NaN # # 3 20 ddd 00020 NaN # # 4 100 eee 00100 NaN # # 5 200 fff 00200 NaN # # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x),axis=1) #축을 1로 지정 # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 00001_aaa # # 1 2 bbb 00002 00002_bbb # # 2 10 ccc 00010 00010_ccc # # 3 20 ddd 00020 00020_ddd # # 4 100 eee 00100 00100_eee # # 5 200 fff 00200 00200_fff # # df['id_name'] = df[['id_2','name']].apply(lambda x: '_'.join(x),axis=1) # print(df) # # id name id_2 id_name # # 0 1 aaa 00001 00001_aaa # # 1 2 bbb 00002 00002_bbb # # 2 10 ccc 00010 00010_ccc # # 3 20 ddd 00020 00020_ddd # # 4 100 eee 00100 00100_eee # # 5 200 fff 00200 00200_fff # # # #id를 소숫점 이하로 나타내는 새로운 열을 추가 # df['id_3']=df['id'].apply(lambda x: "{:.2f}".format(x)) # print(df) # # id name id_2 id_name id_3 # # 0 1 aaa 00001 00001_aaa 1.00 # # 1 2 bbb 00002 00002_bbb 2.00 # # 2 10 ccc 00010 00010_ccc 10.00 # # 3 20 ddd 00020 00020_ddd 20.00 # # 4 100 eee 00100 00100_eee 100.00 # # 5 200 fff 00200 00200_fff 200.00 # # df['name_3']=df['name'].apply(lambda x:x.upper()) #upper() : 대문자로 바꿔줌 # print(df) # # id name id_2 id_name id_3 name_3 # # 0 1 aaa 00001 00001_aaa 1.00 AAA # # 1 2 bbb 00002 00002_bbb 2.00 BBB # # 2 10 ccc 00010 00010_ccc 10.00 CCC # # 3 20 ddd 00020 00020_ddd 20.00 DDD # # 4 100 eee 00100 00100_eee 100.00 EEE # # 5 200 fff 00200 00200_fff 200.00 FFF # # # # id_name_3 컬럼추가 # # id_name_3 => 1.00:AAA # # df['id_name_3'] = df[['id_3','name_3']].apply(lambda x: ':'.join(x),axis=1) # print(df) # # id name id_2 id_name id_3 name_3 id_name_3 # # 0 1 aaa 00001 00001_aaa 1.00 AAA 1.00:AAA # # 1 2 bbb 00002 00002_bbb 2.00 BBB 2.00:BBB # # 2 10 ccc 00010 00010_ccc 10.00 CCC 10.00:CCC # # 3 20 ddd 00020 00020_ddd 20.00 DDD 20.00:DDD # # 4 100 eee 00100 00100_eee 100.00 EEE 100.00:EEE # # 5 200 fff 00200 00200_fff 200.00 FFF 200.00:FFF # ################################################################################################################### #groupby 집계함수 # 1.딕셔너리를 이용해서 그룹화 #위.. 딕셔너리로 만들어서 열을 키로 자료를 밸류로 나타냄 # data= : 데이터를 넣고 컬럼과 인덱스로 자료를 구분. df = DataFrame(data=np.arange(20).reshape(4,5),columns=['c1','c2','c3','c4','c5'],index=['r1','r2','r3','r4']) print(df) # c1 c2 c3 c4 c5 # r1 0 1 2 3 4 # r2 5 6 7 8 9 # r3 10 11 12 13 14 # r4 15 16 17 18 19 # row_g1 = r1+r2 : 행단위 계산으로 새로운 행 생성(같은 열의 성분이 더해진다.: sum()) # row_g2 = r3+r4 mdr = {'r1':'row_g1','r2':'row_g2','r3':'row_g3','r4':'row_g4'} gbr = df.groupby(mdr) print(gbr.sum()) # c1 c2 c3 c4 c5 # row_g1 0 1 2 3 4 # row_g2 5 6 7 8 9 # row_g3 10 11 12 13 14 # row_g4 15 16 17 18 19 mdr = {'r1':'row_g1','r2':'row_g1','r3':'row_g2','r4':'row_g2'} gbr = df.groupby(mdr) print(gbr.sum()) # c1 c2 c3 c4 c5 # row_g1 5 7 9 11 13 # row_g2 25 27 29 31 33 print(gbr.mean()) # c1 c2 c3 c4 c5 # row_g1 2.5 3.5 4.5 5.5 6.5 # row_g2 12.5 13.5 14.5 15.5 16.5 print(gbr.std()) # c1 c2 c3 c4 c5 # row_g1 3.535534 3.535534 3.535534 3.535534 3.535534 # row_g2 3.535534 3.535534 3.535534 3.535534 3.535534 # col_g1 = c1+c2 : 열단위 계산으로 새로운 열 생성(같은 행의 성분이 더해진다.: sum()) : 꼭 axis = 1을주어야 한다. # col_g2 = c3+c4+c5 mdc = {'c1':'col_g1','c2':'col_g1','c3':'col_g2','c4':'col_g2','c5':'col_g2'} gbc = df.groupby(mdc,axis=1) #꼭 axis = 1을주어야 한다. print(gbc.sum()) # col_g1 col_g2 # r1 1 9 # r2 11 24 # r3 21 39 # r4 31 54 print(type(mdr)) # <class 'dict'> print(mdr) # {'r1': 'row_g1', 'r2': 'row_g1', 'r3': 'row_g2', 'r4': 'row_g2'} # dic -> Series # Series를 이용한 그룹화 msr = Series(mdr) print(type(msr)) # <class 'pandas.core.series.Series'> print(msr) # r1 row_g1 # r2 row_g1 # r3 row_g2 # r4 row_g2 # dtype: object print(df.groupby(msr).sum()) # 딕셔너리와 같은 결과 # c1 c2 c3 c4 c5 # row_g1 5 7 9 11 13 # row_g2 25 27 29 31 33 msc = Series(mdc) print(df.groupby(msc,axis=1).sum()) # col_g1 col_g2 # r1 1 9 # r2 11 24 # r3 21 39 # r4 31 54 #함수를 이용한 그룹화 # 딕셔너리나 시리즈 대신 선언되는 rgf로 그룹화(df에 대한 정보가 x에 전달) def rgf(x) : if x == 'r1' or x == 'r2': rg = 'row_g1' else: rg = 'row_g2' return rg # 딕셔너리나 시리즈의 모습에 맞춰서 그룹화 하여 그룹화 계산 함수의 결과에 맞춰 데이터프레임 생성 print(df.groupby(rgf).sum())
3.40625
3
research/slim/eval_lib.py
plant-tw/models_plant
3
12793758
# -*- coding: utf-8 -*- # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generic evaluation script that evaluates a model using a given dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import click import yaml from collections import Iterable, defaultdict from itertools import cycle import subprocess import PIL import math import os from PIL import Image import cv2 import numpy as np import tensorflow as tf from tensorflow.python.training import monitored_session from datasets.plants import read_label_file from datasets import dataset_factory from nets import nets_factory from preprocessing import preprocessing_factory from matplotlib.font_manager import FontManager import matplotlib if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') matplotlib.use('Agg') import matplotlib.pyplot as plt slim = tf.contrib.slim _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 OUTPUT_MODEL_NODE_NAMES_DICT = { 'resnet_v2_50': 'resnet_v2_50/predictions/Reshape_1', 'mobilenet_v1': 'MobilenetV1/Predictions/Reshape_1', } def define_tf_flags(): BATCH_SIZE = 100 tf.app.flags.DEFINE_integer( 'batch_size', BATCH_SIZE, 'The number of samples in each batch.') tf.app.flags.DEFINE_integer( 'max_num_batches', None, 'Max number of batches to evaluate by default use all.') tf.app.flags.DEFINE_string( 'master', '', 'The address of the TensorFlow master to use.') tf.app.flags.DEFINE_string( 'checkpoint_path', None, 'The directory where the model was written to or an absolute path to a ' 'checkpoint file.') tf.app.flags.DEFINE_string( 'eval_dir', '/tmp/tfmodel/', 'Directory where the results are saved to.') tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 4, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_string( 'dataset_name', 'plants', 'The name of the dataset to load.') tf.app.flags.DEFINE_string( 'dataset_split_name', 'validation', 'The name of the train/test split.') tf.app.flags.DEFINE_string( 'dataset_dir', None, 'The directory where the dataset files are stored.') tf.app.flags.DEFINE_integer( 'labels_offset', 0, 'An offset for the labels in the dataset. This flag is primarily used to ' 'evaluate the VGG and ResNet architectures which do not use a background ' 'class for the ImageNet dataset.') tf.app.flags.DEFINE_string( 'model_name', 'mobilenet_v1', 'The name of the architecture to evaluate.') tf.app.flags.DEFINE_string( 'preprocessing_name', None, 'The name of the preprocessing to use. If left ' 'as `None`, then the model_name flag is used.') tf.app.flags.DEFINE_float( 'moving_average_decay', None, 'The decay to use for the moving average.' 'If left as None, then moving averages are not used.') tf.app.flags.DEFINE_integer( 'eval_image_size', None, 'Eval image size') FLAGS = tf.app.flags.FLAGS def get_dataset_dir(config): return get_config_value(config, 'dataset_dir') def get_config_value(config, key): return config.get(key) or getattr(FLAGS, key) def get_checkpoint_dir_path(config): return get_config_value(config, 'checkpoint_path') def get_lastest_check_point(config): checkpoint_path = get_checkpoint_dir_path(config) if tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) return checkpoint_path def inspect_tfrecords(tfrecords_filename): record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename) examples = [] for string_record in record_iterator: example = tf.train.Example() example.ParseFromString(string_record) examples.append(example) # print(example) return examples def get_info(config, checkpoint_path=None, calculate_confusion_matrix=False): dataset_dir = get_dataset_dir(config) model_name = get_model_name(config) # tf.logging.set_verbosity(tf.logging.INFO) tf.Graph().as_default() tf_global_step = slim.get_or_create_global_step() ###################### # Select the dataset # ###################### dataset = dataset_factory.get_dataset( FLAGS.dataset_name, FLAGS.dataset_split_name, dataset_dir) #################### # Select the model # #################### num_classes = (dataset.num_classes - FLAGS.labels_offset) network_fn = nets_factory.get_network_fn( model_name, num_classes=num_classes, is_training=False) ############################################################## # Create a dataset provider that loads data from the dataset # ############################################################## provider = slim.dataset_data_provider.DatasetDataProvider( dataset, num_epochs=1, # 每張只讀一次 # num_readers=1, shuffle=False, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) # common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) label -= FLAGS.labels_offset raw_images = image ##################################### # Select the preprocessing function # ##################################### preprocessing_name = FLAGS.preprocessing_name or model_name image_preprocessing_fn = preprocessing_factory.get_preprocessing( preprocessing_name, is_training=False) eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size image = image_preprocessing_fn(image, eval_image_size, eval_image_size) images, labels = tf.train.batch( [image, label], batch_size=FLAGS.batch_size, num_threads=FLAGS.num_preprocessing_threads, allow_smaller_final_batch=True, capacity=5 * FLAGS.batch_size) #################### # Define the model # #################### logits, _ = network_fn(images) if FLAGS.moving_average_decay: variable_averages = tf.train.ExponentialMovingAverage( FLAGS.moving_average_decay, tf_global_step) variables_to_restore = variable_averages.variables_to_restore( slim.get_model_variables()) variables_to_restore[tf_global_step.op.name] = tf_global_step else: variables_to_restore = slim.get_variables_to_restore() predictions = tf.argmax(logits, 1) one_hot_predictions = slim.one_hot_encoding( predictions, dataset.num_classes - FLAGS.labels_offset) labels = tf.squeeze(labels) # Define the metrics: names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'Accuracy': slim.metrics.streaming_accuracy(predictions, labels), 'Recall_5': slim.metrics.streaming_recall_at_k( logits, labels, 5), }) if calculate_confusion_matrix: confusion_matrix = tf.confusion_matrix(labels=labels, num_classes=num_classes, predictions=predictions) else: confusion_matrix = None # Print the summaries to screen. for name, value in names_to_values.items(): summary_name = 'eval/%s' % name op = tf.summary.scalar(summary_name, value, collections=[]) op = tf.Print(op, [value], summary_name) tf.add_to_collection(tf.GraphKeys.SUMMARIES, op) # TODO(sguada) use num_epochs=1 if FLAGS.max_num_batches: num_batches = FLAGS.max_num_batches else: # This ensures that we make a single pass over all of the data. num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size)) checkpoint_path = checkpoint_path or get_lastest_check_point(config) tf.logging.info('Evaluating %s' % checkpoint_path) labels_to_names = read_label_file(dataset_dir) probabilities = tf.nn.softmax(logits) softmax_cross_entropy_loss = tf.losses.softmax_cross_entropy( one_hot_predictions, logits, label_smoothing=0.0, weights=1.0) grad_imgs = tf.gradients(softmax_cross_entropy_loss, images)[0] return { 'labels_to_names': labels_to_names, 'checkpoint_path': checkpoint_path, 'num_batches': num_batches, 'names_to_values': names_to_values, 'names_to_updates': names_to_updates, 'variables_to_restore': variables_to_restore, 'images': images, 'raw_images': raw_images, 'network_fn': network_fn, 'labels': labels, 'logits': logits, 'probabilities': probabilities, 'predictions': predictions, 'confusion_matrix': confusion_matrix, 'loss': softmax_cross_entropy_loss, 'grad_imgs': grad_imgs, } def get_monitored_session(checkpoint_path): session_creator = monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, # scaffold=scaffold, # master=master, # config=config ) return monitored_session.MonitoredSession( session_creator=session_creator) def plot_confusion_matrix(confusion_matrix, labels_to_names=None, save_dir='.'): import seaborn as sns set_matplot_zh_font() # ax = plt.subplot() fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(18, 15) # https://stackoverflow.com/questions/22548813/python-color-map-but-with-all-zero-values-mapped-to-black # confusion_matrix = np.ma.masked_where(confusion_matrix < 0.01, # confusion_matrix) cmap = plt.get_cmap('Accent') # cmap = plt.get_cmap('coolwarm') # cmap = plt.get_cmap('plasma') # cmap = plt.get_cmap('Blues') # cmap.set_bad(color='black') mask = np.zeros_like(confusion_matrix) mask[confusion_matrix == 0] = True # sns.set(font_scale=1) with sns.axes_style('darkgrid'): sns.heatmap(confusion_matrix, linewidths=0.2, linecolor='#eeeeee', xticklabels=True, yticklabels=True, mask=mask, annot=False, ax=ax, cmap=cmap) n = confusion_matrix.shape[0] # labels, title and ticks ax.set_xlabel('Predicted labels') ax.set_ylabel('True labels') ax.set_title('Confusion Matrix') axis = [labels_to_names[i] if labels_to_names else i for i in range(n)] ax.xaxis.set_ticklabels(axis, rotation=270) ax.yaxis.set_ticklabels(axis, rotation=0) pic_path = os.path.join(save_dir, 'confusion_matrix.png') plt.savefig(pic_path) print(pic_path, 'saved') print('plot shown') plt.show() def get_matplot_zh_font(): # From https://blog.csdn.net/kesalin/article/details/71214038 fm = FontManager() mat_fonts = set(f.name for f in fm.ttflist) output = subprocess.check_output('fc-list :lang=zh-tw -f "%{family}\n"', shell=True) zh_fonts = set(f.split(',', 1)[0] for f in output.split('\n')) available = list(mat_fonts & zh_fonts) return available def set_matplot_zh_font(): available = get_matplot_zh_font() if len(available) > 0: plt.rcParams['font.sans-serif'] = [available[0]] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False def deprocess_image(x, target_std=0.15): # normalize tensor x = np.abs(x) x = np.max(x, axis=2) x -= x.mean() std = x.std() if std: x /= std x *= target_std x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x def plot_image_in_grids(image_list, n_columns, file_name=None): image_table = chunks(image_list, n_columns) n_row = len(image_table) plt.figure(figsize=(15, 10)) i = 1 for row in image_table: for col in row: plt.subplot(n_row, n_columns, i) plt.imshow(col) i += 1 if file_name: plt.savefig(file_name) print(file_name, 'saved') else: print('plot shown') plt.show() def plot_saliency(saliency, image, file_name=None): plt.figure(figsize=(15, 10)) plot_image_in_grids([ [saliency, image] ], file_name) def _eval_tensors(config, checkpoint_path=None, keys=None, use_cached=False): checkpoint_dir_path = get_checkpoint_dir_path(config) if use_cached: aggregated = load_var(checkpoint_dir_path, 'run_info_result.h5') if aggregated is not None: return aggregated calculate_confusion_matrix = True info = get_info(config, calculate_confusion_matrix=calculate_confusion_matrix) num_batches = info['num_batches'] aggregated = {} checkpoint_path = checkpoint_path or get_lastest_check_point(config) with get_monitored_session(checkpoint_path) as sess: for i in range(int(math.ceil(num_batches))): print('batch #{} of {}'.format(i, num_batches)) params = { k: v for k, v in info.items() if isinstance(v, tf.Tensor) and (not keys or k in keys) } try: feed_dict = {} res = sess.run(params, feed_dict=feed_dict) except: import traceback traceback.print_exc() raise for k in res.keys(): value = res[k] if k == 'confusion_matrix': if k not in aggregated: aggregated[k] = np.matrix(value) else: aggregated[k] += np.matrix(value) else: if k not in aggregated: aggregated[k] = [] if isinstance(value, Iterable): aggregated[k].extend(value) else: aggregated[k].append(value) labels = res['labels'] print('len labels', len(labels)) all_labels = aggregated['labels'] print('all_labels length', len(all_labels)) print('all_labels unique length', len(set(all_labels))) if use_cached: save_var(checkpoint_dir_path, 'run_info_result.h5', aggregated) return aggregated def _run_saliency_maps(config, use_cached=False): checkpoint_path = get_lastest_check_point(config) keys = [ 'labels', 'images', 'grad_imgs', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) grad_imgs = aggregated['grad_imgs'] images = aggregated['images'] prefix = '' save_saliency_maps(config, grad_imgs, images, prefix, labels=aggregated['labels']) def _run_info(config, use_cached=False): checkpoint_path = get_lastest_check_point(config) keys = [ 'labels', 'images', # 'raw_images', 'logits', 'probabilities', 'predictions', 'confusion_matrix', # 'loss', 'grad_imgs', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) from collections import Counter all_labels = aggregated['labels'] c = Counter(all_labels) kv_pairs = sorted(dict(c).items(), key=lambda p: p[0]) for k, v in kv_pairs: print(k, v) def save_var(directory, file_name, info): import h5py info_file_path = os.path.join(directory, file_name) f = h5py.File(info_file_path, 'w') for k, v in info.items(): f[k] = v f.close() print(info_file_path, 'saved') def load_var(directory, file_name): import h5py info_file_path = os.path.join(directory, file_name) try: with h5py.File(info_file_path, 'r') as f: return { k: f[k][:] for k in f.keys() } except IOError: return None def chunks(l, n): """Yield successive n-sized chunks from l.""" return [l[i:i + n] for i in range(0, len(l), n)] def save_saliency_maps(config, grad_imgs, images, prefix='', labels=None): n = images.shape[0] save_dir = 'saliency_maps' labels_to_names = read_label_file(get_dataset_dir(config)) label_count_map = defaultdict(int) try: os.makedirs(save_dir) except OSError: pass for j in range(n): image = images[j] grad_img = grad_imgs[j] label = labels[j] label_name = labels_to_names[label] if label_count_map[label] >= 10: continue file_name = '{}/{}{:03d}.jpg'.format( save_dir, '{:02}_{}_{}'.format( label, label_name.encode('utf-8'), prefix) if labels is not None else prefix, label_count_map[label]) saliency = deprocess_image(grad_img, target_std=0.3) restored_image = ((image / 2 + 0.5) * 255).astype('uint8') blend = get_image_with_saliency_map(restored_image, saliency) plot_image_in_grids([ saliency, restored_image, blend, ], n_columns=2, file_name=file_name) label_count_map[label] += 1 def _plot_roc(logits_list, labels, predictions, probabilities, plot_all_classes=False, save_dir=None): from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize possible_labels = list(range(max(labels) + 1)) y_binary = label_binarize(labels, classes=possible_labels) output_matrix = np.array(probabilities) y_score_matrix = output_matrix y_score_matrix = np.where( y_score_matrix == np.max(y_score_matrix, axis=1)[:, None], y_score_matrix, 0) tpr = {} fpr = {} roc_auc = {} for i in range(len(possible_labels)): y_scores = y_score_matrix[:, i] fpr[i], tpr[i], _ = roc_curve(y_binary[:, i], y_scores) roc_auc[i] = auc(fpr[i], tpr[i]) # 參考 http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html y_score_matrix_ravel = y_score_matrix.ravel() i_positive = y_score_matrix_ravel != 0 fpr["highest_probability"], tpr[ "highest_probability"], micro_thresholds = roc_curve( y_binary.ravel()[i_positive], y_score_matrix_ravel[i_positive]) roc_auc["highest_probability"] = auc(fpr["highest_probability"], tpr["highest_probability"]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], micro_thresholds = roc_curve( y_binary.ravel(), y_score_matrix.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) lw = 2 n_classes = len(possible_labels) # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # key_series = 'micro' key_series = 'highest_probability' i_optimal_micro = np.argmax(tpr[key_series] - fpr[key_series]) optimal_threshold_fpr = fpr[key_series][i_optimal_micro] optimal_threshold_tpr = tpr[key_series][i_optimal_micro] optimal_threshold = micro_thresholds[i_optimal_micro] print('optimal_threshold_fpr:', optimal_threshold_fpr) print('optimal_threshold_tpr:', optimal_threshold_tpr) print('optimal_threshold:', optimal_threshold) # Plot all ROC curves plt.figure() colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) if plot_all_classes: for i, color in zip(range(n_classes), colors): label = 'ROC curve of class {0} (area = {1:0.2f})'.format( i, roc_auc[i]) label = None plt.plot(fpr[i], tpr[i], color=color, lw=lw, label=label) plt.plot(fpr["highest_probability"], tpr["highest_probability"], label='ROC curve (area = {0:0.2f})' ''.format(roc_auc["highest_probability"]), color='blue', linestyle=':', linewidth=4) # plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve') plt.legend(loc="lower right") pic_path = os.path.join(save_dir, 'roc_curve.png') plt.savefig(pic_path) print(pic_path, 'saved') print('ROC curve shown') plt.show() def _roc_analysis(config, use_cached=False): checkpoint_dir_path = get_checkpoint_dir_path(config) keys = [ 'logits', 'labels', 'predictions', 'probabilities', ] info = _eval_tensors(config, keys=keys, use_cached=use_cached) logits_list = info['logits'] labels = info['labels'] predictions = info['predictions'] probabilities = info['probabilities'] _plot_roc(logits_list, labels, predictions, probabilities, save_dir=checkpoint_dir_path) return def inspect_datasets(config): dataset_dir = get_dataset_dir(config) examples = [] for i in range(5): tfrecords_filename = os.path.join( dataset_dir, 'plants_validation_{:05d}-of-00005.tfrecord'.format(i)) examples.extend(inspect_tfrecords(tfrecords_filename)) print(len(examples)) examples = [] for i in range(5): tfrecords_filename = os.path.join( dataset_dir, 'plants_train_{:05d}-of-00005.tfrecord'.format(i)) examples.extend(inspect_tfrecords(tfrecords_filename)) print(len(examples)) def resize(im, target_smallest_size): resize_ratio = 1.0 * target_smallest_size / min(list(im.size)) target_size = tuple(int(resize_ratio * l) for l in im.size) return im.resize(target_size, PIL.Image.BILINEAR) def central_crop(im, w, h): half_w = im.size[0] / 2 half_h = im.size[1] / 2 return im.crop( (half_w - w / 2, half_h - h / 2, half_w + w / 2, half_h + h / 2)) def pre_process_resnet(im, coreml=False): target_smallest_size = 224 im1 = resize(im, target_smallest_size) im2 = central_crop(im1, target_smallest_size, target_smallest_size) arr = np.asarray(im2).astype(np.float32) if not coreml: arr[:, :, 0] -= _R_MEAN arr[:, :, 1] -= _G_MEAN arr[:, :, 2] -= _B_MEAN return arr def central_crop_by_fraction(im, central_fraction): w = im.size[0] h = im.size[1] return central_crop(im, w * central_fraction, h * central_fraction) def pre_process_mobilenet(im, coreml=False): # 參考 https://github.com/tensorflow/models/blob/master/research/slim/preprocessing/inception_preprocessing.py # 裡的 preprocess_for_eval im1 = central_crop_by_fraction(im, 0.875) target_smallest_size = 224 im2 = im1.resize((target_smallest_size, target_smallest_size), PIL.Image.BILINEAR) arr = np.asarray(im2).astype(np.float32) if not coreml: arr /= 255.0 arr -= 0.5 arr *= 2.0 return arr def pre_process(config, im, coreml=False): model_name = get_model_name(config) return { 'resnet_v2_50': pre_process_resnet, 'mobilenet_v1': pre_process_mobilenet, }[model_name](im, coreml=coreml) def get_model_name(config): model_name = get_config_value(config, 'model_name') return model_name def test_inference_by_pb(config, pb_file_path=None, dataset_dir=None): # http://www.cnblogs.com/arkenstone/p/7551270.html filenames = [ ('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg', u'通泉草'), ('20180330/iUTbDxEoT/iUTbDxEoT_0.jpg', u'杜鵑花仙子'), # ('20180330/4PdXwYcGt/4PdXwYcGt_5.jpg', u'酢漿草'), ] for filename, label in filenames: filename = dataset_dir_file(config, filename) # image_np = cv2.imread(filename) result = run_inference_on_file_pb( config, filename, pb_file_path=pb_file_path, dataset_dir=dataset_dir) index = result['prediction_label'] print("Prediction label index:", index) prediction_name = result['prediction_name'] print("Prediction name:", prediction_name) print("Top 3 Prediction label index:", ' '.join(result['top_n_names'])) assert prediction_name == label def dataset_dir_file(config, filename): filename = os.path.join(get_dataset_dir(config), filename) return filename def run_inference_by_pb(config, image_np, pb_file_path=None): checkpoint_dir_path = get_checkpoint_dir_path(config) pb_file_path = pb_file_path or '%s/frozen_graph.pb' % checkpoint_dir_path with tf.gfile.GFile(pb_file_path) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) return _run_inference_by_graph_def(config, graph_def, image_np) def _run_inference_by_graph_def(config, graph_def, image_np, enable_saliency_maps=False): model_name = get_model_name(config) image_size = 224 image_np = pre_process(config, image_np) image_np = cv2.resize(image_np, (image_size, image_size)) # expand dims to shape [None, 299, 299, 3] image_np = np.expand_dims(image_np, 0) graph = tf.import_graph_def(graph_def, name='') with tf.Session(graph=graph) as sess: input_tensor_name = "input:0" # output_tensor_name = "resnet_v2_50/predictions/Reshape_1:0" output_tensor_name = OUTPUT_MODEL_NODE_NAMES_DICT[ model_name] + ":0" input_tensor = sess.graph.get_tensor_by_name( input_tensor_name) # get input tensor output_tensor = sess.graph.get_tensor_by_name( output_tensor_name) # get output tensor tensor_map = { 'logits': output_tensor, } if enable_saliency_maps: tensor_map['grad_imgs'] = sess.graph.get_tensor_by_name( 'gradients/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D_grad/Conv2DBackpropInput:0') result = sess.run(tensor_map, feed_dict={input_tensor: image_np}) return { 'logits': result['logits'], 'grad_imgs': result.get('grad_imgs'), } def test_inference_by_coreml(config, coreml_file_path=None, dataset_dir=None): labels_to_names = read_label_file(get_dataset_dir(config)) dataset_dir = get_dataset_dir(config) filenames = [ ('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg', u'通泉草'), ('20180330/iUTbDxEoT/iUTbDxEoT_0.jpg', u'杜鵑花仙子'), # ('20180330/4PdXwYcGt/4PdXwYcGt_5.jpg', u'酢漿草'), ] for filename, label in filenames: filename = os.path.join(dataset_dir, filename) image_np = PIL.Image.open(filename) logits = run_inference_by_coreml( config, image_np, coreml_file_path=coreml_file_path, ) print('logits', logits) index = np.argmax(logits) print("Prediction label index:", index) prediction_name = labels_to_names[index] print("Prediction name:", prediction_name) index_list = np.argsort(logits) print("Top 3 Prediction label index:", index_list, ' '.join([labels_to_names[i] for i in list(index_list)])) assert prediction_name == label def run_inference_by_coreml(config, image_np, coreml_file_path=None): import coremltools import tfcoreml model_name = get_model_name(config) checkpoint_dir_path = get_checkpoint_dir_path(config) frozen_model_file = '%s/frozen_graph.pb' % checkpoint_dir_path coreml_model_file = coreml_file_path or '%s/plant.mlmodel' % checkpoint_dir_path image_np = pre_process(config, image_np, coreml=True) image = Image.fromarray(image_np.astype('int8'), 'RGB') input_tensor_shapes = { "input:0": [1, image_np.shape[0], image_np.shape[1], 3]} # batch size is 1 output_tensor_name = OUTPUT_MODEL_NODE_NAMES_DICT[model_name] + ":0" coreml_model = coremltools.models.MLModel(coreml_model_file) convert_model = False # convert_model = True if convert_model: extra_args = { 'resnet_v2_50': { 'red_bias': -_R_MEAN, 'green_bias': -_G_MEAN, 'blue_bias': -_B_MEAN, }, 'mobilenet_v1': { 'red_bias': -1.0, 'green_bias': -1.0, 'blue_bias': -1.0, 'image_scale': 2.0 / 255., } }[model_name] coreml_model = tfcoreml.convert( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file.replace('.mlmodel', '_test.mlmodel'), input_name_shape_dict=input_tensor_shapes, output_feature_names=[output_tensor_name], image_input_names=['input:0'], **extra_args ) coreml_inputs = {'input__0': image} coreml_output = coreml_model.predict(coreml_inputs, useCPUOnly=False) # example output: 'resnet_v2_50__predictions__Reshape_1__0' probs = coreml_output[ output_tensor_name.replace('/', '__').replace(':', '__')].flatten() return probs def run_inference_on_file_pb(config, filename, pb_file_path=None, dataset_dir=None): labels_to_names = read_label_file(get_dataset_dir(config)) image_np = PIL.Image.open(filename) logits = run_inference_by_pb(config, image_np, pb_file_path=pb_file_path)[ 'logits'] index = np.argmax(logits, 1) prediction_name = labels_to_names[index[0]] index_list = np.argsort(logits, 1) top_n_names = list(reversed( [labels_to_names[i] for i in list(index_list[0])])) print('logits', logits) result = { 'prediction_name': prediction_name, 'prediction_label': index[0], 'top_n_names': top_n_names, 'logits': logits.tolist(), } return result def test_inference_by_model_files(config, dataset_dir=None, frozen_graph_path=None, coreml_file_path=None): dataset_dir = dataset_dir or get_dataset_dir(config) test_inference_by_pb(config, pb_file_path=frozen_graph_path, dataset_dir=dataset_dir) test_inference_by_coreml(config, coreml_file_path=coreml_file_path, dataset_dir=dataset_dir) def get_image_with_saliency_map(image_np, saliency): image_np = np.copy(np.asarray(image_np))[:, :] w, h = image_np.shape[0:2] l = min(w, h) saliency = cv2.resize(saliency, (l, l)) saliency = cv2.cvtColor(saliency, cv2.COLOR_GRAY2RGB) canvas = image_np[:, :] w_offset = int((w - l) / 2) h_offset = int((h - l) / 2) roi_img = canvas[w_offset:w_offset + l, h_offset:h_offset + l] intensify_factor = 3 alpha = np.clip(1 - intensify_factor * saliency.astype(float) / 255, 0, 1) paint = np.copy(1 - alpha) * 255 overlap = roi_img[paint > 128] if overlap.mean() + overlap.std() > 128: color = np.array([0, 0, 255]).astype(float) / 255 # blue else: color = np.array([255, 200, 0]).astype(float) / 255 # orange paint[:, :] *= color roi_img = cv2.multiply(alpha, roi_img.astype(float)) roi_img = cv2.add(paint * (1 - alpha), roi_img).astype(int) canvas[w_offset:w_offset + l, h_offset:h_offset + l] = roi_img return canvas def test_frozen_graph_saliency_map(config): checkpoint_dir = config['checkpoint_path'] dataset_dir = get_dataset_dir(config) frozen_graph_path = os.path.join(checkpoint_dir, 'frozen_graph.pb') filename = dataset_dir_file('20180330/1lZsRrQzj/1lZsRrQzj_5.jpg') labels_to_names = read_label_file(dataset_dir) image_np = PIL.Image.open(filename) results = run_inference_by_pb(config, image_np, pb_file_path=frozen_graph_path) logits = results['logits'] index = np.argmax(logits, 1)[0] prediction_name = labels_to_names[index] grad_imgs = results['grad_imgs'] saliency = deprocess_image(grad_imgs[0]) blend = get_image_with_saliency_map(image_np, saliency) print(prediction_name) plot_image_in_grids([ blend, image_np, saliency, ], 2) @click.group() def cli(): pass @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def run_info(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _run_info(config, use_cached=use_cached) @cli.command() @click.argument('config_file') def test_models(config_file): with open(config_file) as f: config = yaml.load(f) test_inference_by_model_files(config) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def plot_roc(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _roc_analysis(config, use_cached=use_cached) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def saliency_maps(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) _run_saliency_maps(config, use_cached=use_cached) @cli.command() @click.argument('config_file') @click.option('--use_cached', is_flag=True) def confusion_matrix(config_file, use_cached): with open(config_file) as f: config = yaml.load(f) keys = [ 'confusion_matrix', ] aggregated = _eval_tensors(config, keys=keys, use_cached=use_cached) checkpoint_dir_path = get_checkpoint_dir_path(config) dataset_dir = get_dataset_dir(config) labels_to_names = read_label_file(dataset_dir) plot_confusion_matrix(aggregated['confusion_matrix'], labels_to_names=labels_to_names, save_dir=checkpoint_dir_path) if __name__ == '__main__': define_tf_flags() cli()
2.359375
2
tools/agile-machine-learning-api/codes/trainer/utils/metric_utils.py
ruchirjain86/professional-services
2,116
12793759
<gh_stars>1000+ # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for creating metrics in tensorflow for model training.""" import tensorflow as tf def mean_acc(labels, predictions, num_classes): """Mean per class accuracy metrics Arguments: labels: tf.Tensor objects, True values of the dependent variable predictions: tf.Tensor objects, Predictions from the model Returns: The mean per class accuracy """ return {'mean_class_acc': tf.metrics.mean_per_class_accuracy( labels, predictions['class_ids'], num_classes) } def my_auc(labels, predictions): """Custom AUC metric using interpolation. Arguments: labels: tf.Tensor objects, True values of dependent variable predictions: tf.Tensor objects, Predictions from the model Returns: The AUC metric for the model """ return {'auc_ci': tf.metrics.auc( labels, predictions['class_ids'], summation_method='careful_interpolation') } def rmse(labels, predictions): """Root mean squared error metric for regression tasks. Arguments: labels: tf.Tensor objects, True values of dependent variable predictions: tf.Tensor objects, Predictions from the model Returns: Root mean squared error for regression model """ return {'root_mean_square_error': tf.metrics.root_mean_squared_error( labels, predictions['predictions']) } def mar(labels, predictions): """Mean absolute error for regression model. Arguments: labels: tf.Tensor objects, True values of dependent variable predictions: tf.Tensor objects, Predictions from the model Returns: Mean absolute error for the regression model """ return {'mean_absolute_error': tf.metrics.mean_absolute_error( labels, predictions['predictions']) }
2.671875
3
2-Medium/maxEvents.py
Sma-Das/Leetcode
0
12793760
<reponame>Sma-Das/Leetcode def maxEvents(events: list[list[int, int]]) -> int: events = sorted(events, key=lambda x: (x[1] - x[0], x[0], x[1])) reserved = set() for start, end in events: if start not in reserved: reserved.add(start) else: for day in range(start, end+1): if day not in reserved: reserved.add(day) break return len(reserved) if __name__ == '__main__': events = [ [[1, 2], [2, 3], [3, 4]], [[1, 2], [2, 3], [3, 4], [1, 2]], [[1, 4], [4, 4], [2, 2], [3, 4], [1, 1]], [[1, 100000]], [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7]], ] for event in events: print(maxEvents(event))
2.75
3
test_app.py
suchayan01/scaler-boocamp
0
12793761
from app import app with app.test_client() as c: response= c.get('/') assert response.data == b'Hello World!' assert response.status_code==200
2.15625
2
coding/learn_collections/defaultdict_01_demo.py
yatao91/learning_road
3
12793762
<gh_stars>1-10 # -*- coding: utf-8 -*- from collections import defaultdict def default_factory(): return "default value" d = defaultdict(default_factory, foo="bar") print("d: ", d) print("foo => ", d["foo"]) print("bar => ", d["bar"])
3
3
dps.py
mattflanzer/photosort
0
12793763
# dropbox-photo-sorter # (c)2018 <NAME> # License: MIT import sys import re import os import shutil from PIL import Image import datetime import time import PIL.ExifTags import sqlite3 import requests import json import unidecode import argparse class Storage: def __init__(self, pathname): self.year = None self.month = None self.country = None self.state = None self.city = None if pathname: unix = os.path.getmtime(pathname) dt = datetime.datetime.utcfromtimestamp(unix) self.year = "{:%Y}".format(dt) self.month = "{:%m}".format(dt) self.cached = False def dict(self): return {'year':self.year,'month':self.month,'country':self.country,'state':self.state,'city':self.city} def __str__(self): return str(self.dict()) def __getitem__(self,key): return self.dict()[key] def item(self,key): if key=='y': return self.year elif key=='m': return self.month elif key=='c': return self.country elif key=='s': return self.state elif key=='l': return self.city else: return None class Node: prefixsz = 8 def __init__(self): self.children={} self.value = [] def isLeaf(self): return len(self.children)==0 def add(self,k): if k is None: return self if not k in self.children: self.children[k] = Node() return self.children[k] def merge(self,n): for k,v in n.children.iteritems(): if k in self.children: self.children[k].merge(v) else: self.children[k] = v self.value += n.value def flatten(self): new_node = Node() for k,v in self.children.iteritems(): new_node.merge(v) self.children = new_node.children self.value += new_node.value def collapse(self,level,minimum,current,show_collapse): num_children = len(self.children) for k,n in self.children.items(): n.collapse(level,minimum,current+1,show_collapse) if (n.size() < minimum) and (current >= level-1): if show_collapse: print "flattening %s at %d with %s"%(k,current,n.children.keys()) n.flatten() if (num_children < minimum) and (n.size() < minimum) and (current >= level): if show_collapse: print "merging %s at %d with %s"%(k,current,n.children.keys()) self.merge(n) del self.children[k] def dict(self,full_path): rtrn = {} for v, cached in self.value: rtrn[v] = os.path.basename(v) if full_path else '' for k,n in self.children.iteritems(): for dk,dv in n.dict(full_path).iteritems(): rtrn[dk] = "%s/%s"%(k,dv) return rtrn def dump(self,show_cached=True,level=0): prefix = ' ' * (Node.prefixsz * level) if self.value: for v, cached in self.value: if not cached or show_cached: print prefix+os.path.basename(v) for k,n in self.children.iteritems(): cached,non_cached = n.count_cached() if (non_cached > 0) or show_cached: print "%s%s/"%(prefix,k) n.dump(show_cached,level+1) def count_cached(self): cached = 0 non_cached = 0 if self.value: cached = len(filter(lambda (v,c): c, self.value)) non_cached = len(self.value) - cached for k,n in self.children.iteritems(): (sub_cached, sub_non_cached) = n.count_cached() cached += sub_cached non_cached += sub_non_cached return (cached, non_cached) def size(self): return len(self.value) + len(self.children) class StorageTree: default_mode='ymcsl' def __init__(self,stores,mode=default_mode): self.head = Node() for k,v in stores.iteritems(): node = self.head for m in mode: node = node.add(v.item(m)) node.value.append((k,v.cached)) def dict(self,full_path): return self.head.dict(full_path) def dump(self,show_cached=True): self.head.dump(show_cached) def collapse(self,level,minimum,show_collapse): self.head.collapse(level,minimum,0,show_collapse) @classmethod def fromDirectory(cls,root,fd,cache,mode,google): stores = {} if fd: fd.write('Processing ') lfileext = lambda f: os.path.splitext(f)[1].lower() all_files = [os.path.join(d,filename) for d, _, files in os.walk(root) for filename in files if lfileext(filename) in ('.jpg','.jpeg')] progress = Progress(all_files,fd) for pathname in progress: s = cache.get(pathname) if cache else None if s is None: s = Storage(pathname) try: im = Image.open(pathname) exif = ExifData(im._getexif()) if exif.year and exif.month: s.year = exif.year s.month = exif.month if exif.lat and exif.lon: if google is None: (s.city,s.state,s.country) = GeoCoderOpenStreetmap(exif.lat,exif.lon).loc else: (s.city,s.state,s.country) = GeoCoderGoogle(exif.lat,exif.lon,google).loc #print "%s: %s"%(filename,s) except Exception as e: #print "Exception %s: %s" %(filename,str(e)) pass if cache: cache.put(pathname,s) stores[pathname] = s if cache: cache.flush() return cls(stores,mode) class ExifData: def __init__(self,exifraw): if 0x0132 in exifraw: self.year = exifraw[0x0132][:4] self.month = exifraw[0x0132][5:7] else: self.year = None self.month = None if 0x8825 in exifraw: gpsraw = exifraw[0x8825] self.lat = ExifData.degrees(gpsraw[2],gpsraw[1]=='S') self.lon = ExifData.degrees(gpsraw[4],gpsraw[3]=='W') else: self.lat = None self.lon = None @staticmethod def degrees(raw,neg): ((degreesNumerator, degreesDenominator), (minutesNumerator, minutesDenominator), (secondsNumerator, secondsDenominator)) = raw Degrees = (float(degreesNumerator) / float(degreesDenominator)) Minutes = (float(minutesNumerator) / float(minutesDenominator)) Seconds = (float(secondsNumerator) / float(secondsDenominator)) dd = Degrees + Minutes/60.0 + Seconds/3600.0 if neg: dd *= -1.0 return dd class Cache: def __init__(self,rootdir,use_pending=False): self.conn = sqlite3.connect(os.path.join(rootdir,'.dps_storage.db')) cursor = self.conn.cursor() sql = """ CREATE TABLE IF NOT EXISTS storage ( hash int PRIMARY KEY, year text, month text, country text, state text, city text, filename text ); """ cursor.execute(sql) self.conn.commit() #print "created table storage" self.pending = {} self.use_pending = use_pending def __getitem__(self,h): cursor = self.conn.cursor() sql = """ SELECT year, month, country, state, city FROM storage WHERE hash = ? ; """ cursor.execute(sql,(h,)) row = cursor.fetchone() #print "found "+str(row) if row is None: return None s = Storage(None) (s.year, s.month, s.country, s.state, s.city) = row s.cached = True return s def __contains__(self,h): s = self[h] return s is not None def get(self,pathname): h = self.make_hash(pathname) return self.__getitem__(h) def make_hash(self,pathname): mtime = os.path.getmtime(pathname) filename = os.path.basename(pathname) return hash((filename,mtime)) def __setitem__(self,h,(filename,s)): cursor = self.conn.cursor() sql = """ INSERT INTO storage(hash, year, month, country, state, city, filename) VALUES (?, ?, ?, ?, ?, ?, ?); """ cursor.execute(sql, (h, s.year, s.month, s.country, s.state, s.city, filename)) self.conn.commit() #print "insert "+str(h) return s def put(self,pathname,s): h = self.make_hash(pathname) filename = os.path.basename(pathname) if self.use_pending: self.pending[h] = (filename,s) return s else: return self.__setitem__(h,(filename,s)) def dump(self): cursor = self.conn.cursor() sql = """ SELECT * FROM storage; """ cursor.execute(sql) rows = cursor.fetchall() print rows def flush(self): if len(self.pending) > 0: cursor = self.conn.cursor() sql = "INSERT INTO storage(hash, year, month, country, state, city,filename) VALUES " results = [] sqlext = [] for (k,(f,v)) in self.pending.iteritems(): sqlext.append("(?, ?, ?, ?, ?, ?, ?)") results.append(k) results.append(v.year) results.append(v.month) results.append(v.country) results.append(v.state) results.append(v.city) results.append(f) sql += ",".join(sqlext) sql += ";" cursor.execute(sql,results) self.conn.commit() self.pending = {} class Progress: def __init__(self,lst,fd): self.lst = lst self.sz = len(self.lst) try: if fd.isatty(): self.fd = fd else: self.fd = None except: self.fd = None def __iter__(self): start = datetime.datetime.now() last_len = 0 s='' for (i,x) in enumerate(self.lst): yield x elapsed = datetime.datetime.now() - start if i+1 == self.sz: # last one predict_display = " in %s"%(str(elapsed)[:7]) elif i > 2: rate = float(i)/elapsed.total_seconds() predict = datetime.timedelta(seconds = float(self.sz-i) / rate) predict_display = " (%.2f fps, %s remaining)"%(rate,str(predict)[:7]) else: predict_display = '' s = "%d/%d%s"%(i+1,self.sz,predict_display) if self.fd: back = chr(8)*last_len self.fd.write(back+s) this_len = len(s) if this_len < last_len: self.fd.write(' '*(last_len-this_len)) else: last_len = this_len self.fd.flush() if self.fd: self.fd.write('\n') self.fd.flush() else: print s class GeoCoder(object): def __init__(self,lat,lon): self.loc = (None,None,None) class GeoCoderGoogle(GeoCoder): def __init__(self,lat,lon,key): import googlemaps super(GeoCoderGoogle,self).__init__(lat,lon) # Look up an address with reverse geocoding gmaps = googlemaps.Client(key=key) reverse_geocode_result = gmaps.reverse_geocode((lat,lon)) address = reverse_geocode_result[0]['address_components'] city = GeoCoderGoogle.address_part(address,'locality') state = GeoCoderGoogle.address_part(address,'administrative_area_level_1') country = GeoCoderGoogle.address_part(address,'country') self.loc=(city,state,country) @staticmethod def address_part(address,key): for d in address: if key in d['types']: return d['long_name'] return None class GeoCoderOpenStreetmap(GeoCoder): def __init__(self,lat,lon): super(GeoCoderOpenStreetmap,self).__init__(lat,lon) r = requests.get("https://nominatim.openstreetmap.org/reverse?format=json&lat=%f&lon=%f&zoom=18&addressdetails=1"%(lat,lon)) nom = json.loads(r.text) address = nom['address'] try: city = unidecode.unidecode(address['city']) except: city = None try: state = unidecode.unidecode(address['state']) except: state = None try: country = unidecode.unidecode(address['country']) except: country = None self.loc= (city,state,country) def move_files(args): (root, storage_levels, storage_min, show_collapse, dry_run, mode, google, show_cached) = (args.directory,args.storage_levels,args.storage_min,args.show_collapse,args.dry_run,args.order,args.google, args.show_cached) storage_tree = StorageTree.fromDirectory(root,sys.stdout,Cache(root),mode,google) if show_collapse: storage_tree.dump(show_cached) print 'collapsing {} levels at least {} entries'.format(storage_levels,storage_min) storage_tree.collapse(storage_levels,storage_min,show_collapse) storage_tree.dump(show_cached) for k,v in storage_tree.dict(True).iteritems(): d = os.path.join(root,os.path.dirname(v))+"/" #print "Making directory %s"%d if not dry_run: try: os.makedirs(os.path.dirname(d)) except Exception as e: #print str(e) pass dst = os.path.join(root,v) if k != dst: print "%s->%s"%(k,v) if not dry_run: try: shutil.move(k,dst) except Exception as e: print str(e) def env(key,default): try: val = os.environ[key] if isinstance(default,bool): return val.lower() == 'true' elif isinstance(default,int): return int(val) else: return val except: return default def main(): try: # create the args list parser = argparse.ArgumentParser() parser.add_argument('--storage-levels',type=int,default=env('STORAGE_LEVELS',2),help="Minimum number of subdirectories") parser.add_argument('--storage-min',type=int,default=env('STORAGE_MIN',4),help="Minimum number of items in subdirectory before collapsing") parser.add_argument('--dry-run',default=env('DRY_RUN',False),action="store_true",help="Calculate directory structure without moving files") parser.add_argument('--show-collapse',default=env('SHOW_COLLAPSE',False),action="store_true",help="Display directory structure before collapsing") parser.add_argument('--order',default=StorageTree.default_mode,help="Default directory structure. Must be permutation of 'YMCSL'. Y=Year; M=Month; C=Country; S=State; L=Locality/City") parser.add_argument('--google',default=env('GOOGLE_API_KEY',None),help="Google Maps API Key. Specify this key to use Google Maps reverse geo-code service") parser.add_argument('directory',help="Directory containing photos to be rearranged") parser.add_argument('--show-cached',default=env('SHOW_CACHED',False),action="store_true",help="Show cached (previous) elements in directory structure") args = parser.parse_args() # check the order args.order=args.order.lower() oc = [0]*128 for ch in args.order: oc[ord(ch)] += 1 for (i,cc) in enumerate(oc): if cc > (1 if chr(i) in StorageTree.default_mode else 0): raise RuntimeError("Invalid argument for --order. Must be permutation of 'YMCSL'") # move the files move_files(args) print "This is DropBoxPhotoSorter" #cache_.dump() return 0 except Exception as e: print e import traceback tb = traceback.format_exc() print tb return -1 if __name__=='__main__': sys.exit(main())
2.703125
3
tests/test_assessment_status.py
ivan-c/truenth-portal
0
12793764
"""Module to test assessment_status""" from __future__ import unicode_literals # isort:skip from datetime import datetime from random import choice from string import ascii_letters from dateutil.relativedelta import relativedelta from flask_webtest import SessionScope import pytest from sqlalchemy.orm.exc import NoResultFound from portal.extensions import db from portal.models.audit import Audit from portal.models.clinical_constants import CC from portal.models.encounter import Encounter from portal.models.identifier import Identifier from portal.models.intervention import INTERVENTION from portal.models.organization import Organization from portal.models.overall_status import OverallStatus from portal.models.qb_status import QB_Status from portal.models.qb_timeline import invalidate_users_QBT from portal.models.questionnaire import Questionnaire from portal.models.questionnaire_bank import ( QuestionnaireBank, QuestionnaireBankQuestionnaire, ) from portal.models.questionnaire_response import ( QuestionnaireResponse, aggregate_responses, qnr_document_id, ) from portal.models.recur import Recur from portal.models.research_protocol import ResearchProtocol from portal.models.role import ROLE from portal.models.user import get_user from portal.system_uri import ICHOM from tests import TEST_USER_ID, TestCase, associative_backdate now = datetime.utcnow() def mock_qr( instrument_id, status='completed', timestamp=None, qb=None, doc_id=None, iteration=None, user_id=TEST_USER_ID): if not doc_id: doc_id = ''.join(choice(ascii_letters) for _ in range(10)) timestamp = timestamp or datetime.utcnow() qr_document = { "questionnaire": { "display": "Additional questions", "reference": "https://{}/api/questionnaires/{}".format( 'SERVER_NAME', instrument_id)}, "identifier": { "use": "official", "label": "cPRO survey session ID", "value": doc_id, "system": "https://stg-ae.us.truenth.org/eproms-demo"} } enc = Encounter( status='planned', auth_method='url_authenticated', user_id=user_id, start_time=timestamp) with SessionScope(db): db.session.add(enc) db.session.commit() enc = db.session.merge(enc) if not qb: qstats = QB_Status(get_user(user_id), timestamp) qbd = qstats.current_qbd() qb, iteration = qbd.questionnaire_bank, qbd.iteration qr = QuestionnaireResponse( subject_id=user_id, status=status, authored=timestamp, document=qr_document, encounter_id=enc.id, questionnaire_bank=qb, qb_iteration=iteration) with SessionScope(db): db.session.add(qr) db.session.commit() invalidate_users_QBT(user_id=user_id) localized_instruments = {'eproms_add', 'epic26', 'comorb'} metastatic_baseline_instruments = { 'eortc', 'eproms_add', 'ironmisc', 'factfpsi', 'epic23', 'prems'} metastatic_indefinite_instruments = {'irondemog'} metastatic_3 = { 'eortc', 'eproms_add', 'ironmisc'} metastatic_4 = { 'eortc', 'eproms_add', 'ironmisc', 'factfpsi'} metastatic_6 = { 'eortc', 'eproms_add', 'ironmisc', 'factfpsi', 'epic23', 'prems'} symptom_tracker_instruments = {'epic26', 'eq5d', 'maxpc', 'pam'} def mock_questionnairebanks(eproms_or_tnth): """Create a series of near real world questionnaire banks :param eproms_or_tnth: controls which set of questionnairebanks are generated. As restrictions exist, such as two QBs with the same classification can't have the same instrument, it doesn't work to mix them. """ if eproms_or_tnth == 'eproms': return mock_eproms_questionnairebanks() elif eproms_or_tnth == 'tnth': return mock_tnth_questionnairebanks() else: raise ValueError('expecting `eproms` or `tntn`, not `{}`'.format( eproms_or_tnth)) def mock_eproms_questionnairebanks(): # Define base ResearchProtocols localized_protocol = ResearchProtocol(name='localized_protocol') metastatic_protocol = ResearchProtocol(name='metastatic_protocol') with SessionScope(db): db.session.add(localized_protocol) db.session.add(metastatic_protocol) db.session.commit() localized_protocol = db.session.merge(localized_protocol) metastatic_protocol = db.session.merge(metastatic_protocol) locpro_id = localized_protocol.id metapro_id = metastatic_protocol.id # Define test Orgs and QuestionnaireBanks for each group localized_org = Organization(name='localized') localized_org.research_protocols.append(localized_protocol) metastatic_org = Organization(name='metastatic') metastatic_org.research_protocols.append(metastatic_protocol) # from https://docs.google.com/spreadsheets/d/\ # 1oJ8HKfMHOdXkSshjRlr8lFXxT4aUHX5ntxnKMgf50wE/edit#gid=1339608238 three_q_recur = Recur( start='{"months": 3}', cycle_length='{"months": 6}', termination='{"months": 24}') four_q_recur = Recur( start='{"months": 6}', cycle_length='{"years": 1}', termination='{"months": 33}') six_q_recur = Recur( start='{"years": 1}', cycle_length='{"years": 1}', termination='{"years": 3, "months": 3}') for name in (localized_instruments.union(*( metastatic_baseline_instruments, metastatic_indefinite_instruments, metastatic_3, metastatic_4, metastatic_6))): TestCase.add_questionnaire(name=name) with SessionScope(db): db.session.add(localized_org) db.session.add(metastatic_org) db.session.add(three_q_recur) db.session.add(four_q_recur) db.session.add(six_q_recur) db.session.commit() localized_org, metastatic_org = map( db.session.merge, (localized_org, metastatic_org)) three_q_recur = db.session.merge(three_q_recur) four_q_recur = db.session.merge(four_q_recur) six_q_recur = db.session.merge(six_q_recur) # Localized baseline l_qb = QuestionnaireBank( name='localized', classification='baseline', research_protocol_id=locpro_id, start='{"days": 0}', overdue='{"days": 7}', expired='{"months": 3}') for rank, instrument in enumerate(localized_instruments): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) l_qb.questionnaires.append(qbq) # Metastatic baseline mb_qb = QuestionnaireBank( name='metastatic', classification='baseline', research_protocol_id=metapro_id, start='{"days": 0}', overdue='{"days": 30}', expired='{"months": 3}') for rank, instrument in enumerate(metastatic_baseline_instruments): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) mb_qb.questionnaires.append(qbq) # Metastatic indefinite mi_qb = QuestionnaireBank( name='metastatic_indefinite', classification='indefinite', research_protocol_id=metapro_id, start='{"days": 0}', expired='{"years": 50}') for rank, instrument in enumerate(metastatic_indefinite_instruments): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) mi_qb.questionnaires.append(qbq) # Metastatic recurring 3 mr3_qb = QuestionnaireBank( name='metastatic_recurring3', classification='recurring', research_protocol_id=metapro_id, start='{"days": 0}', overdue='{"days": 30}', expired='{"months": 3}', recurs=[three_q_recur]) for rank, instrument in enumerate(metastatic_3): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) mr3_qb.questionnaires.append(qbq) # Metastatic recurring 4 mr4_qb = QuestionnaireBank( name='metastatic_recurring4', classification='recurring', research_protocol_id=metapro_id, recurs=[four_q_recur], start='{"days": 0}', overdue='{"days": 30}', expired='{"months": 3}') for rank, instrument in enumerate(metastatic_4): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) mr4_qb.questionnaires.append(qbq) # Metastatic recurring 6 mr6_qb = QuestionnaireBank( name='metastatic_recurring6', classification='recurring', research_protocol_id=metapro_id, recurs=[six_q_recur], start='{"days": 0}', overdue='{"days": 30}', expired='{"months": 3}') for rank, instrument in enumerate(metastatic_6): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) mr6_qb.questionnaires.append(qbq) with SessionScope(db): db.session.add(l_qb) db.session.add(mb_qb) db.session.add(mi_qb) db.session.add(mr3_qb) db.session.add(mr4_qb) db.session.add(mr6_qb) db.session.commit() def mock_tnth_questionnairebanks(): for name in (symptom_tracker_instruments): TestCase.add_questionnaire(name=name) # Symptom Tracker Baseline self_management = INTERVENTION.SELF_MANAGEMENT st_qb = QuestionnaireBank( name='symptom_tracker', classification='baseline', intervention_id=self_management.id, start='{"days": 0}', expired='{"months": 3}' ) for rank, instrument in enumerate(symptom_tracker_instruments): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) st_qb.questionnaires.append(qbq) # Symptom Tracker Recurrence st_recur = Recur( start='{"months": 3}', cycle_length='{"months": 3}', termination='{"months": 27}') with SessionScope(db): db.session.add(st_qb) db.session.add(st_recur) db.session.commit() self_management = INTERVENTION.SELF_MANAGEMENT st_recur_qb = QuestionnaireBank( name='symptom_tracker_recurring', classification='recurring', intervention_id=self_management.id, start='{"days": 0}', expired='{"months": 3}', recurs=[st_recur] ) for rank, instrument in enumerate(symptom_tracker_instruments): q = Questionnaire.find_by_name(name=instrument) qbq = QuestionnaireBankQuestionnaire(questionnaire=q, rank=rank) st_recur_qb.questionnaires.append(qbq) with SessionScope(db): db.session.add(st_recur_qb) db.session.commit() class TestQuestionnaireSetup(TestCase): "Base for test classes needing mock questionnaire setup" eproms_or_tnth = 'eproms' # modify in child class to test `tnth` def setUp(self): super(TestQuestionnaireSetup, self).setUp() mock_questionnairebanks(self.eproms_or_tnth) class TestAggregateResponses(TestQuestionnaireSetup): def test_aggregate_response_timepoints(self): # generate a few mock qr's from various qb iterations, confirm # time points. nineback, nowish = associative_backdate( now=now, backdate=relativedelta(months=9, hours=1)) self.bless_with_basics( setdate=nineback, local_metastatic='metastatic') instrument_id = 'eortc' for months_back in (0, 3, 6, 9): backdate, _ = associative_backdate( now=now, backdate=relativedelta(months=months_back)) mock_qr(instrument_id=instrument_id, timestamp=backdate) # add staff user w/ same org association for bundle creation staff = self.add_user(username='staff') staff.organizations.append(Organization.query.filter( Organization.name == 'metastatic').one()) self.promote_user(staff, role_name=ROLE.STAFF.value) staff = db.session.merge(staff) bundle = aggregate_responses( instrument_ids=[instrument_id], current_user=staff) expected = {'Baseline', 'Month 3', 'Month 6', 'Month 9'} found = [i['timepoint'] for i in bundle['entry']] assert set(found) == expected def test_site_ids(self): # bless org w/ expected identifier type wanted_system = 'http://pcctc.org/' unwanted_system = 'http://other.org/' self.app.config['REPORTING_IDENTIFIER_SYSTEMS'] = [wanted_system] id_value = '146-11' org = Organization.query.filter( Organization.name == 'metastatic').one() id1 = Identifier( system=wanted_system, use='secondary', value=id_value) id2 = Identifier( system=unwanted_system, use='secondary', value=id_value) org.identifiers.append(id1) org.identifiers.append(id2) with SessionScope(db): db.session.commit() nineback, nowish = associative_backdate( now=now, backdate=relativedelta(months=9, hours=1)) self.bless_with_basics( setdate=nineback, local_metastatic='metastatic') instrument_id = 'eortc' mock_qr(instrument_id=instrument_id) # add staff user w/ same org association for bundle creation staff = self.add_user(username='staff') staff.organizations.append(Organization.query.filter( Organization.name == 'metastatic').one()) self.promote_user(staff, role_name=ROLE.STAFF.value) staff = db.session.merge(staff) bundle = aggregate_responses( instrument_ids=[instrument_id], current_user=staff) id1 = db.session.merge(id1) assert 1 == len(bundle['entry']) assert (1 == len(bundle['entry'][0]['subject']['careProvider'])) assert (1 == len(bundle['entry'][0]['subject']['careProvider'][0] ['identifier'])) assert (id1.as_fhir() == bundle['entry'][0]['subject']['careProvider'][0] ['identifier'][0]) class TestQB_Status(TestQuestionnaireSetup): def test_qnr_id(self): qb = QuestionnaireBank.query.first() mock_qr( instrument_id='irondemog', status='in-progress', qb=qb, doc_id='two11') qb = db.session.merge(qb) result = qnr_document_id( subject_id=TEST_USER_ID, questionnaire_bank_id=qb.id, questionnaire_name='irondemog', iteration=None, status='in-progress') assert result == 'two11' def test_qnr_id_missing(self): qb = QuestionnaireBank.query.first() qb = db.session.merge(qb) with pytest.raises(NoResultFound): result = qnr_document_id( subject_id=TEST_USER_ID, questionnaire_bank_id=qb.id, questionnaire_name='irondemog', iteration=None, status='in-progress') def test_enrolled_in_metastatic(self): """metastatic should include baseline and indefinite""" self.bless_with_basics(local_metastatic='metastatic') user = db.session.merge(self.test_user) a_s = QB_Status(user=user, as_of_date=now) assert a_s.enrolled_in_classification('baseline') assert a_s.enrolled_in_classification('indefinite') def test_enrolled_in_localized(self): """localized should include baseline but not indefinite""" self.bless_with_basics(local_metastatic='localized') user = db.session.merge(self.test_user) a_s = QB_Status(user=user, as_of_date=now) assert a_s.enrolled_in_classification('baseline') assert not a_s.enrolled_in_classification('indefinite') def test_localized_using_org(self): self.bless_with_basics(local_metastatic='localized', setdate=now) self.test_user = db.session.merge(self.test_user) # confirm appropriate instruments a_s = QB_Status(user=self.test_user, as_of_date=now) assert (set(a_s.instruments_needing_full_assessment()) == localized_instruments) def test_localized_on_time(self): # User finished both on time self.bless_with_basics(local_metastatic='localized', setdate=now) mock_qr(instrument_id='eproms_add', timestamp=now) mock_qr(instrument_id='epic26', timestamp=now) mock_qr(instrument_id='comorb', timestamp=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.completed # confirm appropriate instruments assert not a_s.instruments_needing_full_assessment('all') def test_localized_inprogress_on_time(self): # User finished both on time self.bless_with_basics(local_metastatic='localized', setdate=now) mock_qr( instrument_id='eproms_add', status='in-progress', doc_id='eproms_add', timestamp=now) mock_qr( instrument_id='epic26', status='in-progress', doc_id='epic26', timestamp=now) mock_qr( instrument_id='comorb', status='in-progress', doc_id='comorb', timestamp=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.in_progress # confirm appropriate instruments assert not a_s.instruments_needing_full_assessment() assert set(a_s.instruments_in_progress()) == localized_instruments def test_localized_in_process(self): # User finished one, time remains for other self.bless_with_basics(local_metastatic='localized', setdate=now) mock_qr(instrument_id='eproms_add', timestamp=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.in_progress # confirm appropriate instruments assert (localized_instruments - set(a_s.instruments_needing_full_assessment('all')) == {'eproms_add'}) assert not a_s.instruments_in_progress() def test_metastatic_on_time(self): # User finished both on time self.bless_with_basics( local_metastatic='metastatic', setdate=now) for i in metastatic_baseline_instruments: mock_qr(instrument_id=i, timestamp=now) mi_qb = QuestionnaireBank.query.filter_by( name='metastatic_indefinite').first() mock_qr(instrument_id='irondemog', qb=mi_qb, timestamp=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.completed # shouldn't need full or any inprocess assert not a_s.instruments_needing_full_assessment('all') assert not a_s.instruments_in_progress('all') def test_metastatic_due(self): # hasn't taken, but still in OverallStatus.due period self.bless_with_basics(local_metastatic='metastatic', setdate=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.due # confirm list of expected intruments needing attention assert (metastatic_baseline_instruments == set(a_s.instruments_needing_full_assessment())) assert not a_s.instruments_in_progress() # metastatic indefinite should also be 'due' assert (metastatic_indefinite_instruments == set(a_s.instruments_needing_full_assessment('indefinite'))) assert not a_s.instruments_in_progress('indefinite') def test_localized_overdue(self): # if the user completed something on time, and nothing else # is due, should see the thank you message. backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') # backdate so the baseline q's have expired mock_qr( instrument_id='epic26', status='in-progress', timestamp=backdate) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.partially_completed # with all q's expired, # instruments_needing_full_assessment and instruments_in_progress # should be empty assert not a_s.instruments_needing_full_assessment() assert not a_s.instruments_in_progress() def test_localized_as_of_date(self): # backdating consent beyond expired and the status lookup date # within a valid window should show available assessments. backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') # backdate so the baseline q's have expired mock_qr(instrument_id='epic26', status='in-progress', doc_id='doc-26', timestamp=backdate) self.test_user = db.session.merge(self.test_user) as_of_date = backdate + relativedelta(days=2) a_s = QB_Status(user=self.test_user, as_of_date=as_of_date) assert a_s.overall_status == OverallStatus.in_progress # with only epic26 started, should see results for both # instruments_needing_full_assessment and instruments_in_progress assert ({'eproms_add', 'comorb'} == set(a_s.instruments_needing_full_assessment())) assert ['doc-26'] == a_s.instruments_in_progress() def test_metastatic_as_of_date(self): # backdating consent beyond expired and the status lookup date # within a valid window should show available assessments. backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3)) self.bless_with_basics(setdate=backdate, local_metastatic='metastatic') # backdate so the baseline q's have expired mock_qr(instrument_id='epic23', status='in-progress', doc_id='doc-23', timestamp=backdate) self.test_user = db.session.merge(self.test_user) as_of_date = backdate + relativedelta(days=2) a_s = QB_Status(user=self.test_user, as_of_date=as_of_date) assert a_s.overall_status == OverallStatus.in_progress # with only epic26 started, should see results for both # instruments_needing_full_assessment and instruments_in_progress assert ['doc-23'] == a_s.instruments_in_progress() assert a_s.instruments_needing_full_assessment() def test_initial_recur_due(self): # backdate so baseline q's have expired, and we within the first # recurrence window backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='metastatic') self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.due # in the initial window w/ no questionnaires submitted # should include all from initial recur assert (set(a_s.instruments_needing_full_assessment()) == metastatic_3) # confirm iteration 0 assert a_s.current_qbd().iteration == 0 def test_2nd_recur_due(self): # backdate so baseline q's have expired, and we within the 2nd # recurrence window backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=9, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='metastatic') self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.due # in the initial window w/ no questionnaires submitted # should include all from initial recur assert set(a_s.instruments_needing_full_assessment()) == metastatic_3 # however, we should be looking at iteration 2 (zero index)! assert a_s.current_qbd().iteration == 1 def test_initial_recur_baseline_done(self): # backdate to be within the first recurrence window backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, days=2)) self.bless_with_basics( setdate=backdate, local_metastatic='metastatic') # add baseline QNRs, as if submitted nearly 3 months ago, during # baseline window backdated = nowish - relativedelta(months=2, days=25) baseline = QuestionnaireBank.query.filter_by( name='metastatic').one() for instrument in metastatic_baseline_instruments: mock_qr(instrument, qb=baseline, timestamp=backdated) self.test_user = db.session.merge(self.test_user) # Check status during baseline window a_s_baseline = QB_Status( user=self.test_user, as_of_date=backdated) assert a_s_baseline.overall_status == OverallStatus.completed assert not a_s_baseline.instruments_needing_full_assessment() # Whereas "current" status for the initial recurrence show due. a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.due # in the initial window w/ no questionnaires submitted # should include all from initial recur assert set(a_s.instruments_needing_full_assessment()) == metastatic_3 def test_secondary_recur_due(self): # backdate so baseline q's have expired, and we are within the # second recurrence window backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=6, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='metastatic') self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.due # w/ no questionnaires submitted # should include all from second recur assert set(a_s.instruments_needing_full_assessment()) == metastatic_4 def test_batch_lookup(self): self.login() self.bless_with_basics() response = self.client.get( '/api/consent-assessment-status?user_id=1&user_id=2') assert response.status_code == 200 assert len(response.json['status']) == 1 assert ( response.json['status'][0]['consents'][0]['assessment_status'] == str(OverallStatus.expired)) def test_none_org(self): # check users w/ none of the above org self.test_user = db.session.merge(self.test_user) self.test_user.organizations.append(Organization.query.get(0)) self.login() self.bless_with_basics( local_metastatic='metastatic', setdate=now) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=now) assert a_s.overall_status == OverallStatus.due def test_boundary_overdue(self): self.login() backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=-1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.overdue def test_boundary_expired(self): "At expired, should be expired" self.login() backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.expired def test_boundary_in_progress(self): self.login() backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=-1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') for instrument in localized_instruments: mock_qr( instrument_id=instrument, status='in-progress', timestamp=nowish) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.in_progress def test_boundary_recurring_in_progress(self): self.login() backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=6, hours=-1)) self.bless_with_basics( setdate=backdate, local_metastatic='metastatic') mr3_qb = QuestionnaireBank.query.filter_by( name='metastatic_recurring3').first() for instrument in metastatic_3: mock_qr( instrument_id=instrument, status='in-progress', qb=mr3_qb, timestamp=nowish, iteration=0) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.in_progress def test_boundary_in_progress_expired(self): self.login() backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=3, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') for instrument in localized_instruments: mock_qr( instrument_id=instrument, status='in-progress', timestamp=nowish-relativedelta(days=1)) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.partially_completed def test_all_expired_old_tx(self): self.login() # backdate outside of baseline window (which uses consent date) backdate, nowish = associative_backdate( now=now, backdate=relativedelta(months=4, hours=1)) self.bless_with_basics( setdate=backdate, local_metastatic='localized') # provide treatment date outside of all recurrences tx_date = datetime(2000, 3, 12, 0, 0, 00, 000000) self.add_procedure(code='7', display='Focal therapy', system=ICHOM, setdate=tx_date) self.test_user = db.session.merge(self.test_user) a_s = QB_Status(user=self.test_user, as_of_date=nowish) assert a_s.overall_status == OverallStatus.expired class TestTnthQB_Status(TestQuestionnaireSetup): """Tests with Tnth QuestionnaireBanks""" eproms_or_tnth = 'tnth' def test_no_start_date(self): # W/O a biopsy (i.e. event start date), no questionnaries self.promote_user(role_name=ROLE.PATIENT.value) # toggle default setup - set biopsy false for test user self.login() self.test_user = db.session.merge(self.test_user) self.test_user.save_observation( codeable_concept=CC.BIOPSY, value_quantity=CC.FALSE_VALUE, audit=Audit(user_id=TEST_USER_ID, subject_id=TEST_USER_ID), status='final', issued=now) qstats = QB_Status(self.test_user, now) assert not qstats.current_qbd() assert not qstats.enrolled_in_classification("baseline")
2.078125
2
resource.py
HADESAngelia/NumberedImageComparation
1
12793765
''' File: \resource.py Project: NumberRecongization Created Date: Monday March 26th 2018 Author: Huisama ----- Last Modified: Saturday March 31st 2018 11:08:21 pm Modified By: Huisama ----- Copyright (c) 2018 Hui ''' import os import scipy.misc as scm import random import numpy as np import PIL # STD_WIDTH = 667 # STD_HEIGHT = 83 STD_WIDTH = 252 STD_HEIGHT = 40 import matplotlib.pyplot as plt ''' This class stands for dataset and provides data processing oparations ''' class DataSet(object): def __init__(self, data_dir, batch_size): self.data_dir = data_dir self.batch_size = batch_size self.train_set_ratio = 0.8 self.validate_set_ratio = 0.1 ''' Get mean width and height of dataset ''' def get_data_mean_size(self): full_width, full_height = 0, 0 count = 0 def dummy(self, dir, file): nonlocal full_width, full_height, count filename = os.path.splitext(file) if filename[1] == '.png': fullfile = os.path.join(self.data_dir, dir, file) width, height = self.get_size(fullfile) full_width += width full_height += height print("%s, %s" % (width, height)) count += 1 self.lookup_dataset_dir(dummy) return full_width / count, full_height / count ''' Get width and height of a single image ''' def get_size(self, image_file_path): img = scm.imread(image_file_path) return img.shape[1], img.shape[0] ''' Load dataset ''' def load_dataset(self): self.neg_data = [] self.pos_data = [] self.poscount = 0 self.negcount = 0 def dummy(self, dir, file): if file == 'dataset.txt': # open and read in with open(os.path.join(self.data_dir, dir, file)) as file: for line in file: newline = line.strip() splittext = newline.split('\t') if int(splittext[2]) == 1: self.pos_data.append(( os.path.join(self.data_dir, dir, splittext[0]), os.path.join(self.data_dir, dir, splittext[1]), int(splittext[2]))) self.poscount += 1 else: self.neg_data.append(( os.path.join(self.data_dir, dir, splittext[0]), os.path.join(self.data_dir, dir, splittext[1]), int(splittext[2]))) self.negcount += 1 self.lookup_dataset_dir(dummy) # print("negcount: %d, poscount: %d" % (self.negcount, self.poscount)) return True ''' Check if image has 4 channel ''' def check_image_channels(self): def dummy(self, dir, file): filename = os.path.splitext(file) if filename[1] == '.png': fullfile = os.path.join(self.data_dir, dir, file) img = scm.imread(fullfile) if img.shape[2] != 3: print("Wrong image: %d", fullfile) self.lookup_dataset_dir(dummy) ''' Generate dataset after loading dataset ''' def generate_dataset(self): random.shuffle(self.neg_data) random.shuffle(self.pos_data) # total = len(self.data) pos_total = len(self.pos_data) pos_train_size = int(pos_total * self.train_set_ratio) pos_validate_size = int(pos_total * self.validate_set_ratio) # pos_test_size = pos_total - pos_train_size - pos_validate_size neg_total = len(self.neg_data) neg_train_size = int(neg_total * self.train_set_ratio) neg_validate_size = int(neg_total * self.validate_set_ratio) # neg_test_size = neg_total - neg_train_size - neg_validate_size self.batch_index = 0 self.pos_train_set = self.pos_data[0 : pos_train_size] pos_validation_set = self.pos_data[pos_train_size : pos_train_size + pos_validate_size] pos_test_set = self.pos_data[pos_train_size + pos_validate_size : pos_total] self.neg_train_set = self.neg_data[0 : neg_train_size] neg_validation_set = self.neg_data[neg_train_size : neg_train_size + neg_validate_size] neg_test_set = self.neg_data[neg_train_size + neg_validate_size : neg_total] dec = len(neg_validation_set) - len(pos_validation_set) for _ in range(dec): pos_validation_set.append(random.choice(self.pos_data)) dec = len(neg_test_set) - len(pos_test_set) for _ in range(dec): pos_test_set.append(random.choice(self.pos_data)) self.validation_set = [] self.validation_set.extend(pos_validation_set) self.validation_set.extend(neg_validation_set) self.test_set = [] self.test_set.extend(pos_test_set) self.test_set.extend(neg_test_set) ''' Ergodic files in dataset dir ''' def lookup_dataset_dir(self, callback): for _, dirs, _ in os.walk(self.data_dir): for dir in dirs: for _, _, files in os.walk(os.path.join(self.data_dir, dir)): for file in files: callback(self, dir, file) ''' Get iamge data ''' def get_image_data(self, tp): image1, image2 = scm.imread(tp[0]), scm.imread(tp[1]) newimg1 = np.array(scm.imresize(image1, (STD_HEIGHT, STD_WIDTH))) newimg2 = np.array(scm.imresize(image2, (STD_HEIGHT, STD_WIDTH))) # img_comb = np.hstack((newimg1, newimg2))[:, :, np.newaxis] img_comb = np.dstack((newimg1, newimg2)) return img_comb / 255.0 ''' Get a batch of dataset ''' def next_batch(self, batch_size): random_neg = batch_size // 2 random_pos = batch_size - random_neg org_pos_data = [] org_neg_data = [] for _ in range(random_pos): org_pos_data.append(random.choice(self.pos_train_set)) for _ in range(random_neg): org_neg_data.append(random.choice(self.neg_train_set)) pos_data = list(map(self.get_image_data, org_pos_data)) pos_labels = list(map(lambda e: e[2], org_pos_data)) neg_data = list(map(self.get_image_data, org_neg_data)) neg_labels = list(map(lambda e: e[2], org_neg_data)) pos_data.extend(neg_data) pos_labels.extend(neg_labels) return np.array(pos_data), np.array(pos_labels) ''' Get validation dataset ''' def get_validation_set(self): data = np.array(list(map(self.get_image_data, self.validation_set))) labels = np.array(list(map(lambda e: e[2], self.validation_set))) return data, labels ''' Get test dataset ''' def get_test_set(self): data = np.array(list(map(self.get_image_data, self.test_set))) labels = np.array(list(map(lambda e: e[2], self.test_set))) return data, labels # obj = DataSet('./Pic', 8) # obj.check_image_channels() # obj.load_dataset() # obj.generate_dataset() # data, labels = obj.next_batch(8) # while done != True: # print(data[0][0].dtype) # data, labels, done = obj.next_batch()
2.546875
3
LeetCode/Python/container_with_most_water.py
wh-acmer/minixalpha-acm
0
12793766
#!/usr/bin/env python #coding: utf-8 class Solution: # @return an integer def maxArea(self, height): low, high = 0, len(height) - 1 max_area = 0 while low < high: max_area = max(max_area, (high - low) * min(height[low], height[high])) if height[low] < height[high]: low += 1 else: high -= 1 return max_area
3.546875
4
data_prepare.py
zhengsl/SmartInvetory
0
12793767
<filename>data_prepare.py #!/usr/bin/env python # -*- coding: utf-8 -*- import xlrd import pymongo import pymysql from datetime import datetime, timedelta import traceback month_dict = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6, 'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10, 'NOV': 11, 'DEC': 12} year_dict = {'13': 2013, '14': 2014, '15': 2015, '16': 2016, '17': 2017} def read_from_excel_to_mongo(file): mongo_client = pymongo.MongoClient() db_test_01 = mongo_client.db_test_01 with xlrd.open_workbook(file) as excel: table = excel.sheet_by_index(0) row_num = table.nrows - 1 group_size = 10000 group_num = row_num // group_size last_group = row_num - group_num * group_size if last_group != 0: group_num = group_num + 1 for i in range(group_num): records = [] iter_size = group_size if i != group_num - 1 else last_group for j in range(iter_size): index = j + i * group_size + 1 row_v = table.row_values(index) record = { "owner": row_v[0], "code": row_v[1], "slip_code": row_v[2], "create_time": gen_datetime(row_v[3]), "province": row_v[4], "city": row_v[5], "sku_code": row_v[6], "bar_code": row_v[7], "wms_sku_color_original": row_v[8], "wms_sku_size_original": row_v[9], "sku_categories_id": int(row_v[10]) if row_v[10] != '' else -1, "sku_type_id": int(row_v[11]) if row_v[11] != '' else -1, "supplier_code": row_v[12], "quantity": int(row_v[13]) } print("{}: {}".format(index, record.values())) records.append(record) print("Bulk write to MongoDB...") db_test_01.source.insert_many(records) mongo_client.close() def gen_datetime(date_time_str): dt_array = date_time_str.split(' ') date_array = dt_array[0].split('-') day = int(date_array[0]) month = month_dict[date_array[1]] year = year_dict[date_array[2]] time_array = dt_array[1].split('.') hour = int(time_array[0]) + 12 if dt_array[2] == 'PM' and time_array[0] != '12' else int(time_array[0]) minute = int(time_array[1]) second = int(time_array[2]) return datetime(year, month, day, hour, minute, second) def read_from_excel_to_mysql(file): start = 1 mysqldb = pymysql.connect(host="localhost", user="root", passwd="<PASSWORD>", db="nike_sales", charset="utf8") cursor = mysqldb.cursor() sql = '''insert into sales_detail(shop, tb_order_id, platform_id, out_time, province, city, sku_color, sku_size, outer_sku_id, jmsku_code, supplier_sku_code, bu, global_category, descriptio, genderage, msrp, sihouette, global_category_gender, requested_qty, price, total_amt, discount_amt) values(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)''' genderage = {'MENS': 0, 'WOMENS': 1, 'ADULT UNISEX': 2, 'KIDS': 3, '': -1} try: with xlrd.open_workbook(file) as excel: table = excel.sheet_by_index(0) for rowIndex in range(start, table.nrows): row_v = table.row_values(rowIndex) print(row_v) cursor.execute(sql, (row_v[0], row_v[1], row_v[2], getsqldatestr(row_v[3]), row_v[4], row_v[5], row_v[6], row_v[7], row_v[8], row_v[9], row_v[10], get_int(row_v[11]), row_v[12], row_v[13], genderage[row_v[14]], get_float(row_v[15]), row_v[16], row_v[17], int(row_v[18]), get_float(row_v[19]), get_float(row_v[20]), get_float(row_v[21]))) print("ROW NO.{} inserted".format(rowIndex)) mysqldb.commit() print("Completed") except pymysql.err.DataError: traceback.print_exc() mysqldb.commit() print("ROW NO.{} to be inserted".format(rowIndex+1)) finally: mysqldb.close() def read_from_excel_to_mysql_11(file, year): start = 1 mysqldb = pymysql.connect(host="localhost", user="root", passwd="<PASSWORD>", db="nike_sales", charset="utf8") cursor = mysqldb.cursor() sql = '''insert into double_eleven_all(shop, repo, year, province, city, outer_sku_id, name, sku_color, sku_size, genderage, global_category, bu, sihouette, requested_qty, global_category_gender, msrp, price, total_amt) values(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)''' genderage = {'MENS': 0, 'WOMENS': 1, 'ADULT UNISEX': 2, 'KIDS': 3, '': -1} try: with xlrd.open_workbook(file) as excel: table = excel.sheet_by_index(0) for rowIndex in range(start, table.nrows): row_v = table.row_values(rowIndex) print(row_v) cursor.execute(sql, (row_v[0], row_v[1], year, row_v[2], row_v[3], row_v[4], row_v[5], row_v[6], row_v[7], genderage[row_v[8]], row_v[9], get_int(row_v[10]), row_v[11], get_int(row_v[12]), row_v[13], get_float(row_v[14]), get_float(row_v[15]), get_float(row_v[16]))) print("ROW NO.{} inserted".format(rowIndex)) mysqldb.commit() print("Completed") except pymysql.err.DataError: traceback.print_exc() #mysqldb.commit() print("ROW NO.{} to be inserted".format(rowIndex+1)) finally: mysqldb.close() def read_from_txt_to_mysql(file, year, start=0): mysqldb = pymysql.connect(host="localhost", user="root", passwd="<PASSWORD>", db="nike_sales", charset="utf8") cursor = mysqldb.cursor() sql = '''insert into not_deleven_all_{}(out_time, shop, order_id, repo, province, city, supplier_sku_code, sku_color, sku_size, sku_name, sap_division, gender_age, global_category_name, global_focus_name, qty) values(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)'''.format(year) try: count = 0 with open(file, mode='r', encoding='utf-8') as source: line = source.readline() while line and line.strip() != '': line = source.readline() if line and line.strip() != '': count += 1 ignore = True print("{}: {}".format(count, line)) if count >= start: line = line.replace('?', '').replace('?', '') data = line.split('\t') cursor.execute(sql, (getsqldatefromstr(data[0]), data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], get_int(data[10]), get_int(data[11]), data[12], data[13], get_int(data[14]))) ignore = False if not ignore and count % 1000000 == 0: mysqldb.commit() else: break mysqldb.commit() except Exception: traceback.print_exc() finally: mysqldb.close() def getsqldatestr(original): delta = int(original) - 41758 return datetime(2014, 4, 29) + timedelta(days=delta) def getsqldatefromstr(dstr): mdy = dstr.split('/') return datetime(2000+int(mdy[2]), int(mdy[0]), int(mdy[1])) def get_int(original): try: return int(original) except: return 0 def get_float(original): try: return float(original) except: return 0 if __name__ == "__main__": #read_from_excel_to_mysql_11("/Users/leon/Desktop/data/new/JORDAN双11发货分析_17.xlsx", 17) read_from_txt_to_mysql("/Users/leon/Desktop/NIKE/NIKE17年数据.txt", 2017, 5000001)
2.953125
3
src/kcri/bap/data.py
zwets/kcri-cge-bap
0
12793768
<reponame>zwets/kcri-cge-bap #!/usr/bin/env python3 # # kcri.bap.data # # Defines the data structures that are shared across the BAP services. # import os, enum from datetime import datetime from pico.workflow.blackboard import Blackboard ### BAPBlackboard class # # Wraps the generic Blackboard with an API that adds getters and putters for # data shared between BAP services, so they're not randomly grabbing around # in bags of untyped data. class BAPBlackboard(Blackboard): '''Adds to the generic Blackboard getters and putters specific to the shared data definitions in the current BAP.''' def __init__(self, verbose=False): super().__init__(verbose) # BAP-level methods def start_run(self, service, version, user_inputs): self.put('bap/run_info/service', service) self.put('bap/run_info/version', version) self.put('bap/run_info/time/start', datetime.now().isoformat(timespec='seconds')) self.put('bap/user_inputs', user_inputs) def end_run(self, state): start_time = datetime.fromisoformat(self.get('bap/run_info/time/start')) end_time = datetime.now() self.put('bap/run_info/time/end', end_time.isoformat(timespec='seconds')) self.put('bap/run_info/time/duration', (end_time - start_time).total_seconds()) self.put('bap/run_info/status', state) def put_user_input(self, param, value): return self.put('bap/user_inputs/%s' % param, value) def get_user_input(self, param, default=None): return self.get('bap/user_inputs/%s' % param, default) def add_warning(self, warning): '''Stores a warning on the 'bap' top level (note: use service warning instead).''' self.append_to('bap/warnings', warning) # Standard methods for BAP common data def put_db_root(self, path): '''Stores the root of the BAP services databases.''' self.put_user_input('db_root', path) def get_db_root(self): '''Retrieve the user_input/db_root, this must be set.''' db_root = self.get_user_input('db_root') if not db_root: raise Exception("database root path is not set") elif not os.path.isdir(db_root): raise Exception("db root path is not a directory: %s" % db_root) return os.path.abspath(db_root) # Sample ID def put_sample_id(self, id): '''Store id as the sample id in the summary.''' self.put('bap/summary/sample_id', id) def get_sample_id(self): return self.get('bap/summary/sample_id', 'unknown') # Contigs and reads def put_fastq_paths(self, paths): '''Stores the fastqs path as its own (pseudo) user input.''' self.put_user_input('fastqs', paths) def get_fastq_paths(self, default=None): return self.get_user_input('fastqs', default) def put_user_contigs_path(self, path): '''Stores the contigs path as its own (pseudo) user input.''' self.put_user_input('contigs', path) def get_user_contigs_path(self, default=None): return self.get_user_input('contigs', default) def put_assembled_contigs_path(self, path): '''Stores the path to the computed contigs.''' self.put('bap/summary/contigs', path) def get_assembled_contigs_path(self, default=None): return self.get('bap/summary/contigs', default) def put_graph_path(self, path): '''Stores the path to the GFA file.''' self.put('bap/summary/graph', path) def get_graph_path(self, default=None): return self.get('bap/summary/graph', default) # Species def put_user_species(self, lst): '''Stores list of species specified by user.''' self.put_user_input('species', lst) def get_user_species(self, default=None): return self.get_user_input('species', default) def add_detected_species(self, lst): self.append_to('bap/summary/species', lst, True) def get_detected_species(self, default=None): return self.get('bap/summary/species', default) def get_species(self, default=None): ret = list() ret.extend(self.get_user_species(list())) ret.extend(self.get_detected_species(list())) return ret if ret else default # Reference def put_closest_reference(self, acc, desc): '''Stores the accession and description of closest reference.''' self.put('bap/summary/closest/accession', acc) self.put('bap/summary/closest/name', desc) def put_closest_reference_path(self, path): '''Stores the path to the closest reference genome.''' self.put('bap/summary/closest/path', path) def put_closest_reference_length(self, length): '''Stores the length of the closest reference genome.''' self.put('bap/summary/closest/length', length) def get_closest_reference(self, default=None): '''Returns dict with fields accession, name, path, length, or the default.''' return self.get('bap/summary/closest', default) def get_closest_reference_path(self, default=None): return self.get_closest_reference({}).get('path', default) def get_closest_reference_length(self, default=None): return self.get_closest_reference({}).get('length', default) # MLST def add_mlst(self, st, loci, alleles): str = "%s[%s]" % (st, ','.join(map(lambda l: '%s:%s' % l, zip(loci, alleles)))) self.append_to('bap/summary/mlst', str, True) def get_mlsts(self): return sorted(self.get('bap/summary/mlst', [])) # Plasmids def put_user_plasmids(self, lst): '''Stores list of plasmids specified by user.''' self.put_user_input('plasmids', lst) def get_user_plasmids(self, default=None): return sorted(self.get_user_input('plasmids', default)) def add_detected_plasmid(self, plasmid): self.append_to('bap/summary/plasmids', plasmid, True) def get_detected_plasmids(self, default=None): return sorted(self.get('bap/summary/plasmids', default)) def get_plasmids(self, default=None): ret = list() ret.extend(self.get_user_plasmids(list())) ret.extend(self.get_detected_plasmids(list())) return ret if ret else default def add_pmlst(self, profile, st): str = "%s%s" % (profile, st) self.append_to('bap/summary/pmlsts', str) def get_pmlsts(self): return sorted(self.get('bap/summary/pmlsts', [])) # Virulence def add_detected_virulence_gene(self, gene): self.append_to('bap/summary/virulence_genes', gene, True) def get_virulence_genes(self): return sorted(self.get('bap/summary/virulence_genes', [])) # Resistance def add_amr_gene(self, gene): self.append_to('bap/summary/amr_genes', gene, True) def get_amr_genes(self): return sorted(self.get('bap/summary/amr_genes', [])) def add_amr_classes(self, classes): self.append_to('bap/summary/amr_classes', classes, True) def get_amr_classes(self): return sorted(self.get('bap/summary/amr_classes', [])) def add_amr_phenotype(self, pheno): self.append_to('bap/summary/amr_phenotypes', pheno, True) def get_amr_phenotypes(self): return sorted(self.get('bap/summary/amr_phenotypes', [])) def add_amr_mutation(self, mut): self.append_to('bap/summary/amr_mutations', mut, True) def get_amr_mutations(self): return sorted(self.get('bap/summary/amr_mutations', [])) # cgMLST def add_cgmlst(self, scheme, st, pct): str = '%s:%s(%s%%)' % (scheme, st, pct) self.append_to('bap/summary/cgmlst', str, True) def get_cgmlsts(self): return sorted(self.get('bap/summary/cgmlst', []))
2.140625
2
tensorflow/script/evaluation/building_iou_w_class_acc.py
christinazavou/ANNFASS_Structure
0
12793769
import os import json import sys from tqdm import tqdm from evaluation.mesh_utils import read_obj, read_ply, calculate_face_area, compute_face_centers, \ nearest_neighbour_of_face_centers from iou_calculations import * # BuildNet directories BUILDNET_BASE_DIR = os.path.join(os.sep, "media", "maria", "BigData1", "Maria", "buildnet_data_2k") assert (os.path.isdir(BUILDNET_BASE_DIR)) BUILDNET_OBJ_DIR = os.path.join(BUILDNET_BASE_DIR, "flippedNormal_unit_obj_withtexture") assert (os.path.isdir(BUILDNET_OBJ_DIR)) BUILDNET_PTS_DIR = os.path.join(BUILDNET_BASE_DIR, "100K_inverted_normals", "nocolor") assert (BUILDNET_PTS_DIR) BUILDNET_PTS_LABELS_DIR = os.path.join(BUILDNET_BASE_DIR, "100K_inverted_normals", "point_labels_32") assert (BUILDNET_PTS_LABELS_DIR) BUILDNET_PTS_FACEINDEX_DIR = os.path.join(BUILDNET_BASE_DIR, "100K_inverted_normals", "faceindex") assert (os.path.isdir(BUILDNET_PTS_FACEINDEX_DIR)) BUILDNET_COMP_TO_LABELS_DIR = os.path.join(BUILDNET_BASE_DIR, "100K_inverted_normals", "component_label_32") assert (os.path.isdir(BUILDNET_COMP_TO_LABELS_DIR)) BUILDNET_SPLITS_DIR = os.path.join(BUILDNET_BASE_DIR, "dataset") assert (os.path.isdir(BUILDNET_SPLITS_DIR)) BUILDNET_TEST_SPLIT = os.path.join(BUILDNET_SPLITS_DIR, "test_split.txt") assert (os.path.isfile(BUILDNET_TEST_SPLIT)) # Network results directory NET_RESULTS_DIR = sys.argv[1] assert (os.path.isdir(NET_RESULTS_DIR)) # Create directories for best results BEST_POINTS_DIR = os.path.join(NET_RESULTS_DIR, "best_points") os.makedirs(BEST_POINTS_DIR, exist_ok=True) BEST_TRIANGLES_DIR = os.path.join(NET_RESULTS_DIR, "best_triangles") os.makedirs(BEST_TRIANGLES_DIR, exist_ok=True) BEST_COMP_DIR = os.path.join(NET_RESULTS_DIR, "best_comp") os.makedirs(BEST_COMP_DIR, exist_ok=True) # Create directories for aggregated mesh features FACE_FEAT_FROM_TR_DIR = os.path.join(NET_RESULTS_DIR, "face_feat_from_tr") os.makedirs(FACE_FEAT_FROM_TR_DIR, exist_ok=True) FACE_FEAT_FROM_COMP_DIR = os.path.join(NET_RESULTS_DIR, "face_feat_from_comp") os.makedirs(FACE_FEAT_FROM_COMP_DIR, exist_ok=True) def classification_accuracy(ground, prediction, face_area=None): """ Classification accuracy :param ground: N x 1, numpy.ndarray(int) :param prediction: N x 1, numpy.ndarray(int) :param face_area: N x 1, numpy.ndarray(float) :return: accuracy: float """ prediction = np.copy(prediction) ground = np.copy(ground) non_zero_idx = np.squeeze(ground != 0).nonzero()[0] ground = ground[non_zero_idx] prediction = prediction[non_zero_idx] if face_area is not None: face_area = np.copy(face_area) face_area = face_area[non_zero_idx] accuracy = np.dot(face_area.T, ground == prediction)[0] / np.sum(face_area) accuracy = accuracy[0] else: accuracy = np.sum(ground == prediction) / float(len(ground)) return accuracy def transfer_point_predictions(vertices, faces, components, points, point_feat, point_face_index, max_pool=False): """ Transfer point predictions to triangles and components through avg pooling :param vertices: N x 3, numpy.ndarray(float) :param faces: M x 3, numpy.ndarray(int) :param components: M x 1, numpy.ndarray(int) :param points: K x 3, numpy.ndarray(float) :param point_feat: K x 31, numpy.ndarray(float) :param point_face_index: K x 1, numpy.ndarray(int) :param max_pool: bool :return: face_labels_from_triangle_avg_pool: M x 1, numpy.ndarray(int) face_labels_from_comp_avg_pool: M x 1, numpy.ndarray(int) face_feat_from_tr_avg_pool: M x 31, numpy.ndarray(float) face_feat_from_comp_avg_pool: M x 31, numpy.ndarray(float) face_labels_from_triangle_max_pool: M x 1, numpy.ndarray(int) face_labels_from_comp_max_pool: M x 1, numpy.ndarray(int) """ n_components = len(np.unique(components)) face_feat_from_tr_avg_pool = np.zeros((faces.shape[0], point_feat.shape[1])) face_feat_from_comp_avg_pool = np.zeros((faces.shape[0], point_feat.shape[1])) comp_feat_avg_pool = np.zeros((n_components, point_feat.shape[1])) if max_pool: face_feat_from_tr_max_pool = np.zeros_like(face_feat_from_tr_avg_pool) face_feat_from_comp_max_pool = np.zeros_like(face_feat_from_comp_avg_pool) comp_feat_max_pool = np.zeros_like(comp_feat_avg_pool) face_point_index = {} # Find faces that have no corresponding points sampled = set(point_face_index.flatten()) unsampled = list(set(np.arange(len(faces))) - sampled) # faces with no sample points face_centers = compute_face_centers(faces, unsampled, vertices) # Transfer point predictions to triangles # Find nearest point and assign its point feature to each unsampled face nearest_neighbour_of_face_centers(face_centers, face_feat_from_tr_avg_pool, face_point_index, point_feat, points, unsampled) if max_pool: # unsampled faces have only one point, so max == avg. feat. , that of the nearest point face_feat_from_tr_max_pool = np.copy(face_feat_from_tr_avg_pool) # Use avg pooling for sampled faces for face in sampled: mask = np.squeeze(point_face_index == face) face_feat_from_tr_avg_pool[face] = np.mean(point_feat[mask], axis=0) if max_pool: # Use max pooling also face_feat_from_tr_max_pool[face] = np.amax(point_feat[mask], axis=0) face_point_index[face] = mask.nonzero()[0].tolist() # Transfer point predictions to components for comp_idx in range(comp_feat_avg_pool.shape[0]): face_idx = np.squeeze(components == comp_idx).nonzero()[0] point_idx = [] for idx in face_idx: try: point_idx.extend(face_point_index[int(idx)]) except: point_idx.append(face_point_index[int(idx)]) comp_feat_avg_pool[comp_idx] = np.mean(point_feat[point_idx], axis=0) face_feat_from_comp_avg_pool[face_idx] = comp_feat_avg_pool[comp_idx] if max_pool: comp_feat_max_pool[comp_idx] = np.amax(point_feat[point_idx], axis=0) face_feat_from_comp_max_pool[face_idx] = comp_feat_max_pool[comp_idx] face_labels_from_tr_avg_pool = np.argmax(face_feat_from_tr_avg_pool, axis=1)[:, np.newaxis] + 1 # we exclude undetermined (label 0) during training face_labels_from_comp_avg_pool = np.argmax(face_feat_from_comp_avg_pool, axis=1)[:, np.newaxis] + 1 if max_pool: face_labels_from_tr_max_pool = np.argmax(face_feat_from_tr_max_pool, axis=1)[:, np.newaxis] + 1 face_labels_from_comp_max_pool = np.argmax(face_feat_from_comp_max_pool, axis=1)[:, np.newaxis] + 1 return face_labels_from_tr_avg_pool, face_labels_from_comp_avg_pool, face_feat_from_tr_avg_pool, \ face_feat_from_comp_avg_pool, face_labels_from_tr_max_pool, face_labels_from_comp_max_pool return face_labels_from_tr_avg_pool, face_labels_from_comp_avg_pool, face_feat_from_tr_avg_pool, \ face_feat_from_comp_avg_pool def get_split_models(split_fn): """ Read split.txt file and return model names :param split_fn: :return: models_fn: list(str) """ models_fn = [] with open(split_fn, 'r') as fin: for line in fin: models_fn.append(line.strip()) return models_fn def get_point_cloud_data(model_name): """ Get point cloud data needed for evaluation :param model_name: str :return: points: N x 3, numpy.ndarray(float) point_gt_labels: N x 1, numpy.ndarray(int) point_pred_labels: N x 1, numpy.ndarray(int) point_pred_feat: N x 31, numpy.ndarray(float) point_face_index: N x 1, numpy.ndarray(int) """ # Get points points, _ = read_ply(os.path.join(BUILDNET_PTS_DIR, model_name + ".ply")) # Get ground truth labels with open(os.path.join(BUILDNET_PTS_LABELS_DIR, model_name + "_label.json"), 'r') as fin_json: labels_json = json.load(fin_json) point_gt_labels = np.fromiter(labels_json.values(), dtype=int)[:, np.newaxis] assert (points.shape[0] == point_gt_labels.shape[0]) # Get per point features (probabilities) try: point_feat = np.load(os.path.join(NET_RESULTS_DIR, model_fn + ".npy")) except FileNotFoundError: point_feat = np.zeros((point_gt_labels.shape[0], len(toplabels) - 1)) assert (point_feat.shape[0] == point_gt_labels.shape[0]) assert (point_feat.shape[1] == (len(toplabels) - 1)) # Calculate pred label point_pred_labels = np.argmax(point_feat, axis=1)[:, np.newaxis] + 1 # we exclude undetermined (label 0) during training assert (point_gt_labels.shape == point_pred_labels.shape) # Get points face index with open(os.path.join(BUILDNET_PTS_FACEINDEX_DIR, model_name + ".txt"), 'r') as fin_txt: point_face_index = fin_txt.readlines() point_face_index = np.asarray([int(p.strip()) for p in point_face_index], dtype=int)[:, np.newaxis] assert (point_face_index.shape == point_gt_labels.shape) return points, point_gt_labels, point_pred_labels, point_feat, point_face_index def get_mesh_data_n_labels(model_name): """ Get mesh data needed for evaluation :param model_name: str :return: vertices: N x 3, numpy.ndarray(float) faces: M x 3, numpy.ndarray(int) face_labels: M x 1, numpy.ndarray(int) components: M x 1, numpy.ndarray(float) face_area: M x 1, numpy.ndarray(float) """ # Load obj vertices, faces, components = read_obj(obj_fn=os.path.join(BUILDNET_OBJ_DIR, model_name + ".obj")) # Calculate face area faces -= 1 face_area = calculate_face_area(vertices=vertices, faces=faces) assert (face_area.shape[0] == faces.shape[0]) # Read components to labels with open(os.path.join(BUILDNET_COMP_TO_LABELS_DIR, model_name + "_label.json"), 'r') as fin_json: labels_json = json.load(fin_json) face_labels = np.zeros_like(components) for comp, label in labels_json.items(): face_labels[np.where(components == int(comp))[0]] = label return vertices, faces, face_labels, components, face_area def save_pred_in_json(labels, fn_json): """ Save labels in json format :param labels: N x 1, numpy.ndarray(int) :param fn_json: str :return: None """ # Convert numpy to dict labels_json = dict(zip(np.arange(labels.shape[0]).astype(str), np.squeeze(labels).tolist())) # Export json file with open(fn_json, 'w') as fout_json: json.dump(labels_json, fout_json) if __name__ == "__main__": top_k = 200 best_iou_model = np.zeros((top_k,)) best_iou_model[:] = 1e-9 best_model_points_pred, best_model_triangles_pred, best_model_comp_pred, best_model_fn = [[] for _ in range(top_k)], \ [[] for _ in range(top_k)], \ [[] for _ in range(top_k)], \ [[] for _ in range(top_k)] # Get model names models_fn = get_split_models(split_fn=BUILDNET_TEST_SPLIT) point_buildings_iou, mesh_buildings_iou_from_tr, mesh_buildings_iou_from_comp, mesh_buildings_iou_from_tr_max_pool, \ mesh_buildings_iou_from_comp_max_pool = {}, {}, {}, {}, {} point_buildings_acc, mesh_buildings_acc_from_tr, mesh_buildings_acc_from_comp, mesh_buildings_acc_from_tr_max_pool, \ mesh_buildings_acc_from_comp_max_pool = {}, {}, {}, {}, {} print("Calculate part and shape IOU for point and mesh tracks") for model_fn in tqdm(models_fn): # Get point cloud data points, point_gt_labels, point_pred_labels, point_feat, point_face_index = get_point_cloud_data(model_fn) # Get mesh data vertices, faces, face_gt_labels, components, face_area = get_mesh_data_n_labels(model_fn) # Infer face labels from point predictions face_pred_labels_from_tr, face_pred_labels_from_comp, face_feat_from_tr, face_feat_from_comp, \ face_pred_labels_from_tr_max_pool, face_pred_labels_from_comp_max_pool = \ transfer_point_predictions(vertices, faces, components, points, point_feat, point_face_index, max_pool=True) # Calculate point building iou point_buildings_iou[model_fn] = get_building_point_iou(point_gt_labels, point_pred_labels) # Calculate mesh building iou mesh_buildings_iou_from_tr[model_fn] = get_building_mesh_iou(face_gt_labels, face_pred_labels_from_tr, face_area) mesh_buildings_iou_from_comp[model_fn] = get_building_mesh_iou(face_gt_labels, face_pred_labels_from_comp, face_area) mesh_buildings_iou_from_tr_max_pool[model_fn] = \ get_building_mesh_iou(face_gt_labels, face_pred_labels_from_tr_max_pool, face_area) mesh_buildings_iou_from_comp_max_pool[model_fn] = \ get_building_mesh_iou(face_gt_labels, face_pred_labels_from_comp_max_pool, face_area) # Calculate classification accuracy point_buildings_acc[model_fn] = classification_accuracy(point_gt_labels, point_pred_labels) mesh_buildings_acc_from_tr[model_fn] = classification_accuracy(face_gt_labels, face_pred_labels_from_tr) mesh_buildings_acc_from_comp[model_fn] = classification_accuracy(face_gt_labels, face_pred_labels_from_comp) mesh_buildings_acc_from_tr_max_pool[model_fn] = \ classification_accuracy(face_gt_labels, face_pred_labels_from_tr_max_pool) mesh_buildings_acc_from_comp_max_pool[model_fn] = \ classification_accuracy(face_gt_labels, face_pred_labels_from_comp_max_pool) # Save mesh feat data np.save(os.path.join(FACE_FEAT_FROM_TR_DIR, model_fn + ".npy"), face_feat_from_tr.astype(np.float32)) np.save(os.path.join(FACE_FEAT_FROM_COMP_DIR, model_fn + ".npy"), face_feat_from_comp.astype(np.float32)) # Save best and worst model label_iou = mesh_buildings_iou_from_comp[model_fn]["label_iou"] s_iou = np.sum([v for v in label_iou.values()]) / float(len(label_iou)) + 1 # handle cases where iou=0 if s_iou > best_iou_model[-1]: best_iou_model[top_k - 1] = s_iou best_model_points_pred[top_k - 1] = point_pred_labels best_model_triangles_pred[top_k - 1] = face_pred_labels_from_tr best_model_comp_pred[top_k - 1] = face_pred_labels_from_comp best_model_fn[top_k - 1] = model_fn sort_idx = np.argsort(1 / np.asarray(best_iou_model)).tolist() best_iou_model = best_iou_model[sort_idx] best_model_points_pred = [best_model_points_pred[idx] for idx in sort_idx] best_model_triangles_pred = [best_model_triangles_pred[idx] for idx in sort_idx] best_model_comp_pred = [best_model_comp_pred[idx] for idx in sort_idx] best_model_fn = [best_model_fn[idx] for idx in sort_idx] best_iou_model -= 1 # restore to original values # Calculate avg point part and shape IOU point_shape_iou = get_shape_iou(buildings_iou=point_buildings_iou) point_part_iou = get_part_iou(buildings_iou=point_buildings_iou) mesh_shape_iou_from_tr = get_shape_iou(buildings_iou=mesh_buildings_iou_from_tr) mesh_part_iou_from_tr = get_part_iou(buildings_iou=mesh_buildings_iou_from_tr) mesh_shape_iou_from_comp = get_shape_iou(buildings_iou=mesh_buildings_iou_from_comp) mesh_part_iou_from_comp = get_part_iou(buildings_iou=mesh_buildings_iou_from_comp) mesh_shape_iou_from_tr_max_pool = get_shape_iou(buildings_iou=mesh_buildings_iou_from_tr_max_pool) mesh_part_iou_from_tr_max_pool = get_part_iou(buildings_iou=mesh_buildings_iou_from_tr_max_pool) mesh_shape_iou_from_comp_max_pool = get_shape_iou(buildings_iou=mesh_buildings_iou_from_comp_max_pool) mesh_part_iou_from_comp_max_pool = get_part_iou(buildings_iou=mesh_buildings_iou_from_comp_max_pool) point_acc = np.sum([acc for acc in point_buildings_acc.values()]) / float(len(point_buildings_acc)) mesh_acc_from_tr = np.sum([acc for acc in mesh_buildings_acc_from_tr.values()]) / float( len(mesh_buildings_acc_from_tr)) mesh_acc_from_comp = np.sum([acc for acc in mesh_buildings_acc_from_comp.values()]) / float( len(mesh_buildings_acc_from_comp)) mesh_acc_from_tr_max_pool = np.sum([acc for acc in mesh_buildings_acc_from_tr_max_pool.values()]) / float( len(mesh_buildings_acc_from_tr_max_pool)) mesh_acc_from_comp_max_pool = np.sum([acc for acc in mesh_buildings_acc_from_comp_max_pool.values()]) / float( len(mesh_buildings_acc_from_comp_max_pool)) # Save best buf = '' for i in range(top_k): print(best_iou_model[i]); print(best_model_fn[i]) buf += "Best model iou: " + str(best_iou_model[i]) + ", " + best_model_fn[i] + '\n' save_pred_in_json(best_model_points_pred[i], os.path.join(BEST_POINTS_DIR, best_model_fn[i] + "_label.json")) save_pred_in_json(best_model_triangles_pred[i], os.path.join(BEST_TRIANGLES_DIR, best_model_fn[i] + "_label.json")) save_pred_in_json(best_model_comp_pred[i], os.path.join(BEST_COMP_DIR, best_model_fn[i] + "_label.json")) # Log results buf += "Point Classification Accuracy: " + str(np.round(point_acc * 100, 2)) + '\n' \ "Point Shape IoU: " + str( np.round(point_shape_iou['all'] * 100, 2)) + '\n' \ "Point Part IoU: " + str( np.round(point_part_iou['all'] * 100, 2)) + '\n' \ "Point Part IoU - FR: " + str( np.round(point_part_iou['fr-part'] * 100, 2)) + '\n' \ "Per label point part IoU: " + ", ".join([label + ": " + str(np.round( point_part_iou[ label] * 100, 2)) for label in toplabels.values() if label != "undetermined"]) + '\n' \ "Average Pooling" + '\n' \ "---------------" + '\n' \ "Mesh Classification Accuracy From Triangles: " + str( np.round(mesh_acc_from_tr * 100, 2)) + '\n' \ "Mesh Shape IoU From Triangles: " + str( np.round(mesh_shape_iou_from_tr['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Triangles: " + str( np.round(mesh_part_iou_from_tr['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Triangles - FR: " + str( np.round(mesh_part_iou_from_tr['fr-part'] * 100, 2)) + '\n' \ "Mesh Classification Accuracy From Comp: " + str( np.round(mesh_acc_from_comp * 100, 2)) + '\n' \ "Mesh Shape IoU From Comp: " + str( np.round(mesh_shape_iou_from_comp['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Comp: " + str( np.round(mesh_part_iou_from_comp['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Comp- FR: " + str( np.round(mesh_part_iou_from_comp['fr-part'] * 100, 2)) + '\n' \ "Per label mesh part IoU from triangles: " + ", ".join( [label + ": " + str(np.round(mesh_part_iou_from_tr[label][0] * 100, 2)) for label in toplabels.values() if label != "undetermined"]) + '\n' \ "Per label mesh part IoU from comp: " + ", ".join([label + ": " + str(np.round( mesh_part_iou_from_comp[ label][0] * 100, 2)) for label in toplabels.values() if label != "undetermined"]) + '\n' \ "Max Pooling" + '\n' \ "-----------" + '\n' \ "Mesh Classification Accuracy From Triangles: " + str( np.round(mesh_acc_from_tr_max_pool * 100, 2)) + '\n' \ "Mesh Shape IoU From Triangles: " + str( np.round(mesh_shape_iou_from_tr_max_pool['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Triangles: " + str( np.round(mesh_part_iou_from_tr_max_pool['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Triangles - FR: " + str( np.round(mesh_part_iou_from_tr_max_pool['fr-part'] * 100, 2)) + '\n' \ "Mesh Classification Accuracy From Comp: " + str( np.round(mesh_acc_from_comp_max_pool * 100, 2)) + '\n' \ "Mesh Shape IoU From Comp: " + str( np.round(mesh_shape_iou_from_comp_max_pool['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Comp: " + str( np.round(mesh_part_iou_from_comp_max_pool['all'] * 100, 2)) + '\n' \ "Mesh Part IoU From Comp- FR: " + str( np.round(mesh_part_iou_from_comp_max_pool['fr-part'] * 100, 2)) + '\n' \ "Per label mesh part IoU from triangles: " + ", ".join( [label + ": " + str(np.round(mesh_part_iou_from_tr_max_pool[label][0] * 100, 2)) for label in toplabels.values() if label != "undetermined"]) + '\n' \ "Per label mesh part IoU from comp: " + ", ".join([label + ": " + str(np.round( mesh_part_iou_from_comp_max_pool[ label][0] * 100, 2)) for label in toplabels.values() if label != "undetermined"]) + '\n' print(buf) with open(os.path.join(NET_RESULTS_DIR, "results_log.txt"), 'w') as fout_txt: fout_txt.write(buf)
2.171875
2
lc0253_meeting_rooms_ii.py
bowen0701/python-algorithms-data-structures
8
12793770
<gh_stars>1-10 """Leetcode 253. Meeting Rooms II (Premium) Medium URL: https://leetcode.com/problems/meeting-rooms-ii Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required. Example1 Input: intervals = [[0,30],[5,10],[15,20]] Output: 2 Explanation: We need two meeting rooms room1: (0,30) room2: (5,10),(15,20) Example2 Input: intervals = [[7, 10], [2, 4]] Output: 1 Explanation: Only need one meeting room """ class SolutionSortEndMinHeapEnd(object): def minMeetingRooms(self, intervals): """ :type intervals: List[List[int]] :rtype: int Time complexity: O(n*logn). Space complexity: O(n). """ import heapq if not intervals or not intervals[0]: return 0 # Sort intervals by start time. intervals.sort() # Use min heap to store end times. end_minhq = [] heapq.heappush(end_minhq, intervals[0][1]) for i in range(1, len(intervals)): # If next start time is after min end time, remove min end time. if intervals[i][0] >= end_minhq[0]: heapq.heappop(end_minhq) # Add next end time to min heap. heapq.heappush(end_minhq, intervals[i][1]) return len(end_minhq) class SolutionTimeCounterListInsort(object): def minMeetingRooms(self, intervals): """ :type intervals: List[List[int]] :rtype: int Time complexity: O(n). Space complexity: O(n). """ from bisect import insort # Sort times and add increment/decrement counters by start/end. time_counters = [] for i in range(len(intervals)): insort(time_counters, (intervals[i][0], 1)) insort(time_counters, (intervals[i][1], -1)) cur_n, max_n = 0, 0 for t, counter in time_counters: cur_n += counter max_n = max(max_n, cur_n) return max_n def main(): # Output: 2. intervals = [[0,30],[5,10],[15,20]] print SolutionSortEndMinHeapEnd().minMeetingRooms(intervals) print SolutionTimeCounterListInsort().minMeetingRooms(intervals) # Output: 1. intervals = [[7, 10], [2, 4]] print SolutionSortEndMinHeapEnd().minMeetingRooms(intervals) print SolutionTimeCounterListInsort().minMeetingRooms(intervals) if __name__ == '__main__': main()
3.578125
4
tests/fixtures/create_fixtures.py
brightway-lca/bw_default_backend
0
12793771
<reponame>brightway-lca/bw_default_backend<filename>tests/fixtures/create_fixtures.py<gh_stars>0 import bw_projects as bw import bw_default_backend as backend import pytest @pytest.fixture(scope="function") def basic_fixture(): NAME = "test-fixtures" # if NAME in bw.projects: # bw.projects.delete_project(NAME) bw.projects.create_project(NAME, add_base_data=True) biosphere_collection = backend.Collection.create(name="biosphere") food_collection = backend.Collection.create(name="food") first = backend.Flow.create( name="an emission", kind="biosphere", collection=biosphere_collection, unit="kg" ) second = backend.Flow.create( name="another emission", kind="biosphere", collection=biosphere_collection, unit="kg", ) world = backend.Geocollection.get(name="world") canada = backend.Location.create(geocollection=world, name="Canada") lunch_flow = backend.Flow.create( name="lunch food", unit="kg", kind="technosphere", collection=food_collection ) lunch_activity = backend.Activity.create( name="eating lunch", collection=food_collection, reference_product=lunch_flow, location=canada, ) backend.Exchange.create( activity=lunch_activity, flow=lunch_flow, direction="production", amount=0.5 ) backend.Exchange.create(activity=lunch_activity, flow=first, amount=0.05) dinner_flow = backend.Flow.create( name="dinner main dish", unit="kg", kind="technosphere", collection=food_collection, ) dinner_activity = backend.Activity.create( name="eating dinner", collection=food_collection, reference_product=dinner_flow, location=canada, ) backend.Exchange.create( activity=dinner_activity, flow=dinner_flow, direction="production", amount=0.25 ) backend.Exchange.create(activity=dinner_activity, flow=second, amount=0.15) method = backend.Method.create(name=("test", "method")) backend.CharacterizationFactor.create(flow=first, method=method, amount=42) backend.CharacterizationFactor.create(flow=second, method=method, amount=99)
2.078125
2
python/mxnet/ndarray/contrib.py
ijkguo/mxnet
4
12793772
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=wildcard-import, unused-wildcard-import """Contrib NDArray API of MXNet.""" import math from ..context import current_context from ..random import uniform from ..base import _as_list from . import ndarray try: from .gen_contrib import * except ImportError: pass __all__ = ["rand_zipfian"] # pylint: disable=line-too-long def rand_zipfian(true_classes, num_sampled, range_max, ctx=None): """Draw random samples from an approximately log-uniform or Zipfian distribution. This operation randomly samples *num_sampled* candidates the range of integers [0, range_max). The elements of sampled_candidates are drawn with replacement from the base distribution. The base distribution for this operator is an approximately log-uniform or Zipfian distribution: P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1) This sampler is useful when the true classes approximately follow such a distribution. For example, if the classes represent words in a lexicon sorted in decreasing order of \ frequency. If your classes are not ordered by decreasing frequency, do not use this op. Additionaly, it also returns the number of times each of the \ true classes and the sampled classes is expected to occur. Parameters ---------- true_classes : NDArray A 1-D NDArray of the target classes. num_sampled: int The number of classes to randomly sample. range_max: int The number of possible classes. ctx : Context Device context of output. Default is current context. Returns ------- samples: NDArray The sampled candidate classes in 1-D `int64` dtype. expected_count_true: NDArray The expected count for true classes in 1-D `float64` dtype. expected_count_sample: NDArray The expected count for sampled candidates in 1-D `float64` dtype. Examples -------- >>> true_cls = mx.nd.array([3]) >>> samples, exp_count_true, exp_count_sample = mx.nd.contrib.rand_zipfian(true_cls, 4, 5) >>> samples [1 3 3 3] <NDArray 4 @cpu(0)> >>> exp_count_true [ 0.12453879] <NDArray 1 @cpu(0)> >>> exp_count_sample [ 0.22629439 0.12453879 0.12453879 0.12453879] <NDArray 4 @cpu(0)> """ if ctx is None: ctx = current_context() log_range = math.log(range_max + 1) rand = uniform(0, log_range, shape=(num_sampled,), dtype='float64', ctx=ctx) # make sure sampled_classes are in the range of [0, range_max) sampled_classes = (rand.exp() - 1).astype('int64') % range_max true_cls = true_classes.as_in_context(ctx).astype('float64') expected_count_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range * num_sampled # cast sampled classes to fp64 to avoid interget division sampled_cls_fp64 = sampled_classes.astype('float64') expected_prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range expected_count_sampled = expected_prob_sampled * num_sampled return sampled_classes, expected_count_true, expected_count_sampled # pylint: enable=line-too-long def foreach(body, data, init_states): """Run a for loop with user-defined computation over NDArrays on dimension 0. This operator simulates a for loop and body has the computation for an iteration of the for loop. It runs the computation in body on each slice from the input NDArrays. body takes two arguments as input and outputs a tuple of two elements, as illustrated below: out, states = body(data1, states) data1 can be either an NDArray or a list of NDArrays. If data is an NDArray, data1 is an NDArray. Otherwise, data1 is a list of NDArrays and has the same size as data. states is a list of NDArrays and have the same size as init_states. Similarly, out can be either an NDArray or a list of NDArrays, which are concatenated as the first output of foreach; states from the last execution of body are the second output of foreach. The computation done by this operator is equivalent to the pseudo code below when the input data is NDArray: states = init_states outs = [] for i in data.shape[0]: s = data[i] out, states = body(s, states) outs.append(out) outs = stack(*outs) Parameters ---------- body : a Python function. Define computation in an iteration. data: an NDArray or a list of NDArrays. The input data. init_states: an NDArray or a list of NDArrays. The initial values of the loop states. name: string. The name of the operator. Returns ------- outputs: an NDArray or a list of NDArrays. The output data concatenated from the output of all iterations. states: a list of NDArrays. The loop states in the last iteration. Examples -------- >>> step = lambda data, states: (data + states[0], [states[0] * 2]) >>> data = mx.nd.random.uniform(shape=(2, 10)) >>> states = [mx.nd.random.uniform(shape=(10))] >>> outs, states = mx.nd.contrib.foreach(step, data, states) """ def check_input(inputs, in_type, msg): is_NDArray_or_list = True if isinstance(inputs, list): for i in inputs: if not isinstance(i, in_type): is_NDArray_or_list = False break else: is_NDArray_or_list = isinstance(inputs, in_type) assert is_NDArray_or_list, msg check_input(data, ndarray.NDArray, "data should be an NDArray or a list of NDArrays") check_input(init_states, ndarray.NDArray, "init_states should be an NDArray or a list of NDArrays") not_data_list = isinstance(data, ndarray.NDArray) num_iters = data.shape[0] if not_data_list else data[0].shape[0] states = init_states outputs = [] for i in range(num_iters): if not_data_list: eles = data[i] else: eles = [d[i] for d in data] outs, states = body(eles, states) outs = _as_list(outs) outputs.append(outs) outputs = zip(*outputs) tmp_outputs = [] for out in outputs: tmp_outputs.append(ndarray.op.stack(*out)) outputs = tmp_outputs if not_data_list and len(outputs) == 1: outputs = outputs[0] return (outputs, states)
2.125
2
bisect/41997.py
simonjayhawkins/pandas
1
12793773
# 1.3: (intended?) Behavior change with empty apply #41997 import pandas as pd print(pd.__version__) df = pd.DataFrame(columns=["a", "b"]) df["a"] = df.apply(lambda x: x["a"], axis=1) print(df)
3.421875
3
tests/examples/minlplib/graphpart_2g-0088-0088.py
ouyang-w-19/decogo
2
12793774
# MINLP written by GAMS Convert at 04/21/18 13:52:22 # # Equation counts # Total E G L N X C B # 65 65 0 0 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 193 1 192 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 385 193 192 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.b1 = Var(within=Binary,bounds=(0,1),initialize=0) m.b2 = Var(within=Binary,bounds=(0,1),initialize=0) m.b3 = Var(within=Binary,bounds=(0,1),initialize=0) m.b4 = Var(within=Binary,bounds=(0,1),initialize=0) m.b5 = Var(within=Binary,bounds=(0,1),initialize=0) m.b6 = Var(within=Binary,bounds=(0,1),initialize=0) m.b7 = Var(within=Binary,bounds=(0,1),initialize=0) m.b8 = Var(within=Binary,bounds=(0,1),initialize=0) m.b9 = Var(within=Binary,bounds=(0,1),initialize=0) m.b10 = Var(within=Binary,bounds=(0,1),initialize=0) m.b11 = Var(within=Binary,bounds=(0,1),initialize=0) m.b12 = Var(within=Binary,bounds=(0,1),initialize=0) m.b13 = Var(within=Binary,bounds=(0,1),initialize=0) m.b14 = Var(within=Binary,bounds=(0,1),initialize=0) m.b15 = Var(within=Binary,bounds=(0,1),initialize=0) m.b16 = Var(within=Binary,bounds=(0,1),initialize=0) m.b17 = Var(within=Binary,bounds=(0,1),initialize=0) m.b18 = Var(within=Binary,bounds=(0,1),initialize=0) m.b19 = Var(within=Binary,bounds=(0,1),initialize=0) m.b20 = Var(within=Binary,bounds=(0,1),initialize=0) m.b21 = Var(within=Binary,bounds=(0,1),initialize=0) m.b22 = Var(within=Binary,bounds=(0,1),initialize=0) m.b23 = Var(within=Binary,bounds=(0,1),initialize=0) m.b24 = Var(within=Binary,bounds=(0,1),initialize=0) m.b25 = Var(within=Binary,bounds=(0,1),initialize=0) m.b26 = Var(within=Binary,bounds=(0,1),initialize=0) m.b27 = Var(within=Binary,bounds=(0,1),initialize=0) m.b28 = Var(within=Binary,bounds=(0,1),initialize=0) m.b29 = Var(within=Binary,bounds=(0,1),initialize=0) m.b30 = Var(within=Binary,bounds=(0,1),initialize=0) m.b31 = Var(within=Binary,bounds=(0,1),initialize=0) m.b32 = Var(within=Binary,bounds=(0,1),initialize=0) m.b33 = Var(within=Binary,bounds=(0,1),initialize=0) m.b34 = Var(within=Binary,bounds=(0,1),initialize=0) m.b35 = Var(within=Binary,bounds=(0,1),initialize=0) m.b36 = Var(within=Binary,bounds=(0,1),initialize=0) m.b37 = Var(within=Binary,bounds=(0,1),initialize=0) m.b38 = Var(within=Binary,bounds=(0,1),initialize=0) m.b39 = Var(within=Binary,bounds=(0,1),initialize=0) m.b40 = Var(within=Binary,bounds=(0,1),initialize=0) m.b41 = Var(within=Binary,bounds=(0,1),initialize=0) m.b42 = Var(within=Binary,bounds=(0,1),initialize=0) m.b43 = Var(within=Binary,bounds=(0,1),initialize=0) m.b44 = Var(within=Binary,bounds=(0,1),initialize=0) m.b45 = Var(within=Binary,bounds=(0,1),initialize=0) m.b46 = Var(within=Binary,bounds=(0,1),initialize=0) m.b47 = Var(within=Binary,bounds=(0,1),initialize=0) m.b48 = Var(within=Binary,bounds=(0,1),initialize=0) m.b49 = Var(within=Binary,bounds=(0,1),initialize=0) m.b50 = Var(within=Binary,bounds=(0,1),initialize=0) m.b51 = Var(within=Binary,bounds=(0,1),initialize=0) m.b52 = Var(within=Binary,bounds=(0,1),initialize=0) m.b53 = Var(within=Binary,bounds=(0,1),initialize=0) m.b54 = Var(within=Binary,bounds=(0,1),initialize=0) m.b55 = Var(within=Binary,bounds=(0,1),initialize=0) m.b56 = Var(within=Binary,bounds=(0,1),initialize=0) m.b57 = Var(within=Binary,bounds=(0,1),initialize=0) m.b58 = Var(within=Binary,bounds=(0,1),initialize=0) m.b59 = Var(within=Binary,bounds=(0,1),initialize=0) m.b60 = Var(within=Binary,bounds=(0,1),initialize=0) m.b61 = Var(within=Binary,bounds=(0,1),initialize=0) m.b62 = Var(within=Binary,bounds=(0,1),initialize=0) m.b63 = Var(within=Binary,bounds=(0,1),initialize=0) m.b64 = Var(within=Binary,bounds=(0,1),initialize=0) m.b65 = Var(within=Binary,bounds=(0,1),initialize=0) m.b66 = Var(within=Binary,bounds=(0,1),initialize=0) m.b67 = Var(within=Binary,bounds=(0,1),initialize=0) m.b68 = Var(within=Binary,bounds=(0,1),initialize=0) m.b69 = Var(within=Binary,bounds=(0,1),initialize=0) m.b70 = Var(within=Binary,bounds=(0,1),initialize=0) m.b71 = Var(within=Binary,bounds=(0,1),initialize=0) m.b72 = Var(within=Binary,bounds=(0,1),initialize=0) m.b73 = Var(within=Binary,bounds=(0,1),initialize=0) m.b74 = Var(within=Binary,bounds=(0,1),initialize=0) m.b75 = Var(within=Binary,bounds=(0,1),initialize=0) m.b76 = Var(within=Binary,bounds=(0,1),initialize=0) m.b77 = Var(within=Binary,bounds=(0,1),initialize=0) m.b78 = Var(within=Binary,bounds=(0,1),initialize=0) m.b79 = Var(within=Binary,bounds=(0,1),initialize=0) m.b80 = Var(within=Binary,bounds=(0,1),initialize=0) m.b81 = Var(within=Binary,bounds=(0,1),initialize=0) m.b82 = Var(within=Binary,bounds=(0,1),initialize=0) m.b83 = Var(within=Binary,bounds=(0,1),initialize=0) m.b84 = Var(within=Binary,bounds=(0,1),initialize=0) m.b85 = Var(within=Binary,bounds=(0,1),initialize=0) m.b86 = Var(within=Binary,bounds=(0,1),initialize=0) m.b87 = Var(within=Binary,bounds=(0,1),initialize=0) m.b88 = Var(within=Binary,bounds=(0,1),initialize=0) m.b89 = Var(within=Binary,bounds=(0,1),initialize=0) m.b90 = Var(within=Binary,bounds=(0,1),initialize=0) m.b91 = Var(within=Binary,bounds=(0,1),initialize=0) m.b92 = Var(within=Binary,bounds=(0,1),initialize=0) m.b93 = Var(within=Binary,bounds=(0,1),initialize=0) m.b94 = Var(within=Binary,bounds=(0,1),initialize=0) m.b95 = Var(within=Binary,bounds=(0,1),initialize=0) m.b96 = Var(within=Binary,bounds=(0,1),initialize=0) m.b97 = Var(within=Binary,bounds=(0,1),initialize=0) m.b98 = Var(within=Binary,bounds=(0,1),initialize=0) m.b99 = Var(within=Binary,bounds=(0,1),initialize=0) m.b100 = Var(within=Binary,bounds=(0,1),initialize=0) m.b101 = Var(within=Binary,bounds=(0,1),initialize=0) m.b102 = Var(within=Binary,bounds=(0,1),initialize=0) m.b103 = Var(within=Binary,bounds=(0,1),initialize=0) m.b104 = Var(within=Binary,bounds=(0,1),initialize=0) m.b105 = Var(within=Binary,bounds=(0,1),initialize=0) m.b106 = Var(within=Binary,bounds=(0,1),initialize=0) m.b107 = Var(within=Binary,bounds=(0,1),initialize=0) m.b108 = Var(within=Binary,bounds=(0,1),initialize=0) m.b109 = Var(within=Binary,bounds=(0,1),initialize=0) m.b110 = Var(within=Binary,bounds=(0,1),initialize=0) m.b111 = Var(within=Binary,bounds=(0,1),initialize=0) m.b112 = Var(within=Binary,bounds=(0,1),initialize=0) m.b113 = Var(within=Binary,bounds=(0,1),initialize=0) m.b114 = Var(within=Binary,bounds=(0,1),initialize=0) m.b115 = Var(within=Binary,bounds=(0,1),initialize=0) m.b116 = Var(within=Binary,bounds=(0,1),initialize=0) m.b117 = Var(within=Binary,bounds=(0,1),initialize=0) m.b118 = Var(within=Binary,bounds=(0,1),initialize=0) m.b119 = Var(within=Binary,bounds=(0,1),initialize=0) m.b120 = Var(within=Binary,bounds=(0,1),initialize=0) m.b121 = Var(within=Binary,bounds=(0,1),initialize=0) m.b122 = Var(within=Binary,bounds=(0,1),initialize=0) m.b123 = Var(within=Binary,bounds=(0,1),initialize=0) m.b124 = Var(within=Binary,bounds=(0,1),initialize=0) m.b125 = Var(within=Binary,bounds=(0,1),initialize=0) m.b126 = Var(within=Binary,bounds=(0,1),initialize=0) m.b127 = Var(within=Binary,bounds=(0,1),initialize=0) m.b128 = Var(within=Binary,bounds=(0,1),initialize=0) m.b129 = Var(within=Binary,bounds=(0,1),initialize=0) m.b130 = Var(within=Binary,bounds=(0,1),initialize=0) m.b131 = Var(within=Binary,bounds=(0,1),initialize=0) m.b132 = Var(within=Binary,bounds=(0,1),initialize=0) m.b133 = Var(within=Binary,bounds=(0,1),initialize=0) m.b134 = Var(within=Binary,bounds=(0,1),initialize=0) m.b135 = Var(within=Binary,bounds=(0,1),initialize=0) m.b136 = Var(within=Binary,bounds=(0,1),initialize=0) m.b137 = Var(within=Binary,bounds=(0,1),initialize=0) m.b138 = Var(within=Binary,bounds=(0,1),initialize=0) m.b139 = Var(within=Binary,bounds=(0,1),initialize=0) m.b140 = Var(within=Binary,bounds=(0,1),initialize=0) m.b141 = Var(within=Binary,bounds=(0,1),initialize=0) m.b142 = Var(within=Binary,bounds=(0,1),initialize=0) m.b143 = Var(within=Binary,bounds=(0,1),initialize=0) m.b144 = Var(within=Binary,bounds=(0,1),initialize=0) m.b145 = Var(within=Binary,bounds=(0,1),initialize=0) m.b146 = Var(within=Binary,bounds=(0,1),initialize=0) m.b147 = Var(within=Binary,bounds=(0,1),initialize=0) m.b148 = Var(within=Binary,bounds=(0,1),initialize=0) m.b149 = Var(within=Binary,bounds=(0,1),initialize=0) m.b150 = Var(within=Binary,bounds=(0,1),initialize=0) m.b151 = Var(within=Binary,bounds=(0,1),initialize=0) m.b152 = Var(within=Binary,bounds=(0,1),initialize=0) m.b153 = Var(within=Binary,bounds=(0,1),initialize=0) m.b154 = Var(within=Binary,bounds=(0,1),initialize=0) m.b155 = Var(within=Binary,bounds=(0,1),initialize=0) m.b156 = Var(within=Binary,bounds=(0,1),initialize=0) m.b157 = Var(within=Binary,bounds=(0,1),initialize=0) m.b158 = Var(within=Binary,bounds=(0,1),initialize=0) m.b159 = Var(within=Binary,bounds=(0,1),initialize=0) m.b160 = Var(within=Binary,bounds=(0,1),initialize=0) m.b161 = Var(within=Binary,bounds=(0,1),initialize=0) m.b162 = Var(within=Binary,bounds=(0,1),initialize=0) m.b163 = Var(within=Binary,bounds=(0,1),initialize=0) m.b164 = Var(within=Binary,bounds=(0,1),initialize=0) m.b165 = Var(within=Binary,bounds=(0,1),initialize=0) m.b166 = Var(within=Binary,bounds=(0,1),initialize=0) m.b167 = Var(within=Binary,bounds=(0,1),initialize=0) m.b168 = Var(within=Binary,bounds=(0,1),initialize=0) m.b169 = Var(within=Binary,bounds=(0,1),initialize=0) m.b170 = Var(within=Binary,bounds=(0,1),initialize=0) m.b171 = Var(within=Binary,bounds=(0,1),initialize=0) m.b172 = Var(within=Binary,bounds=(0,1),initialize=0) m.b173 = Var(within=Binary,bounds=(0,1),initialize=0) m.b174 = Var(within=Binary,bounds=(0,1),initialize=0) m.b175 = Var(within=Binary,bounds=(0,1),initialize=0) m.b176 = Var(within=Binary,bounds=(0,1),initialize=0) m.b177 = Var(within=Binary,bounds=(0,1),initialize=0) m.b178 = Var(within=Binary,bounds=(0,1),initialize=0) m.b179 = Var(within=Binary,bounds=(0,1),initialize=0) m.b180 = Var(within=Binary,bounds=(0,1),initialize=0) m.b181 = Var(within=Binary,bounds=(0,1),initialize=0) m.b182 = Var(within=Binary,bounds=(0,1),initialize=0) m.b183 = Var(within=Binary,bounds=(0,1),initialize=0) m.b184 = Var(within=Binary,bounds=(0,1),initialize=0) m.b185 = Var(within=Binary,bounds=(0,1),initialize=0) m.b186 = Var(within=Binary,bounds=(0,1),initialize=0) m.b187 = Var(within=Binary,bounds=(0,1),initialize=0) m.b188 = Var(within=Binary,bounds=(0,1),initialize=0) m.b189 = Var(within=Binary,bounds=(0,1),initialize=0) m.b190 = Var(within=Binary,bounds=(0,1),initialize=0) m.b191 = Var(within=Binary,bounds=(0,1),initialize=0) m.b192 = Var(within=Binary,bounds=(0,1),initialize=0) m.obj = Objective(expr=67634*m.b1*m.b22 - 83602*m.b1*m.b4 + 61711*m.b1*m.b25 - 59956*m.b1*m.b169 - 83602*m.b2*m.b5 + 67634*m.b2*m.b23 + 61711*m.b2*m.b26 - 59956*m.b2*m.b170 - 83602*m.b3*m.b6 + 67634*m.b3*m.b24 + 61711*m.b3*m.b27 - 59956*m.b3*m.b171 + 127500*m.b4*m.b7 + 35260*m.b4*m.b28 - 110030*m.b4*m.b172 + 127500*m.b5*m.b8 + 35260*m.b5*m.b29 - 110030*m.b5*m.b173 + 127500*m.b6*m.b9 + 35260*m.b6*m.b30 - 110030*m.b6*m.b174 - 68458*m.b7*m.b10 - 22985*m.b7*m.b31 - 35743*m.b7*m.b175 - 68458*m.b8* m.b11 - 22985*m.b8*m.b32 - 35743*m.b8*m.b176 - 68458*m.b9*m.b12 - 22985*m.b9*m.b33 - 35743*m.b9* m.b177 + 173612*m.b10*m.b13 + 199680*m.b10*m.b34 + 92582*m.b10*m.b178 + 173612*m.b11*m.b14 + 199680*m.b11*m.b35 + 92582*m.b11*m.b179 + 173612*m.b12*m.b15 + 199680*m.b12*m.b36 + 92582*m.b12* m.b180 + 117135*m.b13*m.b16 - 147716*m.b13*m.b37 + 130308*m.b13*m.b181 + 117135*m.b14*m.b17 - 147716*m.b14*m.b38 + 130308*m.b14*m.b182 + 117135*m.b15*m.b18 - 147716*m.b15*m.b39 + 130308*m.b15 *m.b183 + 91667*m.b16*m.b19 + 153955*m.b16*m.b40 - 21093*m.b16*m.b184 + 91667*m.b17*m.b20 + 153955*m.b17*m.b41 - 21093*m.b17*m.b185 + 91667*m.b18*m.b21 + 153955*m.b18*m.b42 - 21093*m.b18* m.b186 + 74165*m.b19*m.b22 - 220722*m.b19*m.b43 - 162288*m.b19*m.b187 + 74165*m.b20*m.b23 - 220722*m.b20*m.b44 - 162288*m.b20*m.b188 + 74165*m.b21*m.b24 - 220722*m.b21*m.b45 - 162288*m.b21* m.b189 + 35287*m.b22*m.b46 - 73662*m.b22*m.b190 + 35287*m.b23*m.b47 - 73662*m.b23*m.b191 + 35287* m.b24*m.b48 - 73662*m.b24*m.b192 + 47953*m.b25*m.b28 + 2925*m.b25*m.b46 - 24145*m.b25*m.b49 + 47953*m.b26*m.b29 + 2925*m.b26*m.b47 - 24145*m.b26*m.b50 + 47953*m.b27*m.b30 + 2925*m.b27*m.b48 - 24145*m.b27*m.b51 - 122136*m.b28*m.b31 - 77871*m.b28*m.b52 - 122136*m.b29*m.b32 - 77871*m.b29* m.b53 - 122136*m.b30*m.b33 - 77871*m.b30*m.b54 - 129158*m.b31*m.b34 - 45165*m.b31*m.b55 - 129158* m.b32*m.b35 - 45165*m.b32*m.b56 - 129158*m.b33*m.b36 - 45165*m.b33*m.b57 - 44654*m.b34*m.b37 + 18064*m.b34*m.b58 - 44654*m.b35*m.b38 + 18064*m.b35*m.b59 - 44654*m.b36*m.b39 + 18064*m.b36*m.b60 - 164293*m.b37*m.b40 - 62562*m.b37*m.b61 - 164293*m.b38*m.b41 - 62562*m.b38*m.b62 - 164293*m.b39 *m.b42 - 62562*m.b39*m.b63 + 15254*m.b40*m.b43 - 73788*m.b40*m.b64 + 15254*m.b41*m.b44 - 73788* m.b41*m.b65 + 15254*m.b42*m.b45 - 73788*m.b42*m.b66 + 67357*m.b43*m.b46 + 145724*m.b43*m.b67 + 67357*m.b44*m.b47 + 145724*m.b44*m.b68 + 67357*m.b45*m.b48 + 145724*m.b45*m.b69 + 77518*m.b46* m.b70 + 77518*m.b47*m.b71 + 77518*m.b48*m.b72 + 73006*m.b49*m.b52 - 97425*m.b49*m.b70 - 36871* m.b49*m.b73 + 73006*m.b50*m.b53 - 97425*m.b50*m.b71 - 36871*m.b50*m.b74 + 73006*m.b51*m.b54 - 97425*m.b51*m.b72 - 36871*m.b51*m.b75 - 85230*m.b52*m.b55 - 63550*m.b52*m.b76 - 85230*m.b53*m.b56 - 63550*m.b53*m.b77 - 85230*m.b54*m.b57 - 63550*m.b54*m.b78 - 153638*m.b55*m.b58 + 84496*m.b55* m.b79 - 153638*m.b56*m.b59 + 84496*m.b56*m.b80 - 153638*m.b57*m.b60 + 84496*m.b57*m.b81 + 7440* m.b58*m.b61 - 67520*m.b58*m.b82 + 7440*m.b59*m.b62 - 67520*m.b59*m.b83 + 7440*m.b60*m.b63 - 67520 *m.b60*m.b84 + 97476*m.b61*m.b64 - 234690*m.b61*m.b85 + 97476*m.b62*m.b65 - 234690*m.b62*m.b86 + 97476*m.b63*m.b66 - 234690*m.b63*m.b87 + 114707*m.b64*m.b67 + 218718*m.b64*m.b88 + 114707*m.b65* m.b68 + 218718*m.b65*m.b89 + 114707*m.b66*m.b69 + 218718*m.b66*m.b90 - 72968*m.b67*m.b70 + 54754* m.b67*m.b91 - 72968*m.b68*m.b71 + 54754*m.b68*m.b92 - 72968*m.b69*m.b72 + 54754*m.b69*m.b93 - 169837*m.b70*m.b94 - 169837*m.b71*m.b95 - 169837*m.b72*m.b96 - 18652*m.b73*m.b76 + 114918*m.b73* m.b94 - 6803*m.b73*m.b97 - 18652*m.b74*m.b77 + 114918*m.b74*m.b95 - 6803*m.b74*m.b98 - 18652* m.b75*m.b78 + 114918*m.b75*m.b96 - 6803*m.b75*m.b99 - 35802*m.b76*m.b79 - 95280*m.b76*m.b100 - 35802*m.b77*m.b80 - 95280*m.b77*m.b101 - 35802*m.b78*m.b81 - 95280*m.b78*m.b102 + 70821*m.b79* m.b82 - 58023*m.b79*m.b103 + 70821*m.b80*m.b83 - 58023*m.b80*m.b104 + 70821*m.b81*m.b84 - 58023* m.b81*m.b105 - 61946*m.b82*m.b85 - 264072*m.b82*m.b106 - 61946*m.b83*m.b86 - 264072*m.b83*m.b107 - 61946*m.b84*m.b87 - 264072*m.b84*m.b108 - 92130*m.b85*m.b88 + 16108*m.b85*m.b109 - 92130*m.b86 *m.b89 + 16108*m.b86*m.b110 - 92130*m.b87*m.b90 + 16108*m.b87*m.b111 + 159379*m.b88*m.b91 + 204734*m.b88*m.b112 + 159379*m.b89*m.b92 + 204734*m.b89*m.b113 + 159379*m.b90*m.b93 + 204734* m.b90*m.b114 - 189099*m.b91*m.b94 - 64588*m.b91*m.b115 - 189099*m.b92*m.b95 - 64588*m.b92*m.b116 - 189099*m.b93*m.b96 - 64588*m.b93*m.b117 + 130590*m.b94*m.b118 + 130590*m.b95*m.b119 + 130590* m.b96*m.b120 - 8447*m.b97*m.b100 + 90736*m.b97*m.b118 + 38420*m.b97*m.b121 - 8447*m.b98*m.b101 + 90736*m.b98*m.b119 + 38420*m.b98*m.b122 - 8447*m.b99*m.b102 + 90736*m.b99*m.b120 + 38420*m.b99* m.b123 + 22308*m.b100*m.b103 + 177432*m.b100*m.b124 + 22308*m.b101*m.b104 + 177432*m.b101*m.b125 + 22308*m.b102*m.b105 + 177432*m.b102*m.b126 - 14134*m.b103*m.b106 - 28668*m.b103*m.b127 - 14134 *m.b104*m.b107 - 28668*m.b104*m.b128 - 14134*m.b105*m.b108 - 28668*m.b105*m.b129 - 61805*m.b106* m.b109 - 22047*m.b106*m.b130 - 61805*m.b107*m.b110 - 22047*m.b107*m.b131 - 61805*m.b108*m.b111 - 22047*m.b108*m.b132 + 29936*m.b109*m.b112 - 36716*m.b109*m.b133 + 29936*m.b110*m.b113 - 36716* m.b110*m.b134 + 29936*m.b111*m.b114 - 36716*m.b111*m.b135 - 189188*m.b112*m.b115 + 56108*m.b112* m.b136 - 189188*m.b113*m.b116 + 56108*m.b113*m.b137 - 189188*m.b114*m.b117 + 56108*m.b114*m.b138 + 87321*m.b115*m.b118 + 43200*m.b115*m.b139 + 87321*m.b116*m.b119 + 43200*m.b116*m.b140 + 87321* m.b117*m.b120 + 43200*m.b117*m.b141 - 105343*m.b118*m.b142 - 105343*m.b119*m.b143 - 105343*m.b120 *m.b144 + 1787*m.b121*m.b124 - 39963*m.b121*m.b142 - 49240*m.b121*m.b145 + 1787*m.b122*m.b125 - 39963*m.b122*m.b143 - 49240*m.b122*m.b146 + 1787*m.b123*m.b126 - 39963*m.b123*m.b144 - 49240* m.b123*m.b147 - 19759*m.b124*m.b127 - 51266*m.b124*m.b148 - 19759*m.b125*m.b128 - 51266*m.b125* m.b149 - 19759*m.b126*m.b129 - 51266*m.b126*m.b150 - 156795*m.b127*m.b130 - 90008*m.b127*m.b151 - 156795*m.b128*m.b131 - 90008*m.b128*m.b152 - 156795*m.b129*m.b132 - 90008*m.b129*m.b153 + 76764*m.b130*m.b133 - 54058*m.b130*m.b154 + 76764*m.b131*m.b134 - 54058*m.b131*m.b155 + 76764* m.b132*m.b135 - 54058*m.b132*m.b156 - 20555*m.b133*m.b136 - 275957*m.b133*m.b157 - 20555*m.b134* m.b137 - 275957*m.b134*m.b158 - 20555*m.b135*m.b138 - 275957*m.b135*m.b159 + 17070*m.b136*m.b139 - 154864*m.b136*m.b160 + 17070*m.b137*m.b140 - 154864*m.b137*m.b161 + 17070*m.b138*m.b141 - 154864*m.b138*m.b162 - 162791*m.b139*m.b142 - 8148*m.b139*m.b163 - 162791*m.b140*m.b143 - 8148* m.b140*m.b164 - 162791*m.b141*m.b144 - 8148*m.b141*m.b165 - 3896*m.b142*m.b166 - 3896*m.b143* m.b167 - 3896*m.b144*m.b168 - 105352*m.b145*m.b148 + 45364*m.b145*m.b166 - 37043*m.b145*m.b169 - 105352*m.b146*m.b149 + 45364*m.b146*m.b167 - 37043*m.b146*m.b170 - 105352*m.b147*m.b150 + 45364* m.b147*m.b168 - 37043*m.b147*m.b171 + 211004*m.b148*m.b151 - 65416*m.b148*m.b172 + 211004*m.b149* m.b152 - 65416*m.b149*m.b173 + 211004*m.b150*m.b153 - 65416*m.b150*m.b174 - 12091*m.b151*m.b154 + 47044*m.b151*m.b175 - 12091*m.b152*m.b155 + 47044*m.b152*m.b176 - 12091*m.b153*m.b156 + 47044* m.b153*m.b177 - 64916*m.b154*m.b157 - 158531*m.b154*m.b178 - 64916*m.b155*m.b158 - 158531*m.b155* m.b179 - 64916*m.b156*m.b159 - 158531*m.b156*m.b180 - 19908*m.b157*m.b160 + 66609*m.b157*m.b181 - 19908*m.b158*m.b161 + 66609*m.b158*m.b182 - 19908*m.b159*m.b162 + 66609*m.b159*m.b183 - 22331* m.b160*m.b163 - 32557*m.b160*m.b184 - 22331*m.b161*m.b164 - 32557*m.b161*m.b185 - 22331*m.b162* m.b165 - 32557*m.b162*m.b186 - 218808*m.b163*m.b166 - 85264*m.b163*m.b187 - 218808*m.b164*m.b167 - 85264*m.b164*m.b188 - 218808*m.b165*m.b168 - 85264*m.b165*m.b189 - 75908*m.b166*m.b190 - 75908 *m.b167*m.b191 - 75908*m.b168*m.b192 - 75258*m.b169*m.b172 + 15236*m.b169*m.b190 - 75258*m.b170* m.b173 + 15236*m.b170*m.b191 - 75258*m.b171*m.b174 + 15236*m.b171*m.b192 - 72030*m.b172*m.b175 - 72030*m.b173*m.b176 - 72030*m.b174*m.b177 - 3058*m.b175*m.b178 - 3058*m.b176*m.b179 - 3058*m.b177 *m.b180 + 33988*m.b178*m.b181 + 33988*m.b179*m.b182 + 33988*m.b180*m.b183 + 116509*m.b181*m.b184 + 116509*m.b182*m.b185 + 116509*m.b183*m.b186 + 59421*m.b184*m.b187 + 59421*m.b185*m.b188 + 59421*m.b186*m.b189 - 277077*m.b187*m.b190 - 277077*m.b188*m.b191 - 277077*m.b189*m.b192 , sense=minimize) m.c1 = Constraint(expr= m.b1 + m.b2 + m.b3 == 1) m.c2 = Constraint(expr= m.b4 + m.b5 + m.b6 == 1) m.c3 = Constraint(expr= m.b7 + m.b8 + m.b9 == 1) m.c4 = Constraint(expr= m.b10 + m.b11 + m.b12 == 1) m.c5 = Constraint(expr= m.b13 + m.b14 + m.b15 == 1) m.c6 = Constraint(expr= m.b16 + m.b17 + m.b18 == 1) m.c7 = Constraint(expr= m.b19 + m.b20 + m.b21 == 1) m.c8 = Constraint(expr= m.b22 + m.b23 + m.b24 == 1) m.c9 = Constraint(expr= m.b25 + m.b26 + m.b27 == 1) m.c10 = Constraint(expr= m.b28 + m.b29 + m.b30 == 1) m.c11 = Constraint(expr= m.b31 + m.b32 + m.b33 == 1) m.c12 = Constraint(expr= m.b34 + m.b35 + m.b36 == 1) m.c13 = Constraint(expr= m.b37 + m.b38 + m.b39 == 1) m.c14 = Constraint(expr= m.b40 + m.b41 + m.b42 == 1) m.c15 = Constraint(expr= m.b43 + m.b44 + m.b45 == 1) m.c16 = Constraint(expr= m.b46 + m.b47 + m.b48 == 1) m.c17 = Constraint(expr= m.b49 + m.b50 + m.b51 == 1) m.c18 = Constraint(expr= m.b52 + m.b53 + m.b54 == 1) m.c19 = Constraint(expr= m.b55 + m.b56 + m.b57 == 1) m.c20 = Constraint(expr= m.b58 + m.b59 + m.b60 == 1) m.c21 = Constraint(expr= m.b61 + m.b62 + m.b63 == 1) m.c22 = Constraint(expr= m.b64 + m.b65 + m.b66 == 1) m.c23 = Constraint(expr= m.b67 + m.b68 + m.b69 == 1) m.c24 = Constraint(expr= m.b70 + m.b71 + m.b72 == 1) m.c25 = Constraint(expr= m.b73 + m.b74 + m.b75 == 1) m.c26 = Constraint(expr= m.b76 + m.b77 + m.b78 == 1) m.c27 = Constraint(expr= m.b79 + m.b80 + m.b81 == 1) m.c28 = Constraint(expr= m.b82 + m.b83 + m.b84 == 1) m.c29 = Constraint(expr= m.b85 + m.b86 + m.b87 == 1) m.c30 = Constraint(expr= m.b88 + m.b89 + m.b90 == 1) m.c31 = Constraint(expr= m.b91 + m.b92 + m.b93 == 1) m.c32 = Constraint(expr= m.b94 + m.b95 + m.b96 == 1) m.c33 = Constraint(expr= m.b97 + m.b98 + m.b99 == 1) m.c34 = Constraint(expr= m.b100 + m.b101 + m.b102 == 1) m.c35 = Constraint(expr= m.b103 + m.b104 + m.b105 == 1) m.c36 = Constraint(expr= m.b106 + m.b107 + m.b108 == 1) m.c37 = Constraint(expr= m.b109 + m.b110 + m.b111 == 1) m.c38 = Constraint(expr= m.b112 + m.b113 + m.b114 == 1) m.c39 = Constraint(expr= m.b115 + m.b116 + m.b117 == 1) m.c40 = Constraint(expr= m.b118 + m.b119 + m.b120 == 1) m.c41 = Constraint(expr= m.b121 + m.b122 + m.b123 == 1) m.c42 = Constraint(expr= m.b124 + m.b125 + m.b126 == 1) m.c43 = Constraint(expr= m.b127 + m.b128 + m.b129 == 1) m.c44 = Constraint(expr= m.b130 + m.b131 + m.b132 == 1) m.c45 = Constraint(expr= m.b133 + m.b134 + m.b135 == 1) m.c46 = Constraint(expr= m.b136 + m.b137 + m.b138 == 1) m.c47 = Constraint(expr= m.b139 + m.b140 + m.b141 == 1) m.c48 = Constraint(expr= m.b142 + m.b143 + m.b144 == 1) m.c49 = Constraint(expr= m.b145 + m.b146 + m.b147 == 1) m.c50 = Constraint(expr= m.b148 + m.b149 + m.b150 == 1) m.c51 = Constraint(expr= m.b151 + m.b152 + m.b153 == 1) m.c52 = Constraint(expr= m.b154 + m.b155 + m.b156 == 1) m.c53 = Constraint(expr= m.b157 + m.b158 + m.b159 == 1) m.c54 = Constraint(expr= m.b160 + m.b161 + m.b162 == 1) m.c55 = Constraint(expr= m.b163 + m.b164 + m.b165 == 1) m.c56 = Constraint(expr= m.b166 + m.b167 + m.b168 == 1) m.c57 = Constraint(expr= m.b169 + m.b170 + m.b171 == 1) m.c58 = Constraint(expr= m.b172 + m.b173 + m.b174 == 1) m.c59 = Constraint(expr= m.b175 + m.b176 + m.b177 == 1) m.c60 = Constraint(expr= m.b178 + m.b179 + m.b180 == 1) m.c61 = Constraint(expr= m.b181 + m.b182 + m.b183 == 1) m.c62 = Constraint(expr= m.b184 + m.b185 + m.b186 == 1) m.c63 = Constraint(expr= m.b187 + m.b188 + m.b189 == 1) m.c64 = Constraint(expr= m.b190 + m.b191 + m.b192 == 1)
1.632813
2
tests/conftest.py
verotel/pyzeebe
0
12793775
from random import randint from threading import Event from unittest.mock import patch, MagicMock from uuid import uuid4 import pytest from pyzeebe import ZeebeClient, ZeebeWorker, ZeebeTaskRouter, Job from pyzeebe.grpc_internals.zeebe_adapter import ZeebeAdapter from pyzeebe.task.task import Task from pyzeebe.worker.task_handler import ZeebeTaskHandler from tests.unit.utils.gateway_mock import GatewayMock from tests.unit.utils.random_utils import random_job @pytest.fixture def job_with_adapter(zeebe_adapter): return random_job(zeebe_adapter=zeebe_adapter) @pytest.fixture def job_without_adapter(): return random_job() @pytest.fixture def job_from_task(task): job = random_job(task) job.variables = dict(x=str(uuid4())) return job @pytest.fixture def zeebe_adapter(grpc_create_channel): return ZeebeAdapter(channel=grpc_create_channel()) @pytest.fixture def zeebe_client(grpc_create_channel): return ZeebeClient(channel=grpc_create_channel()) @pytest.fixture def zeebe_worker(zeebe_adapter): worker = ZeebeWorker() worker.zeebe_adapter = zeebe_adapter return worker @pytest.fixture def task(task_type): return Task(task_type, MagicMock(wraps=lambda x: dict(x=x)), MagicMock(wraps=lambda x, y, z: x)) @pytest.fixture def task_type(): return str(uuid4()) @pytest.fixture def stop_after_test(): stop_test = Event() yield stop_test stop_test.set() @pytest.fixture def handle_task_mock(): with patch("pyzeebe.worker.worker.ZeebeWorker._handle_task") as mock: yield mock @pytest.fixture def stop_event_mock(zeebe_worker): with patch.object(zeebe_worker, "stop_event") as mock: yield mock @pytest.fixture def handle_not_alive_thread_spy(mocker): spy = mocker.spy(ZeebeWorker, "_handle_not_alive_thread") yield spy @pytest.fixture def router(): return ZeebeTaskRouter() @pytest.fixture def routers(): return [ZeebeTaskRouter() for _ in range(0, randint(2, 100))] @pytest.fixture def task_handler(): return ZeebeTaskHandler() @pytest.fixture def decorator(): def simple_decorator(job: Job) -> Job: return job return MagicMock(wraps=simple_decorator) @pytest.fixture(scope="module") def grpc_add_to_server(): from zeebe_grpc.gateway_pb2_grpc import add_GatewayServicer_to_server return add_GatewayServicer_to_server @pytest.fixture(scope="module") def grpc_servicer(): return GatewayMock() @pytest.fixture(scope="module") def grpc_stub_cls(grpc_channel): from zeebe_grpc.gateway_pb2_grpc import GatewayStub return GatewayStub
1.921875
2
NLP/Word - Embeddings in Tensorflow.py
sunnyshah2894/Tensorflow
1
12793776
import tensorflow as tf import numpy as np # training set. Contains a row of size 5 per train example. The row is same as a sentence, with words replaced # by its equivalent unique index. The below dataset contains 6 unique words numbered 0-5. Ideally the word vector for # 4 and 5 indexed words should be same. X_train = np.array([[0,1,4,2,3],[0,1,5,2,3]]) # output dummy for testing purpose y_train = np.array([0,1]) # Create the embeddings with tf.name_scope("embeddings"): # Initiliaze the embedding vector by randomly distributing the weights. embedding = tf.Variable(tf.random_uniform((6, 3), -1, 1)) # create the embedding layer embed = tf.nn.embedding_lookup(embedding, X_train) # So that we can apply a convolution 2d operations on top the expanded single channel embedded vectors embedded_chars_expanded = tf.expand_dims(embed, -1) with tf.Session() as sess: sess.run(tf.global_variables_initializer()); result,result_expanded = sess.run([embed,embedded_chars_expanded]); print(result_expanded.shape) print(result) print(result_expanded) # OUTPUT # result # [[[ 0.89598155 0.4275496 0.00858593] # [ 0.21602225 -0.44228792 -0.20533657] # [ 0.9624436 -0.99176955 0.15964746] # [-0.29004955 0.470721 0.00804782] # [ 0.7497003 0.6044979 -0.5612638 ]] # # [[ 0.89598155 0.4275496 0.00858593] # [ 0.21602225 -0.44228792 -0.20533657] # [-0.48809385 -0.55618596 -0.73995876] # [-0.29004955 0.470721 0.00804782] # [ 0.7497003 0.6044979 -0.5612638 ]]] # result_expanded - has a dimension of (2,5,3,1) # [[[[-0.45975637] # [-0.5756638 ] # [ 0.7002065 ]] # # [[ 0.2708087 ] # [ 0.7985747 ] # [ 0.57897186]] # # [[ 0.6642673 ] # [ 0.6548476 ] # [ 0.00760126]] # # [[-0.7074845 ] # [ 0.5100081 ] # [ 0.7232883 ]] # # [[ 0.19342017] # [-0.46509933] # [ 0.8361807 ]]] # # # [[[-0.45975637] # [-0.5756638 ] # [ 0.7002065 ]] # # [[ 0.2708087 ] # [ 0.7985747 ] # [ 0.57897186]] # # [[-0.90803576] # [ 0.75451994] # [ 0.8864901 ]] # # [[-0.7074845 ] # [ 0.5100081 ] # [ 0.7232883 ]] # # [[ 0.19342017] # [-0.46509933] # [ 0.8361807 ]]]]
3.53125
4
functions.py
krishnaaxo/Stock
0
12793777
import matplotlib.pyplot as plt import yfinance as yf #To access the financial data available on Yahoo Finance import numpy as np def get_stock_data(tickerSymbol, start_date, end_date): tickerData = yf.Ticker(tickerSymbol) df_ticker = tickerData.history(period='1d', start=start_date, end=end_date) return df_ticker def prepare_data(s): ymax = 1000 s = s * ymax / s.max() # scale y range s = 1450 -s # The image top left is (0,0), so the horizon line is around -1450, so our plot should be above that # smoothen the fig window_size = len(s) // 150 s = s.rolling(window_size, min_periods=1).mean() return s def make_picture(stock_prices, img, x_width_image, horizon_height): """x_width_image: dedicated arg for more control, instead of taking image dim""" fig, ax = plt.subplots() ax.imshow(img) x = np.linspace(0, x_width_image, len(stock_prices)) ax.fill_between(x, stock_prices, horizon_height, color='#081A1C') plt.axis('off') plt.tight_layout() return fig
3.4375
3
Ubiquitous Computing/src/raspberry/RestSender.py
Alvarohf/University-work
0
12793778
<reponame>Alvarohf/University-work import requests import datetime import json from enum import Enum class Recivers (Enum): FLEX = 'flex' WEIGHT = 'weight' TEMPERATURE = 'temperature' HUMIDITY = 'humidity' NOISE = 'noise' LIGHT = 'light' POSITION = 'position' USER = 'user' class RestSender: def __init__(self, url= 'http://192.168.127.12:8080/'): self.url = url def send(self, content, to): return requests.post(self.url + to, content) def add_user (self, user_name): user = {} user['userId'] = user_name user['name'] = user_name user['age'] = 0 user['mail'] = <EMAIL>_name+'@'+user_<EMAIL>+'.com' user['passw'] = <PASSWORD> user['created'] = datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') return self.send(user, Recivers.USER.value)
2.9375
3
Drawing-On-Images/accessingPixelValues.py
TUCchkul/OpenCV-ImageProcessing-and-Numpy
0
12793779
import cv2 image=cv2.imread(r'md.jpg',flags=1) print(image[0:100,0:100]) #Changes pixel value in the original images #image[0:100,0:100]=255#fully white image[0:100,0:100]=[165,42,42]#RGB format cv2.imshow('New Image',image) cv2.waitKey(0) cv2.destroyAllWindows()
3.21875
3
notes/algo-ds-practice/problems/array/rabin_karp.py
Anmol-Singh-Jaggi/interview-notes
6
12793780
# Verified on https://leetcode.com/problems/implement-strstr import string from functools import lru_cache @lru_cache(maxsize=None) def get_char_code(ch, char_set=string.ascii_letters + string.digits): # We could have also used: # return ord(ch) - ord('0') return char_set.index(ch) def rabin_karp(haystack, needle): # CAREFUL: Beware of these corner cases! if needle == "": return 0 if len(needle) == 0 or len(needle) > len(haystack): return -1 HASH_MOD = 1000000007 # We can use any number as base, but its better to # take the alphabet size to minimize collisions BASE = 26 needle_hash = 0 haystack_hash = 0 for i in range(needle): needle_char = get_char_code(needle[i]) haystack_char = get_char_code(haystack[i]) needle_hash = (BASE * needle_hash + needle_char) % HASH_MOD haystack_hash = (BASE * haystack_hash + haystack_char) % HASH_MOD if haystack_hash == needle_hash and needle == haystack[0 : len(needle)]: return 0 # Now compute hashes on a rolling basis base_power_up = pow(BASE, (len(needle) - 1), HASH_MOD) for i in range(len(needle), len(haystack)): haystack_start_pos = i + 1 - len(needle) haystack_end_pos = i + 1 old_char = get_char_code(haystack[haystack_start_pos - 1]) ch = get_char_code(haystack[i]) haystack_hash = ( (haystack_hash - base_power_up * old_char) * BASE + ch ) % HASH_MOD if ( haystack_hash == needle_hash and needle == haystack[haystack_start_pos:haystack_end_pos] ): return haystack_start_pos return -1 def main(): haystack = "abcs" needle = "" print(rabin_karp(haystack, needle)) if __name__ == "__main__": main()
3.484375
3
black_list/black_list/spiders/BL_ICEFugitivesList.py
Damon-zln/ws-scrapy
0
12793781
from bs4 import BeautifulSoup from black_list.items import BLICEFugitivesListItem from scrapy import Spider, Request import os class BlIcefugitiveslistSpider(Spider): name = 'BL_ICEFugitivesList' allowed_domains = ['www.ice.gov'] start_urls = ['https://www.ice.gov/most-wanted'] header = 'Name|Status|Offense|AKA|Sex|DOB|POB|Complexion|Reward|Height|Weight|Eyes|Haia|Case Number|Scars|Address|Synopsis|Warning' def parse(self, response): with open(os.path.abspath('results/BL_ICEFugitivesList.txt'), 'a', encoding='utf-8') as f: f.write(self.header + '\n') soup = BeautifulSoup(response.body, 'lxml') tables = soup.select('.field-item') tables.pop(0) for table in tables: links = table.find_all(text='READ MORE') for link in links: yield Request(url='https://www.ice.gov%s' % (link.parent['href']), callback=self.get_info) def get_info(self, response): soup = BeautifulSoup(response.body, 'lxml') item = BLICEFugitivesListItem() item['name'] = '' item['offense'] = '' item['aka'] = '' item['sex'] = '' item['dob'] = '' item['pob'] = '' item['complexion'] = '' item['reward'] = '' item['height'] = '' item['weight'] = '' item['eyes'] = '' item['haia'] = '' item['scars'] = '' item['address'] = '' item['synopsis'] = '' item['warning'] = '' if soup.find(text='Name') is not None: item['name'] = soup.find(text='Name').parent.next_sibling.next_sibling.text if soup.select('div.wanted-for') is not None: item['offense'] = soup.select('div.wanted-for')[0].text if soup.find(text='Alias') is not None: item['aka'] = soup.find(text='Alias').parent.next_sibling.next_sibling.text if soup.find(text='Gender') is not None: item['sex'] = soup.find(text='Gender').parent.next_sibling.next_sibling.text if soup.find(text='Date of Birth') is not None: item['dob'] = soup.find(text='Date of Birth').parent.next_sibling.next_sibling.text if soup.find(text='Place of Birth') is not None: item['pob'] = soup.find(text='Place of Birth').parent.next_sibling.next_sibling.text if soup.find(text='Skin Tone') is not None: item['complexion'] = soup.find(text='Skin Tone').parent.next_sibling.next_sibling.text if soup.find(text='Reward') is not None: item['reward'] = soup.find(text='Reward').parent.next_sibling.next_sibling.text if soup.find(text='Height') is not None: item['height'] = soup.find(text='Height').parent.next_sibling.next_sibling.text if soup.find(text='Weight') is not None: item['weight'] = soup.find(text='Weight').parent.next_sibling.next_sibling.text if soup.find(text='Eyes') is not None: item['eyes'] = soup.find(text='Eyes').parent.next_sibling.next_sibling.text if soup.find(text='Hair') is not None: item['haia'] = soup.find(text='Hair').parent.next_sibling.next_sibling.text if soup.find(text='Scars/Marks') is not None: item['scars'] = soup.find(text='Scars/Marks').parent.next_sibling.next_sibling.text if soup.find(text='Last Known Location') is not None: item['address'] = soup.find(text='Last Known Location').parent.next_sibling.next_sibling.text values = soup.select('div[class="field-label"]') if values: for i in values: if "Summary:" in i.text: item['synopsis'] = i.next_sibling.text if "Warning:" in i.text: item['warning'] = i.next_sibling.text yield item
3.015625
3
src/exception-handling/custom_exception.py
mrdulin/python-codelab
0
12793782
class UserDefinedException(Exception): def __init__(self, eid, message): self.eid = eid self.message = message class ExceptionDemo: def draw(self, number): print('called compute(%s)' % str(number)) if number > 500 or number <= 0: raise UserDefinedException(101, 'number out of bound') else: print('normal exit') demo = ExceptionDemo() try: demo.draw(125) demo.draw(900) except UserDefinedException as e: print('Exception caught: id: {}, message: {}'.format(e.eid, e.message))
3.296875
3
xotl/ql/core.py
merchise/xotl.ql
1
12793783
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Copyright (c) <NAME> [~º/~] and Contributors # All rights reserved. # # This is free software; you can do what the LICENCE file allows you to. # '''The query language core. ''' import ast import types from xoutil.symbols import Unset from xoutil.objects import memoized_property from collections import MappingView, Mapping from xoutil.decorator.meta import decorator from xotl.ql import interfaces class Universe: '''The class of the `this`:obj: object. The `this` object is simply a name from which objects can be drawn in a query. ''' def __new__(cls): res = getattr(cls, 'instance', None) if not res: res = super().__new__(cls) cls.instance = res return res def __getitem__(self, key): return self def __getattr__(self, name): return self def __iter__(self): return self def next(self): raise StopIteration __next__ = next this = Universe() RESERVED_ARGUMENTS = ( 'limit', 'offset', 'groups', 'order', 'get_value', 'qst', '_frame' ) class QueryObject: frame_type = 'xotl.ql.core.Frame' def __init__(self, qst, _frame, **kwargs): self.qst = qst self._frame = _frame if any(name in RESERVED_ARGUMENTS for name in kwargs): raise TypeError('Invalid keyword argument') self.expression = kwargs.pop('expression', None) for attr, val in kwargs.items(): setattr(self, attr, val) def get_value(self, name, only_globals=False): if not only_globals: res = self._frame.f_locals.get(name, Unset) else: res = Unset if res is Unset: res = self._frame.f_globals.get(name, Unset) if res is not Unset: return res else: raise NameError(name) @memoized_property def locals(self): return self._frame.f_locals @memoized_property def globals(self): return self._frame.f_globals @memoized_property def source(self): builder = SourceBuilder() return builder.get_source(self.qst) def get_query_object(generator, query_type='xotl.ql.core.QueryObject', frame_type=None, **kwargs): '''Get the query object from a query expression. ''' from xoutil.objects import import_object from xotl.ql.revenge import Uncompyled uncompiled = Uncompyled(generator) gi_frame = generator.gi_frame QueryObjectType = import_object(query_type) FrameType = import_object(frame_type or QueryObjectType.frame_type) return QueryObjectType( uncompiled.qst, FrameType(gi_frame.f_locals, gi_frame.f_globals), expression=generator, **kwargs ) # Alias to the old API. these = get_query_object def get_predicate_object(func, predicate_type='xotl.ql.core.QueryObject', frame_type=None, **kwargs): '''Get a predicate object from a predicate expression. ''' from xoutil.objects import import_object from .revenge import Uncompyled uncompiled = Uncompyled(func) PredicateClass = import_object(predicate_type) FrameClass = import_object(frame_type or PredicateClass.frame_type) return PredicateClass( uncompiled.qst, FrameClass(_get_closure(func), func.__globals__), predicate=func, **kwargs ) def normalize_query(which, **kwargs): '''Ensure a query object. If `which` is a query expression (more precisely a generator object) it is passed to `get_query_object`:func: along with all keyword arguments. If `which` is not a query expression it must be a `query object`:term:, other types are a TypeError. ''' from types import GeneratorType if isinstance(which, GeneratorType): return get_query_object(which, **kwargs) else: if not isinstance(which, interfaces.QueryObject): raise TypeError('Query object expected, but object provided ' 'is not: %r' % type(which)) return which @decorator def thesefy(target, make_subquery=True): '''Allow an object to participate in queries. Example as a wrapper:: class People: # ... pass query = (who for who in thesefy(People)) Example as a decorator:: @thesefy class People: pass query = (who for who in People) If `target` already support the iterable protocol (i.e implement ``__iter__``), return it unchanged. If `make_subquery` is True, then the query shown above will be equivalent to:: query = (who for who in (x for x in this if isinstance(x, People))) If `make_subquery` is False, `thesefy` injects an ``__iter__()`` that simply returns the same object and a ``next()`` method that immediately stops the iteration. Notice that in order to use `make_subquery` you call `thesefy`:func: as a decorator-returning function:: class Person: pass query = (x for x in thesefy(make_subquery=False)(Person)) # or simply as a decorator @thesefy(make_subquery=False) class Person: pass ''' if getattr(target, '__iter__', None): return target class new_meta(type(target)): if make_subquery: def __iter__(self): return (x for x in this if isinstance(x, self)) else: def __iter__(self): return self def next(self): raise StopIteration __next__ = next from xoutil.objects import copy_class new_class = copy_class(target, meta=new_meta) return new_class class Frame: def __init__(self, locals, globals, **kwargs): self.auto_expand_subqueries = kwargs.pop('auto_expand_subqueries', True) self.f_locals = _FrameView(locals) self.f_globals = _FrameView(globals) self.f_locals.owner = self.f_globals.owner = self class _FrameView(MappingView, Mapping): def __contains__(self, key): try: self[key] except KeyError: return False else: return True def __getitem__(self, key): res = self._mapping[key] if self.owner.auto_expand_subqueries and key == '.0': return sub_query_or_value(res) else: return res def get(self, key, default=None): res = self._mapping.get(key, default) if self.owner.auto_expand_subqueries and key == '.0': return sub_query_or_value(res) else: return res def __iter__(self): return iter(self._mapping) def _get_closure(obj): assert isinstance(obj, types.FunctionType) if obj.__closure__: return { name: cell.cell_contents for name, cell in zip(obj.__code__.co_freevars, obj.__closure__) } else: return {} def sub_query_or_value(v): if isinstance(v, types.GeneratorType) and v.gi_code.co_name == '<genexpr>': return get_query_object(v) else: return v class SourceBuilder(ast.NodeVisitor): def get_source(self, node): stack = self.stack = [] self.visit(node) assert len(stack) == 1, 'Remaining items %r at %r' % (stack, node) return stack.pop() def visit_And(self, node): self.stack.append(' and ') def visit_Or(self, node): self.stack.append(' or ') def visit_Name(self, node): self.stack.append(node.id) def visit_BoolOp(self, node): self.visit(node.op) for val in node.values: self.visit(val) exprs = [] for _ in range(len(node.values)): exprs.insert(0, self.stack.pop(-1)) op = self.stack.pop(-1) self.stack.append('(%s)' % op.join(exprs)) def visit_BinOp(self, node): stack = self.stack self.visit(node.op) self.visit(node.right) self.visit(node.left) left = stack.pop(-1) right = stack.pop(-1) op = stack.pop(-1) stack.append('(%s%s%s)' % (left, op, right)) def visit_Add(self, node): self.stack.append(' + ') def visit_Sub(self, node): self.stack.append(' - ') def visit_Mult(self, node): self.stack.append(' * ') def visit_Div(self, node): self.stack.append(' / ') def visit_Mod(self, node): self.stack.append(' % ') def visit_Pow(self, node): self.stack.append(' ** ') def visit_LShift(self, node): self.stack.append(' << ') def visit_RShift(self, node): self.stack.append(' >> ') def visit_BitOr(self, node): self.stack.append(' | ') def visit_BitAnd(self, node): self.stack.append(' & ') def visit_BitXor(self, node): self.stack.append(' ^ ') def visit_FloorDiv(self, node): self.stack.append(' // ') def visit_Num(self, node): self.stack.append('%s' % node.n) def visit_UnaryOp(self, node): stack = self.stack self.visit(node.op) self.visit(node.operand) operand = stack.pop(-1) op = stack.pop(-1) stack.append('(%s%s)' % (op, operand)) def visit_Invert(self, node): self.stack.append('~') def visit_Not(self, node): self.stack.append('not ') def visit_UAdd(self, node): self.stack.append('+') def visit_USub(self, node): self.stack.append('-') def visit_IfExp(self, node): self.visit(node.orelse) self.visit(node.test) self.visit(node.body) body = self.stack.pop(-1) test = self.stack.pop(-1) orelse = self.stack.pop(-1) self.stack.append('(%s if %s else %s)' % (body, test, orelse)) def visit_Lambda(self, node): raise NotImplementedError() def visit_Dict(self, node): # order does not really matter but I'm picky for k, v in reversed(zip(node.keys, node.values)): self.visit(v) self.visit(k) dictbody = ', '.join( '%s: %s' % (self.stack.pop(-1), self.stack.pop(-1)) for _ in range(len(node.keys)) ) self.stack.append('{%s}' % dictbody) def visit_Set(self, node): for elt in reversed(node.elts): self.visit(elt) setbody = ', '.join(self.stack.pop(-1) for _ in range(len(node.elts))) self.stack.append('{%s}' % setbody) def visit_ListComp(self, node): self._visit_comp(node) self.stack.append('[%s]' % self.stack.pop(-1)) def visit_SetComp(self, node): self._visit_comp(node) self.stack.append('{%s}' % self.stack.pop(-1)) def visit_DictComp(self, node): self.visit(node.value) self.visit(node.key) pop = lambda: self.stack.pop(-1) lines = ['%s: %s' % (pop(), pop())] self._visit_generators(node) lines.append(pop()) self.stack.append('{%s}' % ' '.join(lines)) def visit_GeneratorExp(self, node): self._visit_comp(node) self.stack.append('(%s)' % self.stack.pop(-1)) def _visit_comp(self, node): self.visit(node.elt) pop = lambda: self.stack.pop(-1) lines = [pop()] self._visit_generators(node) lines.append(pop()) self.stack.append(' '.join(lines)) def _visit_generators(self, node): for comp in reversed(node.generators): for if_ in reversed(comp.ifs): self.visit(if_) self.stack.append(len(comp.ifs)) # save the length of ifs [*] self.visit(comp.iter) self.visit(comp.target) pop = lambda: self.stack.pop(-1) lines = [] for _ in range(len(node.generators)): lines.append('for %s in %s' % (pop(), pop())) for if_ in range(pop()): # [*] pop the length of ifs lines.append('if %s' % pop()) self.stack.append(' '.join(lines)) def visit_Yield(self, node): raise TypeError('Invalid node Yield') def visit_Eq(self, node): self.stack.append(' == ') def visit_NotEq(self, node): self.stack.append(' != ') def visit_Lt(self, node): self.stack.append(' < ') def visit_LtE(self, node): self.stack.append(' <= ') def visit_Gt(self, node): self.stack.append(' > ') def visit_GtE(self, node): self.stack.append(' >= ') def visit_Is(self, node): self.stack.append(' is ') def visit_IsNot(self, node): self.stack.append(' is not ') def visit_In(self, node): self.stack.append(' in ') def visit_NotIn(self, node): self.stack.append(' not in ') def visit_Compare(self, node): self.visit(node.left) for op, expr in reversed(zip(node.ops, node.comparators)): self.visit(expr) self.visit(op) right = ''.join( # I assume each operator has spaces around it '%s%s' % (self.stack.pop(-1), self.stack.pop(-1)) for _ in range(len(node.ops)) ) self.stack.append('%s%s' % (self.stack.pop(-1), right)) def visit_Call(self, node): if node.kwargs: self.visit(node.kwargs) if node.starargs: self.visit(node.starargs) for kw in reversed(node.keywords): self.visit(kw.value) self.stack.append(kw.arg) for arg in reversed(node.args): self.visit(arg) self.visit(node.func) func = self.stack.pop(-1) args = [self.stack.pop(-1) for _ in range(len(node.args))] keywords = [ (self.stack.pop(-1), self.stack.pop(-1)) for _ in range(len(node.keywords)) ] starargs = self.stack.pop(-1) if node.starargs else '' kwargs = self.stack.pop(-1) if node.kwargs else '' call = ', '.join(args) if keywords: if call: call += ', ' call += ', '.join('%s=%s' % (k, v) for k, v in keywords) if starargs: if call: call += ', ' call += '*%s' % starargs if kwargs: if call: call += ', ' call += '**%s' % kwargs self.stack.append('%s(%s)' % (func, call)) def visit_Str(self, node): self.stack.append('%r' % node.s) visit_Bytes = visit_Str def visit_Repr(self, node): raise NotImplementedError def visit_Attribute(self, node): self.visit(node.value) self.stack.append('%s.%s' % (self.stack.pop(-1), node.attr)) def visit_Subscript(self, node): self.visit(node.slice) self.visit(node.value) self.stack.append('%s[%s]' % (self.stack.pop(-1), self.stack.pop(-1))) def visit_Ellipsis(self, node): self.stack.append('...') def visit_Slice(self, node): if node.step: self.visit(node.step) step = self.stack.pop(-1) else: step = None if node.upper: self.visit(node.upper) upper = self.stack.pop(-1) else: upper = None if node.lower: self.visit(node.lower) lower = self.stack.pop(-1) else: lower = None if lower: res = '%s:' % lower else: res = ':' if upper: res += '%s' % upper if step: res += ':%s' % step self.stack.append(res) def visit_List(self, node): for elt in reversed(node.elts): self.visit(elt) self.stack.append( '[%s]' % ', '.join( self.stack.pop(-1) for _ in range(len(node.elts)) ) ) def visit_Tuple(self, node): for elt in reversed(node.elts): self.visit(elt) result = ( '(%s' % ', '.join( self.stack.pop(-1) for _ in range(len(node.elts)) ) ) if len(node.elts) == 1: result += ', )' else: result += ')' self.stack.append(result) del decorator
2.21875
2
src/CIA_InternationalOrgnizationsAndGroups.py
Larz60p/WorldFactBook
1
12793784
# copyright (c) 2018 Larz60+ import ScraperPaths import GetPage import CIA_ScanTools from lxml import html from lxml.cssselect import CSSSelector from lxml import etree from lxml.etree import XPath import re import os import sys class CIA_InternationalOrgnizationsAndGroups: def __init__(self): self.spath = ScraperPaths.ScraperPaths() self.gp = GetPage.GetPage() self.getpage = self.gp.get_page self.get_filename = self.gp.get_filename self.cst = CIA_ScanTools.CIA_Scan_Tools() self.fact_links = self.cst.fact_links self.mainurl = 'https://www.cia.gov/library/publications/resources/the-world-factbook/appendix/appendix-b.html' self.filename = self.get_filename(self.mainurl) self.mainpage = self.getpage(self.mainurl, self.filename) self.scrape_text() self.cst.save_fact_links() def remove_fluff(self, item): if '\r\n' in item or '\n' in item: nitem = '' parts = item.split('\n') for part in parts: nitem = f'{nitem.strip()} {part.strip()}' return nitem else: return item def scrape_text(self): tree = html.fromstring(self.mainpage) # html.open_in_browser(tree) c1 = self.fact_links['InternationalOrginizationsAndGroups'] = {} childno = 1 while True: xx = tree.cssselect(f'#GetAppendix_B > li:nth-child({childno}) > span:nth-child(1)') # print(xx[0].text) if len(xx) == 0: break title = self.remove_fluff(xx[0].text.strip()) # print(f'Title: {title}') c2 = c1[title] = {} # yy = tree.cssselect(f'li.ln-a:nth-child({childno}) > div:nth-child(2) > table:nth-child(1) > tbody:nth-child(1) > tr:nth-child(1) > td:nth-child(1)') yy = tree.cssselect(f'#GetAppendix_B > li:nth-child({childno}) > div:nth-child(2) > table:nth-child(1) > tbody:nth-child(1) > tr:nth-child(1) > td:nth-child(1)') if len(yy[0]) > 1: # print(f'\n...length yy: {len(yy[0])}') c3 = c2['Description'] = [] # print(f'{html.tostring(yy[0])}') for n, element in enumerate(yy[0]): if n % 2 == 0: desc = self.cst.fluffinutter(html.tostring(element).decode('utf-8')) c3.append(desc) else: c3 = c2['Description'] = [] description = self.remove_fluff(yy[0].text.strip()) c3.append(description) # print(f'Description: {description}') childno += 1 if __name__ == '__main__': CIA_InternationalOrgnizationsAndGroups()
2.65625
3
Char6 AlphaGo/test_qd.py
rh01/Deep-reinforcement-learning-with-pytorch
1
12793785
<gh_stars>1-10 # coding:utf-8 import sys sys.path.append('../../pythonModules') import wg4script, AI_QD, wgdensestranet if __name__ == '__main__': num_xd, strategy_id_r, strategy_id_b = 0, 0, 0 num_plays, num_objcutility = 50, 1 dic2_rolloutaiparas = { 'red': {'type_ai': AI_QD.AI_QD_BASE, 'type_stra': 'rule-base', 'type_stranet': wgdensestranet.StraDenseNet, }, 'blue': {'type_ai': AI_QD.AI_QD_STRA, 'type_stra': 'random', 'type_stranet': wgdensestranet.StraDenseNet, }, } dic_mainparas = {'str_wgrootdir':'../../', 'str_global_flag': 'QD', 'num_plays': num_plays, 'num_objcutility': num_objcutility, 'num_xd': num_xd, 'strategy_ids': (strategy_id_r, strategy_id_b), 'flag_show': True, 'flag_action_cache': False, 'flag_qd_rm': True, # flag_qd_rm保存数据库roomrd动作序列 'flag_cache': False, 'flag_gpu': False, 'flag_afm': True, # 两个AI都为BASE时,flag_afm=False; 否则为True 'flag_dllnum': 0, 'cuda_id': 0, 'flag_savestate': False, # flag_savestate: 保存MCTS生成的数据, 'dic2_aiparas': { 'flag_color4acai': 0, 'blue': {'type_ai': AI_QD.AI_QD_HA, 'type_stra': 'rule-base', # type of stratree of nodes, how to select next path, [rule-base, random, net] 'type_stranet': wgdensestranet.StraDenseNet, 'dic2_rolloutaiparas': dic2_rolloutaiparas, 'flag_candidateactions': 'rule-base' # [rule-base, stra] how to get candidate actions }, 'red': {'type_ai': AI_QD.AI_QD_BASE, 'type_stra': 'net', 'type_stranet': wgdensestranet.StraDenseNet, 'dic2_rolloutaiparas': dic2_rolloutaiparas, 'flag_candidateactions': 'stra' }, }, } wg4script.simulateframe(dic_mainparas= dic_mainparas)
1.351563
1
permutations/permutations.py
QQuinn03/LeetHub
0
12793786
<filename>permutations/permutations.py<gh_stars>0 class Solution: def permute(self, nums: List[int]) -> List[List[int]]: if not nums: return [[]] path=[] res=[] self.helper(nums,res,path) return res def helper(self,nums,res,path): if not nums: res.append(path) return res for i in range(len(nums)): cur = nums[i] left=nums[:i]+nums[i+1:] self.helper(left,res,path+[cur])
3.59375
4
tempest/lib/api_schema/response/compute/v2_48/servers.py
mail2nsrajesh/tempest
0
12793787
# Copyright 2017 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from tempest.lib.api_schema.response.compute.v2_1 import parameter_types from tempest.lib.api_schema.response.compute.v2_47 import servers as servers247 show_server_diagnostics = { 'status_code': [200], 'response_body': { 'type': 'object', 'properties': { 'state': { 'type': 'string', 'enum': [ 'pending', 'running', 'paused', 'shutdown', 'crashed', 'suspended'] }, 'driver': { 'type': 'string', 'enum': [ 'libvirt', 'xenapi', 'vmwareapi', 'ironic', 'hyperv'] }, 'hypervisor': {'type': ['string', 'null']}, 'hypervisor_os': {'type': ['string', 'null']}, 'uptime': {'type': ['integer', 'null']}, 'config_drive': {'type': 'boolean'}, 'num_cpus': {'type': 'integer'}, 'num_nics': {'type': 'integer'}, 'num_disks': {'type': 'integer'}, 'memory_details': { 'type': 'object', 'properties': { 'maximum': {'type': ['integer', 'null']}, 'used': {'type': ['integer', 'null']} }, 'additionalProperties': False, 'required': ['maximum', 'used'] }, 'cpu_details': { 'type': 'array', 'items': { 'type': 'object', 'properties': { 'id': {'type': ['integer', 'null']}, 'time': {'type': ['integer', 'null']}, 'utilisation': {'type': ['integer', 'null']} }, 'additionalProperties': False, 'required': ['id', 'time', 'utilisation'] } }, 'nic_details': { 'type': 'array', 'items': { 'type': 'object', 'properties': { 'mac_address': {'oneOf': [parameter_types.mac_address, {'type': 'null'}]}, 'rx_octets': {'type': ['integer', 'null']}, 'rx_errors': {'type': ['integer', 'null']}, 'rx_drop': {'type': ['integer', 'null']}, 'rx_packets': {'type': ['integer', 'null']}, 'rx_rate': {'type': ['integer', 'null']}, 'tx_octets': {'type': ['integer', 'null']}, 'tx_errors': {'type': ['integer', 'null']}, 'tx_drop': {'type': ['integer', 'null']}, 'tx_packets': {'type': ['integer', 'null']}, 'tx_rate': {'type': ['integer', 'null']} }, 'additionalProperties': False, 'required': ['mac_address', 'rx_octets', 'rx_errors', 'rx_drop', 'rx_packets', 'rx_rate', 'tx_octets', 'tx_errors', 'tx_drop', 'tx_packets', 'tx_rate'] } }, 'disk_details': { 'type': 'array', 'items': { 'type': 'object', 'properties': { 'read_bytes': {'type': ['integer', 'null']}, 'read_requests': {'type': ['integer', 'null']}, 'write_bytes': {'type': ['integer', 'null']}, 'write_requests': {'type': ['integer', 'null']}, 'errors_count': {'type': ['integer', 'null']} }, 'additionalProperties': False, 'required': ['read_bytes', 'read_requests', 'write_bytes', 'write_requests', 'errors_count'] } } }, 'additionalProperties': False, 'required': [ 'state', 'driver', 'hypervisor', 'hypervisor_os', 'uptime', 'config_drive', 'num_cpus', 'num_nics', 'num_disks', 'memory_details', 'cpu_details', 'nic_details', 'disk_details'], } } get_server = copy.deepcopy(servers247.get_server)
1.546875
2
recipes/Python/389203_Series_generator_using_multiple_generators_/recipe-389203.py
tdiprima/code
2,023
12793788
<gh_stars>1000+ # Simple series generator with # multiple generators & decorators. # Author : <NAME> def myfunc(**kwds): def func(f): cond = kwds['condition'] proc = kwds['process'] num = kwds['number'] x = 0 for item in f(): if cond and cond(item): if proc: item = proc(item) yield item x += 1 if x==num: break return func def series(condition=None, process=None, number=10): @myfunc(condition=condition,process=process,number=number) def wrapper(): x = 1 while 1: yield x x += 1 return wrapper
2.890625
3
oferty/migrations/0012_auto_20181203_1119.py
minikdo/estates
0
12793789
# Generated by Django 2.1.2 on 2018-12-03 10:19 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('oferty', '0011_ofertyest_kto_prowadzi'), ] operations = [ migrations.AlterField( model_name='ofertyest', name='kto_prowadzi', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='oferty.OfertyUsers'), ), ]
1.429688
1
Listas de Python/Lista 2/L02EX04.py
4RandomProgrammer/Python
0
12793790
<filename>Listas de Python/Lista 2/L02EX04.py #L02EX04 #inputs CircJose = int(input()) PosJose = int(input()) CircFlav = int(input()) PosFlav = int(input()) #var counterJose = 1 CounterFlav = 1 vivos = 0 PosVivo1 = 1 PosVivo2 = 1 while counterJose <= CircJose: PosVivo1 += 2 if PosVivo1 > counterJose: PosVivo1 = 1 counterJose += 1 if PosVivo1 == PosJose: vivos += 1 while CounterFlav <= CircFlav: PosVivo2 += 2 if PosVivo2 > CounterFlav: PosVivo2 = 1 CounterFlav += 1 if PosVivo2 == PosFlav: vivos += 1 print(vivos)
3.453125
3
finds/alfred.py
terence-lim/investment-data-science
2
12793791
<reponame>terence-lim/investment-data-science """Convenience class and methods to access ALFRED/FRED apis and FRED-MD/FRED-QD - FRED, ALFRED, revisions vintages - PCA, approximate factor model, EM algorithm Author: <NAME> License: MIT """ import os import sys import json import io import numpy as np import pandas as pd from pandas import DataFrame, Series from pandas.tseries.offsets import MonthEnd, YearEnd, QuarterEnd from datetime import datetime, date import requests from bs4 import BeautifulSoup from io import StringIO import pickle import zipfile import re import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from pandas.api import types import time from .edgar import requests_get from .busday import str2date, to_monthend import config # From https://research.stlouisfed.org/econ/mccracken/fred-databases/ _fred_md_url = 'https://files.stlouisfed.org/files/htdocs/fred-md/' def _print(*args, echo=config.ECHO, **kwargs): """helper to echo debugging messages""" if echo: print(*args, **kwargs) def _int2date(date): """helper method to convert int date to FRED api string format""" return ([_int2date(d) for d in date] if types.is_list_like(date) else "-".join(str(date)[a:b] for a, b in [[0,4], [4,6], [6,8]])) def _date2int(date): """helper method to convert FRED api string format to int date""" return ([_date2int(d) for d in date] if types.is_list_like(date) else int(re.sub('\D', '', str(date)[:10]))) def multpl(page): """Helper method to retrieve shiller series by parsing multpl.com web page""" url = f"https://www.multpl.com/{page}/table/by-month" soup = BeautifulSoup(requests.get(url).content, 'html.parser') tables = soup.findChildren('table') df = pd.read_html(tables[0].decode())[0] df.iloc[:,0] = str2date(df.iloc[:,0], '%b %d, %Y', '%Y%m%d') df['date'] = to_monthend(df.iloc[:, 0]) df = df.sort_values('Date').groupby('date').last().iloc[:,-1] if not types.is_numeric_dtype(df): df = df.map(lambda x: re.sub('[^\d\.\-]','',x)).astype(float) return df def fred_md(vintage=0, url=None, echo=config.ECHO): """Retrieve and parse current or vintage csv from McCracken FRED-MD site Parameters ---------- vintage : str or int, default 0 (for current.csv) file name relative to base url or zipfile archive, or int date YYYYMM url : str, default is None base name of url, local file path or zipfile archive Returns ------- df : DataFrame indexed by end-of-month date Notes ----- if vintage is int: then derive vintage csv file name from input date YYYYMM if url is None: then derive subfolder or zip archive name, from vintage Examples -------- md_df, mt = fredmd(csvfile='Historical FRED-MD Vintages Final/2013-12.csv', url=md_url + 'Historical_FRED-MD.zip') # pre-2015 md_df, mt = fredmd(csvfile='monthly/2015-05.csv', url=md_url + 'FRED_MD.zip') # post-2015 """ url_ = _fred_md_url if isinstance(vintage, int) and vintage: csvfile_ = f"{vintage // 100}-{vintage % 100:02d}.csv" if vintage < 201500: url_ = url_ + 'Historical_FRED-MD.zip' csvfile_ = 'Historical FRED-MD Vintages Final/' + csvfile_ else: csvfile_ = 'monthly/' + csvfile_ vintage = csvfile_ else: vintage = vintage or 'monthly/current.csv' _print(vintage, echo=echo) url = url or url_ if url.endswith('.zip'): if url.startswith('http'): url = io.BytesIO(requests.get(url).content) with zipfile.ZipFile(url).open(vintage) as f: df = pd.read_csv(f, header=0) else: df = pd.read_csv(os.path.join(url, vintage), header=0) df.columns = df.columns.str.rstrip('x') meta = dict() for _, row in df.iloc[:5].iterrows(): if '/' not in row[0]: # this row has metadata, e.g. transform codes label = re.sub("[^a-z]", '', row[0].lower()) # simplify label str meta[label] = row[1:].astype(int).to_dict() # as dict of int codes df = df[df.iloc[:, 0].str.find('/') > 0] # keep rows with valid date df.index = str2date(df.iloc[:, 0], '%m/%d/%Y', '%Y%m%d') df.index = to_monthend(df.index) return df.iloc[:, 1:], DataFrame(meta) def fred_qd(vintage=0, url=None, echo=False): """Retrieve and parse current or vintage csv from McCracken FRED-MD site Parameters ---------- vintage : str or int, default 0 (i.e. current.csv) file name relative to base url or zipfile archive, or int date YYYYMM url : str, default is None base name of url, local file path or zipfile archive Returns ------- df : DataFrame indexed by end-of-month date Notes ----- if csvfile is int: then derive vintage csv file name from input date YYYYMM if url is None: then derive subfolder name from vintage """ url = url or _fred_md_url if isinstance(vintage, int) and vintage: vintage = f"quarterly/{vintage // 100}-{vintage % 100:02d}.csv" else: vintage = 'quarterly/current.csv' _print(vintage, echo=echo) df = pd.read_csv(os.path.join(url, vintage), header=0) df.columns = df.columns.str.rstrip('x') meta = dict() for _, row in df.iloc[:5].iterrows(): if '/' not in row[0]: # this row has metadata, e.g. transform codes label = re.sub("[^a-z]", '', row[0].lower()) # simplify label str meta[label] = row[1:].astype(int).to_dict() # as dict of int codes df = df[df.iloc[:, 0].str.find('/') > 0] # keep rows with valid date df.index = str2date(df.iloc[:, 0], '%m/%d/%Y', '%Y%m%d') df.index = to_monthend(df.index) return df.iloc[:, 1:], DataFrame(meta) class Alfred: """Base class for Alfred/Fred access, and manipulating retrieved data series Parameters ---------- cache_ : dict cached series and observations tcode_ : dict transformation codes Notes ----- lin = Levels (No transformation) [default] chg = Change x(t) - x(t-1) ch1 = Change from Year Ago x(t) - x(t-n_obs_per_yr) pch = Percent Change ((x(t)/x(t-1)) - 1) * 100 pc1 = Percent Change from Year Ago ((x(t)/x(t-n_obs_per_yr)) - 1) * 100 pca = Compounded Annual Rate of Change (x(t)/x(t-1))**n_obs_per_yr - 1 cch = Continuously Compounded Rate of Change (ln(x(t)) - ln(x(t-1))) cca = Continuously Compounded Annual Rate of Change (ln(x(t)) - ln(x(t-1))) * n_obs_per_yr log = Natural Log ln(x(t)) """ tcode_ = {1: {'diff': 0, 'log': 0}, 2: {'diff': 1, 'log': 0}, 3: {'diff': 2, 'log': 0}, 4: {'diff': 0, 'log': 1}, 5: {'diff': 1, 'log': 1}, 6: {'diff': 2, 'log': 1}, 7: {'diff': 1, 'log': 0, 'pct_change': True}, 'lin': {'diff': 0, 'log': 0}, 'chg': {'diff': 1, 'log': 0}, 'ch1': {'diff': 0, 'log': 0, 'pct_change': True, 'periods': 12}, 'pch': {'diff': 0, 'log': 0, 'pct_change': True}, 'pc1': {'diff': 0, 'log': 0, 'pct_change': True, 'periods': 12}, 'pca': {'diff': 1, 'log': 1, 'annualize': 12}, 'cch': {'diff': 1, 'log': 1}, 'cca': {'diff': 1, 'log': 1, 'annualize': 12}, 'lin': {'diff': 0, 'log': 0}, 'log': {'diff': 0, 'log': 1}} header_ = { k : {'id': k, 'title': v} for k,v in [['CPF3MTB3M', '3-Month Commercial Paper Minus 3-Month Treasury Bill'], ['CLAIMS', 'Initial Claims'], ['HWIURATIO', 'Ratio of Help Wanted/No. Unemployed'], ['HWI', 'Help Wanted Index for United States'], ['AMDMNO', 'New Orders for Durable Goods'], ['S&P 500', "S&P's Common Stock Price Index: Composite"], ['RETAIL', "Retail and Food Services Sales"], ['OILPRICE', 'Crude Oil, spliced WTI and Cushing'], ['COMPAPFF', "3-Month Commercial Paper Minus FEDFUNDS"], ['CP3M', "3-Month AA Financial Commercial Paper Rates"], ['CONSPI', 'Nonrevolving consumer credit to Personal Income'], ['S&P div yield', "S&P's Composite Common Stock: Dividend Yield"], ['S&P PE ratio', "S&P's Composite Common Stock: Price-Earnings Ratio"], ['S&P: indust', "S&P's Common Stock Price Index: Industrials"]]} @classmethod def transform(self, data, tcode=1, freq=None, **kwargs): """Classmethod to apply time series transformations Parameters ---------- data : DataFrame input data tcode : int in {1, ..., 7}, default is 1 transformation code freq : str in {'M', 'Q', 'A'}, default is None set periodicity of dates log : int, default is 0 number of times to take log diff : int, default is 0 number of times to take difference pct_change : bool whether to apply pct_change operator periods : int, default is 1 number of periods to lag for pct_change or diff operator annualize : int. default is 1 annualization factor shift : int, default is 0 number of rows to shift output (negative to lag) """ t = {'periods':1, 'shift':0, 'pct_change':False, 'annualize':1} t.update(self.tcode_[tcode]) t.update(kwargs) df = data.sort_index() if t['pct_change']: #df = df.pct_change(fill_method='pad') df = df.pct_change(fill_method=None) df = ((1 + df) ** t['annualize']) - 1 # by compounding for _ in range(t['log']): df = np.log(df) for _ in range(t['diff']): #df = df.fillna(method='pad').diff(periods=t['periods']) df = df.diff(periods=t['periods']) df = df * t['annualize'] # by adding return df.shift(t['shift']) alfred_api = ("https://api.stlouisfed.org/fred/{api}?series_id={series_id}" "&realtime_start={start}&realtime_end={end}" "&api_key={api_key}&file_type=json").format fred_api = ("https://api.stlouisfed.org/fred/{api}?series_id={series_id}" "&api_key={api_key}&file_type=json").format category_api = ("https://api.stlouisfed.org/fred/{api}?" "category_id={category_id}&api_key={api_key}&" "file_type=json{args}").format start = 17760704 end = 99991231 echo_ = config.ECHO api_key = None def header(self, series_id, column='title'): """Returns a column from last meta record of a series""" if series_id not in self.header_: try: if series_id not in self.cache_: # load via api if not in cache self.get(series_id) self.header_[series_id] = self[series_id]['series'].iloc[-1] except: return f"*** {series_id} ***" return self.header_[series_id].get(column, f"*** {series_id} ***") def keys(self): """Return id names of all loaded series data""" return list(self.cache_.keys()) def values(self, columns=None): """Return headers (last metadata row) of all loaded series Parameters ---------- columns: list of str, default is None subset of header columns to return Returns ------- df : DataFrame headers of all series loaded """ df = DataFrame() keep = ['id', 'observation_start', 'observation_end', 'frequency_short', 'title', 'popularity', 'seasonal_adjustment_short', 'units_short'] # default list of columns to display for v in self.cache_.values(): df = df.append(v['series'].iloc[-1], ignore_index=True) df = df.set_index('id', drop=False) return df[columns or keep] def __init__(self, api_key, start=17760704, end=99991231, savefile=None, echo=config.ECHO): """Create object, with api_key, for FRED access and data manipulation""" self.api_key = api_key self.start = start self.end = end self.savefile = savefile self.cache_ = dict() self.header_ = Alfred.header_.copy() self.echo_ = echo def _print(self, *args, echo=None): if echo or self.echo_: print(*args) def load(self, savefile=None): """Load series data to memory cache from saved file""" with open(savefile or self.savefile, 'rb') as f: self.cache_.update(**pickle.load(f)) return len(self.cache_) def dump(self, savefile=None): """Save all memory-cached series data to an output file""" with open(savefile or self.savefile, 'wb') as f: pickle.dump(self.cache_, f) return len(self.cache_) def clear(self): self.cache_.clear() def pop(self, series_id): return self.cache_.pop(series_id, None) def get(self, series_id, api_key=None, start=None, end=None): """Retrieve metadata and full observations of a series with FRED api Parameters ---------- series_id : str or list of str ids of series to retrieve Returns ------- n : int length of observations dataframe """ if types.is_list_like(series_id): return [self.get(s, start=start, end=end) for s in series_id] series = self.series(series_id, api_key=api_key, start=start, end=end, echo=self.echo_) if series is None or series.empty: return 0 self.cache_[series_id] = { 'observations': self.series_observations( series_id, api_key=api_key, start=start, end=end, alfred_mode=True, echo=self.echo_), 'series': series} return len(self.cache_[series_id]['observations']) def __call__(self, series_id, start=None, end=None, release=0, vintage=99991231, label=None, realtime=False, freq=True, **kwargs): """Select from full observations of a series and apply transforms Parameters ---------- series_id : str or list of str Labels of series to retrieve start, end : int, default is None start and end period dates (inclusive) to keep label : str, default is None New label to rename returned series release : pd.DateOffset or int (default is 0) maximum release number or date offset (inclusive). If 0: latest vintage : int, default is None latest realtime_start date of observations to keep diff, log, pct_change : int number of difference, log and pct_change operations to apply freq : str in {'M', 'A'. 'Q', 'D', 'Y'} or bool (default is True) resample and replace date index with month ends at selected freqs Returns ------- Series or DataFrame transformed values, name set to label if provided else series_id """ if (series_id not in self.cache_ and not self.get(series_id)): return None if freq is True: freq = self.header(series_id, 'frequency_short') df = self.as_series( self[series_id]['observations'], release=release, vintage=vintage, start=start or self.start, end=end or self.end, freq=freq) if realtime: s = self.transform(df['value'], **kwargs).to_frame() s['realtime_start'] = df['realtime_start'].values s['realtime_end'] = df['realtime_end'].values return s.rename(columns={'value': label or series_id}) return self.transform(df['value'], **kwargs).rename(label or series_id) def __getitem__(self, series_id): """Get observations and metadata for {series_id}""" return self.cache_.get(series_id, None) @classmethod def as_series(self, observations, release=0, vintage=99991231, start=0, end=99991231, freq=None): """Classmethod to select a series from alfred observations set Parameters ---------- observations: DataFrame from FRED 'series/observations' api call release : pd.DateOffset or int (default is 0) maximum release number or date offset (inclusive). If 0: latest vintage : int, default is None Latest realtime_start date (inclusive) allowed Returns ------- out: Series value of each period date, optionally indexed by realtime_start Examples -------- """ df = observations.copy() df['value'] = pd.to_numeric(observations['value'], errors='coerce') df['date'] = pd.to_datetime(df['date']) df = df.dropna().reset_index(drop=True) if freq: if freq.upper()[0] in ['A']: df['date'] += YearEnd(0) if freq.upper()[0] in ['S']: df['date'] += QuarterEnd(1) if freq.upper()[0] in ['Q']: df['date'] += QuarterEnd(0) if freq.upper()[0] in ['M']: df['date'] += MonthEnd(0) if freq.upper()[0] in ['B']: df['date'] += pd.DateOffset(days=13) if freq.upper()[0] in ['W']: df['date'] += pd.DateOffset(days=6) if np.any(df['realtime_start'] <= _int2date(vintage)): df = df[df['realtime_start'] <= _int2date(vintage)] df['value'] = pd.to_numeric(df['value'], errors='coerce') df = df.sort_values(by=['date', 'realtime_start']) if isinstance(release, int): # keep latest up to max release df['release'] = df.groupby('date').cumcount() df = df[df['release'] + 1 == (release or 99999999)]\ .append(df.drop_duplicates('date', keep='last'))\ .drop_duplicates('date', keep='first') else: # else latest release up through date offset df['release'] = (df['date'] + release).dt.strftime('%Y-%m-%d') df = df[df['realtime_start'] <= df['release']]\ .drop_duplicates('date', keep='last') df['date'] = df['date'].dt.strftime('%Y%m%d').astype(int) df['realtime_start'] = _date2int(df['realtime_start']) df['realtime_end'] = _date2int(df['realtime_end']) df = df.set_index('date').sort_index().drop(columns=['release']) return df[(df.index <= min(end, vintage)) & (df.index >= start)] def series(self, series_id, api_key=None, start=None, end=None, echo=ECHO): """API wrapper to retrieve series metadata as dataframe""" url = self.alfred_api(api="series", series_id=series_id, start=_int2date(start or self.start), end=_int2date(end or self.end), api_key=api_key or self.api_key) r = requests_get(url, echo=echo) if r is None: url = self.fred_api(api="series", series_id=series_id, api_key=api_key or self.api_key) r = requests_get(url, echo=echo) if r is None: return DataFrame() v = json.loads(r.content) df = DataFrame(v['seriess']) df.index.name = str(datetime.now()) return df def series_observations(self, series_id, api_key=None, start=None, end=None, alfred_mode=False, echo=ECHO): """API wrapper to retrieve full observations of a series as dataframe""" url = self.alfred_api(api="series/observations", series_id=series_id, start=_int2date(start or self.start), end=_int2date(end or self.end), api_key=api_key or self.api_key) r = requests_get(url, echo=echo) if r is None: url = self.fred_api(api="series/observations", series_id=series_id, api_key=api_key or self.api_key) r = requests_get(url, echo=echo) if r is None: return DataFrame() contents = json.loads(r.content) df = DataFrame(contents['observations']) if alfred_mode: # convert fred to alfred by backfilling realtime_start f = (df['realtime_start'].eq(contents['realtime_start']) & df['realtime_end'].eq(contents['realtime_end'])).values df.loc[f, 'realtime_start'] = df.loc[f, 'date'] return df def get_category(self, category_id, api_key=None): c = self.category(category_id, api="category", api_key=api_key) if 'categories' not in c: return None c = c['categories'][0] c['children'] = self.category(category_id, api="category/children", api_key=api_key).get('categories', []) c['series'] = [] offset = 0 while True: s = self.category(category_id, api="category/series", api_key=api_key, offset=offset) if not s['seriess']: break c['series'].extend(s['seriess']) offset += s['limit'] return c def category(self, category_id, api="category", api_key=None, echo=ECHO, **kwargs): """API wrapper to retrieve category data as dict""" args = "&".join([f"{k}={v}" for k,v in kwargs.items()]) url = self.category_api(api=api, category_id=category_id, api_key=api_key or self.api_key, args="&" + args if args else '') r = requests_get(url, echo=echo) return dict() if r is None else json.loads(r.content) @classmethod def popular(self, page=1): """Classmethod to web scrape popular series names, by page number""" assert(page > 0) url = f"https://fred.stlouisfed.org/tags/series?ob=pv&pageID={page}" data = requests.get(url).content soup = BeautifulSoup(data, 'lxml') tags = soup.findAll(name='a', attrs={'class': 'series-title'}) details = [tag.get('href').split('/')[-1] for tag in tags] return details #tags = soup.findAll(name='input',attrs={'class':'pager-item-checkbox'}) #details = [tag.get('value') for tag in tags] #return details fred_adjust = {'HWI': 'JTSJOL', 'AMDMNO': 'DGORDER', 'S&P 500': 'SP500', 'RETAIL': 'RSAFS', 'OILPRICE': 'MCOILWTICO', 'COMPAPFF': 'CPFF', 'CP3M': 'CPF3M', 'CLAIMS': 'ICNSA', # weekly 'HWIURATIO': [Series.div, 'JTSJOL', 'UNEMPLOY'], 'CPF3MTB3M': [Series.sub, 'CPF3M', 'DTB3'], 'CONSPI': [Series.div, 'NONREVSL', 'PI']} def adjusted_series(self, series_id, start=19590101, freq='M'): """Retrieve a raw series to update FRED-MD dataset Notes ----- http://www.econ.yale.edu/~shiller/data/ie_data.xls """ shiller = {'S&P div yield': 's-p-500-dividend-yield', 'S&P PE ratio': 'shiller-pe'} if series_id in ['S&P: indust']: s = Series() elif series_id in ['CLAIMS']: df = DataFrame(self('ICNSA')) df['Date'] = to_monthend(df.index) s = df.groupby('Date').mean().iloc[:,0] elif series_id in shiller.keys(): v = shiller[series_id] s = multpl(v) elif series_id in self.fred_adjust.keys(): v = adjust[series_id] s = (self(v, freq=freq) if isinstance(v, str) \ else v[0](self(v[1], freq=freq), self(v[2], freq=freq))) else: s = self(series_id, auto_request=True, freq=freq) return s[s.index >= start].rename(series_id) def pcaEM(X, kmax=None, p=2, tol=1e-12, n_iter=2000, echo=ECHO): """Fill in missing data with factor model and EM algorithm of <NAME> (1982), Stock & Watson (1998) and Bai & Ng (2002) Parameters ---------- X : 2D array T observations/samples in rows, N variables/features in columns kmax : int, default is None Maximum number of factors. If None, set to rank from SVD minus 1 p : int in [0, 1, 2, 3], default is 2 (i.e. 'ICp2' criterion) If 0, number of factors is fixed as kmax. Else picks one of three methods in Bai & Ng (2002) to auto-determine number in every iteration Returns ------- x : 2D arrayint X with nan's replaced by PCA EM model : dict Model results 'u', 's', 'vT', 'kmax', 'converge', 'n_iter' """ X = X.copy() # passed by reference Y = np.isnan(X) # identify missing entries assert(not np.any(np.all(Y, axis=1))) # no row can be all missing assert(not np.any(np.all(Y, axis=0))) # no column can be all missing for col in np.flatnonzero(np.any(Y, axis=0)): # replace with column means X[Y[:, col], col] = np.nanmean(X[:, col]) M = dict() # latest fitted model parameters for M['n_iter'] in range(1, n_iter + 1): old = X.copy() mean, std = X.mean(axis=0).reshape(1, -1), X.std(axis=0).reshape(1, -1) X = (X - mean) / std # standardize # "M" step: estimate factors M['u'], M['s'], M['vT'] = np.linalg.svd(X) # auto-select number of factors if p>0 else fix number of factors r = BaiNg(X, p, kmax or len(M['s'])-1) if p else kmax or len(M['s'])-1 # "E" step: update missing entries y = M['u'][:, :r] @ np.diag(M['s'][:r]) @ M['vT'][:r, :] # "E" step X[Y] = y[Y] X = (X * std) + mean # undo standardization M['kmax'] = r M['converge'] = np.sum((X - old)**2)/np.sum(X**2) # diff**2/prev**2 if echo: print(f"{M['n_iter']:4d} {M['converge']:8.3g} {r}") if M['converge'] < tol: break return X, M def BaiNg(x, p=2, kmax=None, standardize=False, echo=ECHO): """Determine number of factors based on Bai & Ng (2002) criterion Parameters ---------- x : 2D array T observations/samples in rows, N variables/features in columns p : int in [1, 2, 3], default is 2 use PCp1 or PCp2 or PCp3 penalty kmax : int, default is None maximum number of factors. If None, set to rank from SVD standardize : bool, default is False if True, then standardize data before processing (works better) Returns ------- r : int best number of factors based on ICp{p} criterion, or 0 if not determined Notes ----- See Bai and Ng (2002) and McCracken at https://research.stlouisfed.org/econ/mccracken/fred-databases/ """ if standardize: x = ((x-x.mean(axis=0).reshape(1,-1))/x.std(axis=0,ddof=0).reshape(1,-1)) T, N = x.shape #mR2 = np.sum(marginalR2(x), axis=1) u, s, vT = np.linalg.svd(x, full_matrices=False) kmax = min(len(s), kmax or len(s)) mR2 = [0] + list(s**2 / (N * T)) # first case is when no factors used var = (sum(mR2) - np.cumsum(mR2)) # variance of residuals after k components lnvar = np.log(np.where(var > 0, var, 1e-26)) NT2 = (N * T)/(N + T) C2 = min(N, T) penalty = [np.log(NT2) / NT2, np.log(C2) / NT2, np.log(C2) / C2][p - 1] ic = (lnvar + np.arange(len(mR2))*penalty)[:(kmax + 2)] sign = np.sign(ic[1:] - ic[:-1]) r = np.flatnonzero(sign>0) return min(r) if len(r) else 0 # first min point def marginalR2(x, kmax=None, standardize=False): """Return marginal R2 of each variable from incrementally adding factors Parameters ---------- x : 2D array T observations/samples in rows, N variables/features in columns kmax : int, default is None maximum number of factors. If None, set to rank from SVD standardize : bool, default is False if True, then standardize data before processing (works better) Returns ------- mR2 : 2D array each row corresponds to adding one factor component values are the incremental R2 for the variable in the column Notes ----- See <NAME> Ng (2002) and McCracken at https://research.stlouisfed.org/econ/mccracken/fred-databases/ pca.components_[i,:] is vT[i, :] pca.explained_variance_ is s**2/(T-1) y = pca.transform(x) # y = s * u: T x n "projection" beta = np.diag(pca.singular_values_) @ pca.components_ # "loadings" x.T @ x = beta.T @ beta is covariance matrix """ if standardize: x = (x-x.mean(axis=0).reshape(1,-1))/x.std(axis=0,ddof=0).reshape(1, -1) u, s, vT = np.linalg.svd(x, full_matrices=False) # increase in R2 from adding kth (orthogonal) factor as a regressor mR2 = np.vstack([np.mean((u[:,k-1:k] @ u[:,k-1:k].T @ x)**2, axis=0) for k in (np.arange(kmax or len(s)) + 1)]) mR2 = mR2 / np.mean((u @ u.T @ x)**2, axis=0).reshape(1, - 1) return mR2 # units - stromg that indicates a data value transformation. # lin = Levels (No transformation) [default] # chg = Change x(t) - x(t-1) # ch1 = Change from Year Ago x(t) - x(t-n_obs_per_yr) # pch = Percent Change ((x(t)/x(t-1)) - 1) * 100 # pc1 = Percent Change from Year Ago ((x(t)/x(t-n_obs_per_yr)) - 1) * 100 # pca = Compounded Annual Rate of Change (((x(t)/x(t-1)) ** (n_obs_per_yr)) - 1) * 100 # cch = Continuously Compounded Rate of Change (ln(x(t)) - ln(x(t-1))) * 100 # cca = Continuously Compounded Annual Rate of Change ((ln(x(t)) - ln(x(t-1))) * 100) * n_obs_per_yr # log = Natural Log ln(x(t)) # Frequency # A = Annual # SA = Semiannual # Q = Quarterly # M = Monthly # BW = Biweekly # W = Weekly # D = Daily # Seasonal Adjustment # SA = Seasonally Adjusted # NSA = Not Seasonally Adjusted # SAAR = Seasonally Adjusted Annual Rate # SSA = Smoothed Seasonally Adjusted # NA = Not Applicable
2.671875
3
prompt.py
co/TheLastRogue
8
12793792
from compositecore import Leaf import menu import state __author__ = 'co' def start_accept_reject_prompt(state_stack, game_state, message): prompt = menu.AcceptRejectPrompt(state_stack, message) game_state.start_prompt(state.UIState(prompt)) return prompt.result class PromptPlayer(Leaf): def __init__(self, message): super(PromptPlayer, self).__init__() self.tags = ["prompt_player"] self.text = message def prompt_player(self, **kwargs): target_entity = kwargs["target_entity"] return start_accept_reject_prompt(target_entity.game_state.value.menu_prompt_stack, target_entity.game_state.value, self.text)
2.171875
2
insights/parsers/tests/test_ntp_sources.py
mglantz/insights-core
1
12793793
import pytest from insights.core.dr import SkipComponent from insights.parsers.ntp_sources import ChronycSources, NtpqPn, NtpqLeap from insights.tests import context_wrap chrony_output = """ 210 Number of sources = 3 MS Name/IP address Stratum Poll Reach LastRx Last sample =============================================================================== #* GPS0 0 4 377 11 -479ns[ -621ns] +/- 134ns ^? a.b.c 2 6 377 23 -923us[ -924us] +/- 43ms ^+ d.e.f 1 6 377 21 -2629us[-2619us] +/- 86ms """.strip() ntpq_leap_output = """ leap=00 """.strip() ntpq_leap_output_2 = """ assID=0 status=06f4 leap_none, sync_ntp, 15 events, event_peer/strat_chg, leap=00 """.strip() ntpd_output = """ remote refid st t when poll reach delay offset jitter ============================================================================== *ntp103.cm4.tbsi 10.225.208.100 2 u 225 256 377 0.464 0.149 0.019 +ntp104.cm4.tbsi 10.228.209.150 2 u 163 256 377 0.459 -0.234 0.05 """.strip() ntpd_qn = """ remote refid st t when poll reach delay offset jitter ============================================================================== 172.16.58.3 .INIT. 16 u - 1024 0 0.000 0.000 0.000 """ ntp_connection_issue = """ /usr/sbin/ntpq: read: Connection refused """.strip() def test_get_chrony_sources(): parser_result = ChronycSources(context_wrap(chrony_output)) assert parser_result.data[1].get("source") == "a.b.c" assert parser_result.data[2].get("state") == "+" assert parser_result.data[2].get("mode") == "^" def test_get_ntpq_leap(): parser_result = NtpqLeap(context_wrap(ntpq_leap_output)) assert parser_result.leap == "00" parser_result = NtpqLeap(context_wrap(ntpq_leap_output_2)) assert parser_result.leap == "00" with pytest.raises(SkipComponent) as e: NtpqLeap(context_wrap(ntp_connection_issue)) assert "NTP service is down" in str(e) def test_get_ntpd_sources(): parser_result = NtpqPn(context_wrap(ntpd_output)) assert parser_result.data[0].get("source") == "ntp103.cm4.tbsi" assert parser_result.data[1].get("flag") == "+" assert parser_result.data[1].get("source") == "ntp104.cm4.tbsi" parser_result2 = NtpqPn(context_wrap(ntpd_qn)) assert parser_result2.data[0].get("source") == "172.16.58.3" assert parser_result2.data[0].get("flag") == " " with pytest.raises(SkipComponent) as e: NtpqPn(context_wrap(ntp_connection_issue)) assert "NTP service is down" in str(e)
1.796875
2
zero_knowledge/verifier.py
Fritingo/hw
0
12793794
<gh_stars>0 import random as rd def verifier(C, y, g, p): e = rd.randint(1,100) t = yield e if (g**t == (y**e)*C): accept = 1 else: accept = 0 yield accept
2.28125
2
setup.py
tarunbatra/password-validator-python
11
12793795
<filename>setup.py #!/usr/bin/env python from setuptools import setup, find_packages with open("README.rst", "r") as f: long_description = f.read() name = "password_validator" version = "1.0" setup(name=name, version=version, description="Validates password according to flexible and intuitive specifications", long_description=long_description, long_description_content_type='text/x-rst', license="MIT", author="<NAME>", author_email="<EMAIL>", url="https://github.com/tarunbatra/password-validator-python", packages=find_packages("src"), package_dir={"": "src"}, keywords: "password, validation, schema", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules"], command_options={ 'build_sphinx': { 'project': ('setup.py', name), 'version': ('setup.py', version), 'source_dir': ('setup.py', 'docs/source'), 'build_dir': ('setup.py', 'docs/build')}}, )
1.414063
1
src/ui/exif_view.py
jmacgrillen/perspective
0
12793796
#! /usr/bin/env python -*- coding: utf-8 -*- """ Name: exif_view.py Desscription: Display any EXIF data attached to the image. Version: 1 - Initial release Author: J.MacGrillen <<EMAIL>> Copyright: Copyright (c) <NAME>. All rights reserved. """ import logging from PyQt5.QtWidgets import QDockWidget, QVBoxLayout from src.tools.exif_data import EXIFData from PyQt5 import QtCore from PyQt5.QtCore import Qt self.logger.debug("Trying to extract EXIF data...") self.exif_data = EXIFData(self.pil_image) class EXIFView(QDockWidget): """ EXIF viewer """ v_layout: QVBoxLayout def __init_subclass__(cls) -> None: return super().__init_subclass__() if __name__ == "__main__": pass
2.796875
3
setup.py
czajowaty/curry-bot
3
12793797
<filename>setup.py from setuptools import setup, find_packages setup( name='CurryBot', author='<NAME>', version='0.1dev', description='Discord bot for Azure Dreams', packages=find_packages(exclude=('tests', 'docs', 'data')), license='MIT', long_description=open('README.md').read(), python_requires='>=3.6.0', install_requires=['beautifulsoup4', 'discord.py', 'gspread', 'oauth2client', 'requests', 'srcomapi'], )
1.179688
1
byol/datasets/cifar100.py
hongxin001/SSL-Backdoor
18
12793798
from torchvision.datasets import CIFAR100 as C100 import torchvision.transforms as T from .transforms import MultiSample, aug_transform from .base import BaseDataset def base_transform(): return T.Compose( [T.ToTensor(), T.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))] ) class CIFAR100(BaseDataset): def ds_train(self): t = MultiSample( aug_transform(32, base_transform, self.aug_cfg), n=self.aug_cfg.num_samples ) return C100(root="./data", train=True, download=True, transform=t,) def ds_clf(self): t = base_transform() return C100(root="./data", train=True, download=True, transform=t) def ds_test(self): t = base_transform() return C100(root="./data", train=False, download=True, transform=t)
2.546875
3
declarative/overridable_object.py
jrollins/python-declarative
6
12793799
# -*- coding: utf-8 -*- """ """ import types from .properties import HasDeclaritiveAttributes from .utilities.representations import SuperBase class OverridableObject(HasDeclaritiveAttributes, SuperBase, object): """ """ _overridable_object_save_kwargs = False _overridable_object_kwargs = None def _overridable_object_inject(self, **kwargs): """ """ kwargs_unmatched = {} for key, obj in list(kwargs.items()): try: parent_desc = getattr(self.__class__, key) except AttributeError: kwargs_unmatched[key] = obj continue if isinstance( parent_desc, ( types.MethodType, staticmethod, classmethod ) ): raise ValueError( ( "Can only redefine non-method descriptors, {0} a method of class {1}" ).format(key, self.__class__.__name__) ) try: use_bd = parent_desc._force_boot_dict except AttributeError: use_bd = False if not use_bd: setattr(self, key, obj) else: self.__boot_dict__[key] = obj return kwargs_unmatched def __init__(self, **kwargs): """ """ if self._overridable_object_save_kwargs: self._overridable_object_kwargs = kwargs kwargs_unmatched = self._overridable_object_inject(**kwargs) if kwargs_unmatched: raise ValueError( ( "Can only redefine class-specified attributes, class {0} does not have elements {1}" ).format(self.__class__.__name__, list(kwargs_unmatched.keys())) ) #now run the __mid_init__ before all of the declarative arguments trigger self.__mid_init__() super(OverridableObject, self).__init__() #print("OO: ", self) return def __mid_init__(self): """ """ return
2.40625
2
bp_gen/bitpattern.py
nicholas-fr/mezzanine
3
12793800
<reponame>nicholas-fr/mezzanine<gh_stars>1-10 # Generates a bit pattern containing frame number, total frames, frame rate, horizontal and vertical resolution # Step 1: define bit pattern for 240x135 video # Step 2: upscale as needed towards target resolution # Note: intended for 480x270 video with 2x2 bit pattern "bit" size as the lowest resolution def bp_create(bitpat_file_dir, frame_number, nof_frames, framerate, pix_per_ln, ln_per_frame): import cv2 import numpy as np from pathlib import Path bits_per_ln = 96 # coded_bits_per_line (data payload, excluding calibration bits) nof_data_ln = 2 # number_of_data_lines nof_black_ln_bef = 2 # number_of_black_lines_before nof_black_ln_aft = 1 # number_of_black_lines_after nof_black_px_bef = 5 # number_of_black_pixels_before nof_black_px_aft = 3 # number_of_black_pixels_after y_dim = nof_black_ln_bef + 1 + nof_data_ln + nof_black_ln_aft # total lines in bit pattern, # includes 1 calibration line x_dim = nof_black_px_bef + 2 + bits_per_ln + nof_black_px_aft # total pixels per bit pattern line, # includes 2 calibration bits # (note: 1px = 1bit at this stage of the process) vact_ref = 135.0 # make float, as target result must be float hact_ref = 240.0 # vinc = vact_ref / ln_per_frame hinc = hact_ref / pix_per_ln # Settings consist of: frame_number | nof_frames | framerate | pix_per_ln | ln_per_frame # Each setting is followed by the number of bits used to encode it settings = [(frame_number, 24), (nof_frames, 24), (int(framerate*1000), 17), (pix_per_ln, 13), (ln_per_frame, 13)] ibp = np.zeros((y_dim, x_dim), dtype='uint8') bitinppat = np.zeros((bits_per_ln*nof_data_ln,), dtype='uint8') pnt = 0 for x in settings: setting = x[0] for i in range(x[1]): bitinppat[pnt] = setting % 2 pnt = pnt + 1 setting = setting >> 1 ycur = nof_black_ln_bef xcur = nof_black_px_bef for i in range((bits_per_ln+2)): ibp[ycur, xcur + i] = 1-(i % 2) # calibration line for j in range(nof_data_ln): # calibration pixels per data line for i in range(2): ibp[ycur+1+j, xcur + i] = ((i+j) % 2) for j in range(nof_data_ln): for i in range(bits_per_ln): ibp[ycur+1+j, xcur+2+i] = bitinppat[j*bits_per_ln + i] xstart = 0 xstop = int(x_dim/hinc) ystart = 0 ystop = int(y_dim/vinc) i00 = np.zeros((ystop, xstop, 3), dtype='uint8') print(str(xstop)+"x"+str(ystop), end='', flush=True) for j in range(ystart, ystop): # ystart, ystop, xstart, xstop for i in range(xstart, xstop): ycur = int(j*vinc) xcur = int(i*hinc) i00[j, i, :] = ibp[ycur, xcur]*255.0 status = cv2.imwrite(str(Path(str(bitpat_file_dir)+'\\'+str(frame_number).zfill(5)+'.png')), i00) print("| "+str(settings)+" | "+{True: 'saved', False: 'failed'}[status])
3.046875
3
src/aws_scatter_gather/util/trace.py
cbuschka/aws-scatter-gather
2
12793801
import time import aws_scatter_gather.util.logger as logger def trace(message, *args): return Trace(message, *args) def traced(f): def wrapper(*args, **kwargs): with trace("{} args={}, kwargs={}", f.__name__, [*args], {**kwargs}): return f(*args, **kwargs) return wrapper class Trace(object): def __init__(self, message, *args): self.message = message.format(*args) def __enter__(self): self.start = time.time_ns() logger.info("START \"%s\"...", str(self.message)) return self def __exit__(self, exc_type, exc_value, tb): self.end = time.time_ns() self.duration_milis = int((self.end - self.start) / 1000 / 1000) if exc_type is None: logger.info("SUCCESS of \"%s\". Duration %d millis.", str(self.message), self.duration_milis) else: logger.info("FAILURE of \"%s\". Duration %d millis.", str(self.message), self.duration_milis, exc_info=True) async def __aenter__(self): self.__enter__() return self async def __aexit__(self, exc_type, exc_value, tb): self.__exit__(exc_type, exc_value, tb)
2.390625
2
slgnn/tests/test_dude_datasets.py
thomasly/slgnn
2
12793802
import unittest from slgnn.data_processing.pyg_datasets import JAK1Dude, JAK2Dude, JAK3Dude from slgnn.config import FILTERED_PUBCHEM_FP_LEN class TestDudeDatasets(unittest.TestCase): def test_jak1_jak2_jak3(self): jak = JAK1Dude() data = jak[0] self.assertEqual(data.x.size()[1], 6) self.assertEqual(data.y.size(), (1, FILTERED_PUBCHEM_FP_LEN)) self.assertEqual(data.edge_index.size()[0], 2) jak = JAK3Dude() data = jak[0] self.assertEqual(data.x.size()[1], 6) self.assertEqual(data.y.size(), (1, FILTERED_PUBCHEM_FP_LEN)) self.assertEqual(data.edge_index.size()[0], 2) jak = JAK2Dude() data = jak[0] self.assertEqual(data.x.size()[1], 6) self.assertEqual(data.y.size(), (1, FILTERED_PUBCHEM_FP_LEN)) self.assertEqual(data.edge_index.size()[0], 2)
2.0625
2
users/models.py
patxxi/ClonGram
1
12793803
<gh_stars>1-10 from django.db import models from django.contrib.auth.models import User # Create your models here. class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) biography = models.CharField(max_length=250, blank=True, null=True) image = models.ImageField(upload_to="users/images", blank=True, null=True) phone_number = models.CharField(max_length=15, blank=True, null=True)
2.296875
2
rpcpy/openapi.py
william-wambua/rpc.py
152
12793804
<reponame>william-wambua/rpc.py<gh_stars>100-1000 import functools import inspect import typing import warnings __all__ = [ "BaseModel", "create_model", "validate_arguments", "set_type_model", "is_typed_dict_type", "parse_typed_dict", "TEMPLATE", ] Callable = typing.TypeVar("Callable", bound=typing.Callable) try: from pydantic import BaseModel, ValidationError, create_model from pydantic import validate_arguments as pydantic_validate_arguments # visit this issue # https://github.com/samuelcolvin/pydantic/issues/1205 def validate_arguments(function: Callable) -> Callable: function = pydantic_validate_arguments(function) @functools.wraps(function) def change_exception(*args, **kwargs): try: return function(*args, **kwargs) except ValidationError as exception: type_error = TypeError( "Failed to pass pydantic's type verification, please output" " `.more_info` of this exception to view detailed information." ) type_error.more_info = exception raise type_error return change_exception # type: ignore except ImportError: def create_model(*args, **kwargs): # type: ignore raise NotImplementedError("Need install `pydantic` from pypi.") def validate_arguments(function: Callable) -> Callable: return function BaseModel = type("BaseModel", (), {}) # type: ignore def set_type_model(func: Callable) -> Callable: """ try generate request body model from type hint and default value """ sig = inspect.signature(func) field_definitions: typing.Dict[str, typing.Any] = {} for name, parameter in sig.parameters.items(): if parameter.annotation == parameter.empty: # raise ValueError( # f"You must specify the type for the parameter {func.__name__}:{name}." # ) return func # Maybe the type hint should be mandatory? I'm not sure. if parameter.default == parameter.empty: field_definitions[name] = (parameter.annotation, ...) else: field_definitions[name] = (parameter.annotation, parameter.default) if field_definitions: try: body_model: typing.Type[BaseModel] = create_model( func.__name__, **field_definitions ) setattr(func, "__body_model__", body_model) except NotImplementedError: message = ( "If you wanna using type hint " "to create OpenAPI docs or convert type, " "please install `pydantic` from pypi." ) warnings.warn(message, ImportWarning) return func def is_typed_dict_type(type_) -> bool: return issubclass(type_, dict) and getattr(type_, "__annotations__", False) def parse_typed_dict(typed_dict) -> typing.Type[BaseModel]: """ parse `TypedDict` to generate `pydantic.BaseModel` """ annotations = {} for name, field in typed_dict.__annotations__.items(): if is_typed_dict_type(field): annotations[name] = (parse_typed_dict(field), ...) else: default_value = getattr(typed_dict, name, ...) annotations[name] = (field, default_value) return create_model(typed_dict.__name__, **annotations) # type: ignore TEMPLATE = """<!DOCTYPE html> <html> <head> <link type="text/css" rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css"> <title>OpenAPI Docs</title> </head> <body> <div id="swagger-ui"></div> <script src="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js"></script> <script> const ui = SwaggerUIBundle({ url: './get-openapi-docs', dom_id: '#swagger-ui', presets: [ SwaggerUIBundle.presets.apis, SwaggerUIBundle.SwaggerUIStandalonePreset ], layout: "BaseLayout", deepLinking: true, showExtensions: true, showCommonExtensions: true }) </script> </body> </html> """
2.484375
2
fyp/guardian/tests.py
Rishi-42/Guardain-1.0
0
12793805
<filename>fyp/guardian/tests.py from urllib import response from django.test import TestCase from selenium import webdriver from account.forms import RegistrationForm # class FunctionalTestCase(TestCase): # def setUp(self): # self.browser = webdriver.Firefox() # def test(self): # self.browser.get('http://localhost:8000') # self.assertIn('Order ID', self.browser.page_source) # # assert 'Pharmacy' in browser.page_source # # assert browser.page_source.find('Pharmacy') # def tearDown(self): # self.browser.quit() # class UnitTestCase(TestCase): # def test_home_homepage_template(self): # response = self.client.get('/') # self.assertTemplateUsed(response, 'dashboardpharmacy.html') # def test_home_status_code(self): # response = self.client.get('/') # self.assertEqual(response.status_code, 200) # def test_register_form(self): # form = RegistrationForm(data={'first_name': 'test', 'last_name': 'test', 'email': '<EMAIL>', 'password': '<PASSWORD>','confirm_password': '<PASSWORD>', 'term':'True','user_type': 'pharmacist'}) # self.assertTrue(form.is_valid())
2.265625
2
deskwork_detector.py
sgarbirodrigo/ml-sound-classifier
118
12793806
from realtime_predictor import * emoji = {'Writing': '\U0001F4DD ', 'Scissors': '\u2701 ', 'Computer_keyboard': '\u2328 '} def on_predicted_deskwork(ensembled_pred): result = np.argmax(ensembled_pred) label = conf.labels[result] if label in ['Writing', 'Scissors', 'Computer_keyboard']: p = ensembled_pred[result] level = int(p*10) + 1 print(emoji[label] * level, label, p) if __name__ == '__main__': model = get_model(args.model_pb_graph) # file mode if args.input_file != '': process_file(model, args.input_file, on_predicted_deskwork) my_exit(model) # device list display mode if args.input < 0: print_pyaudio_devices() my_exit(model) # normal: realtime mode FORMAT = pyaudio.paInt16 CHANNELS = 1 audio = pyaudio.PyAudio() stream = audio.open( format=FORMAT, channels=CHANNELS, rate=conf.sampling_rate, input=True, input_device_index=args.input, frames_per_buffer=conf.rt_chunk_samples, start=False, stream_callback=callback # uncomment for non_blocking ) # main loop stream.start_stream() while stream.is_active(): main_process(model, on_predicted_deskwork) time.sleep(0.001) stream.stop_stream() stream.close() # finish audio.terminate() my_exit(model)
2.46875
2
hp/mechanism_hp.py
web8search/neutron-Neutron-
6
12793807
<reponame>web8search/neutron-Neutron-<gh_stars>1-10 # -*- coding: utf-8 -*- # # H3C Technologies Co., Limited Copyright 2003-2015, All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo.config import cfg from neutron.plugins.ml2 import driver_api from oslo_log import log as logging from neutron.common import constants as n_const from neutron.plugins.ml2.drivers.hp.common import tools from neutron.plugins.ml2.drivers.hp.common import config from neutron.plugins.ml2.drivers.hp.common import db from neutron.plugins.ml2.drivers.hp.rpc import netconf as netconf_cfg from neutron.plugins.ml2.drivers.hp.rpc import restful as restful_cfg from neutron.plugins.ml2.drivers.hp import sync_helper LOG = logging.getLogger(__name__) class HPDriver(driver_api.MechanismDriver): """ Ml2 Mechanism driver for HP networking hardware. Automation for VLANs configure with HP switches. """ def __init__(self, rpc=None): config.HPML2Config() self.leaf_topology = config.HPML2Config.leaf_topology self.spine_topology = config.HPML2Config.spine_topology self.sync_overlap = cfg.CONF.ml2_hp.sync_overlap self.sync_lock = None self.sync_timeout = int(cfg.CONF.ml2_hp.sync_time) self.username = cfg.CONF.ml2_hp.username self.password = cfg.CONF.ml2_hp.password self.url_schema = cfg.CONF.ml2_hp.schema.lower() self.default_oem = cfg.CONF.ml2_hp.oem.lower() self.rpc_backend = cfg.CONF.ml2_hp.rpc_backend.lower() self.sync_helper = None self.rpc_clients = {} def initialize(self): """ MechanismDriver will call it after __init__. """ if self.rpc_backend == 'netconf': self._create_nc_clients() elif self.rpc_backend == 'restful': self._create_rest_clients() LOG.info(_("leaf %s, spine %s, user %s, pass %s, url schema %s," "timeout %d, rpc backend %s"), self.leaf_topology, self.spine_topology, self.username, self.password, self.url_schema, self.sync_timeout, self.rpc_backend) # Create a thread.for sync configuration to physical device. self.sync_helper = sync_helper.SyncHelper(self.leaf_topology, self.spine_topology, self.rpc_clients, self.sync_timeout, self.sync_overlap) self.sync_lock = self.sync_helper.get_lock() self.sync_helper.start() def _create_rest_clients(self): """ Create restful instances foreach leaf and spine device.""" for leaf in self.leaf_topology: rest_client = restful_cfg.RestfulCfg(leaf['ip'], self.username, self.password) self.rpc_clients.setdefault(leaf['ip'], rest_client) for spine in self.spine_topology: rest_client = restful_cfg.RestfulCfg(spine['ip'], self.username, self.password) self.rpc_clients.setdefault(spine['ip'], rest_client) def _create_nc_clients(self): """ Create NETCONF instances for each leaf and spine device.""" for leaf in self.leaf_topology: if leaf['oem'] == '': leaf['oem'] = self.default_oem nc_client = netconf_cfg.NetConfigClient(leaf['oem'], leaf['ip'], self.url_schema, self.username, self.password) self.rpc_clients.setdefault(leaf['ip'], nc_client) for spine in self.spine_topology: if spine['oem'] == '': spine['oem'] = self.default_oem nc_client = netconf_cfg.NetConfigClient(spine['oem'], spine['ip'], self.url_schema, self.username, self.password) self.rpc_clients.setdefault(spine['ip'], nc_client) def _get_client(self, device_ip): """ Return a RPC client instance specified by device IP. """ client = None if self.rpc_clients is not None: client = self.rpc_clients.get(device_ip, None) if client is None: LOG.warn(_("No such switch whose IP is %s in " "the configuration file."), str(device_ip)) return client def create_network_precommit(self, context): """ We don't care it.""" pass def create_network_postcommit(self, context): """ Just insert network information into database. When the port is created, we do real operations in our physical device. """ LOG.info(_("Create network postcommit begin.")) network = context.current network_id = network['id'] tenant_id = network['tenant_id'] segments = context.network_segments if not db.is_network_created(tenant_id, network_id): LOG.info(_("Create network with id %s."), network_id) # [{'segmentation_id': id, 'physical_network': value, # 'id': id, 'network_type': gre | vlan | vxlan }] segment_type = segments[0]['network_type'] segment_id = segments[0]['segmentation_id'] db.create_network(tenant_id, network_id, segment_id, segment_type) LOG.info(_("Create network postcommit end.")) def update_network_precommit(self, context): pass def update_network_postcommit(self, context): pass def delete_network_precommit(self, context): pass def delete_network_postcommit(self, context): """ Delete network information from database.""" LOG.info(_("Delete network begin.")) network = context.current network_id = network['id'] tenant_id = network['tenant_id'] if db.is_network_created(tenant_id, network_id): LOG.info(_("Delete network %s from database."), network_id) db.delete_network(tenant_id, network_id) LOG.info(_("Delete network end.")) def collect_create_config(self, network_id, host_id, vlan_id): device_config_dict = {} vlan_list = db.get_vlanlist_byhost(host_id) if vlan_id not in vlan_list: vlan_list.append(vlan_id) host_list = db.get_host_list(network_id) # Find which leaf device connects to the host_id. leaf_need_configure = [] leaf_generator = tools.topology_generator(self.leaf_topology) leaf_ip_ref = {} for leaf_ip, topology in leaf_generator: leaf_host = topology['host'] if leaf_host in host_list: leaf_ip_ref.setdefault(leaf_ip, set([])) leaf_ip_ref[leaf_ip] |= set(db.get_vlanlist_byhost(leaf_host)) if leaf_host == host_id: leaf_ip_ref[leaf_ip] |= set([vlan_id]) device_config_dict.setdefault(leaf_ip, {}) device_config_dict[leaf_ip].setdefault('port_vlan', []) device_config_dict[leaf_ip]['vlan_create'] = vlan_list device_config_dict[leaf_ip]['port_vlan'].\ append((topology['ports'], vlan_list)) leaf_need_configure.append(leaf_ip) LOG.info(_("Starting collecting spine's configs with leaf %s."), str(leaf_need_configure)) # Find which spine device connects to the leaf device # which is configured above. spine_generator = tools.topology_generator(self.spine_topology) for spine_ip, topology in spine_generator: leaf_ip = topology['leaf_ip'] if leaf_ip in leaf_need_configure: spine_vlan_list = list(leaf_ip_ref[leaf_ip]) if spine_ip not in device_config_dict: device_config_dict.setdefault(spine_ip, {}) device_config_dict[spine_ip].setdefault('port_vlan', []) device_config_dict[spine_ip]['vlan_create'] = vlan_list device_config_dict[spine_ip]['port_vlan'].\ append((topology['spine_ports'], spine_vlan_list)) if leaf_ip in device_config_dict: device_config_dict[leaf_ip]['port_vlan'].\ append((topology['leaf_ports'], spine_vlan_list)) LOG.info(_("Collect device configuration: %s"), device_config_dict) return device_config_dict def create_port_precommit(self, context): pass def _create_vlan_network(self, network_id, host_id, vlan_id): """Do real configuration in our physical devices. :param network_id. The uuid of network. :param host_id. The host where the port created. :param vlan_id. Segmentation ID """ device_config_list = self.collect_create_config(network_id, host_id, vlan_id) # Execute configuration in physical devices. for dev_ip in device_config_list: vlan_list = device_config_list[dev_ip]['vlan_create'] port_vlan_tuple_list = device_config_list[dev_ip]['port_vlan'] rpc_client = self._get_client(dev_ip) if rpc_client is not None: LOG.info(_("Begin create vlan network: device %s, " "create vlan %s, port trunk list %s"), dev_ip, vlan_list, port_vlan_tuple_list) result = rpc_client.create_vlan_bulk(vlan_list) if result is True: result = rpc_client.port_trunk_bulk(port_vlan_tuple_list) if result is True: LOG.info(_("Create vlan config successful for" " %s."), dev_ip) LOG.info(_("End create vlan network")) else: LOG.warn(_("Failed to create vlan network")) def create_port_postcommit(self, context): """Create network and port on physical device.""" LOG.info(_("Create port begin.")) # Here we only process virtual machine and DHCP server's port. port = context.current device_owner = port['device_owner'] if not device_owner.startswith('compute') and \ device_owner != n_const.DEVICE_OWNER_DHCP: LOG.info(_("Ignore port owner %s when creating port."), device_owner) return device_id = port['device_id'] host_id = context.host port_id = port['id'] tenant_id = port['tenant_id'] network_id = port['network_id'] with self.sync_lock: if db.is_vm_created(device_id, host_id, port_id, network_id, tenant_id): LOG.info(_("The port %s of virtual machine %s has " "already inserted into the network %s."), str(port_id), str(device_id), str(network_id)) return LOG.info(_("Insert port %s's information into database."), str(port_id)) db.create_vm(device_id, host_id, port_id, network_id, tenant_id) # Get the count of port that created in the same network and host. port_count = db.get_vm_count(network_id, host_id) if port_count == 1: segments = context.network.network_segments segment_type = segments[0]['network_type'] if segment_type == 'vlan': vlan_id = int(segments[0]['segmentation_id']) self._create_vlan_network(network_id, host_id, vlan_id) else: LOG.info(_("Not supported network type %s"), segment_type) else: LOG.info(_("Physical switch has already configured. " "There are %d VMs in network %s."), port_count, network_id) LOG.info(_("Create port end.")) def update_port_precommit(self, context): pass def update_port_postcommit(self, context): """Just process the migration of virtual machine.""" port = context.current device_owner = port['device_owner'] LOG.info(_("Update port begin. Device owner is %s."), device_owner) if not (device_owner.startswith('compute') or device_owner == n_const.DEVICE_OWNER_DHCP): LOG.info(_("Ignore port owner %s when update port."), device_owner) return device_id = port['device_id'] port_id = port['id'] tenant_id = port['tenant_id'] network_id = port['network_id'] old_host_id = db.get_vm_host(device_id, port_id, network_id, tenant_id) if old_host_id is None or old_host_id == context.host: LOG.info(_("update port postcommit: No changed.")) return # Migration is happen. LOG.info(_("Migration is begin.")) segments = context.network.network_segments self.delete_port(old_host_id, port, segments) self.create_port_postcommit(context) LOG.info(_("Migration is end.")) def collect_delete_config(self, network_id, host_id, vlan_id): vlan_list = db.get_vlanlist_byhost(host_id) if vlan_id in vlan_list: vlan_list.remove(vlan_id) leaf_generator = tools.topology_generator(self.leaf_topology) host_list = db.get_host_list(network_id) LOG.info(_("Delete vlan host list %s"), host_list) # It is the counter of host that connects to the same # device specified by ip address. leaf_ref_vlans = {} leaf_ref_host = {} delete_config = {} for leaf_ip, topology in leaf_generator: leaf_ref_vlans.setdefault(leaf_ip, set([])) leaf_ref_host.setdefault(leaf_ip, False) host = topology['host'] host_vlan = db.get_vlanlist_byhost(host) if host in host_list: leaf_ref_vlans[leaf_ip] |= set(host_vlan) if host == host_id: delete_config.setdefault(leaf_ip, {}) delete_config[leaf_ip].setdefault('port_vlan', []) delete_config[leaf_ip]['port_vlan'].\ append((topology['ports'], vlan_list)) delete_config[leaf_ip]['vlan_del'] = [] if host in host_list: host_list.remove(host) else: if len(set([vlan_id]) & set(host_vlan)) > 0: leaf_ref_host[leaf_ip] = True # If there is no host connects to leaf in the same network, # we will remove the configuration in the spine device. # And remove the vlan configuration in the leaf device. for leaf_ip in leaf_ref_vlans: if leaf_ref_host[leaf_ip] is False and leaf_ip in delete_config: leaf_ref_vlans[leaf_ip] -= set([vlan_id]) delete_config[leaf_ip]['vlan_del'] = [vlan_id] # Check which spine device connects to above leafs. # We need remove this spine's configuration. spine_generator = tools.topology_generator(self.spine_topology) # This dict is used to count the host number in same network # with leafs connected to spine. spine_delete_score = {} for spine_ip, topology in spine_generator: leaf_ip = topology['leaf_ip'] if leaf_ip in leaf_ref_vlans: spine_delete_score.setdefault(spine_ip, 0) if leaf_ref_host[leaf_ip] is True: spine_delete_score[spine_ip] += 1 if leaf_ip in delete_config: vlan_list = list(leaf_ref_vlans[leaf_ip]) delete_config[spine_ip] = {} delete_config[spine_ip].setdefault('port_vlan', []) delete_config[spine_ip]['port_vlan'].\ append((topology['spine_ports'], vlan_list)) delete_config[spine_ip]['vlan_del'] = [] if len(delete_config[leaf_ip]['vlan_del']) != 0: delete_config[leaf_ip]['port_vlan'].\ append((topology['leaf_ports'], vlan_list)) # Check does spine need to delete vlan. for spine_ip in spine_delete_score: if spine_delete_score[spine_ip] == 0 \ and spine_ip in delete_config: delete_config[spine_ip]['vlan_del'] = [vlan_id] LOG.info(_("Delete configuration : %s"), delete_config) return delete_config def delete_vlan_config(self, network_id, host_id, vlan_id): """Delete vlan configuration from physical devices.""" delete_config = self.collect_delete_config(network_id, host_id, vlan_id) for dev_ip in delete_config: rpc_client = self._get_client(dev_ip) port_vlan_tuple_list = delete_config[dev_ip]['port_vlan'] vlan_del_list = delete_config[dev_ip]['vlan_del'] if rpc_client is not None: if rpc_client.port_trunk_bulk(port_vlan_tuple_list) is True: if rpc_client.delete_vlan_bulk(vlan_del_list) is True: LOG.info(_("Delete vlan config %s success for %s."), port_vlan_tuple_list, dev_ip) else: LOG.warn(_("Failed to delete vlan %s for %s."), vlan_del_list, dev_ip) else: LOG.warn(_("Failed to port trunk %s for %s"), port_vlan_tuple_list, dev_ip) def delete_port_precommit(self, context): pass def delete_port(self, host_id, ports, segments): with self.sync_lock: network_id = ports['network_id'] device_id = ports['device_id'] port_id = ports['id'] tenant_id = ports['tenant_id'] if not db.is_vm_created(device_id, host_id, port_id, network_id, tenant_id): LOG.info(_("No such vm in database, ignore it")) return # Delete configuration in device # only if it is the last vm of host in this network vm_count = db.get_vm_count(network_id, host_id) if vm_count == 1: LOG.info(_("Delete physical port configuration: " "All VMs of host %s in network %s is deleted. "), host_id, network_id) segment_type = segments[0]['network_type'] segment_id = segments[0]['segmentation_id'] if segment_type == 'vlan': vlan_id = int(segment_id) self.delete_vlan_config(network_id, host_id, vlan_id) else: LOG.info(_("Not supported network type %s."), str(segment_type)) else: LOG.info(_("The network %s still have %d vms, " "ignore this operation."), network_id, vm_count) db.delete_vm(device_id, host_id, port_id, network_id, tenant_id) def delete_port_postcommit(self, context): """Delete real configuration from our physical devices.""" LOG.info(_("Delete port post-commit begin.")) # Only process virtual machine device and DHCP port port = context.current device_owner = port['device_owner'] if not device_owner.startswith('compute') and\ device_owner != n_const.DEVICE_OWNER_DHCP: LOG.info(_("Ignore port owner %s when deleting port."), device_owner) return segments = context.network.network_segments self.delete_port(context.host, port, segments) LOG.info(_("Delete port post-commit end."))
1.492188
1
test/analytic_full_slab.py
pozulp/narrows
5
12793808
<reponame>pozulp/narrows<gh_stars>1-10 #!/usr/bin/env python3 import argparse import matplotlib.pyplot as plt import numpy as np import os import scipy.special as sp import sys MY_DIR = os.path.dirname(__file__) sys.path.append(f'{MY_DIR}/..') from narrows import parse_input, create_mesh # noqa: E402 sys.path.append(f'{MY_DIR}') from utility import show_or_save # noqa: E402 plt.style.use(f'{MY_DIR}/style.mplstyle') def solution(z, src_mag, sigma_a, zstop): EPS = 1e-25 return ((src_mag / sigma_a) - (src_mag / (2 * sigma_a)) * (np.exp(-sigma_a * z) + np.exp(sigma_a * (z - zstop))) + (src_mag / 2) * (z * sp.exp1(sigma_a * z + EPS) + (zstop - z) * sp.exp1(sigma_a * (zstop - z) + EPS))) def plot_analytic_flux(show, problem): z, src_mag, sigma_a, zstop = get_parameters_for(problem) flux = solution(z, src_mag, sigma_a, zstop) plt.plot(z, flux, label='analytic') plt.legend() plt.xlabel('z coordinate') plt.ylabel(r'$\phi(z)$') plt.title(f'{problem} flux') show_or_save(show, problem, 'analytic_flux') def get_parameters_for(problem): deck = parse_input([f'{problem}.yaml']) mesh = create_mesh(deck) src_mag = deck.src['src1'].magnitude sigma_a = deck.mat['mat1'].sigma_a zstop = deck.reg['reg1'].end return mesh.edge, src_mag, sigma_a, zstop def parse_args(argv): if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser( description='Plot analytic flux for full_slab.yaml', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-s', '--show', action='store_true', help='show instead of save plot') args = parser.parse_args(argv) return args def main(argv=None): args = parse_args(argv) plot_analytic_flux(args.show, f'{MY_DIR}/full_slab') if __name__ == '__main__': main()
2.234375
2
examples/wave_share_gps_locator_runner.py
cezaryzelisko/gps-tracker
1
12793809
<reponame>cezaryzelisko/gps-tracker<filename>examples/wave_share_gps_locator_runner.py from gps_tracker.runner import main from gps_tracker.serial_connection import SerialConnection from gps_tracker.wave_share_config import WaveShareGPS from gps_tracker.wave_share_gps_locator import WaveShareGPSLocator from gps_tracker.auth import Auth from gps_tracker.device import Device if __name__ == '__main__': auth = Auth() device = Device('WaveShare Device', auth) with SerialConnection(WaveShareGPS.DEFAULT_DEVICE) as serial_conn: with WaveShareGPSLocator(device.id, auth, serial_conn) as ws_gps: enabled = ws_gps.wait_for_gps() if enabled: main(ws_gps, device) else: print('ERROR: unable to initialize GPS.')
2.46875
2
tests/utils.py
mypaceshun/pyfortune
0
12793810
<gh_stars>0 import os from pyfortune.session import Session def get_login_session(): secrets_path = os.environ.get('SECRETS', 'secrets') with open(secrets_path, 'r') as f: lines = f.readlines() username = lines[0].strip() password = lines[1].strip() s = Session() s.login(username, password) return s def get_session(): s = Session() return s
2.296875
2
jewtrick/utils/settings.py
ZimnyCat/jewtrick-client
8
12793811
<filename>jewtrick/utils/settings.py # -*- coding: utf-8 -*- import utils.settingsHelper as helper import utils.system as sys booleanArray = { "autoclick": "false", "ping": "true", "time": "false", "requests-counter": "true" } numArray = { "delay": 1, "ping-delay": 5 } def getBoolean(settingName): # проверяем helper.check(settingName) try: file = open("settings.txt", "r+") # ищем настройку for word in file: nigga = settingName + " = " if word.startswith(nigga): file.close() if word == nigga + "true\n": return True elif word == nigga + "false\n": return False # если значение не булевое sys.crash("Настройка \"" + settingName + "\" не соответствует true или false", "Проверьте ваш файл settings.txt") # если такая настройка не найдена в файле print("Не удалось найти значение \"" + settingName + "\"! Записываем...") file.write(settingName + " = " + booleanArray[settingName] + "\n") file.close() return getBoolean(settingName) except FileNotFoundError: # если файла settings.txt нет helper.createSettingsFile() return getBoolean(settingName) def getNum(settingName): # проверяем helper.check(settingName) try: file = open("settings.txt", "r+") # ищем настройку for word in file: nigga = settingName + " = " if word.startswith(nigga): file.close() try: return int(word.replace(nigga, "")) except: # если значение не число sys.crash("Настрйка \"" + settingName + "\" не является числом") # если такая настройка не найдена print("Не удалось найти значение \"" + settingName + "\"! Записываем...") file.write(settingName + " = " + str(numArray[settingName]) + "\n") file.close() return getNum(settingName) except: # если файла settings.txt нет helper.createSettingsFile() return getNum(settingName)
2.578125
3
setup.py
gisce/esios
7
12793812
<reponame>gisce/esios from setuptools import setup, find_packages PACKAGES_DATA = {'esios': ['data/*.xsd']} setup( name='esios', version='0.12.2', packages=find_packages(), url='https://github.com/gisce/esios', license='MIT', install_requires=['libsaas'], author='GISCE-TI, S.L.', author_email='<EMAIL>', description='Interact with e.sios API', package_data=PACKAGES_DATA, )
1.3125
1
setup.py
swasun/RFOMT
2
12793813
<filename>setup.py<gh_stars>1-10 from setuptools import find_packages, setup setup( name='bolsonaro', packages=find_packages(where="code", exclude=['doc', 'dev']), package_dir={'': "code"}, version='0.1.0', description='Bolsonaro project of QARMA non-permanents: deforesting random forest using OMP.', author='QARMA team', license='MIT', )
1.375
1
mindhome_alpha/erpnext/patches/v13_0/healthcare_lab_module_rename_doctypes.py
Mindhome/field_service
1
12793814
<reponame>Mindhome/field_service<gh_stars>1-10 from __future__ import unicode_literals import frappe from frappe.model.utils.rename_field import rename_field def execute(): if frappe.db.exists('DocType', 'Lab Test') and frappe.db.exists('DocType', 'Lab Test Template'): # rename child doctypes doctypes = { 'Lab Test Groups': 'Lab Test Group Template', 'Normal Test Items': 'Normal Test Result', 'Sensitivity Test Items': 'Sensitivity Test Result', 'Special Test Items': 'Descriptive Test Result', 'Special Test Template': 'Descriptive Test Template' } frappe.reload_doc('healthcare', 'doctype', 'lab_test') frappe.reload_doc('healthcare', 'doctype', 'lab_test_template') for old_dt, new_dt in doctypes.items(): if not frappe.db.table_exists(new_dt) and frappe.db.table_exists(old_dt): frappe.rename_doc('DocType', old_dt, new_dt, force=True) frappe.reload_doc('healthcare', 'doctype', frappe.scrub(new_dt)) frappe.delete_doc_if_exists('DocType', old_dt) parent_fields = { 'Lab Test Group Template': 'lab_test_groups', 'Descriptive Test Template': 'descriptive_test_templates', 'Normal Test Result': 'normal_test_items', 'Sensitivity Test Result': 'sensitivity_test_items', 'Descriptive Test Result': 'descriptive_test_items' } for doctype, parentfield in parent_fields.items(): frappe.db.sql(""" UPDATE `tab{0}` SET parentfield = %(parentfield)s """.format(doctype), {'parentfield': parentfield}) # rename field frappe.reload_doc('healthcare', 'doctype', 'lab_test') if frappe.db.has_column('Lab Test', 'special_toggle'): rename_field('Lab Test', 'special_toggle', 'descriptive_toggle') if frappe.db.exists('DocType', 'Lab Test Group Template'): # fix select field option frappe.reload_doc('healthcare', 'doctype', 'lab_test_group_template') frappe.db.sql(""" UPDATE `tabLab Test Group Template` SET template_or_new_line = 'Add New Line' WHERE template_or_new_line = 'Add new line' """)
1.921875
2
test/unit/test_firewall_api_v1.py
IBM/networking-services-python-sdk
1
12793815
<filename>test/unit/test_firewall_api_v1.py # -*- coding: utf-8 -*- # (C) Copyright IBM Corp. 2020. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ibm_cloud_sdk_core.authenticators.no_auth_authenticator import NoAuthAuthenticator import inspect import json import pytest import re import responses from ibm_cloud_networking_services.firewall_api_v1 import * crn = 'testString' zone_identifier = 'testString' service = FirewallApiV1( authenticator=NoAuthAuthenticator(), crn=crn, zone_identifier=zone_identifier ) base_url = 'https://api.cis.cloud.ibm.com' service.set_service_url(base_url) ############################################################################## # Start of Service: SecurityLevelSetting ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for get_security_level_setting #----------------------------------------------------------------------------- class TestGetSecurityLevelSetting(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # get_security_level_setting() #-------------------------------------------------------- @responses.activate def test_get_security_level_setting_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/settings/security_level') mock_response = '{"result": {"id": "security_level", "value": "medium", "editable": true, "modified_on": "2014-01-01T05:20:00.12345Z"}, "result_info": {"page": 1, "per_page": 2, "count": 1, "total_count": 200}, "success": true, "errors": [["errors"]], "messages": [{"status": "OK"}]}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.get_security_level_setting() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_get_security_level_setting_value_error() #-------------------------------------------------------- @responses.activate def test_get_security_level_setting_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/settings/security_level') mock_response = '{"result": {"id": "security_level", "value": "medium", "editable": true, "modified_on": "2014-01-01T05:20:00.12345Z"}, "result_info": {"page": 1, "per_page": 2, "count": 1, "total_count": 200}, "success": true, "errors": [["errors"]], "messages": [{"status": "OK"}]}' responses.add(responses.GET, url, body=mock_response, content_type='application/json', status=200) # Pass in all but one required param and check for a ValueError req_param_dict = { } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.get_security_level_setting(**req_copy) #----------------------------------------------------------------------------- # Test Class for set_security_level_setting #----------------------------------------------------------------------------- class TestSetSecurityLevelSetting(): # Preprocess the request URL to ensure the mock response will be found. def preprocess_url(self, request_url: str): if re.fullmatch('.*/+', request_url) is None: return request_url else: return re.compile(request_url.rstrip('/') + '/+') #-------------------------------------------------------- # set_security_level_setting() #-------------------------------------------------------- @responses.activate def test_set_security_level_setting_all_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/settings/security_level') mock_response = '{"result": {"id": "security_level", "value": "medium", "editable": true, "modified_on": "2014-01-01T05:20:00.12345Z"}, "result_info": {"page": 1, "per_page": 2, "count": 1, "total_count": 200}, "success": true, "errors": [["errors"]], "messages": [{"status": "OK"}]}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Set up parameter values value = 'under_attack' # Invoke method response = service.set_security_level_setting( value=value, headers={} ) # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 # Validate body params req_body = json.loads(str(responses.calls[0].request.body, 'utf-8')) assert req_body['value'] == 'under_attack' #-------------------------------------------------------- # test_set_security_level_setting_required_params() #-------------------------------------------------------- @responses.activate def test_set_security_level_setting_required_params(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/settings/security_level') mock_response = '{"result": {"id": "security_level", "value": "medium", "editable": true, "modified_on": "2014-01-01T05:20:00.12345Z"}, "result_info": {"page": 1, "per_page": 2, "count": 1, "total_count": 200}, "success": true, "errors": [["errors"]], "messages": [{"status": "OK"}]}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Invoke method response = service.set_security_level_setting() # Check for correct operation assert len(responses.calls) == 1 assert response.status_code == 200 #-------------------------------------------------------- # test_set_security_level_setting_value_error() #-------------------------------------------------------- @responses.activate def test_set_security_level_setting_value_error(self): # Set up mock url = self.preprocess_url(base_url + '/v1/testString/zones/testString/settings/security_level') mock_response = '{"result": {"id": "security_level", "value": "medium", "editable": true, "modified_on": "2014-01-01T05:20:00.12345Z"}, "result_info": {"page": 1, "per_page": 2, "count": 1, "total_count": 200}, "success": true, "errors": [["errors"]], "messages": [{"status": "OK"}]}' responses.add(responses.PATCH, url, body=mock_response, content_type='application/json', status=200) # Pass in all but one required param and check for a ValueError req_param_dict = { } for param in req_param_dict.keys(): req_copy = {key:val if key is not param else None for (key,val) in req_param_dict.items()} with pytest.raises(ValueError): service.set_security_level_setting(**req_copy) # endregion ############################################################################## # End of Service: SecurityLevelSetting ############################################################################## ############################################################################## # Start of Model Tests ############################################################################## # region #----------------------------------------------------------------------------- # Test Class for SecurityLevelSettingRespMessagesItem #----------------------------------------------------------------------------- class TestSecurityLevelSettingRespMessagesItem(): #-------------------------------------------------------- # Test serialization/deserialization for SecurityLevelSettingRespMessagesItem #-------------------------------------------------------- def test_security_level_setting_resp_messages_item_serialization(self): # Construct a json representation of a SecurityLevelSettingRespMessagesItem model security_level_setting_resp_messages_item_model_json = {} security_level_setting_resp_messages_item_model_json['status'] = 'OK' # Construct a model instance of SecurityLevelSettingRespMessagesItem by calling from_dict on the json representation security_level_setting_resp_messages_item_model = SecurityLevelSettingRespMessagesItem.from_dict(security_level_setting_resp_messages_item_model_json) assert security_level_setting_resp_messages_item_model != False # Construct a model instance of SecurityLevelSettingRespMessagesItem by calling from_dict on the json representation security_level_setting_resp_messages_item_model_dict = SecurityLevelSettingRespMessagesItem.from_dict(security_level_setting_resp_messages_item_model_json).__dict__ security_level_setting_resp_messages_item_model2 = SecurityLevelSettingRespMessagesItem(**security_level_setting_resp_messages_item_model_dict) # Verify the model instances are equivalent assert security_level_setting_resp_messages_item_model == security_level_setting_resp_messages_item_model2 # Convert model instance back to dict and verify no loss of data security_level_setting_resp_messages_item_model_json2 = security_level_setting_resp_messages_item_model.to_dict() assert security_level_setting_resp_messages_item_model_json2 == security_level_setting_resp_messages_item_model_json #----------------------------------------------------------------------------- # Test Class for SecurityLevelSettingRespResult #----------------------------------------------------------------------------- class TestSecurityLevelSettingRespResult(): #-------------------------------------------------------- # Test serialization/deserialization for SecurityLevelSettingRespResult #-------------------------------------------------------- def test_security_level_setting_resp_result_serialization(self): # Construct a json representation of a SecurityLevelSettingRespResult model security_level_setting_resp_result_model_json = {} security_level_setting_resp_result_model_json['id'] = 'security_level' security_level_setting_resp_result_model_json['value'] = 'medium' security_level_setting_resp_result_model_json['editable'] = True security_level_setting_resp_result_model_json['modified_on'] = '2014-01-01T05:20:00.12345Z' # Construct a model instance of SecurityLevelSettingRespResult by calling from_dict on the json representation security_level_setting_resp_result_model = SecurityLevelSettingRespResult.from_dict(security_level_setting_resp_result_model_json) assert security_level_setting_resp_result_model != False # Construct a model instance of SecurityLevelSettingRespResult by calling from_dict on the json representation security_level_setting_resp_result_model_dict = SecurityLevelSettingRespResult.from_dict(security_level_setting_resp_result_model_json).__dict__ security_level_setting_resp_result_model2 = SecurityLevelSettingRespResult(**security_level_setting_resp_result_model_dict) # Verify the model instances are equivalent assert security_level_setting_resp_result_model == security_level_setting_resp_result_model2 # Convert model instance back to dict and verify no loss of data security_level_setting_resp_result_model_json2 = security_level_setting_resp_result_model.to_dict() assert security_level_setting_resp_result_model_json2 == security_level_setting_resp_result_model_json #----------------------------------------------------------------------------- # Test Class for ResultInfo #----------------------------------------------------------------------------- class TestResultInfo(): #-------------------------------------------------------- # Test serialization/deserialization for ResultInfo #-------------------------------------------------------- def test_result_info_serialization(self): # Construct a json representation of a ResultInfo model result_info_model_json = {} result_info_model_json['page'] = 1 result_info_model_json['per_page'] = 2 result_info_model_json['count'] = 1 result_info_model_json['total_count'] = 200 # Construct a model instance of ResultInfo by calling from_dict on the json representation result_info_model = ResultInfo.from_dict(result_info_model_json) assert result_info_model != False # Construct a model instance of ResultInfo by calling from_dict on the json representation result_info_model_dict = ResultInfo.from_dict(result_info_model_json).__dict__ result_info_model2 = ResultInfo(**result_info_model_dict) # Verify the model instances are equivalent assert result_info_model == result_info_model2 # Convert model instance back to dict and verify no loss of data result_info_model_json2 = result_info_model.to_dict() assert result_info_model_json2 == result_info_model_json #----------------------------------------------------------------------------- # Test Class for SecurityLevelSettingResp #----------------------------------------------------------------------------- class TestSecurityLevelSettingResp(): #-------------------------------------------------------- # Test serialization/deserialization for SecurityLevelSettingResp #-------------------------------------------------------- def test_security_level_setting_resp_serialization(self): # Construct dict forms of any model objects needed in order to build this model. result_info_model = {} # ResultInfo result_info_model['page'] = 1 result_info_model['per_page'] = 2 result_info_model['count'] = 1 result_info_model['total_count'] = 200 security_level_setting_resp_messages_item_model = {} # SecurityLevelSettingRespMessagesItem security_level_setting_resp_messages_item_model['status'] = 'OK' security_level_setting_resp_result_model = {} # SecurityLevelSettingRespResult security_level_setting_resp_result_model['id'] = 'security_level' security_level_setting_resp_result_model['value'] = 'medium' security_level_setting_resp_result_model['editable'] = True security_level_setting_resp_result_model['modified_on'] = '2014-01-01T05:20:00.12345Z' # Construct a json representation of a SecurityLevelSettingResp model security_level_setting_resp_model_json = {} security_level_setting_resp_model_json['result'] = security_level_setting_resp_result_model security_level_setting_resp_model_json['result_info'] = result_info_model security_level_setting_resp_model_json['success'] = True security_level_setting_resp_model_json['errors'] = [['testString']] security_level_setting_resp_model_json['messages'] = [security_level_setting_resp_messages_item_model] # Construct a model instance of SecurityLevelSettingResp by calling from_dict on the json representation security_level_setting_resp_model = SecurityLevelSettingResp.from_dict(security_level_setting_resp_model_json) assert security_level_setting_resp_model != False # Construct a model instance of SecurityLevelSettingResp by calling from_dict on the json representation security_level_setting_resp_model_dict = SecurityLevelSettingResp.from_dict(security_level_setting_resp_model_json).__dict__ security_level_setting_resp_model2 = SecurityLevelSettingResp(**security_level_setting_resp_model_dict) # Verify the model instances are equivalent assert security_level_setting_resp_model == security_level_setting_resp_model2 # Convert model instance back to dict and verify no loss of data security_level_setting_resp_model_json2 = security_level_setting_resp_model.to_dict() assert security_level_setting_resp_model_json2 == security_level_setting_resp_model_json # endregion ############################################################################## # End of Model Tests ##############################################################################
1.796875
2
tests/test_bobocep/test_setup/test_bobo_complex_event.py
r3w0p/bobocep
5
12793816
import unittest from bobocep.rules.actions.no_action import NoAction from bobocep.rules.nfas.patterns.bobo_pattern import BoboPattern from bobocep.setup.bobo_complex_event import \ BoboComplexEvent class TestBoboComplexEvent(unittest.TestCase): def test_constructor(self): name = "evdef_name" pattern = BoboPattern() action = NoAction() evdef = BoboComplexEvent(name=name, pattern=pattern, action=action) self.assertEqual(name, evdef.name) self.assertEqual(pattern, evdef.pattern) self.assertEqual(action, evdef.action) def test_constructor_actions_is_none(self): name = "evdef_name" pattern = BoboPattern() action = None evdef = BoboComplexEvent(name=name, pattern=pattern, action=action) self.assertEqual(name, evdef.name) self.assertEqual(pattern, evdef.pattern) self.assertIsNone(evdef.action)
2.71875
3
addressbook/models.py
Saviq/django-addressbook
0
12793817
<filename>addressbook/models.py from django.utils.translation import ugettext_lazy as _ from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist from django.db import models PROPERTY_LABELS = ( ('home', _('home')), ('work', _('work')), ('other', _('other')), ) IM_SERVICES = ( ('google', _('Google Talk')), ('aim', _('AIM')), ('yahoo', _('Yahoo')), ('msn', _('MSN')), ('icq', _('ICQ')), ('jabber', _('Jabber')), ) class PrimaryPropertyManager(models.Manager): def primary(self): try: return self.get_queryset().get(is_primary=True) except ObjectDoesNotExist: return None # Base classes # Every contact property must inherit from either ContactProperty or # PrimaryPropery class ContactProperty(models.Model): class Meta: abstract = True def save(self, *args, **kwargs): self.contact.save() models.Model.save(self, *args, **kwargs) class PrimaryProperty(ContactProperty): is_primary = models.BooleanField(_("primary"), default=False) objects = PrimaryPropertyManager() class Meta: abstract = True def save(self, *args, **kwargs): update_primary = kwargs.pop('update_primary', True) if update_primary: try: existing = self.__class__.objects.exclude(pk=self.id) \ .filter(contact=self.contact, is_primary=True).get() except ObjectDoesNotExist: existing = None if self.is_primary: if existing is not None: existing.is_primary = False existing.save(update_primary=False) elif existing is None: self.is_primary = True super(PrimaryProperty, self).save(*args, **kwargs) # Mixin classes # Abstacts out common fields and methods, models can implement this for # themselves if different. class LabeledProperty(models.Model): label = models.CharField(_("label"), max_length=200, choices=PROPERTY_LABELS) class Meta: abstract = True def __unicode__(self): return u'%s [%s]' % (self.value, LabeledProperty.get_label_display(self)) class NamedProperty(models.Model): name = models.CharField(_("name"), max_length=200) class Meta: abstract = True def __unicode__(self): return u'%s: %s' % (self.name, self.value) class OptionalNamedProperty(models.Model): name = models.CharField(_("name"), max_length=200, blank=True) class Meta: abstract = True def __unicode__(self): return u'%s%s' % (self.name and '%s: ' % self.name or "", self.value) # Contact properties class PrimaryPropertyDescriptor(object): def __init__(self, collection_name): self.collection_name = collection_name def get_collection(self, instance): return getattr(instance, self.collection_name) def __get__(self, instance, owner): if instance is None: return self return self.get_collection(instance).primary() def __set__(self, instance, value): value.is_primary = True self.get_collection(instance).add(value) def __delete__(self, instance): self.get_collection(instance).primary().delete() for obj in self.get_collection(instance).all(): obj.is_primary = True return class CustomField(ContactProperty, NamedProperty): contact = models.ForeignKey('Contact', related_name="custom_fields") value = models.TextField(_("value")) def __unicode__(self): return u'%s: %s' % (self.name, self.value) class Date(ContactProperty, NamedProperty): contact = models.ForeignKey('Contact', related_name="dates") value = models.DateField(_("date")) class Meta: verbose_name = _("date") verbose_name_plural = _("dates") class EmailAddress(PrimaryProperty, LabeledProperty, OptionalNamedProperty): contact = models.ForeignKey('Contact', related_name="email_addresses") value = models.EmailField(_("address")) class Meta: verbose_name = _("email address") verbose_name_plural = _("email addresses") class IMAccount(PrimaryProperty): contact = models.ForeignKey('Contact', related_name="im_accounts") service = models.CharField(_("service"), max_length=30, choices=IM_SERVICES) account = models.CharField(_("account"), help_text=_("user name or email address"), max_length=200) class Meta: verbose_name = _("IM account") verbose_name_plural = _("IM accounts") @property def value(self): return self.account class Link(ContactProperty, NamedProperty): contact = models.ForeignKey('Contact', related_name="links") value = models.URLField(_('URL'), max_length=200, default='http://') class Meta: verbose_name = _("link") verbose_name_plural = _("links") def save(self, *args, **kwargs): if self.value == 'http://': return super(Link, self).save(*args, **kwargs) class Organization(PrimaryProperty): contact = models.ForeignKey('Contact', related_name="organizations") name = models.CharField(_("name"), max_length=200) title = models.CharField(_("title"), max_length=200, blank=True) class Meta: verbose_name = _("organization") verbose_name_plural = _("organizations") def __unicode__(self): return self.name class PhoneNumber(PrimaryProperty, OptionalNamedProperty): PHONE_NUM_LABELS = ( ('landline', _('landline')), ('mobile', _('mobile')), ('fax', _('fax')), ) contact = models.ForeignKey('Contact', related_name="phone_numbers") label = models.CharField(_("label"), max_length=200, choices=PHONE_NUM_LABELS) value = models.CharField(_('number'), max_length=100) class Meta: verbose_name = _("phone number") verbose_name_plural = _("phone numbers") def __unicode__(self): return u'%s%s [%s]' % (self.name and "%s: " % self.name or "", self.value, PhoneNumber.get_label_display(self)) class PostalAddress(PrimaryProperty, LabeledProperty): contact = models.ForeignKey('Contact', related_name="postal_addresses") address1 = models.CharField(_("address line 1"), max_length=127, blank=False) address2 = models.CharField(_("address line 2"), max_length=127, blank=True) city = models.CharField(_("city"), max_length=127, blank=True) state = models.CharField(_("state/province/region"), max_length=127, blank=True) country = models.CharField(_("country"), max_length=127) postcode = models.CharField(_("postal code/zip code"), max_length=31, blank=True) class Meta: verbose_name = _("postal address") verbose_name_plural = _("postal addresses") @property def value(self): data = [self.address1, self.address2, self.city, self.state, self.country, self.postcode] return ", ".join([i for i in data if i]) class Contact(models.Model): """ A person or company. """ name = models.CharField(max_length=200) is_company = models.BooleanField(_("company"), default=False) photo = models.ImageField(_("photo"), upload_to='var/addressbook/photos', blank=True) notes = models.TextField(_("notes"), blank=True) date_created = models.DateTimeField(auto_now_add=True, editable=False) date_updated = models.DateTimeField(auto_now=True, editable=False) class Meta: verbose_name = _("contact") verbose_name_plural = _("contacts") ordering = ('name',) def __unicode__(self): return self.name # primary contact properies email_address = PrimaryPropertyDescriptor('email_addresses') im_account = PrimaryPropertyDescriptor('im_accounts') company = PrimaryPropertyDescriptor('organizations') phone_number = PrimaryPropertyDescriptor('phone_numbers') postal_address = PrimaryPropertyDescriptor('postal_addresses') @property def address(self): return self.postal_address class Group(models.Model): name = models.CharField(max_length=200, unique=True) description = models.TextField(_("description"), blank=True) members = models.ManyToManyField(Contact, verbose_name=_("members"), blank=True) class Meta: verbose_name = _("group") verbose_name_plural = _("groups") @property def member_list(self): return ', '.join([str(c) for c in self.members.all()[:5]]) def __unicode__(self): return self.name
2.1875
2
RunTCAV.py
zxy317/CIFAR-ZOO
0
12793818
import cav as cav import model as model import tcav as tcav import utils as utils import utils_plot as utils_plot # utils_plot requires matplotlib import os import torch import activation_generator as act_gen import tensorflow as tf working_dir = './tcav_class_test' activation_dir = working_dir + '/activations/' cav_dir = working_dir + '/cavs/' source_dir = "./data/" bottlenecks = ['conv2'] utils.make_dir_if_not_exists(activation_dir) utils.make_dir_if_not_exists(working_dir) utils.make_dir_if_not_exists(cav_dir) # this is a regularizer penalty parameter for linear classifier to get CAVs. alphas = [0.1] target = 'cat' concepts = ["dotted", "striped", "zigzagged"] random_counterpart = 'random500_1' LABEL_PATH = './data/imagenet_comp_graph_label_strings.txt' mymodel = model.CNNWrapper(LABEL_PATH) act_generator = act_gen.ImageActivationGenerator(mymodel, source_dir, activation_dir, max_examples=100) tf.compat.v1.logging.set_verbosity(0) num_random_exp = 30 # folders (random500_0, random500_1) mytcav = tcav.TCAV(target, concepts, bottlenecks, act_generator, alphas, cav_dir=cav_dir, num_random_exp=num_random_exp) results = mytcav.run() utils_plot.plot_results(results, num_random_exp=num_random_exp)
2.203125
2
job.py
DiOS-Analysis/Worker
3
12793819
<gh_stars>1-10 import os import logging import base64 import time from enum import Enum from store import AppStore, AppStoreException from pilot import Pilot logger = logging.getLogger('worker.'+__name__) class JobExecutionError(Exception): pass class Job(object): STATE = Enum([u'undefined', u'pending', u'running', u'finished', u'failed']) TYPE = Enum([u'run_app', u'install_app', u'exec_cmd']) def __init__(self, backend, device, jobDict): self.jobDict = jobDict if not '_id' in jobDict: raise JobExecutionError('No jobId present') self.jobId = jobDict['_id'] self.device = device self.backend = backend def execute(self): raise NotImplementedError class InstallAppJob(Job): APP_ARCHIVE_PATH='/tmp/apparchive/' def __init__(self, backend, device, jobDict): super(InstallAppJob, self).__init__(backend, device, jobDict) self.appId = None def _archive_app_binary(self, bundleId): logger.debug('archiving %s' % bundleId) try: ### add app binary to backend self.device.archive(bundleId, self.APP_ARCHIVE_PATH, app_only=True) appPath = '%s%s.ipa' % (self.APP_ARCHIVE_PATH, bundleId) logger.debug('archiving app %s to %s' % (bundleId, appPath)) self.backend.post_app_archive(self.appId, appPath) os.remove(appPath) #delete app from disk except Exception, e: raise JobExecutionError('unable to archive app binary: %s' % str(e)) def _install_app(self, pilot): ''' try to install the app will raise a JobExecutionError on failure returns: True if the app was just installed False if the app was already installed before ''' logger.debug('_install_app') if not 'jobInfo' in self.jobDict: raise JobExecutionError('no jobInfo given') jobInfo = self.jobDict['jobInfo'] if not 'appType' in jobInfo: raise JobExecutionError('no app type given') if not 'bundleId' in jobInfo: raise JobExecutionError('no bundleId given') bundleId = jobInfo['bundleId'] version = None if 'version' in jobInfo: version = jobInfo['version'] #check app type if 'AppStoreApp' == jobInfo['appType']: logger.debug('installing appstore app %s' % bundleId) # use device data due to better version data installedApps = self.device.installed_apps() # check if app already installed alreadyInstalled = False if bundleId in installedApps: logger.debug('app %s is already installed' % bundleId) # check for matching version number if version: installedVersion = installedApps[bundleId]['version'] if version != installedVersion: raise JobExecutionError('wrong app version installed!') # the app is already installed and versions are compatible alreadyInstalled = True # check the backend for already existing app app = self.backend.get_app_bundleId(bundleId, version) logger.debug('backend result for bundleId %s: %s' % (bundleId, app)) if app and '_id' in app: self.appId = app['_id'] # case 1: already installed and registered with backend if self.appId and alreadyInstalled: # app is installed and registred with backend logger.info('App is already installed and registred with backend <%s>' % self.appId) return False # case 2: install from backend elif self.appId: # install from backend # dirty check for ipa-size < ~50MB if app and 'fileSizeBytes' in app: size = 0 try: size = int(app['fileSizeBytes']) except ValueError: size = -1 if size > 0 or size < 40000000: # actually install from backend logger.info('installing app %s from backend (size: %s)' % (bundleId,size)) if not os.path.exists(self.APP_ARCHIVE_PATH): os.makedirs(self.APP_ARCHIVE_PATH) appPath = '%s%s.ipa' % (self.APP_ARCHIVE_PATH, bundleId) logger.debug('fetch app %s from backend' % bundleId) if self.backend.get_app_archive(self.appId, appPath): logger.info('installing app %s via device handler' % bundleId) self.device.install(appPath) os.remove(appPath) tries = 3 while tries > 0 and bundleId not in self.device.installed_apps(): tries = tries-1 time.sleep(60) if bundleId in self.device.installed_apps(): return True else: logging.warning('installing the app via device handler failed! - Install via AppStore instead') else: logger.warning('unable to get app archive from backend. appId: <%s>' % self.appId) else: logger.info('skipping install from backend to avoid ideviceinstaller error (ipa to large)') else: logger.info('skipping install from backend to avoid ideviceinstaller error (unknown ipa size)') # case 3: install from appstore # case 4: installed but unregistred storeCountry = 'de' if 'storeCountry' in jobInfo: storeCountry = jobInfo['storeCountry'] ## get appInfo logger.debug('fetch appInfo from iTunesStore') store = AppStore(storeCountry) trackId = 0 appInfo = {} try: trackId = store.get_trackId_for_bundleId(bundleId) appInfo = store.get_app_info(trackId) except AppStoreException as e: logger.error('unable to get appInfo: %s ', e) raise JobExecutionError('unable to get appInfo: AppStoreException') self.jobDict['appInfo'] = appInfo logger.debug('using appInfo: %s' % str(appInfo)) ## get account accountId = '' if alreadyInstalled: # get account info from device installedAppInfo = self.device.installed_apps()[bundleId] if 'accountId' in installedAppInfo: accountId = installedAppInfo['accountId'] else: if 'accountId' in jobInfo: accountId = jobInfo['accountId'] else: for acc in self.device.accounts(): if acc['storeCountry'] == storeCountry: accountId = acc['uniqueIdentifier'] if accountId == '': raise JobExecutionError('unable to find a valid account identifier') logger.debug('using account %s' % accountId) # case 3 only if not alreadyInstalled: # install via appstore logger.info('installing app %s via appstore' % bundleId) if not pilot.install_appstore(appInfo, accountId, taskInfo={'backendUrl':self.backend.baseUrl}): logger.error("App installation failed") raise JobExecutionError("App installation failed") ## add app to backend ### the app data is currently taken from ideviceinstaller (via device.installed_apps) ### alternatively the pilot could be used to access the /applications rest api appData = store.get_app_data(trackId) appData['account'] = accountId appData['name'] = appData['trackName'] self.appId = self.backend.post_app(appData) # end install via appstore return not alreadyInstalled elif 'CydiaApp' == jobInfo['appType']: logger.info('installing app %s via cydia' % bundleId) pilot.install_cydia(bundleId) return True else: raise JobExecutionError('invalid app type') def execute(self): logger.info("executing InstallAppJob %s on device %s" % (self.jobId, self.device)) # allow InstallAppJobs to exist/run without a corresponding backendJob backendJobData = {} if self.jobId: backendJobData = self.backend.get_job(self.jobId) ## set job running backendJobData['state'] = Job.STATE.RUNNING self.backend.post_job(backendJobData) pilot = Pilot(self.device.base_url()) result = True try: self.appJustInstalled = self._install_app(pilot) if not self.appId: raise JobExecutionError("No appId present") jobInfo = self.jobDict['jobInfo'] bundleId = jobInfo['bundleId'] if self.device.ios_version()[0] > 8: logger.debug("skipping app archiving since device is running iOS 9 or later") else: logger.debug("check if backend already has an app ipa") if not self.backend.has_app_archive(self.appId): self._archive_app_binary(bundleId) backendJobData['state'] = Job.STATE.FINISHED except JobExecutionError, e: logger.error("Job execution failed: %s" % str(e)) backendJobData['state'] = Job.STATE.FAILED result = False ## set job finished if self.jobId: self.backend.post_job(backendJobData) return result class RunAppJob(Job): APP_ARCHIVE_PATH='/tmp/apparchive/' def __init__(self, backend, device, jobDict): super(RunAppJob, self).__init__(backend, device, jobDict) self.appId = None def _install_app(self, pilot): ''' try to install the app returns: True if the app was just installed False if the app was already installed before ''' logger.debug('_installApp') installJobDict = { '_id': False, 'jobInfo': self.jobDict['jobInfo'] } installJob = InstallAppJob(self.backend, self.device, installJobDict) logger.debug('executing InstallJob') if not installJob.execute(): logger.debug('Unable to install app') raise JobExecutionError('Unable to install app') logger.debug('app is installed now') self.appId = installJob.appId return installJob.appJustInstalled def _archive_app_binary(self, bundleId): logger.debug('archiving %s' % bundleId) try: ### add app binary to backend self.device.archive(bundleId, self.APP_ARCHIVE_PATH, app_only=True) appPath = '%s%s.ipa' % (self.APP_ARCHIVE_PATH, bundleId) logger.debug('archiving app %s to %s' % (bundleId, appPath)) self.backend.post_app_archive(self.appId, appPath) os.remove(appPath) #delete app from disk except Exception, e: raise JobExecutionError('unable to archive app binary: %s' % str(e)) def _execute_app(self, pilot, bundleId, runId, executionStrategy=None): ''' execute the app ''' logger.debug('_execute_app') taskInfo = { 'runId':runId, 'backendUrl':self.backend.baseUrl, } if executionStrategy: taskInfo['executionStrategy'] = executionStrategy pilot.run_auto_execution(bundleId, taskInfo=taskInfo) def _save_run_results(self, runId, bundleId, uninstallApp=True): logger.info("Saving apparchive to backend") if self.device.archive(bundleId, self.APP_ARCHIVE_PATH, app_only=False): appPath = self.APP_ARCHIVE_PATH + bundleId + '.ipa' if os.path.exists(appPath): f = open(appPath, 'rb') appData = f.read() f.close() try: appData = base64.b64encode(appData) self.backend.post_result(runId, 'app_archive', appData) except TypeError: logger.error('Unable to encode app archive!') #delete app archive from disk os.remove(appPath) if uninstallApp: self.device.uninstall(bundleId) def execute(self): logger.info("executing RunAppJob %s on device %s" % (self.jobId, self.device)) backendJobData = self.backend.get_job(self.jobId) ## set job running backendJobData['state'] = Job.STATE.RUNNING self.backend.post_job(backendJobData) pilot = Pilot(self.device.base_url()) try: installDone = self._install_app(pilot) if not self.appId: raise JobExecutionError("No appId present") jobInfo = self.jobDict['jobInfo'] bundleId = jobInfo['bundleId'] if self.device.ios_version()[0] > 8: logger.debug("skipping app archiving since device is running iOS 9 or later") else: if not self.backend.has_app_archive(self.appId): self._archive_app_binary(bundleId) executionStrategy = None if 'executionStrategy' in jobInfo: executionStrategy = jobInfo['executionStrategy'] logger.debug('post_run') ## add run to backend runId = self.backend.post_run(self.appId, self.backend.RUN_STATE.RUNNING) logger.info('starting app pilot execution') self._execute_app(pilot, bundleId, runId, executionStrategy) if installDone: logger.info("uninstalling app (%s)" % bundleId) self.device.uninstall(bundleId) # # save the results and install the app if not previously installed # self._save_run_results(runId, bundleId, uninstallApp=installDone) ## set run finished self.backend.post_run(self.appId, self.backend.RUN_STATE.FINISHED, runId=runId, executionStrategy=executionStrategy) except JobExecutionError, e: logger.error("Job execution failed: %s" % str(e)) backendJobData['state'] = Job.STATE.FAILED self.backend.post_job(backendJobData) return False ## set job finished backendJobData['state'] = Job.STATE.FINISHED self.backend.post_job(backendJobData) return True class ExecuteCmdJob(Job): def __init__(self, backend, device, jobDict): super(ExecuteCmdJob, self).__init__(backend, device, jobDict) if 'process' in jobDict: self.process = jobDict['process'] if 'command' in jobDict: self.command = jobDict['command'] def execute(self): if self.process and self.execute: pilot = Pilot(self.device.base_url()) pilot.inject(self.process, self.command) else: raise JobExecutionError("Process or command missing") class JobFactory(object): @classmethod def job_from_dict(cls, jobDict, backend, device): job = None if 'type' in jobDict: jobType = jobDict['type'] if jobType == Job.TYPE.RUN_APP: job = RunAppJob(backend, device, jobDict) elif jobType == Job.TYPE.INSTALL_APP: job = InstallAppJob(backend, device, jobDict) elif jobType == Job.TYPE.EXEC_CMD: job = ExecuteCmdJob(backend, device, jobDict) else: logger.error('jobDict does not contain a type!') if job: logger.info('job created: %s' % str(job)) return job
2.328125
2
benchmarks/v3-app-note/run_benchmarks_pll_empirical.py
ayresdl/beagle-lib
110
12793820
<filename>benchmarks/v3-app-note/run_benchmarks_pll_empirical.py #!/usr/bin/env python2.7 # <NAME> import sys import argparse import subprocess import re from math import log, exp # def gen_log_site_list(min, max, samples): # log_range=(log(max) - log(min)) # samples_list = [] # for i in range(0, samples): # samples_list.append(int(round(exp(log(min) + log_range/(samples-1)*i)))) # return samples_list def main(): parser = argparse.ArgumentParser(description='generate synthetictest benchmarks') parser.add_argument('synthetictest_path', help='path to synthetictest') args = parser.parse_args() file_list = ['59', '128', '354', '404'] rates = 4 precision_list = ['double'] states_list = [4] # site_samples = 40 # sites_min = 100 # sites_max = 1000000 # sites_list = gen_log_site_list(sites_min, sites_max, site_samples) rsrc_list = ['cpu', 'cpu-threaded', 'pll', 'pll-repeats', 'gpu', 'dual-gpu'] reps = 10 seed_list = range(1,11) extra_args = ['--randomtree', '--stdrand', '--fulltiming', '--newparameters', '--reroot', '--newtree'] throughput_re = re.compile('tree throughput total: (.*) M partials/second') debug_file = open('debug.txt', 'w') header = 'iteration, precision, states, file, seed, resource, throughput' print header iteration = 0 for file in file_list: for rsrc in rsrc_list: for precision in precision_list: for states in states_list: for seed in seed_list: out_string = str(iteration) out_string += ', ' + str(precision) out_string += ', ' + str(states) out_string += ', ' + str(file) out_string += ', ' + str(seed) synthetictest_cmd = [args.synthetictest_path] synthetictest_cmd.extend(['--alignmentdna', file + '.phy']) synthetictest_cmd.extend(['--tree', file + '.tree']) synthetictest_cmd.extend(['--states', str(states)]) synthetictest_cmd.extend(['--reps', str(reps), '--rates', str(rates)]) synthetictest_cmd.extend(['--seed', str(seed)]) throughput_re_index = 0 if rsrc == 'cpu': synthetictest_cmd.extend(['--rsrc', '0', '--postorder']) elif rsrc == 'cpu-threaded': synthetictest_cmd.extend(['--rsrc', '0', '--enablethreads', '--postorder']) elif rsrc == 'pll': synthetictest_cmd.extend(['--rsrc', '0', '--pllonly', '--postorder']) elif rsrc == 'pll-repeats': synthetictest_cmd.extend(['--rsrc', '0', '--pllonly', '--pllrepeats', '--postorder']) elif rsrc == 'gpu': synthetictest_cmd.extend(['--rsrc', '1']) elif rsrc == 'dual-gpu': synthetictest_cmd.extend(['--rsrc', '1,2','--multirsrc']) elif rsrc == 'quadruple-gpu': synthetictest_cmd.extend(['--rsrc', '1,2,3,4','--multirsrc']) synthetictest_cmd.extend(extra_args) if precision == 'double': synthetictest_cmd.extend(['--doubleprecision']) try: synthetictest_out = subprocess.check_output(synthetictest_cmd) out_string += ', ' + rsrc throughput = throughput_re.findall(synthetictest_out) if throughput: out_string += ', ' + throughput[throughput_re_index] print out_string except subprocess.CalledProcessError: debug_file.write('ERROR') debug_file.write('===============================================================\n') debug_file.write(out_string + '\n') debug_file.write(' '.join(synthetictest_cmd) + '\n') debug_file.write(synthetictest_out) iteration += 1 return 0 if __name__ == '__main__': sys.exit(main())
2.21875
2
common_helper_yara/yara_scan.py
mistressofjellyfish/common_helper_yara
0
12793821
from subprocess import check_output, CalledProcessError, STDOUT import sys import re import json import logging from .common import convert_external_variables def scan(signature_path, file_path, external_variables={}, recursive=False): ''' Scan files and return matches :param signature_path: path to signature file :type signature_path: string :param file_path: files to scan :type file_path: string :return: dict ''' variables = convert_external_variables(external_variables) recursive = '-r' if recursive else '' try: scan_result = check_output("yara {} {} --print-meta --print-strings {} {}".format(variables, recursive, signature_path, file_path), shell=True, stderr=STDOUT) except CalledProcessError as e: logging.error("There seems to be an error in the rule file:\n{}".format(e.output.decode())) return {} try: return _parse_yara_output(scan_result.decode()) except Exception as e: logging.error('Could not parse yara result: {} {}'.format(sys.exc_info()[0].__name__, e)) return {} def _parse_yara_output(output): resulting_matches = dict() match_blocks, rules = _split_output_in_rules_and_matches(output) matches_regex = re.compile(r'((0x[a-f0-9]*):(\S+):\s(.+))+') for index, rule in enumerate(rules): for match in matches_regex.findall(match_blocks[index]): _append_match_to_result(match, resulting_matches, rule) return resulting_matches def _split_output_in_rules_and_matches(output): split_regex = re.compile(r'\n*.*\[.*\]\s\/.+\n*') match_blocks = split_regex.split(output) while '' in match_blocks: match_blocks.remove('') rule_regex = re.compile(r'(.*)\s\[(.*)\]\s([\.\.\/]|[\/]|[\.\/])(.+)') rules = rule_regex.findall(output) assert len(match_blocks) == len(rules) return match_blocks, rules def _append_match_to_result(match, resulting_matches, rule): assert len(rule) == 4 rule_name, meta_string, _, _ = rule assert len(match) == 4 _, offset, matched_tag, matched_string = match meta_dict = _parse_meta_data(meta_string) this_match = resulting_matches[rule_name] if rule_name in resulting_matches else dict(rule=rule_name, matches=True, strings=list(), meta=meta_dict) this_match['strings'].append((int(offset, 16), matched_tag, matched_string.encode())) resulting_matches[rule_name] = this_match def _parse_meta_data(meta_data_string): ''' Will be of form 'item0=lowercaseboolean0,item1="value1",item2=value2,..' ''' meta_data = dict() for item in meta_data_string.split(','): if '=' in item: key, value = item.split('=', maxsplit=1) value = json.loads(value) if value in ['true', 'false'] else value.strip('\"') meta_data[key] = value else: logging.warning('Malformed meta string \'{}\''.format(meta_data_string)) return meta_data
2.609375
3
src/opihiexarata/astrometry/webclient.py
psmd-iberutaru/OpihiExarata
0
12793822
<reponame>psmd-iberutaru/OpihiExarata import os import urllib.parse import urllib.request import urllib.error import random import astropy.wcs as ap_wcs import opihiexarata.library as library import opihiexarata.library.error as error import opihiexarata.library.hint as hint # The base URL for the API which all other service URLs are derived from. _DEFAULT_BASE_URL = "http://nova.astrometry.net/api/" class AstrometryNetWebAPIEngine(hint.AstrometryEngine): """A python-based wrapper around the web API for astrometry.net. This API does not have the full functionality of the default Python client seen at https://github.com/dstndstn/astrometry.net/blob/master/net/client/client.py. The point of this class is to be simple enough to be understood by others and be specialized for OpihiExarata. Attributes ---------- _apikey : string The API key used to log in. original_upload_filename : string The original filename that was used to upload the data. session : string The session ID of this API connection to astrometry.net """ # The default arguments for uploading files. In (key, value, type) form. # Detailed is also their useage cases per # http://astrometry.net/doc/net/api.html#submitting-a-url _DEFAULT_URL_ARGUMENTS = [ # These parameters are for licensing and distribution terms. ("allow_commercial_use", "d", str), ("allow_modifications", "d", str), # For visibility by the general public. ("publicly_visible", "y", str), # Image scaling parameters, if provided, when known, helps the # processing a little. ("scale_units", None, str), ("scale_type", None, str), ("scale_lower", None, float), ("scale_upper", None, float), ("scale_est", None, float), ("scale_err", None, float), # These parameters allows for the establishment of an initial guess # specified byt he centers, and its maximal deviation as specified # by the radius parameter. (In degrees.) ("center_ra", None, float), ("center_dec", None, float), ("radius", None, float), # Image properties, preprocessing it a little can help in its # determination. ("parity", None, int), ("downsample_factor", None, int), ("positional_error", None, float), ("tweak_order", None, int), ("crpix_center", None, bool), ("invert", None, bool), # These parameters are needed if being sent instead is an x,y list of # source star positions. ("image_width", None, int), ("image_height", None, int), ("x", None, list), ("y", None, list), ("album", None, str), ] def __init__(self, url=None, apikey: str = None, silent: bool = True) -> None: """The instantiation, connecting to the web API using the API key. Parameters ---------- url : string, default = None The base url which all other API URL links are derived from. This should be used if the API is a self-hosted install or has a different web source than nova.astrometry.net. Defaults to the nova.astrometry.net api service. apikey : string The API key of the user. silent : bool, default = True Should there be printed messages as the processes are executed. This is helpful for debugging or similar processes. Returns ------- None """ # Defining the URL. self.ASTROMETRY_BASE_API_URL = ( str(url) if url is not None else _DEFAULT_BASE_URL ) # Use the API key to log in a derive a session key. self.session = None session_key = self.__login(apikey=apikey) self._apikey = apikey self.session = session_key # Placeholder variables. self.original_upload_filename = str() self._image_return_results = {} return None def __login(self, apikey: str) -> str: """The method to log into the API system. Parameters ---------- apikey : string The API key for the web API service. Returns ------- session_key : string The session key for this login session. """ # The key. args = {"apikey": apikey} result = self._send_web_request(service="login", args=args) session = result.get("session", False) # Check if the session works and that the API key given is valid. if not session: raise error.WebRequestError( "The provided API key did not provide a valid session." ) else: # The session should be fine. session_key = session return session_key def __get_submission_id(self) -> str: """Extract the submission ID from the image upload results.""" image_results = self._image_return_results self.__submission_id = image_results.get("subid", None) return self.__submission_id def __set_submission_id(self, sub_id) -> None: """Assign the submission ID, it should only be done once when the image is obtained.""" if self.__submission_id is None: self.__submission_id = sub_id else: raise error.ReadOnlyError( "The submission ID has already been set by obtaining it from the API" " service." ) return None def __del_submission_id(self) -> None: """Remove the current submission ID association.""" self.__submission_id = None return None __doc_submission_id = ( "When file upload or table upload is sent to the API, the submission ID is" " saved here." ) __submission_id = None submission_id = property( __get_submission_id, __set_submission_id, __del_submission_id, __doc_submission_id, ) def __get_job_id(self) -> str: """Extract the job ID from the image upload results. It may be the case that there is not job yet associated with this submission. """ # If the job ID already has been obtained, then there is no reason to # call the API again. if self.__job_id is not None: return self.__job_id # Call the API to get the job ID. try: submission_results = self.get_submission_results( submission_id=self.submission_id ) except error.WebRequestError: # Make a more helpful error message for what is going on. if self.submission_id is None: raise error.WebRequestError( "There cannot be a job id without there being a submission for that" " job to operate on." ) else: # What happened is unknown. raise error.UndiscoveredError("Why the web request failed is unknown.") else: job_id_list = submission_results.get("jobs", []) # If there are no jobs, then it is likely still in queue. if len(job_id_list) == 0: self.__job_id = None else: self.__job_id = job_id_list[-1] return self.__job_id raise error.LogicFlowError return None def __set_job_id(self, job_id) -> None: """Assign the job ID, it should only be done once when the image is obtained.""" if self.__job_id is None: self.__job_id = job_id else: raise error.ReadOnlyError( "The job ID has already been set by obtaining it from the API service." ) return None def __del_job_id(self) -> None: """Remove the current job ID association.""" self.__job_id = None return None __doc_job_id = ( "When file upload or table upload is sent to the API, the job ID of the" " submission is saved here." ) __job_id = None job_id = property(__get_job_id, __set_job_id, __del_job_id, __doc_job_id) def _generate_service_url(self, service: str) -> str: """Generate the correct URL for the desired service. Because astrometry.net uses a convension, we can follow it to obtain the desired service URL. Parameters ---------- service : str The service which the API URL for should be generated from. Returns ------- url : str The URL for the service. """ url = self.ASTROMETRY_BASE_API_URL + service return url def _generate_upload_args(self, **kwargs) -> dict: """Generate the arguments for sending a request. This constructs the needed arguments, replacing the defaults with user provided arguments where desired. Parameters ---------- **kwargs : dict Arguments which would override the defaults. Returns ------- args : dict The arguments which can be used to send the request. """ args = {} for keydex, defaultdex, typedex in self._DEFAULT_URL_ARGUMENTS: if keydex in kwargs: new_value = kwargs.pop(keydex) new_value = typedex(new_value) args.update({keydex: new_value}) elif defaultdex is not None: args.update({keydex: defaultdex}) return args def _send_web_request( self, service: str, args: dict = {}, file_args: dict = None ) -> dict: """A wrapper function for sending a webrequest to the astrometry.net API service. Returns the results as well. Parameters ---------- service : string The service which is being requested. The web URL is constructed from this string. args : dictionary, default = {} The arguments being sent over the web request. file_args : dictionary, default = None If a file is being uploaded instead, special care must be taken to sure it matches the upload specifications. Returns ------- results : dictionary The results of the web request if it did not fail. """ # Obtain the session key derived when this class is instantiated and # logged into. Use this session key for requests. if self.session is not None: args.update({"session": self.session}) # The API requires that the data format must be a JSON based datatype. json_data = library.json.dictionary_to_json(dictionary=args) # The URL which to send this request to, constructed from the service # desired. api_url = self._generate_service_url(service=service) # If the request requires that a file be send, then it must be in the # correct format. Namely, a multipart/form-data format. if file_args is not None: boundary_key = "".join([random.choice("0123456789") for __ in range(19)]) boundary = "==============={bkey}==".format(bkey=boundary_key) headers = { "Content-Type": 'multipart/form-data; boundary="{bd}"'.format( bd=boundary ) } data_pre = str( "--" + boundary + "\n" + "Content-Type: text/plain\r\n" + "MIME-Version: 1.0\r\n" + 'Content-disposition: form-data; name="request-json"\r\n' + "\r\n" + json_data + "\n" + "--" + boundary + "\n" + "Content-Type: application/octet-stream\r\n" + "MIME-Version: 1.0\r\n" + 'Content-disposition: form-data; name="file"; filename="{name}"'.format( name=file_args["filename"] ) + "\r\n" + "\r\n" ) data_post = "\n" + "--" + boundary + "--\n" data = data_pre.encode() + file_args["data"] + data_post.encode() else: # Otherwise, the form should be standard encoded: x-www-form-encoded headers = {} data = {"request-json": json_data} data = urllib.parse.urlencode(data) data = data.encode("utf-8") # Finally send the request. request = urllib.request.Request(url=api_url, headers=headers, data=data) # Processing the request. try: file = urllib.request.urlopen( request, timeout=library.config.ASTROMETRYNET_WEBAPI_JOB_QUEUE_TIMEOUT ) text = file.read() result = library.json.json_to_dictionary(json_string=text) # Check if the status of the request provided is a valid status. status = result.get("status") if status == "error": error_message = result.get("errormessage", "(none)") # Try to deduce what the error is. if error_message == "bad apikey": raise error.WebRequestError( "The API key provided is not a valid key." ) else: raise error.WebRequestError( "The server returned an error status message: \n {message}".format( message=error_message ) ) else: return result except urllib.error.HTTPError: raise error.WebRequestError( "The web request output cannot be properly processed. This is likely" " from a bad web request." ) # The logic should not flow beyond this point. raise error.LogicFlowError return None def get_job_results(self, job_id: str = None) -> dict: """Get the results of a job sent to the API service. Parameters ---------- job_id : str, default = None The ID of the job that the results should be obtained from. If not provided, the ID determined by the file upload is used. Returns ------- results : dict The results of the astrometry.net job. They are, in general: (If the job has not finished yet, None is returned.) - Status : The status of the job. - Calibration : Calibration of the image uploaded. - Tags : Known tagged objects in the image, people inputted. - Machine Tags : Ditto for tags, but only via machine inputs. - Objects in field : Known objects in the image field. - Annotations : Known objects in the field, with annotations. - Info : A collection of most everything above. """ job_id = job_id if job_id is not None else self.job_id # Get the result of the job. service_string = "jobs/{id}".format(id=job_id) try: job_result = self._send_web_request(service=service_string) except error.WebRequestError: # This error is likely because the job is still in queue. return None # Check that the service was successful. status = job_result.get("status", False) if status != "success": raise error.WebRequestError( "The job result request failed, check that the job ID is correct or try" " again later." ) else: results = {} # For the status. results["status"] = status # For the calibrations. service_string = "jobs/{id}/calibration".format(id=job_id) results["calibration"] = self._send_web_request(service=service_string) # For the tags. service_string = "jobs/{id}/tags".format(id=job_id) results["tags"] = self._send_web_request(service=service_string) # For the machine tags. service_string = "jobs/{id}/machine_tags".format(id=job_id) results["machine_tags"] = self._send_web_request(service=service_string) # For the objects in field. service_string = "jobs/{id}/objects_in_field".format(id=job_id) results["objects_in_field"] = self._send_web_request(service=service_string) # For the annotations. service_string = "jobs/{id}/annotations".format(id=job_id) results["annotations"] = self._send_web_request(service=service_string) # For the info. service_string = "jobs/{id}/info".format(id=job_id) results["info"] = self._send_web_request(service=service_string) # All done. return results def get_job_status(self, job_id: str = None) -> str: """Get the status of a job specified by its ID. Parameters ---------- job_id : str, default = None The ID of the job that the results should be obtained from. If not provided, the ID determined by the file upload is used. Returns ------- status : string The status of the submission. If the job has not run yet, None is returned instead. """ job_id = job_id if job_id is not None else self.job_id # Get the result of the job. service_string = "jobs/{id}".format(id=job_id) status = None try: job_result = self._send_web_request(service=service_string) except error.WebRequestError: # This error is likely because the job is still in queue. status = None else: # Check the job status. status = job_result.get("status") finally: return status # Should not get here. raise error.LogicFlowError return None def get_submission_results(self, submission_id: str = None) -> dict: """Get the results of a submission specified by its ID. Parameters ---------- submission_id : str The ID of the submission. If it is not passed, the ID determined by the file upload is used. Returns ------- result : dict The result of the submission. """ submission_id = ( submission_id if submission_id is not None else self.submission_id ) service_string = "submissions/{sub_id}".format(sub_id=submission_id) result = self._send_web_request(service=service_string) return result def get_submission_status(self, submission_id: str = None) -> str: """Get the status of a submission specified by its ID. Parameters ---------- submission_id : str, default = None The ID of the submission. If it is not passed, the ID determined by the file upload is used. Returns ------- status : string The status of the submission. """ submission_id = ( submission_id if submission_id is not None else self.submission_id ) results = self.get_submission_results(submission_id=submission_id) status = results.get("status") return status def get_reference_star_pixel_correlation( self, job_id: str = None, temp_filename: str = None, delete_after: bool = True ) -> hint.Table: """This obtains the table that correlates the location of reference stars and their pixel locations. It is obtained from the fits corr file that is downloaded into a temporary directory. Parameters ---------- job_id : string, default = None The ID of the job that the results should be obtained from. If not provided, the ID determined by the file upload is used. temp_filename : string, default = None The filename that the downloaded correlation file will be downloaded as. The path is going to still be in the temporary directory. delete_after : bool, default = True Delete the file after downloading it to extract its information. Returns ------- correlation_table : Table The table which details the correlation between the coordinates of the stars and their pixel locations. """ job_id = job_id if job_id is not None else self.job_id # Download the correlation file to read into a data table. upload_filename = library.path.get_filename_without_extension( pathname=self.original_upload_filename ) fits_table_filename = ( temp_filename if temp_filename is not None else upload_filename + "_corr" ) # The full path of the filename derived from saving it in a temporary # directory. corr_filename = library.path.merge_pathname( filename=fits_table_filename, extension="fits" ) corr_pathname = library.temporary.make_temporary_directory_path( filename=corr_filename ) # Save the correlation file. self.download_result_file( filename=corr_pathname, file_type="corr", job_id=job_id ) # Load the data from the file. __, correlation_table = library.fits.read_fits_table_file( filename=corr_pathname, extension=1 ) # Delete the temporary file after loading it if desired. if delete_after: os.remove(corr_pathname) return correlation_table def get_wcs( self, job_id: str = None, temp_filename: str = None, delete_after: bool = True ) -> hint.WCS: """This obtains the wcs header file and then computes World Coordinate System solution from it. Because astrometry.net computes it for us, we just extract it from the header file using Astropy. Parameters ---------- job_id : string, default = None The ID of the job that the results should be obtained from. If not provided, the ID determined by the file upload is used. temp_filename : string, default = None The filename that the downloaded wcs file will be downloaded as. The path is going to still be in the temporary directory. delete_after : bool, default = True Delete the file after downloading it to extract its information. Returns ------- wcs : Astropy WCS The world coordinate solution class for the image provided. """ job_id = job_id if job_id is not None else self.job_id # Download the correlation file to read into a data table. upload_filename = library.path.get_filename_without_extension( pathname=self.original_upload_filename ) fits_table_filename = ( temp_filename if temp_filename is not None else upload_filename + "_wcs" ) # The full path of the filename derived from saving it in a temporary # directory. corr_filename = library.path.merge_pathname( filename=fits_table_filename, extension="fits" ) corr_pathname = library.temporary.make_temporary_directory_path( filename=corr_filename ) # Save the correlation file. self.download_result_file( filename=corr_pathname, file_type="wcs", job_id=job_id ) # Load the header from the file. wcs_header = library.fits.read_fits_header(filename=corr_pathname) wcs = ap_wcs.WCS(wcs_header) # Delete the temporary file after loading it if desired. if delete_after: os.remove(corr_pathname) return wcs def upload_file(self, pathname: str, **kwargs) -> dict: """A wrapper to allow for the uploading of files or images to the API. This also determines the submission ID and the job ID for the uploaded image and saves it. Parameters ---------- pathname : str The pathname of the file to open. The filename is extracted and used as well. Returns ------- results : dict The results of the API call to upload the image. """ # When uploading a new file, the submission and job IDs will change. # They must be reset because of their read-only nature. del self.submission_id, self.job_id # Save the file information. self.original_upload_filename = pathname args = self._generate_upload_args(**kwargs) # Process the file upload. file_args = None try: file = open(pathname, "rb") filename = library.path.get_filename_with_extension(pathname=pathname) file_args = {"filename": filename, "data": file.read()} except IOError: raise error.FileError("File does not exist: {path}".format(path=pathname)) # Extract the submission id. This allows for easier # association between this class instance and the uploaded file. upload_results = self._send_web_request("upload", args, file_args) self._image_return_results = upload_results return upload_results def download_result_file( self, filename: str, file_type: str, job_id: str = None ) -> None: """Downloads fits data table files which correspond to the job id. Parameters ---------- filename : str The filename of the file when it is downloaded and saved to disk. file_type : str The type of file to be downloaded from astrometry.net. It should one of the following: - `wcs`: The world corrdinate data table file. - `new_fits`, `new_image`: A new fits file, containing the original image, annotations, and WCS header information. - `rdls`: A table of reference stars nearby. - `axy`: A table in of the location of stars detected in the provided image. - `corr`: A table of the correspondences between reference stars location in the sky and in pixel space. job_id : str, default = None The ID of the job that the results should be obtained from. If not provided, the ID determined by the file upload is used. Returns ------- None """ # Get the proper job ID. job_id = job_id if job_id is not None else self.job_id # Ensure that the type provided is a valid type which we can pull # from the API service. Accommodating for capitalization. file_type = str(file_type).lower() valid_api_file_types = ("wcs", "new_fits", "rdls", "axy", "corr") if file_type not in valid_api_file_types: raise error.WebRequestError( "The provided file type to be downloaded is not a valid type which can" " be downloaded, it must be one of: {fty}".format( fty=valid_api_file_types ) ) # Construct the URL for the request. It is a little different from the # normal API scheme so a new method is made. def _construct_file_download_url(ftype: str, id: str) -> str: """Construct the file curl from the file type `ftype` and the job id `id`.""" url = "http://nova.astrometry.net/{_type}_file/{_id}".format( _type=ftype, _id=id ) return url file_download_url = _construct_file_download_url(ftype=file_type, id=job_id) # Before downloading the file, check that the file actually exists. if job_id is None: raise error.WebRequestError("There is no job to download the file from.") if library.http.get_http_status_code(url=file_download_url) != 200: raise error.WebRequestError( "The file download link is not giving an acceptable http status code." " It is likely that the job is still processing and thus the data files" " are not ready." ) # Download the file. library.http.download_file_from_url( url=file_download_url, filename=filename, overwrite=True ) return None
2.515625
3
docs/notebooks/examples/SED_emulator/ESB_functions.py
MCarmenCampos/XID_plus
3
12793823
from astropy.io import ascii, fits from astropy.table import QTable, Table import arviz as az from astropy.coordinates import SkyCoord from astropy import units as u import os import pymoc from astropy import wcs from astropy.table import vstack, hstack import numpy as np import xidplus # # Applying XID+CIGALE to Extreme Starbursts # In this notebook, we read in the data files and prepare them for fitting with XID+CIGALE, the SED prior model extension to XID+. Here we focus on sources in [Rowan-Robinson et al. 2018](https://arxiv.org/abs/1704.07783) and claimed to have a star formation rate of $> 10^{3}\mathrm{M_{\odot}yr^{-1}}$ # In[2]: def process_prior(c,new_Table=None, path_to_data=['../../../data/'], field=['Lockman-SWIRE'], path_to_SPIRE=['/Volumes/pdh_storage/dmu_products/dmu19/dmu19_HELP-SPIRE-maps/data/'], redshift_file=["/Volumes/pdh_storage/dmu_products/dmu24/dmu24_Lockman-SWIRE/data/master_catalogue_Lockman-SWIRE_20170710_photoz_20170802_r_and_irac1_optimised_UPDATED_IDs_20180219.fits"], redshift_prior=[0.1,2.0], radius=6.0, alt_model=False): # Import required modules # In[3]: # In[4]: # Set image and catalogue filenames # In[5]: #Folder containing maps pswfits=path_to_SPIRE[0]+'{}_SPIRE250_v1.0.fits'.format(field[0])#SPIRE 250 map pmwfits=path_to_SPIRE[0]+'{}_SPIRE350_v1.0.fits'.format(field[0])#SPIRE 350 map plwfits=path_to_SPIRE[0]+'{}_SPIRE500_v1.0.fits'.format(field[0])#SPIRE 500 map #output folder output_folder='./' # Load in images, noise maps, header info and WCS information # In[6]: #-----250------------- hdulist = fits.open(pswfits) im250phdu=hdulist[0].header im250hdu=hdulist[1].header im250=hdulist[1].data*1.0E3 #convert to mJy nim250=hdulist[3].data*1.0E3 #convert to mJy w_250 = wcs.WCS(hdulist[1].header) pixsize250=np.abs(3600.0*w_250.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() #-----350------------- hdulist = fits.open(pmwfits) im350phdu=hdulist[0].header im350hdu=hdulist[1].header im350=hdulist[1].data*1.0E3 #convert to mJy nim350=hdulist[3].data*1.0E3 #convert to mJy w_350 = wcs.WCS(hdulist[1].header) pixsize350=np.abs(3600.0*w_350.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() #-----500------------- hdulist = fits.open(plwfits) im500phdu=hdulist[0].header im500hdu=hdulist[1].header im500=hdulist[1].data*1.0E3 #convert to mJy nim500=hdulist[3].data*1.0E3 #convert to mJy w_500 = wcs.WCS(hdulist[1].header) pixsize500=np.abs(3600.0*w_500.wcs.cdelt[0]) #pixel size (in arcseconds) hdulist.close() # XID+ uses Multi Order Coverage (MOC) maps for cutting down maps and catalogues so they cover the same area. It can also take in MOCs as selection functions to carry out additional cuts. Lets use the python module [pymoc](http://pymoc.readthedocs.io/en/latest/) to create a MOC, centered on a specific position we are interested in. We will use a HEALPix order of 15 (the resolution: higher order means higher resolution) moc=pymoc.util.catalog.catalog_to_moc(c,100,15) # Load in catalogue you want to fit (and make any cuts). Here we use HELP's VO database and directly call it using PyVO # In[10]: import pyvo as vo service = vo.dal.TAPService("https://herschel-vos.phys.sussex.ac.uk/__system__/tap/run/tap") # In[11]: resultset = service.search("SELECT TOP 10000 * FROM herschelhelp.main WHERE 1=CONTAINS(POINT('ICRS', ra, dec),CIRCLE('ICRS',"+str(c.ra.deg[0])+", "+str(c.dec.deg[0])+", 0.028 ))") # In[12]: masterlist=resultset.table def construct_prior(Table=None): from astropy.coordinates import SkyCoord #first use standard cut (i.e. not star and is detected in at least 3 opt/nir bands) prior_list=masterlist[(masterlist['flag_gaia']!=3) & (masterlist['flag_optnir_det']>=3)] #make skycoord from masterlist catalog=SkyCoord(ra=masterlist['ra'],dec=masterlist['dec']) #make skycoord from input table c = SkyCoord(ra=Table['ra'], dec=Table['dec']) #search around all of the new sources idxc, idxcatalog, d2d, d3d=catalog.search_around_sky(c,radius*u.arcsec) #for every new sources for src in range(0,len(Table)): #limit to matches around interested sources ind = idxc == src #if there are matches if ind.sum() >0: #choose the closest and check if its in the prior list all ready in_prior=prior_list['help_id']==masterlist[idxcatalog][ind][np.argmin(d2d[ind])]['help_id'] #if its not in prior list if in_prior.sum() <1: print(in_prior.sum()) #add to appended sources prior_list=vstack([prior_list,masterlist[idxcatalog][ind][np.argmin(d2d[ind])]]) return prior_list # In[64]: import astropy.units as u #create table of candidate source t = QTable([c.ra, c.dec], names=('ra', 'dec')) #add candidate source to new sources table, create prior list if new_Table is not None: prior_list=construct_prior(vstack([t,new_Table])) else: prior_list = construct_prior(t) if alt_model==True: sep = 18 separation = c.separation(SkyCoord(prior_list['ra'], prior_list['dec'])).arcsec remove_ind = (separation > np.min(separation)) & (separation < sep) prior_list.remove_rows(remove_ind) # ## Get Redshift and Uncertianty # # <NAME> defines a median and a hierarchical bayes combination redshift. We need uncertianty so lets match via `help_id` # In[26]: photoz=Table.read(redshift_file[0]) # In[27]: #help_id=np.empty((len(photoz)),dtype=np.dtype('U27')) for i in range(0,len(photoz)): photoz['help_id'][i]=str(photoz['help_id'][i].strip()).encode('utf-8') #photoz['help_id']=help_id # In[28]: from astropy.table import Column, MaskedColumn prior_list['redshift']=MaskedColumn(np.full((len(prior_list)),fill_value=redshift_prior[0]),mask=[False]*len(prior_list)) prior_list.add_column(MaskedColumn(np.full((len(prior_list)),fill_value=redshift_prior[1]),mask=[False]*len(prior_list),name='redshift_unc')) # In[29]: photoz # In[30]: ii=0 for i in range(0,len(prior_list)): ind=photoz['help_id'] == prior_list['help_id'][i] try: if photoz['z1_median'][ind]>0.0: prior_list['redshift'][i]=photoz['z1_median'][ind] prior_list['redshift_unc'][i]=np.max(np.array([np.abs(photoz['z1_median'][ind]-photoz['z1_min'][ind]),np.abs(photoz['z1_max'][ind]-photoz['z1_median'][ind])])) #prior_list['redshift_unc'].mask[i]=False #prior_list['redshift'].mask[i]=False except ValueError: None # In[33]: dist_matrix=np.zeros((len(prior_list),len(prior_list))) from astropy.coordinates import SkyCoord from astropy import units as u for i in range(0,len(prior_list)): for j in range(0,len(prior_list)): if i>j: coord1 = SkyCoord(ra=prior_list['ra'][i]*u.deg,dec=prior_list['dec'][i]*u.deg,frame='icrs') coord2=SkyCoord(ra=prior_list['ra'][j]*u.deg,dec=prior_list['dec'][j]*u.deg) dist_matrix[i,j] = coord1.separation(coord2).value # In[35]: ind=(np.tril(dist_matrix)<1.0/3600.0) & (np.tril(dist_matrix)>0) xx,yy=np.meshgrid(np.arange(0,len(prior_list)),np.arange(0,len(prior_list))) yy[ind] # In[36]: prior_list[yy[ind]] # In[37]: prior_list['redshift'].mask[yy[ind]]=True # In[38]: prior_list=prior_list[prior_list['redshift'].mask == False] # In[39]: prior_list # XID+ is built around two python classes. A prior and posterior class. There should be a prior class for each map being fitted. It is initiated with a map, noise map, primary header and map header and can be set with a MOC. It also requires an input prior catalogue and point spread function. # # In[40]: #---prior250-------- prior250=xidplus.prior(im250,nim250,im250phdu,im250hdu, moc=moc)#Initialise with map, uncertianty map, wcs info and primary header prior250.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior250.prior_bkg(-5.0,5)#Set prior on background (assumes Gaussian pdf with mu and sigma) #---prior350-------- prior350=xidplus.prior(im350,nim350,im350phdu,im350hdu, moc=moc) prior350.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior350.prior_bkg(-5.0,5) #---prior500-------- prior500=xidplus.prior(im500,nim500,im500phdu,im500hdu, moc=moc) prior500.prior_cat(prior_list['ra'],prior_list['dec'],'photoz',ID=prior_list['help_id']) prior500.prior_bkg(-5.0,5) # Set PSF. For SPIRE, the PSF can be assumed to be Gaussian with a FWHM of 18.15, 25.15, 36.3 '' for 250, 350 and 500 $\mathrm{\mu m}$ respectively. Lets use the astropy module to construct a Gaussian PSF and assign it to the three XID+ prior classes. # In[41]: #pixsize array (size of pixels in arcseconds) pixsize=np.array([pixsize250,pixsize350,pixsize500]) #point response function for the three bands prfsize=np.array([18.15,25.15,36.3]) #use Gaussian2DKernel to create prf (requires stddev rather than fwhm hence pfwhm/2.355) from astropy.convolution import Gaussian2DKernel ##---------fit using Gaussian beam----------------------- prf250=Gaussian2DKernel(prfsize[0]/2.355,x_size=101,y_size=101) prf250.normalize(mode='peak') prf350=Gaussian2DKernel(prfsize[1]/2.355,x_size=101,y_size=101) prf350.normalize(mode='peak') prf500=Gaussian2DKernel(prfsize[2]/2.355,x_size=101,y_size=101) prf500.normalize(mode='peak') pind250=np.arange(0,101,1)*1.0/pixsize[0] #get 250 scale in terms of pixel scale of map pind350=np.arange(0,101,1)*1.0/pixsize[1] #get 350 scale in terms of pixel scale of map pind500=np.arange(0,101,1)*1.0/pixsize[2] #get 500 scale in terms of pixel scale of map prior250.set_prf(prf250.array,pind250,pind250)#requires psf as 2d grid, and x and y bins for grid (in pixel scale) prior350.set_prf(prf350.array,pind350,pind350) prior500.set_prf(prf500.array,pind500,pind500) print('fitting '+ str(prior250.nsrc)+' sources \n') print('using ' + str(prior250.snpix)+', '+ str(prior350.snpix)+' and '+ str(prior500.snpix)+' pixels') print('source density = {}'.format(prior250.nsrc/moc.area_sq_deg)) # Before fitting, the prior classes need to take the PSF and calculate how muich each source contributes to each pixel. This process provides what we call a pointing matrix. Lets calculate the pointing matrix for each prior class # In[43]: prior250.get_pointing_matrix() prior350.get_pointing_matrix() prior500.get_pointing_matrix() # In[44]: return [prior250,prior350,prior500],prior_list def getSEDs(data, src, nsamp=30,category='posterior'): import subprocess if category=='posterior': d=data.posterior else: d=data.prior subsample = np.random.choice(d.chain.size * d.draw.size, size=nsamp,replace=False) agn = d.agn.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] z = d.redshift.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] sfr = d.sfr.values.reshape(d.chain.size * d.draw.size, d.src.size)[subsample, :] fin = open("/Volumes/pdh_storage/cigale/pcigale_orig.ini") fout = open("/Volumes/pdh_storage/cigale/pcigale.ini", "wt") for line in fin: if 'redshift =' in line: fout.write(' redshift = ' + ', '.join(['{:.13f}'.format(i) for i in z[:, src]]) + ' \n') elif 'fracAGN =' in line: fout.write(' fracAGN = ' + ', '.join(['{:.13f}'.format(i) for i in agn[:, src]]) + ' \n') else: fout.write(line) fin.close() fout.close() p = subprocess.Popen(['pcigale', 'run'], cwd='/Volumes/pdh_storage/cigale/') p.wait() SEDs = Table.read('/Volumes/pdh_storage/cigale/out//models-block-0.fits') # set more appropriate units for dust from astropy.constants import L_sun, M_sun SEDs['dust.luminosity'] = SEDs['dust.luminosity'] / L_sun.value SEDs['dust.mass'] = SEDs['dust.mass'] / M_sun.value wavelengths = [] fluxes = [] for i in range(0, nsamp): sed_plot = Table.read('/Volumes/pdh_storage/cigale/out/{}_best_model.fits'.format(+SEDs[i * nsamp + (i)]['id'])) wavelengths.append(sed_plot['wavelength'] / 1E3) fluxes.append(((10.0 ** sfr[i, src]) / SEDs[i * nsamp + (i)]['sfh.sfr']) * sed_plot['Fnu']) from astropy.table import vstack, hstack return hstack(wavelengths), hstack(fluxes)
1.632813
2
back/babar_server/apps.py
dryvenn/babar3
0
12793824
from django.apps import AppConfig class BabarServerConfig(AppConfig): name = 'babar_server'
1.125
1
app/cronscript.py
Stienvdh/new-employee-onboarding
1
12793825
<gh_stars>1-10 """Copyright (c) 2020 Cisco and/or its affiliates. This software is licensed to you under the terms of the Cisco Sample Code License, Version 1.1 (the "License"). You may obtain a copy of the License at https://developer.cisco.com/docs/licenses All use of the material herein must be in accordance with the terms of the License. All rights not expressly granted by the License are reserved. Unless required by applicable law or agreed to separately in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import os, requests def update_Admin(messageToAdmin): s = requests.Session() s.headers.update({ 'Authorization': "Bearer " + os.environ['WEBEX_BOT_TOKEN'] }) WEBEX_BASE_URL = "https://webexapis.com" url = f"{WEBEX_BASE_URL}/v1/messages" data = { "toPersonEmail": "<EMAIL>", "text": messageToAdmin, } resp = s.post(url, json=data) resp.raise_for_status() url = "https://webexapis.com/v1/access_token" payload='grant_type=refresh_token&client_id=C91eb42821df0d8d205d90cd27cedfb004eeff6b787054578647f1baa7eb70868&client_secret=8ad397e278d9f6392739fb109da69d9bf35fb1dfc9b40ff66fdb9c8dc4e2d2dc&refresh_token=' + os.environ['WEBEX_REFRESH_TOKEN'] headers = { 'Content-Type': 'application/x-www-form-urlencoded' } response = requests.request("POST", url, headers=headers, data=payload) if response.status_code == 200 or response.status_code == 204 : print(response.text) access_token = response.json()['access_token'] refresh_token = response.json()['refresh_token'] print(access_token) os.environ["WEBEX_ACCESS_TOKEN"] = access_token os.environ["WEBEX_REFRESH_TOKEN"] = refresh_token update_Admin('Hello, New access tocken has been generated for the new-employee-onboarding integration. Access Token: ' + access_token + ' Refresh token: ' + refresh_token) else : update_Admin('Hello, the cronjob was not able to generate new access tocken for the new-employee-onboarding integration. Here is the response code : ' + str(response.status_code) + '.') # samlpe response text below. access_token is the newly generated token # { # "access_token": "<KEY>", # "expires_in": 1209599, # "refresh_token": "OTVmNjFiZjEtYmM1ZS00NWU4LWJmOWUtMTBkMDlkMGM2NTI3YWM3YjI3MzEtODNk_P0A1_36252b39-4c39-48c5-933f-afa3bbc77901", # "refresh_token_expires_in": 6435474 # } print('*** Ran the cron script ***')
1.734375
2
fmri/experiment.py
mwaskom/pulses_experiment_code
0
12793826
<filename>fmri/experiment.py<gh_stars>0 from __future__ import division import os import json from glob import glob import numpy as np import pandas as pd from scipy import stats from scipy.spatial import distance from psychopy.visual import TextStim, Rect from visigoth.stimuli import Point, Points, PointCue, Pattern from visigoth import AcquireFixation, AcquireTarget, flexible_values from visigoth.ext.bunch import Bunch def define_cmdline_params(self, parser): """Add extra parameters to be defined at runtime.""" parser.add_argument("--acceleration", default=1, type=float) parser.add_argument("--blocks", default=1, type=int) def create_stimuli(exp): """Initialize stimulus objects.""" # Fixation point fix = Point(exp.win, exp.p.fix_pos, exp.p.fix_radius, exp.p.fix_iti_color) # Spatial cue cue = PointCue(exp.win, exp.p.cue_norm, exp.p.cue_radius, exp.p.cue_color) # Saccade targets targets = Points(exp.win, exp.p.target_pos, exp.p.target_radius, exp.p.target_color) # Average of multiple sinusoidal grating stimulus pattern = Pattern(exp.win, n=exp.p.stim_gratings, elementTex=exp.p.stim_tex, elementMask=exp.p.stim_mask, sizes=exp.p.stim_size, sfs=exp.p.stim_sf, pos=(0, 0) ) return locals() def generate_trials(exp): """Yield trial and pulse train info.""" # TODO let us set random number generator somehow. Command line? # Build the full experimental design constraints = Bunch(exp.p.design_constraints) all_trials, all_pulses = generate_block(constraints, exp.p) for i in range(exp.p.blocks - 1): trial_part, pulse_part = generate_block(constraints, exp.p) trial_part["trial"] += len(all_trials) pulse_part["trial"] += len(all_trials) all_trials = all_trials.append(trial_part, ignore_index=True) all_pulses = all_pulses.append(pulse_part, ignore_index=True) # Adjust the timing of some components for training all_trials["wait_pre_stim"] /= exp.p.acceleration all_pulses["gap_dur"] /= exp.p.acceleration # Add in name information that matches across tables all_trials = all_trials.assign( subject=exp.p.subject, session=exp.p.session, run=exp.p.run ) all_pulses = all_pulses.assign( subject=exp.p.subject, session=exp.p.session, run=exp.p.run ) # Add in information that's not part of the saved design gen_dist = all_trials["gen_dist"] all_trials = all_trials.assign( gen_mean=np.take(exp.p.dist_means, gen_dist), gen_sd=np.take(exp.p.dist_sds, gen_dist), target=np.take(exp.p.dist_targets, gen_dist), wait_resp=exp.p.wait_resp, wait_feedback=exp.p.wait_feedback, ) all_pulses = all_pulses.assign(pulse_dur=exp.p.pulse_dur) # Add in blank fields that will be filled in later empty_cols = ["onset_fix", "offset_fix", "onset_cue", "offset_cue", "onset_targets", "onset_feedback", "result", "response", "correct", "rt"] all_trials = all_trials.assign( fixbreaks=0, responded=False, **{col: np.nan for col in empty_cols} ) all_pulses = all_pulses.assign( occurred=False, blink=False, blink_pad=np.nan, dropped_frames=np.nan, pulse_onset=np.nan, pulse_offset=np.nan, ) # Add trial-level information computed from pulse-level table all_trials = all_trials.set_index("trial", drop=False) trial_pulses = all_pulses.groupby("trial") pulse_train_dur = trial_pulses.gap_dur.sum() + trial_pulses.pulse_dur.sum() trial_duration = all_trials["wait_pre_stim"] + pulse_train_dur start_time = (all_trials["wait_iti"].cumsum() + trial_duration.shift(1).fillna(0).cumsum()) all_trials = all_trials.assign( trial_llr=trial_pulses.pulse_llr.sum(), log_contrast_mean=trial_pulses.log_contrast.mean(), pulse_train_dur=pulse_train_dur, trial_duration=trial_duration, start_time=start_time, ) # Generate information for each trial for trial, trial_info in all_trials.iterrows(): pulse_info = all_pulses.loc[all_pulses["trial"] == trial].copy() yield trial_info, pulse_info def generate_block(constraints, p, rng=None): """Generated a balanced set of trials, might be only part of a run.""" if rng is None: rng = np.random.RandomState() n_trials = constraints.trials_per_run # --- Assign trial components # Assign the stimulus to a side stim_pos = np.repeat([0, 1], n_trials // 2) while max_repeat(stim_pos) > constraints.max_stim_repeat: stim_pos = rng.permutation(stim_pos) # Assign the target to a side gen_dist = np.repeat([0, 1], n_trials // 2) while max_repeat(gen_dist) > constraints.max_dist_repeat: gen_dist = rng.permutation(gen_dist) # Assign pulse counts to each trial count_support = np.arange(p.pulse_count[-1], p.pulse_count_max) + 1 count_pmf = trunc_geom_pmf(count_support, p.pulse_count[1]) expected_count_dist = count_pmf * n_trials count_error = np.inf while count_error > constraints.sum_count_error: pulse_count = flexible_values(p.pulse_count, n_trials, rng, max=p.pulse_count_max).astype(int) count_dist = np.bincount(pulse_count, minlength=p.pulse_count_max + 1) count_error = np.sum(np.abs(count_dist[count_support] - expected_count_dist)) # Assign initial ITI to each trial total_iti = np.inf while not_in_range(total_iti, constraints.iti_range): wait_iti = flexible_values(p.wait_iti, n_trials, rng) if p.skip_first_iti: wait_iti[0] = 0 total_iti = wait_iti.sum() # Use the first random sample if we're not being precise # about the overall time of the run (i.e. in psychophys rig) if not p.keep_on_time: break # --- Build the trial_info structure trial = np.arange(1, n_trials + 1) trial_info = pd.DataFrame(dict( trial=trial, gen_dist=gen_dist, stim_pos=stim_pos, pulse_count=pulse_count.astype(int), wait_iti=wait_iti, )) # --- Assign trial components # Map from trial to pulse trial = np.concatenate([ np.full(c, i, dtype=np.int) for i, c in enumerate(pulse_count, 1) ]) pulse = np.concatenate([ np.arange(c) + 1 for c in pulse_count ]) n_pulses = pulse_count.sum() # Assign gaps between pulses run_duration = np.inf while not_in_range(run_duration, constraints.run_range): wait_pre_stim = flexible_values(p.pulse_gap, n_trials, rng) gap_dur = flexible_values(p.pulse_gap, n_pulses, rng) run_duration = np.sum([ wait_iti.sum(), wait_pre_stim.sum(), gap_dur.sum(), p.pulse_dur * n_pulses, ]) # Use the first random sample if we're not being precise # about the overall time of the run (i.e. in psychophys rig) if not p.keep_on_time: break # Assign pulse intensities max_contrast = np.log10(1 / np.sqrt(p.stim_gratings)) log_contrast = np.zeros(n_pulses) pulse_dist = np.concatenate([ np.full(n, i, dtype=np.int) for n, i in zip(pulse_count, gen_dist) ]) llr_mean = np.inf llr_sd = np.inf expected_acc = np.inf while (not_in_range(llr_mean, constraints.mean_range) or not_in_range(llr_sd, constraints.sd_range) or not_in_range(expected_acc, constraints.acc_range)): for i in [0, 1]: dist = "norm", p.dist_means[i], p.dist_sds[i] rows = pulse_dist == i n = rows.sum() log_contrast[rows] = flexible_values(dist, n, rng, max=max_contrast) pulse_llr = compute_llr(log_contrast, p) target_llr = np.where(pulse_dist, pulse_llr, -1 * pulse_llr) llr_mean = target_llr.mean() llr_sd = target_llr.std() dv = pd.Series(target_llr).groupby(pd.Series(trial)).sum() dv_sd = np.sqrt(constraints.sigma ** 2 * pulse_count) expected_acc = stats.norm(dv, dv_sd).sf(0).mean() # --- Build the pulse_info structure pulse_info = pd.DataFrame(dict( trial=trial, pulse=pulse, gap_dur=gap_dur, log_contrast=log_contrast, contrast=10 ** log_contrast, pulse_llr=pulse_llr, )) # --- Update the trial_info structure trial_info["wait_pre_stim"] = wait_pre_stim trial_llr = (pulse_info .groupby("trial") .sum() .loc[:, "pulse_llr"] .rename("trial_llr")) trial_info = trial_info.join(trial_llr, on="trial") # TODO reorder the columns so they are more intuitively organized? return trial_info, pulse_info # --- Support functions for block generation def not_in_range(val, limits): """False if val is outside of limits.""" return val < limits[0] or val > limits[1] def max_repeat(s): """Maximumum number of times the same value repeats in sequence.""" s = pd.Series(s) switch = s != s.shift(1) return switch.groupby(switch.cumsum()).cumcount().max() + 1 def trunc_geom_pmf(support, p): """Probability mass given truncated geometric distribution.""" a, b = min(support) - 1, max(support) dist = stats.geom(p=p, loc=a) return dist.pmf(support) / (dist.cdf(b) - dist.cdf(a)) def compute_llr(c, p): """Signed LLR of pulse based on contrast and generating distributions.""" m0, m1 = p.dist_means s0, s1 = p.dist_sds d0, d1 = stats.norm(m0, s0), stats.norm(m1, s1) l0, l1 = np.log10(d0.pdf(c)), np.log10(d1.pdf(c)) llr = l1 - l0 return llr # --- Exeperiment execution def run_trial(exp, info): """Function that executes what happens in each trial.""" t_info, p_info = info # ~~~ Set trial-constant attributes of the stimuli exp.s.cue.pos = exp.p.stim_pos[t_info.stim_pos] exp.s.pattern.pos = exp.p.stim_pos[t_info.stim_pos] # ~~~ Inter-trial interval exp.s.fix.color = exp.p.fix_iti_color if exp.p.keep_on_time: exp.wait_until(t_info["start_time"], draw="fix", check_abort=True) else: exp.wait_until(exp.iti_end, draw="fix", check_abort=True, iti_duration=t_info.wait_iti) # ~~~ Trial onset t_info["onset_fix"] = exp.clock.getTime() exp.s.fix.color = exp.p.fix_ready_color if exp.p.enforce_fix: res = exp.wait_until(AcquireFixation(exp), timeout=exp.p.wait_fix, draw="fix") if res is None: t_info["result"] = "nofix" exp.sounds.nofix.play() return t_info, p_info for frame in exp.frame_range(seconds=exp.p.wait_start): exp.check_fixation(allow_blinks=True) exp.draw("fix") # ~~~ Pre-stimulus period exp.s.fix.color = exp.p.fix_trial_color prestim_frames = exp.frame_range(seconds=t_info.wait_pre_stim, yield_skipped=True) for frame, skipped in prestim_frames: if not exp.check_fixation(allow_blinks=True): if exp.p.enforce_fix: exp.sounds.fixbreak.play() exp.flicker("fix") t_info["result"] = "fixbreak" t_info["offset_cue"] = exp.clock.getTime() return t_info, p_info else: t_info["fixbreaks"] += 1 flip_time = exp.draw(["fix", "cue", "targets"]) if not frame: t_info["onset_targets"] = flip_time t_info["onset_cue"] = flip_time # ~~~ Stimulus period for p, info in p_info.iterrows(): # Allow aborts in the middle of a trial exp.check_abort() # Update the pattern exp.s.pattern.contrast = info.contrast exp.s.pattern.randomize_phases() # TODO commenting out until we get a good solution for saving these # Currently it errors out (maybe because the info df isn't seeded?) # p_info.loc[p, "phases"] = exp.s.pattern.array.phases # Check if the eye is blinking and possibly wait a bit if so blink_pad_start = exp.clock.getTime() for frame in exp.frame_range(seconds=exp.p.blink_pad_timeout): if exp.check_fixation(): break exp.draw(["fix", "cue", "targets"]) # TODO do we want to wait a smidge if they were blinking before # showing the stimulus? How much vision do people have right when # they come out of the blink (according to Eyelink?) # TODO can we make life easier later by updating the gap duration # information or are we just going to have to deal? p_info.loc[p, "blink_pad"] = exp.clock.getTime() - blink_pad_start # Show each frame of the stimulus for frame in exp.frame_range(seconds=info.pulse_dur): if not exp.check_fixation(allow_blinks=True): if exp.p.enforce_fix: exp.sounds.fixbreak.play() exp.flicker("fix") t_info["result"] = "fixbreak" t_info["offset_cue"] = exp.clock.getTime() return t_info, p_info else: t_info["fixbreaks"] += 1 stims = ["fix", "cue", "targets", "pattern"] flip_time = exp.draw(stims) if not frame: exp.tracker.send_message("pulse_onset") p_info.loc[p, "occurred"] = True p_info.loc[p, "pulse_onset"] = flip_time blink = not exp.tracker.check_eye_open(new_sample=False) p_info.loc[p, "blink"] |= blink # This counter is reset at beginning of frame_range # so it should correspond to frames dropped during the stim p_info.loc[p, "dropped_frames"] = exp.win.nDroppedFrames for frame in exp.frame_range(seconds=info.gap_dur): if not exp.check_fixation(allow_blinks=True): if exp.p.enforce_fix: exp.sounds.fixbreak.play() exp.flicker("fix") t_info["result"] = "fixbreak" t_info["offset_cue"] = exp.clock.getTime() return t_info, p_info else: t_info["fixbreaks"] += 1 flip_time = exp.draw(["fix", "cue", "targets"]) # Record the time of first flip as the offset of the last pulse if not frame: p_info.loc[p, "pulse_offset"] = flip_time # ~~~ Response period # Collect the response now = exp.clock.getTime() t_info["offset_fix"] = now t_info["offset_cue"] = now response_handler = AcquireTarget(exp, t_info.target, allow_retry=not exp.p.enforce_fix) res = exp.wait_until(response_handler, timeout=exp.p.wait_resp, draw="targets") if res is None: t_info["result"] = "nochoice" else: t_info.update(pd.Series(res)) # Give feedback t_info["onset_feedback"] = exp.clock.getTime() exp.sounds[t_info.result].play() exp.show_feedback("targets", t_info.result, t_info.response) exp.wait_until(timeout=exp.p.wait_feedback, draw=["targets"]) exp.s.targets.color = exp.p.target_color # Prepare for the inter-trial interval exp.s.fix.color = exp.p.fix_iti_color exp.draw("fix") return t_info, p_info def serialize_trial_info(exp, info): """Package trial information for the remote.""" t_info, _ = info return t_info.to_json() def compute_performance(self): """Compute run-wise performance information.""" # TODO Track fixation breaks here? Also in the remote? if self.trial_data: data = pd.DataFrame([t for t, _ in self.trial_data]) mean_acc = data["correct"].mean() responses = data["responded"].sum() return mean_acc, responses else: return None, None def show_performance(exp, run_correct, run_trials): """Show the subject a report of their performance.""" lines = ["End of the run!"] prior_trials = prior_correct = 0 output_dir = os.path.dirname(exp.output_stem) prior_fnames = glob(os.path.join(output_dir, "*_trials.csv")) if prior_fnames: prior_data = pd.concat([pd.read_csv(f) for f in prior_fnames]) prior_trials = len(prior_data) if prior_trials: prior_correct = prior_data["correct"].mean() if run_correct is not None: lines.extend([ "", "You got {:.0%} correct!".format(run_correct), ]) if (prior_trials + run_trials): total_correct = np.average([prior_correct, run_correct], weights=[prior_trials, run_trials]) lines.extend([ "", "You're at {:.0%} correct today!".format(total_correct), ]) n = len(lines) height = .5 heights = (np.arange(n)[::-1] - (n / 2 - .5)) * height for line, y in zip(lines, heights): TextStim(exp.win, line, pos=(0, y), height=height).draw() exp.win.flip() def save_data(exp): """Output data files to disk.""" if exp.trial_data and exp.p.save_data: trial_data = [t_data for t_data, _ in exp.trial_data] pulse_data = [p_data for _, p_data in exp.trial_data] data = pd.DataFrame(trial_data) out_data_fname = exp.output_stem + "_trials.csv" data.to_csv(out_data_fname, index=False) data = pd.concat(pulse_data) out_data_fname = exp.output_stem + "_pulses.csv" data.to_csv(out_data_fname, index=False) out_json_fname = exp.output_stem + "_params.json" with open(out_json_fname, "w") as fid: json.dump(exp.p, fid, sort_keys=True, indent=4) # ----------------------------------------------------------------------- # # Demo-related code # ----------------------------------------------------------------------- # def demo_mode(exp): exp.wait_until("space", draw="fix", check_abort=True) exp.s.fix.color = exp.p.fix_trial_color exp.wait_until("space", draw=["fix", "targets"], check_abort=True) all_stims = ["fix", "targets", "cue", "pattern"] exp.s.pattern.contrast = 10 ** np.mean(exp.p.dist_means) for pos in [0, 1]: exp.s.cue.pos = exp.p.stim_pos[pos] exp.s.pattern.pos = exp.p.stim_pos[pos] exp.wait_until("space", draw=all_stims, check_abort=True) for frame in exp.frame_range(seconds=1): exp.draw(["fix", "targets", "cue"]) for frame in exp.frame_range(seconds=exp.p.pulse_dur): exp.draw(all_stims) exp.wait_until("space", draw=["fix", "targets", "cue"], check_abort=True) exp.wait_until("space", draw=all_stims, check_abort=True) exp.s.pattern.contrast = 10 ** (exp.p.dist_means[1] + exp.p.dist_sds[1]) exp.wait_until("space", draw=all_stims, check_abort=True) exp.s.pattern.contrast = 10 ** (exp.p.dist_means[0] - exp.p.dist_sds[0]) exp.wait_until("space", draw=all_stims, check_abort=True) exp.s["box_l"] = StimBox(exp, [-7, 0], 0) exp.s["box_h"] = StimBox(exp, [+7, 0], 1) exp.wait_until("space", draw=["fix", "box_h", "box_l"], check_abort=True) exp.sounds["correct"].play() exp.wait_until("space", draw="fix", check_abort=True) exp.sounds["wrong"].play() exp.wait_until("space", draw="fix", check_abort=True) exp.sounds["fixbreak"].play() exp.wait_until("space", draw="fix", check_abort=True) def poisson_disc_sample(size, radius, candidates=100, rng=None): """Find positions using poisson-disc sampling.""" # TODO make more general and move into visigoth # TODO currently assumes square array # See http://bost.ocks.org/mike/algorithms/ if rng is None: rng = np.random.RandomState() uniform = rng.uniform randint = rng.randint # Start at a fixed point we know will work start = 0, 0 samples = [start] queue = [start] while queue: # Pick a sample to expand from s_idx = randint(len(queue)) s_x, s_y = queue[s_idx] for i in range(candidates): # Generate a candidate from this sample a = uniform(0, 2 * np.pi) r = uniform(radius, 2 * radius) x, y = s_x + r * np.cos(a), s_y + r * np.sin(a) # Check the three conditions to accept the candidate in_array = (np.abs(x) < size / 2) & (np.abs(y) < size / 2) in_ring = np.all(distance.cdist(samples, [(x, y)]) > radius) if in_array and in_ring: # Accept the candidate samples.append((x, y)) queue.append((x, y)) break if (i + 1) == candidates: # We've exhausted the particular sample queue.pop(s_idx) return np.asarray(samples) class StimBox(object): def __init__(self, exp, center, dist, size=8): stim_sf = exp.p.stim_sf * 2 stim_size = exp.p.stim_size / 5 xy = poisson_disc_sample(size, stim_size) xy[:, 0] += center[0] xy[:, 1] += center[1] self.box = Rect(exp.win, size + stim_size, size + stim_size, pos=center, fillColor=exp.win.color, lineColor="white") self.patterns = patterns = [] for xy_i in xy: pattern = Pattern(exp.win, n=exp.p.stim_gratings, elementTex=exp.p.stim_tex, elementMask=exp.p.stim_mask, sizes=stim_size, sfs=stim_sf, pos=xy_i) patterns.append(pattern) n = len(patterns) qs = np.linspace(.05, .95, n) m, s = exp.p.dist_means[dist], exp.p.dist_sds[dist] cs = 10 ** stats.norm.ppf(qs, m, s) for pat, c in zip(patterns, cs): pat.contrast = c def draw(self): self.box.draw() for p in self.patterns: p.draw()
1.96875
2
pi4home/components/binary_sensor/rdm6300.py
khzd/pi4home
1
12793827
<reponame>khzd/pi4home import voluptuous as vol from pi4home.components import binary_sensor, rdm6300 import pi4home.config_validation as cv from pi4home.const import CONF_NAME, CONF_UID from pi4home.cpp_generator import get_variable DEPENDENCIES = ['rdm6300'] CONF_RDM6300_ID = 'rdm6300_id' RDM6300BinarySensor = binary_sensor.binary_sensor_ns.class_('RDM6300BinarySensor', binary_sensor.BinarySensor) PLATFORM_SCHEMA = cv.nameable(binary_sensor.BINARY_SENSOR_PLATFORM_SCHEMA.extend({ cv.GenerateID(): cv.declare_variable_id(RDM6300BinarySensor), vol.Required(CONF_UID): cv.uint32_t, cv.GenerateID(CONF_RDM6300_ID): cv.use_variable_id(rdm6300.RDM6300Component) })) def to_code(config): for hub in get_variable(config[CONF_RDM6300_ID]): yield rhs = hub.make_card(config[CONF_NAME], config[CONF_UID]) binary_sensor.register_binary_sensor(rhs, config)
2.203125
2
aiocloudflare/api/accounts/storage/analytics/analytics.py
Stewart86/aioCloudflare
2
12793828
<gh_stars>1-10 from aiocloudflare.commons.auth import Auth from .stored.stored import Stored class Analytics(Auth): _endpoint1 = "accounts" _endpoint2 = "storage/analytics" _endpoint3 = None @property def stored(self) -> Stored: return Stored(self._config, self._session)
1.84375
2
Python/processors/process_xsum.py
Williamyzd/NonIntNLP
1
12793829
<gh_stars>1-10 from transformers import XLNetTokenizer import glob, os from multiprocessing import Pool import random import torch # This function processes news articles gathered and preprocessed by the XSum data processor: # https://github.com/EdinburghNLP/XSum # # The pre-processor generates a large number of files, each of which corresponds to a single article. The format of # each file is text, with following format: # [XSUM]URL[XSUM] # <URL where article originates from> # [XSUM]INTRODUCTION[XSUM] # <Summary of the article> # [XSUM]RESTBODY[XSUM] # <Article text> JUNK_HEADER_TEXT = ["Share this with\n", "Email\n", "FaceBook\n", "Facebook\n", "Messenger\n", "Twitter\n", "Pinterest\n", "WhatsApp\n", "LinkedIn\n", "Linkedin\n", "Copy this link\n", "These are external links and will open in a new window\n"] # Processes the contents of an XSUM file and returns a dict: {'text', 'summary'} def map_read_files(filepath): with open(filepath, encoding="utf-8") as file: content = file.read() SUMMARY_INDEX = 4 TEXT_INDEX = 6 splitted = content.split("[XSUM]") summary = splitted[SUMMARY_INDEX].strip() text = splitted[TEXT_INDEX] for junk in JUNK_HEADER_TEXT: text = text.replace(junk, "").strip() # Don't accept content with too small of text content or title content. Often these are very bad examples. if len(text) < 1024: return None if len(summary) < 30: return None return {"summary": summary, "text": text} tok = XLNetTokenizer.from_pretrained("xlnet-base-cased") # This is a map function for processing reviews. It returns a dict: # { 'text' { input_ids_as_tensor }, # 'target' { input_ids_as_tensor } } def map_tokenize_news(processed): text = processed["text"] text_enc = tok.encode( text, add_special_tokens=False, max_length=None, pad_to_max_length=False ) title = processed["summary"] # Insert the title as the second sentence, forcing the proper token types. title_enc = tok.encode( title, add_special_tokens=False, max_length=None, pad_to_max_length=False ) # Push resultants to a simple list and return it return { "text": torch.tensor(text_enc, dtype=torch.long), "target": torch.tensor(title_enc, dtype=torch.long), } if __name__ == "__main__": # Fetch the news. folder = "C:/Users/jbetk/Documents/data/ml/xsum/xsum-extracts-from-downloads" os.chdir(folder) files = glob.glob("*.data") output_folder = "/".join([folder, "outputs"]) p = Pool(20) # Basic workflow: # MAP: [list of files to process] => list_of_news # MAP: [single list of shuffled news] => map_tokenize_news # REDUCE: [tokenized results] => [single list of tokenized results] print("Reading from files..") all_texts = p.map(map_read_files, files) all_texts = [m for m in all_texts if m is not None] print("Tokenizing news..") all_news = p.map(map_tokenize_news, all_texts) print("Writing news to output file.") random.shuffle(all_news) val_news = all_news[0:2048] test_news = all_news[2048:6144] train_news = all_news[6144:] if not os.path.exists(output_folder): os.makedirs(output_folder) torch.save(train_news, "/".join([output_folder, "train.pt"])) torch.save(val_news, "/".join([output_folder, "val.pt"])) torch.save(test_news, "/".join([output_folder, "test.pt"]))
3.078125
3
openeo/extra/spectral_indices/__init__.py
bontekasper/openeo-python-client
75
12793830
""" Easily calculate spectral indices (vegetation, water, urban etc.). Supports the indices defined in the `Awesome Spectral Indices <https://awesome-ee-spectral-indices.readthedocs.io/>`_ project by `<NAME> <https://github.com/davemlz>`_. .. versionadded:: 0.9.1 """ from openeo.extra.spectral_indices.spectral_indices import *
1.445313
1
sipam/serializers/__init__.py
Selfnet/sipam
2
12793831
<gh_stars>1-10 from .assignment import AssignmentSerializer from .cidr import CIDRSerializer, RecursiveCIDRSerializer from .pool import PoolSerializer from .label import LabelSerializer
1.3125
1
koyeb_nb2/__init__.py
ffreemt/koyeb-nb2
4
12793832
"""Init.""" __version__ = "0.1.0" from .koyeb_nb2 import koyeb_nb2 # from .nb2chan import nb2chan __all__ = ("koyeb_nb2",)
0.984375
1
medium/15-3Sum.py
Davidxswang/leetcode
2
12793833
""" https://leetcode.com/problems/3sum/ Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. Note: The solution set must not contain duplicate triplets. Example: Given array nums = [-1, 0, 1, 2, -1, -4], A solution set is: [ [-1, 0, 1], [-1, -1, 2] ] """ # time complexity: O(n^2), space complexity: O(1) # this is such a classic question and I got the inspiration from @christopherwu0529 in the discussion area. The idea is to first sort the nums in O(nlogn), then for each number in this list, two pointers go over the number after it. # To make it faster, early stop if the fixed number is larger than 0, because there will be no way we can make the sum equal to 0. class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: nums.sort() result = [] i = 0 while i < len(nums) - 2: if nums[i] > 0: break if i == 0 or nums[i] != nums[i-1]: low = i + 1 high = len(nums) - 1 while low < high: if nums[i] + nums[low] + nums[high] == 0: result.append([nums[i], nums[low], nums[high]]) while low < high and nums[low] == nums[low+1]: low += 1 while low < high and nums[high] == nums[high-1]: high -= 1 low += 1 high -= 1 elif nums[i] + nums[low] + nums[high] < 0: low += 1 else: high -= 1 i += 1 return result
3.578125
4
mpl_interactions/ipyplot.py
redeboer/mpl-interactions
67
12793834
from .pyplot import interactive_axhline as axhline from .pyplot import interactive_axvline as axvline from .pyplot import interactive_hist as hist from .pyplot import interactive_imshow as imshow from .pyplot import interactive_plot as plot from .pyplot import interactive_scatter as scatter from .pyplot import interactive_title as title from .pyplot import interactive_xlabel as xlabel from .pyplot import interactive_ylabel as ylabel
1.203125
1
codes/algorithms/Harmony.py
pocokhc/metaheuristics
1
12793835
import math import random from ..algorithm_common import AlgorithmCommon as AC from ..algorithm_common import IAlgorithm class Harmony(IAlgorithm): def __init__(self, harmony_max, bandwidth=0.1, enable_bandwidth_rate=False, select_rate=0.8, change_rate=0.3, ): self.harmony_max = harmony_max self.bandwidth = bandwidth self.enable_bandwidth_rate = enable_bandwidth_rate self.select_rate = select_rate self.change_rate = change_rate def init(self, problem): self.problem = problem self.count = 0 self.harmonys = [] for _ in range(self.harmony_max): self.harmonys.append(problem.create()) def getMaxElement(self): self.harmonys.sort(key=lambda x: x.getScore()) return self.harmonys[-1] def getElements(self): return self.harmonys def step(self): # 新しいharmonyを作成 arr = [] for i in range(self.problem.size): if random.random() < self.select_rate: # 新しく和音を生成 arr.append(self.problem.randomVal()) continue # harmonyを1つ選択 h_arr = self.harmonys[random.randint(0, self.harmony_max-1)].getArray() if random.random() < self.change_rate: # 和音を変更 if self.enable_bandwidth_rate: # 割合で bandwidth を指定 bandwidth = self.bandwidth * (self.problem.MAX_VAL - self.problem.MIN_VAL) else: bandwidth = self.bandwidth n = h_arr[i] + bandwidth * (random.random()*2-1) arr.append(n) else: # 和音を複製 arr.append(h_arr[i]) harmony = self.problem.create(arr) self.count += 1 # 新しいharmonyが最悪harmonyより評価が高ければ置き換え self.harmonys.sort(key=lambda x: x.getScore()) if self.harmonys[0].getScore() < harmony.getScore(): self.harmonys[0] = harmony
2.953125
3
autos/test/utils/test_date.py
hans-t/autos
1
12793836
import datetime import unittest import autos.utils.date as date class TestDateRange(unittest.TestCase): def test_returns_today_date_as_default(self): actual = list(date.date_range()) expected = [datetime.date.today()] self.assertEqual(actual, expected) def test_returns_correct_range(self): actual = list(date.date_range( since=(datetime.date.today() - datetime.timedelta(days=3)), until=(datetime.date.today() - datetime.timedelta(days=1)), )) expected = [ (datetime.date.today() - datetime.timedelta(days=1)), (datetime.date.today() - datetime.timedelta(days=2)), (datetime.date.today() - datetime.timedelta(days=3)), ] self.assertEqual(actual, expected) class TestGetPastDate(unittest.TestCase): def test_returns_today_date_by_default(self): actual = date.get_past_date() expected = (datetime.date.today() - datetime.timedelta(days=0)) self.assertEqual(actual, expected) def test_returns_past_3_days_ago_date(self): actual = date.get_past_date(days=3) expected = datetime.date.today() - datetime.timedelta(days=3) self.assertEqual(actual, expected) def test_returns_past_5_weeks_ago_date(self): actual = date.get_past_date(weeks=5) expected = datetime.date.today() - datetime.timedelta(weeks=5) self.assertEqual(actual, expected) def test_returns_past_3_days_and_2_weeks_ago_date(self): actual = date.get_past_date(days=3, weeks=2) expected = datetime.date.today() - datetime.timedelta(days=3, weeks=2) self.assertEqual(actual, expected) def test_returns_future_date_on_negative_input(self): actual = date.get_past_date(days=-3, weeks=-2) expected = datetime.date.today() + datetime.timedelta(days=3, weeks=2) self.assertEqual(actual, expected)
2.9375
3
shawl/core/_base_collection.py
oiakinat/shawl
3
12793837
# -*- coding: utf-8 -*- from typing import Iterator, List, Optional, Tuple from selenium.common.exceptions import ( StaleElementReferenceException, TimeoutException ) from selenium.webdriver.remote.webdriver import WebDriver from selenium.webdriver.remote.webelement import WebElement from selenium.webdriver.support.expected_conditions import ( presence_of_all_elements_located, visibility_of_all_elements_located, visibility_of_any_elements_located ) from selenium.webdriver.support.wait import WebDriverWait from ..config import SHAWL_CONFIG as CONFIG from ..exceptions import NoSuchElementsException from ..utils._waits import wait_until class BaseCollection: """ This class is base for all PageElement collections. This class is a wrap above list of WebElement. Property `collection` contains list of WebElement and provide lazy load of it. It will wait for any of WebElement to be present on the DOM for `SHAWL_LAZY_LOAD_TIMEOUT` seconds. Also, you can work with this class instance as with basic list. For example:: base_collection = BaseCollection(driver, **{'css selector': 'div'}) for element in base_collection: print(element.text) first_element = base_collection[0] assert len(base_collection) == 50 """ def __init__(self, driver: WebDriver, repr_name: Optional[str] = None, **locators): self._driver: WebDriver = driver self._selector: Tuple[str, str] = list(locators.items())[0] self._collection: List[WebElement] = [] self._repr_name: str = repr_name or (f'{self.__class__.__name__}: ' f'{self._selector}') def __str__(self) -> str: return f'Selector: {self._selector}, Collection: {self._collection}' def __repr__(self) -> str: return self._repr_name def __len__(self) -> int: return len(self.collection) def __iter__(self) -> Iterator[WebElement]: return iter(self.collection) def __getitem__(self, item) -> WebElement: return self.collection[item] def __bool__(self) -> bool: return bool(self.collection) def _load(self): try: self._collection = WebDriverWait( self._driver, CONFIG.lazy_load_timeout ).until(presence_of_all_elements_located(self._selector)) except TimeoutException as t_exc: raise NoSuchElementsException( 'no such elements: ' 'Unable to locate elements: ' '{"method":"%s","selector":"%s"}' % self._selector) from t_exc def _return_locator(self, selector_type: str) -> str: if self._selector[0] == selector_type: return self._selector[1] return '' @property def selector(self) -> Tuple[str, str]: return self._selector @property def id(self) -> str: # pylint: disable=invalid-name return self._return_locator('id') @property def xpath(self) -> str: return self._return_locator('xpath') @property def link_text(self) -> str: return self._return_locator('link text') @property def partial_link_text(self) -> str: return self._return_locator('partial link text') @property def name(self) -> str: return self._return_locator('name') @property def tag_name(self) -> str: return self._return_locator('tag name') @property def class_name(self) -> str: return self._return_locator('class name') @property def css_selector(self) -> str: return self._return_locator('css selector') @property def collection(self) -> List[WebElement]: if not self._collection or not isinstance(self._collection, list): self._load() try: for e in self._collection: isinstance(e.location, dict) except StaleElementReferenceException: self._load() return self._collection def any_is_visible(self, wait: int = CONFIG.wait_timeout) -> bool: """ Check that at least one element from collection is visible on a web page during 'wait' seconds. Returns True if at least one element from collection is visible, False otherwise """ return wait_until(self._driver, wait, visibility_of_any_elements_located(self._selector)) def all_are_visible(self, wait: int = CONFIG.wait_timeout) -> bool: """ Check that all elements from collection are present on the DOM of a page and visible during 'wait' seconds. Returns True if all elements from collection are visible, False otherwise """ return wait_until(self._driver, wait, visibility_of_all_elements_located(self._selector)) def any_is_present(self, wait: int = CONFIG.wait_timeout) -> bool: """ Check that at least one element from collection is present on a web page during 'wait' seconds. Returns True if at least one element from collection is present, False otherwise """ return wait_until(self._driver, wait, presence_of_all_elements_located(self._selector)) __all__ = ['BaseCollection']
2.84375
3
examples/ReadDemo.py
Ellis0817/Introduction-to-Programming-Using-Python
0
12793838
<gh_stars>0 def main(): # Open file for input infile = open("Presidents.txt", "r") print("(1) Using read(): ") print(infile.read()) infile.close() # Close the input file # Open file for input infile = open("Presidents.txt", "r") print("\n(2) Using read(number): ") s1 = infile.read(4) print(s1) s2 = infile.read(10) print(repr(s2)) infile.close() # Close the input file # Open file for input infile = open("Presidents.txt", "r") print("\n(3) Using readline(): ") line1 = infile.readline() line2 = infile.readline() line3 = infile.readline() line4 = infile.readline() print(repr(line1)) print(repr(line2)) print(repr(line3)) print(repr(line4)) infile.close() # Close the input file # Open file for input infile = open("Presidents.txt", "r") print("\n(4) Using readlines(): ") print(infile.readlines()) infile.close() # Close the input file main() # Call the main function
3.703125
4
octoprint_marlin_flasher/flasher/base_flasher.py
Renaud11232/Octoprint-Marlin-Flasher
0
12793839
from .flasher_error import FlasherError import time import flask import requests import tempfile import os import re from threading import Thread class BaseFlasher: def __init__(self, settings, printer, plugin, plugin_manager, identifier, logger): self._settings = settings self._printer = printer self._plugin = plugin self._plugin_manager = plugin_manager self._identifier = identifier self._logger = logger self._firmware = None self._firmware_version = None self._firmware_author = None self._firmware_upload_time = None self._should_run_post_script = False self._flash_status = None def _background_run(self, target, args=None): thread = Thread(target=target, args=args) thread.start() return thread def _run_pre_flash_script(self): pre_flash_script = self._settings.get_pre_flash_script() if pre_flash_script: self._logger.debug("Running pre-flash GCode script :") self._logger.debug(pre_flash_script) commands = [line.strip() for line in pre_flash_script.splitlines()] self._printer.commands(commands) else: self._logger.debug("No pre-flash GCode script defined") def _wait_pre_flash_delay(self): self._logger.debug("Waiting pre-flash delay...") time.sleep(self._settings.get_pre_flash_delay()) def _run_post_flash_script(self): post_flash_script = self._settings.get_post_flash_script() if post_flash_script: self._logger.debug("Running post-flash script") self._logger.debug(post_flash_script) commands = [line.strip() for line in post_flash_script.splitlines()] self._printer.commands(commands) else: self._logger.debug("No script defined") def _wait_post_flash_delay(self): self._logger.debug("Waiting post-flash delay...") time.sleep(self._settings.get_post_flash_delay()) def _validate_firmware_file(self, file_path): raise FlasherError("Unsupported function call.") def handle_connected_event(self): if self._should_run_post_script: self._run_post_flash_script() self._should_run_post_script = False def check_setup_errors(self): raise FlasherError("Unsupported function call.") def upload(self): self._logger.debug("Firmware uploaded by the user") uploaded_file_path = flask.request.values["firmware_file." + self._settings.get_upload_path_suffix()] errors = self._validate_firmware_file(uploaded_file_path) if errors: self._push_firmware_info() return None, errors result = self._handle_firmware_file(uploaded_file_path) self._push_firmware_info() return result def download(self): self._logger.debug("Downloading firmware...") r = requests.get(flask.request.values["url"]) self._logger.debug("Saving downloaded firmware...") with tempfile.NamedTemporaryFile(delete=False) as temp: temp.write(r.content) temp_path = temp.name errors = self._validate_firmware_file(temp_path) if errors: self._push_firmware_info() os.remove(temp_path) return None, errors result = self._handle_firmware_file(temp_path) self._push_firmware_info() self._logger.debug("Clearing downloaded firmware...") os.remove(temp_path) return result def _handle_firmware_file(self, firmware_file_path): raise FlasherError("Unsupported function call.") def _find_firmware_info(self): for root, dirs, files in os.walk(self._firmware): for f in files: if f == "Version.h": self._logger.debug("Found Version.h, opening it...") with open(os.path.join(root, f), "r") as version_file: for line in version_file: version = re.findall(r'#define +SHORT_BUILD_VERSION +"([^"]*)"', line) if version: self._firmware_version = version[0] self._logger.debug("Found SHORT_BUILD_VERSION : %s" % self._firmware_version) break elif f == "Configuration.h": self._logger.debug("Found Configuration.h, opening it...") with open(os.path.join(root, f), "r") as configfile: for line in configfile: author = re.findall(r'#define +STRING_CONFIG_H_AUTHOR +"([^"]*)"', line) if author: self._firmware_author = author[0] self._logger.debug("Found STRING_CONFIG_H_AUTHOR : %s" % self._firmware_author) break def _firmware_info_event_name(self): raise FlasherError("Undefined function call") def _push_firmware_info(self): self._logger.debug("Sending firmware info through websocket") self._plugin_manager.send_plugin_message(self._identifier, dict( type=self._firmware_info_event_name(), version=self._firmware_version, author=self._firmware_author, upload_time=self._firmware_upload_time.strftime("%d/%m/%Y, %H:%M:%S") if self._firmware_upload_time is not None else None, firmware=self._firmware )) def _push_flash_status(self, event_name): if self._flash_status: data = dict( type=event_name ) data.update(self._flash_status) self._plugin_manager.send_plugin_message(self._identifier, data) def send_initial_state(self): self._push_firmware_info()
2.25
2
OpenGLCffi/GLX/EXT/SGIX/dmbuffer.py
cydenix/OpenGLCffi
0
12793840
from OpenGLCffi.GLX import params @params(api='glx', prms=['dpy', 'pbuffer', 'params', 'dmbuffer']) def glXAssociateDMPbufferSGIX(dpy, pbuffer, params, dmbuffer): pass
1.742188
2
python/src/main/python/pygw/statistics/field/time_range_statistic.py
MC-JY/geowave
0
12793841
# # Copyright (c) 2013-2022 Contributors to the Eclipse Foundation # # See the NOTICE file distributed with this work for additional information regarding copyright # ownership. All rights reserved. This program and the accompanying materials are made available # under the terms of the Apache License, Version 2.0 which accompanies this distribution and is # available at http://www.apache.org/licenses/LICENSE-2.0.txt # =============================================================================================== from pygw.config import geowave_pkg from ..statistic import FieldStatistic from ..statistic_type import FieldStatisticType from ...base.interval import IntervalTransformer class TimeRangeStatistic(FieldStatistic): """ Tracks the time range of a temporal field. """ STATS_TYPE = FieldStatisticType(geowave_pkg.core.geotime.store.statistics.TimeRangeStatistic.STATS_TYPE) def __init__(self, type_name=None, field_name=None, java_ref=None): if java_ref is None: if type_name is None and field_name is None: java_ref = geowave_pkg.core.geotime.store.statistics.TimeRangeStatistic() else: java_ref = geowave_pkg.core.geotime.store.statistics.TimeRangeStatistic(type_name, field_name) super().__init__(java_ref, IntervalTransformer())
1.882813
2
app/routers/__init__.py
gmelodie/pystebin
0
12793842
# This empty file allows us to # use app/ as a python package
1.148438
1
src/brusher/c_highlighter.py
CihatAltiparmak/C-EDITOR
11
12793843
<filename>src/brusher/c_highlighter.py #!/usr/bin/env python from PyQt5.QtCore import QFile, QRegExp, Qt from PyQt5.QtGui import QFont, QSyntaxHighlighter, QTextCharFormat, QColor from syntaxer import Syntax_Patcher class C_Highlighter(QSyntaxHighlighter): def __init__(self, parent=None): super(C_Highlighter, self).__init__(parent) self.parent = parent parcher = Syntax_Patcher() keyword_patterns = parcher.c_parcher() # -----------------> data types format data_types_patterns = parcher.c_parcher() self.data_types_format = QTextCharFormat() self.data_types_format.setForeground(self.give_color(data_types_patterns["data_types"]["color"])) #yellow self.data_types_format.setFontWeight(QFont.ExtraBold) self.highlight_rules = [(QRegExp(pattern), self.data_types_format) for pattern in data_types_patterns["data_types"]["words"]] #print("data_types_uzunlugu: ",len(data_types_patterns["data_types"]["words"])) # -----------------> function format func_format = QTextCharFormat() func_format.setForeground(Qt.red) func_format.setFontWeight(QFont.Bold) self.highlight_rules.append((QRegExp("\\b[A-Za-z0-9_]+(?=\\()"), func_format)) # -----------------> keyword format self.keyword_format = QTextCharFormat() self.keyword_format.setForeground(self.give_color(keyword_patterns["keywords"]["color"])) #white self.keyword_format.setFontWeight(QFont.Bold) for pattern in keyword_patterns["keywords"]["words"]: self.highlight_rules.append((QRegExp(pattern), self.keyword_format)) # -----------------> single line comment format single_comment_format = QTextCharFormat() single_comment_format.setForeground(QColor(0,0,0,100)) single_comment_format.setFontWeight(QFont.Courier) self.highlight_rules.append((QRegExp("//[^\n]*"), single_comment_format)) # -----------------> multiline comment format self.multi_comment_format = QTextCharFormat() self.multi_comment_format.setForeground(Qt.cyan) self.multi_comment_format.setFontWeight(QFont.Courier) # -----------------> single line string format str_format = QTextCharFormat() str_format.setForeground(Qt.magenta) str_format.setFontWeight(QFont.DemiBold) self.highlight_rules.append((QRegExp("\".*\""), str_format)) self.commentStart = QRegExp("/\\*") self.commentEnd = QRegExp("\\*/") def highlightBlock(self, text): for pattern, format_ in self.highlight_rules: expression = QRegExp(pattern) index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, format_) index = expression.indexIn(text, index + length) self.setCurrentBlockState(0) startIndex = 0 if self.previousBlockState() != 1: startIndex = self.commentStart.indexIn(text, startIndex) while startIndex >= 0: endIndex = self.commentEnd.indexIn(text, startIndex) if endIndex == -1: self.setCurrentBlockState(1) commentLength = len(text) - startIndex else: commentLength = endIndex - startIndex + self.commentEnd.matchedLength() self.setFormat(startIndex, commentLength, self.multi_comment_format) startIndex = self.commentStart.indexIn(text, startIndex + commentLength); def give_color(self, color): if color == "red": return Qt.red if color == "blue": return Qt.blue if color == "green": return Qt.green if color == "yellow": return Qt.yellow if color == "white": return Qt.white if color == "magenta": return Qt.magenta if color == "cyan": return Qt.cyan def _reinit__(self): self.__init__(parent = self.parent)
2.3125
2
pyradar/Chapter06/optimum_binary_example.py
mberkanbicer/software
1
12793844
""" Project: RadarBook File: optimum_binary_example.py Created by: <NAME> On: 10/11/2018 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ import sys from Chapter06.ui.OptimumBinary_ui import Ui_MainWindow from numpy import arange, ceil from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.backends.qt_compat import QtCore from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class OptimumBinary(QMainWindow, Ui_MainWindow): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) # Connect to the input boxes, when the user presses enter the form updates self.number_of_pulses.returnPressed.connect(self._update_canvas) self.target_type.currentIndexChanged.connect(self._update_canvas) # Set up a figure for the plotting canvas fig = Figure() self.axes1 = fig.add_subplot(111) self.my_canvas = FigureCanvas(fig) # Add the canvas to the vertical layout self.verticalLayout.addWidget(self.my_canvas) self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(self.my_canvas, self)) # Update the canvas for the first display self._update_canvas() def _update_canvas(self): """ Update the figure when the user changes an input value. :return: """ # Get the parameters from the form number_of_pulses = int(self.number_of_pulses.text()) # Get the selected target type from the form target_type = self.target_type.currentText() if target_type == 'Swerling 0': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 1': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 2': alpha = 0.91 beta = -0.38 elif target_type == 'Swerling 3': alpha = 0.8 beta = -0.02 elif target_type == 'Swerling 4': alpha = 0.873 beta = -0.27 # Calculate the optimum choice for M np = arange(1, number_of_pulses+1) m_optimum = [ceil(10.0 ** beta * n ** alpha) for n in np] # Clear the axes for the updated plot self.axes1.clear() # Display the results self.axes1.plot(np, m_optimum, '') # Set the plot title and labels self.axes1.set_title('Optimum M for Binary Integration', size=14) self.axes1.set_xlabel('Number of Pulses', size=12) self.axes1.set_ylabel('M', size=12) # Set the tick label size self.axes1.tick_params(labelsize=12) # Turn on the grid self.axes1.grid(linestyle=':', linewidth=0.5) # Update the canvas self.my_canvas.draw() def start(): form = OptimumBinary() # Set the form form.show() # Show the form def main(): app = QApplication(sys.argv) # A new instance of QApplication form = OptimumBinary() # Set the form form.show() # Show the form app.exec_() # Execute the app if __name__ == '__main__': main()
2.453125
2
tests/test_auth.py
initfve/notify-server
1
12793845
<reponame>initfve/notify-server import httpx import pytest import respx from app import auth @respx.mock @pytest.mark.parametrize( "side_effect, expected", [ (httpx.Response(200), True), (httpx.Response(201), True), (httpx.ConnectError, False), (httpx.ConnectTimeout, False), (httpx.Response(400), False), (httpx.Response(403), False), (httpx.Response(405), False), (httpx.Response(500), False), (httpx.Response(429), False), ], ) def test_url_authenticate_user(side_effect, expected): request = respx.post( "https://auth.example.org/login", ) request.side_effect = side_effect result = auth.url_authenticate_user("john", "secret") assert request.called assert result is expected
2.171875
2
tests/scheduler/instrument_coordinator/components/test_zhinst.py
quantify-os/quantify-scheduler
1
12793846
<reponame>quantify-os/quantify-scheduler # Repository: https://gitlab.com/quantify-os/quantify-scheduler # Licensed according to the LICENCE file on the master branch # pylint: disable=missing-module-docstring # pylint: disable=missing-class-docstring # pylint: disable=missing-function-docstring # pylint: disable=redefined-outer-name from __future__ import annotations from typing import Any, Dict, Tuple from pathlib import Path from unittest.mock import call import numpy as np import pytest from zhinst import qcodes from quantify_scheduler.backends.zhinst import helpers as zi_helpers from quantify_scheduler.backends.zhinst import settings from quantify_scheduler.backends.zhinst_backend import ( ZIAcquisitionConfig, ZIDeviceConfig, ) from quantify_scheduler.instrument_coordinator.components import zhinst from quantify_scheduler.types import Schedule @pytest.fixture def make_hdawg(mocker): def _make_hdawg( name: str, serial: str ) -> zhinst.HDAWGInstrumentCoordinatorComponent: mocker.patch("qcodes.instrument.Instrument.record_instance") hdawg: qcodes.HDAWG = mocker.create_autospec(qcodes.HDAWG, instance=True) hdawg.name = name hdawg._serial = serial hdawg.awgs = [None] * 4 for i in range(4): hdawg.awgs[i] = mocker.create_autospec(qcodes.hdawg.AWG, instance=True) component = zhinst.HDAWGInstrumentCoordinatorComponent(hdawg) mocker.patch.object(component.instrument_ref, "get_instr", return_value=hdawg) return component yield _make_hdawg @pytest.fixture def make_uhfqa(mocker): def _make_uhfqa( name: str, serial: str ) -> zhinst.HDAWGInstrumentCoordinatorComponent: mocker.patch("qcodes.instrument.Instrument.record_instance") uhfqa: qcodes.UHFQA = mocker.create_autospec(qcodes.UHFQA, instance=True) uhfqa.name = name uhfqa._serial = serial uhfqa.awg = mocker.create_autospec(qcodes.uhfqa.AWG, instance=True) # the quantum analyzer setup "qas" uhfqa.qas = [None] * 1 uhfqa.qas[0] = mocker.create_autospec(None, instance=True) component = zhinst.UHFQAInstrumentCoordinatorComponent(uhfqa) mocker.patch.object(component.instrument_ref, "get_instr", return_value=uhfqa) return component yield _make_uhfqa def test_initialize_hdawg(make_hdawg): make_hdawg("hdawg0", "dev1234") def test_hdawg_start(mocker, make_hdawg): # Arrange hdawg: zhinst.HDAWGInstrumentCoordinatorComponent = make_hdawg("hdawg0", "dev1234") get_awg_spy = mocker.patch.object(hdawg, "get_awg", wraps=hdawg.get_awg) hdawg.zi_settings = settings.ZISettings( list(), [ (0, mocker.Mock()), (1, mocker.Mock()), (2, mocker.Mock()), (3, mocker.Mock()), ], ) # Act hdawg.start() # Assert assert get_awg_spy.call_args_list == [ call(3), call(2), call(1), call(0), ] for i in range(4): hdawg.get_awg(i).run.assert_called() def test_hdawg_stop(mocker, make_hdawg): # Arrange hdawg: zhinst.HDAWGInstrumentCoordinatorComponent = make_hdawg("hdawg0", "dev1234") get_awg_spy = mocker.patch.object(hdawg, "get_awg", wraps=hdawg.get_awg) hdawg.zi_settings = settings.ZISettings( list(), [ (0, mocker.Mock()), (1, mocker.Mock()), (2, mocker.Mock()), (3, mocker.Mock()), ], ) # Act hdawg.stop() # Assert assert get_awg_spy.call_args_list == [ call(0), call(1), call(2), call(3), ] for i in range(4): hdawg.get_awg(i).stop.assert_called() def test_hdawg_prepare(mocker, make_hdawg): # Arrange hdawg: zhinst.HDAWGInstrumentCoordinatorComponent = make_hdawg("hdawg0", "dev1234") config = ZIDeviceConfig( "hdawg0", Schedule("test"), settings.ZISettingsBuilder(), None ) serialize = mocker.patch.object(settings.ZISettings, "serialize") apply = mocker.patch.object(settings.ZISettings, "apply") mocker.patch("quantify_core.data.handling.get_datadir", return_value=".") # Act hdawg.prepare(config) # Assert hdawg_serialize_settings = settings.ZISerializeSettings( f"ic_{hdawg.instrument.name}", hdawg.instrument._serial, hdawg.instrument._type ) serialize.assert_called_with(Path("."), hdawg_serialize_settings) apply.assert_called_with(hdawg.instrument) def test_hdawg_retrieve_acquisition(make_hdawg): # Arrange hdawg: zhinst.HDAWGInstrumentCoordinatorComponent = make_hdawg("hdawg0", "dev1234") # Act acq_result = hdawg.retrieve_acquisition() # Assert assert acq_result is None def test_hdawg_wait_done(mocker, make_hdawg): # Arrange hdawg: zhinst.HDAWGInstrumentCoordinatorComponent = make_hdawg("hdawg0", "dev1234") get_awg_spy = mocker.patch.object(hdawg, "get_awg", wraps=hdawg.get_awg) hdawg.zi_settings = settings.ZISettings( list(), [ (0, mocker.Mock()), (1, mocker.Mock()), (2, mocker.Mock()), (3, mocker.Mock()), ], ) timeout: int = 20 # Act hdawg.wait_done(timeout) # Assert assert get_awg_spy.call_args_list == [ call(3), call(2), call(1), call(0), ] for i in range(4): hdawg.get_awg(i).wait_done.assert_called_with(timeout) def test_initialize_uhfqa(make_uhfqa): make_uhfqa("uhfqa0", "dev1234") def test_uhfqa_start(mocker, make_uhfqa): # Arrange uhfqa: zhinst.UHFQAInstrumentCoordinatorComponent = make_uhfqa("uhfqa0", "dev1234") uhfqa.zi_settings = settings.ZISettings( list(), [ (0, mocker.Mock()), ], ) # Act uhfqa.start() # Assert uhfqa.instrument.awg.run.assert_called() def test_uhfqa_stop(mocker, make_uhfqa): # Arrange uhfqa: zhinst.UHFQAInstrumentCoordinatorComponent = make_uhfqa("uhfqa0", "dev1234") uhfqa.zi_settings = settings.ZISettings( list(), [ (0, mocker.Mock()), ], ) # Act uhfqa.stop() # Assert uhfqa.instrument.awg.stop.assert_called() def test_uhfqa_prepare(mocker, make_uhfqa): # Arrange uhfqa: zhinst.UHFQAInstrumentCoordinatorComponent = make_uhfqa("uhfqa0", "dev1234") config = ZIDeviceConfig( "hdawg0", Schedule("test"), settings.ZISettingsBuilder(), None ) serialize = mocker.patch.object(settings.ZISettings, "serialize") apply = mocker.patch.object(settings.ZISettings, "apply") mocker.patch("quantify_core.data.handling.get_datadir", return_value=".") mocker.patch.object(zi_helpers, "get_waves_directory", return_value=Path("waves/")) mocker.patch.object(Path, "glob", return_value=["uhfqa0_awg0.csv"]) copy2 = mocker.patch("shutil.copy2") # Act uhfqa.prepare(config) # Assert uhfqa_serialize_settings = settings.ZISerializeSettings( f"ic_{uhfqa.instrument.name}", uhfqa.instrument._serial, uhfqa.instrument._type ) serialize.assert_called_with(Path("."), uhfqa_serialize_settings) apply.assert_called_with(uhfqa.instrument) copy2.assert_called_with("uhfqa0_awg0.csv", "waves") def test_uhfqa_retrieve_acquisition(mocker, make_uhfqa): # Arrange uhfqa: zhinst.UHFQAInstrumentCoordinatorComponent = make_uhfqa("uhfqa0", "dev1234") expected_data = np.ones(64) def resolver(uhfqa): # pylint: disable=unused-argument return expected_data config = ZIDeviceConfig( "hdawg0", Schedule("test"), settings.ZISettingsBuilder(), ZIAcquisitionConfig(1, {0: resolver}), ) mocker.patch.object(settings.ZISettings, "serialize") mocker.patch.object(settings.ZISettings, "apply") mocker.patch("quantify_core.data.handling.get_datadir", return_value=".") mocker.patch.object(zi_helpers, "get_waves_directory", return_value=Path("waves/")) mocker.patch.object(Path, "glob", return_value=[]) uhfqa.prepare(config) # Act acq_result = uhfqa.retrieve_acquisition() expected_acq_result: Dict[Tuple[int, int], Any] = dict() for i, value in enumerate(expected_data): expected_acq_result[(0, i)] = (value, 0.0) # Assert assert not acq_result is None assert (0, 2) in acq_result for key in acq_result: assert acq_result[key] == expected_acq_result[key] def test_uhfqa_wait_done(mocker, make_uhfqa): # Arrange uhfqa: zhinst.UHFQAInstrumentCoordinatorComponent = make_uhfqa("uhfqa0", "dev1234") wait_done = mocker.patch.object(uhfqa.instrument.awg, "wait_done") timeout: int = 20 # Act uhfqa.wait_done(timeout) # Assert wait_done.assert_called_with(timeout)
1.851563
2
app/dashapp1/callbacks.py
rseed42/dash_on_flask
258
12793847
from datetime import datetime as dt from dash.dependencies import Input from dash.dependencies import Output from dash.dependencies import State from flask_login import current_user import pandas_datareader as pdr def register_callbacks(dashapp): @dashapp.callback( Output('my-graph', 'figure'), Input('my-dropdown', 'value'), State('user-store', 'data')) def update_graph(selected_dropdown_value, data): df = pdr.get_data_yahoo(selected_dropdown_value, start=dt(2017, 1, 1), end=dt.now()) return { 'data': [{ 'x': df.index, 'y': df.Close }], 'layout': {'margin': {'l': 40, 'r': 0, 't': 20, 'b': 30}} } @dashapp.callback( Output('user-store', 'data'), Input('my-dropdown', 'value'), State('user-store', 'data')) def cur_user(args, data): if current_user.is_authenticated: return current_user.username @dashapp.callback(Output('username', 'children'), Input('user-store', 'data')) def username(data): if data is None: return '' else: return f'Hello {data}'
2.421875
2
mainapp/models.py
Raistlin11123/inquiry-soso
0
12793848
<reponame>Raistlin11123/inquiry-soso<filename>mainapp/models.py<gh_stars>0 from django.db import models from django.contrib.auth.models import User import datetime now = datetime.datetime.now() """ class Contact(models.Model): name = models.CharField(max_length=50) email = models.EmailField() content = models.TextField() def __str__(self): return "Message de {}".format(self.name) """ class Clue(models.Model): title = models.CharField(max_length=42, verbose_name='Titre') url_img_optionnel = models.CharField(max_length=42, default= 'rien', verbose_name='url_img_optionnel')#rien si il n'y a pas d'image paragraph1 = models.TextField(verbose_name = 'paragraph1', null=True, blank=True) code = models.CharField(null=True, verbose_name="code", max_length=30) #code pour accéder à l'indice #question d'entrée optionnel (réponse) optional_question = models.CharField(null=True, verbose_name="question optionelle", max_length=255, blank=True) optional_answer = models.CharField(null=True, verbose_name="réponse optionelle", max_length=255, blank=True) def __str__(self): return "{}".format(self.title) class UserClues(models.Model): player = models.ForeignKey(User, on_delete=models.CASCADE) clue = models.ForeignKey(Clue, on_delete=models.CASCADE) date = models.DateTimeField(default=now, blank=True) def __str__(self): return "indice de {}".format(self.player.username) #trouver un nom singulier autre que UserClue (déjà utilisé par django)
2.40625
2
model-ms/benchmark/make_fixture_models.py
ncoop57/deep_parking
126
12793849
<reponame>ncoop57/deep_parking<filename>model-ms/benchmark/make_fixture_models.py import torchvision from fastai.vision import ImageDataBunch, cnn_learner, unet_learner, SegmentationItemList, imagenet_stats data = ImageDataBunch.from_csv('fixtures/classification').normalize(imagenet_stats) learner = cnn_learner(data, torchvision.models.resnet34) learner.export() data = (SegmentationItemList.from_folder('fixtures/segmentation/images') .split_none() .label_from_func(lambda x: f'fixtures/segmentation/masks/{x.stem}.jpg', classes=[0, 1, 2]) .databunch() .normalize(imagenet_stats)) learner = unet_learner(data, torchvision.models.resnet50) learner.export('../export.pkl')
1.992188
2
vnpy/app/algo_trading/algos/liquid_mining_algo.py
dos2004/vnpy
0
12793850
from collections import defaultdict from decimal import Decimal from _datetime import datetime, timedelta from enum import Enum import math import random import re import requests import time from vnpy.app.algo_trading import AlgoTemplate from vnpy.trader.utility import round_to from vnpy.trader.constant import Direction, Status, OrderType from vnpy.trader.object import AccountData, OrderData, TradeData, TickData from vnpy.trader.engine import BaseEngine class LiquidMiningAlgo(AlgoTemplate): """""" display_name = "交易所 流动性挖坑" default_setting = { "vt_symbol": "", "price_offset": 0.05, "price_offset_max": 0.1, "volume": 2, "max_volume_ratio": 0, "interval": 3, "min_order_level": 1, "min_order_volume": 0, "sell_max_volume": 0, "buy_max_volume": 0, "auto_trade_volume": 310, "sell_max_ratio": 1, "buy_max_ratio": 1, "reward_ratio": 0.01, "min_pos": 50000, "max_pos": 50000, } variables = [ "pos", "timer_count", "vt_ask_orderid", "vt_bid_orderid" ] def __init__( self, algo_engine: BaseEngine, algo_name: str, setting: dict ): """""" super().__init__(algo_engine, algo_name, setting) # Parameters self.vt_symbol = setting["vt_symbol"] self.price_offset = setting["price_offset"] self.price_offset_max = setting["price_offset_max"] self.volume = setting["volume"] self.max_volume_ratio = setting.get("max_volume_ratio", 0) assert 0 <= self.max_volume_ratio <= 1 self.interval = setting["interval"] self.min_order_level = setting["min_order_level"] self.min_order_volume = setting["min_order_volume"] self.sell_max_volume = setting["sell_max_volume"] self.buy_max_volume = setting["buy_max_volume"] self.auto_trade_volume = setting["auto_trade_volume"] self.sell_max_ratio = setting["sell_max_ratio"] self.buy_max_ratio = setting["buy_max_ratio"] self.reward_ratio = setting["reward_ratio"] self.min_pos = setting["min_pos"] self.max_pos = setting["max_pos"] self.enable_ioc = setting.get("enable_ioc", False) self.ioc_intervel = setting.get("ioc_interval", self.interval) # validate setting assert self.price_offset <= self.price_offset_max assert 0 <= self.min_order_level <= 5 # Variables self.pos = 0 self.timer_count = 0 self.vt_ask_orderid = "" self.vt_ask_price = 0.0 self.vt_bid_orderid = "" self.vt_bid_price = 0.0 self.origin_ask_price = 0.00000002 self.origin_bid_price = 0.00000001 self.last_ask_price = 0.00000002 self.last_bid_price = 0.00000001 self.last_ask_volume = 0.0 self.last_bid_volume = 0.0 self.total_ask_volume = 0.0 self.total_bid_volume = 0.0 self.ask_order_level = 0 self.bid_order_level = 0 self.last_tick = None self._init_market_accounts(self.vt_symbol) self.subscribe(self.vt_symbol) self.put_parameters_event() self.put_variables_event() def _init_market_accounts(self, active_vt_symbol): SYMBOL_SPLITTER = re.compile(r"^(\w+)[-:/]?(BTC|ETH|BNB|XRP|USDT|USDC|USDS|TUSD|PAX|DAI)$") market_token_pair = active_vt_symbol.split('.')[0] active_market = active_vt_symbol.split('.')[1] if not market_token_pair or not active_market: self.algo_engine.main_engine.write_log(f"ERROR: parse active_vt {active_vt_symbol} failed") return False token_pair_match = SYMBOL_SPLITTER.match(market_token_pair.upper()) if not token_pair_match: self.algo_engine.main_engine.write_log(f"ERROR: parse symbol {market_token_pair} failed") return False self.market_vt_tokens = [ f"{active_market}.{token_pair_match.group(1)}", f"{active_market}.{token_pair_match.group(2)}" ] self.current_balance = {} self._update_current_balance() def _update_current_balance(self): for vt_token in self.market_vt_tokens: user_account = self.algo_engine.main_engine.get_account(vt_token) if type(user_account) is not AccountData: return False self.current_balance[vt_token] = user_account.balance return True def on_start(self): """""" random.seed(time.time()) self.write_log(f"开始流动性挖矿: {self.price_offset}, {self.price_offset_max}, {self.volume}, {self.interval}, {self.min_order_level}, {self.min_order_volume}, {self.sell_max_volume}, {self.buy_max_volume}, {self.auto_trade_volume}") self.pricetick = self.algo_engine.main_engine.get_contract(self.vt_symbol).pricetick self.volumetick = self.algo_engine.main_engine.get_contract(self.vt_symbol).min_volume assert self.pricetick > 0 def on_tick(self, tick: TickData): """""" self.last_tick = tick market_price = (tick.ask_price_1 + tick.bid_price_1) / 2 if self.vt_ask_orderid != "": self.ask_order_alive_tick += 1 # if time to kill cancel_ask = False if self.enable_ioc and self.ask_order_alive_tick > self.ioc_intervel: self.write_log(f"卖单{self.vt_ask_orderid}有效时间{self.ask_order_alive_tick} ticks > {self.ioc_intervel},取消") cancel_ask = True if not cancel_ask: total_ask_volume = 0 for num_level in range(1, 6): ask_price = getattr(tick, f"ask_price_{num_level}") if 0 < ask_price < self.last_ask_price: total_ask_volume += getattr(tick, f"ask_volume_{num_level}") # min_ask_price = getattr(tick, f"ask_price_{self.ask_order_level}") if self.ask_order_level > 0 else market_price # vt_ask_price = round_to(min_ask_price + self.pricetick, self.pricetick) vt_ask_price = getattr(tick, f"ask_price_1") if self.vt_ask_price < vt_ask_price: cancel_ask = True self.write_log(f"当前卖单{self.vt_ask_price} 低于最新卖{self.ask_order_level}价 {vt_ask_price},取消") elif self.vt_ask_price > vt_ask_price: cancel_ask = True self.write_log(f"当前卖单{self.vt_ask_price} 高于最新卖{self.ask_order_level}价 {vt_ask_price},取消") elif abs(self.total_ask_volume - total_ask_volume) > (self.total_ask_volume / 2): cancel_ask = True self.write_log(f"---> 当前卖单{self.vt_ask_price} 取消,因为之前的订单量发生了变化") if cancel_ask: self.cancel_order(self.vt_ask_orderid) # self.ask_order_alive_tick = 0 if self.vt_bid_orderid != "": self.bid_order_alive_tick += 1 # if time to kill cancel_bid = False if self.enable_ioc and self.bid_order_alive_tick > self.ioc_intervel: self.write_log(f"买单{self.vt_bid_orderid}有效时间{self.bid_order_alive_tick} ticks > {self.ioc_intervel},取消") cancel_bid = True if not cancel_bid: total_bid_volume = 0 for num_level in range(1, 6): bid_price = getattr(tick, f"bid_price_{num_level}") if bid_price > self.last_bid_price: total_bid_volume += getattr(tick, f"bid_volume_{num_level}") # max_bid_price = getattr(tick, f"bid_price_{self.bid_order_level}") if self.bid_order_level > 0 else market_price # vt_bid_price = round_to(max_bid_price - self.pricetick, self.pricetick) vt_bid_price = getattr(tick, f"bid_price_1") if self.vt_bid_price > vt_bid_price: cancel_bid = True self.write_log(f"当前买单{self.vt_bid_price} 高于最新买{self.bid_order_level}价 {vt_bid_price},取消") elif self.vt_bid_price < vt_bid_price: cancel_bid = True self.write_log(f"当前买单{self.vt_bid_price} 低于最新买{self.bid_order_level}价 {vt_bid_price},取消") elif abs(self.total_bid_volume - total_bid_volume) > (self.total_bid_volume / 2): cancel_bid = True self.write_log(f"---> 当前买单{self.vt_bid_price} 取消,因为之前的订单量发生了变化") if cancel_bid: self.cancel_order(self.vt_bid_orderid) # self.bid_order_alive_tick = 0 def on_timer(self): """""" if not self.last_tick: return if self.pos < self.min_pos or self.pos > self.max_pos: self.cancel_all() self.write_log(f"当前持仓: {self.pos} 超出[{self.min_pos}, {self.max_pos}]范围,停止流动性挖矿") return self.timer_count += 1 if self.timer_count < self.interval: self.put_variables_event() return self.timer_count = 0 self.write_log(f"当前余额 {self.current_balance}, 持仓 {self.pos}") if not self._update_current_balance(): self.write_log(f"查询余额失败,上次余额: [{self.current_balance}]") return use_max_volume = self.max_volume_ratio > 0 max_volume_ratio = self.max_volume_ratio market_price = (self.last_tick.ask_price_1 + self.last_tick.bid_price_1) / 2 if self.vt_ask_orderid == "": self.ask_order_level = 0 for num_level in range(self.min_order_level, 0, -1): ask_price = getattr(self.last_tick, f"ask_price_{num_level}") if 0 < ask_price < market_price * (1 + self.reward_ratio * 0.99): self.ask_order_level = num_level break if self.ask_order_level > 0: total_ask_volume = 0 for num_level in range(1, self.ask_order_level + 1): total_ask_volume += getattr(self.last_tick, f"ask_volume_{num_level}") if total_ask_volume != self.last_ask_volume: one_ask_price = getattr(self.last_tick, f"ask_price_1") one_ask_volume = getattr(self.last_tick, f"ask_volume_1") min_ask_price = getattr(self.last_tick, f"ask_price_{self.ask_order_level}") if self.ask_order_level > 0 else market_price vt_ask_price = round_to(min_ask_price + self.pricetick, self.pricetick) if self.origin_ask_price == 0.00000002: self.origin_ask_price = vt_ask_price ask_condition0 = self.last_ask_price == 0.00000002 ask_condition1 = (self.last_ask_price * (1 - self.price_offset)) < vt_ask_price < (self.last_ask_price * (1 + self.price_offset)) ask_condition2 = vt_ask_price > (self.origin_ask_price * (1 - self.price_offset_max)) ask_condition8 = one_ask_price < (self.origin_ask_price * (1 - self.price_offset_max * 2)) self.write_log(f"---> 流动性挖矿卖出condition1: {ask_condition1}, condition2: {ask_condition2}") if ask_condition0 or (ask_condition1 and ask_condition2): self.last_ask_price = vt_ask_price self.vt_ask_price = one_ask_price self.total_ask_volume = total_ask_volume max_volume = self.current_balance[self.market_vt_tokens[0]] * self.sell_max_ratio if 0 < self.sell_max_volume < max_volume: max_volume = self.sell_max_volume min_volume = self.volume * total_ask_volume if self.min_order_volume > 0 and min_volume < self.min_order_volume: min_volume = self.min_order_volume volume = min_volume if not use_max_volume else max_volume * max_volume_ratio if volume >= max_volume: volume = max_volume self.last_ask_volume = round_to(volume - self.volumetick, self.volumetick) self.write_log(f"流动性挖矿卖出价格: {vt_ask_price}, 量: {self.last_ask_volume}") self.vt_ask_orderid = self.sell(self.vt_symbol, vt_ask_price, self.last_ask_volume) self.ask_order_alive_tick = 0 elif ask_condition8 and one_ask_volume < self.auto_trade_volume: self.write_log(f"---> 流动性挖矿买入低价one_ask_price: {one_ask_price}, one_ask_volume: {one_ask_volume}") self.buy(self.vt_symbol, one_ask_price, one_ask_volume) else: self.write_log(f"---> 流动性挖矿卖出下单失败,因为卖单总数量等于上一单数量") else: self.write_log(f"---> 流动性挖矿卖出下单失败,因为没有合适的下单位置") if self.vt_bid_orderid == "": self.bid_order_level = 0 for num_level in range(self.min_order_level, 0, -1): bid_price = getattr(self.last_tick, f"bid_price_{num_level}") if bid_price > market_price * (1 - self.reward_ratio * 0.99): self.bid_order_level = num_level break if self.bid_order_level > 0: total_bid_volume = 0 for num_level in range(1, self.bid_order_level + 1): total_bid_volume += getattr(self.last_tick, f"bid_volume_{num_level}") if total_bid_volume != self.last_bid_volume: one_bid_price = getattr(self.last_tick, f"bid_price_1") one_bid_volume = getattr(self.last_tick, f"bid_volume_1") max_bid_price = getattr(self.last_tick, f"bid_price_{self.bid_order_level}") if self.bid_order_level > 0 else market_price vt_bid_price = round_to(max_bid_price - self.pricetick, self.pricetick) if self.origin_bid_price == 0.00000001: self.origin_bid_price = vt_bid_price bid_condition0 = self.last_bid_price == 0.00000001 bid_condition1 = (self.last_bid_price * (1 - self.price_offset)) < vt_bid_price < (self.last_bid_price * (1 + self.price_offset)) bid_condition2 = vt_bid_price < (self.origin_bid_price * (1 + self.price_offset_max)) bid_condition8 = one_bid_price > (self.origin_bid_price * (1 + self.price_offset_max * 2)) self.write_log(f"---> 流动性挖矿买入condition1: {bid_condition1}, condition2: {bid_condition2}") if bid_condition0 or (bid_condition1 and bid_condition2): self.last_bid_price = vt_bid_price self.vt_bid_price = one_bid_price self.total_bid_volume = total_bid_volume max_volume = self.current_balance[self.market_vt_tokens[1]] * self.buy_max_ratio / vt_bid_price if 0 < self.buy_max_volume < max_volume: max_volume = self.buy_max_volume min_volume = self.volume * total_bid_volume if self.min_order_volume > 0 and min_volume < self.min_order_volume: min_volume = self.min_order_volume volume = min_volume if not use_max_volume else max_volume * max_volume_ratio if volume >= max_volume: volume = max_volume self.last_bid_volume = round_to(volume - self.volumetick, self.volumetick) self.write_log(f"流动性挖矿买入价格: {vt_bid_price}, 量: {self.last_bid_volume}") self.vt_bid_orderid = self.buy(self.vt_symbol, vt_bid_price, self.last_bid_volume) self.bid_order_alive_tick = 0 elif bid_condition8 and one_bid_volume < self.auto_trade_volume: self.write_log(f"---> 流动性挖矿卖出高价one_bid_price: {one_bid_price}, one_bid_volume: {one_bid_volume}") self.sell(self.vt_symbol, one_bid_price, one_bid_volume) else: self.write_log(f"---> 流动性挖矿买入下单失败,因为买单总数量等于上一单数量") else: self.write_log(f"---> 流动性挖矿买入下单失败,因为没有合适的下单位置") self.put_variables_event() def on_order(self, order: OrderData): """""" if order.vt_orderid == self.vt_ask_orderid: if not order.is_active(): self.vt_ask_orderid = "" self.vt_ask_price = 0.0 elif order.vt_orderid == self.vt_bid_orderid: if not order.is_active(): self.vt_bid_orderid = "" self.vt_bid_price = 0.0 self.put_variables_event() def on_trade(self, trade: TradeData): """""" if trade.direction == Direction.SHORT: self.write_log(f"流动性挖矿卖单{trade.vt_orderid}成交,价:{trade.price}, 量:{trade.volume}") self.pos -= trade.volume elif trade.direction == Direction.LONG: self.write_log(f"流动性挖矿买单{trade.vt_orderid}成交,价:{trade.price}, 量:{trade.volume}") self.pos += trade.volume self.put_variables_event() def on_stop(self): """""" self.write_log("停止 流动性挖矿") # self.write_log(f"账户状态:{self.algo_engine.main_engine.get_all_accounts()}") time.sleep(5)
2.1875
2