max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
sorts/insertionSort/insertion_sort.py
JesseJMa/data-structure-and-algorithm
0
12793851
def insertion_sort(arr, l, r): for i in range(l + 1, r + 1): temp = arr[i] index = i while index > 0 and arr[index - 1] > temp: arr[index] = arr[index - 1] index -= 1 arr[index] = temp
3.875
4
huaweicloud-sdk-scm/huaweicloudsdkscm/v3/model/show_certificate_response.py
huaweicloud/huaweicloud-sdk-python-v3
64
12793852
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowCertificateResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'id': 'str', 'status': 'str', 'order_id': 'str', 'name': 'str', 'type': 'str', 'brand': 'str', 'push_support': 'str', 'revoke_reason': 'str', 'signature_algrithm': 'str', 'issue_time': 'str', 'not_before': 'str', 'not_after': 'str', 'validity_period': 'int', 'validation_method': 'str', 'domain_type': 'str', 'domain': 'str', 'sans': 'str', 'domain_count': 'int', 'wildcard_count': 'int', 'authentification': 'list[Authentification]' } attribute_map = { 'id': 'id', 'status': 'status', 'order_id': 'order_id', 'name': 'name', 'type': 'type', 'brand': 'brand', 'push_support': 'push_support', 'revoke_reason': 'revoke_reason', 'signature_algrithm': 'signature_algrithm', 'issue_time': 'issue_time', 'not_before': 'not_before', 'not_after': 'not_after', 'validity_period': 'validity_period', 'validation_method': 'validation_method', 'domain_type': 'domain_type', 'domain': 'domain', 'sans': 'sans', 'domain_count': 'domain_count', 'wildcard_count': 'wildcard_count', 'authentification': 'authentification' } def __init__(self, id=None, status=None, order_id=None, name=None, type=None, brand=None, push_support=None, revoke_reason=None, signature_algrithm=None, issue_time=None, not_before=None, not_after=None, validity_period=None, validation_method=None, domain_type=None, domain=None, sans=None, domain_count=None, wildcard_count=None, authentification=None): """ShowCertificateResponse - a model defined in huaweicloud sdk""" super(ShowCertificateResponse, self).__init__() self._id = None self._status = None self._order_id = None self._name = None self._type = None self._brand = None self._push_support = None self._revoke_reason = None self._signature_algrithm = None self._issue_time = None self._not_before = None self._not_after = None self._validity_period = None self._validation_method = None self._domain_type = None self._domain = None self._sans = None self._domain_count = None self._wildcard_count = None self._authentification = None self.discriminator = None if id is not None: self.id = id if status is not None: self.status = status if order_id is not None: self.order_id = order_id if name is not None: self.name = name if type is not None: self.type = type if brand is not None: self.brand = brand if push_support is not None: self.push_support = push_support if revoke_reason is not None: self.revoke_reason = revoke_reason if signature_algrithm is not None: self.signature_algrithm = signature_algrithm if issue_time is not None: self.issue_time = issue_time if not_before is not None: self.not_before = not_before if not_after is not None: self.not_after = not_after if validity_period is not None: self.validity_period = validity_period if validation_method is not None: self.validation_method = validation_method if domain_type is not None: self.domain_type = domain_type if domain is not None: self.domain = domain if sans is not None: self.sans = sans if domain_count is not None: self.domain_count = domain_count if wildcard_count is not None: self.wildcard_count = wildcard_count if authentification is not None: self.authentification = authentification @property def id(self): """Gets the id of this ShowCertificateResponse. 证书id。 :return: The id of this ShowCertificateResponse. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ShowCertificateResponse. 证书id。 :param id: The id of this ShowCertificateResponse. :type: str """ self._id = id @property def status(self): """Gets the status of this ShowCertificateResponse. 证书状态。取值如下: - PAID:证书已支付,待申请证书。 - ISSUED:证书已签发。 - CHECKING:证书申请审核中。 - CANCELCHECKING:取消证书申请审核中。 - UNPASSED:证书申请未通过。 - EXPIRED:证书已过期。 - REVOKING:证书吊销申请审核中。 - REVOKED:证书已吊销。 - UPLOAD:证书托管中。 - SUPPLEMENTCHECKING:多域名证书新增附加域名审核中。 - CANCELSUPPLEMENTING:取消新增附加域名审核中。 :return: The status of this ShowCertificateResponse. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ShowCertificateResponse. 证书状态。取值如下: - PAID:证书已支付,待申请证书。 - ISSUED:证书已签发。 - CHECKING:证书申请审核中。 - CANCELCHECKING:取消证书申请审核中。 - UNPASSED:证书申请未通过。 - EXPIRED:证书已过期。 - REVOKING:证书吊销申请审核中。 - REVOKED:证书已吊销。 - UPLOAD:证书托管中。 - SUPPLEMENTCHECKING:多域名证书新增附加域名审核中。 - CANCELSUPPLEMENTING:取消新增附加域名审核中。 :param status: The status of this ShowCertificateResponse. :type: str """ self._status = status @property def order_id(self): """Gets the order_id of this ShowCertificateResponse. 订单id。 :return: The order_id of this ShowCertificateResponse. :rtype: str """ return self._order_id @order_id.setter def order_id(self, order_id): """Sets the order_id of this ShowCertificateResponse. 订单id。 :param order_id: The order_id of this ShowCertificateResponse. :type: str """ self._order_id = order_id @property def name(self): """Gets the name of this ShowCertificateResponse. 证书名称。 :return: The name of this ShowCertificateResponse. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ShowCertificateResponse. 证书名称。 :param name: The name of this ShowCertificateResponse. :type: str """ self._name = name @property def type(self): """Gets the type of this ShowCertificateResponse. 证书类型。取值如下: DV_SSL_CERT、DV_SSL_CERT_BASIC、EV_SSL_CERT、 EV_SSL_CERT_PRO、OV_SSL_CERT、OV_SSL_CERT_PRO。 :return: The type of this ShowCertificateResponse. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this ShowCertificateResponse. 证书类型。取值如下: DV_SSL_CERT、DV_SSL_CERT_BASIC、EV_SSL_CERT、 EV_SSL_CERT_PRO、OV_SSL_CERT、OV_SSL_CERT_PRO。 :param type: The type of this ShowCertificateResponse. :type: str """ self._type = type @property def brand(self): """Gets the brand of this ShowCertificateResponse. 证书品牌。取值如下: GLOBALSIGN、SYMANTEC、GEOTRUST、CFCA。 :return: The brand of this ShowCertificateResponse. :rtype: str """ return self._brand @brand.setter def brand(self, brand): """Sets the brand of this ShowCertificateResponse. 证书品牌。取值如下: GLOBALSIGN、SYMANTEC、GEOTRUST、CFCA。 :param brand: The brand of this ShowCertificateResponse. :type: str """ self._brand = brand @property def push_support(self): """Gets the push_support of this ShowCertificateResponse. 证书是否支持推送。 :return: The push_support of this ShowCertificateResponse. :rtype: str """ return self._push_support @push_support.setter def push_support(self, push_support): """Sets the push_support of this ShowCertificateResponse. 证书是否支持推送。 :param push_support: The push_support of this ShowCertificateResponse. :type: str """ self._push_support = push_support @property def revoke_reason(self): """Gets the revoke_reason of this ShowCertificateResponse. 证书吊销原因。 :return: The revoke_reason of this ShowCertificateResponse. :rtype: str """ return self._revoke_reason @revoke_reason.setter def revoke_reason(self, revoke_reason): """Sets the revoke_reason of this ShowCertificateResponse. 证书吊销原因。 :param revoke_reason: The revoke_reason of this ShowCertificateResponse. :type: str """ self._revoke_reason = revoke_reason @property def signature_algrithm(self): """Gets the signature_algrithm of this ShowCertificateResponse. 签名算法。 :return: The signature_algrithm of this ShowCertificateResponse. :rtype: str """ return self._signature_algrithm @signature_algrithm.setter def signature_algrithm(self, signature_algrithm): """Sets the signature_algrithm of this ShowCertificateResponse. 签名算法。 :param signature_algrithm: The signature_algrithm of this ShowCertificateResponse. :type: str """ self._signature_algrithm = signature_algrithm @property def issue_time(self): """Gets the issue_time of this ShowCertificateResponse. 证书签发时间,没有获取到有效值时为空。 :return: The issue_time of this ShowCertificateResponse. :rtype: str """ return self._issue_time @issue_time.setter def issue_time(self, issue_time): """Sets the issue_time of this ShowCertificateResponse. 证书签发时间,没有获取到有效值时为空。 :param issue_time: The issue_time of this ShowCertificateResponse. :type: str """ self._issue_time = issue_time @property def not_before(self): """Gets the not_before of this ShowCertificateResponse. 证书生效时间,没有获取到有效值时为空。 :return: The not_before of this ShowCertificateResponse. :rtype: str """ return self._not_before @not_before.setter def not_before(self, not_before): """Sets the not_before of this ShowCertificateResponse. 证书生效时间,没有获取到有效值时为空。 :param not_before: The not_before of this ShowCertificateResponse. :type: str """ self._not_before = not_before @property def not_after(self): """Gets the not_after of this ShowCertificateResponse. 证书失效时间,没有获取到有效值时为空。 :return: The not_after of this ShowCertificateResponse. :rtype: str """ return self._not_after @not_after.setter def not_after(self, not_after): """Sets the not_after of this ShowCertificateResponse. 证书失效时间,没有获取到有效值时为空。 :param not_after: The not_after of this ShowCertificateResponse. :type: str """ self._not_after = not_after @property def validity_period(self): """Gets the validity_period of this ShowCertificateResponse. 证书有效期,按月为单位。 :return: The validity_period of this ShowCertificateResponse. :rtype: int """ return self._validity_period @validity_period.setter def validity_period(self, validity_period): """Sets the validity_period of this ShowCertificateResponse. 证书有效期,按月为单位。 :param validity_period: The validity_period of this ShowCertificateResponse. :type: int """ self._validity_period = validity_period @property def validation_method(self): """Gets the validation_method of this ShowCertificateResponse. 域名认证方式,取值如下:DNS、FILE、EMAIL。 :return: The validation_method of this ShowCertificateResponse. :rtype: str """ return self._validation_method @validation_method.setter def validation_method(self, validation_method): """Sets the validation_method of this ShowCertificateResponse. 域名认证方式,取值如下:DNS、FILE、EMAIL。 :param validation_method: The validation_method of this ShowCertificateResponse. :type: str """ self._validation_method = validation_method @property def domain_type(self): """Gets the domain_type of this ShowCertificateResponse. 域名类型,取值如下: - SINGLE_DOMAIN:单域名 - WILDCARD:通配符 - MULTI_DOMAIN:多域名 :return: The domain_type of this ShowCertificateResponse. :rtype: str """ return self._domain_type @domain_type.setter def domain_type(self, domain_type): """Sets the domain_type of this ShowCertificateResponse. 域名类型,取值如下: - SINGLE_DOMAIN:单域名 - WILDCARD:通配符 - MULTI_DOMAIN:多域名 :param domain_type: The domain_type of this ShowCertificateResponse. :type: str """ self._domain_type = domain_type @property def domain(self): """Gets the domain of this ShowCertificateResponse. 证书绑定域名。 :return: The domain of this ShowCertificateResponse. :rtype: str """ return self._domain @domain.setter def domain(self, domain): """Sets the domain of this ShowCertificateResponse. 证书绑定域名。 :param domain: The domain of this ShowCertificateResponse. :type: str """ self._domain = domain @property def sans(self): """Gets the sans of this ShowCertificateResponse. 证书绑定的附加域名信息。 :return: The sans of this ShowCertificateResponse. :rtype: str """ return self._sans @sans.setter def sans(self, sans): """Sets the sans of this ShowCertificateResponse. 证书绑定的附加域名信息。 :param sans: The sans of this ShowCertificateResponse. :type: str """ self._sans = sans @property def domain_count(self): """Gets the domain_count of this ShowCertificateResponse. 证书可绑定域名个数。 :return: The domain_count of this ShowCertificateResponse. :rtype: int """ return self._domain_count @domain_count.setter def domain_count(self, domain_count): """Sets the domain_count of this ShowCertificateResponse. 证书可绑定域名个数。 :param domain_count: The domain_count of this ShowCertificateResponse. :type: int """ self._domain_count = domain_count @property def wildcard_count(self): """Gets the wildcard_count of this ShowCertificateResponse. 证书可绑定附加域名个数。 :return: The wildcard_count of this ShowCertificateResponse. :rtype: int """ return self._wildcard_count @wildcard_count.setter def wildcard_count(self, wildcard_count): """Sets the wildcard_count of this ShowCertificateResponse. 证书可绑定附加域名个数。 :param wildcard_count: The wildcard_count of this ShowCertificateResponse. :type: int """ self._wildcard_count = wildcard_count @property def authentification(self): """Gets the authentification of this ShowCertificateResponse. 域名所有权认证信息,详情请参见Authentification字段数据结构说明。 :return: The authentification of this ShowCertificateResponse. :rtype: list[Authentification] """ return self._authentification @authentification.setter def authentification(self, authentification): """Sets the authentification of this ShowCertificateResponse. 域名所有权认证信息,详情请参见Authentification字段数据结构说明。 :param authentification: The authentification of this ShowCertificateResponse. :type: list[Authentification] """ self._authentification = authentification def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowCertificateResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
2.359375
2
code/functions/segment/__init__.py
a9w/Fat2_polarizes_WAVE
0
12793853
<reponame>a9w/Fat2_polarizes_WAVE<filename>code/functions/segment/__init__.py """Functions for segmenting images.""" from .interface import ( interface_endpoints_mask, interface_endpoints_coords, interface_shape_edge_method, trim_interface, refine_junction, edge_between_neighbors, ) from .timelapse import ( segment_epithelium_timelapse, largest_object_mask_timelapse, segment_hemijunctions_timelapse, ) from .tissue import ( epithelium_watershed, largest_object_mask, select_border_adjacent, select_in_field, select_mask_adjacent, segment_hemijunctions, cell_edges_mask, cell_interiors_mask, cell_vertices_mask, neighbor_array_nr, ) __all__ = [ "interface_endpoints_mask", "interface_endpoints_coords", "interface_shape_edge_method", "trim_interface", "refine_junction", "edge_between_neighbors", "segment_epithelium_timelapse", "largest_object_mask_timelapse", "segment_hemijunctions_timelapse", "epithelium_watershed", "largest_object_mask", "select_border_adjacent", "select_in_field", "select_mask_adjacent", "segment_hemijunctions", "cell_edges_mask", "cell_interiors_mask", "cell_vertices_mask", "neighbor_array_nr" ]
1.84375
2
usecases/get_network.py
HathorNetwork/hathor-explorer-service
0
12793854
<gh_stars>0 from typing import Optional from gateways.node_gateway import NodeGateway class GetNetwork: def __init__(self, node_gateway: Optional[NodeGateway] = None) -> None: self.node_gateway = node_gateway or NodeGateway() def get(self) -> Optional[dict]: network = self.node_gateway.get_network() if network is not None: return network.to_dict() return None
2.796875
3
src/pytiger/utils/plugins.py
tigercomputing/pytiger
1
12793855
<gh_stars>1-10 # -*- coding: utf-8 -*- """ A simple plugin loading mechanism """ # Copyright © 2015 Tiger Computing Ltd # This file is part of pytiger and distributed under the terms # of a BSD-like license # See the file COPYING for details # Idea borrowed and adapted from: # https://copyninja.info/blog/dynamic-module-loading.html # http://stackoverflow.com/a/3381582 import imp import os def load(plugin_dir, package=__name__): """ Load Python modules and packages from a directory. This function will list the contents of ``plugin_dir`` and load any Python modules (files ending ``.py``) or packages (directories with a ``__init__.py`` file) found within it. Sub-directories are not searched. Modules are compiled as they are loaded, if necessary. Plugins are loaded within a package name as supplied to this function in the optional ``package`` parameter. If this is not provided, this defaults to ``pytiger.utils.plugins``. The module name supplied in ``package`` must already be known to Python (i.e. in ``sys.modules``). The function returns a list of python module objects, one per loaded module or package. :param str plugin_dir: The path to the directory to load plugins from. :param str package: Python package to load the plugins into. .. versionadded:: 1.1.0 """ plugin_dir = os.path.realpath(plugin_dir) # Discover the list of plugins plugins = [] for dirent in os.listdir(plugin_dir): # skip __init__.py if dirent.startswith('__'): continue # Load .py files as plugins if dirent.endswith('.py'): plugins.append(os.path.splitext(dirent)[0]) continue # Load directories containing __init__.py full_path = os.path.join(plugin_dir, dirent) if os.path.isdir(full_path): if os.path.isfile(os.path.join(full_path, '__init__.py')): plugins.append(dirent) # Now load the plugin modules modules = [] for plugin in plugins: f, path, desc = imp.find_module(plugin, [plugin_dir]) module = imp.load_module(package + '.' + plugin, f, path, desc) modules.append(module) return modules
2.578125
3
current_playing.py
BishoyAbdelmalik/Clippy-Server
0
12793856
import asyncio import os import json from winrt.windows.media.control import \ GlobalSystemMediaTransportControlsSessionManager as MediaManager from winrt.windows.storage.streams import \ DataReader, Buffer, InputStreamOptions async def get_media_info(): sessions = await MediaManager.request_async() # This source_app_user_model_id check and if statement is optional # Use it if you want to only get a certain player/program's media # (e.g. only chrome.exe's media not any other program's). # To get the ID, use a breakpoint() to run sessions.get_current_session() # while the media you want to get is playing. # Then set TARGET_ID to the string this call returns. current_session = sessions.get_current_session() if current_session: # there needs to be a media session running info = await current_session.try_get_media_properties_async() # song_attr[0] != '_' ignores system attributes info_dict = {song_attr: info.__getattribute__(song_attr) for song_attr in dir(info) if song_attr[0] != '_'} # converts winrt vector to list info_dict['genres'] = list(info_dict['genres']) # create the current_media_info dict with the earlier code first thumb_stream_ref = info_dict['thumbnail'] try: filename="./static/media_thumb.jpg" if os.path.exists(filename): os.remove(filename) # 5MB (5 million byte) buffer - thumbnail unlikely to be larger thumb_read_buffer = Buffer(5000000) await read_stream_into_buffer(thumb_stream_ref, thumb_read_buffer) buffer_reader = DataReader.from_buffer(thumb_read_buffer) byte_buffer = buffer_reader.read_bytes(thumb_read_buffer.length) if not os.path.exists('static'): os.makedirs('static') filename="./static/media_thumb.jpg" if not len(bytearray(byte_buffer)) ==0: with open(filename, 'wb+') as fobj: fobj.write(bytearray(byte_buffer)) info_dict["thumbnail"]=filename[1:] except Exception as e: # print(e) # print("something went wrong with getting thumbnail") info_dict["thumbnail"]=" " return info_dict return None async def read_stream_into_buffer(stream_ref, buffer): readable_stream = await stream_ref.open_read_async() readable_stream.read_async(buffer, buffer.capacity, InputStreamOptions.READ_AHEAD) if __name__ == '__main__': print(json.dumps(asyncio.run(get_media_info())))
2.609375
3
HLTrigger/Configuration/python/HLT_75e33/paths/L1T_DoubleTkMuon_15_7_cfi.py
PKUfudawei/cmssw
1
12793857
import FWCore.ParameterSet.Config as cms #from ..modules.hltL1TkMuons_cfi import * from ..modules.hltDoubleMuon7DZ1p0_cfi import * from ..modules.hltL1TkDoubleMuFiltered7_cfi import * from ..modules.hltL1TkSingleMuFiltered15_cfi import * from ..sequences.HLTBeginSequence_cfi import * from ..sequences.HLTEndSequence_cfi import * L1T_DoubleTkMuon_15_7 = cms.Path( HLTBeginSequence + # hltL1TkMuons + hltL1TkDoubleMuFiltered7 + hltL1TkSingleMuFiltered15 + hltDoubleMuon7DZ1p0 + HLTEndSequence )
0.917969
1
src/autogen/eigs.py
ldXiao/polyfem
228
12793858
from sympy import * from sympy.matrices import * import os import re import argparse # local import pretty_print def sqr(a): return a * a def trunc_acos(x): tmp = Piecewise((0.0, x >= 1.0), (pi, x <= -1.0), (acos(x), True)) return tmp.subs(x, x) def eigs_2d(mat): a = mat[0, 0] + mat[1, 1] delta = (mat[0, 0] - mat[1, 1])**2 + 4 * mat[0, 1]**2 tmp1 = Piecewise( (a / 2, delta < 1e-10), ((a - sqrt(delta)) / 2.0, True) ) tmp2 = Piecewise( (a / 2, delta < 1e-10), ((a + sqrt(delta)) / 2.0, True) ) return tmp1.subs(delta, delta), tmp2.subs(delta, delta) def eigs_3d(mat): b = mat[0] + mat[4] + mat[8] t = sqr(mat[1]) + sqr(mat[2]) + sqr(mat[5]) p = 0.5 * (sqr(mat[0] - mat[4]) + sqr(mat[0] - mat[8]) + sqr(mat[4] - mat[8])) p += 3.0 * t q = 18.0 * (mat[0] * mat[4] * mat[8] + 3.0 * mat[1] * mat[2] * mat[5]) q += 2.0 * (mat[0] * sqr(mat[0]) + mat[4] * sqr(mat[4]) + mat[8] * sqr(mat[8])) q += 9.0 * b * t q -= 3.0 * (mat[0] + mat[4]) * (mat[0] + mat[8]) * (mat[4] + mat[8]) q -= 27.0 * (mat[0] * sqr(mat[5]) + mat[4] * sqr(mat[2]) + mat[8] * sqr(mat[1])) delta = trunc_acos(0.5 * q / sqrt(p * sqr(p))) p = 2.0 * sqrt(p) tmp1 = Piecewise( (b / 3.0, p < 1e-10), ((b + p * cos(delta / 3.0)) / 3.0, True) ) tmp2 = Piecewise( (b / 3.0, p < 1e-10), ((b + p * cos((delta + 2.0 * pi) / 3.0)) / 3.0, True) ) tmp3 = Piecewise( (b / 3.0, p < 1e-10), ((b + p * cos((delta - 2.0 * pi) / 3.0)) / 3.0, True) ) return tmp1.subs(p, p), tmp2.subs(p, p), tmp3.subs(p, p) def parse_args(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("output", type=str, help="path to the output folder") return parser.parse_args() if __name__ == "__main__": args = parse_args() dims = [2, 3] cpp = "#include <polyfem/auto_eigs.hpp>\n\n\n" hpp = "#pragma once\n\n#include <Eigen/Dense>\n\n" cpp = cpp + "namespace polyfem {\nnamespace autogen " + "{\n" hpp = hpp + "namespace polyfem {\nnamespace autogen " + "{\n" hpp = hpp + "template<typename T>\nT int_pow(T val, int exp) { T res = exp <=0 ? T(0.): val; for(int i = 1; i < exp; ++i) res = res*val; return res; }\n\n" lambdaa = Symbol('lambda', real=True) for dim in dims: print("processing " + str(dim)) M = zeros(dim, dim) for i in range(0, dim): for j in range(0, dim): if i <= j: M[i, j] = Symbol('m[' + str(i) + ',' + str(j) + ']', real=True) else: M[i, j] = Symbol('m[' + str(j) + ',' + str(i) + ']', real=True) if dim == 2: lambdas = eigs_2d(M) else: lambdas = eigs_3d(M) # lambdas = simplify(lambdas) c99 = pretty_print.C99_print(lambdas) c99 = re.sub(r"m\[(\d{1}),(\d{1})\]", r'm(\1,\2)', c99) c99 = re.sub(r"result_(\d{1})", r'res(\1)', c99) c99 = c99.replace("0.0", "T(0)") c99 = c99.replace(" M_PI", " T(M_PI)") signature = "template<typename T>\nvoid eigs_" + str(dim) + "d(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, 0, 3, 3> &m, " signature += "Eigen::Matrix<T, Eigen::Dynamic, 1, 0, 3, 1> &res)" hpp = hpp + signature + " {\nres.resize(" + str(dim) + ");\n" + c99 + "\n}\n\n" cpp = cpp + "\n" hpp = hpp + "\n" cpp = cpp + "\n}}\n" hpp = hpp + "\n}}\n" path = os.path.abspath(args.output) print("saving...") with open(os.path.join(path, "auto_eigs.cpp"), "w") as file: file.write(cpp) with open(os.path.join(path, "auto_eigs.hpp"), "w") as file: file.write(hpp) print("done!")
2.5625
3
meridian/channels/gallbladder.py
sinotradition/meridian
5
12793859
#!/usr/bin/python #coding=utf-8 ''' @author: sheng @license: ''' from meridian.acupoints import tongziliao232 from meridian.acupoints import tinghui14 from meridian.acupoints import shangguan41 from meridian.acupoints import heyan24 from meridian.acupoints import xuanlu22 from meridian.acupoints import xuanli22 from meridian.acupoints import qubin14 from meridian.acupoints import shuaigu43 from meridian.acupoints import tianchong11 from meridian.acupoints import fubai22 from meridian.acupoints import touqiaoyin241 from meridian.acupoints import wangu23 from meridian.acupoints import benshen32 from meridian.acupoints import yangbai22 from meridian.acupoints import toulinqi221 from meridian.acupoints import muchuang41 from meridian.acupoints import zhengying42 from meridian.acupoints import chengling22 from meridian.acupoints import naokong31 from meridian.acupoints import fengchi12 from meridian.acupoints import jianjing13 from meridian.acupoints import yuanye14 from meridian.acupoints import zhejin21 from meridian.acupoints import riyue44 from meridian.acupoints import jingmen12 from meridian.acupoints import daimai44 from meridian.acupoints import wushu31 from meridian.acupoints import weidao24 from meridian.acupoints import juliao12 from meridian.acupoints import huantiao24 from meridian.acupoints import fengshi14 from meridian.acupoints import zhongdu12 from meridian.acupoints import xiyangguan121 from meridian.acupoints import yanglingquan222 from meridian.acupoints import yangjiao21 from meridian.acupoints import waiqiu41 from meridian.acupoints import guangming12 from meridian.acupoints import yangfu23 from meridian.acupoints import xuanzhong21 from meridian.acupoints import qiuxu11 from meridian.acupoints import zulinqi224 from meridian.acupoints import diwuhui434 from meridian.acupoints import xiaxi21 from meridian.acupoints import zuqiaoyin241 SPELL=u'zúshàoyángdǎnjīng' CN=u'足少阳胆经' ABBR=u'GB' NAME='gallbladder' FULLNAME='GallbladderChannelofFoot-Shaoyang' SEQ=8 if __name__ == '__main__': pass
1.359375
1
PopStats/model.py
haoruilee/DeepSets
213
12793860
<filename>PopStats/model.py import torch import torch.nn as nn import torch.nn.functional as F # from loglinear import LogLinear class DeepSet(nn.Module): def __init__(self, in_features, set_features=50): super(DeepSet, self).__init__() self.in_features = in_features self.out_features = set_features self.feature_extractor = nn.Sequential( nn.Linear(in_features, 50), nn.ELU(inplace=True), nn.Linear(50, 100), nn.ELU(inplace=True), nn.Linear(100, set_features) ) self.regressor = nn.Sequential( nn.Linear(set_features, 30), nn.ELU(inplace=True), nn.Linear(30, 30), nn.ELU(inplace=True), nn.Linear(30, 10), nn.ELU(inplace=True), nn.Linear(10, 1), ) self.add_module('0', self.feature_extractor) self.add_module('1', self.regressor) def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x = self.feature_extractor(x) x = x.sum(dim=1) x = self.regressor(x) return x def __repr__(self): return self.__class__.__name__ + '(' \ + 'Feature Exctractor=' + str(self.feature_extractor) \ + '\n Set Feature' + str(self.regressor) + ')' class DeepSet1(nn.Module): def __init__(self, in_features, set_features=512): super(DeepSet1, self).__init__() self.in_features = in_features self.out_features = set_features self.feature_extractor = nn.Sequential( nn.Linear(in_features, 512), nn.ELU(inplace=True), nn.Linear(512, 512), nn.ELU(inplace=True), nn.Linear(512, set_features) ) self.regressor = nn.Sequential( nn.Linear(set_features, 512), nn.ELU(inplace=True), nn.Linear(512, 512), nn.ELU(inplace=True), nn.Linear(512, 512), nn.ELU(inplace=True), nn.Linear(512, 1), ) self.add_module('0', self.feature_extractor) self.add_module('1', self.regressor) def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x = self.feature_extractor(x) x = x.sum(dim=1) x = self.regressor(x) return x def __repr__(self): return self.__class__.__name__ + '(' \ + 'Feature Exctractor=' + str(self.feature_extractor) \ + '\n Set Feature' + str(self.regressor) + ')' class DeepSet2(nn.Module): def __init__(self, in_features, set_features=256): super(DeepSet2, self).__init__() self.in_features = in_features self.out_features = set_features self.feature_extractor = nn.Sequential( nn.Linear(in_features, 256), nn.ELU(inplace=True), nn.Linear(256, 256), nn.ELU(inplace=True), nn.Linear(256, set_features) ) self.log_feature_extractor = nn.Sequential( nn.Linear(in_features, 256), nn.ReLU(inplace=True), nn.Linear(256, 256), nn.ReLU(inplace=True), nn.Linear(256, set_features), nn.ReLU(inplace=True) ) self.regressor = nn.Sequential( nn.Linear(set_features*2, 512), nn.ELU(inplace=True), nn.Linear(512, 512), nn.ELU(inplace=True), nn.Linear(512, 512), nn.ELU(inplace=True), nn.Linear(512, 1), ) self.add_module('0', self.feature_extractor) self.add_module('1', self.regressor) def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x1 = self.feature_extractor(x) x2 = self.log_feature_extractor(x) + 0.001 x2 = x2.log() x = torch.cat((x1, x2), 2) x = x.sum(dim=1) x = self.regressor(x) return x def __repr__(self): return self.__class__.__name__ + '(' \ + 'Feature Exctractor=' + str(self.feature_extractor) \ + '\n Set Feature' + str(self.regressor) + ')' class DeepSet3(nn.Module): def __init__(self, in_features, set_features=50): super(DeepSet3, self).__init__() self.in_features = in_features self.out_features = set_features self.feature_extractor = nn.Sequential( nn.Linear(in_features, 50), nn.ELU(inplace=True), nn.Linear(50, 50), nn.ELU(inplace=True), nn.Linear(50, set_features) ) self.log_feature_extractor = nn.Sequential( nn.Linear(in_features, 50), nn.ReLU(inplace=True), nn.Linear(50, 50), nn.ReLU(inplace=True), nn.Linear(50, set_features), nn.ReLU(inplace=True) ) self.l1 = nn.Linear(set_features*2, 30) self.l2 = LogLinear(set_features*2, 30) self.lp = nn.ReLU() self.regressor = nn.Sequential( #nn.Linear(set_features*2, 512), nn.ELU(inplace=True), nn.Linear(60, 30), nn.ELU(inplace=True), nn.Linear(30, 10), nn.ELU(inplace=True), nn.Linear(10, 1), ) self.add_module('0', self.feature_extractor) self.add_module('1', self.regressor) def reset_parameters(self): for module in self.children(): reset_op = getattr(module, "reset_parameters", None) if callable(reset_op): reset_op() def forward(self, input): x = input x1 = self.feature_extractor(x) x2 = self.log_feature_extractor(x) + 0.001 x2 = x2.log() x = torch.cat((x1, x2), 2) x = x.sum(dim=1) x1 = self.l1(x) x2 = self.lp(x) + 0.001 x2 = self.l2(x2) x = torch.cat((x1, x2), 1) x = self.regressor(x) return x def __repr__(self): return self.__class__.__name__ + '(' \ + 'Feature Exctractor=' + str(self.feature_extractor) \ + '\n Set Feature' + str(self.regressor) + ')'
2.5
2
global_finprint/bruv/models.py
GlobalFinPrint/global_finprint
0
12793861
<filename>global_finprint/bruv/models.py from decimal import Decimal from collections import Counter from django.contrib.gis.db import models from django.core.validators import MinValueValidator, MaxValueValidator from django.core.urlresolvers import reverse from django.contrib.gis.geos import Point from global_finprint.annotation.models.observation import Observation, MasterRecord from global_finprint.annotation.models.video import Video, Assignment from global_finprint.core.version import VersionInfo from global_finprint.core.models import AuditableModel from global_finprint.trip.models import Trip from global_finprint.habitat.models import ReefHabitat, Substrate, SubstrateComplexity from mptt.models import MPTTModel, TreeForeignKey from django.contrib.postgres.fields import ArrayField, JSONField # todo: move some of these out ot the db? EQUIPMENT_BAIT_CONTAINER = { ('B', 'Bag'), ('C', 'Cage'), } CURRENT_DIRECTION = { ('N', 'North'), ('NE', 'Northeast'), ('E', 'East'), ('SE', 'Southeast'), ('S', 'South'), ('SW', 'Southwest'), ('W', 'West'), ('NW', 'Northwest'), } TIDE_CHOICES = { ('F', 'Flood'), ('E', 'Ebb'), ('S', 'Slack'), ('S2F', 'Slack to Flood'), ('S2E', 'Slack to Ebb'), } SURFACE_CHOP_CHOICES = { ('L', 'Light'), ('M', 'Medium'), ('H', 'Heavy'), } BAIT_TYPE_CHOICES = { ('CHP', 'Chopped'), ('CRS', 'Crushed'), ('WHL', 'Whole'), } VISIBILITY_CHOICES = { ('V0-2', 'V0-2'), ('V2-4', 'V2-4'), ('V4-6', 'V4-6'), ('V6-8', 'V6-8'), ('V8-10', 'V8-10'), ('V10+', 'V10+') } FIELD_OF_VIEW_CHOICES = { ('FU', 'Facing Up'), ('FD', 'Facing Down'), ('L', 'Limited'), ('O', 'Open') } class BaitContainer(models.Model): # starting seed: cage, bag type = models.CharField(max_length=32) def __str__(self): return u"{0}".format(self.type) class FrameType(models.Model): # starting seed: rebar, stainless rebar, PVC, mixed type = models.CharField(max_length=32) image = models.ImageField(null=True, blank=True) def __str__(self): return u"{0}".format(self.type) class Equipment(AuditableModel): camera = models.CharField(max_length=32) stereo = models.BooleanField(default=False) frame_type = models.ForeignKey(to=FrameType) container = models.ForeignKey(to=BaitContainer) arm_length = models.PositiveIntegerField(null=True, help_text='centimeters') camera_height = models.PositiveIntegerField(null=True, help_text='centimeters') def __str__(self): return u"{0} / {1} / {2}{3}".format(self.frame_type.type, self.container.type, self.camera, ' (Stereo)' if self.stereo else '') class Meta: verbose_name_plural = "Equipment" ordering = ['frame_type__type', 'container__type', 'camera'] class EnvironmentMeasure(AuditableModel): water_temperature = models.DecimalField(null=True, blank=True, max_digits=4, decimal_places=1, help_text='C') # C salinity = models.DecimalField(null=True, blank=True, max_digits=4, decimal_places=2, help_text='ppt') # ppt .0 conductivity = models.DecimalField(null=True, blank=True, max_digits=8, decimal_places=2, help_text='S/m') # S/m .00 dissolved_oxygen = models.DecimalField(null=True, blank=True, max_digits=8, decimal_places=1) current_flow = models.DecimalField(null=True, blank=True, max_digits=5, decimal_places=2, help_text='m/s') # m/s .00 current_direction = models.CharField(max_length=2, null=True, blank=True, choices=CURRENT_DIRECTION, help_text='compass direction') # eight point compass tide_state = models.CharField(max_length=3, null=True, blank=True, choices=TIDE_CHOICES) estimated_wind_speed = models.IntegerField(null=True, blank=True, help_text='Beaufort') measured_wind_speed = models.IntegerField(null=True, blank=True, help_text='kts') wind_direction = models.CharField(max_length=2, null=True, blank=True, choices=CURRENT_DIRECTION, help_text='compass direction') # eight point compass cloud_cover = models.IntegerField(null=True, blank=True, help_text='%') # percentage surface_chop = models.CharField(max_length=1, null=True, blank=True, choices=SURFACE_CHOP_CHOICES) def __str__(self): return u'{0} {1}'.format('Env measure for',str(self.set)) class Bait(AuditableModel): description = models.CharField(max_length=32, help_text='1kg') type = models.CharField(max_length=3, choices=BAIT_TYPE_CHOICES) oiled = models.BooleanField(default=False, help_text='20ml menhaden oil') def __str__(self): return u'{0} {1}{2}'.format(self.get_type_display(), self.description, ' (m)' if self.oiled else '') class Meta: unique_together = ('description', 'type', 'oiled') # needed for SetTag#get_choices because python doesn't have this somehow (!!!) def flatten(x): if type(x) is list: return [a for i in x for a in flatten(i)] else: return [x] class SetTag(MPTTModel): name = models.CharField(max_length=50, unique=True) description = models.TextField(null=True, blank=True) active = models.BooleanField( default=True, help_text='overridden if parent is inactive') parent = TreeForeignKey('self', null=True, blank=True, related_name='children', db_index=True) class MPTTMeta: order_insertion_by = ['name'] def __str__(self): return u"{0}".format(self.name) @classmethod def get_choices(cls, node=None): if node is None: nodes = [cls.get_choices(node=node) for node in cls.objects.filter(parent=None, active=True)] return [(node.pk, node.name) for node in flatten(nodes)] elif node.is_leaf_node(): return node else: return [node] + [cls.get_choices(node=node) for node in node.get_children().filter(active=True)] class BenthicCategory(MPTTModel): name = models.CharField(max_length=50, unique=True) description = models.TextField(null=True, blank=True) active = models.BooleanField( default=True, help_text='overridden if parent is inactive') parent = TreeForeignKey('self', null=True, blank=True, related_name='children', db_index=True) class MPTTMeta: order_insertion_by = ['name'] def __str__(self): return u"{0}".format(self.name) class Meta: verbose_name_plural = 'benthic categories' class Set(AuditableModel): # suggested code pattern: # [site.code][reef.code]_[set number within reef] code = models.CharField(max_length=32, db_index=True, help_text='[site + reef code]_xxx', null=True, blank=True) set_date = models.DateField() coordinates = models.PointField(null=True) latitude = models.DecimalField(max_digits=12, decimal_places=8) longitude = models.DecimalField(max_digits=12, decimal_places=8) drop_time = models.TimeField() haul_date = models.DateField(null=True, blank=True) haul_time = models.TimeField(null=True, blank=True) depth = models.DecimalField(help_text='m', decimal_places=2, max_digits=12, validators=[MinValueValidator(Decimal('0.01'))]) comments = models.TextField(null=True, blank=True) message_to_annotators = models.TextField(null=True, blank=True) tags = models.ManyToManyField(to=SetTag) current_flow_estimated = models.CharField(max_length=50, null=True, blank=True, help_text='H, M, L') current_flow_instrumented = models.DecimalField(null=True, blank=True, max_digits=5, decimal_places=2, help_text='m/s') # m/s .00 bruv_image_url = models.CharField(max_length=200, null=True, blank=True) splendor_image_url = models.CharField(max_length=200, null=True, blank=True) benthic_category = models.ManyToManyField(BenthicCategory, through='BenthicCategoryValue') # new fields substrate_relief_mean = models.DecimalField(null=True, blank=True, decimal_places=4, max_digits=12) substrate_relief_sd = models.DecimalField(null=True, blank=True, decimal_places=4, max_digits=12) visibility = models.CharField(db_column='visibility_str', max_length=10, null=True, blank=True, choices=VISIBILITY_CHOICES) field_of_view = models.CharField(max_length=10, null=True, blank=True, choices=FIELD_OF_VIEW_CHOICES) custom_field_value = JSONField(db_column='custom_fields', null=True) # todo: need some form changes here ... bait = models.ForeignKey(Bait, null=True) equipment = models.ForeignKey(Equipment) reef_habitat = models.ForeignKey(ReefHabitat, blank=True) trip = models.ForeignKey(Trip) drop_measure = models.OneToOneField( EnvironmentMeasure, on_delete=models.CASCADE, null=True, related_name='drop_parent_set') haul_measure = models.OneToOneField( EnvironmentMeasure, on_delete=models.CASCADE, null=True, related_name='haul_parent_set') video = models.OneToOneField( Video, on_delete=models.CASCADE, null=True, related_name='set' ) bulk_loaded = models.BooleanField(default=False) class Meta: unique_together = ('trip', 'code') @property def environmentmeasure_set(self): return [x for x in [self.haul_measure, self.drop_measure] if x is not None] @property def next_by_code(self): return self.trip.get_next_set_by_code(self.code) def save(self, *args, **kwargs): # todo: we're assuming the input is latitude & longitude! this should be checked! self.coordinates = Point(float(self.longitude), float(self.latitude)) if not self.code: # set code if it hasn't been set self.code = u'{}{}_xxx'.format(self.reef().site.code, self.reef().code) super(Set, self).save(*args, **kwargs) self.refresh_from_db() if self.code == u'{}{}_xxx'.format(self.reef().site.code, self.reef().code): next_id = str(len(Set.objects.filter(trip=self.trip, reef_habitat__reef=self.reef()))).zfill(3) self.code = self.code.replace('_xxx', u'_{}'.format(next_id)) super(Set, self).save(*args, **kwargs) def reef(self): return self.reef_habitat.reef def get_absolute_url(self): return reverse('set_update', args=[str(self.id)]) def observations(self): if self.video: return Observation.objects.filter(assignment__in=self.video.assignment_set.all()) def habitat_filename(self, image_type): server_env = VersionInfo.get_server_env() return '/{0}/{1}/{2}/{3}.png'.format(server_env, self.trip.code, self.code, image_type) # todo: "property-ize" this? def master(self, project=1): try: return MasterRecord.objects.get(set=self, project_id=project) except MasterRecord.DoesNotExist: return None def assignment_counts(self, project=1): status_list = {'Total': 0} if self.video: status_list.update(Counter(Assignment.objects.filter( video=self.video, project=project).values_list('status__id', flat=True))) status_list['Total'] = sum(status_list.values()) return status_list def required_fields(self): # need to make this data-driven, not hard-coded field choices # currently required: # 1) visibility # 2) current flow (either) # 3) substrate # 4) substrate complexity return bool(self.visibility and (self.current_flow_estimated or self.current_flow_instrumented)) def completed(self): # we consider the following for "completion": # 1) complete annotations have been promoted into a master # 2) a master annotation record has been completed # 3) other 'required' fields have been completed (see above) master = self.master() return master \ and (master.status.is_finished) \ and self.required_fields() def __str__(self): return u"{0}_{1}".format(self.trip.code, self.code) class BenthicCategoryValue(models.Model): set = models.ForeignKey(Set) benthic_category = TreeForeignKey(BenthicCategory) value = models.IntegerField()
1.648438
2
connector/fyle_integrations_platform_connector/apis/reimbursements.py
fylein/fyle-integrations-platform-connector
0
12793862
<filename>connector/fyle_integrations_platform_connector/apis/reimbursements.py from .base import Base from apps.fyle.models import Reimbursement class Reimbursements(Base): """Class for Reimbursements APIs.""" def __construct_query_params(self) -> dict: """ Constructs the query params for the API call. :return: dict """ last_synced_record = Reimbursement.get_last_synced_at(self.workspace_id) updated_at = self.format_date(last_synced_record.updated_at) if last_synced_record else None query_params = {'order': 'updated_at.desc'} if updated_at: query_params['updated_at'] = updated_at return query_params def __get_all_generator(self): """ Returns the generator for retrieving data from the API. :return: Generator """ query_params = self.__construct_query_params() return self.connection.list_all(query_params) def search_reimbursements(self, query_params): """ Get of reimbursements filtered on query parameters :return: Generator """ query_params['order'] = 'updated_at.desc' return self.connection.list_all(query_params) def bulk_post_reimbursements(self, data): """ Post of reimbursements """ payload = { 'data': data } return self.connection.bulk_post_reimbursements(payload) def sync(self): """ Syncs the latest API data to DB. """ generator = self.__get_all_generator() for items in generator: Reimbursement.create_or_update_reimbursement_objects(items['data'], self.workspace_id)
2.140625
2
query-csv-pandemic.py
puregome/queries
0
12793863
<filename>query-csv-pandemic.py<gh_stars>0 #/usr/bin/env python3 # query-csv-distance.py: extract social distancing tweets from csv file at stdin # usage: gunzip -c file.csv.gz | python3 query-csv-test.py # 20200525 erikt(at)xs4all.nl import csv import re import sys TOPICQUERY = "corona|covid|huisarts|mondkapje|rivm|blijfthuis|flattenthecurve|houvol" PANDEMICQUERY = "|".join([TOPICQUERY, r'virus|besmet|ziekenhui|\bic\b|intensive.care|^zorg|vaccin|[^ad]arts|uitbraak|uitbrak|pandemie|ggd|'+ r'mondkapje|quarantaine|\bwho\b|avondklok|variant|verple|sympto|e.golf|mutant|^omt$|umc|hcq|'+ r'hydroxychloroquine|virolo|zkh|oversterfte|patiënt|patient|intensivist|🦠|ivermectin']) DISTANCEQUERY = "1[.,]5[ -]*m|afstand.*hou|hou.*afstand|anderhalve[ -]*meter" LOCKDOWNQUERY = "lock.down|lockdown" VACCINQUERY = "vaccin|ingeënt|ingeent|inent|prik|spuit|bijwerking|-->|💉|pfizer|moderna|astrazeneca|astra|zeneca|novavax|biontech|booster|vax|mrna|inject" TESTQUERY = r'\btest|getest|sneltest|pcr' CTBQUERY = r'(ctb|qr|toegangsbewij|testbewij|coronapas|vaccinatiepas|vaccinpas|\bcodes\b|2g|3g|1g|apartheid)' QUERY = "|".join([PANDEMICQUERY, TESTQUERY, VACCINQUERY, LOCKDOWNQUERY, DISTANCEQUERY, CTBQUERY]) TEXT = "text" csvreader = csv.DictReader(sys.stdin) csvwriter = csv.DictWriter(sys.stdout,fieldnames=csvreader.fieldnames) csvwriter.writeheader() for row in csvreader: if re.search(QUERY,row[TEXT],flags=re.IGNORECASE): csvwriter.writerow(row)
2.421875
2
test/hummingbot/core/data_type/test_trade_fee.py
pecuniafinance/hummingbot
542
12793864
from decimal import Decimal from unittest import TestCase from hummingbot.core.data_type.common import TradeType, PositionAction from hummingbot.core.data_type.in_flight_order import TradeUpdate from hummingbot.core.data_type.trade_fee import ( AddedToCostTradeFee, DeductedFromReturnsTradeFee, TokenAmount, TradeFeeBase, TradeFeeSchema, ) class TradeFeeTests(TestCase): def test_added_to_cost_spot_fee_created_for_buy_and_fee_not_deducted_from_return(self): schema = TradeFeeSchema( percent_fee_token="HBOT", maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=False, ) fee = TradeFeeBase.new_spot_fee( fee_schema=schema, trade_type=TradeType.BUY, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(AddedToCostTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) def test_deducted_from_return_spot_fee_created_for_buy_and_fee_deducted_from_return(self): schema = TradeFeeSchema( maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=True, ) fee = TradeFeeBase.new_spot_fee( fee_schema=schema, trade_type=TradeType.BUY, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(DeductedFromReturnsTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) def test_deducted_from_return_spot_fee_created_for_sell(self): schema = TradeFeeSchema( percent_fee_token="HBOT", maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=False, ) fee = TradeFeeBase.new_spot_fee( fee_schema=schema, trade_type=TradeType.SELL, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(DeductedFromReturnsTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) schema.percent_fee_token = None schema.buy_percent_fee_deducted_from_returns = True fee = TradeFeeBase.new_spot_fee( fee_schema=schema, trade_type=TradeType.SELL, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(DeductedFromReturnsTradeFee, type(fee)) def test_added_to_cost_perpetual_fee_created_when_opening_positions(self): schema = TradeFeeSchema( maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=False, ) fee = TradeFeeBase.new_perpetual_fee( fee_schema=schema, position_action=PositionAction.OPEN, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(AddedToCostTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) schema.percent_fee_token = "HBOT" fee = TradeFeeBase.new_perpetual_fee( fee_schema=schema, position_action=PositionAction.OPEN, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(AddedToCostTradeFee, type(fee)) def test_added_to_cost_perpetual_fee_created_when_closing_position_but_schema_has_percent_fee_token(self): schema = TradeFeeSchema( percent_fee_token="HBOT", maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=False, ) fee = TradeFeeBase.new_perpetual_fee( fee_schema=schema, position_action=PositionAction.CLOSE, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(AddedToCostTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) def test_deducted_from_returns_perpetual_fee_created_when_closing_position_and_no_percent_fee_token(self): schema = TradeFeeSchema( maker_percent_fee_decimal=Decimal("1"), taker_percent_fee_decimal=Decimal("1"), buy_percent_fee_deducted_from_returns=False, ) fee = TradeFeeBase.new_perpetual_fee( fee_schema=schema, position_action=PositionAction.CLOSE, percent=Decimal("1.1"), percent_token="HBOT", flat_fees=[TokenAmount(token="COINALPHA", amount=Decimal("20"))] ) self.assertEqual(DeductedFromReturnsTradeFee, type(fee)) self.assertEqual(Decimal("1.1"), fee.percent) self.assertEqual("HBOT", fee.percent_token) self.assertEqual([TokenAmount(token="COINALPHA", amount=Decimal("20"))], fee.flat_fees) def test_added_to_cost_json_serialization(self): token_amount = TokenAmount(token="COINALPHA", amount=Decimal("20.6")) fee = AddedToCostTradeFee( percent=Decimal("0.5"), percent_token="COINALPHA", flat_fees=[token_amount] ) expected_json = { "fee_type": AddedToCostTradeFee.type_descriptor_for_json(), "percent": "0.5", "percent_token": "COINALPHA", "flat_fees": [token_amount.to_json()] } self.assertEqual(expected_json, fee.to_json()) def test_added_to_cost_json_deserialization(self): token_amount = TokenAmount(token="COINALPHA", amount=Decimal("20.6")) fee = AddedToCostTradeFee( percent=Decimal("0.5"), percent_token="COINALPHA", flat_fees=[token_amount] ) self.assertEqual(fee, TradeFeeBase.from_json(fee.to_json())) def test_deducted_from_returns_json_serialization(self): token_amount = TokenAmount(token="COINALPHA", amount=Decimal("20.6")) fee = DeductedFromReturnsTradeFee( percent=Decimal("0.5"), percent_token="COINALPHA", flat_fees=[token_amount] ) expected_json = { "fee_type": DeductedFromReturnsTradeFee.type_descriptor_for_json(), "percent": "0.5", "percent_token": "COINALPHA", "flat_fees": [token_amount.to_json()] } self.assertEqual(expected_json, fee.to_json()) def test_deducted_from_returns_json_deserialization(self): token_amount = TokenAmount(token="CO<PASSWORD>", amount=Decimal("20.6")) fee = DeductedFromReturnsTradeFee( percent=Decimal("0.5"), percent_token="COINALPHA", flat_fees=[token_amount] ) self.assertEqual(fee, TradeFeeBase.from_json(fee.to_json())) def test_added_to_cost_fee_amount_in_token_does_not_look_for_convertion_rate_when_percentage_zero(self): # Configure fee to use a percent token different from the token used to request the fee value # That forces the logic to need the convertion rate if the fee amount is calculated fee = AddedToCostTradeFee(percent=Decimal("0"), percent_token="CO<PASSWORD>") fee_amount = fee.fee_amount_in_token( trading_pair="HBOT-COINALPHA", price=Decimal("1000"), order_amount=Decimal("1"), token="BNB") self.assertEqual(Decimal("0"), fee_amount) def test_deducted_from_returns_fee_amount_in_token_does_not_look_for_convertion_rate_when_percentage_zero(self): # Configure fee to use a percent token different from the token used to request the fee value # That forces the logic to need the convertion rate if the fee amount is calculated fee = DeductedFromReturnsTradeFee(percent=Decimal("0"), percent_token="CO<PASSWORD>") fee_amount = fee.fee_amount_in_token( trading_pair="HBOT-COINALPHA", price=Decimal("1000"), order_amount=Decimal("1"), token="BNB") self.assertEqual(Decimal("0"), fee_amount) class TokenAmountTests(TestCase): def test_json_serialization(self): amount = TokenAmount(token="HBOT-COINALPHA", amount=Decimal("1000.50")) expected_json = { "token": "HBOT-COINALPHA", "amount": "1000.50", } self.assertEqual(expected_json, amount.to_json()) def test_json_deserialization(self): amount = TokenAmount(token="HBOT-COINALPHA", amount=Decimal("1000.50")) self.assertEqual(amount, TokenAmount.from_json(amount.to_json())) class TradeUpdateTests(TestCase): def test_json_serialization(self): token_amount = TokenAmount(token="COINALPHA", amount=Decimal("20.6")) fee = DeductedFromReturnsTradeFee( percent=Decimal("0.5"), percent_token="COINALPHA", flat_fees=[token_amount] ) trade_update = TradeUpdate( trade_id="12345", client_order_id="OID1", exchange_order_id="EOID1", trading_pair="HBOT-COINALPHA", fill_timestamp=1640001112, fill_price=Decimal("1000.11"), fill_base_amount=Decimal("2"), fill_quote_amount=Decimal("2000.22"), fee=fee, ) expected_json = trade_update._asdict() expected_json.update({ "fill_price": "1000.11", "fill_base_amount": "2", "fill_quote_amount": "2000.22", "fee": fee.to_json(), }) self.assertEqual(expected_json, trade_update.to_json()) def test_json_deserialization(self): token_amount = TokenAmount(token="COINALPHA", amount=Decimal("20.6")) fee = DeductedFromReturnsTradeFee( percent=Decimal("0.5"), percent_token="CO<PASSWORD>", flat_fees=[token_amount] ) trade_update = TradeUpdate( trade_id="12345", client_order_id="OID1", exchange_order_id="EOID1", trading_pair="HBOT-COINALPHA", fill_timestamp=1640001112, fill_price=Decimal("1000.11"), fill_base_amount=Decimal("2"), fill_quote_amount=Decimal("2000.22"), fee=fee, ) self.assertEqual(trade_update, TradeUpdate.from_json(trade_update.to_json()))
2.515625
3
deepinsight_iqa/diqa/utils/np_imgutils.py
sandyz1000/deepinsight-iqa
2
12793865
import math import tensorflow as tf import cv2 import numpy as np from scipy import signal def image_normalization(image: np.ndarray, new_min=0, new_max=255) -> np.ndarray: """ Normalize the input image to a given range set by min and max parameter Args: image ([type]): [description] new_min ([type], optional): [description]. Defaults to 0. new_max ([type], optional): [description]. Defaults to 255. Returns: [np.ndarray]: Normalized image """ original_dtype = image.dtype image = image.astype(np.float32) image_min, image_max = np.min(image), np.max(image) image = tf.cast(image, np.float32) normalized_image = (new_max - new_min) / (image_max - image_min) * (image - image_min) + new_min return tf.cast(normalized_image, original_dtype) def normalize_kernel(kernel: np.array) -> np.ndarray: return kernel / np.sum(kernel, axis=-1) def gaussian_kernel2d(kernel_size: int, sigma: float, dtype=np.float32) -> np.ndarray: krange = np.arange(kernel_size) x, y = np.meshgrid(krange, krange) constant = np.round(kernel_size / 2) x -= constant y -= constant kernel = 1 / (2 * math.pi * sigma**2) * np.math.exp(-(x ** 2 + y ** 2) / (2 * sigma ** 2)) return normalize_kernel(kernel) def gaussian_filter( image: np.ndarray, kernel_size: int, sigma: float, dtype=np.float32, strides: int = 1 ) -> np.ndarray: """ Apply convolution filter to image with gaussian image kernel TODO: Verify this methos with tensorflow https://stackoverflow.com/questions/48097941/strided-convolution-of-2d-in-numpy Args: image ([np.ndarray]): [description] kernel_size ([int]): [description] sigma ([float]): [description] dtype ([type], optional): [description]. Defaults to np.float32. strides ([int], optional): [description]. Defaults to 1. Returns: [np.ndarray]: [description] """ kernel = gaussian_kernel2d(kernel_size, sigma) if len(image.shape) == 3: image = image[np.newaxis, ...] image = tf.cast(image, tf.float32) image = image.astype(np.float32) image = signal.convolve2d(image, kernel[:, :, np.newaxis, np.newaxis], mode='same', )[::strides, ::strides] return image.astype(dtype) def image_shape(image: np.ndarray, dtype=np.int32) -> np.ndarray: shape = image.shape shape = shape[:2] if len(image.shape) == 3 else shape[1:3] return shape def scale_shape(image: np.ndarray, scale: float): shape = image_shape(image, np.float32) shape = np.math.ceil(shape * scale) return shape.astype(np.float32) def rescale(image: np.ndarray, scale: float, dtype=np.float32, **kwargs) -> np.ndarray: assert len(image.shape) in (3, 4), 'The tensor must be of dimension 3 or 4' image = image.astype(np.float32) rescale_size = scale_shape(image, scale) interpolation = kwargs.pop('interpolation', cv2.INTER_CUBIC) rescaled_image = cv2.resize(image, rescale_size, interpolation=interpolation) return rescaled_image.astype(dtype) def read_image(filename: str, **kwargs) -> np.ndarray: mode = kwargs.pop('mode', cv2.IMREAD_UNCHANGED) return cv2.imread(filename, flags=mode) def image_preprocess(image: np.ndarray, SCALING_FACTOR=1 / 4) -> np.ndarray: """ #### Image Normalization The first step for DIQA is to pre-process the images. The image is converted into grayscale, and then a low-pass filter is applied. The low-pass filter is defined as: \begin{align*} \hat{I} = I_{gray} - I^{low} \end{align*} where the low-frequency image is the result of the following algorithm: 1. Blur the grayscale image. 2. Downscale it by a factor of SCALING_FACTOR. 3. Upscale it back to the original size. The main reasons for this normalization are (1) the Human Visual System (HVS) is not sensitive to changes in the low-frequency band, and (2) image distortions barely affect the low-frequency component of images. Arguments: image {np.ndarray} -- [description] Returns: np.ndarray -- [description] """ image = tf.cast(image, tf.float32) image = tf.image.rgb_to_grayscale(image) image_low = gaussian_filter(image, 16, 7 / 6) image_low = rescale(image_low, SCALING_FACTOR, method=tf.image.ResizeMethod.BICUBIC) image_low = tf.image.resize(image_low, size=image_shape(image), method=tf.image.ResizeMethod.BICUBIC) return image - tf.cast(image_low, image.dtype)
3.28125
3
Others/Source/02/2.3/hex_test.py
silence0201/Learn-Python
1
12793866
<reponame>silence0201/Learn-Python # coding: utf-8 ######################################################################### # 网站: <a href="http://www.crazyit.org">疯狂Java联盟</a> # # author yeeku.H.lee <EMAIL> # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### # 以0x或0X开头的整数数值是十六进制的整数 hex_value1 = 0x13 hex_value2 = 0XaF print("hexValue1的值为:", hex_value1) print("hexValue2的值为:", hex_value2) # 以0b或0B开头的整数数值是二进制的整数 bin_val = 0b111 print('bin_val的值为:', bin_val) bin_val = 0B101 print('bin_val的值为:', bin_val) # 以0o或0O开头的整数数值是二进制的整数 oct_val = 0o54 print('oct_val的值为:', oct_val) oct_val = 0O17 print('oct_val的值为:', oct_val) # 在数值中使用下画线 one_million = 1_000_000 print(one_million) price = 234_234_234 # price实际的值为234234234 android = 1234_1234 # android实际的值为12341234
3.34375
3
repos/system_upgrade/el7toel8/actors/detectgrubconfigerror/actor.py
adka1408/leapp-repository
0
12793867
<filename>repos/system_upgrade/el7toel8/actors/detectgrubconfigerror/actor.py from leapp.actors import Actor from leapp.libraries.actor.scanner import detect_config_error from leapp.models import GrubConfigError from leapp.reporting import Report from leapp.libraries.common.reporting import report_generic from leapp.tags import ChecksPhaseTag, IPUWorkflowTag class DetectGrubConfigError(Actor): """ Check grub configuration for syntax error in GRUB_CMDLINE_LINUX value. """ name = 'detect_grub_config_error' consumes = () produces = (Report, GrubConfigError) tags = (ChecksPhaseTag, IPUWorkflowTag) def process(self): error_detected = detect_config_error('/etc/default/grub') if error_detected: report_generic( title='Syntax error detected in grub configuration', summary='Syntax error was detected in GRUB_CMDLINE_LINUX value of grub configuration. ' 'This error is causing booting and other issues. ' 'Error is automatically fixed by add_upgrade_boot_entry actor.', severity='low' ) self.produce(GrubConfigError(error_detected=error_detected))
2.484375
2
mayan/apps/dynamic_search/links.py
Dave360-crypto/mayan-edms
3
12793868
from django.utils.translation import ugettext_lazy as _ search = {'text': _(u'search'), 'view': 'search', 'famfam': 'zoom'} search_advanced = {'text': _(u'advanced search'), 'view': 'search_advanced', 'famfam': 'zoom_in'} search_again = {'text': _(u'search again'), 'view': 'search_again', 'famfam': 'arrow_undo'}
1.882813
2
Python/Fluent_Python/chapter3/section7/s7_1.py
sunyunxian/test_lib
1
12793869
def decorator(func): def inner(): print("Running inner()") return inner @decorator def target(): print("Running target()") def p_target(): print("Running target()") if __name__ == "__main__": target() # decorator(target)() decorator(p_target) # no ouput print(target) # <function decorator.<locals>.inner at 0x000001D9A9692DC0>
3.234375
3
Tools/Asynchronous_and_Constant_Input_API_call_checker/async_parse_outfile_aws.py
mlapistudy/ICSE2021_421
9
12793870
import sys import re from utils.utils import print_writeofd # First argument is whether or not to proceed with manual checking: if sys.argv[1] == '-m': MANUAL_CHECKING = True elif sys.argv[1] == '-a': MANUAL_CHECKING = False else: print("The first argument must be either -m or -a, see README.md for details") exit(1) # Second argument is the output file from async_main_google.py ifd = open(sys.argv[2], 'r') # Third argument is the output file for a list of all repos ofd = open(sys.argv[3], 'w') # All files number allfile = 0 # All occurences of found 0 files no_async = 0 # Determined cases of no parallelism noparrelism = 0 # Determined cases of no pattern: nopattern = 0 # Number of exception cases - repo no longer exist github_exception = 0 # Number of exception cases - processing error proces_exception = 0 # No retrieve result files no_retrieve = 0 # Use Lambda function use_lambda = 0 # Possible parallelism possible_para = 0 # Determined no parallelism det_no_para = 0 # Determined parallelism det_para = 0 # There exists code in between start clause and while clause between_code = 0 # Determined to be no pattern det_no_pattern = 0 def get_all_add_up(): return no_async + noparrelism + nopattern + github_exception + proces_exception + no_retrieve + use_lambda + possible_para + det_no_pattern def scan_block(lines, i, j, keyword): while i < j: if keyword in lines[i]: return True i += 1 return False def scan_block_numbers(lines, i, j, keyword): ret = 0 while i < j: if keyword in lines[i]: ret += 1 i += 1 return ret def print_code(i, j, lines): while i < j: if "Nodes in between start statement and while statement" in lines[i]: i_copy = i while "------" not in lines[i_copy]: print(lines[i_copy]) i_copy += 1 break i += 1 safe_list = ["if response:", "job_id = response['JobId']", "synthesis_task = {'taskId': response['SynthesisTask']['TaskId']", "'taskStatus': 'inProgress'}", "taskId = response['SynthesisTask']['TaskId']"] def check_safe_list(string): for safes in safe_list: if safes in string: return True return False def judge_code(i, j, lines): while i < j: if "Nodes in between start statement and while statement" in lines[i]: i_copy = i + 1 while "------" not in lines[i_copy]: if lines[i_copy].isspace(): i_copy += 1 continue if check_safe_list(lines[i_copy]): i_copy += 1 continue if "operation.done" in lines[i_copy] or "operation.result" in lines[i_copy]: return True return False i_copy += 1 return True i += 1 return False lines = ifd.readlines() i = 0 while i < len(lines): begin = get_all_add_up() allfile += 1 j = i + 1 while j < len(lines) and lines[j] != "=================================================\n": j += 1 if j > len(lines): break # Now i and j stores the start and end of one search snippet k = i + 1 # Judge if there is any github exception triggered if scan_block(lines, i, j, "Other Github Exceptions occurred"): github_exception += 1 ofd.write("github_exception: {}".format(lines[k])) i = j continue # Judge if there is any other exception triggered if scan_block(lines, i, j, "EXCEPTION OCCURS"): proces_exception += 1 ofd.write("process_exception: {}".format(lines[k])) i = j continue # Judge if this is a use lambda function case # If only relying on auto-tool: this should be a parallelism-used case if "Use Lambda Function" in lines[j - 1]: if MANUAL_CHECKING: print("use_lambda: {}".format(lines[k])) print("Please inspect the above. Enter 1 if this is a no parallelism case, and enter 2 if this is a use lambda case") user = input() while user != '1' and user != '2': print("PRESS 1 OR 2, NOT ANYTHING ELSE!") user = input() if user == '1': det_no_para += 1 print_writeofd("use_lambda (no_parallelism): {}".format(lines[k].strip("\n")), ofd) i = j continue elif user == '2': use_lambda += 1 print_writeofd("use_lambda (use_lambda): {}".format(lines[k].strip("\n")), ofd) i = j continue else: use_lambda += 1 ofd.write("use_lambda: {}".format(lines[k])) i = j continue # Judge if this is a no pattern identified case # If only relying on auto-tool: this should be a parallelism-used case if "NO PATTERN IDENTIFIED" in lines[j - 1]: if MANUAL_CHECKING: print("\n\n\n\n\n\n") print_writeofd("no_pattern: {}".format(lines[k].strip("\n")), ofd) print("Please inspect the above. Enter 1 if this is a no parallelism case, and enter 2 if this is a use-parallelism case, and enter 3 if this shouldn't count") user = input() while user != '1' and user != '2' and user != '3': print("PRESS 1 OR 2 OR 3, NOT ANYTHING ELSE!") user = input() if user == '1': det_no_para += 1 print_writeofd("no_pattern (no_parallelism): {}".format(lines[k].strip("\n")), ofd) i = j continue elif user == '2': det_para += 1 print_writeofd("no_pattern (parallelism): {}".format(lines[k].strip("\n")), ofd) i = j continue # These are for cases where the repo is actually mis-using the API elif user == '3': proces_exception += 1 print_writeofd("no_pattern (process_exception): {}".format(lines[k].strip("\n")), ofd) i = j continue else: nopattern += 1 ofd.write("no_pattern: {}".format(lines[k])) i = j continue # Judge if this is a no use of async case # Such project should not be counted towards the total count of projects if "No use of async" in lines[j - 1]: no_async += 1 ofd.write("no_async: {}".format(lines[k])) i = j continue # Judge if this is a no retrieve result case # Such project should not be counted towards the total count of projects if "No retrieve result" in lines[j - 1]: no_retrieve += 1 ofd.write("no_retrieve: {}".format(lines[k])) i = j continue # At this point there shouldn't be any "operating missing", sanity check: if scan_block(lines, i, j, "operation") and scan_block(lines, i, j, "missing") and (not scan_block(lines, i, j, "Pattern identified")): print("Operation missing while it's neither use lambda nor no pattern identified: {}".format(lines[k])) exit(1) # Check if needs to prompt users on codes between start and while statement: if scan_block(lines, i, j, "Nodes in between start statement and while statement"): # If these two numbers equal then need to prompt users: if scan_block_numbers(lines, i, j, "Nodes in between start statement and while statement") == scan_block_numbers(lines, i, j, "Pattern identified"): between_code += 1 if MANUAL_CHECKING: print("\n\n\n\n\n\n") print_code(i, j, lines) print("Please inspect the above. Enter 1 if can proceed, and enter 2 if this is a use_parallelism case") user = input() while user != '1' and user != '2': print("PRESS 1 OR 2, NOT ANYTHING ELSE!") user = input() if user == '1': print_writeofd("code_between (proceeds): {}".format(lines[k].strip('\n')), ofd) elif user == '2': det_para += 1 print_writeofd("code_between (parallelism): {}".format(lines[k].strip('\n')), ofd) i = j continue # If not manual checking, then just count this as a no parallelism use case else: if not judge_code(i, j, lines): det_no_pattern += 1 i = j continue # Judge if this is a no use of parallelism case if "No use of parallelism" in lines[j - 1]: noparrelism += 1 ofd.write("no_parallelism: {}".format(lines[k])) i = j continue while i < j: if "***" in lines[i]: i_copy = i while i_copy < j: if "BOTH IDENTIFIED IN THE SAME FILE" in lines[i_copy]: # Only do the following if doing manual checking if MANUAL_CHECKING: possible_para += 1 print("\n\n\n\n\n\n") print(lines[i]) i += 1 while i < j and "========================" not in lines[i]: print(lines[i]) i += 1 if i != j: print(lines[i]) print("Please inspect the above. Enter 1 if this is a no parallelism case, and enter 2 if this is a use-parallelism case") user = input() while user != '1' and user != '2': print("PRESS 1 OR 2, NOT ANYTHING ELSE!") user = input() if user == '1': det_no_para += 1 print_writeofd("possible_parallelism (no_parallelism): {}".format(lines[k].strip("\n")), ofd) elif user == '2': det_para += 1 print_writeofd("possible_parallelism (parallelism): {}".format(lines[k].strip("\n")), ofd) break else: i += 1 while i < j and "========================" not in lines[i]: i += 1 ofd.write("possible_parallelism: {}".format(lines[k])) possible_para += 1 break i_copy += 1 if i_copy == j: ofd.write("no_parallelism: {}".format(lines[k])) noparrelism += 1 break i += 1 i = j ofd.write("\n\n==================================================================\n") if not MANUAL_CHECKING: print_writeofd("{}, Total files searched".format(allfile), ofd) print_writeofd("BEFORE MANUAL INSPECTION:", ofd) print_writeofd("{}, No use of Async".format(no_async), ofd) print_writeofd("{}, Github search exceptions".format(github_exception), ofd) print_writeofd("{}, Processing exceptions".format(proces_exception), ofd) print_writeofd("{}, Use of Lambda Function".format(use_lambda), ofd) print_writeofd("{}, No retrieve result".format(no_retrieve), ofd) print_writeofd("{}, No pattern identified".format(nopattern + det_no_pattern), ofd) print_writeofd("{}, No use of parallelism".format(noparrelism), ofd) print_writeofd("{}, Possible use of parallel cases".format(possible_para), ofd) print_writeofd("RELYING ON AUTO TOOL: {} NO USE OF PARALELLISM".format(noparrelism), ofd) print_writeofd("RELYING ON AUTO TOOL: {} PARALELLISM USED".format(possible_para + nopattern + det_no_pattern + use_lambda), ofd) print_writeofd("RELYING ON AUTO TOOL: {} RELEVANT TOTAL PROJECTS".format(noparrelism + possible_para + nopattern + det_no_pattern + use_lambda), ofd) elif MANUAL_CHECKING: print_writeofd("", ofd) print_writeofd("", ofd) print_writeofd("After MANUAL INSPECTION:", ofd) print_writeofd("{}, No use of Async".format(no_async), ofd) print_writeofd("{}, Github search exceptions".format(github_exception), ofd) print_writeofd("{}, Processing exceptions".format(proces_exception), ofd) print_writeofd("{}, Use of Lambda Function".format(use_lambda), ofd) print_writeofd("{}, No retrieve result".format(no_retrieve), ofd) print_writeofd("{}, No pattern identified".format(nopattern + det_no_pattern), ofd) print_writeofd("{}, No use of parallelism".format(noparrelism + det_no_para), ofd) print_writeofd("{}, Use of parallel cases".format(det_para), ofd) print_writeofd("RELYING ON MANUAL CHECKING: {} NO USE OF PARALELLISM".format(noparrelism + det_no_para), ofd) print_writeofd("RELYING ON MANUAL CHECKING: {} PARALELLISM USED".format(det_para + use_lambda), ofd) print_writeofd("RELYING ON MANUAL CHECKING: {} RELEVANT TOTAL PROJECTS".format(noparrelism + det_no_para + det_para + use_lambda), ofd) ofd.close()
2.953125
3
snippets/python/automation/beep.py
c6401/Snippets
0
12793871
def beep(): print('\007')
1.632813
2
djmodels/contrib/gis/utils/__init__.py
iMerica/dj-models
5
12793872
""" This module contains useful utilities for GeoDjango. """ from djmodels.contrib.gis.utils.ogrinfo import ogrinfo # NOQA from djmodels.contrib.gis.utils.ogrinspect import mapping, ogrinspect # NOQA from djmodels.contrib.gis.utils.srs import add_srs_entry # NOQA from djmodels.core.exceptions import ImproperlyConfigured try: # LayerMapping requires DJMODELS_SETTINGS_MODULE to be set, # and ImproperlyConfigured is raised if that's not the case. from djmodels.contrib.gis.utils.layermapping import LayerMapping, LayerMapError # NOQA except ImproperlyConfigured: pass
1.507813
2
module1-introduction-to-sql/rpg_db_example.py
rgiuffre90/DS-Unit-3-Sprint-2-SQL-and-Databases
0
12793873
import sqlite3 def connect_to_db(db_name="rpg_db.sqlite3"): return sqlite3.connect(db_name) def execute_query(cursor, query): cursor.execute(query) return cursor.fetchall() GET_CHARACTERS = """ SELECT * FROM charactercreator_character """ CHARACTER_COUNT = """ SELECT COUNT(*) FROM charactercreator_character """ CLASS_COUNT = """ SELECT (SELECT COUNT(*) FROM charactercreator_cleric) AS cleric, (SELECT COUNT(*) FROM charactercreator_fighter) AS fighter, (SELECT COUNT(*) FROM charactercreator_mage) AS mage, (SELECT COUNT(*) FROM charactercreator_necromancer) AS necromancer, (SELECT COUNT(*) FROM charactercreator_thief) AS theif """ ITEM_COUNT = """ SELECT COUNT(*) FROM armory_item """ WEP_COUNT = """ SELECT COUNT(*) name FROM armory_item INNER JOIN armory_weapon ON armory_item.item_id = armory_weapon.item_ptr_id """ ITEMS_NO_WEPS = """ SELECT( SELECT COUNT(*) FROM armory_item ) - (SELECT COUNT(*) FROM armory_weapon ) """ CHAR_ITEM_COUNT = """ SELECT character_id, COUNT(*) FROM charactercreator_character_inventory GROUP BY item_id LIMIT 20; """ CHAR_WEP_COUNT = """ SELECT charactercreator_character_inventory.character_id, COUNT(*) FROM charactercreator_character_inventory INNER JOIN armory_weapon ON charactercreator_character_inventory.item_id = armory_weapon.item_ptr_id GROUP BY charactercreator_character_inventory.character_id LIMIT 20 """ AVG_WEAPONS = """ SELECT AVG(num_weapons) FROM ( SELECT charactercreator_character_inventory.character_id, COUNT(*) AS num_weapons FROM charactercreator_character_inventory INNER JOIN armory_weapon ON charactercreator_character_inventory.item_id = armory_weapon.item_ptr_id GROUP BY charactercreator_character_inventory.character_id ) """ AVG_ITEMS = """ SELECT AVG(num_items) FROM ( SELECT charactercreator_character_inventory.character_id, COUNT(*) AS num_items FROM charactercreator_character_inventory INNER JOIN armory_item ON charactercreator_character_inventory.item_id = armory_item.item_id GROUP BY charactercreator_character_inventory.character_id ) """ if __name__ == "__main__": conn = connect_to_db() curs = conn.cursor() char_count = execute_query(curs, CHARACTER_COUNT) results = execute_query(curs, GET_CHARACTERS) class_count = execute_query(curs, CLASS_COUNT) item_count = execute_query(curs, ITEM_COUNT) wep_count = execute_query(curs, WEP_COUNT) items_no_weps = execute_query(curs, ITEMS_NO_WEPS) char_item_count = execute_query(curs, CHAR_ITEM_COUNT) char_wep_count = execute_query(curs, CHAR_WEP_COUNT) avg_items = execute_query(curs, AVG_ITEMS) avg_weapons = execute_query(curs, AVG_WEAPONS) print(results[0]) print("Character Count:", char_count) print("Class Count (cleric, fighter, mage, necromancer, theif):", class_count) print("Item Count", item_count) print("Weapon Count:", wep_count) print("Items without Weapons:", items_no_weps) print("Items per character ID:", char_item_count) print("Weapons per character ID:", char_wep_count) print("Average Number of Items Per Character:", avg_items) print("Average Number of Weapons Per Character:", avg_weapons)
3.515625
4
bugprediction/linear_regression_model.py
HaaLeo/bug-prediction
0
12793874
<filename>bugprediction/linear_regression_model.py # ------------------------------------------------------------------------------------------------------ # Copyright (c) <NAME>. All rights reserved. # Licensed under the BSD 3-Clause License. See LICENSE.txt in the project root for license information. # ------------------------------------------------------------------------------------------------------ import torch.nn as nn class LinearRegressionModel(nn.Module): def __init__(self, input_dim, output_dim): super(LinearRegressionModel, self).__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x): #pylint: disable=arguments-differ prediction = self.linear(x) return prediction
2.484375
2
main.py
shashankboosi/FakeNewsML
1
12793875
<filename>main.py """ COMP9417 Assignment: Fake news Challenge Authors: <NAME>(z5222766), <NAME> (z5058240), <NAME>(z5173917), <NAME> (z5113901) main.py: Main file for program execution """ from src.data_import import FakeNewsData from src.train_validation_split import DataSplit from src.preprocess import Preprocess from src.feature_extraction import Features from src.models import Models from src.score import LABELS from src.utils import input_file, output_file import scipy.sparse as sp import os import time # Global Variables trainStancePath = "data/train_stances.csv" testStancePath = "data/competition_test_stances.csv" trainBodyPath = "data/train_bodies.csv" testBodyPath = "data/competition_test_bodies.csv" # header attributes primary_id = "Body ID" stance = "Stance" body = "articleBody" headline = "Headline" base_preprocess_path = "preprocessed_data" base_feature_path = "final_features" output = "output" def target_labels(stances): labels = [] for i in range(len(stances)): labels.append(LABELS.index(stances[i][stance])) return labels def headlines_bodies(temp_headline, temp_body): headlines = [] bodies = [] for i in range(len(temp_headline)): bodies.append(temp_body[int(temp_headline[i][primary_id])]) headlines.append(temp_headline[i][headline]) return headlines, bodies ''' This files combine all the data mining part starting from Data importing, spliting, pre processing, feature transformation, modelling and visualization. Check README for clear understanding of what is happening. ''' if __name__ == "__main__": t0 = time.time() # Importing the data train = FakeNewsData(trainStancePath, trainBodyPath) test = FakeNewsData(testStancePath, testBodyPath) # Extracting IDs for data splitting ids = list(train.articleBody.keys()) # The DataSplit generates the train and validation splits according to our split size print("Data Splitting") train_validation_split = DataSplit(ids=ids, headline=train.headlineInstances, split_size=0.8) train_stances, validation_stances = train_validation_split.split() # Preprocess the train print("Start of pre-processing for train") if not (os.path.exists(base_preprocess_path + "/" + "training_headlines.p") and os.path.exists( base_preprocess_path + "/" + "training_bodies.p")): preprocessed_train_data = Preprocess(headline=train_stances, body=train.articleBody, preprocess_type="lemma") train_preprocessed_headlines, train_preprocessed_bodies = preprocessed_train_data.get_clean_headlines_and_bodies() output_file(train_preprocessed_headlines, base_preprocess_path + "/" + "training_headlines.p") output_file(train_preprocessed_bodies, base_preprocess_path + "/" + "training_bodies.p") else: train_preprocessed_headlines = input_file(base_preprocess_path + "/" + "training_headlines.p") train_preprocessed_bodies = input_file(base_preprocess_path + "/" + "training_bodies.p") # Preprocess the validation print("Start of pre-processing for validation") if not (os.path.exists(base_preprocess_path + "/" + "validation_headlines.p") and os.path.exists( base_preprocess_path + "/" + "validation_bodies.p")): preprocessed_validation_data = Preprocess(headline=validation_stances, body=train.articleBody, preprocess_type="lemma") validation_preprocessed_headlines, validation_preprocessed_bodies = preprocessed_validation_data.get_clean_headlines_and_bodies() output_file(validation_preprocessed_headlines, base_preprocess_path + "/" + "validation_headlines.p") output_file(validation_preprocessed_bodies, base_preprocess_path + "/" + "validation_bodies.p") else: validation_preprocessed_headlines = input_file(base_preprocess_path + "/" + "validation_headlines.p") validation_preprocessed_bodies = input_file(base_preprocess_path + "/" + "validation_bodies.p") # Preprocess the test print("Start of pre-processing for test") if not (os.path.exists(base_preprocess_path + "/" + "test_headlines.p") and os.path.exists( base_preprocess_path + "/" + "test_bodies.p")): preprocessed_test_data = Preprocess(headline=test.headlineInstances, body=test.articleBody, preprocess_type="lemma") test_preprocessed_headlines, test_preprocessed_bodies = preprocessed_test_data.get_clean_headlines_and_bodies() output_file(test_preprocessed_headlines, base_preprocess_path + "/" + "test_headlines.p") output_file(test_preprocessed_bodies, base_preprocess_path + "/" + "test_bodies.p") else: test_preprocessed_headlines = input_file(base_preprocess_path + "/" + "test_headlines.p") test_preprocessed_bodies = input_file(base_preprocess_path + "/" + "test_bodies.p") # Split headlines and bodies for train, validation and test train_headlines, train_bodies = headlines_bodies(train_stances, train.articleBody) validation_headlines, validation_bodies = headlines_bodies(validation_stances, train.articleBody) test_headlines, test_bodies = headlines_bodies(test.headlineInstances, test.articleBody) if not (os.path.exists(base_feature_path + "/" + "train_features.p") and os.path.exists( base_feature_path + "/" + "validation_features.p") and os.path.exists( base_feature_path + "/" + "test_features.p")): # Feature extraction and combining them for the models print("Feature extraction for train") train_features = Features(train_preprocessed_headlines, train_preprocessed_bodies, train_headlines, train_bodies) # TF-IDF weight extraction train_tfidf_weights, validation_tfidf_weights, test_tfidf_weights = train_features.tfidf_extraction( validation_headlines, validation_bodies, test_headlines, test_bodies) # Sentence weighting for train train_sentence_weights = train_features.sentence_weighting() print("Feature extraction for validation") validation_features = Features(validation_preprocessed_headlines, validation_preprocessed_bodies, validation_headlines, validation_bodies) # Sentence weighting for validation validation_sentence_weights = validation_features.sentence_weighting() print("Feature extraction for test") test_features = Features(test_preprocessed_headlines, test_preprocessed_bodies, test_headlines, test_bodies) # Sentence weighting for test test_sentence_weights = test_features.sentence_weighting() # Combine the features to prepare them as an inout for the models final_train_features = sp.bmat([[train_tfidf_weights, train_sentence_weights.T]]).A output_file(final_train_features, base_feature_path + "/" + "train_features.p") final_validation_features = sp.bmat([[validation_tfidf_weights, validation_sentence_weights.T]]).A output_file(final_validation_features, base_feature_path + "/" + "validation_features.p") final_test_features = sp.bmat([[test_tfidf_weights, test_sentence_weights.T]]).A output_file(final_test_features, base_feature_path + "/" + "test_features.p") else: print("Feature Extraction") final_train_features = input_file(base_feature_path + "/" + "train_features.p") final_validation_features = input_file(base_feature_path + "/" + "validation_features.p") final_test_features = input_file(base_feature_path + "/" + "test_features.p") t1 = time.time() print("Time for feature extraction is:", t1 - t0) # Target variables train_target_labels = target_labels(train_stances) validation_target_labels = target_labels(validation_stances) test_target_labels = target_labels(test.headlineInstances) # Modelling the features print("Start of Modelling") models = Models(final_train_features, final_validation_features, final_test_features, train_target_labels, validation_target_labels, test_target_labels) # Calling the 4 models models.get_lr() models.get_dt() models.get_nb() models.get_rf() ''' Used read_from_csv in utils to know the actual labels and the predicted labels to produce the correctness visualizations graphs for the report. ''' t2 = time.time() print("Time for the total is:", t2 - t0) print("\nEnd of tests\n")
2.796875
3
past_questions/migrations/0004_remove_faculty_department_faculty_department.py
curlyzik/varsity-pq
2
12793876
<gh_stars>1-10 # Generated by Django 4.0 on 2021-12-18 01:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ( "past_questions", "0003_alter_department_level_alter_faculty_department_and_more", ), ] operations = [ migrations.RemoveField( model_name="faculty", name="department", ), migrations.AddField( model_name="faculty", name="department", field=models.ManyToManyField(to="past_questions.Department"), ), ]
1.59375
2
guess.py
AnacondaDontWantNone/gotTheBuns
0
12793877
<reponame>AnacondaDontWantNone/gotTheBuns<gh_stars>0 #This is a Guess the Number game. import random guessesTaken = 0 print('Hello! What is your name?') myName = input() number = random.randint(1, 20) print('Well, ' + myName + ', I am thinking of a number between 1 and 20. Can you guess it in six tries? :)') for guessesTaken in range(6): try: print('Take a guess.') #Four spaces in front of "print" guess = input() guess = int(guess) if guess < number: #"if" statement part of for statement body. print('Your guess is too low.') #Eight spaces in front of "print" if guess > number: print('Your guess is too high') if guess == number: break except: print('That\'s not a number, silly! Sorry, but that counts as a guess.') continue if guess == number: guessesTaken = str(guessesTaken + 1) print('Good job, ' + myName + '! You guessed my number in ' + guessesTaken + ' guesses!') if guess != number: number = str(number) print('Nope. The number I was thinking of was ' + number + '.')
4.15625
4
codebyte/python/letter_capitalize/letter_capitalize_test.py
lowks/levelup
0
12793878
import unittest from letter_capitalize import LetterCapitalize class TestWordCapitalize(unittest.TestCase): def test_word_capitalize(self): self.assertEqual(LetterCapitalize("hello world"), "Hello World") if __name__ == '__main__': unittest.main()
3.703125
4
tests/test_datetime.py
SeitaBV/isodate
4
12793879
<gh_stars>1-10 ############################################################################## # Copyright 2009, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the authors nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT ############################################################################## """ Test cases for the isodatetime module. """ import datetime as dt import pytest from isodate import ( DATE_BAS_COMPLETE, DATE_BAS_ORD_COMPLETE, DATE_BAS_WEEK_COMPLETE, DATE_EXT_COMPLETE, DATE_EXT_ORD_COMPLETE, DATE_EXT_WEEK_COMPLETE, TIME_BAS_COMPLETE, TIME_BAS_MINUTE, TIME_EXT_COMPLETE, TIME_EXT_MINUTE, TZ_BAS, TZ_EXT, TZ_HOUR, UTC, FixedOffset, ISO8601Error, datetime_isoformat, parse_datetime, ) # the following list contains tuples of ISO datetime strings and the expected # result from the parse_datetime method. A result of None means an ISO8601Error # is expected. TEST_CASES = [ ( "19850412T1015", dt.datetime(1985, 4, 12, 10, 15), DATE_BAS_COMPLETE + "T" + TIME_BAS_MINUTE, "19850412T1015", ), ( "1985-04-12T10:15", dt.datetime(1985, 4, 12, 10, 15), DATE_EXT_COMPLETE + "T" + TIME_EXT_MINUTE, "1985-04-12T10:15", ), ( "1985102T1015Z", dt.datetime(1985, 4, 12, 10, 15, tzinfo=UTC), DATE_BAS_ORD_COMPLETE + "T" + TIME_BAS_MINUTE + TZ_BAS, "1985102T1015Z", ), ( "1985-102T10:15Z", dt.datetime(1985, 4, 12, 10, 15, tzinfo=UTC), DATE_EXT_ORD_COMPLETE + "T" + TIME_EXT_MINUTE + TZ_EXT, "1985-102T10:15Z", ), ( "1985W155T1015+0400", dt.datetime(1985, 4, 12, 10, 15, tzinfo=FixedOffset(4, 0, "+0400")), DATE_BAS_WEEK_COMPLETE + "T" + TIME_BAS_MINUTE + TZ_BAS, "1985W155T1015+0400", ), ( "1985-W15-5T10:15+04", dt.datetime(1985, 4, 12, 10, 15, tzinfo=FixedOffset(4, 0, "+0400")), DATE_EXT_WEEK_COMPLETE + "T" + TIME_EXT_MINUTE + TZ_HOUR, "1985-W15-5T10:15+04", ), ( "1985-W15-5T10:15-0430", dt.datetime(1985, 4, 12, 10, 15, tzinfo=FixedOffset(-4, -30, "-0430")), DATE_EXT_WEEK_COMPLETE + "T" + TIME_EXT_MINUTE + TZ_BAS, "1985-W15-5T10:15-0430", ), ( "1985-W15-5T10:15+04:45", dt.datetime(1985, 4, 12, 10, 15, tzinfo=FixedOffset(4, 45, "+04:45")), DATE_EXT_WEEK_COMPLETE + "T" + TIME_EXT_MINUTE + TZ_EXT, "1985-W15-5T10:15+04:45", ), ( "20110410T101225.123000Z", dt.datetime(2011, 4, 10, 10, 12, 25, 123000, tzinfo=UTC), DATE_BAS_COMPLETE + "T" + TIME_BAS_COMPLETE + ".%f" + TZ_BAS, "20110410T101225.123000Z", ), ( "2012-10-12T08:29:46.069178Z", dt.datetime(2012, 10, 12, 8, 29, 46, 69178, tzinfo=UTC), DATE_EXT_COMPLETE + "T" + TIME_EXT_COMPLETE + ".%f" + TZ_BAS, "2012-10-12T08:29:46.069178Z", ), ( "2012-10-12T08:29:46.691780Z", dt.datetime(2012, 10, 12, 8, 29, 46, 691780, tzinfo=UTC), DATE_EXT_COMPLETE + "T" + TIME_EXT_COMPLETE + ".%f" + TZ_BAS, "2012-10-12T08:29:46.691780Z", ), ( "2012-10-30T08:55:22.1234567Z", dt.datetime(2012, 10, 30, 8, 55, 22, 123457, tzinfo=UTC), DATE_EXT_COMPLETE + "T" + TIME_EXT_COMPLETE + ".%f" + TZ_BAS, "2012-10-30T08:55:22.123457Z", ), ( "2012-10-30T08:55:22.1234561Z", dt.datetime(2012, 10, 30, 8, 55, 22, 123456, tzinfo=UTC), DATE_EXT_COMPLETE + "T" + TIME_EXT_COMPLETE + ".%f" + TZ_BAS, "2012-10-30T08:55:22.123456Z", ), ( "2014-08-18 14:55:22.123456Z", None, DATE_EXT_COMPLETE + "T" + TIME_EXT_COMPLETE + ".%f" + TZ_BAS, "2014-08-18T14:55:22.123456Z", ), ] @pytest.mark.parametrize("datetime_string, expectation, format, output", TEST_CASES) def test_parse(datetime_string, expectation, format, output): """ Parse an ISO date string and compare it to the expected value. """ if expectation is None: with pytest.raises(ISO8601Error): parse_datetime(datetime_string) else: result = parse_datetime(datetime_string) assert result == expectation @pytest.mark.parametrize("datetime_string, expectation, format, output", TEST_CASES) def test_format(datetime_string, expectation, format, output): """ Take date object and create ISO string from it. This is the reverse test to test_parse. """ if expectation is None: with pytest.raises(AttributeError): datetime_isoformat(expectation, format) else: result = datetime_isoformat(expectation, format) assert result == output
1.359375
1
vae/vae.py
szrlee/vae-anomaly-detector
0
12793880
<filename>vae/vae.py #!/usr/bin/python3 """ Pytorch Variational Autoendoder Network Implementation """ from itertools import chain import time import json import pickle import numpy as np import torch from torch.autograd import Variable from torch import nn from torch import optim from torch.nn import functional as F from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score class Encoder(nn.Module): """ Probabilistic Encoder Return the mean and the variance of z ~ q(z|x). The prior of x is assume to be normal(0, I). Arguments: input_dim {int} -- number of features Returns: (tensor, tensor) -- mean and variance of the latent variable output from the forward propagation """ def __init__(self, input_dim, config): super(Encoder, self).__init__() config_encoder = json.loads(config.get("encoder")) config_read_mu = json.loads(config.get("read_mu")) config_read_logvar = json.loads(config.get("read_sigma")) config_encoder[0]['in_features'] = input_dim encoder_network = [] for layer in config_encoder: if layer['type'] == 'linear': encoder_network.append(nn.Linear(layer['in_features'], layer['out_features'])) elif layer['type'] == 'relu': encoder_network.append(nn.ReLU()) elif layer['type'] == 'tanh': encoder_network.append(nn.Tanh()) elif layer['type'] == 'dropout': encoder_network.append(nn.Dropout(layer['rate'])) elif layer['type'] == 'batch_norm': encoder_network.append(nn.BatchNorm1d(layer['num_features'])) self.encoder_network = nn.Sequential(*encoder_network) self.read_mu = nn.Linear(config_read_mu['in_features'], config.getint('latent_dim')) self.read_logvar = nn.Linear(config_read_logvar['in_features'], config.getint('latent_dim')) self.initialize_parameters() def initialize_parameters(self): """ Xavier initialization """ for layer in self.modules(): if isinstance(layer, nn.Linear): bound = 1 / np.sqrt(layer.in_features) layer.weight.data.uniform_(-bound, bound) layer.bias.data.zero_() def forward(self, inputs): """ Forward propagation """ hidden_state = self.encoder_network(inputs) mean = self.read_mu(hidden_state) logvar = self.read_logvar(hidden_state) return mean, logvar class Decoder(nn.Module): """ Decoder """ def __init__(self, input_dim, config): super(Decoder, self).__init__() config_decoder = json.loads(config.get("decoder")) self._distr = config['distribution'] decoder_network = [] for layer in config_decoder: if layer['type'] == 'linear': decoder_network.append(nn.Linear(layer['in_features'], layer['out_features'])) elif layer['type'] == 'relu': decoder_network.append(nn.ReLU()) elif layer['type'] == 'relu6': decoder_network.append(nn.ReLU6()) elif layer['type'] == 'tanh': decoder_network.append(nn.Tanh()) elif layer['type'] == 'sigmoid': decoder_network.append(nn.Sigmoid()) elif layer['type'] == 'dropout': decoder_network.append(nn.Dropout(layer['rate'])) elif layer['type'] == 'batch_norm': decoder_network.append(nn.BatchNorm1d(layer['num_features'])) elif layer['type'] == 'read_x': decoder_network.append(nn.Linear(layer['in_features'], input_dim)) self.decoder = nn.Sequential(*decoder_network) if self._distr == 'poisson': self.read_alpha = nn.Sequential( nn.Linear(config.getint('latent_dim'), input_dim), nn.ReLU6() ) self.initialize_parameters() def initialize_parameters(self): for layer in self.modules(): if isinstance(layer, nn.Linear): bound = 1 / np.sqrt(layer.in_features) layer.weight.data.uniform_(-bound, bound) layer.bias.data.zero_() def forward(self, z): if self._distr == 'poisson': alpha = 0.5 * self.read_alpha(z) return alpha * self.decoder(z) else: return self.decoder(z) class VAE(nn.Module): """ VAE, x --> mu, log_sigma_sq --> N(mu, log_sigma_sq) --> z --> x """ def __init__(self, input_dim, config, checkpoint_directory): super(VAE, self).__init__() self.config = config self.model_name = '{}{}'.format(config['model']['name'], config['model']['config_id']) self.checkpoint_directory = checkpoint_directory self._distr = config['model']['distribution'] self._device = config['model']['device'] self._encoder = Encoder(input_dim, config['model']) self._decoder = Decoder(input_dim, config['model']) self.num_epochs = config.getint('training', 'n_epochs') self._optim = optim.Adam( self.parameters(), lr=config.getfloat('training', 'lr'), betas=json.loads(config['training']['betas']) ) self.mu = None self.logvar = None self.precentile_threshold = config.getfloat('model', 'threshold') self.threshold = None self.cur_epoch = 0 self._save_every = config.getint('model', 'save_every') def parameters(self): return chain(self._encoder.parameters(), self._decoder.parameters()) def _sample_z(self, mu, logvar): epsilon = torch.randn(mu.size()) epsilon = Variable(epsilon, requires_grad=False).type(torch.FloatTensor).to(self._device) sigma = torch.exp(logvar / 2) return mu + sigma * epsilon def forward(self, inputs): """ Forward propagation """ self.mu, self.logvar = self._encoder(inputs) latent = self._sample_z(self.mu, self.logvar) theta = self._decoder(latent) #if torch.isnan(theta).any(): #index = torch.where(torch.isnan(theta))[0][0] #print(index) #print(inputs[index]) #print('mu: {}'.format(self.mu[index])) #print('logvar: {}'.format(self.logvar[index])) #print(latent[index]) #input() return theta def _to_numpy(self, tensor): return tensor.data.cpu().numpy() def poisson_cross_entropy(self, logtheta, inputs): return - inputs * logtheta + torch.exp(logtheta) def loglikelihood(self, reduction): """ Return the log-likelihood """ if self._distr == 'poisson': #if reduction == 'none': # return self.poisson_cross_entropy return nn.PoissonNLLLoss(reduction=reduction) elif self._distr == 'bernoulli': return nn.BCELoss(reduction=reduction) else: raise ValueError('{} is not a valid distribution'.format(self._distr)) def fit(self, trainloader, print_every=1): """ Train the neural network """ start_time = time.time() storage = { 'loss': [], 'kldiv': [], '-logp(x|z)': [], 'precision': [], 'recall': [], 'log_densities': None, 'params': None } for epoch in range(self.cur_epoch, self.cur_epoch + self.num_epochs): self.cur_epoch += 1 # temporary storage losses, kldivs, neglogliks = [], [], [] for inputs, _ in trainloader: self.train() inputs = inputs.to(self._device) logtheta = self.forward(inputs) loglikelihood = -self.loglikelihood(reduction='sum')(logtheta, inputs) / inputs.shape[0] assert not torch.isnan(loglikelihood).any() kl_div = -0.5 * torch.sum(1 + self.logvar - self.mu.pow(2) - self.logvar.exp()) / inputs.shape[0] loss = -loglikelihood + kl_div loss.backward() self._optim.step() self._optim.zero_grad() losses.append(self._to_numpy(loss)) kldivs.append(self._to_numpy(kl_div)) neglogliks.append(self._to_numpy(-loglikelihood)) storage['loss'].append(np.mean(losses)) storage['kldiv'].append(np.mean(kldivs)) storage['-logp(x|z)'].append(np.mean(neglogliks)) if (epoch + 1) % print_every == 0: epoch_time = self._get_time(start_time, time.time()) f1, acc, prec, recall, _, _ = self.evaluate(trainloader) storage['precision'].append(prec) storage['recall'].append(recall) print('epoch: {} | loss: {:.3f} | -logp(x|z): {:.3f} | kldiv: {:.3f} | time: {}'.format( epoch + 1, storage['loss'][-1], storage['-logp(x|z)'][-1], storage['kldiv'][-1], epoch_time)) print('F1. {:.3f} | acc. {:.3f} | prec.: {:.3f} | rec. {:.3f}'.format(f1, acc, prec, recall)) if (epoch + 1) % self._save_every == 0: f1, acc, prec, recall, _, _ = self.evaluate(trainloader) self.save_checkpoint(f1) storage['log_densities'] = self._get_densities(trainloader) storage['params'] = self._get_parameters(trainloader) with open('./results/{}.pkl'.format(self.model_name), 'wb') as _f: pickle.dump(storage, _f, pickle.HIGHEST_PROTOCOL) def _get_time(self, starting_time, current_time): total_time = current_time - starting_time minutes = round(total_time // 60) seconds = round(total_time % 60) return '{} min., {} sec.'.format(minutes, seconds) # def _remove_spam(self, dataloader, data): # idx_to_remove = self._find_threshold(dataloader) # data.pop(idx_to_remove) # self._encoder.initialize_parameters() # self._decoder.initialize_parameters() # self._optim = optim.Adam(self.parameters(), lr=self.lr, betas=(0.5, 0.999)) # return data def _get_parameters(self, dataloader): self.eval() parameters = [] for inputs, _ in dataloader: inputs = inputs.to(self._device) logtheta = self._to_numpy(self.forward(inputs)) parameters.extend(logtheta) if self._distr == 'poisson': parameters = np.exp(np.array(parameters)) else: parameters = np.array(parameters) return parameters def _get_densities(self, dataloader): all_log_densities = [] for inputs, _ in dataloader: mini_batch_log_densities = self._evaluate_probability(inputs) all_log_densities.extend(mini_batch_log_densities) all_log_densities = np.array(all_log_densities) return all_log_densities def _evaluate_probability(self, inputs): self.eval() with torch.no_grad(): inputs = inputs.to(self._device) logtheta = self.forward(inputs) log_likelihood = -self.loglikelihood(reduction='none')(logtheta, inputs) #if np.isnan(log_likelihood).any(): # index = np.where(np.isnan(log_likelihood)) # print(index) # index = index[0][0] # print(inputs[index,:]) # print(logtheta[index,:]) log_likelihood = torch.sum(log_likelihood, 1) assert inputs.shape[0] == log_likelihood.shape[0] return self._to_numpy(log_likelihood) def _find_threshold(self, dataloader): log_densities = self._get_densities(dataloader) lowest_density = np.argmin(log_densities) self.threshold = np.nanpercentile(log_densities, self.precentile_threshold) return lowest_density def evaluate(self, dataloader): """ Evaluate accuracy. """ self._find_threshold(dataloader) predictions = [] ground_truth = [] log_densities = [] for inputs, targets in dataloader: pred, mini_batch_log_densities = self.predict(inputs) predictions.extend(pred) ground_truth.extend(list(self._to_numpy(targets))) log_densities.extend(mini_batch_log_densities) log_densities = np.array(log_densities) if np.isnan(log_densities).any(): print(np.where(np.isnan(log_densities))) f1 = f1_score(ground_truth, predictions) accuracy = accuracy_score(ground_truth, predictions) precision = precision_score(ground_truth, predictions) recall = recall_score(ground_truth, predictions) return f1, accuracy, precision, recall, log_densities, ground_truth def predict(self, inputs): """ Predict the class of the inputs """ log_density = self._evaluate_probability(inputs) predictions = np.zeros_like(log_density).astype(int) predictions[log_density < self.threshold] = 1 #if np.isnan(log_density).any(): # print(inputs[np.where(np.isnan(log_density))]) #print(self.threshold) return list(predictions), log_density def save_checkpoint(self, f1_score): """Save model paramers under config['model_path']""" model_path = '{}/epoch_{}-f1_{}.pt'.format( self.checkpoint_directory, self.cur_epoch, f1_score) checkpoint = { 'model_state_dict': self.state_dict(), 'optimizer_state_dict': self._optim.state_dict() } torch.save(checkpoint, model_path) def restore_model(self, filename, epoch): """ Retore the model parameters """ model_path = '{}{}/{}.pt'.format( self.config['paths']['checkpoints_directory'], self.model_name, filename) checkpoint = torch.load(model_path) self.load_state_dict(checkpoint['model_state_dict']) self._optim.load_state_dict(checkpoint['optimizer_state_dict']) self.cur_epoch = epoch
2.546875
3
start.py
lizzyTheLizard/medium-security-zap
2
12793881
#!/usr/bin/env python # Spider and start listening for passive requests import sys from zapv2 import ZAPv2 from zap_common import * #Configuration zap_ip = 'localhost' port = 12345 spiderTimeoutInMin = 2 startupTimeoutInMin=1 target='http://localhost:8080' def main(argv): #Initialize Zap API http_proxy = 'http://' + zap_ip + ':' + str(port) https_proxy = 'http://' + zap_ip + ':' + str(port) zap = ZAPv2(proxies={'http': http_proxy, 'https': https_proxy}) #Check untill zap is running wait_for_zap_start(zap, startupTimeoutInMin*60) #Check that target is reachable zap_access_target(zap, target) # Use both spider zap_spider(zap, target) zap_ajax_spider(zap, target, spiderTimeoutInMin) if __name__ == "__main__": main(sys.argv[1:])
2.90625
3
tests/test_landing_page.py
Valaraucoo/raven-functional-tests
0
12793882
<reponame>Valaraucoo/raven-functional-tests from helpers import * class TestLandingPageLoading: def test_get_base_url(self, driver): driver.get(BASE_URL) # waiting for animation time.sleep(2) button_login = driver.find_element_by_css_selector('button') assert 'Zaloguj się' in button_login.get_attribute('innerHTML') button_modal = driver.find_element_by_id('modal-trigger') assert 'Czy jesteś w tym serwisie po raz pierwszy?' in button_modal.get_attribute('innerHTML') button_modal.click() button_modal_close = driver.find_element_by_id('modal-trigger2') assert 'Cancel' in button_modal_close.get_attribute('innerHTML') button_modal_close.click() support_link = driver.find_element_by_xpath('//*[text()[contains(., "Support")]]') driver.execute_script("arguments[0].click();", support_link) assert 'Witamy w supporcie!' in driver.find_element_by_tag_name('h2').get_attribute('innerHTML') def test_login_to_dashboard(self, driver): login(driver, '<EMAIL>', 'admin')
2.359375
2
corded/errors.py
an-dyy/Corded
0
12793883
<reponame>an-dyy/Corded from aiohttp import ClientResponse class CordedError(Exception): pass # HTTP Errors class HTTPError(CordedError): def __init__(self, response: ClientResponse): self.response = response class BadRequest(HTTPError): pass class Unauthorized(HTTPError): pass class Forbidden(HTTPError): pass class NotFound(HTTPError): pass class PayloadTooLarge(HTTPError): pass class TooManyRequests(HTTPError): pass class DiscordServerError(HTTPError): pass
2.484375
2
nlu/components/embeddings/sentence_xlm/sentence_xlm.py
Murat-Karadag/nlu
0
12793884
from sparknlp.annotator import XlmRoBertaSentenceEmbeddings class Sentence_XLM: @staticmethod def get_default_model(): return XlmRoBertaSentenceEmbeddings.pretrained() \ .setInputCols("sentence", "token") \ .setOutputCol("sentence_xlm_roberta") @staticmethod def get_pretrained_model(name, language): return XlmRoBertaSentenceEmbeddings.pretrained(name, language) \ .setInputCols("sentence", "token") \ .setOutputCol("sentence_xlm_roberta")
2.5
2
bx_py_utils/humanize/pformat.py
boxine/bx_py_utils
6
12793885
import json import pprint def pformat(value): """ Format given object: Try JSON fist and fallback to pformat() (JSON dumps are nicer than pprint.pformat() ;) """ try: value = json.dumps(value, indent=4, sort_keys=True, ensure_ascii=False) except TypeError: # Fallback if values are not serializable with JSON: value = pprint.pformat(value, width=120) return value
3.484375
3
mmdnn/conversion/examples/darknet/extractor.py
kmader/MMdnn
3,442
12793886
#---------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. #---------------------------------------------------------------------------------------------- from __future__ import absolute_import from __future__ import print_function import os from mmdnn.conversion.examples.darknet import darknet as cdarknet from mmdnn.conversion.examples.imagenet_test import TestKit from mmdnn.conversion.examples.extractor import base_extractor from mmdnn.conversion.common.utils import download_file class darknet_extractor(base_extractor): _base_model_url = "https://raw.githubusercontent.com/pjreddie/darknet/master/" architecture_map = { 'yolov3' : { 'config' : _base_model_url + "cfg/yolov3.cfg", 'weights' : "https://pjreddie.com/media/files/yolov3.weights" }, 'yolov2' :{ 'config' : _base_model_url + "cfg/yolov2.cfg", 'weights' : "https://pjreddie.com/media/files/yolov2.weights" } } @classmethod def download(cls, architecture, path = './'): if cls.sanity_check(architecture): cfg_name = architecture + ".cfg" architecture_file = download_file(cls.architecture_map[architecture]['config'], directory=path, local_fname=cfg_name) if not architecture_file: return None weight_name = architecture + ".weights" weight_file = download_file(cls.architecture_map[architecture]['weights'], directory=path, local_fname=weight_name) if not weight_file: return None print("Darknet Model {} saved as [{}] and [{}].".format(architecture, architecture_file, weight_file)) return (architecture_file, weight_file) else: return None @classmethod def inference(cls, architecture, files, model_path, image_path): import numpy as np if cls.sanity_check(architecture): download_file(cls._base_model_url + "cfg/coco.data", directory='./') download_file(cls._base_model_url + "data/coco.names", directory='./data/') print(files) net = cdarknet.load_net(files[0].encode(), files[1].encode(), 0) meta = cdarknet.load_meta("coco.data".encode()) r = cdarknet.detect(net, meta, image_path.encode()) # print(r) return r else: return None # d = darknet_extractor() # model_filename = d.download('yolov3') # print(model_filename) # image_path = "./mmdnn/conversion/examples/data/dog.jpg" # model_path = "./" # d = darknet_extractor() # result = d.inference('yolov3', model_filename, model_path, image_path = image_path) # print(result)
2.140625
2
data/transcoder_evaluation_gfg/python/SCHEDULE_JOBS_SERVER_GETS_EQUAL_LOAD.py
mxl1n/CodeGen
241
12793887
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( a , b , n ) : s = 0 for i in range ( 0 , n ) : s += a [ i ] + b [ i ] if n == 1 : return a [ 0 ] + b [ 0 ] if s % n != 0 : return - 1 x = s // n for i in range ( 0 , n ) : if a [ i ] > x : return - 1 if i > 0 : a [ i ] += b [ i - 1 ] b [ i - 1 ] = 0 if a [ i ] == x : continue y = a [ i ] + b [ i ] if i + 1 < n : y += b [ i + 1 ] if y == x : a [ i ] = y b [ i ] = 0 if i + 1 < n : b [ i + 1 ] = 0 continue if a [ i ] + b [ i ] == x : a [ i ] += b [ i ] b [ i ] = 0 continue if i + 1 < n and a [ i ] + b [ i + 1 ] == x : a [ i ] += b [ i + 1 ] b [ i + 1 ] = 0 continue return - 1 for i in range ( 0 , n ) : if b [ i ] != 0 : return - 1 return x #TOFILL if __name__ == '__main__': param = [ ([4, 9, 16, 18, 20, 23, 24, 25, 25, 26, 29, 30, 35, 40, 41, 43, 44, 46, 53, 53, 56, 56, 58, 60, 62, 70, 80, 80, 80, 82, 86, 90, 92, 92, 95],[3, 15, 16, 16, 18, 26, 30, 32, 32, 35, 37, 41, 42, 43, 48, 49, 49, 54, 55, 57, 65, 66, 67, 67, 68, 83, 85, 89, 89, 90, 91, 93, 96, 97, 99],29,), ([-24, 70, -74, -90, 72, 50, -94, 86, -58, -68, 42, 0, 98, -70, -14, -32, 6, 74, 64, -78, 86, -42, -56, 2, -34, -46, 70, -62, 50, -58, -58, 42, 86, 96, -8, 8, -22, -14, -14, 98, 2, 98, -28],[-26, 36, 48, 48, -38, -86, 90, -62, 30, -4, 82, 16, 32, -6, 58, 82, -66, -40, 52, -78, 94, -70, -80, -68, -58, -26, 50, -78, -90, -48, -28, 48, 56, 50, 72, -22, -2, 8, -94, 92, -44, -66, -30],34,), ([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],13,), ([98, 18, 50, 36, 88, 75, 2, 40, 74, 19, 63, 82, 77, 5, 59, 97, 70, 50, 71, 90, 90, 61, 63, 99],[93, 25, 16, 42, 55, 61, 69, 68, 95, 28, 40, 90, 1, 86, 76, 40, 13, 47, 71, 4, 64, 54, 84, 45],16,), ([-80, -64, -64, -64, -64, -62, -54, -48, -44, -44, -38, -30, -30, -26, -14, -12, -10, -6, -6, 6, 22, 22, 22, 26, 28, 50, 52, 70, 86, 86, 88, 90],[-96, -94, -80, -74, -64, -56, -52, -32, -30, -24, -12, -12, -8, -2, 4, 8, 16, 20, 24, 24, 24, 48, 50, 54, 60, 64, 74, 80, 88, 90, 92, 92],22,), ([0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1],[1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1],20,), ([59, 61, 64],[22, 59, 85],1,), ([98, 92, 28, 42, -74, -36, 40, -8, 32, -22, -70, -22, -56, 74, 6, 6, -62, 46, 34, 2],[-62, -84, 72, 60, 10, -18, -44, -22, 14, 0, 76, 72, 96, -28, -24, 52, -74, -30, 16, 66],18,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],34,), ([72, 97, 79, 21, 83, 2, 31, 59, 6, 11, 79, 97],[27, 71, 87, 36, 73, 37, 80, 34, 57, 17, 88, 52],9,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
3.078125
3
backend/reservas/admin.py
ES2-UFPI/404-portal
1
12793888
<filename>backend/reservas/admin.py from django.contrib import admin from .models import Reserva admin.site.register(Reserva)
1.210938
1
data_loader.py
winterest/f-function
0
12793889
<filename>data_loader.py from torch.utils import data import os import torch from torchvision import transforms as T from scipy import interpolate from PIL import Image from random import shuffle import xml.etree.ElementTree as ET ## Config img_size = 256 ## End of config class LabeledImageFolder(data.Dataset): def __init__(self, root, GT_path,list_img_path,image_size=224,mode='train',augmentation_prob=0.4): """Initializes image paths and preprocessing module.""" self.root = root # GT : Ground Truth self.GT_paths = GT_path #self.image_paths = list(map(lambda x: os.path.join(root, x), os.listdir(root))) self.image_paths = list_img_path self.image_size = image_size self.mode = mode self.RotationDegree = [0,90,180,270] self.augmentation_prob = augmentation_prob print("image count in {} path :{}".format(self.mode,len(self.image_paths))) def __getitem__(self, index): #img_size = 224 """Reads an image from a file and preprocesses it and returns.""" image_path = self.image_paths[index] filename = image_path.split('_')[-1][:-len(".jpg")] #GT_path = self.GT_paths + 'ISIC_' + filename + '_segmentation.png' image = Image.open(image_path) #GT = Image.open(GT_path) annot_fn = self.GT_paths + filename.split('/')[-1] + '.xml' tree = ET.parse(annot_fn) objs = tree.findall('object') #img = Image.open(fn) wid = image.width hei = image.height for ix, obj in enumerate(objs): if obj.find('name').text.lower().strip()=='graph': bbox = obj.find('bndbox') x11 = int(float(bbox.find('xmin').text)) y11 = int(float(bbox.find('ymin').text)) x12 = int(float(bbox.find('xmax').text)) y12 = int(float(bbox.find('ymax').text)) if obj.find('name').text.lower().strip()=='xypercent': xper = obj.find('xper') #print(xper.text) xper = xper.text.split(' ') xper = [int(float(i)*224) for i in xper] yper = obj.find('yper') #print(yper.text) yper = yper.text.split(' ') yper = [int(float(i)*224) for i in yper] image = image.crop((x11,y11,x12,y12)).resize((img_size,img_size)) matrix = torch.zeros(img_size,img_size) vector = torch.ones(img_size) * (-1) f = interpolate.interp1d(xper, yper) xnew = list(range(xper[0],xper[-1]+1)) ynew = f(xnew) ynew = [int(i) for i in ynew] for n,xn in enumerate(xnew): matrix[xn, ynew[n]] = 1 vector[xn] = ynew[n] Transform = [] Transform.append(T.ToTensor()) Transform = T.Compose(Transform) image_t = Transform(image) Norm_ = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) image_t = Norm_(image_t) return image_t, vector, matrix, image_path def __len__(self): """Returns the total number of font files.""" return len(self.image_paths) def get_loader(root_path, image_size, batch_size, split_ratio = 0.99, num_workers=2, mode='train',augmentation_prob=0.4): """Builds and returns Dataloader.""" image_path = root_path+'/JPEGImages/' GT_path = root_path+'/Annotations/' list_all = list(map(lambda x: os.path.join(image_path, x), os.listdir(image_path))) shuffle(list_all) num_train = int(split_ratio * len(list_all)) list_train = list_all[:num_train] list_val = list_all[num_train:] train_dataset = LabeledImageFolder(root = image_path, GT_path=GT_path, list_img_path=list_train, image_size =image_size, mode=mode,augmentation_prob=augmentation_prob) train_loader = data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) val_dataset = LabeledImageFolder(root = image_path, GT_path=GT_path, list_img_path=list_val, image_size =image_size, mode=mode,augmentation_prob=augmentation_prob) val_loader = data.DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) return train_loader, val_loader
2.484375
2
tests/examples/minlplib/mathopt3.py
ouyang-w-19/decogo
2
12793890
# NLP written by GAMS Convert at 04/21/18 13:52:29 # # Equation counts # Total E G L N X C B # 8 5 0 3 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 7 7 0 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 43 19 24 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(None,None),initialize=10) m.x2 = Var(within=Reals,bounds=(None,None),initialize=-10) m.x3 = Var(within=Reals,bounds=(None,None),initialize=10) m.x4 = Var(within=Reals,bounds=(None,None),initialize=10) m.x5 = Var(within=Reals,bounds=(None,None),initialize=10) m.x6 = Var(within=Reals,bounds=(None,None),initialize=-10) m.obj = Objective(expr=(m.x1 + m.x2)**2 + (m.x3 - m.x5)**2 + (m.x6 - m.x4)**2 + 2*(m.x1 + m.x3 - m.x4)**2 + (m.x2 - m.x1 + m.x3 - m.x4)**2 + 10*sin(m.x1 + m.x5 - m.x6)**2, sense=minimize) m.c2 = Constraint(expr=m.x1**2 - sin(m.x2) - m.x4 + m.x5 + m.x6 == 0) m.c3 = Constraint(expr=m.x1*m.x3 - m.x2*m.x4*m.x1 - sin((-m.x1) - m.x3 + m.x6) - m.x5 == 0) m.c4 = Constraint(expr=m.x2*m.x6*cos(m.x5) - sin(m.x3*m.x4) + m.x2 - m.x5 == 0) m.c5 = Constraint(expr=m.x1*m.x2 - m.x3**2 - m.x4*m.x5 - m.x6**2 == 0) m.c6 = Constraint(expr= 2*m.x1 + 5*m.x2 + m.x3 + m.x4 <= 1) m.c7 = Constraint(expr= 3*m.x1 - 2*m.x2 + m.x3 - 4*m.x4 <= 0) m.c8 = Constraint(expr= m.x1 + m.x2 + m.x3 + m.x4 + m.x5 + m.x6 <= 2)
1.65625
2
aiohttp_asgi/__init__.py
PaulWasTaken/aiohttp-asgi
10
12793891
from .resource import ASGIResource __all__ = ("ASGIResource",)
1.132813
1
2014/bio-2014-1-1.py
pratheeknagaraj/bio_solutions
0
12793892
#!/usr/bin/env python """ bio-2014-1-1.py: Sample solution for question 1 on the 2014 British Informatics Olympiad Round One exam Lucky Numbers """ __author__ = "<NAME>" __date__ = "25 January 2016" """ This is simply an implemenation based problem. We first generate the list of lucky numbers via the algorithm provided and then use a binary search to find the corresponding lower and greater elements. """ # Generate luck numbers list vals = range(1,11000,2) complete = False cur_index = 1 cur = None while not complete: cur = vals[cur_index] if len(vals) < cur: break end_index = cur*(len(vals)/cur)-1 for i in xrange(end_index, -1, -cur): vals.pop(i) cur_index += 1 # Find the lucky numbers def find_less_greater(val): pos = binary_search(0, len(vals)-1, val) if vals[pos] == val: return vals[pos-1], vals[pos+1] if vals[pos] < val: return vals[pos], vals[pos+1] return vals[pos-1], vals[pos] def binary_search(start, end, val): if start >= end: return start mid_pos = (end-start)/2 + start mid_val = vals[mid_pos] if val < mid_val: return binary_search(start, mid_pos-1, val) elif val > mid_val: return binary_search(mid_pos+1, end, val) return mid_pos def lucky_numbers(val): lower, upper = find_less_greater(val) print lower, upper return (lower, upper) in1 = raw_input() lucky_numbers(int(in1))
3.9375
4
python/analysis/mostImportantMiRNAs.py
mjoppich/miRExplore
0
12793893
import matplotlib from collections import defaultdict, OrderedDict from plots.DotSetPlot import DotSetPlot processToTitle = { "targetMirsECA": "EC activation and\n inflammation", "targetMirsMonocyte": "Monocyte diff. &\nMacrophage act.", "targetMirsFCF": "Foam cell formation", "targetMirsAngio": "Angiogenesis", "targetMirsVasRemod": "Vascular remodeling", "targetMirsTCell": "T cell differentiation &\n activation", "targetMirsCholEfflux": "Cholesterol efflux", "targetMirsSMCProlif": "SMC proliferation &\n SMC migration" } network2nicename = { "CV-IPN-Plaque_destabilization_1": "(VI) Plaque destabilization", "CV-IPN-Platelet_activation_1": "(V) Platelet activation", "CV-IPN-Smooth_muscle_cell_activation_1": "(IV) SMC activation", "CV-IPN-Foam_cell_formation_1": "(III) Foam cell formation", "CV-IPN-Endothelial_cell-monocyte_interaction_1": "(II) EC/MC interaction", "CV-IPN-Endothelial_cell_activation_1": "(I) EC activation", } celltype2nicename = { 'SMC': "Smooth muscle cell", 'EC': "Endothelial cell", "MC": "Macrophage/Monocyte", "FC": "Foam cell" } def source2index( sname ): if sname != None and sname.startswith("CV-IPN"): return 0 return 1 mirna2evidenceCellT = defaultdict(lambda: defaultdict(set)) mirna2evidenceCBN = defaultdict(lambda: defaultdict(set)) mirna2evidenceProcess = defaultdict(lambda: defaultdict(set)) pubmed2tuples = defaultdict(set) mirna2evflows = defaultdict(set) dataLabels = defaultdict(set) #"miR-98", "miR-125a" manuMirnas = ["miR-98", "miR-125a","miR-21", "miR-34a", "miR-93", "miR-125b", "miR-126", "miR-146a", "miR-155", "miR-370"] #manuMirnas = ['miR-126', 'miR-21', 'miR-155', 'miR-146a', 'miR-125b', 'miR-34a', 'miR-499', 'miR-221', 'miR-370', 'miR-504'] #manuMirnas = ['miR-181c', 'miR-222', 'miR-126', 'miR-155', 'miR-125b', 'miR-34a', 'miR-370', 'miR-146a', 'miR-21', 'miR-93'] manuMirnas = list({'miR-155', 'miR-93', 'miR-181c', 'miR-370', 'miR-222', 'miR-125b', 'miR-34a', 'miR-146a', 'miR-126', 'miR-21'}) manuMirnas = ["miR-98", "miR-125a","miR-21", "miR-34a", "miR-93", "miR-125b", "miR-126", "miR-146a", "miR-155", "miR-370"] miRNA2InteractionPartner = defaultdict(set) miRNA2Evidences = defaultdict(set) with open("/mnt/d/yanc_network/disease_pw_important_cbn.txt", 'r') as fin: for line in fin: line = line.strip().split("\t") #CV-IPN-Endothelial_cell-monocyte_interaction_1 VEGFA miR-140 EC 27035554 cbn = network2nicename.get(line[0], line[0]) gene = line[1] miRNA = line[2] cellT = celltype2nicename.get(line[3], line[3]) evidence = line[4] if "US" in miRNA: continue miRNA2InteractionPartner[miRNA].add(gene) miRNA2Evidences[miRNA].add(evidence) dataLabels["Cell-Type"].add(cellT) dataLabels["CBN"].add(cbn) mirna2evidenceCellT[miRNA][evidence].add(cellT) mirna2evidenceCBN[miRNA][evidence].add(cbn) #important_process with open("/mnt/d/yanc_network/pathway_important_process.txt", 'r') as fin: for line in fin: line = line.strip().split("\t") #CV-IPN-Endothelial_cell-monocyte_interaction_1 VEGFA miR-140 EC 27035554 process = processToTitle.get(line[0], line[0]) gene = line[1] miRNA = line[2] cellT = celltype2nicename.get(line[3], line[3]) evidence = line[4] if "US" in miRNA: continue miRNA2InteractionPartner[miRNA].add(gene) miRNA2Evidences[miRNA].add(evidence) dataLabels["Cell-Type"].add(cellT) dataLabels["Process"].add(process) mirna2evidenceCellT[miRNA][evidence].add(cellT) mirna2evidenceProcess[miRNA][evidence].add(process) for x in manuMirnas: print(x, miRNA2InteractionPartner[x], miRNA2Evidences[x]) allMiRNA = set() for x in mirna2evidenceCellT: allMiRNA.add(x) for x in mirna2evidenceProcess: allMiRNA.add(x) for x in mirna2evidenceCBN: allMiRNA.add(x) dataUpPlot = {} for miRNA in allMiRNA: miRNAEvs = set() for x in mirna2evidenceCBN.get(miRNA, []): miRNAEvs.add(x) for x in mirna2evidenceProcess.get(miRNA, []): miRNAEvs.add(x) for x in mirna2evidenceCellT.get(miRNA, []): miRNAEvs.add(x) miRNAData = { "CBN": set(), "Process": set(), "Cell-Type": set() } for ev in miRNAEvs: cellT = mirna2evidenceCellT[miRNA].get(ev, None) cbns = mirna2evidenceCBN[miRNA].get(ev, None) process = mirna2evidenceProcess[miRNA].get(ev, None) if cellT != None: miRNAData['Cell-Type'] = miRNAData['Cell-Type'].union(cellT) if cbns != None: miRNAData['CBN'] = miRNAData['CBN'].union(cbns) if process != None: miRNAData['Process'] = miRNAData['Process'].union(process) dataUpPlot[miRNA] = miRNAData orderDict = OrderedDict() for type in ["CBN", "Process", "Cell-Type"]: orderDict[type] = sorted(dataLabels[type]) def makeMIRNAName(miRNA): return miRNA return miRNA + " (" + str(len(miRNA2InteractionPartner[miRNA])) + ","+ str(len(miRNA2Evidences[miRNA]))+")" filteredData = OrderedDict() for miRNA in manuMirnas: if miRNA in dataUpPlot: filteredData[makeMIRNAName(miRNA)] = dataUpPlot[miRNA] else: print("Missing manu", miRNA) stages2 = 0 stages0 = 0 from natsort import natsorted for miRNA in natsorted(dataUpPlot, key=lambda x: x.split("-")[1]): stages = dataUpPlot[miRNA]['CBN'] if len(miRNA2Evidences[miRNA]) <= 0: continue if len(dataUpPlot[miRNA]['Process']) == 0: pass#continue if len(dataUpPlot[miRNA]['CBN']) == 0: continue filteredData[makeMIRNAName(miRNA)] = dataUpPlot[miRNA] print(len(dataUpPlot)) print(len(filteredData)) print(stages2) print(stages0) fout = open("/mnt/c/Users/mjopp/Desktop/d3-parsets-d3v5/titanic.csv", "w") print("miRNA", "CBN", "PROCESS", "CELLTYPE", sep=",", file=fout) mirna2printTuple = defaultdict(list) for miRNA in allMiRNA: miRNAEvs = set() for x in mirna2evidenceCBN.get(miRNA, []): miRNAEvs.add(x) for x in mirna2evidenceProcess.get(miRNA, []): miRNAEvs.add(x) for x in mirna2evidenceCellT.get(miRNA, []): miRNAEvs.add(x) miRNAData = { "CBN": set(), "Process": set(), "Cell-Type": set() } for ev in miRNAEvs: cellT = mirna2evidenceCellT[miRNA].get(ev, ["None"]) cbns = mirna2evidenceCBN[miRNA].get(ev, ["None"]) processes = mirna2evidenceProcess[miRNA].get(ev, ["None"]) if miRNA == "miR-98": print(ev, cbns, celltype, process) if "None" in cbns:# or "None" in processes: continue for celltype in cellT: for cbn in cbns: for process in processes: mirna2printTuple[miRNA].append( (cbn, process, celltype) ) selMirnas = sorted([x for x in mirna2printTuple], reverse=True, key=lambda x: len(mirna2printTuple[x])) print(selMirnas[0:10]) for miRNA in manuMirnas: for (cbn, process, celltype) in mirna2printTuple[miRNA]: print(miRNA, cbn.replace("\n", " ").replace(" ", " "), process.replace("\n", " ").replace(" ", " "), celltype, sep=",", file=fout) interactorCounts = [len(miRNA2InteractionPartner[miRNA]) for miRNA in filteredData] pubmedCounts = [len(miRNA2Evidences[miRNA]) for miRNA in filteredData] DotSetPlot().plot(dataLabels, filteredData, numbers={"Interactor Count":interactorCounts , "PubMed Evidence Count": pubmedCounts },sortData=False,order=orderDict)#, max=30) matplotlib.pyplot.savefig("/mnt/d/owncloud/markus/uni/publications/miReview/dotset_important.pdf") matplotlib.pyplot.show()
2.46875
2
src/hud.py
anita-hu/simulanes
1
12793894
<filename>src/hud.py<gh_stars>1-10 # Modified work Copyright (c) 2021 <NAME>, <NAME>. # Original work Copyright (c) 2018 Intel Labs. # authors: <NAME> (<EMAIL>) # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # Original source: https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/automatic_control.py import datetime import math import os import pygame import carla import utils class HUD(object): """Class for HUD text""" def __init__(self, width, height, doc): """Constructor method""" self.dim = (width, height) font = pygame.font.Font(pygame.font.get_default_font(), 20) font_name = 'courier' if os.name == 'nt' else 'mono' fonts = [x for x in pygame.font.get_fonts() if font_name in x] default_font = 'ubuntumono' mono = default_font if default_font in fonts else fonts[0] mono = pygame.font.match_font(mono) self._font_mono = pygame.font.Font(mono, 12 if os.name == 'nt' else 14) self._notifications = FadingText(font, (width, 40), (0, height - 40)) self.help = HelpText(doc, pygame.font.Font(mono, 24), width, height) self.server_fps = 0 self.frame = 0 self.simulation_time = 0 self.map_name = None self._show_info = True self._info_text = [] self._server_clock = pygame.time.Clock() def on_world_tick(self, timestamp): """Gets informations from the world at every tick""" self._server_clock.tick() self.server_fps = self._server_clock.get_fps() self.frame = timestamp.frame_count self.simulation_time = timestamp.elapsed_seconds def tick(self, world, clock): """HUD method for every tick""" self._notifications.tick(world, clock) self.map_name = world.map.name if not self._show_info: return transform = world.player.get_transform() vel = world.player.get_velocity() control = world.player.get_control() heading = 'N' if abs(transform.rotation.yaw) < 89.5 else '' heading += 'S' if abs(transform.rotation.yaw) > 90.5 else '' heading += 'E' if 179.5 > transform.rotation.yaw > 0.5 else '' heading += 'W' if -0.5 > transform.rotation.yaw > -179.5 else '' colhist = world.collision_sensor.get_collision_history() collision = [colhist[x + self.frame - 200] for x in range(0, 200)] max_col = max(1.0, max(collision)) collision = [x / max_col for x in collision] vehicles = world.world.get_actors().filter('vehicle.*') ego_location = world.player.get_location() waypoint = world.map.get_waypoint(ego_location, project_to_road=True) # always make traffic lights if world.player.is_at_traffic_light(): traffic_light = world.player.get_traffic_light() if traffic_light.get_state() == carla.TrafficLightState.Red: world.hud.notification("Traffic light changed! Good to go!") traffic_light.set_state(carla.TrafficLightState.Green) self._info_text = [ 'Server: % 16.0f FPS' % self.server_fps, 'Client: % 16.0f FPS' % clock.get_fps(), '', 'Vehicle: % 20s' % utils.get_actor_display_name(world.player, truncate=20), 'Map: % 20s' % world.map.name, 'Road id: % 20s' % waypoint.road_id, 'Simulation time: % 12s' % datetime.timedelta(seconds=int(self.simulation_time)), '', 'Speed: % 15.0f km/h' % (3.6 * math.sqrt(vel.x**2 + vel.y**2 + vel.z**2)), u'Heading:% 16.0f\N{DEGREE SIGN} % 2s' % (transform.rotation.yaw, heading), 'Location:% 20s' % ('(% 5.1f, % 5.1f)' % (transform.location.x, transform.location.y)), 'GNSS:% 24s' % ('(% 2.6f, % 3.6f)' % (world.gnss_sensor.lat, world.gnss_sensor.lon)), 'Height: % 18.0f m' % transform.location.z, ''] if isinstance(control, carla.VehicleControl): self._info_text += [ ('Throttle:', control.throttle, 0.0, 1.0), ('Steer:', control.steer, -1.0, 1.0), ('Brake:', control.brake, 0.0, 1.0), ('Reverse:', control.reverse), ('Hand brake:', control.hand_brake), ('Manual:', control.manual_gear_shift), 'Gear: %s' % {-1: 'R', 0: 'N'}.get(control.gear, control.gear)] elif isinstance(control, carla.WalkerControl): self._info_text += [ ('Speed:', control.speed, 0.0, 5.556), ('Jump:', control.jump)] self._info_text += [ '', 'Collision:', collision, '', 'Number of vehicles: % 8d' % len(vehicles)] if len(vehicles) > 1: self._info_text += ['Nearby vehicles:'] def dist(l): return math.sqrt((l.x - transform.location.x)**2 + (l.y - transform.location.y) ** 2 + (l.z - transform.location.z)**2) vehicles = [(dist(x.get_location()), x) for x in vehicles if x.id != world.player.id] for dist, vehicle in sorted(vehicles): if dist > 200.0: break vehicle_type = utils.get_actor_display_name(vehicle, truncate=22) self._info_text.append('% 4dm %s' % (dist, vehicle_type)) def toggle_info(self): """Toggle info on or off""" self._show_info = not self._show_info def notification(self, text, seconds=2.0): """Notification text""" self._notifications.set_text(text, seconds=seconds) def error(self, text): """Error text""" self._notifications.set_text('Error: %s' % text, (255, 0, 0)) def render(self, display): """Render for HUD class""" if self._show_info: info_surface = pygame.Surface((250, self.dim[1])) info_surface.set_alpha(100) display.blit(info_surface, (0, 0)) v_offset = 4 bar_h_offset = 100 bar_width = 106 for item in self._info_text: if v_offset + 18 > self.dim[1]: break if isinstance(item, list): if len(item) > 1: points = [(x + 8, v_offset + 8 + (1 - y) * 30) for x, y in enumerate(item)] pygame.draw.lines(display, (255, 136, 0), False, points, 2) item = None v_offset += 18 elif isinstance(item, tuple): if isinstance(item[1], bool): rect = pygame.Rect((bar_h_offset, v_offset + 8), (6, 6)) pygame.draw.rect(display, (255, 255, 255), rect, 0 if item[1] else 1) else: rect_border = pygame.Rect((bar_h_offset, v_offset + 8), (bar_width, 6)) pygame.draw.rect(display, (255, 255, 255), rect_border, 1) fig = (item[1] - item[2]) / (item[3] - item[2]) if item[2] < 0.0: rect = pygame.Rect( (bar_h_offset + fig * (bar_width - 6), v_offset + 8), (6, 6)) else: rect = pygame.Rect((bar_h_offset, v_offset + 8), (fig * bar_width, 6)) pygame.draw.rect(display, (255, 255, 255), rect) item = item[0] if item: # At this point has to be a str. surface = self._font_mono.render(item, True, (255, 255, 255)) display.blit(surface, (8, v_offset)) v_offset += 18 self._notifications.render(display) self.help.render(display) class FadingText(object): """ Class for fading text """ def __init__(self, font, dim, pos): """Constructor method""" self.font = font self.dim = dim self.pos = pos self.seconds_left = 0 self.surface = pygame.Surface(self.dim) def set_text(self, text, color=(255, 255, 255), seconds=2.0): """Set fading text""" text_texture = self.font.render(text, True, color) self.surface = pygame.Surface(self.dim) self.seconds_left = seconds self.surface.fill((0, 0, 0, 0)) self.surface.blit(text_texture, (10, 11)) def tick(self, _, clock): """Fading text method for every tick""" delta_seconds = 1e-3 * clock.get_time() self.seconds_left = max(0.0, self.seconds_left - delta_seconds) self.surface.set_alpha(500.0 * self.seconds_left) def render(self, display): """Render fading text method""" display.blit(self.surface, self.pos) class HelpText(object): """ Helper class for text render""" def __init__(self, doc, font, width, height): """Constructor method""" lines = doc.split('\n') self.font = font self.dim = (680, len(lines) * 22 + 12) self.pos = (0.5 * width - 0.5 * self.dim[0], 0.5 * height - 0.5 * self.dim[1]) self.seconds_left = 0 self.surface = pygame.Surface(self.dim) self.surface.fill((0, 0, 0, 0)) for i, line in enumerate(lines): text_texture = self.font.render(line, True, (255, 255, 255)) self.surface.blit(text_texture, (22, i * 22)) self._render = False self.surface.set_alpha(220) def toggle(self): """Toggle on or off the render help""" self._render = not self._render def render(self, display): """Render help text method""" if self._render: display.blit(self.surface, self.pos)
2.75
3
src/cryptos/__init__.py
villoro/airflow_tasks
0
12793895
from .process import update_cryptos
0.988281
1
oo/pessoa.py
limaon/pythonbirds
0
12793896
<reponame>limaon/pythonbirds<filename>oo/pessoa.py class Pessoa: def __init__(self, nome=None, idade=35): self.idade = idade self.nome = nome def cumprimentar(self): return f'Ola {id(self)}' class CirculoPerfeito: def __init__(self): self.cor = 'Azul' self.circuferencia = 4 self.material = 'Papel' def mostra_cor(self): return id(self) if __name__ == '__main__': circulo_primeiro = CirculoPerfeito() circulo_segundo = CirculoPerfeito() print(type(circulo_primeiro)) print(circulo_primeiro is circulo_segundo) print(id(circulo_primeiro), circulo_primeiro.mostra_cor()) circulo_segundo.cor = 'Amarelo' print(circulo_primeiro.cor, circulo_segundo.cor)
3.28125
3
getwordindexfile.py
lqyluck/semi-supervised-lda
2
12793897
''' Created on 2011-5-30 @author: cyzhang ''' import re import sys,os def dofeaindex(file,filetype): feamap = {} linenum = 0 for line in open(file): line = line.strip() content = line.split('\t') if len(content) != 2: continue felist=content[1].split(' ') if len(felist) == 0: continue j = 0 while j < len(felist): if 0 == filetype: feamap[felist[j]] = feamap.get(felist[j],0) + int(felist[j + 1]) j += 2 else: feamap[felist[j]] = feamap.get(felist[j],0) + 1 j += 1 linenum += 1 return feamap,linenum if __name__ == "__main__": inputfile = sys.argv[1] outputfile = sys.argv[2] filetype = int(sys.argv[3]) cutoff = int(sys.argv[4]) myfile = open(outputfile , 'w') feamap,linenum = dofeaindex(inputfile,filetype) id = 0 for fea,num in feamap.items(): if num > cutoff: myfile.write(str(id) + ' ' + fea + '\n') id += 1 myfile.close()
2.734375
3
connections/conn_napalm.py
no-such-anthony/net-run
1
12793898
<filename>connections/conn_napalm.py from napalm import get_network_driver class conn_napalm(): def __init__(self, device, connection_key): self.device = device self.connection_key = connection_key #check for required kwargs, grab root level key if not in connection_key #could have some default values? if 'hostname' not in device[connection_key]: device[connection_key]['hostname'] = device.get('host', device['name']) if 'username' not in device[connection_key]: device[connection_key]['username'] = device.get('username', '') if 'password' not in device[connection_key]: device[connection_key]['password'] = device.get('password', '') self.driver = device[connection_key].pop('driver', device.get('platform','')) def connect(self): driver = get_network_driver(self.driver) self.connection = driver(**self.device[self.connection_key]) self.connection.open() return self.connection def close(self): self.connection.close()
2.6875
3
house_rocket_analysis/APP/app.py
diogovalentte/data_engineer_portfolio
8
12793899
# Libraries from pandas.io.formats.format import DataFrameFormatter from streamlit_folium import folium_static import pandas as pd import numpy as np import seaborn as sns import streamlit as st import sys #! Add folder "src" as a package path project_path = "Put/here/the/path/to/the/project's/root/folder/house_rocket_analysis" sys.path.append(f'{project_path}/src/') import visualization.maps as maps #! App configuration st.set_page_config(layout='wide') @st.cache(allow_output_mutation=True) def load_data(path): data = pd.read_csv(path) return data # Pages definition def sidebar(): st.sidebar.title('Select Page') page_select = st.sidebar.selectbox( label='', options=['Final Reports', 'Maps']) return page_select def page_final_reports(renamed_houses, recommended_houses): # Filter Recommended Houses to Buy DataFrame st.sidebar.title('Search for recommended home for purchase') id_input = str(st.sidebar.text_input(label='Enter the ID')).strip() # Input ID to search house st.title('House Rocket Analysis') st.title('') st.title(f'There are {renamed_houses.shape[0]} properties available for purchase today.') st.dataframe(renamed_houses) st.header("Main considerations of the analysis.") st.markdown('* The variables with the highest positive correlation with Price are "Grade" and "Sqft living".') st.markdown('* Houses rated 8 or higher in the "Grid" (Quality of the building mateirais of the house) attribute have the best average price per rank and number of homes.') st.markdown('* The average price of renovated homes is 22% higher than unrenovated homes.') st.markdown('* The biggest correlation with Price and what can be added in a makeover is the bathroom and the amount of square feet of the house.') st.markdown('* The best season for re-selling homes is Spring.') st.header( """After these analyses, the recommended houses for House Rocket to buy follow the conditions: Places with grade of variable "Grid" (Quality of the building mateirais of the house) equal or greater than 8 Houses with condition equal to or greater than 3 Houses priced below the median price in your region (ZipCode)""") st.header("""The re-sale price of the after-purchased homes is based on the various "Total Avarage Price", which means the average value of the region's house prices (ZipCode) and the average price of the Season that the house was announced. If the purchase price of the house is higher than the "Total Avarage Price", then the suggested selling price will be the purchase price + 10%. If the purchase price of the house is less than the "Total Avarage Price", then the suggested selling price will be the purchase price + 30%.""") st.header("""A column has also been added in the table representing the recommended re-sale price and the profit from re-selling the house if it is renewed. If the house is renovated, the re-sale price and the after-sale profit will be 20% higher. """) st.title(f'After analysis, {recommended_houses.shape[0]} properties are recommended for purchase and re-sale.') st.subheader('New columns have also been added at the end of the table. They represent the recommended selling price of the houses, whether it has been renovated or not, in addition to the possible profit if sold at the recommended price.') st.text("") try: if not id_input: st.dataframe(recommended_houses) else: if int(id_input) in recommended_houses['ID'].values: st.dataframe(recommended_houses.loc[recommended_houses['ID'] == int(id_input)]) else: st.error( 'Property with this ID is not recommended for purchase or there is no home with this ID.') except: st.error('ERROR: Input value is not a valid ID.') #finally: return None def page_maps(renamed_houses, recommended_houses): # SideBar - - - st.sidebar.title('Filter Map') filter_data = st.sidebar.radio(label='Filter Houses', options=[ 'All houses', 'Recommended homes to buy']) # Filters - - if filter_data == 'Recommended homes to buy': st.title('Map of all recommended homes for purchase') st.header('') data = recommended_houses.copy() else: st.title('Map of all available houses') st.header('') data = renamed_houses.copy() # Map of density houses_map = maps.houses_map(data) folium_static(houses_map, width=1200, height=700) # Map with avarage price per region (ZipCode) st.title('Avarage Price per Region') avg_region = maps.price_per_region(renamed_houses) folium_static(avg_region, width=1200, height=700) if __name__ == '__main__': path = f"{project_path}/data/interim/renamed_data.csv" renamed_houses = load_data(path) path = f"{project_path}/reports/data/final_houses_sale.csv" recommended_houses = load_data(path) page_select = sidebar() if page_select == 'Final Reports': page_final_reports(renamed_houses=renamed_houses, recommended_houses=recommended_houses) else: page_maps(renamed_houses=renamed_houses, recommended_houses=recommended_houses)
3.296875
3
incident_io_client/models/severities_list_response_body.py
expobrain/python-incidentio-client
0
12793900
from typing import Any, Dict, List, Type, TypeVar import attr from ..models.severity_response_body import SeverityResponseBody T = TypeVar("T", bound="SeveritiesListResponseBody") @attr.s(auto_attribs=True) class SeveritiesListResponseBody: """ Example: {'severities': [{'created_at': '2021-08-17T13:28:57.801578Z', 'description': "It's not really that bad, everyone chill", 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}, {'created_at': '2021-08-17T13:28:57.801578Z', 'description': "It's not really that bad, everyone chill", 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}]} Attributes: severities (List[SeverityResponseBody]): Example: [{'created_at': '2021-08-17T13:28:57.801578Z', 'description': "It's not really that bad, everyone chill", 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}, {'created_at': '2021-08-17T13:28:57.801578Z', 'description': "It's not really that bad, everyone chill", 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}, {'created_at': '2021-08-17T13:28:57.801578Z', 'description': "It's not really that bad, everyone chill", 'id': '01FCNDV6P870EA6S7TK1DSYDG0', 'name': 'Minor', 'rank': 1, 'updated_at': '2021-08-17T13:28:57.801578Z'}]. """ severities: List[SeverityResponseBody] additional_properties: Dict[str, Any] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: severities = [] for severities_item_data in self.severities: severities_item = severities_item_data.to_dict() severities.append(severities_item) field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update( { "severities": severities, } ) return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() severities = [] _severities = d.pop("severities") for severities_item_data in _severities: severities_item = SeverityResponseBody.from_dict(severities_item_data) severities.append(severities_item) severities_list_response_body = cls( severities=severities, ) severities_list_response_body.additional_properties = d return severities_list_response_body @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
2.390625
2
server.py
vhnguyen0707/CMPUT404-assignment-webserver
0
12793901
<reponame>vhnguyen0707/CMPUT404-assignment-webserver # coding: utf-8 import os import socketserver # Copyright 2013 <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Furthermore it is derived from the Python documentation examples thus # some of the code is Copyright © 2001-2013 Python Software # Foundation; All Rights Reserved # # http://docs.python.org/2/library/socketserver.html # # run: python freetests.py # try: curl -v -X GET http://127.0.0.1:8080/ class MyWebServer(socketserver.BaseRequestHandler): def handle(self): self.data = self.request.recv(1024).strip() request = self.data.decode("utf-8").split(' ') try: method = request[0] path = request[1] http_version = request[2][:8].strip() # get http version other_methods = ["OPTIONS", "HEAD", "POST", "PUT", "DELETE", "TRACE", "CONNECT"] # all methods defined in rfc266 other than GET if method == "GET": relative_path = "./www" + os.path.normpath(request[1]) #normalize case of pathname if http_version == 'HTTP/1.1' and "Host" not in self.data.decode(): self.request.sendall(bytearray(f"{http_version} 400 Bad Request\r\nContent-Type: text/html\r\nConnection: close\r\n\r\n", 'utf-8')) elif os.path.isdir(relative_path): # when path is an existing directory if path[-1] == '/': try: f = open(f'{relative_path}/index.html', 'r') content = f.read() content_length = len(content) response = f'{http_version} 200 OK\r\nContent-Type: text/html\r\nContent-Length: {content_length}\r\n\r\n{content}' self.request.sendall(bytearray(response, 'utf-8')) except: # error reading file occured self.request.sendall(bytearray(f"{http_version} 500 Internal Server Error\r\n", 'utf-8')) else: self.request.sendall(bytearray(f'{http_version} 301 Moved Permanently\r\nContent-Type: text/html\r\nLocation: {path}/\r\n\r\n', 'utf-8')) elif os.path.isfile(relative_path): # when path is an existing file try: f = open(f'{relative_path}', 'r') content = f.read() content_length = len(content) content_type = path[path.rfind('.') + 1:len(path)] # get file extension response = f'{http_version} 200 OK\r\nContent-Type: text/{content_type}\r\nContent-Length: {content_length}\r\n\r\n{content}' self.request.sendall(bytearray(response, 'utf-8')) except: # error reading file occured self.request.sendall(bytearray(f"{http_version} 500 Internal Server Error\r\n", 'utf-8')) else: # not a valid path self.request.sendall(bytearray(f'{http_version} 404 Not Found\r\nContent-Type: text/html\r\nConnection:Close\r\n\r\n', 'utf-8')) elif method in other_methods: self.request.sendall(bytearray(f"{http_version} 405 Method Not Allowed\r\nContent-Type: text/html\r\n\r\n", 'utf-8')) else: self.request.sendall(bytearray(f"{http_version} 400 Bad Request\r\nContent-Type: text/html\r\nConnection: close\r\n\r\n", 'utf-8')) except IndexError: pass if __name__ == "__main__": HOST, PORT = "localhost", 8080 socketserver.TCPServer.allow_reuse_address = True # Create the server, binding to localhost on port 8080 server = socketserver.TCPServer((HOST, PORT), MyWebServer) # Activate the server; this will keep running until you # interrupt the program with Ctrl-C server.serve_forever()
2.828125
3
stan/tests/test_procparse.py
chappers/Stan
1
12793902
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Sat Jan 18 12:54:30 2014 @author: Chapman """ import unittest from stan.proc import proc_parse cstr = """proc describe data = df1 out = df2; by a; run;""" cstr1 = """proc describe data = df1 out = df2; by a; fin = "/usr/test.text"; quit;""" class TestDesc(unittest.TestCase): def test_dataset_opt(self): self.assertTrue(proc_parse.proc_parse(cstr).strip() == "df2=describe.describe(data=df1,by='a')") self.assertTrue(proc_parse.proc_parse(cstr1).strip() == "df2=describe.describe(data=df1,by='a',fin='/usr/test.text')") if __name__ == '__main__': unittest.main()
2.1875
2
tests/settings.py
jamesturk/django-mergeobject
0
12793903
<reponame>jamesturk/django-mergeobject<gh_stars>0 SECRET_KEY = 'so-secret' INSTALLED_APPS = ( 'tests', ) MIDDLEWARE_CLASSES = () DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3', } }
1.453125
1
halls.parser.py
dwrodri/cumapit
2
12793904
<gh_stars>1-10 #!/usr/bin/python2 import imageio import png import numpy as np import sys import math from collections import namedtuple if len(sys.argv) != 2: print("%s <campusMap.png>" % sys.argv[0]) exit() IMG = imageio.imread(sys.argv[1]) Point = namedtuple("Point",["x","y"]) def update_pixel(row,col,r,g,b,a): global IMG temp = [r,g,b,a] for i in xrange(len(temp)): IMG[row,col,i] = temp[i] def write_png(fn): global IMG file_handle = open(fn, 'wb') w = png.Writer(IMG.shape[1], IMG.shape[0], alpha=True) w.write(file_handle, np.reshape(IMG, (IMG.shape[0], IMG.shape[1]*IMG.shape[2]))) file_handle.close() def in_bounds(p): global IMG return p.x > 0 and p.x < IMG.shape[1] and p.y > 0 and p.y < IMG.shape[0] def draw_line(x1,y1,x2,y2,r,g,b,a): # straight line up and down if x1 == x2: for y in range(min(y1,y2), max(y1,y2)+1): if not in_bounds(Point(x1,y)): break update_pixel(y,x1,r,g,b,a) return slope = float(y2 - y1) / float(x2 - x1) if math.fabs(slope) > 1.0: slope = 1.0 / slope if y1 > y2: y1, y2 = y2, y1 x1, x2 = x2, x1 x = float(x1) for y in range(y1, y2+1): if not in_bounds(Point(int(x),y)): break update_pixel(y,int(x),r,g,b,a) x += slope return # make it definitely go left to right if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 y = float(y1) for x in range(x1, x2+1): if not in_bounds(Point(x,int(y))): break update_pixel(int(math.floor(y)),x,r,g,b,a) y += slope def main(): global IMG # read in the file splitLines = [] for line in sys.stdin: splitLines += [line.strip().split(' ')] # start transparent for i in xrange(IMG.shape[0]): for j in xrange(IMG.shape[1]): update_pixel(i,j,0,0,0,0) # draw all the halls for splitLine in splitLines: if splitLine[0] != "Hallway": continue point0 = splitLines[int(splitLine[1])] point1 = splitLines[int(splitLine[2])] draw_line( \ int(point0[3]), int(point0[2]), \ int(point1[3]), int(point1[2]), \ 0, 255, 255, 255 \ ) write_png("halls.png") main()
2.9375
3
DoraGamePlaying-m5skipping/plotResults.py
AlexDoumas/BrPong_1
3
12793905
import numpy as np from matplotlib import pyplot as plt def loadFile(filename): f = open(filename,'r') text = f.read() f.close() rewards = [] steps = [] for line in text.split('\n'): pieces = line.split(',') if(len(pieces) == 2): rewards.append(float(pieces[0])) steps.append(int(pieces[1])) return rewards,steps def loadFiles(files): rewards = [] steps = [] for f in files: r,s = loadFile(f) rewards.extend(r) steps.extend(s) return rewards,steps, def plotResults(rewards,steps,outputFile): plt.subplot(2,1,1) plt.plot(rewards) plt.xlabel('number of games played') plt.ylabel('reward received per game') plt.subplot(2,1,2) plt.plot(steps) plt.xlabel('number of games played') plt.ylabel('number of actions taken per game') plt.savefig(outputFile) def Average(rewards,n): return [np.mean(rewards[i:i+n]) for i in range(len(rewards)-n)] if(__name__ == "__main__"): LargeAgent = ['LargeAgent/2018-01-15 11:50:29.380284'] SmallAgent = ['SmallAgent/2018-01-15 13:12:18.774147'] rewards,steps = loadFiles(['./SmallAgent/29-01-2018']) rewards = Average(rewards,10) steps = Average(steps,10) plotResults(rewards,steps,"./test.png")
2.875
3
hundun/__version__.py
llbxg/hundun
4
12793906
MAJOR = 0 MINOR = 1 MICRO = 38 __version__ = f'{MAJOR}.{MINOR}.{MICRO}'
1.359375
1
traffic_lights/training/train.py
aidandunlop/traffic_light_recognition
5
12793907
<reponame>aidandunlop/traffic_light_recognition<filename>traffic_lights/training/train.py import torch import numpy as np from traffic_lights.data.constants import CLASS_LABEL_MAP from traffic_lights.lib.engine import train_one_epoch from .model import get_model, evaluate # TODO: add eval boolean flag, which reports eval stuff if wanted # TODO: look at amount of parameters y so much def train( parameterization, num_classes, device, data_loader_train, data_loader_val, validation_ground_truth, ): model = get_model(num_classes) model.to(device) epochs = parameterization["num_epochs"] learning_rate = parameterization["lr"] optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) print("Using lr={} and num_epochs={}".format(learning_rate, epochs)) for epoch in range(epochs): train_one_epoch( model, optimizer, data_loader_train, device, epoch, print_freq=1000 ) evaluation = evaluate(model, data_loader_val, device, validation_ground_truth) precisions = [ 0 if np.isnan(metric["AP"]) else metric["AP"] for metric in evaluation ] mean_average_precision = np.sum(precisions) / len(CLASS_LABEL_MAP) print("mAP:", mean_average_precision) torch.save(model, "model_lr_{}_epochs_{}.pth".format(learning_rate, epochs)) return mean_average_precision
2.5
2
exo/make_heatmap.py
CEGRcode/exo
0
12793908
<reponame>CEGRcode/exo #!/usr/bin/python from __future__ import division import math import pprint import click import matplotlib import matplotlib.colors as mcolors import matplotlib.pyplot as plt from matplotlib.ticker import (AutoMinorLocator, MultipleLocator) import numpy as np matplotlib.use('Agg') """ Program to Create a heatmap from tagPileUp tabular file and contrast Threshold file. """ def rebin(a, new_shape): M, N = a.shape m, n = new_shape if m >= M: # repeat rows in data matrix a = np.repeat(a, math.ceil(float(m) / M), axis=0) M, N = a.shape m, n = new_shape row_delete_num = M % m col_delete_num = N % n np.random.seed(seed=0) if row_delete_num > 0: # select deleted rows with equal intervals row_delete = np.linspace(0, M - 1, num=row_delete_num, dtype=int) # sort the random selected deleted row ids row_delete = np.sort(row_delete) row_delete_plus1 = row_delete[1:-1] + \ 1 # get deleted rows plus position # get deleted rows plus position (top +1; end -1) row_delete_plus1 = np.append( np.append(row_delete[0] + 1, row_delete_plus1), row_delete[-1] - 1) # put the info of deleted rows into the next rows by mean a[row_delete_plus1, :] = ( a[row_delete, :] + a[row_delete_plus1, :]) / 2 a = np.delete(a, row_delete, axis=0) # random remove rows if col_delete_num > 0: # select deleted cols with equal intervals col_delete = np.linspace(0, N - 1, num=col_delete_num, dtype=int) # sort the random selected deleted col ids col_delete = np.sort(col_delete) col_delete_plus1 = col_delete[1:-1] + \ 1 # get deleted cols plus position # get deleted cols plus position (top +1; end -1) col_delete_plus1 = np.append( np.append(col_delete[0] + 1, col_delete_plus1), col_delete[-1] - 1) # put the info of deleted cols into the next cols by mean a[:, col_delete_plus1] = ( a[:, col_delete] + a[:, col_delete_plus1]) / 2 a = np.delete(a, col_delete, axis=1) # random remove columns M, N = a.shape # compare the heatmap matrix a_compress = a.reshape((m, int(M / m), n, int(N / n))).mean(3).mean(1) return np.array(a_compress) def plot_heatmap(data01, c, out_file_name, upper_lim, lower_lim, row_num, col_num, ticks, ddpi, xlabel, heatmapTitle, sites): # initialize color levs = range(100) assert len(levs) % 2 == 0, 'N levels must be even.' # select colors from color list my_cmap = mcolors.LinearSegmentedColormap.from_list( name='white_sth', colors=c, N=len(levs) - 1,) # initialize figure plt.figure(figsize=(col_num / 96, row_num / 96), dpi=96) # remove margins , # this helps to maintain the ticks to be odd ax = plt.axes([0, 0, 1, 1]) plt.imshow(data01, cmap=my_cmap, interpolation='nearest', vmin=lower_lim, vmax=upper_lim, aspect='auto') # plot heatmap # little trick to create custom tick labels. # [ only works if the difference between col and row is 100 (cols - rows = 100), fails for (300,150) & (300,100) etc] # calculate the major tick locations locaters = col_num // 4 ax.xaxis.set_major_locator(MultipleLocator(locaters)) # get the initial ticks locs, labels = plt.xticks() # remove the first location to get proper heatmap tick position. locs = np.delete(locs, 0) labels.pop() # find the mid value and set it to zero, since ax is helping to make sure there are odd number of ticks. mid = int(len(labels) // 2) labels[0] = "-" + ticks labels[mid] = "0" labels[len(labels) - 1] = ticks # display the new ticks plt.xticks(locs, labels, fontsize=14) ax.xaxis.set_minor_locator(AutoMinorLocator(2)) ax.tick_params(which='major', length=10, width=2, color='black') ax.tick_params(which='minor', length=6, width=2, color='black') # Draw a horizontal line through the midpoint. plt.axvline(color='black', linestyle='--', x=locs[mid], linewidth=2) print("\n DEBUG INFO \n locs : {} \n length_locs : {} \n labels : {} \n length_labels:{}\n".format( locs, len(locs), labels, len(labels))) plt.yticks([]) plt.xlabel(xlabel, fontsize=14) ylabel = "{:,}".format(sites) + " sites" plt.ylabel(ylabel, fontsize=14) plt.title(heatmapTitle, fontsize=18) # to increase the width of the plot borders plt.setp(ax.spines.values(), linewidth=2) plt.savefig(out_file_name, bbox_inches='tight', pad_inches=0.05, facecolor=None, dpi=ddpi) def plot_colorbar(data01, c, out_file_name, row_num, col_num, categories): # initialize color levs = range(100) assert len(levs) % 2 == 0, 'N levels must be even.' # select colors from color list my_cmap = mcolors.LinearSegmentedColormap.from_list( name='white_sth', colors=c, N=len(levs) - 1,) # initialize figure fig = plt.figure(figsize=(col_num / 96, row_num / 96), dpi=300) # remove margins , # this helps to maintain the ticks to be odd ax = plt.axes([0, 0, 1, 1]) plt.imshow(data01, cmap=my_cmap, interpolation='nearest', aspect='auto') # plot heatmap plt.xticks([]) plt.yticks([]) # to increase the width of the plot borders plt.setp(ax.spines.values(), linewidth=2) # calculate how long the color box should be for each by setting up a ratio: (this site)/(total sites) = (height of unknown box)/(feature box height) totalsites = sum(categories) rpheight = categories[0] / totalsites * data01.shape[0] stmheight = categories[1] / totalsites * data01.shape[0] srgheight = categories[2] / totalsites * data01.shape[0] cycheight = categories[3] / totalsites * data01.shape[0] cofheight = categories[4] / totalsites * data01.shape[0] unbheight = categories[5] / totalsites * data01.shape[0] # print "cofheight: {}, unbheight : {}".format(unbheight, cofheight) # now calculate the "top" location of each box, each top should be the ending position of the previous box topstm = rpheight topsrg = topstm + stmheight topcyc = topsrg + srgheight topcof = topcyc + cycheight topunb = topcof + cofheight # find the actual position of the numbers by centering the numbers in the colored boxes and applying an arbitrary offset rppos = int(rpheight / 2) stmpos = int(stmheight / 2 + topstm) srgpos = int(srgheight / 2 + topsrg) cycpos = int(cycheight / 2 + topcyc) cofpos = int(cofheight / 2 + topcof) unbpos = int(unbheight / 2 + topunb) # positions for the values print("rp: {}, stm: {}, ess : {}, cof : {}, unb : {}, trna : {}".format( rppos, stmpos, srgpos, cycpos, cofpos, unbpos)) # The default transform specifies that text is in data co-ordinates, that is even though the # image is compressed , the point are plotted based on datapoint in (x,y) like a graph # Assigning the rotation based on minimum value if min(categories) == categories[0]: if categories[0] != 0: plt.text(25, rppos, categories[0], horizontalalignment='center', verticalalignment='center', fontsize=10, color='white', weight='bold') else: plt.text(25, rppos, categories[0], horizontalalignment='center', verticalalignment='center', fontsize=10, color='white', weight='bold') # Assigning the rotation based on minimum value if min(categories) == categories[1]: if categories[1] != 0: plt.text(25, stmpos, categories[1], horizontalalignment='center', verticalalignment='center', fontsize=13, color='black', weight='bold') else: plt.text(25, stmpos, categories[1], horizontalalignment='center', verticalalignment='center', fontsize=16, color='black', rotation=90, weight='bold') # Assigning the rotation based on minimum value if min(categories) == categories[2]: if categories[2] != 0: plt.text(25, srgpos, categories[2], horizontalalignment='center', verticalalignment='center', fontsize=13, color='white', weight='bold') else: plt.text(25, srgpos, categories[2], horizontalalignment='center', verticalalignment='center', fontsize=16, color='white', rotation=90, weight='bold') # Assigning the rotation based on minimum value if min(categories) == categories[3]: if categories[3] != 0: plt.text(25, cycpos, categories[3], horizontalalignment='center', verticalalignment='center', fontsize=13, color='white', weight='bold') else: plt.text(25, cycpos, categories[3], horizontalalignment='center', verticalalignment='center', fontsize=16, color='white', rotation=90, weight='bold') # Assigning the rotation based on minimum value if min(categories) == categories[4]: if categories[4] != 0: plt.text(25, cofpos, categories[4], horizontalalignment='center', verticalalignment='center', fontsize=13, color='white', weight='bold') else: plt.text(25, cofpos, categories[4], horizontalalignment='center', verticalalignment='center', fontsize=16, color='white', rotation=90, weight='bold') # Assigning the rotation based on minimum value if min(categories) == categories[5]: if categories[5] != 0: plt.text(25, unbpos, categories[5], horizontalalignment='center', verticalalignment='center', fontsize=10, color='white', weight='bold') else: plt.text(25, unbpos, categories[5], horizontalalignment='center', verticalalignment='center', fontsize=10, color='white', rotation=90, weight='bold') # removing all the borders and frame for item in [fig, ax]: item.patch.set_visible(False) # saving the file plt.savefig(out_file_name, bbox_inches='tight', facecolor=None, dpi=300) def load_Data(input_file, out_file, upper_lim, lower_lim, color, header, start_col, row_num, col_num, ticks, ddpi, xlabel, heatmapTitle, generateColorbar): data = open(input_file, 'r') if header == 'T': data.readline() data0 = [] dataGenes = [] # to store colorbar data # to store counts for RP, SAGA and TFIID catergoryCount = [0, 0, 0, 0, 0, 0] sites = 0 # to calculate the # of sites in the heatmap for rec in data: tmp = [(x.strip()) for x in rec.split('\t')] sites = sites + 1 if generateColorbar == '1': rankOrder = int(rec.split("\t")[0]) if rankOrder <= 19999: dataGenes.append([1] * len(tmp[start_col:])) catergoryCount[0] = catergoryCount[0] + 1 elif rankOrder <= 29999 and rankOrder >= 20000: dataGenes.append([2] * len(tmp[start_col:])) catergoryCount[1] = catergoryCount[1] + 1 elif rankOrder <= 39999 and rankOrder >= 30000: dataGenes.append([3] * len(tmp[start_col:])) catergoryCount[2] = catergoryCount[2] + 1 elif rankOrder <= 49999 and rankOrder >= 40000: dataGenes.append([4] * len(tmp[start_col:])) catergoryCount[3] = catergoryCount[3] + 1 elif rankOrder <= 59999 and rankOrder >= 50000: dataGenes.append([5] * len(tmp[start_col:])) catergoryCount[4] = catergoryCount[4] + 1 elif rankOrder <= 219999 and rankOrder >= 210000: dataGenes.append([6] * len(tmp[start_col:])) catergoryCount[5] = catergoryCount[5] + 1 data0.append(tmp[start_col:]) data0 = np.array(data0, dtype=float) print("# sites in the heatmap", sites) # creating the np-array to plot the colorbar dataGenes = np.array(dataGenes, dtype=float) print("catergoryCount : {}".format(catergoryCount)) if row_num == -999: row_num = data0.shape[0] if col_num == -999: col_num = data0.shape[1] # rebin data0 (compresses the data using treeView compression algorithm) if row_num < data0.shape[0] and col_num < data0.shape[1]: data0 = rebin(data0, (row_num, col_num)) if generateColorbar == '1': # i have hard-coded the width for colorbar(50) dataGenes = rebin(dataGenes, (row_num, 50)) elif row_num < data0.shape[0]: data0 = rebin(data0, (row_num, data0.shape[1])) if generateColorbar == '1': dataGenes = rebin(dataGenes, (row_num, 50)) elif col_num < data0.shape[1]: data0 = rebin(data0, (data0.shape[0], col_num)) if generateColorbar == '1': dataGenes = rebin(dataGenes, (data0.shape[0], 50)) # set color here # convert rgb to hex (since matplotlib doesn't support 0-255 format for colors) s = color.split(",") color = '#{:02X}{:02X}{:02X}'.format(int(s[0]), int(s[1]), int(s[2])) c = ["white", color] # generate heatmap plot_heatmap(data0, c, out_file, upper_lim, lower_lim, row_num, col_num, ticks, ddpi, xlabel, heatmapTitle, sites) # checking if we need to plot the color bar if generateColorbar == '1': print("Creating the colobar") mycolors = ['#ff2600', '#ffd54f', '#43a047', '#0096ff', '#9437ff', '#9e9e9e'] colors = [] # deciding colors based on the catergory values. for i in range(0, len(catergoryCount)): if catergoryCount[i] != 0: colors.append(mycolors[i]) plot_colorbar(dataGenes, colors, "colorbar.png", 900, 35, catergoryCount) CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.command(options_metavar='<options>', context_settings=CONTEXT_SETTINGS) @click.argument('tagpileup-cdt', type=click.Path(exists=True, resolve_path=True, file_okay=True, dir_okay=False,)) @click.argument('threshold-file', type=click.Path(exists=True, resolve_path=True, file_okay=True, dir_okay=False,)) @click.option('-ph', '--height', metavar="<int>", type=int, default=700, prompt=True, show_default='True', help='Plot Height') @click.option('-pw', '--width', metavar="<int>", type=int, default=300, prompt=True, show_default='True', help='Plot Width') @click.option('-c', '--color', metavar="<string>", default='0,0,0', prompt=True, show_default='0,0,0', help='Plot Color') @click.option('-t', '--title', metavar="<string>", default=' ', prompt=True, show_default=' ', help='Plot Title') @click.option('-xl', '--xlabel', metavar="<string>", default=' ', prompt=True, show_default=' ', help='Label under X-axis') @click.option('-k', '--ticks', metavar="<string>", default='2', prompt=True, show_default='2', help='X-axis tick mark value') @click.option('-d', '--dpi', metavar="<int>", type=int, default=100, prompt=True, show_default='100', help='Plot pixel density') @click.option('-cb', '--colorbar', type=click.Choice(['0', '1'], case_sensitive=False), prompt=True, default='0', help="Generate the gene colorbar (0: No, 1: Yes)") @click.option('-o', '--out', metavar="<string>", default='Heatmap.png', prompt=True, show_default='Heatmap.png', help='output filename') def cli(tagpileup_cdt, threshold_file, color, height, width, title, xlabel, ticks, dpi, colorbar, out): """ Creates YEP Style All Feature heatmap containing genecategories. \b Generates Colorbar for the gene categories. """ click.echo('\n' + '.' * 50) params = {} openfile = open(threshold_file, 'r').readlines() for line in openfile: line = line.strip() temp = line.split(":") if temp[0] not in params.keys(): params[temp[0]] = temp[1] print(" \n Parameters for the heatmap") pprint.pprint(params) upper_lim = float(params['upper_threshold']) lower_lim = int(params['lower_threshold']) header = params['header'] start_col = int(params['start_col']) load_Data(tagpileup_cdt, out, upper_lim, lower_lim, color, header, start_col, height, width, ticks, dpi, xlabel, title, colorbar) click.echo('\n' + '.' * 50)
2.609375
3
voice_rebuilder/rtp_capture.py
Casual-Alchemist/sampleproj
0
12793909
import pyshark class Audio_Scraper: def __init__(self, pcap, filter, outfile): self.pcap = pcap self.filter = filter self.outfile = outfile def scraper(self): rtp_list =[] pcap_file = self.pcap out_file = self.outfile print("Scraping: " + pcap_file) filter_type = self.filter cap = pyshark.FileCapture(pcap_file,display_filter=filter_type) raw_audio = open(out_file,'wb') for i in cap: try: rtp = i[3] #data = rtp.get_field_value('DATA') data = rtp.payload if ":" in data: print(data) rtp_list.append(data.split(":")) except: pass for rtp_packet in rtp_list: packet = " ".join(rtp_packet) print(packet) audio = bytearray.fromhex(packet) raw_audio.write(audio) print("\nFinished outputing raw audio: %s" % out_file) # pcap_test = Audio_Scraper("my.pcap","rtp","my_audio.raw").scraper()
3.078125
3
hello_new_project.py
Dangl-IT/avacloud-demo-python
1
12793910
from __future__ import print_function import time import avacloud_client_python from avacloud_client_python.rest import ApiException import requests import os import json client_id = 'use_your_own_value' client_secret = '<PASSWORD>_your_own_value' url = 'https://identity.dangl-it.com/connect/token' payload = {'grant_type': 'client_credentials', 'scope': 'avacloud'} response = requests.post(url, data=payload, auth=(client_id, client_secret)) access_token = response.json()['access_token'] # Configure OAuth2 access token for authorization: Dangl.Identity configuration = avacloud_client_python.Configuration() configuration.access_token = access_token # Here, a very small project is created and saved as GAEB file try: ava_api_instance = avacloud_client_python.AvaConversionApi(avacloud_client_python.ApiClient(configuration)) ava_project = json.loads("""{ "projectInformation": { "itemNumberSchema": { "tiers": [ { "length": 2, "tierType": "Group" }, { "length": 2, "tierType": "Group" }, { "length": 4, "tierType": "Position" } ] } }, "serviceSpecifications": [ { "projectTaxRate": 0.19, "elements": [ { "elementTypeDiscriminator": "ServiceSpecificationGroupDto", "shortText": "Parent Group", "itemNumber": { "stringRepresentation": "01." }, "elements": [ { "elementTypeDiscriminator": "ServiceSpecificationGroupDto", "shortText": "Sub Group", "itemNumber": { "stringRepresentation": "01.02." }, "elements": [ { "elementTypeDiscriminator": "PositionDto", "shortText": "Hello Position!", "itemNumber": { "stringRepresentation": "01.02.0500" }, "quantityOverride": 10, "unitPriceOverride": 5 } ] } ] } ] } ] }""") # See https://github.com/swagger-api/swagger-codegen/issues/2305 for more info about why you should use _preload_content=False # If the _preload_content parameter is not set to False, the binary response content (file) will be attempted to be decoded as UTF8 string, # this would lead to an error. Instead, the raw response should be used api_response = ava_api_instance.ava_conversion_convert_to_gaeb(ava_project, destination_gaeb_type='GaebXml_V3_2', target_exchange_phase_transform='Grant', _preload_content=False) with open("./NewProject.X86", "wb") as gaeb_file: gaeb_file.write(api_response.data) except ApiException as e: print("Exception when calling AvaConversionApi->ava_conversion_convert_to_gaeb: %s\n" % e)
2.5
2
autograd/scipy/stats/beta.py
gautam1858/autograd
6,119
12793911
<gh_stars>1000+ from __future__ import absolute_import import autograd.numpy as np import scipy.stats from autograd.extend import primitive, defvjp from autograd.numpy.numpy_vjps import unbroadcast_f from autograd.scipy.special import beta, psi cdf = primitive(scipy.stats.beta.cdf) logpdf = primitive(scipy.stats.beta.logpdf) pdf = primitive(scipy.stats.beta.pdf) def grad_beta_logpdf_arg0(x, a, b): return (1 + a * (x-1) + x * (b-2)) / (x * (x-1)) def grad_beta_logpdf_arg1(x, a, b): return np.log(x) - psi(a) + psi(a + b) def grad_beta_logpdf_arg2(x, a, b): return np.log1p(-x) - psi(b) + psi(a + b) defvjp(cdf, lambda ans, x, a, b: unbroadcast_f(x, lambda g: g * np.power(x, a-1) * np.power(1-x, b-1) / beta(a, b)), argnums=[0]) defvjp(logpdf, lambda ans, x, a, b: unbroadcast_f(x, lambda g: g * grad_beta_logpdf_arg0(x, a, b)), lambda ans, x, a, b: unbroadcast_f(a, lambda g: g * grad_beta_logpdf_arg1(x, a, b)), lambda ans, x, a, b: unbroadcast_f(b, lambda g: g * grad_beta_logpdf_arg2(x, a, b))) defvjp(pdf, lambda ans, x, a, b: unbroadcast_f(x, lambda g: g * ans * grad_beta_logpdf_arg0(x, a, b)), lambda ans, x, a, b: unbroadcast_f(a, lambda g: g * ans * grad_beta_logpdf_arg1(x, a, b)), lambda ans, x, a, b: unbroadcast_f(b, lambda g: g * ans * grad_beta_logpdf_arg2(x, a, b)))
2.078125
2
examples/144. Binary Tree Preorder Traversal.py
yehzhang/RapidTest
0
12793912
from rapidtest import Test, Case, TreeNode from solutions.binary_tree_preorder_traversal import Solution with Test(Solution) as test: Case(TreeNode.from_string('[1,null,2,3]'), result=[1, 2, 3]) Case(TreeNode.from_string('[]'), result=[]) Case(TreeNode.from_string('[1]'), result=[1]) Case(TreeNode.from_string('[1,2]'), result=[1, 2]) Case(TreeNode.from_string('[1,2]'), result=[1, 2]) Case(TreeNode.from_string( '[1,2,null,4,5,null,6,2,null,6,8,4,null,1,2,4,null,6,8,0,9,null,7,5,4,null,3,null,2,3]'), result=[1, 2, 4, 6, 6, 1, 0, 3, 9, 2, 7, 8, 4, 5, 4, 5, 2, 4, 6, 3, 8, 2])
2.6875
3
microcosm_pubsub/chain/statements/assign.py
Sinon/microcosm-pubsub
5
12793913
<gh_stars>1-10 """ assign("foo.bar").to("baz") assign_constant(1).to("qux") """ from inspect import getfullargspec from microcosm_pubsub.chain.exceptions import AttributeNotFound class Reference: def __init__(self, name): self.parts = name.split(".") @property def key(self): return self.parts[0] def __call__(self, context): value = context[self.key] for part in self.parts[1:]: if hasattr(value, part): value = getattr(value, part) else: try: value = value[part] except KeyError: raise AttributeNotFound(self.parts[0], part) return value class Constant: def __init__(self, value): self.value = value def __call__(self, context): return self.value class Function: def __init__(self, func): self.func = func try: self.args = getfullargspec(func).args except TypeError: # NB: getfullargspec fails for builtins like 'dict' # # And oddly `inspect.isbuiltin` doesn't work as expected either. We could instead # check `func.__module__ == 'builtins'` but that feels more fragile than just assuming # an error indictates a builtin... and that a builtin won't take our 'context' argument # in any useful way. # # See: https://bugs.python.org/issue1748064 self.args = () def __call__(self, context): if self.args: return self.func(context) else: return self.func() class AssignStatement: """ Assign `this` value as `that`. """ def __init__(self, this, that=None): self.this = this self.that = that def to(self, that): self.that = that return self @property def name(self): return self.that def __str__(self): return f"assign_{self.name}" def __call__(self, context): value = self.this(context) context[self.name] = value return value def assign(this): return AssignStatement(Reference(this)) def assign_constant(this): return AssignStatement(Constant(this)) def assign_function(this): return AssignStatement(Function(this)) def extract(name, key, key_property=None): """ Extract an argument from a context to another context key :param name: new context key :param key: old context key :param key_property: propery of the context key """ if key_property: key = ".".join([key, key_property]) return AssignStatement(Reference(key), name)
2.625
3
alembic/versions/140a25d5f185_create_tokens_table.py
alvierahman90/matrix-registration
160
12793914
"""create tokens table Revision ID: 1<PASSWORD> Revises: Create Date: 2020-12-12 01:44:28.195736 """ from alembic import op import sqlalchemy as sa from sqlalchemy import Table, Column, Integer, String, Boolean, DateTime, ForeignKey from sqlalchemy.engine.reflection import Inspector from flask_sqlalchemy import SQLAlchemy # revision identifiers, used by Alembic. revision = '1<PASSWORD>' down_revision = None branch_labels = None depends_on = None db = SQLAlchemy() def upgrade(): conn = op.get_bind() inspector = Inspector.from_engine(conn) tables = inspector.get_table_names() if 'ips' not in tables: op.create_table( 'ips', sa.Column('id', sa.Integer, primary_key=True), sa.Column('address', sa.String(255), nullable=True) ) if 'tokens' not in tables: op.create_table( 'tokens', sa.Column('name', String(255), primary_key=True), sa.Column('expiration_date', DateTime, nullable=True), sa.Column('max_usage', Integer, default=1), sa.Column('used', Integer, default=0), sa.Column('disabled', Boolean, default=False), sa.Column('ips', Integer, ForeignKey('association.id')) ) else: try: with op.batch_alter_table('tokens') as batch_op: batch_op.alter_column('ex_date', new_column_name='expiration_date', nullable=True) batch_op.alter_column('one_time', new_column_name='max_usage') batch_op.add_column( Column('disabled', Boolean, default=False) ) except KeyError: pass if 'association' not in tables: op.create_table( 'association', db.Model.metadata, Column('ips', String, ForeignKey('ips.address'), primary_key=True), Column('tokens', Integer, ForeignKey('tokens.name'), primary_key=True) ) op.execute("update tokens set expiration_date=null where expiration_date='None'") def downgrade(): op.alter_column('tokens', 'expiration_date', new_column_name='ex_date') op.alter_column('tokens', 'max_usage', new_column_name='one_time')
1.664063
2
nozama-cloudsearch-data/nozama/cloudsearch/data/tests/conftest.py
iGamesInc/nozama-cloudsearch
0
12793915
<filename>nozama-cloudsearch-data/nozama/cloudsearch/data/tests/conftest.py # -*- coding: utf-8 -*- """ """ import logging import pytest @pytest.fixture(scope='session') def logger(request): """Set up a root logger showing all entries in the console. """ log = logging.getLogger() hdlr = logging.StreamHandler() fmt = '%(asctime)s %(name)s %(levelname)s %(message)s' formatter = logging.Formatter(fmt) hdlr.setFormatter(formatter) log.addHandler(hdlr) log.setLevel(logging.DEBUG) log.propagate = False return log @pytest.fixture(scope='function') def mongodb(request): """Set up a mongo connection reset and ready to roll. """ from nozama.cloudsearch.data import db db.init(dict(db_name='unittesting-db')) db.db().hard_reset() @pytest.fixture(scope='function') def elastic(request): """Set up a elasticsearch connection reset and ready to roll. This will attempt to connect to the default elasticsearch instance on http://localhost:9200. Its not configurable yet. """ from nozama.cloudsearch.data.db import init_es, get_es init_es(dict(es_namespace="ut_")) get_es().hard_reset()
2.109375
2
earth_enterprise/src/scons/packageUtils_test.py
ezeeyahoo/earthenterprise
2,661
12793916
<reponame>ezeeyahoo/earthenterprise #-*- Python -*- # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import re from packageUtils import IsPackageVersionSufficient from packageUtils import UsesRPM from packageUtils import FileContains from packageUtils import GetDEBPackageInfo failure_list = [] # test FileContains test_file = '/etc/profile' if FileContains('/IDontExist', re.compile(r"a")): failure_list.append("FileContains Failed: returned true for non-existing file") if FileContains(test_file, re.compile(r"PROFILE")) == False: failure_list.append("FileContains Failed: did not find PROFILE in /etc/hostname") if FileContains(test_file, re.compile(r"not anything here")): failure_list.append("FileContains Failed: found garbage search string in /etc/hostname") # test UsesRPM print("Basic checks for Ubuntu vs RPM\nMake sure these coincide with your current system.\n\n") uses_rpm = "does not use RPM" if UsesRPM(): uses_rpm = "uses RPM" print("This machine %s" % uses_rpm) # test GetDEBPackageInfo for non-RPM systems if UsesRPM() == False: package_name = "gdal-ge" package_results = GetDEBPackageInfo (package_name) if len(package_results) != 2 | package_results[1] == False: failure_list.append("%s not installed: GetDEBPackageInfo returns %s" % (package_name, package_results)) # test Package check valid_test_packages = [['apache-ge-devel', '2.2.2'], ['apache-ge-devel', '2.2.2.1'], ['jdk-ge', '1.6.0-1'], ['jdk-ge', '1.6.0-0']]; invalid_test_packages = [['apache-ge-devel9', '2.2.2'], ['apache-ge-devel', '10.2.2.1'], ['j9dk-ge', '1.6.0-1'], ['jdk-ge', '1.99.0-0']]; for package_list in valid_test_packages: if IsPackageVersionSufficient(package_list[0], package_list[1]) == False: failure_list.append("Failed test that should pass: %s" % (package_list)) print("Test is now looking for invalid packages (error messages expected until tests are complete).\n\n") for package_list in invalid_test_packages: if IsPackageVersionSufficient(package_list[0], package_list[1]): failure_list.append("Passed test that should fail: %s" % (package_list)) print("\n\nTests complete.\n\n") if len(failure_list) > 0: print("\n\n%s TEST FAILURES" % len(failure_list)) for s in failure_list: print(s) else: print("\n\nSUCCESS: All tests succeeded!")
2.40625
2
tests/test_mc_cnn.py
CNES/Pandora_MCCNN
3
12793917
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2021 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA_MCCNN # # https://github.com/CNES/Pandora_MCCNN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains functions to test the cost volume create by mc_cnn """ import unittest import numpy as np import torch import torch.nn as nn from mc_cnn.run import computes_cost_volume_mc_cnn_fast from mc_cnn.model.mc_cnn_accurate import AccMcCnnInfer from mc_cnn.dataset_generator.middlebury_generator import MiddleburyGenerator from mc_cnn.dataset_generator.datas_fusion_contest_generator import DataFusionContestGenerator # pylint: disable=no-self-use class TestMCCNN(unittest.TestCase): """ TestMCCNN class allows to test the cost volume create by mc_cnn """ def setUp(self): """ Method called to prepare the test fixture """ self.ref_img_0 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) self.sec_img_0 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) + 1 self.ref_img_1 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) self.sec_img_2 = np.tile(np.arange(13, dtype=np.float32), (13, 1)) - 1 def test_computes_cost_volume_mc_cnn_fast(self): """ " Test the computes_cost_volume_mc_cnn_fast function """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 5), np.nan) # disparity -2 cv_gt[:, 2:, 0] = cos(ref_feature[:, :, 2:], sec_features[:, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 1] = cos(ref_feature[:, :, 1:], sec_features[:, :, 0:3]).cpu().detach().numpy() # disparity 0 cv_gt[:, :, 2] = cos(ref_feature[:, :, :], sec_features[:, :, :]).cpu().detach().numpy() # disparity 1 cv_gt[:, :3, 3] = cos(ref_feature[:, :, :3], sec_features[:, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 4] = cos(ref_feature[:, :, :2], sec_features[:, :, 2:4]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, -2, 2) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_fast_negative_disp(self): """ " Test the computes_cost_volume_mc_cnn_fast function with negative disparities """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity -4 # all nan # disparity -3 cv_gt[:, 3:, 1] = cos(ref_feature[:, :, 3:], sec_features[:, :, 0:1]).cpu().detach().numpy() # disparity -2 cv_gt[:, 2:, 2] = cos(ref_feature[:, :, 2:], sec_features[:, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 3] = cos(ref_feature[:, :, 1:], sec_features[:, :, 0:3]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, -4, -1) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_fast_positive_disp(self): """ " Test the computes_cost_volume_mc_cnn_fast function with positive disparities """ # create reference and secondary features ref_feature = torch.randn((64, 4, 4), dtype=torch.float64) sec_features = torch.randn((64, 4, 4), dtype=torch.float64) cos = nn.CosineSimilarity(dim=0, eps=1e-6) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity 1 cv_gt[:, :3, 0] = cos(ref_feature[:, :, :3], sec_features[:, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 1] = cos(ref_feature[:, :, :2], sec_features[:, :, 2:4]).cpu().detach().numpy() # disparity 3 cv_gt[:, :1, 2] = cos(ref_feature[:, :, :1], sec_features[:, :, 3:]).cpu().detach().numpy() # disparity 4 # all nan # The minus sign converts the similarity score to a matching cost cv_gt *= -1 cv = computes_cost_volume_mc_cnn_fast(ref_feature, sec_features, 1, 4) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def sad_cost(self, ref_features, sec_features): """ Useful to test the computes_cost_volume_mc_cnn_accurate function """ return torch.sum(abs(ref_features[0, :, :, :] - sec_features[0, :, :, :]), dim=0) def test_computes_cost_volume_mc_cnn_accurate(self): """ " Test the computes_cost_volume_mc_cnn_accurate function """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 5), np.nan) # disparity -2 cv_gt[:, 2:, 0] = self.sad_cost(ref_feature[:, :, :, 2:], sec_features[:, :, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 1] = self.sad_cost(ref_feature[:, :, :, 1:], sec_features[:, :, :, 0:3]).cpu().detach().numpy() # disparity 0 cv_gt[:, :, 2] = self.sad_cost(ref_feature[:, :, :, :], sec_features[:, :, :, :]).cpu().detach().numpy() # disparity 1 cv_gt[:, :3, 3] = self.sad_cost(ref_feature[:, :, :, :3], sec_features[:, :, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 4] = self.sad_cost(ref_feature[:, :, :, :2], sec_features[:, :, :, 2:4]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, -2, 2, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_accuratenegative_disp(self): """ " Test the computes_cost_volume_mc_cnn_accurate function with negative disparities """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity -4 # all nan # disparity -3 cv_gt[:, 3:, 1] = self.sad_cost(ref_feature[:, :, :, 3:], sec_features[:, :, :, 0:1]).cpu().detach().numpy() # disparity -2 cv_gt[:, 2:, 2] = self.sad_cost(ref_feature[:, :, :, 2:], sec_features[:, :, :, 0:2]).cpu().detach().numpy() # disparity -1 cv_gt[:, 1:, 3] = self.sad_cost(ref_feature[:, :, :, 1:], sec_features[:, :, :, 0:3]).cpu().detach().numpy() # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, -4, -1, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) def test_computes_cost_volume_mc_cnn_accurate_positive_disp(self): """ " Test the computes_cost_volume_mc_cnn_accurate function with positive disparities """ # create reference and secondary features ref_feature = torch.randn((1, 112, 4, 4), dtype=torch.float64) sec_features = torch.randn((1, 112, 4, 4), dtype=torch.float64) # Create the ground truth cost volume (row, col, disp) cv_gt = np.full((4, 4, 4), np.nan) # disparity 1 cv_gt[:, :3, 0] = self.sad_cost(ref_feature[:, :, :, :3], sec_features[:, :, :, 1:4]).cpu().detach().numpy() # disparity 2 cv_gt[:, :2, 1] = self.sad_cost(ref_feature[:, :, :, :2], sec_features[:, :, :, 2:4]).cpu().detach().numpy() # disparity 3 cv_gt[:, :1, 2] = self.sad_cost(ref_feature[:, :, :, :1], sec_features[:, :, :, 3:]).cpu().detach().numpy() # disparity 4 # all nan # The minus sign converts the similarity score to a matching cost cv_gt *= -1 acc = AccMcCnnInfer() # Because input shape of nn.Conv2d is (Batch_size, Channel, H, W), we add 1 dimensions cv = acc.computes_cost_volume_mc_cnn_accurate(ref_feature, sec_features, 1, 4, self.sad_cost) # Check if the calculated cost volume is equal to the ground truth (same shape and all elements equals) np.testing.assert_allclose(cv, cv_gt, rtol=1e-05) # pylint: disable=invalid-name # -> because changing the name here loses the reference to the actual name of the checked function def test_MiddleburyGenerator(self): """ test the function MiddleburyGenerator """ # Script use to create images_middlebury and samples_middlebury : # pylint: disable=pointless-string-statement """ # shape 1, 2, 13, 13 : 1 exposures, 2 = left and right images image_pairs_0 = np.zeros((1, 2, 13, 13)) # left image_pairs_0[0, 0, :, :] = np.tile(np.arange(13), (13, 1)) # right image_pairs_0[0, 1, :, :] = np.tile(np.arange(13), (13, 1)) + 1 image_pairs_1 = np.zeros((1, 2, 13, 13)) image_pairs_1[0, 0, :, :] = np.tile(np.arange(13), (13, 1)) image_pairs_1[0, 1, :, :] = np.tile(np.arange(13), (13, 1)) - 1 img_file = h5py.File('images_middlebury.hdf5', 'w') img_0 = [image_pairs_0] grp = img_file.create_group(str(0)) # 1 illumination for light in range(len(img_0)): dset = grp.create_dataset(str(light), data=img_0[light]) img_1 = [image_pairs_1] grp = img_file.create_group(str(1)) for light in range(len(img_1)): dset = grp.create_dataset(str(light), data=img_1[light]) sampl_file = h5py.File('sample_middlebury.hdf5', 'w') # disparity of image_pairs_0 x0 = np.array([[0., 5., 6., 1.] [0., 7., 7., 1.]]) # disparity of image_pairs_1 x1 = np.array([[ 1., 7., 5., -1.] [ 0., 0., 0., 0.]]) sampl_file.create_dataset(str(0), data=x0) sampl_file.create_dataset(str(1), data=x1) """ # Positive disparity cfg = { "data_augmentation": False, "dataset_neg_low": 1, "dataset_neg_high": 1, "dataset_pos": 0, "augmentation_param": { "vertical_disp": 0, "scale": 0.8, "hscale": 0.8, "hshear": 0.1, "trans": 0, "rotate": 28, "brightness": 1.3, "contrast": 1.1, "d_hscale": 0.9, "d_hshear": 0.3, "d_vtrans": 1, "d_rotate": 3, "d_brightness": 0.7, "d_contrast": 1.1, }, } training_loader = MiddleburyGenerator("tests/sample_middlebury.hdf5", "tests/images_middlebury.hdf5", cfg) # Patch of shape 3, 11, 11 # With the firt dimension = left patch, right positive patch, right negative patch patch = training_loader.__getitem__(0) x_ref_patch = 6 y_ref_patch = 5 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = 1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # negative disparity patch = training_loader.__getitem__(2) x_ref_patch = 5 y_ref_patch = 7 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = -1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = -1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # pylint: disable=invalid-name # -> because changing the name here loses the reference to the actual name of the checked function def test_DataFusionContestGenerator(self): """ test the function DataFusionContestGenerator """ # pylint: disable=pointless-string-statement """ # Script use to create images_middlebury and samples_middlebury : # shape 2, 13, 13 : 2 = left and right images, row, col image_pairs_0 = np.zeros((2, 13, 13)) # left image_pairs_0[0, :, :] = np.tile(np.arange(13), (13, 1)) # right image_pairs_0[1, :, :] = np.tile(np.arange(13), (13, 1)) + 1 image_pairs_1 = np.zeros((2, 13, 13)) image_pairs_1[0, :, :] = np.tile(np.arange(13), (13, 1)) image_pairs_1[1, :, :] = np.tile(np.arange(13), (13, 1)) - 1 img_file = h5py.File('images_dfc.hdf5', 'w') img_file.create_dataset(str(0), data=image_pairs_0) img_file.create_dataset(str(1), data=image_pairs_1) sampl_file = h5py.File('sample_dfc.hdf5', 'w') # disparity of image_pairs_0 x0 = np.array([[0., 5., 6., 1.], [0., 7., 7., 1.]]) # disparity of image_pairs_1 x1 = np.array([[ 1., 7., 5., -1.], [ 0., 0., 0., 0.]]) sampl_file.create_dataset(str(0), data=x0) sampl_file.create_dataset(str(1), data=x1) """ # Positive disparity cfg = { "data_augmentation": False, "dataset_neg_low": 1, "dataset_neg_high": 1, "dataset_pos": 0, "vertical_disp": 0, "augmentation_param": { "scale": 0.8, "hscale": 0.8, "hshear": 0.1, "trans": 0, "rotate": 28, "brightness": 1.3, "contrast": 1.1, "d_hscale": 0.9, "d_hshear": 0.3, "d_vtrans": 1, "d_rotate": 3, "d_brightness": 0.7, "d_contrast": 1.1, }, } training_loader = DataFusionContestGenerator("tests/sample_dfc.hdf5", "tests/images_dfc.hdf5", cfg) # Patch of shape 3, 11, 11 # With the firt dimension = left patch, right positive patch, right negative patch patch = training_loader.__getitem__(0) x_ref_patch = 6 y_ref_patch = 5 patch_size = 5 gt_ref_patch = self.ref_img_0[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = 1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 5 gt_sec_pos_patch = self.sec_img_0[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 5 gt_sec_neg_patch = self.sec_img_0[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) # negative disparity patch = training_loader.__getitem__(2) x_ref_patch = 5 y_ref_patch = 7 patch_size = 5 gt_ref_patch = self.ref_img_1[ y_ref_patch - patch_size : y_ref_patch + patch_size + 1, x_ref_patch - patch_size : x_ref_patch + patch_size + 1, ] # disp = -1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) disp = -1 x_sec_pos_patch = x_ref_patch - disp y_sec_pos_patch = 7 gt_sec_pos_patch = self.sec_img_2[ y_sec_pos_patch - patch_size : y_sec_pos_patch + patch_size + 1, x_sec_pos_patch - patch_size : x_sec_pos_patch + patch_size + 1, ] # dataset_neg_low & dataset_neg_high = 1, with middlebury image convention img_ref(x,y) = img_sec(x-d,y) dataset_neg = 1 x_sec_neg_patch = x_ref_patch - disp + dataset_neg y_sec_neg_patch = 7 gt_sec_neg_patch = self.sec_img_2[ y_sec_neg_patch - patch_size : y_sec_neg_patch + patch_size + 1, x_sec_neg_patch - patch_size : x_sec_neg_patch + patch_size + 1, ] gt_path = np.stack((gt_ref_patch, gt_sec_pos_patch, gt_sec_neg_patch), axis=0) # Check if the calculated patch is equal to the ground truth (same shape and all elements equals) np.testing.assert_array_equal(patch, gt_path) if __name__ == "__main__": unittest.main()
2.0625
2
studies/upgrade_noise/plotting/make_plots.py
kaareendrup/gnn-reco
0
12793918
import matplotlib.pyplot as plt import numpy as np import pandas as pd import sqlite3 from sklearn.metrics import auc from sklearn.metrics import roc_curve def add_truth(data, database): data = data.sort_values('event_no').reset_index(drop = True) with sqlite3.connect(database) as con: query = 'select event_no, energy, interaction_type, pid from truth where event_no in %s'%str(tuple(data['event_no'])) truth = pd.read_sql(query,con).sort_values('event_no').reset_index(drop = True) truth['track'] = 0 truth.loc[(abs(truth['pid']) == 14) & (truth['interaction_type'] == 1), 'track'] = 1 add_these = [] for key in truth.columns: if key not in data.columns: add_these.append(key) for key in add_these: data[key] = truth[key] return data def get_interaction_type(row): if row["interaction_type"] == 1: # CC particle_type = "nu_" + {12: 'e', 14: 'mu', 16: 'tau'}[abs(row['pid'])] return f"{particle_type} CC" else: return "NC" def resolution_fn(r): if len(r) > 1: return (np.percentile(r, 84) - np.percentile(r, 16)) / 2. else: return np.nan def add_energylog10(df): df['energy_log10'] = np.log10(df['energy']) return df def get_error(residual): rng = np.random.default_rng(42) w = [] for i in range(150): new_sample = rng.choice(residual, size = len(residual), replace = True) w.append(resolution_fn(new_sample)) return np.std(w) def get_roc_and_auc(data, target): fpr, tpr, _ = roc_curve(data[target], data[target+'_pred']) auc_score = auc(fpr,tpr) return fpr,tpr,auc_score def plot_roc(target, runids, save_dir, save_as_csv = False): width = 3.176*2 height = 2.388*2 fig = plt.figure(figsize = (width,height)) for runid in runids: data = pd.read_csv('/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'%(runid,target)) database = '/mnt/scratch/rasmus_orsoe/databases/dev_step4_numu_%s_second_run/data/dev_step4_numu_%s_second_run.db'%(runid, runid) if save_as_csv: data = add_truth(data, database) data = add_energylog10(data) data.to_csv(save_dir + '/%s_%s.csv'%(runid, target)) pulses_cut_val = 20 if runid == 140021: pulses_cut_val = 10 fpr, tpr, auc = get_roc_and_auc(data, target) plt.plot(fpr,tpr, label =' %s : %s'%(runid,round(auc,3))) plt.legend() plt.title('Track/Cascade Classification') plt.ylabel('True Positive Rate', fontsize = 12) plt.xlabel('False Positive Rate', fontsize = 12) ymax = 0.3 x_text = 0.2 y_text = ymax - 0.05 y_sep = 0.1 plt.text(x_text, y_text - 0 * y_sep, "IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)"%(runids[0], runids[1]), va='top', fontsize = 8) plt.text(x_text, y_text - 1 * y_sep, "Pulsemaps used: SplitInIcePulses_GraphSage_Pulses ", va='top', fontsize = 8) plt.text(x_text, y_text - 2 * y_sep, "n_pulses > (%s, %s) selection applied during training"%(10,20), va='top', fontsize = 8) fig.savefig('/home/iwsatlas1/oersoe/phd/upgrade_noise/plots/preliminary_upgrade_performance_%s.pdf'%(target),bbox_inches="tight") return def calculate_width(data_sliced, target): track =data_sliced.loc[data_sliced['track'] == 1,:].reset_index(drop = True) cascade =data_sliced.loc[data_sliced['track'] == 0,:].reset_index(drop = True) if target == 'energy': residual_track = ((track[target + '_pred'] - track[target])/track[target])*100 residual_cascade = ((cascade[target + '_pred'] - cascade[target])/cascade[target])*100 elif target == 'zenith': residual_track = (track[target + '_pred'] - track[target])*(360/(2*np.pi)) residual_cascade = (cascade[target + '_pred'] - cascade[target])*(360/(2*np.pi)) else: residual_track = (track[target + '_pred'] - track[target]) residual_cascade = (cascade[target + '_pred'] - cascade[target]) return resolution_fn(residual_track), resolution_fn(residual_cascade), get_error(residual_track), get_error(residual_cascade) def get_width(df, target): track_widths = [] cascade_widths = [] track_errors = [] cascade_errors = [] energy = [] bins = np.arange(0,3.1,0.1) if target in ['zenith', 'energy', 'XYZ']: for i in range(1,len(bins)): print(bins[i]) idx = (df['energy_log10']> bins[i-1]) & (df['energy_log10'] < bins[i]) data_sliced = df.loc[idx, :].reset_index(drop = True) energy.append(np.mean(data_sliced['energy_log10'])) track_width, cascade_width, track_error, cascade_error = calculate_width(data_sliced, target) track_widths.append(track_width) cascade_widths.append(cascade_width) track_errors.append(track_error) cascade_errors.append(cascade_error) track_plot_data = pd.DataFrame({'mean': energy, 'width': track_widths, 'width_error': track_errors}) cascade_plot_data = pd.DataFrame({'mean': energy, 'width': cascade_widths, 'width_error': cascade_errors}) return track_plot_data, cascade_plot_data else: print('target not supported: %s'%target) # Load data def make_plot(target, runids, save_dir, save_as_csv = False): colors = {140021: 'tab:blue', 140022: 'tab:orange'} fig = plt.figure(constrained_layout = True) ax1 = plt.subplot2grid((6, 6), (0, 0), colspan = 6, rowspan= 6) for runid in runids: predictions_path = '/home/iwsatlas1/oersoe/phd/upgrade_noise/results/dev_step4_numu_%s_second_run/upgrade_%s_regression_45e_GraphSagePulses/results.csv'%(runid,target) database = '/mnt/scratch/rasmus_orsoe/databases/dev_step4_numu_%s_second_run/data/dev_step4_numu_%s_second_run.db'%(runid, runid) pulses_cut_val = 20 if runid == 140021: pulses_cut_val = 10 df = pd.read_csv(predictions_path).sort_values('event_no').reset_index(drop = True) df = add_truth(df, database) df = add_energylog10(df) if save_as_csv: df.to_csv(save_dir + '/%s_%s.csv'%(runid, target)) plot_data_track, plot_data_cascade = get_width(df, target) ax1.plot(plot_data_track['mean'],plot_data_track['width'],linestyle='solid', lw = 0.5, color = 'black', alpha = 1) ax1.fill_between(plot_data_track['mean'],plot_data_track['width'] - plot_data_track['width_error'], plot_data_track['width'] + plot_data_track['width_error'],color = colors[runid], alpha = 0.8 ,label = 'Track %s'%runid) ax1.plot(plot_data_cascade['mean'],plot_data_cascade['width'],linestyle='dashed', color = 'tab:blue', lw = 0.5, alpha = 1) ax1.fill_between(plot_data_cascade['mean'], plot_data_cascade['width']- plot_data_cascade['width_error'], plot_data_cascade['width']+ plot_data_cascade['width_error'], color = colors[runid], alpha = 0.3, label = 'Cascade %s'%runid ) ax2 = ax1.twinx() ax2.hist(df['energy_log10'], histtype = 'step', label = 'deposited energy', color = colors[runid]) #plt.title('$\\nu_{v,u,e}$', size = 20) ax1.tick_params(axis='x', labelsize=6) ax1.tick_params(axis='y', labelsize=6) ax1.set_xlim((0,3.1)) leg = ax1.legend(frameon=False, fontsize = 8) for line in leg.get_lines(): line.set_linewidth(4.0) if target == 'energy': ax1.set_ylim((0,175)) ymax = 23. y_sep = 8 unit_tag = '(%)' else: unit_tag = '(deg.)' if target == 'angular_res': target = 'direction' if target == 'XYZ': target = 'vertex' unit_tag = '(m)' if target == 'zenith': ymax = 10. y_sep = 2.3 ax1.set_ylim((0,45)) plt.tick_params(right=False,labelright=False) ax1.set_ylabel('%s Resolution %s'%(target.capitalize(), unit_tag), size = 10) ax1.set_xlabel('Energy (log10 GeV)', size = 10) x_text = 0.5 y_text = ymax - 2. ax1.text(x_text, y_text - 0 * y_sep, "IceCubeUpgrade/nu_simulation/detector/step4/(%s,%s)"%(runids[0], runids[1]), va='top', fontsize = 8) ax1.text(x_text, y_text - 1 * y_sep, "Pulsemaps used: SplitInIcePulses_GraphSage_Pulses ", va='top', fontsize = 8) ax1.text(x_text, y_text - 2 * y_sep, "n_pulses > (%s, %s) selection applied during training"%(10,20), va='top', fontsize = 8) fig.suptitle("%s regression Upgrade MC using GNN"%target) #fig.suptitle('%s Resolution'%target.capitalize(), size = 12) fig.savefig('/home/iwsatlas1/oersoe/phd/upgrade_noise/plots/preliminary_upgrade_performance_%s.pdf'%(target))#,bbox_inches="tight") return runids = [140021, 140022] targets = ['zenith', 'energy', 'track'] save_as_csv = True save_dir = '/home/iwsatlas1/oersoe/phd/tmp/upgrade_csv' for target in targets: if target != 'track': make_plot(target, runids, save_dir, save_as_csv) else: plot_roc(target, runids, save_dir, save_as_csv)
2.40625
2
tools/checkimg.py
mrzhuzhe/YOLOX
0
12793919
<filename>tools/checkimg.py import numpy as np import pandas as pd import ast from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as patches import cv2 def plot_image_and_bboxes(img, bboxes): fig, ax = plt.subplots(1, figsize=(10, 8)) ax.axis('off') ax.imshow(img) for bbox in bboxes: rect = patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], linewidth=2, edgecolor='r', facecolor="none") ax.add_patch(rect) plt.show() def get_image(img_name): return np.array(Image.open(img_name)) def get_bbox(annots): bboxes = [list(annot.values()) for annot in annots] return bboxes df = pd.read_csv('./slices_df.csv') df['annotations'] = df['annotations'].apply(lambda x: ast.literal_eval(x)) df['bboxes'] = df.annotations.apply(get_bbox) imglist = [] for i, row in df.iterrows(): img = get_image(row["path"]) bboxes = row["bboxes"] if bboxes != []: for bbox in bboxes: img = cv2.rectangle(img, (bbox[0],bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2) imglist.append(img) if (i+1) % 49 == 0: print(i, len(imglist)) _, axs = plt.subplots(7, 7, figsize=(32, 32)) axs = axs.flatten() for img, ax in zip(imglist, axs): ax.axis('off') ax.imshow(img) print(row) plt.show() imglist = []
2.484375
2
examples/1_trace.py
tamsri/murt
4
12793920
<reponame>tamsri/murt from murt import Tracer # Scene File Path in obj OBJ_FILE_PATH = "./assets/poznan.obj" # Initialize Tracer my_tracer = Tracer(OBJ_FILE_PATH) # Set transmiting position tx_pos = [0, 15, 0] # Set receiving position rx_pos = [-30, 1.5, 45] # Return the traced paths results = my_tracer.trace(tx_pos, rx_pos) print(results)
2.421875
2
helpers_fritz.py
scarfboy/fritzbox-traffic
0
12793921
<gh_stars>0 import time, urllib, urllib2, hashlib, pprint, re, sys import urllib, urllib2, socket, httplib import json """ Being lazy with globals because you probably don't have more than one in your LAN Note that login takes a little time. The _fritz_sid keeps the login token so if you can keep the interpreter running you can get fster fetches CONSIDER: fetching things beyond transfers. """ _fritz_sid = None _fritz_lastfetched = 0 _fritz_lastdata = None IP = '192.168.178.1' username = '' password = '<PASSWORD>' def urlfetch(url, data=None, headers=None, raise_as_none=False, return_reqresp=False): """ Returns: - if return_reqresp==False (default), returns the data at an URL - if return_reqresp==True, returns the request and response objects (can be useful for streams) data: May be - a dict - a sequence of tuples (will be encoded), - a string (not altered - you often want to have used urllib.urlencode) When you use this parameter, the request becomes a POST instead of the default GET (and seems to force <tt>Content-type: application/x-www-form-urlencoded</tt>) headers: dict of additional headers (each is add_header()'d) raise_as_none: In cases where you want to treat common connection failures as 'try again later', using True here can save a bunch of your own typing in error catching """ try: if type(data) in (tuple, dict): data=urllib.urlencode(data) req = urllib2.Request(url, data=data) if headers!=None: for k in headers: vv = headers[k] if type(vv) in (list,tuple): for v in vv: req.add_header(k,v) else: # assume single string. TODO: consider unicode req.add_header(k,vv) response = urllib2.urlopen(req, timeout=60) if return_reqresp: return req,response else: data = response.read() return data except (socket.timeout), e: if raise_as_none: sys.stderr.write( 'Timeout fetching %r\n'%url ) return None else: raise except (socket.error, urllib2.URLError, httplib.HTTPException), e: if raise_as_none: #print 'Networking problem, %s: %s'%(e.__class__, str(e)) return None else: raise def fritz_login(): data = urlfetch('http://%s/login_sid.lua'%(IP,)) m = re.search('<Challenge>([0-9a-f]+)</Challenge>', data) challenge = m.groups()[0] m5h = hashlib.md5() hashstr = '%s-%s'%(challenge, password) m5h.update(hashstr.encode('utf_16_le')) response = m5h.hexdigest() data = urlfetch('http://%s/login_sid.lua'%(IP,), {'response':'%s-%s'%(challenge, response)}) m = re.search('<SID>([0-9a-f]+)</SID>', data) return m.groups()[0] def fritz_fetch(): " Fetches ul/dl graph data " global _fritz_sid, _fritz_lastfetched, _fritz_lastdata td = time.time() - _fritz_lastfetched if td < 5.0 and _fritz_lastdata!=None: # if our last fetch was less than 5 seconds ago, we're not going to get a new answer return _fritz_lastdata try: fetchurl = 'http://%s/internet/inetstat_monitor.lua?sid=%s&myXhr=1&action=get_graphic&useajax=1&xhr=1'%(IP, _fritz_sid) data = urlfetch(fetchurl) except urllib2.HTTPError, e: if e.code==403: #print "Forbidden, tryin to log in for new SID" _fritz_sid = fritz_login() fetchurl = 'http://%s/internet/inetstat_monitor.lua?sid=%s&myXhr=1&action=get_graphic&useajax=1&xhr=1'%(IP, _fritz_sid) #print fetchurl data = urlfetch(fetchurl) jd = json.loads( data )[0]# [0]: assume it's one main interface _fritz_lastfetched = time.time() _fritz_lastdata = jd #pprint.pprint( jd ) return jd if __name__ == '__main__': import pprint pprint.pprint( fritz_fetch() )
2.671875
3
unidump/cli.py
Codepoints/unidump
33
12793922
""" handle the CLI logic for a unidump call """ import argparse import codecs import gettext from os.path import dirname from shutil import get_terminal_size import sys from textwrap import TextWrapper # pylint: disable=unused-import from typing import List, IO, Any # pylint: enable=unused-import from unicodedata import unidata_version from unidump import VERSION, unidump from unidump.env import Env TL = gettext.translation('unidump', localedir=dirname(__file__)+'/locale', fallback=True) _ = TL.gettext TW = TextWrapper(width=min(80, getattr(get_terminal_size(), 'columns')), replace_whitespace=True, initial_indent=' ', subsequent_indent=' ').fill DESCRIPTION = '\n\n'.join([ TW(_('A Unicode code point dump.')), TW(_('Think of it as hexdump(1) for Unicode. The command analyses the ' 'input and then prints three columns: the raw byte index of the ' 'first code point in this row, code points in their hex notation, ' 'and finally the raw input characters with control and whitespace ' 'replaced by a dot.')), TW(_('Invalid byte sequences are represented with an “X” and with the hex ' 'value enclosed in question marks, e.g., “?F5?”.')), TW(_('You can pipe in data from stdin, select several files at once, or ' 'even mix all those input methods together.')), ]) EPILOG = '\n\n'.join([ _('Examples:'), TW(_('* Basic usage with stdin:')), ''' echo -n 'ABCDEFGHIJKLMNOP' | unidump -n 4 0 0041 0042 0043 0044 ABCD 4 0045 0046 0047 0048 EFGH 8 0049 004A 004B 004C IJKL 12 004D 004E 004F 0050 MNOP''', TW(_('* Dump the code points translated from another encoding:')), ' unidump -c latin-1 some-legacy-file', TW(_('* Dump many files at the same time:')), ' unidump foo-*.txt', TW(_('* Control characters and whitespace are safely rendered:')), ''' echo -n -e '\\x01' | unidump -n 1 0 0001 .''', TW(_('* Finally learn what your favorite Emoji is composed of:')), ''' ( echo -n -e '\\xf0\\x9f\\xa7\\x9d\\xf0\\x9f\\x8f\\xbd\\xe2' ; \\ echo -n -e '\\x80\\x8d\\xe2\\x99\\x82\\xef\\xb8\\x8f' ; ) | \\ unidump -n 5 0 1F9DD 1F3FD 200D 2642 FE0F .🏽.♂️''', TW(_('See <http://emojipedia.org/man-elf-medium-skin-tone/> for images. ' 'The “elf” emoji (the first character) is replaced with a dot here, ' 'because the current version of Python’s unicodedata doesn’t know of ' 'this character yet.')), TW(_('* Use it like strings(1):')), ' unidump -e \'{data}\' some-file.bin', TW(_('This will replace every unknown byte from the input file with “X” ' 'and every control and whitespace character with “.”.')), TW(_('* Only print the code points of the input:')), ''' unidump -e '{repr}'$'\\n' -n 1 some-file.txt''', TW(_('This results in a stream of code points in hex notation, each on a ' 'new line, without byte counter or rendering of actual data. You can ' 'use this to count the total amount of characters (as opposed to raw ' 'bytes) in a file, if you pipe it through `wc -l`.')), TW(_('This is version {} of unidump, using Unicode {} data.') .format(VERSION, unidata_version)).lstrip() + '\n' ]) def force_stdout_to_utf8(): """force stdout to be UTF-8 encoded, disregarding locale Do not type-check this: error: Incompatible types in assignment (expression has type "StreamWriter", variable has type "TextIO") error: "TextIO" has no attribute "detach" \\o/ """ sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach()) def main(args: List[str] = None) -> int: """entry-point for an unidump CLI call""" force_stdout_to_utf8() if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser( prog='unidump', description=DESCRIPTION, epilog=EPILOG, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('files', nargs='*', metavar='FILE', default=('-',), help=_( 'input files. Use “-” or keep empty for stdin.')) parser.add_argument('-n', '--length', type=int, default=16, dest='linelength', metavar='LENGTH', help=_( 'format output using this much input characters. ' 'Default is %(default)s characters.')) parser.add_argument('-c', '--encoding', type=str, default='utf-8', metavar='ENC', help=_( 'interpret input in this encoding. Default is ' '%(default)s. You can choose any encoding that ' 'Python supports, e.g. “latin-1”.')) parser.add_argument('-e', '--format', type=str, default=None, dest='lineformat', metavar='FORMAT', help=_( 'specify a custom format in Python’s {} notation. ' 'Default is “%s”. ' 'See examples below on how to use this option.' ) % Env.lineformat.replace('\n', '\\n')) parser.add_argument('-v', '--version', action='version', version=_('%(prog)s {} using Unicode {} data').format( VERSION, unidata_version)) options = parser.parse_args(args) try: for filename in options.files: infile = None # type: IO[bytes] if filename == '-': infile = sys.stdin.buffer else: try: infile = open(filename, 'rb') except FileNotFoundError: sys.stdout.flush() sys.stderr.write(_('File {} not found.\n') .format(filename)) continue except IsADirectoryError: sys.stdout.flush() sys.stderr.write(_('{} is a directory.\n') .format(filename)) continue unidump( infile, env=Env( linelength=options.linelength, encoding=options.encoding, lineformat=options.lineformat, output=sys.stdout)) except KeyboardInterrupt: sys.stdout.flush() return 1 else: return 0
2.796875
3
api/serializers.py
lutoma/open-grgraz
2
12793923
from rest_framework import serializers from api.models import * class ParliamentaryGroupSerializer(serializers.ModelSerializer): class Meta: model = ParliamentaryGroup fields = ('id', 'name') class ParliamentarySessionSerializer(serializers.ModelSerializer): class Meta: model = ParliamentarySession fields = ('session_date',) class CouncilPersonSerializer(serializers.ModelSerializer): class Meta: model = CouncilPerson fields = ('name', 'academic_degree', 'email', 'parliamentary_group') class FileSerializer(serializers.ModelSerializer): class Meta: model = File fields = ('long_filename', 'short_filename', 'path') class AnswerSerializer(serializers.ModelSerializer): session = serializers.StringRelatedField() proposer = CouncilPersonSerializer() files = FileSerializer(many=True) class Meta: model = Motion fields = ('id', 'motion_id', 'session', 'title', 'parliamentary_group', 'proposer', 'files') class MotionSerializer(serializers.ModelSerializer): session = serializers.StringRelatedField() proposer = CouncilPersonSerializer() files = FileSerializer(many=True) answers = AnswerSerializer(many=True) class Meta: model = Motion fields = ('id', 'motion_id', 'session', 'title', 'motion_type', 'parliamentary_group', 'proposer', 'files', 'answers')
2.25
2
main.py
YanhengWang/Draughts
0
12793924
<gh_stars>0 from utils import * from graphics import Graphics from state import State from torch.autograd import Variable import network import torch current = State(None, None) net = network.ResNet() focusMoves = [] focus = 0 def MCTS(root): global net if root.Expand(): data = torch.FloatTensor(StateToImg(root.child[-1])).unsqueeze(0) delta = net(Variable(data)).data[0, 0] root.child[-1].v = delta delta *= -1 else: best = root.BestChild() if best == None: delta = -1 else: delta = -MCTS(best) root.v += delta root.n += 1 return delta def Callback(idx, place): global GUI global current global focusMoves global focus if place == STONE: focus = idx if current.GetColour(idx)==current.player and not(current.mandatory): for move in focusMoves: GUI.SetBoard(False, *move) _, focusMoves = current.GetMoves(focus) for move in focusMoves: GUI.SetBoard(True, *move) else: for i, move in enumerate(current.moves): if focus==move[0] and idx==move[-1]: # a legal move for j, move2 in enumerate(current.moves): if j != i: GUI.SetBoard(False, *move2) # clear other highlights GUI.Move(move, current.pos[move[0]]) current = current.child[i] for j in range(1000): MCTS(current) data = torch.FloatTensor(StateToImg(current)).unsqueeze(0) print(net(Variable(data)).data[0,0]) best = current.child[0] for c in current.child: if c.n > best.n: best = c move2 = current.moves[current.child.index(best)] GUI.Move(move2, current.pos[move2[0]]) current = best data = torch.FloatTensor(StateToImg(current)).unsqueeze(0) print(net(Variable(data)).data[0,0]) if current.mandatory: for move2 in current.moves: GUI.SetBoard(True, *move2) break f = torch.load(PATH_PARAM) net.load_state_dict(f) net.eval() for i in range(50): MCTS(current) GUI = Graphics(Callback) GUI.Run()
2.078125
2
setup.py
bashu/django-absoluteuri
14
12793925
<reponame>bashu/django-absoluteuri #!/usr/bin/env python import os from setuptools import setup, find_packages __doc__ = "Absolute URI functions and template tags for Django" def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() readme = read('README.rst') changelog = read('CHANGELOG.rst') setup( name='django-absoluteuri', version='1.3.1.dev0', description=__doc__, long_description=readme + '\n\n' + changelog, author='Fusionbox, Inc.', author_email='<EMAIL>', url='https://github.com/fusionbox/django-absoluteuri', packages=[package for package in find_packages() if package.startswith('absoluteuri')], install_requires=[ 'Django>=1.11', ], test_suite='setuptest.setuptest.SetupTestSuite', tests_require=[ 'django-setuptest', ], license="Apache 2.0", zip_safe=True, keywords='django-absoluteuri', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], )
1.460938
1
scripts/to_sorec_list_form.py
ajbc/spf
28
12793926
<reponame>ajbc/spf import sys from collections import defaultdict path = sys.argv[1] undir = (len(sys.argv) == 3) fin = open(path +'/train.tsv') finn = open(path +'/network.tsv') fout_items = open(path +'/items_sorec.dat', 'w+') fout_users = open(path +'/users_sorec.dat', 'w+') users = defaultdict(list) items = set() for line in fin: user, item, rating = [int(x.strip()) for x in line.split('\t')] users[user].append(item) items.add(item) umap = {} imap = {} fmap_items = open(path +'/item_map_sorec.dat', 'w+') fmap_users = open(path +'/user_map_sorec.dat', 'w+') # this should be the same for user in users: umap[user] = len(umap) fmap_users.write("%d,%d\n" % (user, umap[user])) for item in items: imap[item] = len(imap) fmap_items.write("%d,%d\n" % (item, imap[item])) fmap_users.close() fmap_items.close() user_data = defaultdict(list) item_data = defaultdict(list) for user in users: for item in users[user]: user_data[umap[user]].append(imap[item]) item_data[imap[item]].append(umap[user]) for line in finn: user, friend = [int(x.strip()) for x in line.split('\t')] if user not in umap or friend not in umap: continue user_data[umap[user]].append(len(imap) + umap[friend]) item_data[len(imap) + umap[friend]].append(umap[user]) # undirected if undir: user_data[umap[friend]].append(len(imap) + umap[user]) item_data[len(imap) + umap[user]].append(umap[friend]) for item in sorted(items, key=lambda x: imap[x]): line = str(len(item_data[imap[item]])) for user in item_data[imap[item]]: line += ' ' + str(user) fout_items.write(line + '\n') for user in sorted(users, key=lambda x: umap[x]): line = str(len(user_data[umap[user]])) for item in user_data[umap[user]]: line += ' ' + str(item) fout_users.write(line + '\n') line = str(len(item_data[len(imap) + umap[user]])) for user in item_data[len(imap) + umap[user]]: line += ' ' + str(user) fout_items.write(line + '\n') fout_items.close() fout_users.close()
2.125
2
CMSLogic/models.py
AbhijithGanesh/Student-Portal-CMS
0
12793927
from django.db import models from pytz import country_names as c from datetime import date dict_choices = dict(c) _choices = [] _keys = list(dict_choices.keys()) _value = list(dict_choices.values()) if len(_keys) == len(_value): for i in range(len(_keys)): a = [_keys[i], _value[i]] _choices.append(tuple(a)) class StudentProfile(models.Model): Name = models.CharField(max_length=300) Application_Number = models.BigIntegerField() Date_Of_Birth = models.DateField() Gender = models.CharField( max_length=30, choices=[ ("M", "Male"), ("F", "Female"), ("N", "Non-Binary"), ("W", "Would not like to reveal"), ], ) HomeState = models.CharField(max_length=300) Country = models.CharField(max_length=75, choices=_choices) ContactNumber = models.BigIntegerField() class ContactUs(models.Model): Department_Name = models.CharField(max_length=300) Department_Head = models.CharField(max_length=300) Department_ContactDetails = models.IntegerField() class Meta: verbose_name_plural = "Contact Us" class Events(models.Model): Event_Name = models.CharField(max_length=50) Event_Head = models.ForeignKey(StudentProfile, on_delete=models.DO_NOTHING) Event_Duration = models.DurationField() Event_Descripton = models.TextField(null=False, default="Empty Description") class Meta: verbose_name_plural = "Events and Notices"
2.359375
2
ch13/myproject_virtualenv/src/django-myproject/myproject/apps/likes/views.py
PacktPublishing/Django-3-Web-Development-Cookbook
159
12793928
<reponame>PacktPublishing/Django-3-Web-Development-Cookbook import structlog from django.contrib.contenttypes.models import ContentType from django.http import JsonResponse from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt from .models import Like from .templatetags.likes_tags import liked_count logger = structlog.get_logger("django_structlog") @never_cache @csrf_exempt def json_set_like(request, content_type_id, object_id): """ Sets the object as a favorite for the current user """ result = { "success": False, } if request.user.is_authenticated and request.method == "POST": content_type = ContentType.objects.get(id=content_type_id) obj = content_type.get_object_for_this_type(pk=object_id) like, is_created = Like.objects.get_or_create( content_type=ContentType.objects.get_for_model(obj), object_id=obj.pk, user=request.user) if is_created: logger.info("like_created", content_type_id=content_type.pk, object_id=obj.pk) else: like.delete() logger.info("like_deleted", content_type_id=content_type.pk, object_id=obj.pk) result = { "success": True, "action": "add" if is_created else "remove", "count": liked_count(obj), } return JsonResponse(result)
2.015625
2
apphv/mainUser/migrations/0029_auto_20190625_1620.py
FerneyMoreno20/Portfolio
0
12793929
<gh_stars>0 # Generated by Django 2.2.2 on 2019-06-25 16:20 import ckeditor.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('parametros', '0002_empleos'), ('mainUser', '0028_auto_20190624_1815'), ] operations = [ migrations.RemoveField( model_name='educacion', name='TipoEstu', ), migrations.RemoveField( model_name='experiencia', name='CargExpe', ), migrations.DeleteModel( name='Habilidades', ), migrations.RemoveField( model_name='logros', name='NombTiLo', ), migrations.AddField( model_name='usuarios', name='CargExpe', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='parametros.Empleos', verbose_name='Cargo Ocupado'), ), migrations.AddField( model_name='usuarios', name='DescLogr', field=ckeditor.fields.RichTextField(null=True, verbose_name='Descripción o caracteristicas del logro'), ), migrations.AddField( model_name='usuarios', name='EmprExpe', field=models.CharField(max_length=150, null=True, verbose_name='Empresa'), ), migrations.AddField( model_name='usuarios', name='FechLogr', field=models.DateField(null=True, verbose_name='Fecha de culminación de logro'), ), migrations.AddField( model_name='usuarios', name='FuncionE', field=ckeditor.fields.RichTextField(null=True, verbose_name='Funciones desempeñadas'), ), migrations.AddField( model_name='usuarios', name='Instituto', field=models.CharField(max_length=30, null=True, verbose_name='Inistitución o Academia'), ), migrations.AddField( model_name='usuarios', name='LogrExpe', field=ckeditor.fields.RichTextField(null=True, verbose_name='Logros Alcanzados'), ), migrations.AddField( model_name='usuarios', name='NiveHabil', field=models.CharField(default='', max_length=20, null=True, verbose_name='Nivel de Habilidad: '), ), migrations.AddField( model_name='usuarios', name='NombHabil', field=models.CharField(default='', max_length=100, null=True, verbose_name='Habilidad'), ), migrations.AddField( model_name='usuarios', name='NombLogr', field=models.CharField(max_length=100, null=True, verbose_name='Logro o Distinción'), ), migrations.AddField( model_name='usuarios', name='NombTiLo', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='parametros.TipoLogr', verbose_name='Tipo de Logro'), ), migrations.AddField( model_name='usuarios', name='TipoEstu', field=models.ForeignKey(default='', null=True, on_delete=django.db.models.deletion.CASCADE, to='parametros.TipoEstu', verbose_name='Tipo de educación'), ), migrations.AddField( model_name='usuarios', name='TituloEst', field=models.CharField(max_length=250, null=True, verbose_name='Titulo de estudio'), ), migrations.DeleteModel( name='Educacion', ), migrations.DeleteModel( name='Experiencia', ), migrations.DeleteModel( name='Logros', ), ]
1.914063
2
Code/preprocessing/doc2vec.py
mattaq31/recognition-forge
0
12793930
from preprocessing.vectorizers import Doc2VecVectorizer from nnframework.data_builder import DataBuilder import pandas as pd import constants as const import numpy as np def generate_d2v_vectors(source_file): df = pd.read_csv(source_file) messages = df["Message"].values vectorizer = Doc2VecVectorizer() vectors = vectorizer.vectorize(messages) return np.c_[df.iloc[:,0].values, vectors] if __name__ == '__main__': # Generate vectors (with index) output = generate_d2v_vectors(const.FILE_UNIQUE_UNLABELLED) # Save vectors as npy file np.save(const.FILE_DOC2VEC_INPUTS_UNLABELLED, output)
3.109375
3
Prob1.py
ntnshrm87/Python_Quest
0
12793931
class C: dangerous = 2 c1 = C() c2 = C() print(c1.dangerous) c1.dangerous = 3 print(c1.dangerous) print(c2.dangerous) del c1.dangerous print(c1.dangerous) print(c2.dangerous) # Solution: # 2 # 3 # 2 # 2 # 2 # Reference: # object.__del__(self) # Called when the instance is about to be destroyed. This is also called a destructor. # If a base class has a __del__() method, the derived class’s __del__() method, # if any, must explicitly call it to ensure proper deletion of the base class part of the instance. # Note that it is possible (though not recommended!) for the __del__() method to postpone destruction # of the instance by creating a new reference to it. It may then be called at a later time when # this new reference is deleted. It is not guaranteed that __del__() methods are called for objects # that still exist when the interpreter exits. # Note del x doesn’t directly call x.__del__() — the former decrements the reference count for x by one, # and the latter is only called when x’s reference count reaches zero. Some common situations # that may prevent the reference count of an object from going to zero include: circular references # between objects (e.g., a doubly-linked list or a tree data structure with parent and child pointers); # a reference to the object on the stack frame of a function that caught an exception (the traceback # stored in sys.exc_traceback keeps the stack frame alive); or a reference to the object on the # stack frame that raised an unhandled exception in interactive mode (the traceback stored in # sys.last_traceback keeps the stack frame alive). The first situation can only be remedied by # explicitly breaking the cycles; the latter two situations can be resolved by storing None in # sys.exc_traceback or sys.last_traceback. Circular references which are garbage are detected when # the option cycle detector is enabled (it’s on by default), but can only be cleaned up if there # are no Python-level __del__() methods involved. Refer to the documentation for the gc module # for more information about how __del__() methods are handled by the cycle detector, # particularly the description of the garbage value.
3.828125
4
covidKeralaDHS.py
cibinjoseph/covidKeralaDHS
0
12793932
<filename>covidKeralaDHS.py """ A module to parse the COVID bulletins provided by DHS Kerala """ import urllib3 from bs4 import BeautifulSoup import json import sys linkPre = 'http://dhs.kerala.gov.in' jsonDefaultFile = 'bulletinLinks.json' bulletinDefaultFile = 'bulletin.pdf' def __getPDFlink(bulletinPageLink): """ Return links to pdf bulletin uploads in page. This link can be checked for updated bulletins. """ # Parse bulletin page to get pdf link req = urllib3.PoolManager() bulletinPage = req.request('GET', bulletinPageLink) soup = BeautifulSoup(bulletinPage.data, 'html.parser') try: divTag = soup.find('div', attrs={'class': 'entry-content'}) pTags = divTag.findAll('p') except AttributeError: print('Error: Broken Connection. Rerun') raise ConnectionError # Get link to pdf bulletin for tag in pTags: if 'English' in tag.text: return linkPre + tag.a.get('href') else: return None def cleanDate(date): """ Returns the date in the format dd.mm.yyyy This can be used to write to the JSON file in a standard format """ # Sanity checks if not isinstance(date,str): raise TypeError if not len(date) == 10: raise ValueError return date[0:2] + '.' + date[3:5] + '.' + date[6:10] def __getDateLinkDict(verbose=True): """ Returns a dict data type containing all dates and their corresponding links to bulletin pages. """ # Ensure python version 3+ if sys.version_info.major < 3: print('ERROR: Use python version 3+') raise SyntaxError # Parse DHS Kerala webpage to get html tags if verbose: print('Parsing Kerala DHS webpage ...') print('Obtaining links of dates:') DHSLink = linkPre + '/%e0%b4%a1%e0%b5%86%e0%b4%af%e0%b4%bf%e0%b4%b2%e0%b4%bf-%e0%b4%ac%e0%b5%81%e0%b4%b3%e0%b5%8d%e0%b4%b3%e0%b4%b1%e0%b5%8d%e0%b4%b1%e0%b4%bf%e0%b4%a8%e0%b5%8d%e2%80%8d/' req = urllib3.PoolManager() DHSPage = req.request('GET', DHSLink) soup = BeautifulSoup(DHSPage.data, 'html.parser') tags = soup.findAll('h3', attrs={'class': 'entry-title'}) # Clean html tags to extract date and corresponding link to pdfs bulletins dateLinkDict = dict() for tag in tags: # The returned dates may not be consistently formatted on the website. # Eg. dd-mm-yyy and dd/mm/yyyy are both found date = cleanDate(tag.a.text) bulletinPageLink = linkPre + tag.a.get('href') dateLinkDict[date] = __getPDFlink(bulletinPageLink) if verbose: print(date) return dateLinkDict def downloadPDF(PDFlink): """ Downloads pdf bulletin from the provided link """ try: req = urllib3.PoolManager() response = req.request('GET', PDFlink) bulletinFile = open(bulletinDefaultFile, 'wb') bulletinFile.write(response.data) except HTTPError: print('Error: PDF file not found') return False finally: bulletinFile.close() def writeJSON(dateLinkDict, filename=jsonDefaultFile): """ Writes dateLinkDict as a json file. This JSON file can be used to check for updates. """ jsonFile = open(filename, 'w') json.dump(dateLinkDict, jsonFile) jsonFile.close() def readJSON(filename=jsonDefaultFile): """ Reads all dateLinkDict from a json file. This JSON file can be used to check for updates. """ jsonFile = open(filename, 'r') dateLinkDict = json.load(jsonFile) jsonFile.close() return dateLinkDict def getBulletin(date, verbose=True): """ Downloads latest bulletin for the given date and returns True. Returns False if bulletin is not available. """ stdDate = cleanDate(date) dateLinkDict = __getDateLinkDict(verbose) if stdDate in dateLinkDict: downloadPDF(dateLinkDict[stdDate]) return True else: return False def isNewBulletin(date, updateJSONfile=True, verbose=True): """ Returns bulletin link if an updated bulletin is available on provided date. Returns False if no new bulletins are available. If running for first time, the JSON file is created and returns True. """ stdDate = cleanDate(date) dateLinkDictNew = __getDateLinkDict(verbose) # If date does not exist on server if not stdDate in dateLinkDictNew: return False try: # If local JSON file exists in directory dateLinkDictOld = readJSON(jsonDefaultFile) # If date does not exist in local JSON file if not stdDate in dateLinkDictOld: if updateJSONfile: writeJSON(dateLinkDictNew) return True # If both bulletins are same if (dateLinkDictNew[stdDate] == dateLinkDictOld[stdDate]): return False else: # If both bulletins are different if updateJSONfile: writeJSON(dateLinkDictNew) return True except FileNotFoundError: # If local JSON file does not exist if updateJSONfile: writeJSON(dateLinkDictNew) return True if __name__ == "__main__": """ If the module is invoked as a python program, it checks for new bulletins and downloads the latest one. """ from datetime import date today = date.today().strftime('%d.%m.%Y') isNew = isNewBulletin(today) if isNew: print('NEW BULLETIN AVAILABLE') downloadPDF(isNew) print('Downloaded to ' + bulletinDefaultFile) else: print('NO NEW BULLETINS AVAILABLE')
3.296875
3
1-DiveIntoPython/week5/lecturesdemos/AsychnchronousProgramming/generators.py
mamoudmatook/PythonSpecializaionInRussian
0
12793933
<filename>1-DiveIntoPython/week5/lecturesdemos/AsychnchronousProgramming/generators.py def myrange_generator(top): current = 0: while current < top: yield current current += 1
3.3125
3
coordination/environment/traffic.py
CN-UPB/FutureCoord
1
12793934
<reponame>CN-UPB/FutureCoord from typing import List, Dict from functools import cmp_to_key import numpy as np import scipy.stats as stats from numpy.random import default_rng, BitGenerator from tick.base import TimeFunction from tick.hawkes import SimuInhomogeneousPoisson class Request: def __init__(self, arrival: float, duration: float, datarate: float, max_latency: float, endpoints: tuple, service: int): self.arrival = arrival self.duration = duration self.datarate = datarate self.max_latency = max_latency self.ingress, self.egress = endpoints self.ingress = int(self.ingress) self.egress = int(self.egress) self.service: int = int(service) self.vtypes: List[int] = None self.resd_lat: float = None def __str__(self): attrs = [round(self.duration, 2), round(self.datarate, 2), round(self.resd_lat, 2), round(self.max_latency, 2)] attrs = [self.ingress, self.egress, *attrs, self.service] return 'Route: ({}-{}); Duration: {}; Rate: {}; Resd. Lat.: {}; Lat.: {}; Service: {}'.format(*attrs) class ServiceTraffic: def __init__(self, rng: BitGenerator, service: int, horizon: float, process: Dict, datarates: Dict, latencies: Dict, endpoints: np.ndarray, rates: np.ndarray, spaths: Dict): self.rng = rng self.MAX_SEED = 2**30 - 1 self.service = service self.horizon = horizon self.process = process self.datarates = datarates self.latencies = latencies self.endpoints = endpoints self.spaths = spaths # create time function for inhomogenous poisson process T = np.linspace(0.0, horizon - 1, horizon) rates = np.ascontiguousarray(rates) self.rate_function = TimeFunction((T, rates)) def sample_arrival(self, horizon): poi_seed = self.rng.integers(0, self.MAX_SEED) poi_seed = int(poi_seed) in_poisson = SimuInhomogeneousPoisson( [self.rate_function], end_time=horizon, verbose=False, seed=poi_seed) in_poisson.track_intensity() in_poisson.simulate() arrivals = in_poisson.timestamps[0] return arrivals def sample_duration(self, size): mduration = self.process['mduration'] duration = self.rng.exponential(scale=mduration, size=size) return duration def sample_datarates(self, size): mean = self.datarates['loc'] scale = self.datarates['scale'] a, b = self.datarates['a'], self.datarates['b'] a, b = (a - mean) / scale, (b - mean) / scale datarates = stats.truncnorm.rvs(a, b, mean, scale, size=size, random_state=self.rng) return datarates def sample_latencies(self, propagation: np.ndarray): mean = self.latencies['loc'] scale = self.latencies['scale'] a, b = self.latencies['a'], self.latencies['b'] a, b = (a - mean) / scale, (b - mean) / scale lat = stats.truncnorm.rvs(a, b, mean, scale, size=propagation.size, random_state=self.rng) # scale maximum end-to-end latencies (given by shortest path propagation delay) with sampled factor lat = lat * propagation return lat def sample_endpoints(self, arrivals): ingresses, egresses = [], [] for arrival in arrivals: # get endpoint probability matrix for respective timestep timestep = int(np.floor(arrival)) prob = self.endpoints[timestep] # sample ingress / egress from probability matrix flatten = prob.ravel() index = np.arange(flatten.size) ingress, egress = np.unravel_index( self.rng.choice(index, p=flatten), prob.shape) ingresses.append(ingress) egresses.append(egress) return ingresses, egresses def sample(self): # sample parameters for each service from distribution functions arrival = self.sample_arrival(self.horizon) duration = self.sample_duration(len(arrival)) ingresses, egresses = self.sample_endpoints(arrival) # use arrival time to index the endpoint probability matrix and traffic matrix rates = self.sample_datarates(size=len(arrival)) propagation = np.asarray([self.spaths[ingr][egr] for ingr, egr in zip(ingresses, egresses)]) latencies = self.sample_latencies(propagation) # build request objects and append them to the traffic trace requests = [] for arr, dr, rate, lat, ingr, egr in zip(arrival, duration, rates, latencies, ingresses, egresses): req = Request(arr, dr, rate, lat, (ingr, egr), self.service) requests.append(req) return requests class Traffic: def __init__(self, processes): self.processes = processes def sample(self): # generate requests for each type of service from respective processes requests = [process.sample() for process in self.processes] requests = [req for srequests in requests for req in srequests] # sort to-be-simulated service requests according to their arrival time requests = sorted(requests, key=cmp_to_key( lambda r1, r2: r1.arrival - r2.arrival)) return requests def __iter__(self): trace = self.sample() return iter(trace) class TrafficStub: def __init__(self, trace): self.trace = trace def sample(self): return self.trace def __iter__(self): return iter(self.trace)
2.125
2
Sound/micro.py
mencattini/ReMIx
1
12793935
"""Microphone module.""" import alsaaudio # pylint: disable=R0903, E1101 class Micro(): """Class to use micro in a `with` bloc.""" def __init__(self, alsaaudio_capture=alsaaudio.PCM_CAPTURE, alsaaudio_nonblock=alsaaudio.PCM_NONBLOCK): """Open the device in nonblocking capture mode. The last argument could just as well have been zero for blocking mode. Then we could have left out the sleep call in the bottom of the loop """ self.capture = alsaaudio_capture self.nonblock = alsaaudio_nonblock self.inp = None def __enter__(self): """Set the acquisition and return it.""" self.inp = alsaaudio.PCM(self.capture, self.nonblock) return self.inp def __exit__(self, capture, nonblock, inpt): """Close the acquisition.""" self.inp.close()
2.734375
3
Programiz Projects/4 - Find the Area of a Triangle.py
PythonCodes1/Python-Progression
0
12793936
<reponame>PythonCodes1/Python-Progression """ To find the area of a triangle, you must use this method: s = (a+b+c)/2 area = √(s(s-a)*(s-b)*(s-c)) """ a = float(input('Enter first side: ')) b = float(input('Enter second side: ')) c = float(input('Enter third side: ')) s = (a+b+c)/2 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 print("The area of the triangle is %0.2f" %area)
4.15625
4
app/payments/migrations/0003_auto_20181219_2332.py
zanielyene/krabacus3
2
12793937
<reponame>zanielyene/krabacus3<filename>app/payments/migrations/0003_auto_20181219_2332.py # Generated by Django 2.1.2 on 2018-12-19 23:32 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('payments', '0002_auto_20181219_2206'), ] operations = [ migrations.AlterField( model_name='subscriptionpayment', name='payment_read_time', field=models.DateTimeField(default=datetime.datetime(2018, 12, 19, 23, 32, 52, 579324, tzinfo=utc)), ), ]
1.484375
1
lab1/part1/core/layerFactory.py
Currycurrycurry/FDSS_PRML
0
12793938
<reponame>Currycurrycurry/FDSS_PRML<filename>lab1/part1/core/layerFactory.py from lab1.part1.core.layers.dense import DenseLayer from lab1.part1.core.layers.relu import ReluLayer from lab1.part1.core.layers.sigmoid import SigmoidLayer from lab1.part1.core.layers.softmax import SoftmaxLayer from lab1.part1.core.layers.preLU import PReLULayer from lab1.part1.core.layers.leakyRelu import LeakyReLULayer from lab1.part1.core.layers.elu import ELULayer from lab1.part1.util.logger_util import logger class LayerFactory(object): @staticmethod def produce_layer(type): if type == 'dense': logger.info(type) return DenseLayer() elif type == 'relu': logger.info(type) return ReluLayer() elif type == 'sigmoid': logger.info(type) return SigmoidLayer() elif type == 'softmax': logger.info(type) return SoftmaxLayer() elif type == 'prelu': logger.info(type) return PReLULayer() elif type == 'elu': logger.info(type) return ELULayer() elif type == 'leakyrelu': logger.info(type) return LeakyReLULayer() if __name__ == '__main__': print(LayerFactory.produce_layer('dense'))
2.140625
2
EixampleEnergy/drawers/drawer_map.py
TugdualSarazin/eixample_energy
0
12793939
<gh_stars>0 import contextily as cx import matplotlib.pyplot as plt from EixampleEnergy.drawers.drawer_elem import DrawerElem class DrawerMap(DrawerElem): def __init__(self, full_df, color_col, cmap='YlGnBu', xlim=None, ylim=None, bg_img=None): # Init attributes self.full_df = full_df self.color_col = color_col self.cmap = cmap self.bg_img = bg_img if xlim is None: self.xlim = ([self.full_df.total_bounds[0], self.full_df.total_bounds[2]]) else: self.xlim = xlim if ylim is None: self.ylim = ([self.full_df.total_bounds[1], self.full_df.total_bounds[3]]) else: self.ylim = ylim # Min / max self.vmin = self.full_df[self.color_col].min() self.vmax = self.full_df[self.color_col].max() def draw(self, df): self.ax.clear() self.ax.set_xlim(self.xlim) self.ax.set_ylim(self.ylim) #df.plot(ax=self.ax, column=self.color_col, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) df.plot(ax=self.ax, column=self.color_col, cmap=self.cmap) if self.bg_img: cx.add_basemap(self.ax, crs=self.full_df.crs.to_string(), source=self.bg_img, cmap=plt.get_cmap('gray'), vmin=0, vmax=255) #leg = self.ax.get_legend() #self.ax.legend(bbox_to_anchor=(1.0, .5), prop={'size': 30}) #leg.set_bbox_to_anchor((1.15, 0.5)) self.ax.set_axis_off() self.ax.set_position([0., 0., 1., 1.]) def download_bg(self, save_path): print(f"Downloading map's background image to {save_path}") img, ext = cx.bounds2raster( self.xlim[0], self.ylim[0], self.xlim[1], self.ylim[1], save_path, ll=True, # source=cx.providers.CartoDB.Positron, # source='https://a.tile.openstreetmap.fr/hot/{z}/{x}/{y}.png' source='http://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z}' )
2.296875
2
notebooks-text-format/cond_bmm_emnist.py
arpitvaghela/probml-notebooks
166
12793940
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="M_qo7DmLJKLP" # #Class-Conditional Bernoulli Mixture Model for EMNIST # + [markdown] id="TU1pCzcIJHTm" # ## Setup # # + id="400WanLyGA2C" # !git clone --depth 1 https://github.com/probml/pyprobml /pyprobml &> /dev/null # %cd -q /pyprobml/scripts # + id="k1rLl6dHH7Wh" # !pip install -q superimport # !pip install -q distrax # + id="cLpBn5KQeB46" from conditional_bernoulli_mix_lib import ClassConditionalBMM from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class from noisy_spelling_hmm import Word from jax import vmap import jax.numpy as jnp import jax from jax.random import PRNGKey, split import numpy as np from matplotlib import pyplot as plt # + colab={"base_uri": "https://localhost:8080/"} id="ey9k06RweuKc" outputId="38131e5a-82fb-49db-c4d3-f4364a643152" select_n = 25 dataset, targets = get_emnist_images_per_class(select_n) dataset, targets = jnp.array(dataset), jnp.array(targets) # + [markdown] id="KwNq7HYYLPO9" # ## Initialization of Class Conditional BMMs # + colab={"base_uri": "https://localhost:8080/"} id="UABtUDPjffFt" outputId="d873a708-542c-44e6-8c72-2c5908c7bbad" n_mix = 30 n_char = 52 mixing_coeffs = jnp.array(np.full((n_char, n_mix), 1./n_mix)) p_min, p_max = 0.4, 0.6 n_pixels = 28 * 28 probs = jnp.array(np.random.uniform(p_min, p_max, (n_char, n_mix, n_pixels))) class_priors = jnp.array(np.full((n_char,), 1./n_char)) cbm_gd = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) cbm_em = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) # + [markdown] id="Qa95Fua5Kc3i" # ## Full Batch Gradient Descentt # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="PDzuEjs9Kewi" outputId="c81916c0-c6b7-45bd-d308-eab878afe281" num_epochs, batch_size = 100, len(dataset) losses = cbm_gd.fit_sgd(dataset.reshape((-1, n_pixels)), targets, batch_size, num_epochs = num_epochs) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="37mNMNrpInfh" # ## EM Algorithm # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="FJeBzIKYfsUk" outputId="9d8db485-a251-4b1a-a6e5-93833c83dce6" losses = cbm_em.fit_em(dataset, targets, 8) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="NjCQpoH1Iuuf" # ## Plot of the Probabilities of Components Distribution # + id="KkyAHDW4JgyM" def plot_components_dist(cbm, n_mix): fig = plt.figure(figsize=(45, 20)) for k in range(n_mix): for cls in range(cbm.num_of_classes): plt.subplot(n_mix ,cbm.num_of_classes, cbm.num_of_classes*k + cls +1) plt.imshow(1 - cbm.model.components_distribution.distribution.probs[cls][k,:].reshape((28,28)), cmap = "gray") plt.axis('off') plt.tight_layout() plt.show() # + [markdown] id="J8KLkCWpNAeF" # ### GD # + colab={"base_uri": "https://localhost:8080/", "height": 666} id="DSOiuNeAM8gl" outputId="dce9416a-b646-423d-b4bf-c78728db1cab" plot_components_dist(cbm_gd, n_mix) # + [markdown] id="FO31plUVNDSO" # ### EM # + id="ZM43qs6FfvlP" colab={"base_uri": "https://localhost:8080/", "height": 666} outputId="81a095f1-1099-4809-90a8-272dbed11662" plot_components_dist(cbm_em, n_mix) # + [markdown] id="IqRdcklzOeAY" # ## Sampling # + id="wgI6sFWKN4ax" p1, p2, p3 = 0.4, 0.1, 2e-3 n_misspelled = 1 # number of misspelled words created for each class vocab = ['book', 'bird', 'bond', 'bone', 'bank', 'byte', 'pond', 'mind', 'song', 'band'] rng_key = PRNGKey(0) keys = [dev_array for dev_array in split(rng_key, len(vocab))] # + id="x3GpZ8jbf11N" colab={"base_uri": "https://localhost:8080/"} outputId="5a348b69-bdf4-4f80-f059-1062ba2fbb88" hmms = {word: Word(word, p1, p2, p3, n_char, "all", mixing_coeffs=cbm_em.model.mixture_distribution.probs, initial_probs=cbm_em.model.components_distribution.distribution.probs, n_mix=n_mix) for word in vocab} samples = jax.tree_multimap(lambda word, key: hmms[word].n_sample(n_misspelled, key), vocab, keys) # + id="7VXVsobcg_KO" colab={"base_uri": "https://localhost:8080/"} outputId="3e915a79-7f5c-4131-d6ee-97f11c83d86f" decoded_words = vmap(decode, in_axes = (0, None, None))(jnp.array(samples)[:, :, :, -1].reshape((n_misspelled * len(vocab), -1)), n_char + 1, "all") get_decoded_samples(decoded_words) # + [markdown] id="xrRy8MG0afR8" # ### Figure # + id="O0-HaN5rQAvP" def plot_samples(samples): samples = np.array(samples)[:, :, :, :-1].reshape((-1, 28, 28)) fig, axes = plt.subplots(ncols=4, nrows=10, figsize=(4, 10)) fig.subplots_adjust(hspace = .2, wspace=.001) for i, ax in enumerate(axes.flatten()): ax.imshow(samples[i], cmap="gray") ax.set_axis_off() fig.tight_layout() plt.show() # + id="EbZn9vrfhei4" colab={"base_uri": "https://localhost:8080/", "height": 728} outputId="114217bf-cadb-4331-82ef-b4844c038342" plot_samples(samples) # + [markdown] id="eNDmwV7EPyrR" # ## Calculation of Log Likelihoods for Test Data # + id="525MUl5HPe1K" # noisy words test_words = ['bo--', '-On-', 'b-N-', 'B---', '-OnD', 'b--D', '---D', '--Nd', 'B-nD', '-O--', 'b--d', '--n-'] test_images = fake_test_data(test_words, dataset, targets, n_char + 1, "all") # + id="1dFCdVNgPYtJ" def plot_log_likelihood(hmms, test_words, test_images, vocab): fig, axes = plt.subplots(4, 3, figsize=(20, 10)) for i, (ax, img, word) in enumerate(zip(axes.flat, test_images, test_words)): flattened_img = img.reshape((len(img), -1)) loglikelihoods = jax.tree_map(lambda w: jnp.sum(hmms[w].loglikelihood(word, flattened_img)), vocab) loglikelihoods = jnp.array(loglikelihoods) ax.bar(vocab, jnp.exp(jax.nn.log_softmax(loglikelihoods)), color="black") ax.set_title(f'{word}') plt.tight_layout() plt.show() # + id="qv-Df8GEhfC4" colab={"base_uri": "https://localhost:8080/", "height": 784} outputId="9be6abf3-0ecc-4ef5-e301-380c5eac38ff" plot_log_likelihood(hmms, test_words, test_images, vocab)
1.820313
2
python/tests/test_base.py
JLLeitschuh/DDF
160
12793941
from __future__ import unicode_literals import unittest from ddf import DDFManager, DDF_HOME class BaseTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.dm_spark = DDFManager('spark') cls.airlines = cls.loadAirlines(cls.dm_spark) cls.mtcars = cls.loadMtCars(cls.dm_spark) @classmethod def tearDownClass(cls): cls.dm_spark.shutdown() @classmethod def loadAirlines(cls, dm): table_name = 'airlines_na_pyddf_unittest' if table_name not in [x.split('\t')[0] for x in dm.sql('show tables')]: dm.sql('set hive.metastore.warehouse.dir=/tmp', False) dm.sql('drop table if exists {}'.format(table_name), False) dm.sql("""create table {} (Year int,Month int,DayofMonth int, DayOfWeek int,DepTime int,CRSDepTime int,ArrTime int, CRSArrTime int,UniqueCarrier string, FlightNum int, TailNum string, ActualElapsedTime int, CRSElapsedTime int, AirTime int, ArrDelay int, DepDelay int, Origin string, Dest string, Distance int, TaxiIn int, TaxiOut int, Cancelled int, CancellationCode string, Diverted string, CarrierDelay int, WeatherDelay int, NASDelay int, SecurityDelay int, LateAircraftDelay int ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' """.format(table_name), False) dm.sql("load data local inpath '{}/resources/test/airlineWithNA.csv' " "into table {}".format(DDF_HOME, table_name), False) return dm.sql2ddf('select * from {}'.format(table_name), False) @classmethod def loadMtCars(cls, dm): table_name = 'mtcars_pyddf_unittest' if table_name not in [x.split('\t')[0] for x in dm.sql('show tables')]: dm.sql('set shark.test.data.path=resources', False) # session.sql('set hive.metastore.warehouse.dir=/tmp') dm.sql('drop table if exists {}'.format(table_name), False) dm.sql("CREATE TABLE {} (mpg double, cyl int, disp double, " "hp int, drat double, wt double, " "qesc double, vs int, am int, gear int, carb int)" " ROW FORMAT DELIMITED FIELDS TERMINATED BY ' '".format(table_name), False) dm.sql("LOAD DATA LOCAL INPATH '{}/resources/test/mtcars' " "INTO TABLE {}".format(DDF_HOME, table_name), False) return dm.sql2ddf('select * from {}'.format(table_name), False)
2.40625
2
examples/example_cidnotfound.py
Mirio/psnstoreprice
1
12793942
<reponame>Mirio/psnstoreprice from psnstoreprice import PsnStorePrice url = "https://store.playstation.com/#!/it-it/giochi/arslan-the-warriors-of-legend-con-bonus/" pricelib = PsnStorePrice() pricelib.getpage(pricelib.normalizeurl(url))
1.9375
2
backend/liveHeartbeat/apps.py
rajc1729/django-nextjs-realtime
0
12793943
from django.apps import AppConfig class LiveheartbeatConfig(AppConfig): name = 'liveHeartbeat'
1.046875
1
justine/views/grupos.py
VTacius/justine
0
12793944
<filename>justine/views/grupos.py # coding: utf-8 from pyramid.view import view_config from pyramid import httpexceptions as exception from ..juliette.modelGroup import Grupo from ..juliette.excepciones import DatosException, ConflictoException from ..schemas.grupos import EsquemaGrupo import logging log = logging.getLogger(__name__) @view_config(route_name="grupos_creacion", renderer='json', permission='creacion') def grupos_creacion(peticion): # Validando datos recibidos try: v = EsquemaGrupo('cn') print(peticion.json_body) contenido = v.validacion(peticion.json_body['corpus']) except KeyError as e: log.warning(e) return exception.HTTPBadRequest(e) except ValueError as e: log.warning(e) return exception.HTTPBadRequest(e) except TypeError as e: # Se refiere a que no se hayan enviado datos json correctamente formateados log.warning(e) return exception.HTTPBadRequest(e) except DatosException as e: log.warning(e) return exception.HTTPBadRequest(e) # Realizamos la operacion Creacion de Usuarios mediante la librería try: grupo = Grupo() cn_grupo = contenido['cn'] contenido = grupo.crear(cn_grupo, contenido) except ConflictoException as e: # Si el grupo ya existe, devolvemos un 409 Conflict log.warning(e) return exception.HTTPConflict(e) # La siguiente parece ser LA FORMA de responder en este caso # TODO: Sin embargo, mi response en este caso esta vació cuando se llama con un Request creado vacío peticion.response.status_code = 201 peticion.response.headerlist.extend( ( ('Location', "grupos/%s" % str(cn_grupo)), ) ) return {'mensaje': cn_grupo} @view_config(route_name='grupos_listado', renderer='json', permission='listar') def grupos_listado(peticion): try: grupo = Grupo() contenido = grupo.obtener() except Exception as e: log.error(e) return exception.HTTPInternalServerError() print(contenido) return contenido @view_config(route_name='grupos_listado_options', renderer='json') def grupos_listado_options(peticion): pass @view_config(route_name='grupos_detalle', renderer='json') def grupos_detalle (peticion): try: uid = peticion.matchdict['grupo'] except KeyError as e: return exception.HTTPBadRequest() # Realizamos la operación Detalle de Usuarios mediante la librería try: grupo = Grupo() contenido = grupo.obtener(uid) except DatosException as e: return exception.HTTPNotFound() except Exception as e: log.error(e) return exception.HTTPInternalServerError() return {'mensaje': contenido} @view_config(route_name='grupos_borrado', renderer='json', permission='borrado') def grupos_borrado(peticion): # Validando datos recibidos try: v = EsquemaGrupo() cn_grupo = peticion.matchdict['grupo'] except KeyError as e: log.warning(e) return exception.HTTPBadRequest(e) except TypeError as e: # Se refiere a que no se hayan enviado datos json correctamente formateados log.warning(e) return exception.HTTPBadRequest(e) except DatosException as e: log.warning(e) return exception.HTTPBadRequest(e) # Realizamos la operacion Borrado de Grupos mediante la librería try: grupo = Grupo() contenido = grupo.borrar(cn_grupo) except ConflictoException as e: # En este caso, conflicto viene a decir que no existe log.warning(e) return exception.HTTPNotFound(e) except DatosException as e: log.warning(e) return exception.HTTPBadRequest(e) except Exception as e: log.error(e) return exception.HTTPInternalServerError(e) return {'mensaje': contenido}
2.328125
2
pdf_sanitizer/pdf_sanitizer.py
lucasmrdt/pdf-sanitizer
0
12793945
import difflib import pathlib import argparse from .utils import fail_with_message, progress_with_message, success_with_message try: import PyPDF2 except ImportError: fail_with_message( 'Please install required dependencies before using this package.\n\t> pip3 install -r requirements.txt --user') def parse_file(path: str): if not pathlib.Path(path).exists(): raise argparse.ArgumentTypeError('invalid file path') return path def parse_ratio(x): try: x = float(x) except ValueError: raise argparse.ArgumentTypeError( "%r not a floating-point literal" % (x,)) if x < 0.0 or x > 1.0: raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0]" % (x,)) return x def diff(content1: str, content2: str): return difflib.SequenceMatcher(None, content1, content2) def has_deleted_item(diff): for operation, *_ in diff.get_opcodes(): if operation == 'delete' or operation == 'replace': return True return False def get_title(content): return content.split('\n')[0] def get_content(content): return content.replace(get_title(content), '').strip() def has_content(content): return len(get_content(content)) != 0 def sanitize(pad_input: PyPDF2.PdfFileReader, pdf_output: PyPDF2.PdfFileWriter, title_ratio: float, content_ratio: float): prev_page = pad_input.getPage(0) nb_pages = pad_input.getNumPages() for i in range(1, nb_pages): progress_with_message('Sanitizing pdf ...', i / nb_pages) current_page = pad_input.getPage(i) current_content = current_page.extractText() prev_content = prev_page.extractText() diff_title = diff(get_title(prev_content), get_title(current_content)) diff_content = diff(get_content(prev_content), get_content(current_content)) title_has_changed = diff_title.ratio() < title_ratio content_has_changed = (diff_content.ratio() < content_ratio and (has_deleted_item(diff_content) or len(prev_content) > len(current_content))) if has_content(prev_content) and (title_has_changed or content_has_changed): pdf_output.addPage(prev_page) prev_page = current_page pdf_output.addPage(prev_page) parser = argparse.ArgumentParser( description="Quickly remove useless page from a huge pdf to get a readable pdf") parser.add_argument('input_file', type=parse_file, help='pdf file to be sanitized') parser.add_argument('output_file', type=str, help='output sanitized pdf file name') parser.add_argument('--title-ratio', type=parse_ratio, help='float between [0, 1] which is responsible of detecting similar pages from title. The higher the ratio, the more sensitive the sanitizer will be to any changes. (default: 0.5)', default=.5, dest='title_ratio') parser.add_argument('--content-ratio', type=parse_ratio, help='float between [0, 1] which is responsible of detecting similar pages from content. The higher the ratio, the more sensitive the sanitizer will be to any changes. (default: 0.8)', default=.8, dest='content_ratio') def main(): args = parser.parse_args() pdf_input = PyPDF2.PdfFileReader(args.input_file) pdf_output = PyPDF2.PdfFileWriter() sanitize(pdf_input, pdf_output, args.title_ratio, args.content_ratio) with open(args.output_file, 'wb') as f: pdf_output.write(f) success_with_message(f'Your file has been sanitized at {args.output_file}') if __name__ == '__main__': main()
2.859375
3
utils/files_to_h5_hierarchical.py
lzamparo/SdA_reduce
0
12793946
#! /usr/bin/env python """ Vacuum up all the object.CSV files from the given input directory, and pack them into an hdf5 file that is organized by plate.well Plates go 1 .. 14. Rows go 1 ... 16, Cols 1 ... 24. """ import os from optparse import OptionParser import pandas from tables.file import File, openFile from tables import Filters from tables import Atom import numpy as np # Check that options are present, else print help msg parser = OptionParser() parser.add_option("-i", "--input", dest="indir", help="read input from here") parser.add_option("-s", "--suffix", dest="suffix", help="specify the suffix for data files") parser.add_option("-d", "--dataframe", dest="dataframe", help="read a csv file describing the data set here") parser.add_option("-o", "--filename", dest="filename", help="specify the .h5 filename that will contain all the data") (options, args) = parser.parse_args() # Open and prepare an hdf5 file filename = options.filename h5file = openFile(filename, mode = "w", title = "Data File") # Load the dataframe describing the layout of the experimental data df = pandas.read_csv(options.dataframe) all_plates = set(df['Plate']) # Create a new group under "/" (root) plates_group = h5file.createGroup("/", 'plates', 'the plates for this replicate') # Create a group for each plate for plate in all_plates: desc = "plate number " + str(plate) h5file.createGroup("/plates/",str(plate),desc) # build a lookup of image number to plate, well img_to_pw = {} # populate the lookup table of image number to (plate, well) for index, rec in df.iterrows(): for img_num in xrange(rec['Low'],rec['High'] + 1): well = (int(rec['Row']) - 1) * 24 + int(rec['Col']) img_to_pw[img_num] = (rec['Plate'],well) # get the root root = h5file.root # Go and read the files, input_dir = options.indir suffix = options.suffix cur_dir = os.getcwd() try: files = os.listdir(input_dir) os.chdir(input_dir) except: print "Could not read files from " + input_dir # Read all the files, process 'em. zlib_filters = Filters(complib='zlib', complevel=5) for i,f in enumerate(files): if i % 10 == 0: print "processing %s, %d files done of %d total" % (f,i,len(files)) if f.endswith(suffix): my_data = np.genfromtxt(f, delimiter=',', autostrip = True) atom = Atom.from_dtype(my_data.dtype) # slice this data file by grouped image numbers min_img, max_img = int(min(my_data[:,0])), int(max(my_data[:,0])) for img_num in xrange(min_img,max_img+1): try: plate, well = img_to_pw[img_num] except KeyError as e: print "image number not found in image to well map: " + str(img_num) continue objs = my_data[my_data[:,0] == img_num] well_group = "/plates/" + str(plate) well_node = "/plates/" + str(plate) + "/" + str(well) if h5file.__contains__(well_node): # some data for this well exists in an EArray already, append this data to it. ds = h5file.get_node(where=well_node) ds.append(objs) else: # no data from images belonging to this well have yet been dumped into an EArray. ds = h5file.create_earray(where=well_group, name=str(well), atom=atom, shape=(0,my_data.shape[1]), filters=zlib_filters) ds.append(objs) h5file.flush() os.chdir(cur_dir) print "done!" h5file.close()
3.203125
3
pyImagingMSpec/smoothing.py
andy-d-palmer/pyIMS
2
12793947
__author__ = 'palmer' # every method in smoothing should accept (im,**args) def median(im, **kwargs): from scipy import ndimage im = ndimage.filters.median_filter(im,**kwargs) return im def hot_spot_removal(xic, q=99.): import numpy as np xic_q = np.percentile(xic, q) xic[xic > xic_q] = xic_q return xic
2.640625
3
aldryn_apphooks_config_utils/context_processors.py
TigerND/aldryn-apphook-utils
0
12793948
# -*- coding: utf-8 -*- from __future__ import unicode_literals from aldryn_apphooks_config.utils import get_app_instance def apphooks_config(request): namespace, config = get_app_instance(request) return { 'namespace': namespace, 'config': config, }
1.484375
1
tests/multijson/test_multi.py
adeadman/multijson
1
12793949
<gh_stars>1-10 import json import uuid import datetime import pytest from decimal import Decimal from multijson import MultiJSONEncoder class Custom: def __init__(self, name, age): self.name = name self.age = age class TestMultiJSONEncoder: def test_dump_uuid(self): test_input = { "id": uuid.uuid4(), } output = json.dumps(test_input, cls=MultiJSONEncoder) result = json.loads(output) assert "id" in result assert result["id"] == str(test_input["id"]) def test_dump_date(self): test_input = { "date": datetime.date(2017, 7, 1), } output = json.dumps(test_input, cls=MultiJSONEncoder) result = json.loads(output) assert "date" in result assert result["date"] == "2017-07-01" def test_dump_datetime(self): test_input = { "time": datetime.datetime(2017, 7, 1, 23, 11, 11), } output = json.dumps(test_input, cls=MultiJSONEncoder) result = json.loads(output) assert "time" in result assert result["time"] == "2017-07-01T23:11:11Z" def test_dump_decimal(self): test_input = { "a": Decimal('3.9'), "b": Decimal('0.0003'), "c": Decimal('1200000.0000021'), } output = json.dumps(test_input, cls=MultiJSONEncoder) assert output == '{"a": 3.9, "b": 0.0003, "c": 1200000.0000021}' def test_dump_custom_object(self): test_input = { "custom": Custom("Rincewind", 120), } with pytest.raises(TypeError): json.dumps(test_input, cls=MultiJSONEncoder)
2.53125
3
QUANTAXIS_Trade/WindowsCTP/test.py
xiongyixiaoyang/QUANTAXIS
2
12793950
<filename>QUANTAXIS_Trade/WindowsCTP/test.py<gh_stars>1-10 import datetime import logging import math import multiprocessing as mp import os import pickle import shutil import numpy as np import pandas as pd from ParadoxTrading.Chart import Wizard from ParadoxTrading.Engine import (MarketEvent, SettlementEvent, StrategyAbstract) from ParadoxTrading.EngineExt.Futures import (BacktestEngine, BacktestMarketSupply, CTAEqualFundPortfolio, CTAEqualRiskATRPortfolio, CTAEqualRiskGARCHPortfolio, InterDayBacktestExecution, InterDayPortfolio) from ParadoxTrading.EngineExt.Futures.Trend import CTAStatusType, CTAStrategy from ParadoxTrading.Fetch.ChineseFutures import (FetchDominantIndex, FetchInstrumentDayData, FetchProductIndex, RegisterIndex) from ParadoxTrading.Indicator import (BIAS, CCI, EFF, EMA, KDJ, MA, RSI, SAR, BBands, StepDrawdownStop) from ParadoxTrading.Utils import DataStruct class GetTradingday(object): def __init__(self, _start, _end, _symbol='a'): self.start = _start self.end = _end self.symbol = _symbol self.fetcherindex = FetchProductIndex() self.fetcherindex.psql_host = '192.168.4.103' self.fetcherindex.psql_user = 'ubuntu' self.fetcherindex.mongo_host = '192.168.4.103' def gettradingday(self): market_data = self.fetcherindex.fetchDayData( self.start, self.end, self.symbol) tradingday_list = market_data['tradingday'] return tradingday_list fetcher = FetchInstrumentDayData() fetcher.psql_host = '192.168.4.103' fetcher.psql_user = 'ubuntu' fetcher.mongo_host = '192.168.4.103' start = '20150101' end = '20180428' get_tradingday = GetTradingday(start, end) tradingday_list = get_tradingday.gettradingday() symbollist = ['oi', 'y'] for symbol in symbollist: data_df = pd.DataFrame() for index in range(1, len(tradingday_list)): pricelist = [] day = tradingday_list[index] yesterday = tradingday_list[index-1] domian_instrument = fetcher.fetchDominant(symbol, day) data = fetcher.fetchDayData(yesterday, day, domian_instrument) pricelist.append(data['tradingday'][0]) pricelist.append(data['openprice'][0]) pricelist.append(data['highprice'][0]) pricelist.append(data['lowprice'][0]) pricelist.append(data['closeprice'][0]) df = pd.DataFrame(pricelist).T df.columns = ['tradingday', 'openprice', 'highprice', 'lowprice', 'closeprice'] data_df = pd.concat([data_df, df]) pd.DataFrame.to_csv(data_df, '.\\data\\{0}.csv'.format(symbol))
2.03125
2