max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
djspace/bin/gm2m.py
carthagecollege/django-djspace
0
12796751
<reponame>carthagecollege/django-djspace #! /usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import django import os import sys django.setup() # env os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djspace.settings.shell') from django.contrib.auth.models import User user = User.objects.get(pk=1217743) print(user) apps = user.profile.applications.all() print(apps) ''' if apps: for a in apps: #print a print a.__dict__ #print a._state.__dict__ #print a.id # don't work #print a.all() #print a.get_related_models() '''
2.25
2
modules/parser/nodes/line_node.py
DavidMacDonald11/sea-to-c-transpiler-python-based
0
12796752
from modules.visitor.symbol_table import SymbolTable from .ast_node import ASTNode from .if_node import IfNode class LineNode(ASTNode): def __init__(self, expression, depth, no_end = False): self.expression = expression self.depth = depth self.no_end = no_end super().__init__(expression.position) def __repr__(self): return f"[{self.expression}]" def interpret(self, interpreter): return self.get_expression(interpreter) def transpile(self, transpiler): transpiler.depth = self.depth expression = self.get_expression(transpiler) indent = "\t" * self.depth return f"{indent}{expression}{'' if self.no_end else ';'}\n" def get_expression(self, visitor): if isinstance(self.expression, IfNode): visitor.symbol_table = SymbolTable(visitor.symbol_table) expression = self.expression.visit(visitor) visitor.symbol_table = visitor.symbol_table.parent return expression return self.expression.visit(visitor)
2.75
3
estruturais/flyweight/main.py
caio-bernardo/design-patterns-python
363
12796753
class KarakTea: def __init__(self, tea_type): self.__tea_type = tea_type @property def tea_type(self): return self.__tea_type class TeaMaker: def __init__(self): self.__available_tea = dict() def make(self, preference): if preference not in self.__available_tea: self.__available_tea[preference] = KarakTea(preference) return self.__available_tea[preference] class TeaShop: def __init__(self, tea_maker): self.__orders = dict() self.__tea_maker = tea_maker def take_order(self, tea_type, table): if table not in self.__orders: self.__orders[table] = list() self.__orders[table].append(self.__tea_maker.make(tea_type)) def serve(self): for table, orders in self.__orders.items(): print('Serving tea to table {}'.format(table)) if __name__ == '__main__': tea_maker = TeaMaker() shop = TeaShop(tea_maker) shop.take_order('red tea', 1) shop.take_order('red tea more sugar', 2) shop.take_order('red tea more milk', 3) shop.serve()
3.453125
3
examples/covid19/import_csse_covid19_daily.py
cudeso/PyMISP
0
12796754
<filename>examples/covid19/import_csse_covid19_daily.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- from pathlib import Path from csv import DictReader from pymisp import MISPEvent, MISPOrganisation, PyMISP from datetime import datetime from dateutil.parser import parse import json from pymisp.tools import feed_meta_generator from io import BytesIO make_feed = False path = Path('/home/raphael/gits/COVID-19/csse_covid_19_data/csse_covid_19_daily_reports/') if make_feed: org = MISPOrganisation() org.name = 'CIRCL' org.uuid = "55f6ea5e-2c60-40e5-964f-47a8950d210f" else: from covid_key import url, key misp = PyMISP(url, key) for p in path.glob('**/*.csv'): d = datetime.strptime(p.name[:-4], '%m-%d-%Y').date() event = MISPEvent() event.info = f"[{d.isoformat()}] CSSE COVID-19 daily report" event.date = d event.distribution = 3 event.add_tag('tlp:white') if make_feed: event.orgc = org else: e = misp.search(eventinfo=event.info, metadata=True, pythonify=True) if e: # Already added. continue event.add_attribute('attachment', p.name, data=BytesIO(p.open('rb').read())) event.add_attribute('link', f'https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports/{p.name}', comment='Source') with p.open() as f: reader = DictReader(f) for row in reader: obj = event.add_object(name='covid19-csse-daily-report', standalone=False) if 'Province/State' in row: if row['Province/State']: obj.add_attribute('province-state', row['Province/State']) elif '\ufeffProvince/State' in row: if row['\ufeffProvince/State']: obj.add_attribute('province-state', row['\ufeffProvince/State']) else: print(p, row.keys()) raise Exception() obj.add_attribute('country-region', row['Country/Region']) obj.add_attribute('update', parse(row['Last Update'])) if row['Confirmed']: obj.add_attribute('confirmed', int(row['Confirmed'])) if row['Deaths']: obj.add_attribute('death', int(row['Deaths'])) if row['Recovered']: obj.add_attribute('recovered', int(row['Recovered'])) if make_feed: with (Path('output') / f'{event.uuid}.json').open('w') as _w: json.dump(event.to_feed(), _w) else: misp.add_event(event) if make_feed: feed_meta_generator(Path('output'))
2.203125
2
data_scripts/create_splits.py
Berndwl/TextMaps
86
12796755
<reponame>Berndwl/TextMaps import os import sys from sklearn.cross_validation import KFold RESULT_PATH = '../data_shops/page_sets/splits/' PAGE_SETS_PATH = '../data_shops/page_sets/' SHOP_LIST_PATH = '../data_shops/shop_list.txt' def getPagesForShops(shops): pages = [] for shop in shops: page_set_path = os.path.join(PAGE_SETS_PATH,shop) with open(page_set_path, 'r') as f: shop_pages = [l.strip() for l in f.readlines()] pages.extend(shop_pages) return pages def createListFile(filename, pages): # for each page lines = [] for page in pages: line=page lines.append(line) with open(os.path.join(RESULT_PATH, filename),'w') as f: for line in lines: f.write(line+'\n') #----- MAIN PART if __name__ == "__main__": # read shop list with open(SHOP_LIST_PATH, 'r') as f: shops = [l.strip() for l in f.readlines()] kf = KFold(len(shops), n_folds=10) split_num=1 for train_index, test_index in kf: train_shops = [shops[i] for i in train_index] test_shops = [shops[i] for i in test_index] # get pages train_pages = getPagesForShops(train_shops) test_pages = getPagesForShops(test_shops) createListFile('split_'+str(split_num)+'_train.txt',train_pages) createListFile('split_'+str(split_num)+'_test.txt',test_pages) split_num+=1
2.6875
3
xls/build_rules/xls_rules_build_defs.bzl
netskink/xls
0
12796756
<reponame>netskink/xls # Copyright 2021 The XLS Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains build rules/macros for XLS. This module contain all the XLS build rules/macros that require testing but are not exposed to the user. This module is created for convenience. """ load( "//xls/build_rules:xls_codegen_rules.bzl", _xls_ir_verilog = "xls_ir_verilog", ) load( "//xls/build_rules:xls_jit_wrapper_rules.bzl", _xls_ir_jit_wrapper = "xls_ir_jit_wrapper", _xls_ir_jit_wrapper_macro = "xls_ir_jit_wrapper_macro", ) load( "//xls/build_rules:xls_ir_rules.bzl", _xls_dslx_ir = "xls_dslx_ir", _xls_ir_opt_ir = "xls_ir_opt_ir", ) load( "//xls/build_rules:xls_rules.bzl", _xls_dslx_opt_ir = "xls_dslx_opt_ir", _xls_dslx_verilog = "xls_dslx_verilog", ) xls_dslx_ir = _xls_dslx_ir xls_dslx_opt_ir = _xls_dslx_opt_ir xls_dslx_verilog = _xls_dslx_verilog xls_ir_opt_ir = _xls_ir_opt_ir xls_ir_verilog = _xls_ir_verilog xls_ir_jit_wrapper = _xls_ir_jit_wrapper xls_ir_jit_wrapper_macro = _xls_ir_jit_wrapper_macro
1.382813
1
py/tests/test_nil.py
JakeMakesStuff/erlpack
108
12796757
from __future__ import absolute_import from erlpack import pack def test_nil(): assert pack(None) == b'\x83s\x03nil'
1.445313
1
operative/test/report_test.py
buzzfeed/python-operative
0
12796758
import unittest import operative import datetime from caliendo.patch import patch from caliendo import expected_value from nose.tools import eq_, ok_ from operative.settings import TEST_FTP_LOGIN class ReportTest(unittest.TestCase): """ Test the various reports. """ @patch('operative.FTPConnection.get_files') @patch('operative.FTPConnection._establish_connection') @patch('operative.FTPConnection._close_connection') def test_line_item_report(self): """ Test LineItemReport """ from operative.reports.line_item_report import LineItemReport def __get_and_test(path, since): ftp_creds = operative.FTPCredentials(**TEST_FTP_LOGIN) line_item_reports = LineItemReport().get_report_files(ftp_credentials=ftp_creds, ftp_path=path, since=since) for lir in line_item_reports: observed_value = str(lir.data[0]) eq_(expected_value.get_or_store(observed_value), observed_value) # get all files __get_and_test(path='/flatfile', since=None) # get one file - using "since" __get_and_test(path='/flatfile', since=datetime.datetime(2014, 1, 7, 0, 42)) # get zero files - using "since" __get_and_test(path='/flatfile', since=datetime.datetime(2014, 2, 1)) # get zero files - only directories in path __get_and_test(path='/', since=None)
2.125
2
pys/006_get_table_columns.py
indecipherable/linuxtest_dust
0
12796759
<reponame>indecipherable/linuxtest_dust # works as intended import mysql.connector from mysql.connector import errorcode import sys import re import os from pprint import pprint as p # trying to import where_am_i as module #import importlib #where_am_i="/000_where_am_i" #sys.path.append(os.getcwd()) #import 000_where_am_i #pm = __import__(where_am_i) #find_where_am_i() import mysql.connector from mysql.connector import errorcode line_count = 0 # defines strip_end for project_dir def strip_end(text, suffix): if not text.endswith(suffix): return text return text[:len(text)-len(suffix)] # enumerate where our project directories are #print("DEBUG: sys.path is: %r" % sys.path) py_wd=os.getcwd() #print("DEBUG: thiscwd is: %r" % py_wd) project_dir=strip_end(py_wd, "/pys") #print("DEBUG: stripcwd is: %r" % project_dir) q_dir=project_dir+"/questions" #print("DEBUG: q_dir is: %r" % q_dir) def get_table_columns(): try: cnx = mysql.connector.connect(user='root', password='<PASSWORD>', host='127.0.0.1', database='linuxquiztest') except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) else: cursor = cnx.cursor() cursor.execute("DESCRIBE questions;") my_columns = cursor.fetchall() cursor.close() for (a_column) in my_columns: # line_count = line_count + 1 print(a_column) # print("DEBUG: line_count is: %s" % line_count) return my_columns get_table_columns() #print(my_columns)
2.390625
2
datasets/create_tf_record.py
ace19-dev/image-retrieval-tf
6
12796760
from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import os import random from PIL import Image, ImageStat import tensorflow as tf from datasets import dataset_utils flags = tf.app.flags flags.DEFINE_string('dataset_dir', '/home/ace19/dl_data/materials', 'Root Directory to dataset.') flags.DEFINE_string('output_path', '/home/ace19/dl_data/materials/query.record', 'Path to output TFRecord') flags.DEFINE_string('dataset_category', 'query', 'dataset category, train|validation|test') FLAGS = flags.FLAGS def get_label_map(label_to_index): label_map = {} # cls_lst = os.listdir(FLAGS.dataset_dir) cls_path = os.path.join(FLAGS.dataset_dir, FLAGS.dataset_category) cls_lst = os.listdir(cls_path) for i, cls in enumerate(cls_lst): data_path = os.path.join(cls_path, cls) img_lst = os.listdir(data_path) for n, img in enumerate(img_lst): img_path = os.path.join(data_path, img) label_map[img_path] = label_to_index[cls] return label_map def dict_to_tf_example(image_name, dataset_directory, label_map=None, image_subdirectory='train'): """ Args: image: a single image name dataset_directory: Path to root directory holding PCam dataset label_map: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the PCam dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by image is not a valid PNG """ # full_path = os.path.join(dataset_directory, image_subdirectory, image_name) full_path = os.path.join(dataset_directory, image_name) with tf.io.gfile.GFile(full_path, 'rb') as fid: encoded = fid.read() encoded_io = io.BytesIO(encoded) image = Image.open(encoded_io) width, height = image.size format = image.format image_stat = ImageStat.Stat(image) mean = image_stat.mean std = image_stat.stddev key = hashlib.sha256(encoded).hexdigest() # if image_subdirectory.lower() == 'test': # label = -1 # else: # label = int(label_map[image_name]) label = int(label_map[full_path]) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_utils.int64_feature(height), 'image/width': dataset_utils.int64_feature(width), 'image/filename': dataset_utils.bytes_feature(image_name.encode('utf8')), 'image/fullpath': dataset_utils.bytes_feature(full_path.encode('utf8')), 'image/source_id': dataset_utils.bytes_feature(image_name.encode('utf8')), 'image/key/sha256': dataset_utils.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_utils.bytes_feature(encoded), 'image/format': dataset_utils.bytes_feature(format.encode('utf8')), 'image/class/label': dataset_utils.int64_feature(label), # 'image/text': dataset_util.bytes_feature('label_text'.encode('utf8')) 'image/mean': dataset_utils.float_list_feature(mean), 'image/std': dataset_utils.float_list_feature(std) })) return example def main(_): tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) options = tf.io.TFRecordOptions(tf.io.TFRecordCompressionType.GZIP) writer = tf.io.TFRecordWriter(FLAGS.output_path, options=options) # cls_lst = os.listdir(FLAGS.dataset_dir) dataset_lst = os.path.join(FLAGS.dataset_dir, FLAGS.dataset_category) cls_lst = os.listdir(dataset_lst) cls_lst.sort() label_to_index = {} for i, cls in enumerate(cls_lst): cls_path = os.path.join(dataset_lst, cls) if os.path.isdir(cls_path): label_to_index[cls] = i label_map = get_label_map(label_to_index) random.shuffle(cls_lst) for i, cls in enumerate(cls_lst): cls_path = os.path.join(dataset_lst, cls) img_lst = os.listdir(cls_path) total = len(img_lst) for idx, image in enumerate(img_lst): if idx % 100 == 0: tf.compat.v1.logging.info('On image %d of %d', idx, total) tf_example = dict_to_tf_example(image, cls_path, label_map, FLAGS.dataset_category) writer.write(tf_example.SerializeToString()) writer.close() if __name__ == '__main__': tf.compat.v1.app.run()
2.25
2
examples/settings.py
seankmartin/brainrender
0
12796761
<filename>examples/settings.py """ Brainrender provides several default settins (e.g. for shader style) which can be changed to personalize your rendering. This example shows you how """ import brainrender from brainrender import Scene from rich import print from myterial import orange from pathlib import Path print(f"[{orange}]Running example: {Path(__file__).name}") brainrender.settings.BACKGROUND_COLOR = [ 0.22, 0.22, 0.22, ] # change rendering background color brainrender.settings.WHOLE_SCREEN = ( False # make the rendering window be smaller ) brainrender.settings.SHOW_AXES = ( False # turn off the axes display ) # make scenes with different shader styles for shader in ("plastic", "cartoon"): brainrender.settings.SHADER_STYLE = shader scene = Scene(title=shader) scene.render()
2.859375
3
parser/team02/proyec_v2/ast/Expresion.py
webdev188/tytus
35
12796762
class Expresion: def getValor(self,entorno,tree): pass
1.398438
1
arike/visits/migrations/0005_auto_20220304_2228.py
iamsdas/arike
0
12796763
<filename>arike/visits/migrations/0005_auto_20220304_2228.py # Generated by Django 3.2.12 on 2022-03-04 16:58 import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('patients', '0014_auto_20220304_2228'), ('visits', '0004_auto_20220304_2225'), ] operations = [ migrations.AlterField( model_name='treatmentnote', name='created_at', field=models.DateTimeField(default=datetime.datetime(2022, 3, 4, 16, 58, 46, 500162, tzinfo=utc)), ), migrations.AlterField( model_name='treatmentnote', name='treatment', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='patients.treatment'), ), migrations.AlterField( model_name='visitdetails', name='created_at', field=models.DateTimeField(default=datetime.datetime(2022, 3, 4, 16, 58, 46, 499184, tzinfo=utc)), ), migrations.AlterField( model_name='visitschedule', name='created_at', field=models.DateTimeField(default=datetime.datetime(2022, 3, 4, 16, 58, 46, 498165, tzinfo=utc)), ), ]
1.476563
1
app/routers/weather/models.py
neurothrone/weather-api
0
12796764
from pydantic import BaseModel, Field from app.shared.enums import Units class LocationBase(BaseModel): units: Units = Units.METRIC class CityLocation(BaseModel): city: str state: str | None = Field(default=None, max_length=3) country: str | None = None class Config: schema_extra = { "example": { "city": "gothenburg" } } class CoordsLocation(LocationBase): lat: float lon: float class Config: schema_extra = { "example": { "lat": "50", "lon": "30" } } class WeatherOut(BaseModel): temperature: str units: Units city: str | None = None country: str | None = None weather: str | None = None lat: float | None = None lon: float | None = None
2.796875
3
scripts/planet-caravan/zoho-sync.py
labogdan/planet-caravan-backend
0
12796765
import os import sys import json import mimetypes import urllib import requests import django sys.path.append(os.path.abspath('.')) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "saleor.settings") try: django.setup() except: pass from django.core.cache import cache from dotenv import load_dotenv from Lib.CLI import * from Lib.helpers import handleize, description_block from Lib.Saleor.Product import Product from Lib.Saleor.Variant import Variant from Lib.Saleor.ProductType import ProductType from Lib.Saleor.ProductAttribute import ProductAttribute from Lib.Saleor.ProductAttributeValue import ProductAttributeValue from Lib.Saleor.Category import Category from Lib.Saleor.ProductCollection import ProductCollection import psycopg2 from psycopg2.extras import DictCursor from pprint import pprint import boto3 import pickle from datetime import datetime, timedelta from Lib.Email import send_email oauth_token = None # Global variable cursor = None db = None environment = 'local' def db_connect(env='production'): info("Connecting to DB") global db global environment environment = env try: if environment == 'local': # Local dev db_name = os.getenv('DB_NAME') db_user = os.getenv('DB_USER') db_host = os.getenv('DB_HOST') db_pass = os.getenv('DB_PASS') db = psycopg2.connect( f"dbname='{db_name}' user='{db_user}' host='{db_host}' password='{db_<PASSWORD>}'") else: # Heroku Production db_host = os.environ['DATABASE_URL'] db = psycopg2.connect(db_host, sslmode='require') db.autocommit = True return db except Exception as e: error("Unable to connect to database.") error(e) return False def get_oauth(): global oauth_token oauth_url = 'https://accounts.zoho.com/oauth/v2/token' params = { 'client_id': os.getenv('ZOHO_CLIENT_ID'), 'client_secret': os.getenv('ZOHO_CLIENT_SECRET'), 'refresh_token': os.getenv('ZOHO_REFRESH_TOKEN'), 'grant_type': 'refresh_token' } response = requests.post(url=oauth_url, params=params) if response is not None: oauth_token = response.json()['access_token'] return True return False def handle_raw_product(raw_product: dict = None, config: dict = None): global cursor if not config: config = { 'force_images': False } print('======================================') warning(f'handle_raw_product(): {raw_product["Product_Name"]}') # Product product = Product() product.name = raw_product['Product_Name'].split('|')[0].strip() product.slug = handleize(raw_product['Product_Name']) product.description = str(raw_product['Description']) product.description_json = description_block(raw_product['Description']) metadata = {} for mk, pk in { 'DROP_DATE': 'Drop_Date_Time', 'COMING_SOON': 'Coming_Soon', 'CROSS_SELL': 'Cross_Sell', 'CROSS_SELL_URL': 'Cross_Sell_URL', 'PELICAN_SIZE': 'Suggested_Pelican_Size' }.items(): if pk in raw_product and raw_product[pk] is not None: metadata[mk] = str(raw_product[pk]) product.metadata = json.dumps(metadata) product.private_metadata = json.dumps({ 'ZOHO_ID': raw_product['id'] }) # Variant variant = Variant() variant.name = str(raw_product['Product_Name']) variant.sku = str(raw_product['SKU']).strip("'") if not variant.sku: error("No SKU, skipping.") return False variant.cost_price_amount = raw_product['Cost'] variant.weight = 0 variant.price_amount = raw_product['Unit_Price'] product.variants.append(variant) # Product type pt = ProductType() pt.type = raw_product['Category'] pt.slug = handleize(raw_product['Category']) # Category if 'Department' not in raw_product.keys() or raw_product['Department'] is None: error(f'Product {product.name} has no Department') return parent_category = Category(raw_product['Department']) if 'Category' not in raw_product.keys() or raw_product['Category'] is None: error(f'Product {product.name} has no Category') return child_category = Category(raw_product['Category']) child_category.level = 1 parent_category.children.append(child_category) product.category = parent_category # Attributes for i in range(1, 7): name_key = f'Attribute_Name_{i}' value_key = f'Attribute_Value_{i}' if (name_key in raw_product.keys() and value_key in raw_product.keys() and raw_product[name_key] and raw_product[value_key]): product_attribute = ProductAttribute(raw_product[name_key], [ProductAttributeValue( raw_product[value_key])]) pt.add_attribute(product_attribute) product.type = pt # Collections if 'Collection' in raw_product.keys() and type(raw_product['Collection']) is str: for collection_name in raw_product['Collection'].split(','): collection_name = collection_name.strip() collection = ProductCollection() collection.name = collection_name collection.slug = handleize(collection_name) product.collections.append(collection) create_or_update_data(product) # Images handle_images(product, raw_product, config['force_images']) def create_or_update_data(product: Product = None): global cursor info(f'create_or_update_data(): {product.name} | {product.variants[0].sku}') product.type = handle_product_type(product.type) comment(f'Product type ID: {product.type.id}') product.category = handle_product_category(product.category) comment(f'Product category ID: {product.category.children[0].id}') product.collections = handle_product_collection(product.collections) # Create the product, matched by SKU cursor.execute(""" SELECT p.id FROM product_productvariant pv LEFT JOIN product_product p ON pv.product_id = p.id WHERE pv.sku = %s """, (product.variants[0].sku,)) product_result = cursor.fetchone() if product_result: product.id = product_result[0] cursor.execute(""" UPDATE product_product SET id = product_product.id, name = %s, description = %s, description_json = %s, product_type_id = %s, category_id = %s, metadata = %s, private_metadata = %s, updated_at = NOW(), is_published = %s, publication_date = NOW() WHERE id = %s """, ( # UPDATE clause product.name, product.description, product.description_json, product.type.id, product.category.children[0].id, product.metadata, product.private_metadata, product.is_published, product.id )) else: cursor.execute(""" INSERT INTO product_product (name, description, description_json, product_type_id, category_id, is_published, charge_taxes, currency, slug, visible_in_listings, metadata, private_metadata, in_stock, publication_date, updated_at, available_for_purchase) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, NOW(), NOW(), NOW()) ON CONFLICT (slug) DO UPDATE SET id = product_product.id, name = %s, description = %s, description_json = %s, product_type_id = %s, category_id = %s, metadata = %s, private_metadata = %s, is_published = %s, publication_date = NOW(), updated_at = NOW() RETURNING id """, ( # INSERT clause product.name, product.description, product.description_json, product.type.id, product.category.children[0].id, product.is_published, product.charge_taxes, product.currency, product.slug, product.visible_in_listings, product.metadata, product.private_metadata, False, # UPDATE clause product.name, product.description, product.description_json, product.type.id, product.category.children[0].id, product.metadata, product.private_metadata, product.is_published )) product.id = cursor.fetchone()[0] info(f'Product ID: {product.id}') # Add Attributes for i, attribute in enumerate(product.type.attributes): cursor.execute(""" INSERT INTO product_assignedproductattribute(product_id, assignment_id) VALUES(%s, %s) ON CONFLICT (product_id, assignment_id) DO UPDATE SET id = product_assignedproductattribute.id RETURNING id """, (product.id, attribute.assignment_id)) apa_id = cursor.fetchone()[0] # Clear out prior attribute cursor.execute(""" DELETE FROM product_assignedproductattribute_values WHERE assignedproductattribute_id = %s """, (apa_id,)) # Create the new value cursor.execute(""" INSERT INTO product_assignedproductattribute_values (assignedproductattribute_id, attributevalue_id) VALUES(%s, %s) ON CONFLICT (assignedproductattribute_id, attributevalue_id) DO NOTHING """, (apa_id, attribute.values[0].id)) # Add Variant variant = product.variants[0] cursor.execute(""" INSERT INTO product_productvariant (sku, name, product_id, cost_price_amount, weight, metadata, private_metadata, currency, price_amount, track_inventory) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, TRUE) ON CONFLICT (sku) DO UPDATE SET id = product_productvariant.id RETURNING id """, (variant.sku, variant.name, product.id, variant.cost_price_amount, variant.weight, variant.metadata, variant.private_metadata, variant.currency, variant.price_amount)) variant.id = cursor.fetchone()[0] info(f'Variant ID: {variant.id}') try: cursor.execute(""" UPDATE product_product SET default_variant_id = %s WHERE id = %s """, (variant.id, product.id)) except: pass # Add To Collections collections_to_keep = () if len(product.collections): for collection in product.collections: collections_to_keep = (*collections_to_keep, collection.id) warning(f'Adding to collection: {product.id} in {collection.id}') cursor.execute(""" INSERT INTO product_collectionproduct(collection_id, product_id) VALUES(%s, %s) ON CONFLICT (collection_id, product_id) DO NOTHING """, (collection.id, product.id)) if len(collections_to_keep): # Remove from any other collections cursor.execute(""" DELETE FROM product_collectionproduct WHERE product_id = %s AND collection_id NOT IN %s """, (product.id, collections_to_keep)) else: # Just remove from all cursor.execute(""" DELETE FROM product_collectionproduct WHERE product_id = %s """, (product.id,)) # Add Warehouse entry cursor.execute(""" SELECT id FROM warehouse_warehouse LIMIT 1""") warehouse_id = cursor.fetchone()[0] info(f'Creating warehouse entry: {warehouse_id}') cursor.execute(""" INSERT INTO warehouse_stock (product_variant_id, quantity, warehouse_id) VALUES(%s, %s, %s) ON CONFLICT(product_variant_id, warehouse_id) DO NOTHING """, (product.variants[0].id, 0, warehouse_id)) return True def handle_images(product: Product, raw_product: dict = None, force_images: bool = False) -> None: global oauth_token global cursor global environment raw_images = [] for i in range(10): k = f'Product_Photo{i}' if k in raw_product.keys() and raw_product[k] and len(raw_product[k]) > 0: raw_images.append(raw_product[k][0]) s3 = None AWS_MEDIA_BUCKET_NAME = os.environ.get("AWS_MEDIA_BUCKET_NAME") AWS_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY") zoho_id = json.loads(product.private_metadata)['ZOHO_ID'] url = f'https://www.zohoapis.com/crm/v2/Products/{zoho_id}/Attachments' headers = { 'Authorization': f'Zoho-oauthtoken {oauth_token}', } all_filenames = () for i, image in enumerate(raw_images): attachment_id = image['attachment_Id'] filename = image['file_Name'] all_filenames = (*all_filenames, f"products/{filename}") try: # Check if filename exists already cursor.execute(""" SELECT COUNT(*) AS count FROM product_productimage WHERE product_id = %s and image = %s """, (product.id, f"products/{filename}")) existing_image = cursor.fetchone()[0] # Upload if new or forced if (not existing_image and environment != 'local') or force_images is True: warning(f'Uploading Image: {filename}') session = boto3.Session( aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, ) s3 = session.resource('s3') mtype = mimetypes.MimeTypes().guess_type(filename)[0] img_url = f'{url}/{attachment_id}' info(img_url) req = urllib.request.Request(img_url, headers=headers) response = urllib.request.urlopen(req) img_bytes = response.read() s3.Bucket(AWS_MEDIA_BUCKET_NAME).put_object( Body=img_bytes, Key=f'products/{filename}', ContentType=mtype) # Insert or update db if not existing_image: cursor.execute(""" INSERT INTO product_productimage(sort_order, product_id, image, ppoi, alt) VALUES(%s, %s, %s, %s, %s) """, (i, product.id, f"products/{filename}", '0.5x0.5', '')) else: cursor.execute(""" UPDATE product_productimage SET sort_order = %s WHERE product_id = %s and image = %s """, (i, product.id, f"products/{filename}")) warning(f'Existing Image: {filename}') except: pass # Clear out unused photos try: if len(all_filenames): warning("Keep files:") warning(all_filenames) cursor.execute(""" DELETE FROM product_productimage WHERE product_id = %s AND image NOT IN %s """, (product.id, all_filenames)) else: cursor.execute(""" DELETE FROM product_productimage WHERE product_id = %s """, (product.id,)) except: error('Error clearing out unused images.') pass def handle_product_type(pt: ProductType = None) -> int: global cursor warning('PRODUCT TYPE') # The ProductType itself cursor.execute(""" INSERT INTO product_producttype (name, has_variants, is_shipping_required, weight, is_digital, slug, metadata, private_metadata) VALUES(%s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT (slug) DO UPDATE SET id = product_producttype.id, name = %s RETURNING id """, ( # INSERT clause pt.type, False, True, 0, False, pt.slug, '{}', '{}', # UPDATE clause pt.type)) pt.id = cursor.fetchone()[0] # Attributes for i, attribute in enumerate(pt.attributes): cursor.execute(""" INSERT INTO product_attribute (name, slug, input_type, available_in_grid, visible_in_storefront, filterable_in_dashboard, filterable_in_storefront, value_required, storefront_search_position, is_variant_only, metadata, private_metadata) VALUES(%s, %s, %s, TRUE, TRUE, TRUE, TRUE, TRUE, 0, FALSE, '{}', '{}') ON CONFLICT (slug) DO UPDATE SET id = product_attribute.id, name = %s RETURNING id """, ( # INSERT clause attribute.type, attribute.slug, 'dropdown', # UPDATE clause attribute.type )) pt.attributes[i].id = cursor.fetchone()[0] comment(f'Attribute {attribute.type}({i}) : {pt.attributes[i].id}') cursor.execute(""" INSERT INTO product_attributeproduct(attribute_id, product_type_id) VALUES(%s, %s) ON CONFLICT (attribute_id, product_type_id) DO UPDATE SET id = product_attributeproduct.id RETURNING ID """, (attribute.id, pt.id)) pt.attributes[i].assignment_id = cursor.fetchone()[0] comment(f' Assignment ID: {pt.attributes[i].assignment_id}') # Attribute Values for j, value in enumerate(attribute.values): cursor.execute(""" INSERT INTO product_attributevalue(name, slug, value, attribute_id) VALUES(%s, %s, %s, %s) ON CONFLICT (attribute_id, slug) DO UPDATE SET id = product_attributevalue.id, name = %s, value = %s RETURNING id """, ( # INSERT clause value.value, value.slug, value.slug, pt.attributes[i].id, # UPDATE clause value.value, value.slug )) pt.attributes[i].values[j].id = cursor.fetchone()[0] comment(f' Value {value.value} : {pt.attributes[i].values[j].id}') return pt def handle_product_category(cat: Category = None) -> Category: global cursor warning('CATEGORIES') cursor.execute(""" INSERT INTO product_category (name, slug, level, description, lft, rght, tree_id, background_image, background_image_alt, description_json, parent_id, metadata, private_metadata) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT (slug) DO UPDATE SET id = product_category.id, name = %s RETURNING id """, ( # INSERT clause cat.name, cat.slug, cat.level, cat.description, cat.lft, cat.rght, cat.tree_id, cat.background_image, cat.background_image_alt, cat.description_json, cat.parent_id, '{}', '{}', # UPDATE clause cat.name )) cat.id = cursor.fetchone()[0] comment(f'{cat.name}: {cat.id}') for i, child_cat in enumerate(cat.children): cat.children[i].parent_id = cat.id child_cat.parent_id = cat.id cursor.execute(""" INSERT INTO product_category (name, slug, level, description, lft, rght, tree_id, background_image, background_image_alt, description_json, parent_id, metadata, private_metadata) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT (slug) DO UPDATE SET id = product_category.id, name = %s RETURNING id """, ( # INSERT clause child_cat.name, child_cat.slug, child_cat.level, child_cat.description, child_cat.lft, child_cat.rght, child_cat.tree_id, child_cat.background_image, child_cat.background_image_alt, child_cat.description_json, child_cat.parent_id, '{}', '{}', # UPDATE clause child_cat.name )) cat.children[i].id = cursor.fetchone()[0] comment(f' {child_cat.name}: {cat.children[i].id}') return cat def handle_product_collection(collections: list = None) -> None: global cursor warning('COLLECTIONS') for c, collection in enumerate(collections): cursor.execute(""" INSERT INTO product_collection (name, slug, background_image, seo_description, seo_title, is_published, description, publication_date, background_image_alt, description_json, metadata, private_metadata) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON CONFLICT(slug) DO UPDATE SET id = product_collection.id, name = %s RETURNING id """, ( # INSERT clause collection.name, collection.slug, '', '', '', 'True', '', 'NOW()', '', '{}', '{}', '{}', # UPDATE clause collection.name )) collections[c].id = cursor.fetchone()[0] comment(f'{collection.name}: {collection.id}') return collections def fix_category_hierarchy(): info('===== FIXING HIERARCHY =====') global db """ Note: this only is going to work for 2-level category hierarchies, as the data given for the import is set up that way. :return: """ warning("Rebuilding category hierarchy") # Rebuild the category nested set hierarchy (◔_◔) cursor = db.cursor(cursor_factory=DictCursor) fields = ['id', 'name', 'slug', 'lft', 'rght', 'tree_id', 'level', 'parent_id'] cursor.execute("""SELECT * FROM product_category""") categories = [] for result in cursor.fetchall(): category = Category(result['name']) for f in fields: setattr(category, f, result[f]) categories.append(category) for cat in categories: if cat.parent_id: parent = next((p for p in categories if p.id == cat.parent_id), None) if parent is None: error( f'Cannot find parent category for "{cat.name}" (pid {cat.parent_id})') return False else: parent.children.append(cat) parent_categories = list(filter(lambda c: c.parent_id is None, categories)) tid = 1 for pc in parent_categories: left = 1 pc.tree_id = tid pc.lft = left left += 1 for child in pc.children: child.lft = left child.rght = left + 1 child.tree_id = tid child.level = 1 left += 2 pc.rght = left tid += 1 # Write to db for pc in parent_categories: for c in [pc] + pc.children: comment(f'Updating hierarchy for {c.name} ({c.id}).') try: cursor.execute(""" UPDATE product_category SET lft = %s, rght = %s, tree_id = %s, level = %s WHERE id = %s """, (c.lft, c.rght, c.tree_id, c.level, c.id)) except Exception as e: error(f'Cannot set hierarchy: "{c.name}" ({c.id}).') error(e) return False return True def disable_products(products_to_disable=None): global cursor if products_to_disable is None: return True skus = tuple(str(p['SKU']).strip("'") for p in products_to_disable if p['SKU']) if len(skus) < 1: return 0 warning(f'Disabling {len(skus)} Products') cursor.execute(""" UPDATE product_product p SET is_published = FALSE FROM product_productvariant pv WHERE pv.product_id = p.id AND pv.sku in %s """, (skus,)) return len(products_to_disable) def do_import(arguments=None): info('===== RUNNING IMPORT =====') global oauth_token global cursor environment = 'production' if '--local' in arguments: del arguments[0] environment = 'local' load_dotenv() sync_all = False force_images = False if '--sync-all' in arguments: sync_all = True if '--force-images' in arguments: force_images = True db = db_connect(environment) if not db: error('Cannot connect to database.') return False cursor = db.cursor() if not get_oauth(): error("Could not retrieve updated access token.") return False url = 'https://www.zohoapis.com/crm/v2/Products' headers = { 'Authorization': f'Zoho-oauthtoken {oauth_token}' } # Limit the amount of calls we need to make by only grabbing changes # within the last 48 hours # (should also be enough to catch a failed sync or two) # can override with --sync-all flag if not sync_all: last_modified = datetime.now() - timedelta(hours=48) modified_since = f'{last_modified.strftime("%Y-%m-%d")}T00:00:00+05:00' headers['If-Modified-Since'] = modified_since parameters = { 'page': 1, 'per_page': 200, } keep_going = True while keep_going: info(f'Fetching page {parameters["page"]}') response = requests.get(url=url, headers=headers, params=parameters) if response is not None: data = response.json() response_info = data['info'] products = list(filter(lambda x: x['Web_Available'] is True, data['data'])) remove_products = list( filter(lambda x: x['Web_Available'] is False, data['data'])) for product in products: """ example `product`: { '$approval': { 'approve': False, 'delegate': False, 'reject': False, 'resubmit': False }, '$approval_state': 'approved', '$approved': True, '$currency_symbol': '$', '$editable': True, '$in_merge': False, '$orchestration': False, '$process_flow': False, '$review': None, '$review_process': { 'approve': False, 'reject': False, 'resubmit': False }, '$state': 'save', '$taxable': True, 'Attribute_Name_1': 'Style', 'Attribute_Name_2': 'Joint Size', 'Attribute_Name_3': 'Brand', 'Attribute_Name_4': None, 'Attribute_Name_5': None, 'Attribute_Name_6': None, 'Attribute_Value_1': 'Slide', 'Attribute_Value_2': '14mm', 'Attribute_Value_3': 'NA', 'Attribute_Value_4': None, 'Attribute_Value_5': None, 'Attribute_Value_6': None, 'Category': 'Slides', 'Collection': None, 'Cost': 3.5, 'Created_Time': '2021-04-30T13:49:13-04:00', 'Department': 'Smoke Shop', 'Description': None, 'Margin': 76.651, 'Needs_Reviewed': True, 'Owner': { 'email': '<EMAIL>', 'id': '3980137000000211013', 'name': '<NAME>' }, 'Product_Name': 'Got Vape - FGA366 Yellow/Black 14mm Slide | 400000236445', 'Product_Photos': None, 'Record_Image': None, 'SKU': "400000236445'", 'Supplier': 'Got Vape', 'Tag': [], 'Tax': [], 'Taxable': True, 'UPC': None, 'Unit_Price': 14.99, 'Web_Available': True, 'id': '3980137000009112120' } """ handle_raw_product(product, { 'force_images': force_images }) disable_products(remove_products) parameters['page'] += 1 keep_going = response_info['more_records'] else: keep_going = False return True def bust_cache(): info('===== CLEARING CACHE =====') qk = cache.keys("query-*") cache.delete_many(qk) return True if __name__ == '__main__': result = (do_import(sys.argv[1:]) and fix_category_hierarchy() and bust_cache()) message = 'Zoho sync completed successfully.' has_error = 0 if result: warning('Done.') else: has_error = 1 error("Completed with errors. There is likely output above.") message = 'Zoho sync had errors.' # Try sending email try: send_email('Zoho Sync Status', message) except: error("Could not send email notification.") # Exit script sys.exit(has_error)
1.984375
2
dataviva/apps/user/forms.py
joelvisroman/dataviva-site
126
12796766
<reponame>joelvisroman/dataviva-site from flask_wtf import Form from wtforms import TextField, DateField, BooleanField, HiddenField, validators, PasswordField, SelectField class SignupForm(Form): email = TextField('email', validators=[validators.Required(), validators.Email()]) fullname = TextField('fullname', validators=[validators.Required(), validators.Length(min=3, max=128, message='Name field must be between 3 and 128 characters long.')]) password = PasswordField('password', validators=[validators.Required(), validators.EqualTo('confirm', message='Passwords must match')]) confirm = PasswordField('confirm', validators=[validators.Required()]) agree_mailer = BooleanField('agree_mailer') class SigninForm(Form): email = TextField('email', validators=[validators.Required(), validators.Email()]) password = PasswordField('password', validators=[validators.Required()]) class ChangePasswordForm(Form): current_password = PasswordField('<PASSWORD>', validators=[validators.Required()]) new_password = PasswordField('<PASSWORD>', validators=[validators.Required()]) confirm = PasswordField('confirm', validators=[validators.Required(), validators.EqualTo( '<PASSWORD>password', message='Passwords must match')]) class LoginForm(Form): provider = HiddenField('provider', validators=[validators.Required()]) remember_me = BooleanField('remember_me', default=False) class ForgotPasswordForm(Form): email = TextField('email', validators=[validators.Required(), validators.Email()]) class ProfileForm(Form): fullname = TextField('fullname', validators=[validators.Required(), validators.Length(min=3, max=128, message='Name field must be between 3 and 128 characters long.')]) email = TextField('email', validators=[validators.Required(), validators.Email()]) birthday = DateField('birthday', validators=[ validators.Required()],format='%d/%m/%Y', description='Date format: day/month/year') country = TextField('country', validators=[validators.Required(), validators.Length(max=50, message='Country field must be 50 characters long.')]) state_province_region = TextField('state_province_region', validators=[validators.Required(), validators.Length( max=50, message='Format error.')]) city = TextField('city', validators=[validators.Required(), validators.Length(max=50, message='City field must be 50 characters long.')]) profile = SelectField('gender', choices=[('development_agents', 'Development Agents'),('entrepreneurs', 'Entrepreneurs'), ('students', 'Students and Professionals')]) occupation = TextField('occupation', validators=[validators.Required(), validators.Length(max=50, message='Occupation field must be 50 characters long.')]) institution = TextField('institution', validators=[validators.Optional(), validators.Length(max=50, message='Institution field must be 50 characters long.')]) agree_mailer = BooleanField('agree_mailer')
2.96875
3
docker/molecule/tests/test_docker.py
thisisthetechie/raspberry-ansible
43
12796767
<filename>docker/molecule/tests/test_docker.py import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_is_docker_installed(host): package_docker = host.package('docker-ce') assert package_docker.is_installed def test_run_hello_world_container_successfully(host): hello_world_ran = host.run("docker run hello-world") assert 'Hello from Docker!' in hello_world_ran.stdout
2.21875
2
bubble_sorter/__init__.py
joshuabode/bubble-sort-python
0
12796768
from .bubble_sort import *
1.078125
1
redditpoller/migrations/0014_auto_20170304_1513.py
ericleepa/watcherforreddit
8
12796769
<filename>redditpoller/migrations/0014_auto_20170304_1513.py # -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-04 20:13 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('redditpoller', '0013_watchedsubreddit_watchedsubredditthreads'), ] operations = [ migrations.RenameField( model_name='watchedsubredditthreads', old_name='parent_subreddt', new_name='parent_subreddit', ), ]
1.585938
2
common_holdings.py
Anindya-Das02/Portfolio-Common-Holdings
0
12796770
<reponame>Anindya-Das02/Portfolio-Common-Holdings from loggers import COMPARE_FUNDS_DIR_PATH, finish, prgm_end, linespace import os os.chdir(COMPARE_FUNDS_DIR_PATH) amcs = [f for f in os.listdir('.') if os.path.isfile(f)] if len(amcs) == 0: print("No AMCs file found for comparision.. please add files in 'Compare Funds' folder to compare!") exit(0) print(f"Comparing following {len(amcs)} funds:") for fund_name in amcs: print(f" - {fund_name}") linespace() holdings = [] for amc in amcs: with open(amc,'r') as f: holdings.append(set(f.readlines())) common_companies = set.intersection(*holdings) print(f"No of common companies: {len(common_companies)}") counter = 1 for i in common_companies: print(f"[{counter}]. {i}") counter += 1 finish() prgm_end()
2.671875
3
dj_vercereg/vercereg/serializers.py
davidath/dj-vercereg
0
12796771
# Copyright 2014 The University of Edinburgh # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from models import WorkspaceItem from models import Workspace from models import PESig from models import FunctionSig from models import LiteralSig from models import PEImplementation from models import FnImplementation from models import RegistryUserGroup from models import Connection from models import FunctionParameter from django.contrib.auth.models import User from django.contrib.auth.models import Group from rest_framework import serializers from vercereg.utils import get_base_rest_uri ############################################################################## class UserSerializer(serializers.HyperlinkedModelSerializer): def get_reg_groups(self, obj): toret = [] request = self.context.get('request') for v in obj.groups.values(): group_id = v['id'] g = Group.objects.get(id=group_id) try: rug_instance = RegistryUserGroup.objects.get(group=g) rug = (get_base_rest_uri(request) + 'registryusergroups/' + str(rug_instance.id) + '/') toret.append(rug) except RegistryUserGroup.DoesNotExist: pass return toret groups = serializers.SerializerMethodField('get_reg_groups') def restore_object(self, attrs, instance=None): user = super(UserSerializer, self).restore_object(attrs, instance) user.set_password(attrs['password']) return user class Meta: model = User fields = ( 'url', 'username', 'email', 'first_name', 'last_name', 'password', 'groups', 'ownsgroups') write_only_fields = ('password',) read_only_fields = ('ownsgroups',) # class UserUpdateSerializer(serializers.HyperlinkedModelSerializer): # groups = serializers.SerializerMethodField('get_reg_groups') # # def get_reg_groups(self, obj): # toret = [] # request = self.context.get('request') # for v in obj.groups.values(): # group_id = v['id'] # g = Group.objects.get(id=group_id) # try: # rug_instance = RegistryUserGroup.objects.get(group=g) # rug = get_base_rest_uri(request) + 'registryusergroups/' + # str(rug_instance.id) + '/' # toret.append(rug) # except RegistryUserGroup.DoesNotExist: # pass # return toret # # def restore_object(self, attrs, instance=None): # user = super(UserUpdateSerializer, self).restore_object(attrs, instance) # user.set_password(attrs['password']) # return user # # class Meta: # model = User # fields = ('username', 'email', 'first_name', 'last_name', 'password', # 'groups', 'ownsgroups',) # write_only_fields = ('password',) # read_only_fields = ('username',) ############################################################################## class RegistryUserGroupSerializer(serializers.HyperlinkedModelSerializer): group_name = serializers.CharField(source='get_group_name') # FIXME: The following is excluded as it break django rest for some reason. class Meta: model = RegistryUserGroup fields = ('url', 'group_name', 'group', 'owner', 'description', ) read_only_fields = ('group', 'owner', ) class RegistryUserGroupPutSerializer(serializers.HyperlinkedModelSerializer): group_name = serializers.CharField(source='get_group_name') # ownerusername = serializers.CharField(source='get_owner_username', # read_only=True) class Meta: model = RegistryUserGroup fields = ('url', 'group_name', 'group', 'owner', 'description', ) read_only_fields = ('group', ) ############################################################################## # class AdminRegistryUserGroupSerializer # (serializers.HyperlinkedModelSerializer): # group_name = serializers.CharField(source='get_group_name')#, # read_only=True) # owner_username = serializers.CharField(source='get_owner_username', # read_only=True) # # class Meta: # model = RegistryUserGroup # fields = ('url', 'group_name', 'owner_username', # 'group', 'owner', 'description') # read_only_fields = ('group', ) ############################################################################## class GroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ('name',) ############################################################################## class PEImplementationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = PEImplementation fields = ( 'id', 'url', 'description', 'code', 'parent_sig', 'pckg', 'name', 'user', 'workspace', 'clone_of') read_only_fields = ('user', 'creation_date',) ############################################################################## class FnImplementationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = FnImplementation fields = ( 'id', 'url', 'description', 'code', 'parent_sig', 'pckg', 'name', 'user', 'workspace', 'clone_of') read_only_fields = ('user', 'creation_date',) ############################################################################## class WorkspaceSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Workspace depth = 0 fields = ('id', 'url', 'name', 'owner', 'description', 'clone_of', 'creation_date') read_only_fields = ('owner', 'creation_date',) ############################################################################## class WorkspaceDeepSerializer(serializers.HyperlinkedModelSerializer): pes = serializers.CharField(source='get_pesigs') functions = serializers.CharField(source='get_fnsigs') literals = serializers.CharField(source='get_literalsigs') peimplementations = serializers.CharField(source='get_peimplementations') fnimplementations = serializers.CharField(source='get_fnimplementations') class Meta: model = Workspace # TODO (nice-to-have) revisit the depth issue, user serialization is # not good enough - disabled for now. depth = 0 read_only_fields = ('owner', 'creation_date') def transform_pes(self, obj, value): request = self.context.get('request') pes = obj.pesig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'pes/' + str(p.id), pes) def transform_functions(self, obj, value): request = self.context.get('request') fns = obj.functionsig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'functions/' + str(p.id), fns) def transform_literals(self, obj, value): request = self.context.get('request') lits = obj.literalsig_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'literals/' + str(p.id), lits) def transform_peimplementations(self, obj, value): request = self.context.get('request') peimpls = obj.peimplementation_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'peimpls/' + str(p.id), peimpls) def transform_fnimplementations(self, obj, value): request = self.context.get('request') fnimpls = obj.fnimplementation_set.get_queryset() return map(lambda p: get_base_rest_uri(request) + 'fnimpls/' + str(p.id), fnimpls) ############################################################################## class PESigSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = PESig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'user', 'description', 'connections', 'creation_date', 'peimpls', 'clone_of') read_only_fields = ('user', 'creation_date', ) ############################################################################## class ConnectionSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Connection # Pip package update 12/10/2018 (davve.ath) # ADDED: fields, can't have empty fields fields = '__all__' class FunctionParameterSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = FunctionParameter # Pip package update 12/10/2018 (davve.ath) # ADDED: fields, can't have empty fields fields = '__all__' ############################################################################## class FunctionSigSerializer(serializers.HyperlinkedModelSerializer): # implementations = serializers.WritableField # (source='fnimplementation_set', required=False) class Meta: model = FunctionSig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'user', 'description', 'creation_date', 'return_type', 'parameters', 'fnimpls', 'clone_of') read_only_fields = ('user', 'creation_date', ) ############################################################################## class LiteralSigSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = LiteralSig fields = ( 'url', 'id', 'workspace', 'pckg', 'name', 'value', 'description', 'creation_date', 'clone_of') read_only_fields = ('user', 'creation_date', )
1.765625
2
2018/aoc/d7/test.py
lukaselmer/adventofcode
1
12796772
<gh_stars>1-10 import unittest from unittest.mock import mock_open, patch from aoc.d7.main import step_order, time_required DATA = "Step C must be finished before step A can begin.\nStep C must be finished before step F can begin.\nStep A must be finished before step B can begin.\nStep A must be finished before step D can begin.\nStep B must be finished before step E can begin.\nStep D must be finished before step E can begin.\nStep F must be finished before step E can begin.\n" class TestCase(unittest.TestCase): def test_step_order(self): with patch("builtins.open", mock_open(read_data=DATA)): self.assertEqual("CABDFE", step_order()) def test_time_required(self): with patch("builtins.open", mock_open(read_data=DATA)): self.assertEqual(15, time_required(0, 2)) if __name__ == "__main__": unittest.main()
2.875
3
secure_data_store/__init__.py
HumanBrainProject/secure-data-store
1
12796773
<gh_stars>1-10 # -*- coding: utf-8 -*- """Top-level package for Secure Data Store.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.1.0'
1.085938
1
server/server3.py
lthurlow/scaling-computing-machine
0
12796774
import pdb # for debuggin import sys import time import pprint import fcntl # for get_ip_address import struct # for get_ip_address import threading # for threading UDPServer import socket # for UDPServer #sys.path.append("./third_party/libs/") # for scapy #import StringIO # for dummy_exec #import logging # for logging, scapy modify logging level #logging.getLogger("scapy.runtime").setLevel(logging.ERROR) #from scapy.all import * import anhost # linux networking files def set_env(): return def dummy_exec(code): # create file-like string to capture output codeOut = StringIO.StringIO() codeErr = StringIO.StringIO() # capture output and errors sys.stdout = codeOut sys.stderr = codeErr try: exec(code) except: sys.stdout = "error" sys.stderr = "error" # restore stdout and stderr sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ #For now throw away the errors return str(codeOut.getvalue()) def handle_pkt(eth): eth_src = ':'.join(hex(x) for x in map(ord, eth.src)) eth_dst = ':'.join(hex(x) for x in map(ord, eth.dst)) if eth.type != dpkt.ethernet.ETH_TYPE_IP: #print "Ethernet pkt" return ip = eth.data if ip.p == dpkt.ip.IP_PROTO_UDP: ip_src = '.'.join(str(x) for x in map(ord, ip.src)) ip_dst = '.'.join(str(x) for x in map(ord, ip.dst)) udp = ip.data udp_src = udp.sport udp_dst = udp.dport udp_data = dummy_exec(str(udp.data)) print(ip_src, ip_dst) send(IP(dst=ip_dst,src=ip_src)/UDP(sport=udp_src,dport=udp_dst)/udp_data,\ iface="eth1", verbose=True) else: return print(anhost.get_int_ip()) HOST, PORT = str(anhost.get_int_ip()), 50000 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((HOST,PORT)) while True: msg, addr = sock.recvfrom(1024) print("msg:", msg) server_thread = threading.Thread(target=dummy_exec,args=(msg,)) server_thread.start() print(server_thread.join())
2
2
core/mail.py
jasonvriends/lifetracker-backend
0
12796775
<reponame>jasonvriends/lifetracker-backend import os from fastapi import BackgroundTasks from fastapi_mail import ConnectionConfig, FastMail, MessageSchema from core.settings import settings from schemas.auth import EmailSchema conf = ConnectionConfig( MAIL_USERNAME=settings.MAIL_USERNAME, MAIL_PASSWORD=settings.MAIL_PASSWORD, MAIL_FROM=settings.MAIL_FROM, MAIL_PORT=settings.MAIL_PORT, MAIL_SERVER=settings.MAIL_SERVER, MAIL_FROM_NAME=settings.PROJECT_TITLE, TEMPLATE_FOLDER=f"{os.path.dirname(os.path.dirname(os.path.realpath(__file__)))}/templates/email", MAIL_TLS=True, MAIL_SSL=False, USE_CREDENTIALS=True ) def send_mail(background_tasks: BackgroundTasks, subject: str, emails: EmailSchema, template_name: str): message = MessageSchema( subject=subject, recipients=emails.emails, template_body=emails.body, subtype='html', ) fm = FastMail(conf) background_tasks.add_task(fm.send_message, message, template_name=template_name)
1.898438
2
stack/valid_parenthesis.py
javyxu/algorithms-python
8
12796776
""" Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid. The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not. """ def is_valid(s:"str")->"bool": stack = [] dic = { ")":"(", "}":"{", "]":"["} for char in s: if char in dic.values(): stack.append(char) elif char in dic.keys(): if stack == []: return False s = stack.pop() if dic[char] != s: return False return stack == [] if __name__ == "__main__": paren = "[]" print(paren, is_valid(paren)) paren = "[]()[]" print(paren, is_valid(paren)) paren = "[[[]]" print(paren, is_valid(paren)) paren = "{([])}" print(paren, is_valid(paren)) paren = "(}" print(paren, is_valid(paren))
4.0625
4
decloud/acquisitions/sensing_layout.py
CNES/decloud
8
12796777
# -*- coding: utf-8 -*- """ Copyright (c) 2020-2022 INRAE Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """Classes for acquisition layouts""" from dataclasses import dataclass # --------------------------------------------- Acquisition classes ---------------------------------------------------- @dataclass class GenericAcquisition: """ Sentinel Acquisition """ timestamp: int @dataclass class S1Acquisition: """ Sentinel-1 Acquisition """ ascending: bool = False @dataclass class S2Acquisition: """ Sentinel-2 Acquisition """ min_cloud_percent: 'typing.Any' max_cloud_percent: float # ------------------------------------------- Acquisition layout class ------------------------------------------------- class AcquisitionsLayout(dict): """ Class storing the acquisition layout """ SENSOR_S1_KEY = "S1" SENSOR_S2_KEY = "S2" MAX_S1S2_TIMESTAMP_DELTA_KEY = "MAX_S1S2_TIMESTAMP_DELTA_KEY" TIMESTAMP_BEGIN_KEY = "TIMESTAMP_BEGIN_KEY" TIMESTAMP_END_KEY = "TIMESTAMP_END_KEY" OPTIONS = {} def new_acquisition(self, name, s1_acquisition=None, s2_acquisition=None, max_s1s2_gap_hours=None, timeframe_origin=False, timeframe_start_hours=0, timeframe_end_hours=0): """ Add a new acquisition in the layout. Parameters: name: acquisition name (e.g. "Img_t-1") s1_acquisition: a S1Acquisition instance or None s2_acquisition: a S2Acquisition instance or None max_s1s2_gap_hours: if both s1_acquisition and s2_acquisition are not None, this must be provided (maximum number of hours between the s1_acquisition date and the s2_acquisition date) timeframe_origin: True or False. If True, the acquisition will be considered as the temporal origin for the other acquisitions. Meaning that the timeframe_start_hours and timeframe_end_hours or the other acquisitions will be relative to the date of the s2_acquisition created with timeframe_origin=True. Only one acquisition can be set as origin. timeframe_start_hours, timeframe_end_hours: range of the timeframe. Relative to the acquisition which is the reference (i.e. the only acquisition that has timeframe_origin=True) """ # Add a new key in the dict assert name not in self self[name] = dict() if s1_acquisition is not None: assert isinstance(s1_acquisition, S1Acquisition) self[name][self.SENSOR_S1_KEY] = s1_acquisition if s2_acquisition is not None: assert isinstance(s2_acquisition, S2Acquisition) self[name][self.SENSOR_S2_KEY] = s2_acquisition # At least s1_acquisition or s2_acquisition must be different than None assert s1_acquisition is not None or s2_acquisition is not None # If both s1_acquisition and s2_acquisition are different than None, we must have the max_s1s2_gap_hours # its default value is None self[name][self.MAX_S1S2_TIMESTAMP_DELTA_KEY] = None if s1_acquisition is not None and s2_acquisition is not None: assert max_s1s2_gap_hours is not None assert max_s1s2_gap_hours > 0 self[name][self.MAX_S1S2_TIMESTAMP_DELTA_KEY] = max_s1s2_gap_hours * 3600 # No need to set a [start, end] range if the acquisition is set as the reference (it will be the origin) if timeframe_origin is True: # Can be only one acquisition set as reference for acquisition_name in self: if acquisition_name != name: assert not self.is_ref(acquisition_name) assert timeframe_start_hours == 0 assert timeframe_end_hours == 0 self[name][self.TIMESTAMP_BEGIN_KEY] = min(timeframe_start_hours, timeframe_end_hours) * 3600 self[name][self.TIMESTAMP_END_KEY] = max(timeframe_start_hours, timeframe_end_hours) * 3600 def options(self, options): self.OPTIONS = options def is_siblings(self, acq_list, acq_name): """ Return True if the two acquisitions is set as sibling. """ if "siblings" in self.OPTIONS.keys(): for sibling in self.OPTIONS["siblings"]: for acq in acq_list: if acq in sibling and acq_name in sibling: return True return False def is_ref(self, name): """ Return True if the acquisition is set as the temporal origin. """ return self[name][self.TIMESTAMP_BEGIN_KEY] == 0 and self[name][self.TIMESTAMP_END_KEY] == 0 def get_ref_name(self): """ Return the acquisition name which is the temporal origin. """ for acquisition_name in self: if self.is_ref(acquisition_name): return acquisition_name raise Exception("No temporal origin found! You must set one reference using " "new_acquisition(..., timeframe_origin=True, ...)") def get_timestamp_range(self, name): """ Return the timestamp range (timestamp_begin, timestamp_end) """ return self[name][self.TIMESTAMP_BEGIN_KEY], self[name][self.TIMESTAMP_END_KEY] def get_s1s2_max_timestamp_delta(self, name): """ Return the get_s1s2_max_timestamp_delta of the specified acquisition. None can be returned (if only a single s1_acquisition or a single s2_acquisition) """ return self[name][self.MAX_S1S2_TIMESTAMP_DELTA_KEY] def _get_sx_acquisition(self, name, sensor_key): if sensor_key not in self[name]: return None return self[name][sensor_key] def has_s1_acquisition(self, name): """ Return True if the acquisition has a S1Acquisition """ return self.SENSOR_S1_KEY in self[name] def has_s2_acquisition(self, name): """ Return True if the acquisition has a S2Acquisition """ return self.SENSOR_S2_KEY in self[name] def get_s1_acquisition(self, name): """ Return the s1_acquisition of the specified acquisition name: acquisition name """ return self._get_sx_acquisition(name=name, sensor_key=self.SENSOR_S1_KEY) def get_s2_acquisition(self, name): """ Return the s2_acquisition of the specified acquisition name: acquisition name """ return self._get_sx_acquisition(name=name, sensor_key=self.SENSOR_S2_KEY) def summarize(self): """ This function summarizes the acquisition layout, displaying a nice table Example: Cresson et al. layout: | t-1 | t | t+1 ----------------+----------------+----------------+---------------- S1 | / | +/-24h | / ----------------+----------------+----------------+---------------- S2 | [-360h, -120h] | [0h, 0h] | [120h, 360h] | 0-0% cld. | 0-0% cld. | 0-0% cld. """ max_head_len = max([len(key) for key in self] + [16]) def _cell(msg): return msg.center(max_head_len, " ") def _round_hours(n_seconds): return "{}h".format(int(n_seconds / 3600)) def _summarize_timerange(n_seconds_1, n_seconds_2): ts_min = min(n_seconds_1, n_seconds_2) ts_max = max(n_seconds_1, n_seconds_2) return "[{}, {}]".format(_round_hours(ts_min), _round_hours(ts_max)) def _cell_s1(key): content = "/" if self.has_s1_acquisition(key): delta = self.get_s1s2_max_timestamp_delta(key) content = "+/-{}".format(_round_hours(delta)) return _cell(content) def _cell_s2(key): content = "/" if self.has_s2_acquisition(key): ts_begin, ts_end = self.get_timestamp_range(key) content = _summarize_timerange(ts_begin, ts_end) return _cell(content) def _cell_s2b(key): content = "/" if self.has_s2_acquisition(key): s2_acquisition = self.get_s2_acquisition(key) content = "{}-{}% cld.".format(s2_acquisition.min_cloud_percent, s2_acquisition.max_cloud_percent) return _cell(content) keys = self.keys() headers = [_cell("")] + [_cell(key) for key in keys] line1 = [_cell("S1")] + [_cell_s1(key) for key in keys] line2 = [_cell("S2")] + [_cell_s2(key) for key in keys] line3 = [_cell("")] + [_cell_s2b(key) for key in keys] horizontal_line = "+".join(["-" * max_head_len for k in range(len(keys) + 1)]) msg = "|".join(headers) msg += "\n" + horizontal_line msg += "\n" + "|".join(line1) msg += "\n" + horizontal_line msg += "\n" + "|".join(line2) msg += "\n" + "|".join(line3) print(msg)
1.6875
2
tests/spec/Spec/flattened_spec_test.py
Timothyyung/bravado-core
0
12796778
<gh_stars>0 # -*- coding: utf-8 -*- import copy import functools import mock import pytest from six.moves.urllib.parse import urlparse from swagger_spec_validator import validator20 from bravado_core import spec from bravado_core.spec import CONFIG_DEFAULTS from bravado_core.spec import Spec from bravado_core.spec_flattening import _marshal_uri from bravado_core.spec_flattening import _SpecFlattener @pytest.fixture def spec_flattener(minimal_swagger_spec): return _SpecFlattener( swagger_spec=minimal_swagger_spec, marshal_uri_function=functools.partial( _marshal_uri, origin_uri=None, ), ) @mock.patch('bravado_core.spec_flattening.warnings') def test_no_warning_for_clashed_uris(mock_warnings, spec_flattener): spec_flattener.warn_if_uri_clash_on_same_marshaled_representation({}) @mock.patch('bravado_core.spec_flattening.warnings') def test_warning_for_clashed_uris(mock_warnings, spec_flattener): clashing_uris = ['path1', 'path2'] marshaled_uri = 'SameString' spec_flattener.marshal_uri_function = functools.partial( lambda *args, **kwargs: marshaled_uri, origin_uri=None, ) spec_flattener.warn_if_uri_clash_on_same_marshaled_representation( uri_schema_mappings={urlparse(uri): mock.Mock() for uri in clashing_uris}, ) mock_warnings.warn.assert_called_once_with( message='{} clashed to {}'.format(', '.join(sorted(clashing_uris)), marshaled_uri), category=Warning, ) @pytest.mark.parametrize( 'target', [ '', 'xhttps://host/file', ] ) def test_marshal_url_exceptions(target): with pytest.raises(ValueError) as excinfo: _marshal_uri( target_uri=urlparse(target), origin_uri=None, ) assert 'Invalid target: \'{target}\''.format(target=target) in str(excinfo.value) @pytest.mark.parametrize( 'target, expected_marshaled_uri', [ ('/api_docs/file_same_directory.json', 'file:......api_docs..file_same_directory.json'), ('file:///api_docs/file_same_directory.json', 'file:......api_docs..file_same_directory.json'), ('file:///file_on_previous_directory.json', 'file:......file_on_previous_directory.json'), ('file:///directory1/file.json', 'file:......directory1..file.json'), ('http://www.service.domain/swagger/specs.json', 'http:....www.service.domain..swagger..specs.json'), ('https://www.service.domain/swagger/specs.json', 'https:....www.service.domain..swagger..specs.json'), ('/api_docs/file.json#/definitions/object', 'file:......api_docs..file.json|..definitions..object'), ('http://host/file.json#/definitions/wired|name', 'http:....host..file.json|..definitions..wired|name'), ] ) def test_marshal_url_no_origin_uri(target, expected_marshaled_uri): marshaled_uri = _marshal_uri( target_uri=urlparse(target), origin_uri=None, ) assert marshaled_uri == expected_marshaled_uri @pytest.mark.parametrize( 'target, expected_marshaled_uri', [ ('/api_docs/file_same_directory.json', 'lfile:file_same_directory.json'), ('file:///api_docs/file_same_directory.json', 'lfile:file_same_directory.json'), ('file:///file_on_previous_directory.json', 'lfile:....file_on_previous_directory.json'), ('file:///directory1/file.json', 'lfile:....directory1..file.json'), ('http://www.service.domain/swagger/specs.json', 'http:....www.service.domain..swagger..specs.json'), ('https://www.service.domain/swagger/specs.json', 'https:....www.service.domain..swagger..specs.json'), ('/api_docs/file.json#/definitions/object', 'lfile:file.json|..definitions..object'), ('http://host/file.json#/definitions/wired|name', 'http:....host..file.json|..definitions..wired|name'), ] ) def test_marshal_url(target, expected_marshaled_uri): origin_url = '/api_docs/swagger.json' marshaled_uri = _marshal_uri( target_uri=urlparse(target), origin_uri=urlparse(origin_url), ) assert marshaled_uri == expected_marshaled_uri @mock.patch('bravado_core.spec.log', autospec=True) def test_flattened_spec_warns_if_configured_to_not_validate_swagger_specs( mock_log, minimal_swagger_dict, ): petstore_spec = Spec.from_dict(minimal_swagger_dict, '', config=dict(CONFIG_DEFAULTS, validate_swagger_spec=False)) assert petstore_spec.flattened_spec == minimal_swagger_dict mock_log.warning.assert_called_once_with( 'Flattening unvalidated specs could produce invalid specs. ' 'Use it at your risk or enable `validate_swagger_specs`', ) @pytest.mark.parametrize( 'has_origin_url', [True, False] ) @mock.patch('bravado_core.spec_flattening.warnings') @mock.patch('bravado_core.spec.build_http_handlers') @mock.patch('bravado_core.spec.flattened_spec', wraps=spec.flattened_spec) def test_flattened_spec_warning_if_no_origin_url( wrap_flattened_spec, mock_build_http_handlers, mock_warnings, petstore_spec, has_origin_url, ): if not has_origin_url: petstore_spec.origin_url = None petstore_spec.flattened_spec wrap_flattened_spec.assert_called_once_with(swagger_spec=petstore_spec) if has_origin_url: assert not mock_warnings.warn.called else: mock_warnings.warn.assert_called_once_with( message='It is recommended to set origin_url to your spec before flattering it. ' 'Doing so internal paths will be hidden, reducing the amount of exposed information.', category=Warning, ) @mock.patch('bravado_core.spec.warnings') @mock.patch('bravado_core.spec.build_http_handlers') @mock.patch('bravado_core.spec.flattened_spec') def test_flattened_spec_cached_result(mock_flattened_spec, mock_build_http_handlers, mock_warnings, petstore_spec): petstore_spec.flattened_spec petstore_spec.flattened_spec assert mock_flattened_spec.call_count == 1 def test_flattened_spec_provide_valid_specs( flattened_multi_file_recursive_dict, multi_file_recursive_spec, ): flattened_spec = multi_file_recursive_spec.flattened_spec validator20.validate_spec( # Deep copy needed because validate_spec adds x-scope information spec_dict=copy.deepcopy(flattened_spec), spec_url='', http_handlers={}, ) assert flattened_spec == flattened_multi_file_recursive_dict def test_flattened_specs_with_no_xmodel_tags(multi_file_with_no_xmodel_spec, flattened_multi_file_with_no_xmodel_dict): flattened_spec = multi_file_with_no_xmodel_spec.flattened_spec validator20.validate_spec( # Deep copy needed because validate_spec adds x-scope information spec_dict=copy.deepcopy(flattened_spec), spec_url='', http_handlers={}, ) assert flattened_spec == flattened_multi_file_with_no_xmodel_dict @pytest.mark.parametrize( 'spec_dict, expected_spec_dict', [ [ { 'definitions': { 'model': { 'type': 'object', 'x-model': 'model', }, }, }, { 'definitions': { 'model': { 'type': 'object', 'x-model': 'model', }, }, }, ], [ { 'definitions': { 'model': { 'type': 'object', 'x-model': 'different-model', }, }, }, { 'definitions': { 'different-model': { 'type': 'object', 'x-model': 'different-model', }, }, }, ], [ { 'definitions': { 'model': { 'type': 'object', 'x-model': 'different-model', }, 'different-model': { 'type': 'string', }, }, }, { 'definitions': { 'model': { 'type': 'object', 'x-model': 'different-model', }, 'different-model': { 'type': 'string', }, }, }, ], [ { 'definitions': { 'model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/model' } }, 'x-model': 'different-model', }, }, }, { 'definitions': { 'different-model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/different-model' } }, 'x-model': 'different-model', }, }, }, ], [ { 'definitions': { 'model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/second-model' } }, 'x-model': 'different-model', }, 'second-model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/model' } }, 'x-model': 'second-model', }, }, }, { 'definitions': { 'different-model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/second-model' } }, 'x-model': 'different-model', }, 'second-model': { 'type': 'object', 'properties': { 'mod': { '$ref': '#/definitions/different-model' } }, 'x-model': 'second-model', }, }, }, ], ] ) def test_rename_definition_references(spec_flattener, spec_dict, expected_spec_dict): assert spec_flattener.rename_definition_references(spec_dict) == expected_spec_dict def test_referenced_and_discovered_models_are_not_lost_after_flattening(simple_crossfer_spec): assert simple_crossfer_spec.flattened_spec['definitions']['pong']['x-model'] == 'pong'
1.890625
2
nnreslib/layers/trainable_layer.py
xausssr/nnreslib
0
12796779
<reponame>xausssr/nnreslib<gh_stars>0 from __future__ import annotations from abc import abstractmethod from typing import TYPE_CHECKING, Any, Optional from .base_layer import Layer from ..utils.initialization import Initialization from ..utils.merge import MergeInputs if TYPE_CHECKING: import numpy as np from ..utils.types import ActivationFunctions, Shape class TrainableLayer(Layer): # pylint:disable=unused-argument def __init__( self, name: str, activation: ActivationFunctions, merge: Optional[MergeInputs] = None, initializer: Initialization = Initialization(), is_out: bool = False, **kwargs: Any, ) -> None: super().__init__(name, merge=merge, is_out=is_out, **kwargs) self.initializer = initializer self.activation = activation self._weights: Optional[np.ndarray] = None self._biases: Optional[np.ndarray] = None @property @abstractmethod def weights_shape(self) -> Shape: ... @property def weights(self) -> np.ndarray: if self._weights is None: raise ValueError(f"Weights of layer {self.name} is not initialized") return self._weights def set_weights(self, data_mean: float = 0.0, data_std: float = 0.0) -> None: self._weights = self.initializer.init_weights(self, data_mean, data_std) @property @abstractmethod def biases_shape(self) -> Shape: ... @property def biases(self) -> np.ndarray: if self._biases is None: raise ValueError(f"Biases of layer {self.name} is not initialized") return self._biases def set_biases(self, data_mean: float = 0.0, data_std: float = 0.0) -> None: self._biases = self.initializer.init_biases(self, data_mean, data_std)
2.09375
2
src/figs/figS03.py
RPGroup-PBoC/chann_cap
2
12796780
#%% import os import pickle import cloudpickle import itertools import glob import numpy as np import scipy as sp import pandas as pd import git # Import matplotlib stuff for plotting import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib as mpl # Seaborn, useful for graphics import seaborn as sns # Import the project utils import ccutils # Set PBoC plotting format ccutils.viz.set_plotting_style() # Increase dpi #%% # Find home directory for repo repo = git.Repo("./", search_parent_directories=True) homedir = repo.working_dir # Define directories for data and figure figdir = f'{homedir}/fig/si/' datadir = f'{homedir}/data/mRNA_FISH/' mcmcdir = f'{homedir}/data/mcmc/' # %% # Read the data df = pd.read_csv(f'{datadir}Jones_Brewster_2014.csv', index_col=0) # Extract the lacUV5 data dfUV5 = df[df.experiment == 'UV5'] # Load the flat-chain with open(f'{mcmcdir}lacUV5_constitutive_mRNA_prior.pkl', 'rb') as file: unpickler = pickle.Unpickler(file) gauss_flatchain = unpickler.load() gauss_flatlnprobability = unpickler.load() # Generate a Pandas Data Frame with the mcmc chain index = ['kp_on', 'kp_off', 'rm'] # Generate a data frame out of the MCMC chains df_mcmc = pd.DataFrame(gauss_flatchain, columns=index) # rerbsine the index with the new entries index = df_mcmc.columns # map value of the parameters max_idx = np.argmax(gauss_flatlnprobability, axis=0) kp_on, kp_off, rm = df_mcmc.iloc[max_idx, :] # Define bins bins = np.arange(0, dfUV5.mRNA_cell.max()) logp_mRNA = ccutils.model.log_p_m_unreg(bins, kp_on, kp_off, 1, rm) # Plot the histogram of the data with bins of width 1 _ = plt.hist(dfUV5.mRNA_cell, bins=bins, density=1, histtype='stepfilled', alpha=1, label='sm-FISH data', align='left', lw=0) plt.step(bins, np.exp(logp_mRNA), color='r', ls='-', lw=1.5, label='two-state promoter fit') # Label the plot plt.xlabel('mRNA / cell') plt.ylabel('probability') plt.legend() plt.tight_layout() plt.savefig(f'{figdir}/figS03.pdf', bbox_inches='tight')
2.15625
2
ip_search.py
HAYASAKA-Ryosuke/ip_search
0
12796781
<gh_stars>0 #!coding:utf-8 from multiprocessing import Pool import subprocess class Ping(object): def __init__(self, hosts, pool_num=5): self.hosts = hosts self.pool_num = pool_num def _shell(self, host): popen = subprocess.Popen(["ping", "-c", "1", "-W", "0", host], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = popen.communicate() if not ("1 packets transmitted, 0 packets received, 100.0% packet loss" in str(out[0])): print(host) return host def send(self): p = Pool(self.pool_num) return p.map(self._shell, self.hosts) if __name__ == '__main__': hosts = ['192.168.' + str(num1) + '.' + str(num2) for num1 in range(255) for num2 in range(255)] ping = Ping(hosts) ping.send()
2.984375
3
checkpoint.py
nisarkhanatwork/mctsnet
5
12796782
import pickle import time from datetime import datetime def checkpoint(shared_model, shared_dataset, args): try: while True: # Save dataset file = open(args.data, 'wb') pickle.dump(list(shared_dataset), file) file.close() # Save model now = datetime.now().strftime("%d_%m_%H_%M") shared_model.save('models/checkpoint_{}.model'.format(now)) time.sleep(10 * 60) except KeyboardInterrupt: print('exiting checkpoint')
2.78125
3
msdm/tests/test_policy_iteration.py
markkho/msdm
15
12796783
import unittest import numpy as np from frozendict import frozendict from msdm.core.distributions import DictDistribution from msdm.algorithms import ValueIteration, PolicyIteration, LRTDP from msdm.tests.domains import Counter, GNTFig6_6, Geometric, VaryingActionNumber, make_russell_norvig_grid from msdm.domains import GridWorld class MyTestCase(unittest.TestCase): def test_policy_iteration(self): mdp = Counter(3) res = PolicyIteration().plan_on(mdp) out = res.policy.run_on(mdp) assert out.state_traj == (0, 1, 2) assert out.action_traj == (1, 1, 1) assert res.policy.action(0) == 1 assert res.policy.action(1) == 1 assert res.policy.action(2) == 1 def test_policy_iteration_geometric(self): mdp = Geometric(p=1/13) res = PolicyIteration(iterations=500).plan_on(mdp) assert np.isclose(res.V[0], -13), res.V def test_policy_iteration_varying_action_number(self): mdp = VaryingActionNumber() res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[0], -2), res.V assert res.policy.run_on(mdp).action_traj == (+1, +1) def test_equal_value(self): ''' In this MDP, the value at the non-initial, non-terminal corners is equal. This means the policy at the start state should assign equal probability to either. ''' mdp = GridWorld( tile_array=[ '.g', 's.', ], feature_rewards={'g': 0}, step_cost=-1, ) res = PolicyIteration().plan_on(mdp) assert np.isclose(res.V[frozendict(x=0, y=1)], res.V[frozendict(x=1, y=0)]) assert res.policy.action_dist(frozendict(x=0, y=0)).\ isclose(DictDistribution({ frozendict({'dx': 0, 'dy': 0}): 0, frozendict({'dx': 1, 'dy': 0}): 1/2, frozendict({'dx': -1, 'dy': 0}): 0, frozendict({'dy': 1, 'dx': 0}): 1/2, frozendict({'dy': -1, 'dx': 0}): 0 })) assert res.policy.action_dist(frozendict(x=0, y=1)).isclose(DictDistribution({ frozendict({'dx': 1, 'dy': 0}): 1, })) def test_policy_iteration_gridworld(self): gw = GridWorld( tile_array=[ '......g', '...####', '..##...', '..#....', '.......', '####...', 's......', ]) pi_res = PolicyIteration()(gw) vi_res = ValueIteration()(gw) lrtdp = LRTDP()(gw) assert pi_res.initial_value == vi_res.initial_value == lrtdp.initial_value def test_policy_iteration_gridworld2(self): gw = GridWorld(( '..g..', '.###.', '..#..', '..s..' ), discount_rate=1 - 1e-5) pi = PolicyIteration().plan_on(gw) vi = ValueIteration().plan_on(gw) reachable = sorted(gw.reachable_states(), key=lambda s: (s['x'], s['y'])) pi_mat = pi.policy.as_matrix(reachable, gw.action_list) vi_mat = vi.policy.as_matrix(reachable, gw.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) def test_policy_iteration_and_value_iteration_russell_norvig(self): for discount_rate in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: for slip_prob in [i/10 for i in range(1, 10)] + [.95, .99, 1.0]: gw = make_russell_norvig_grid( discount_rate=discount_rate, slip_prob=slip_prob, ) vi_res = ValueIteration(iterations=int(1e3)).plan_on(gw) pi_res = PolicyIteration(iterations=int(1e3)).plan_on(gw) assert np.isclose(vi_res._qvaluemat, pi_res._qvaluemat, atol=5e-4).all() def test_policy_iteration_heavenorhell(self): # technically a pomdp, but we can solve underlying mdp from msdm.domains.heavenorhell import HeavenOrHell for discount_rate in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: for coherence in [i/10 for i in range(1, 10, 2)] + [.95, .99, .99999]: print(discount_rate, coherence) hh = HeavenOrHell( coherence=coherence, grid= """ hcg #.# #s# """, discount_rate=discount_rate, heaven_reward=50, hell_reward=-50, ) pi = PolicyIteration().plan_on(hh) vi = ValueIteration().plan_on(hh) reachable = sorted(hh.reachable_states()) pi_mat = pi.policy.as_matrix(reachable, hh.action_list) vi_mat = vi.policy.as_matrix(reachable, hh.action_list) assert (pi_mat == vi_mat).all() assert all([np.isclose(pi.valuefunc[s], vi.valuefunc[s]) for s in reachable]) if __name__ == '__main__': unittest.main()
2.3125
2
languages/python3/pdf/pdfminer/main.py
jcnaud/snippet
5
12796784
<reponame>jcnaud/snippet<gh_stars>1-10 # coding: utf-8 ## Source : https://lobstr.io/index.php/2018/07/30/scraping-document-pdf-python-pdfminer/ import os from io import BytesIO from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.pdfpage import PDFPage def pdf2txt(path): """ Extract text from PDF file, and return the string contained inside :param path (str) path to the .pdf file :return: text (str) string extracted """ rsrcmgr = PDFResourceManager() retstr = BytesIO() device = TextConverter(rsrcmgr, retstr) with open(path, "rb") as fp: # open in 'rb' mode to read PDF bytes interpreter = PDFPageInterpreter(rsrcmgr, device) for page in PDFPage.get_pages(fp, check_extractable=True): interpreter.process_page(page) device.close() text = retstr.getvalue() retstr.close() return text.decode('utf-8') def main(): print(pdf2txt('./simple1.pdf')) if __name__ == '__main__': main()
3.09375
3
osp/institutions/utils.py
davidmcclure/open-syllabus-project
220
12796785
<reponame>davidmcclure/open-syllabus-project import tldextract import re from urllib.parse import urlparse def seed_to_regex(seed): """ Given a URL, make a regex that matches child URLs. Args: seed (str) Returns: regex """ parsed = urlparse(seed) # 1 -- If the seed has a non-www subdomain, require a matching subdomain. subdomain = '' tld = tldextract.extract(seed) if tld.subdomain and tld.subdomain != 'www': subdomain = '[./]'+tld.subdomain # 3 -- yale.edu netloc = '[./]{0}.{1}'.format(tld.domain, tld.suffix) # 3 -- If a path is present, require a sub-path. path = '' clean_path = parsed.path.rstrip('/') if clean_path: path = re.escape(clean_path+'/') # Join the parts. pattern = ''.join([subdomain, netloc, path]) return re.compile(pattern, re.I) def strip_csv_row(row): """ Strip values in a CSV row, casing '' -> None. """ return { key: val.strip() or None for key, val in row.items() }
3.515625
4
users/signals.py
LouaiKB/MicroscoQuiz
2
12796786
<reponame>LouaiKB/MicroscoQuiz<gh_stars>1-10 #this file is created for the signals, for each new user creat a new Profile from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile #when a user is saved then send this signal which be revieved by this #receiver, this receiver is this creat_profile function @receiver(post_save, sender=User) def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_profile(sender, instance, **kwargs): instance.profile.save()
2.609375
3
jiant/jiant/modules/cove/cove/encoder.py
amirziai/cs229-project
500
12796787
<gh_stars>100-1000 import os import torch from torch import nn from torch.nn.utils.rnn import pad_packed_sequence as unpack from torch.nn.utils.rnn import pack_padded_sequence as pack import torch.utils.model_zoo as model_zoo model_urls = { 'wmt-lstm' : 'https://s3.amazonaws.com/research.metamind.io/cove/wmtlstm-8f474287.pth' } MODEL_CACHE = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.torch') class MTLSTM(nn.Module): def __init__(self, n_vocab=None, vectors=None, residual_embeddings=False, layer0=False, layer1=True, trainable=False, model_cache=MODEL_CACHE): """Initialize an MTLSTM. If layer0 and layer1 are True, they are concatenated along the last dimension so that layer0 outputs contribute the first 600 entries and layer1 contributes the second 600 entries. If residual embeddings is also true, inputs are also concatenated along the last dimension with any outputs such that they form the first 300 entries. Arguments: n_vocab (int): If not None, initialize MTLSTM with an embedding matrix with n_vocab vectors vectors (Float Tensor): If not None, initialize embedding matrix with specified vectors (These should be 300d CommonCrawl GloVe vectors) residual_embedding (bool): If True, concatenate the input GloVe embeddings with contextualized word vectors as final output layer0 (bool): If True, return the outputs of the first layer of the MTLSTM layer1 (bool): If True, return the outputs of the second layer of the MTLSTM trainable (bool): If True, do not detach outputs; i.e. train the MTLSTM (recommended to leave False) model_cache (str): path to the model file for the MTLSTM to load pretrained weights (defaults to the best MTLSTM from (McCann et al. 2017) -- that MTLSTM was trained with 300d 840B GloVe on the WMT 2017 machine translation dataset. """ super(MTLSTM, self).__init__() self.layer0 = layer0 self.layer1 = layer1 self.residual_embeddings = residual_embeddings self.trainable = trainable self.embed = False if n_vocab is not None: self.embed = True self.vectors = nn.Embedding(n_vocab, 300) if vectors is not None: self.vectors.weight.data = vectors state_dict = model_zoo.load_url(model_urls['wmt-lstm'], model_dir=model_cache) if layer0: layer0_dict = {k: v for k, v in state_dict.items() if 'l0' in k} self.rnn0 = nn.LSTM(300, 300, num_layers=1, bidirectional=True, batch_first=True) self.rnn0.load_state_dict(layer0_dict) if layer1: layer1_dict = {k.replace('l1', 'l0'): v for k, v in state_dict.items() if 'l1' in k} self.rnn1 = nn.LSTM(600, 300, num_layers=1, bidirectional=True, batch_first=True) self.rnn1.load_state_dict(layer1_dict) elif layer1: self.rnn1 = nn.LSTM(300, 300, num_layers=2, bidirectional=True, batch_first=True) self.rnn1.load_state_dict(model_zoo.load_url(model_urls['wmt-lstm'], model_dir=model_cache)) else: raise ValueError('At least one of layer0 and layer1 must be True.') def forward(self, inputs, lengths, hidden=None): """ Arguments: inputs (Tensor): If MTLSTM handles embedding, a Long Tensor of size (batch_size, timesteps). Otherwise, a Float Tensor of size (batch_size, timesteps, features). lengths (Long Tensor): lenghts of each sequence for handling padding hidden (Float Tensor): initial hidden state of the LSTM """ if self.embed: inputs = self.vectors(inputs) if not isinstance(lengths, torch.Tensor): lengths = torch.Tensor(lengths).long() if inputs.is_cuda: with torch.cuda.device_of(inputs): lengths = lengths.cuda(torch.cuda.current_device()) lens, indices = torch.sort(lengths, 0, True) outputs = [inputs] if self.residual_embeddings else [] len_list = lens.tolist() packed_inputs = pack(inputs[indices], len_list, batch_first=True) if self.layer0: outputs0, hidden_t0 = self.rnn0(packed_inputs, hidden) unpacked_outputs0 = unpack(outputs0, batch_first=True)[0] _, _indices = torch.sort(indices, 0) unpacked_outputs0 = unpacked_outputs0[_indices] outputs.append(unpacked_outputs0) packed_inputs = outputs0 if self.layer1: outputs1, hidden_t1 = self.rnn1(packed_inputs, hidden) unpacked_outputs1 = unpack(outputs1, batch_first=True)[0] _, _indices = torch.sort(indices, 0) unpacked_outputs1 = unpacked_outputs1[_indices] outputs.append(unpacked_outputs1) outputs = torch.cat(outputs, 2) return outputs if self.trainable else outputs.detach()
2.5
2
tests/test_autommittee.py
rodsenra/socialgraph
0
12796788
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Test some edge cases. """ import unittest from socialgraph import autommittee class TestPowerHistory(unittest.TestCase): def setUp(self): self.G = autommittee.Graph() self.G.add_edge('b', 'a') self.G.add_edge('a', 'c') self.G.add_edge('d', 'c') self.G.add_edge('e', 'c') self.G.add_edge('c', 'a') def tearDown(self): del self.G def test_calc_power(self): self.assertEqual([('a', 1), ('b', 2), ('c', 5)], self.G._nodes['a'].full_power()) self.assertEqual([('c', 1), ('a', 3), ('d', 4), ('e', 5)], self.G._nodes['c'].full_power())
2.953125
3
pycbio/hgdata/frame.py
diekhans/read-through-analysis
0
12796789
<filename>pycbio/hgdata/frame.py # Copyright 2006-2012 <NAME> from pycbio.sys import PycbioException class Frame(int): """Immutable object the represents a frame, integer value of 0, 1, or 2. This is also an int. Use None if there is no frame.""" __slots__ = () @staticmethod def _checkFrameValue(val): if not ((val >= 0) and (val <= 2)): raise TypeError("frame must be an integer in the range 0..2, got {}".format(val)) def __new__(cls, val): obj = super(Frame, cls).__new__(cls, val) cls._checkFrameValue(obj) return obj @staticmethod def fromPhase(phase): """construct a Frame from a GFF/GTF like phase, which maybe an int or str""" if isinstance(phase, str): phase = int(phase) if phase == 0: return Frame(0) elif phase == 1: return Frame(2) elif phase == 2: return Frame(1) else: raise PycbioException("invalid phase: {}".format(phase)) def toPhase(self): """frame expressed as a GFF/GTF like phase, which is the number of bases to the start of the next codon""" if self == 0: return 0 elif self == 1: return 2 else: return 1 def incr(self, amt): """increment frame by positive or negative amount, returning a new Frame object. Frame of -1 already returns -1.""" if not isinstance(amt, int): raise ValueError("can only increment a frame by an int value: {} {}".format(type(amt), amt)) val = int(self) # prevent infinite recursion if amt >= 0: return Frame((val + amt) % 3) else: amt3 = (-amt) % 3 return Frame((val - (amt - amt3)) % 3) def __add__(self, amt): return self.incr(amt) def __sub__(self, amt): return self.incr(-amt)
2.78125
3
spike_swarm_sim/objects/robot.py
r-sendra/SpikeSwarmSim
0
12796790
<filename>spike_swarm_sim/objects/robot.py import numpy as np from shapely.geometry import Point from spike_swarm_sim.objects import WorldObject from spike_swarm_sim.register import sensors, actuators, world_object_registry @world_object_registry(name='robot') class Robot(WorldObject): """ Base class for the robot world object. """ def __init__(self, pos, *args, orientation=0, **kwargs): super(Robot, self).__init__(pos=pos, static=False, luminous=False,\ tangible=True, shape='circular', *args, **kwargs) self._init_theta = orientation # self.theta = 0 # initialized in reset self.theta = orientation self.radius = 11 self._food = False #* Initialize sensors and actuators according to controller requirements self.sensors = {k : s(self, **self.controller.enabled_sensors[k])\ for k, s in sensors.items()\ if k in self.controller.enabled_sensors.keys()} self.actuators = {k : k == 'wheel_actuator' and a(self.radius, **self.controller.enabled_actuators[k])\ or a(**self.controller.enabled_actuators[k])\ for k, a in actuators.items()\ if k in self.controller.enabled_actuators.keys()} #* Storage for actions selected by the controllers to be fed to actuators self.planned_actions = {k : [None] for k in actuators.keys()} #* Rendering colors (TO BE MOVED TO RENDER FILE IN THE FUTURE) self.colorA = 'black' self.colorB = 'black' self.color2 = ('skyblue3', 'green')[self.trainable] self.reset() def step(self, neighborhood, reward=None, perturbations=None): """ Firstly steps all the sensors in order to perceive the environment. Secondly, the robot executes its controller in order to compute the actions based on the sensory information. Lasty, the actionas are stored as planned actions to be eventually executed. ===================== - Args: neighborhood [list] -> list filled with the neighboring world objects. reward [float] -> reward to be fed to the controller update rules, if any. perturbations [list of PostProcessingPerturbation or None] -> perturbation to apply to the stimuli before controller step. - Returns: State and action tuple of the current timestep. Both of them are expressed as a dict with the sensor/actuator name and the corresponding stimuli/action. ===================== """ #* Sense environment surroundings. state = self.perceive(neighborhood) #* Apply perturbations to stimuli for pert in perturbations: state = pert(state, self) #* Obtain actions using controller. actions = self.controller.step(state, reward=reward) #* Plan actions for future execution self.plan_actions(actions) # #* Handle robot food pickup # if 'food_area_sensor' in state.keys() and bool(state['food_area_sensor'][0]): # self.food = True # if 'nest_sensor' in state.keys() and bool(state['nest_sensor'][0]): # self.food = False #* Render robot LED self.update_colors(state, actions) return state, actions def update_colors(self, state, action): colors = ['black', 'red', 'yellow', 'blue'] if 'wireless_transmitter' in self.actuators.keys(): for k, msg in enumerate(action['wireless_transmitter']['msg']): symbol = np.argmin([np.abs(sym - msg) for sym in [0, 0.33, 0.66, 1]]) if k == 0: self.colorA = colors[symbol] if k == 1: self.colorB = colors[symbol] if 'led_actuator' in self.actuators.keys(): self.color2 = ('green', 'white', 'red')[action['led_actuator']] #[actions['wireless_transmitter']['state']]# def plan_actions(self, actions): for actuator, action in actions.items(): self.planned_actions[actuator] = (actuator == 'wheel_actuator')\ and [action, self.pos, self.theta] or [action] def actuate(self): """ Executes the previously planned actions in order to be processed in the world. ===================== - Args: None - Returns: None ===================== """ for actuator_name, actuator in self.actuators.items(): # if actuator_name not in self.planned_actions: # raise Exception('Error: Actuator does not have corresponding planned action.') actuator.step(*iter(self.planned_actions[actuator_name])) if 'wheel_actuator' in self.controller.enabled_actuators.keys() or 'target_pos_actuator' in self.controller.enabled_actuators.keys(): self._move(validated=True) def perceive(self, neighborhood): """ Computes the observed stimuli by steping each of the active sensors. ===================== - Args: neighborhood [list] -> list filled with the neighboring world objects. -Returns: A dict with each sensor name as key and the sensor readings as value. ===================== """ return {sensor_name : sensor.step(neighborhood)\ for sensor_name, sensor in self.sensors.items()} def _move(self, validated=False): """ ===================== - Args: validated [bool] -> flag indicating if the planned movement is valid (for example with no collisions). - Returns: None ===================== """ self.pos += self.actuators['wheel_actuator'].delta_pos.astype(float) * float(validated) self.theta += self.actuators['wheel_actuator'].delta_theta * float(validated) # control angle range in (-pi,pi] self.theta = self.theta % (2*np.pi) #(self.theta, self.theta + 2*np.pi)[self.theta < 0] self.actuators['wheel_actuator'].delta_pos = np.zeros(2) self.actuators['wheel_actuator'].delta_theta = 0.0 def reset(self): """ Resets the robot dynamics, sensors, actuators and controller. Position and orientation can be randomly initialized or fixed. In the former case a seed can be specified. ===================== - Args: seed [int] -> seed for random intialization. - Returns: None ===================== """ self.delta_pos = np.zeros(2) self.delta_theta = 0.0 self._food = False #* Reset Controller if self.controller is not None: self.controller.reset() #* Reset Actuators for actuator in self.actuators.values(): if hasattr(actuator, 'reset'): actuator.reset() #* Reset Sensors for sensor in self.sensors.values(): if hasattr(sensor, 'reset'): sensor.reset() @property def food(self): """Getter for the food attribute. It is a boolean attribute active if the robot stores food. """ return self._food @food.setter def food(self, hasfood): """Setter for the food attribute. It is a boolean attribute active if the robot stores food. """ self._food = hasfood @property def bounding_box(self): return Point(self.pos[0], self.pos[1]).buffer(self.radius).boundary def intersect(self, g): inters = self.bounding_box.intersection(g) if not inters: return [] if isinstance(inters, Point): return np.array(inters.coords) else: return [np.array(v.coords[0]) for v in inters.geoms] def initialize_render(self, canvas): x, y = tuple(self.pos) contour_id = canvas.create_oval(x-self.radius-2, y-self.radius-2,\ x + self.radius+2, y + self.radius+2, fill=self.color2) # body_id = canvas.create_oval(x-self.radius, y-self.radius,\ # x + self.radius, y + self.radius, fill=self.color) bodyA_id = canvas.create_arc(x-self.radius, y-self.radius,\ x + self.radius, y + self.radius, start=np.degrees(self.theta), extent=180, fill="black") bodyB_id = canvas.create_arc(x-self.radius, y-self.radius,\ x + self.radius, y + self.radius, start=np.degrees(self.theta)+180, extent=180, fill="black") orient_id = canvas.create_line(x, y,\ x + self.radius * 2 * np.cos(self.theta),\ y + self.radius * 2 * np.sin(self.theta),\ fill='black', width=2) self.render_dict = { 'contour' : contour_id, 'bodyA' : bodyA_id, 'bodyB' : bodyB_id, 'orient' : orient_id, } return canvas def render(self, canvas): """ Renders the robot in a 2D tkinter canvas. """ x, y = tuple(self.pos) canvas.coords(self.render_dict['contour'],\ x-self.radius, y-self.radius,\ x + self.radius, y + self.radius) canvas.coords(self.render_dict['bodyA'],\ x-self.radius+3, y-self.radius+3,\ x + self.radius-3, y + self.radius-3) canvas.coords(self.render_dict['bodyB'],\ x-self.radius+3, y-self.radius+3,\ x + self.radius-3, y + self.radius-3) canvas.itemconfig(self.render_dict['contour'], fill=self.color2) canvas.itemconfig(self.render_dict['bodyA'], start=0, extent=180, fill=self.colorA) canvas.itemconfig(self.render_dict['bodyB'], start=180, extent=180, fill=self.colorB) canvas.coords(self.render_dict['orient'], x, y,\ x + self.radius * 2 * np.cos(self.theta),\ y + self.radius * 2 * np.sin(self.theta)) return canvas
3.046875
3
util/flask_learn.py
yt7589/aqp
0
12796791
<filename>util/flask_learn.py from flask import Flask class FlaskLearn(object): def __init__(self): self.name = 'FlaskLearn' def startup(self): print('Flask学习程序') def hello_world(self): app = Flask('HelloWorld')
2.953125
3
scripts/sprint_report.py
AndrewDVXI/kitsune
929
12796792
<gh_stars>100-1000 #!/usr/bin/env python import logging import sys import textwrap import xmlrpc.client USAGE = 'Usage: sprint_report.py <SPRINT>' HEADER = 'sprint_report.py: your friendly report view of the sprint!' # Note: Most of the bugzila api code comes from Scrumbugz. cache = {} log = logging.getLogger(__name__) BZ_URL = 'http://bugzilla.mozilla.org/xmlrpc.cgi' SESSION_COOKIES_CACHE_KEY = 'bugzilla-session-cookies' BZ_RESOLUTIONS = ['', 'FIXED', 'INVALID', 'WONTFIX', 'DUPLICATE', 'WORKSFORME', 'DUPLICATE'] BZ_FIELDS = [ 'id', 'status', 'resolution', 'summary', 'whiteboard', 'assigned_to', 'priority', 'severity', 'product', 'component', 'blocks', 'depends_on', 'creation_time', 'last_change_time', 'target_milestone', ] UNWANTED_COMPONENT_FIELDS = [ 'sort_key', 'is_active', 'default_qa_contact', 'default_assigned_to', 'description' ] class SessionTransport(xmlrpc.client.SafeTransport): """ XML-RPC HTTPS transport that stores auth cookies in the cache. """ _session_cookies = None @property def session_cookies(self): if self._session_cookies is None: cookie = cache.get(SESSION_COOKIES_CACHE_KEY) if cookie: self._session_cookies = cookie return self._session_cookies def parse_response(self, response): cookies = self.get_cookies(response) if cookies: self._session_cookies = cookies cache.set(SESSION_COOKIES_CACHE_KEY, self._session_cookies, 0) log.debug('Got cookie: %s', self._session_cookies) return xmlrpc.client.Transport.parse_response(self, response) def send_host(self, connection, host): cookies = self.session_cookies if cookies: for cookie in cookies: connection.putheader('Cookie', cookie) log.debug('Sent cookie: %s', cookie) return xmlrpc.client.Transport.send_host(self, connection, host) def get_cookies(self, response): cookie_headers = None if hasattr(response, 'msg'): cookies = response.msg.getheaders('set-cookie') if cookies: log.debug('Full cookies: %s', cookies) cookie_headers = [c.split(';', 1)[0] for c in cookies] return cookie_headers class BugzillaAPI(xmlrpc.client.ServerProxy): def get_bug_ids(self, **kwargs): """Return list of ids of bugs from a search.""" kwargs.update({ 'include_fields': ['id'], }) log.debug('Searching bugs with kwargs: %s', kwargs) bugs = self.Bug.search(kwargs) return [bug['id'] for bug in bugs.get('bugs', [])] def get_bugs(self, **kwargs): get_history = kwargs.pop('history', True) get_comments = kwargs.pop('comments', True) kwargs.update({ 'include_fields': BZ_FIELDS, }) if 'ids' in kwargs: kwargs['permissive'] = True log.debug('Getting bugs with kwargs: %s', kwargs) bugs = self.Bug.get(kwargs) else: if 'whiteboard' not in kwargs: kwargs['whiteboard'] = ['u=', 'c=', 'p='] log.debug('Searching bugs with kwargs: %s', kwargs) bugs = self.Bug.search(kwargs) bug_ids = [bug['id'] for bug in bugs.get('bugs', [])] if not bug_ids: return bugs # mix in history and comments history = comments = {} if get_history: history = self.get_history(bug_ids) if get_comments: comments = self.get_comments(bug_ids) for bug in bugs['bugs']: bug['history'] = history.get(bug['id'], []) bug['comments'] = comments.get(bug['id'], {}).get('comments', []) bug['comments_count'] = len(comments.get(bug['id'], {}) .get('comments', [])) return bugs def get_history(self, bug_ids): log.debug('Getting history for bugs: %s', bug_ids) try: history = self.Bug.history({'ids': bug_ids}).get('bugs') except xmlrpc.client.Fault: log.exception('Problem getting history for bug ids: %s', bug_ids) return {} return dict((h['id'], h['history']) for h in history) def get_comments(self, bug_ids): log.debug('Getting comments for bugs: %s', bug_ids) try: comments = self.Bug.comments({ 'ids': bug_ids, 'include_fields': ['id', 'creator', 'time', 'text'], }).get('bugs') except xmlrpc.client.Fault: log.exception('Problem getting comments for bug ids: %s', bug_ids) return {} return dict((int(bid), cids) for bid, cids in comments.items()) def wrap(text, indent=' '): text = text.split('\n\n') text = [textwrap.fill(part, expand_tabs=True, initial_indent=indent, subsequent_indent=indent) for part in text] return '\n\n'.join(text) def sprint_stats(bugs): """Print bugs stats block.""" # Return dict of bugs stats # # * total points # * breakdown of points by component # * breakdown of points by focus # * breakdown of points by priority # * other things? def parse_whiteboard(whiteboard): bits = { 'u': '', 'c': '', 'p': '', 's': '' } for part in whiteboard.split(' '): part = part.split('=') if len(part) != 2: continue if part[0] in bits: bits[part[0]] = part[1] return bits def get_history(bugs, sprint): history = [] for bug in bugs: for item in bug.get('history', []): for change in item.get('changes', []): added = parse_whiteboard(change['added']) removed = parse_whiteboard(change['removed']) if ((change['field_name'] == 'status_whiteboard' and removed['s'] != sprint and added['s'] == sprint)): history.append(( item['when'], bug, item['who'], removed['s'], added['s'] )) return history def sprint_timeline(bugs, sprint): """Print timeline block.""" timeline = [] history = get_history(bugs, sprint) # Try to associate the change that added the sprint to the # whiteboard with a comment. for when, bug, who, removed, added in history: reason = 'NO COMMENT' for comment in bug.get('comments', []): if comment['time'] == when and comment['creator'] == who: reason = comment['text'] break timeline.append(( when, bug['id'], who, removed, added, reason )) timeline.sort(key=lambda item: item[0]) for mem in timeline: print('%s: %s: %s' % (mem[0], mem[1], mem[2])) print(' %s -> %s' % (mem[3] if mem[3] else 'unassigned', mem[4])) print(wrap(mem[5])) print('') def print_header(text): print(text) print('=' * len(text)) print('') def main(argv): # logging.basicConfig(level=logging.DEBUG) if not argv: print(USAGE) print('Error: Must specify the sprint to report on. e.g. 2012.19') return 1 sprint = argv[0] print(HEADER) print('') print('Working on %s' % sprint) print('') bugzilla = BugzillaAPI( BZ_URL, transport=SessionTransport(use_datetime=True), allow_none=True) bugs = bugzilla.get_bugs( product=['support.mozilla.org'], whiteboard=['s=' + sprint], resolution=BZ_RESOLUTIONS, history=True, comments=True) bugs = bugs['bugs'] print_header('Timeline') sprint_timeline(bugs, sprint) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
2.171875
2
flickpyper/pickles.py
theodysseus/flickpyper
1
12796793
<reponame>theodysseus/flickpyper<gh_stars>1-10 from os import path import pickle def get_ids(file): if path.isfile(file): with open(file, 'rb') as f: return pickle.load(f) else: return [] def put_ids(file, ids): with open(file, 'wb') as f: pickle.dump(ids, f)
2.640625
3
new_trade/main.py
cbbing/stock
31
12796794
#coding: utf-8 import tushare as ts import pandas as pd from util.date_convert import GetNowDate def diagnosis_one_stock(code): """ 个股诊断 :return: """ # 获取股价 df = get_stock_price(code, True) # 均线指标 # K线提示 def get_stock_price(code, include_realtime_price): """ 获取个股股价 :param code: 股票代码 :param include_realtime_price: 是否含实时股价 :return: """ # 获取历史股价 df = ts.get_hist_data(code) df = df[['close']] df['date'] = df.index if include_realtime_price: df_today = ts.get_today_all() df_code = df_today[df_today['code']==code] df_code = df_code[['trade']] df_code['date'] = GetNowDate() df_code.rename(columns={'trade': 'close'}, inplace=True) df = pd.concat([df, df_code], ignore_index=True) df.sort(columns='date', inplace=True) df = df.drop_duplicates(['date']) df.index = range(len(df)) print '\n' # print df.head() print df.tail() return df if __name__ == "__main__": get_stock_price('600000', True)
2.671875
3
tests/unit/test_fields/test_base.py
radeklat/sparkql
0
12796795
<reponame>radeklat/sparkql import pytest from sparkql.exceptions import FieldParentError, FieldNameError from sparkql import Float, Struct class TestBaseField: @staticmethod def should_give_correct_info_string(): # given float_field = Float() # when info_str = float_field._info() # then assert ( info_str == "<Float\n spark type = FloatType\n nullable = True\n name = None <- [None, None]\n parent = None\n>" ) @staticmethod def should_reject_setting_a_set_parent(): # given struct = Struct() float_field = Float()._replace_parent(struct) another_struct = Struct() # when, then with pytest.raises(FieldParentError): float_field._replace_parent(another_struct) @staticmethod def should_get_contextual_field_name(): # given float_field = Float() float_field._set_contextual_name("contextual_name") # when contextual_name = float_field._contextual_name # then assert contextual_name == "contextual_name" @staticmethod def should_reject_overriding_a_set_contextual_name(): # given float_field = Float() float_field._set_contextual_name("contextual_name") # when, then with pytest.raises(FieldNameError): float_field._set_contextual_name("another_name") @staticmethod def test_field_name_should_raise_error_if_not_resolved(): # given float_field = Float() # when, then with pytest.raises(FieldNameError): float_field._field_name @staticmethod def test_should_reject_replacing_a_preexisting_explicit_name(): # given float_field = Float(name="explicit_name") # wheb, then with pytest.raises(FieldNameError): float_field._replace_explicit_name("new_explicit_name")
2.34375
2
Gathered CTF writeups/ptr-yudai-writeups/2019/Security_Fest_2019/Baby3/solve.py
mihaid-b/CyberSakura
1
12796796
<reponame>mihaid-b/CyberSakura from ptrlib import * libc = ELF("./libc.so.6") elf = ELF("./baby3") sock = Process("./baby3") delta = 0xe7 # Stage 1: exit-->_start payload = fsb( pos = 6, writes = {elf.got("exit"): elf.symbol("_start") & 0xffff}, bs = 2, size = 2, bits = 64 ) print(payload) sock.recvuntil("input: ") sock.sendline(payload) # Stage 2: leak libc base sock.recvuntil("input: ") sock.sendline("%25$p") addr_libc_start_main = int(sock.recvline(), 16) libc_base = addr_libc_start_main - libc.symbol("__libc_start_main") - delta logger.info("libc base = " + hex(libc_base)) # Stage 3: printf-->system payload = fsb( pos = 6, writes = {elf.got("printf"): libc_base + libc.symbol("system")}, bs = 2, size = 8, bits = 64 ) sock.recvuntil("input: ") sock.sendline(payload) # Stage 4: get the shell! sock.sendline("/bin/sh\x00") sock.interactive()
1.914063
2
vaultier/libs/version/context.py
dz0ny/Vaultier
30
12796797
<reponame>dz0ny/Vaultier class Manager(object): _user = None _enabled = True _user_required = True def set_user_required(self, user_required): self._user_required = user_required def get_user_required(self): return self._user_required def set_user(self, user): self._user = user def get_user(self): if self._user_required and (not self._user or self._user.is_anonymous()): msg = 'To store version valid user is required on ' \ 'version_context_manager' raise Exception(msg) return self._user def set_enabled(self, enabled): self._enabled = enabled def get_enabled(self): return self._enabled version_context_manager = Manager() class VersionContextAwareApiViewMixin(object): def initialize_request(self, request, *args, **kargs): request = super(VersionContextAwareApiViewMixin, self) \ .initialize_request(request, *args, **kargs) version_context_manager.set_user(request.user) return request
2.4375
2
app/chat/migrations/0002_alter_chatmessage_user_id.py
GonnaFlyMethod/simple_chat
0
12796798
# Generated by Django 3.2.5 on 2021-07-20 13:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('chat', '0001_initial'), ] operations = [ migrations.AlterField( model_name='chatmessage', name='user_id', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='sender'), ), ]
1.53125
2
SourceModel/SM_Constants.py
crossminer/CrossPuppeteer
47
12796799
CLASS_REGEX = r'class [\w\d\:\-_\']+(?:\:\:[\w\d\:\-_\']+)*\s*(?:\(.+\)\s*)*{*' CLASS_NAME_REGEX = r'class ([\w\d\:\-_\']+(?:\:\:[\w\d\:\-_\']+)*)\s*(?:\(.+\)\s*)*{*' DEFINE_REGEX = r'define \w+(?:\:\:\w+)*\s*(?:\(.+\)\s*)*{*' FILE_REGEX = r'file\W*\{\W*\'.+\'\W*:|file\W*\{\W*\".+\"\W*:|file\W*{\W*\$.+\W*:' PACKAGE_REGEX = r'package\W*\{\W*\'.+\'\W*:|package\W*\{\W*\".+\"\W*:|package\W*{\W*\$.+\W*:' SERVICE_REGEX = r'service\W*\{\W*\'.+\'\W*:|service\W*\{\W*\".+\"\W*:|service\W*{\W*\$.+\W*:' DECLARE_INCLUDE_REGEX = r'(?:^|\n)\s*(?:include|require|contain) (?:Class)*\[*(?:\$|\')*[\w\d\:\-_\']+(?:\:\:\${0,1}[\w\d\:\-_\']+)*\'*\]*(?:\s*,\s*(?:Class)*\[*(?:\$|\')*[\w\d\:\-_\']+(?:\:\:\${0,1}[\w\d\:\-_\']+)*\'*\]*)*' #DECLARE_INCLUDE_REGEX = r'(?:^|\n)\s*(?:include|require|contain) (?:Class)?\[?((?:\'|\$)?[\w\d\:\-_]+(?:\:\:[\w\d\:\-_]+)*\'?)\]?(?:\s*,\s*(?:Class)?\[?((?:\'|\$)?[\w\d\:\-_]+(?:\:\:[\w\d\:\-_]+)*\'?)\]?)*' #DECLARE_RESOURCE_REGEX = r'(?:^|\n)\s*class \{\s*(?:\'|\"|\$)?[\w\:\-_]+(?:\:\:\$?[\w\:\-_]+)*(?:\'|\")?\s*\:' DECLARE_RESOURCE_REGEX = r'(?:^|\n)\s*class \{\s*(?:\'|\")?\:{0,2}(\$?[\w\d\:\-_]+(?:\:\:\$?[\w\d\:\-_]+)*)(?:\'|\")?\s*\:' EXEC_REGEX = r'exec\W*\{\W*\'.+\'\W*:|exec\W*\{\W*\".+\"\W*:|exec\W*{\W*\$.+\W*:' LOC_REGEX = r'\n' IF_REGEX = r'if\W+.+\W*\{' CASE_REGEX = r'case\W+.+\W*\{' USER_REGEX = r'user\W*\{\W*.+:' COMMENT_REGEX = r'\A#|\n#' HARDCODED_VALUE_REGEX = r'= \d+|=> \d+|= .*\'.+?\s*(?:\(.+\)\s*)*\'|=> .*\'.+?\s*(?:\(.+\)\s*)*\'|' \ r'= .*\".+?\s*(?:\(.+\)\s*)*\"|=> .*\".+\s*(?:\(.+\)\s*)*\"' NODE_REGEX = r'node\W*\w+(?:\:\:\w+)*\W+\{' GLOBAL_VAR_REGEX = r'\$.+\W*=' CLASS_GROUP_REGEX = r'class (\w+(?:\:\:\w+)*)\s*(?:\(.+\)\s*)*{*' CLASS_INH_REGEX = r'inherits (\w+(?:\:\:\w+)*){*' FILE_GROUP_REGEX = r'file\W*\{\W*\'(.+)\'\W*:|file\W*\{\W*\"(.+)\"\W*:|file\W*{\W*(\$.+)\W*:' PACKAGE_GROUP_REGEX = r'package\W*\{\W*\'(.+)\'\W*:|package\W*\{\W*\"(.+)\"\W*:|package\W*{\W*(\$.+)\W*:' SERVICE_GROUP_REGEX = r'service\W*\{\W*\'(.+)\'\W*:|service\W*\{\W*\"(.+)\"\W*:|service\W*{\W*(\$.+)\W*:' DEPENDENT_PACKAGE = r'Package\W*\[\'.+\'\]' DEPENDENT_SERVICE = r'Service\W*\[\'.+\'\]' DEPENDENT_FILE = r'File\W*\[\'.+\'\]' DEPENDENT_CLASS = r'Class\W*\[\'.+\'\]' DEPENDENT_GROUP_PACKAGE = r'Package\W*\[\'(.+)\'\]' DEPENDENT_GROUP_SERVICE = r'Service\W*\[\'(.+)\'\]' DEPENDENT_GROUP_FILE = r'File\W*\[\'(.+)\'\]' DEPENDENT_GROUP_CLASS = r'Class\W*\[\'(.+)\'\]' PACKAGE = "Package" FILE = "File" SERVICE = "Service" CLASS = "Class" VAR1_REGEX = r'\$\{.+\}' VAR2_REGEX = r'\$.+\W*\{' VAR3_REGEX = r'\'.+\'' VAR4_REGEX = r'\".+\"' VAR1_EX_REGEX = r'\$\{(.+)\}' VAR2_EX_REGEX = r'\$(.+)\W*\{' VAR3_EX_REGEX = r'\'(.+)\'' VAR4_EX_REGEX = r'\"(.+)\"' #class\W+.+\{|
2.4375
2
views.py
jfroejk/cartridge_quickpay
0
12796800
<reponame>jfroejk/cartridge_quickpay<gh_stars>0 from django.http import HttpRequest, HttpResponse, HttpResponseRedirect, JsonResponse, \ HttpResponseBadRequest, HttpResponseForbidden from django.template import loader from django.template.response import TemplateResponse from django.shortcuts import redirect, render from django.utils.timezone import now from django.views.decorators.csrf import csrf_exempt from django.core.urlresolvers import reverse from django.db import transaction from mezzanine.conf import settings from mezzanine.utils.importing import import_dotted_path from cartridge.shop import checkout from cartridge.shop.models import Order from cartridge.shop.forms import OrderForm import json import logging import re from urllib.parse import urlencode from typing import Callable, List, Optional from .payment import get_quickpay_link, sign, sign_order, start_subscription, capture_subscription_order, \ acquirer_requires_popup, acquirer_supports_subscriptions, order_currency from .models import QuickpayPayment, get_private_key handler = lambda s: import_dotted_path(s) if s else lambda *args: None billship_handler = handler(settings.SHOP_HANDLER_BILLING_SHIPPING) tax_handler = handler(settings.SHOP_HANDLER_TAX) order_handler = handler(settings.SHOP_HANDLER_ORDER) order_form_class = (lambda s: import_dotted_path(s) if s else OrderForm)(getattr(settings, 'QUICKPAY_ORDER_FORM', None)) def quickpay_checkout(request: HttpRequest) -> HttpResponse: """Checkout using Quickpay payment form. Use the normal cartridge.views.checkout_steps for GET and for the rest other payments steps, use this special version for POSTing paument form for Quickpay. Settings: QUICKPAY_ORDER_FORM = dotted path to order form to use QUICKPAY_FRAMED_MODE = <whether to use framed Quickpay> QUICKPAY_SHOP_BASE_URL: str required = URL of the shop for success, cancel and callback URLs QUICKPAY_ACQUIRER: str|list required = The acquirer(s) to use, e.g. 'clearhaus' QUICKPAY_AUTO_CAPTURE: bool default False = Whether to auto-capture payment urls.py setup: from cartridge_quickpay.views import checkout_quickpay, order_form_class ... url("^shop/checkout/", checkout_steps, {'form_class': order_form_class}), url("^shop/checkout_quickpay/", checkout_quickpay, name="checkout_quickpay"), url("^shop/", include("cartridge.shop.urls")), ... ** FOR FRAMED MODE: ** Change checkout.html - <form ... onsubmit="return false"> - Change submit button to: - <button class="btn btn-lg btn-primary pull-right" onclick="checkout_quickpay();">Go to payment</button> - add payment modal <div class="modal db-modal fade" id="payment_window" tabindex="-1" role="dialog" aria-labelledby="payment_window_label"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-body"> <iframe id="payment_iframe" style="width: 100%; border: none; height: 90vh;"></iframe> </div> </div> </div> </div> - and add JS at the bottom: <script> function checkout_quickpay() { $.post("{% url 'quickpay_checkout' %}", $('.checkout-form').serialize(), function(data) { if (data.success) { $('#payment_iframe').attr('src', data.payment_link); $('#payment_window').modal('show'); } else { alert("failed"); } }); } </script> """ framed: bool = getattr(settings, 'QUICKPAY_FRAMED_MODE', False) acquirer = request.POST.get('acquirer', None) logging.debug("quickpay_checkout: using acquirer {}".format(acquirer or '<any>')) in_popup = acquirer_requires_popup(acquirer) step = checkout.CHECKOUT_STEP_FIRST # Was: _LAST checkout_errors = [] initial = checkout.initial_order_data(request, order_form_class) logging.debug("quickpay_checkout: initial order data = {}".format(initial)) form = order_form_class(request, step, initial=initial, data=request.POST) if form.is_valid(): logging.debug("quickpay_checkout() - Form valid") request.session["order"] = dict(form.cleaned_data) try: billship_handler(request, form) tax_handler(request, form) except checkout.CheckoutError as e: logging.warn("quickpay_checkout() - billship or tax handler failed") checkout_errors.append(e) # Create order and Quickpay payment, redirect to Quickpay/Mobilepay form order = form.save(commit=False) order.setup(request) # Order is saved here so it gets an ID # Handle subscription or one-time order if (hasattr(order, 'has_subscription') and order.has_subscription() and acquirer_supports_subscriptions(acquirer)): quickpay_subs_id, quickpay_link = start_subscription( order, order.items.all().order_by('id')[0]) logging.debug("quickpay_checkout() - starting subscription {}, payment link {}" .format(quickpay_subs_id, quickpay_link)) else: # One-time order OR subscription with acquirer that doesn't support subscriptions quickpay_link: str = get_quickpay_link(order, acquirer)['url'] logging.debug("quickpay_checkout() - product purchase (or subscription w/o auto-renewal), payment link {}" .format(quickpay_link)) # Redirect to Quickpay if framed: logging.debug("quickpay_checkout() - JSON response {}" .format(str({'success': True, 'payment_link': quickpay_link}))) return JsonResponse({'success': True, 'payment_link': quickpay_link}) # Medsende om url skal åbnes i nyt vindue, åben i JS, håndtere at returside havner i iframe igen elif in_popup: logging.debug("quickpay_checkout() - Opening popup window") return render(request, "cartridge_quickpay/payment_toplevel.html", {'quickpay_link': quickpay_link}) else: logging.debug("quickpay_checkout() - Redirect response") return HttpResponseRedirect(redirect_to=quickpay_link) # Form invalid, go back to checkout step step_vars = checkout.CHECKOUT_STEPS[step - 1] template = "shop/%s.html" % step_vars["template"] context = {"CHECKOUT_STEP_FIRST": step == checkout.CHECKOUT_STEP_FIRST, "CHECKOUT_STEP_LAST": step == checkout.CHECKOUT_STEP_LAST, "CHECKOUT_STEP_PAYMENT": (settings.SHOP_PAYMENT_STEP_ENABLED and step == checkout.CHECKOUT_STEP_PAYMENT), "step_title": step_vars["title"], "step_url": step_vars["url"], "steps": checkout.CHECKOUT_STEPS, "step": step, "form": form, "payment_url": "https://payment.quickpay.net/d7ad25ea15154ef4bdffb5bf78f623fc"} page = loader.get_template(template).render(context=context, request=request) if framed: logging.debug("quickpay_checkout() - Form not OK, JSON response") return JsonResponse({'success': False, 'page': page}) else: logging.debug("quickpay_checkout() - Form not OK, page response") return HttpResponse(page) def escape_frame(f: Callable[[HttpRequest], HttpResponse]) -> Callable[[HttpRequest], HttpResponse]: """Escape iframe when payment is in a iframe and the shop itself is not""" def f_escape(request: HttpRequest) -> HttpResponse: if request.GET.get('framed'): logging.debug("cartridge_quickpay.views.escape_frame: Escaping") url = request.path get_args = request.GET.copy() get_args.pop('framed') if get_args: url += '?' + get_args.urlencode() res = '<html><head><script>window.parent.location.replace("{}");</script></head></html>'.format(url) return HttpResponse(res) else: logging.debug("cartridge_quickpay.views.escape_frame: NOT in frame") return f(request) f_escape.__name__ = f.__name__ return f_escape def escape_popup(f: Callable[[HttpRequest], HttpResponse]) -> Callable[[HttpRequest], HttpResponse]: """Escape payment popup window""" def f_escape(request: HttpRequest) -> HttpResponse: if request.GET.get('popup'): logging.debug("cartridge_quickpay.views.escape_popup: Escaping") url = request.path get_args = request.GET.copy() get_args.pop('popup') if get_args: url += '?' + get_args.urlencode() res = '<html><head><script>var opener = window.opener; opener.document.location = "{}"; window.close(); opener.focus();</script></head></html>'.format(url) return HttpResponse(res) else: logging.debug("cartridge_quickpay.views.escape_popup: NOT in popup") return f(request) f_escape.__name__ = f.__name__ return f_escape @escape_frame @escape_popup def failed(request: HttpRequest): """Payment failed""" logging.warning("payment_quickpay.views.failed(), GET args = {}".format(request.GET)) qp_failed_url = getattr(settings, 'QUICKPAY_FAILED_URL', '') if qp_failed_url: return HttpResponseRedirect(qp_failed_url) else: # Assumes the template is available... return render(request, "shop/quickpay_failed.html") @escape_frame @escape_popup def success(request: HttpRequest) -> HttpResponse: """Quickpay payment succeeded. GET args: id : int = ID of order hash : str = signature hash of order. Raise NB: Form not available (quickpay order handler) NB: Only safe to call more than once if order_handler is """ order_id = request.GET.get('id') if order_id: order = Order.objects.get(pk=order_id) else: order = Order.objects.from_request(request) # Raises DoesNotExist if order not found order_hash = sign_order(order) logging.debug("\n ---- payment_quickpay.views.success()\n\norder = %s, sign arg = %s, check sign = %s" % (order, request.GET.get('hash'), sign_order(order))) logging.debug("data: {}".format(dict(request.GET))) # Check hash. if request.GET.get('hash') != order_hash: logging.warn("cartridge_quickpay:success - hash doesn't match order") return HttpResponseForbidden() # Call order handler order_handler(request, order_form=None, order=order) response = redirect("shop_complete") return response try: from cartridge_subscription.models import Subscription, SubscriptionPeriod except ImportError: Subscription = None @csrf_exempt @transaction.atomic def callback(request: HttpRequest) -> HttpResponse: """Callback from Quickpay. Register payment status in case it wasn't registered already""" def update_payment() -> Optional[QuickpayPayment]: """Update QuickPay payment from Quickpay result""" # Refers order, data from outer scope payment: Optional[QuickpayPayment] = QuickpayPayment.get_order_payment(order) if payment is not None: payment.update_from_res(data) # NB: qp.test_mode == data['test_mode'] payment.save() return payment data = json.loads(request.body.decode('utf-8')) logging.debug("\n ---- payment_quickpay.views.callback() ----") logging.debug("Got data {}\n".format(data)) # We may get several callbacks with states "new", "pending", or "processed" # We're only interested in "processed" for payments and "active" for new subscriptions qp_state = data.get('state', None) if (qp_state in ('processed', 'active', 'rejected') or not getattr(settings, 'QUICKPAY_AUTO_CAPTURE', False) and qp_state == 'pending'): logging.debug("payment_quickpay.views.callback(): QP state is {}, processing".format(qp_state)) else: logging.debug("payment_quickpay.views.callback(): QP state is {}, skipping".format(qp_state)) return HttpResponse("OK") # Get the order order_id_payment_id_string = data.get('order_id','') logging.debug('order_id_payment_id_string: {}'.format(order_id_payment_id_string)) order_id = re.sub('_\d+', '', order_id_payment_id_string) logging.debug('order_id: {}'.format(order_id)) try: order = Order.objects.filter(pk=order_id).select_for_update()[0] # Lock order to prevent race condition except IndexError: # Order not found, ignore logging.warning("payment_quickpay.views.callback(): order id {} not found, skipping".format(order_id)) return HttpResponse("OK") # Check checksum. If we have multiple agreements, we need the order currency to get the right one checksum = sign(request.body, get_private_key(order_currency(order))) logging.debug("Request checksum = {}".format(request.META['HTTP_QUICKPAY_CHECKSUM_SHA256'])) logging.debug("Calculated checksum = {}".format(checksum)) if checksum != request.META['HTTP_QUICKPAY_CHECKSUM_SHA256']: logging.error('Quickpay callback: checksum failed {}'.format(data)) return HttpResponseBadRequest() logging.debug("payment_quickpay.views.callback(): order.status = {}".format(order.status)) if data['state'] == 'rejected': update_payment() elif data['type'] == 'Subscription' and Subscription is not None: # Starting a NEW subscription. The Subscription is created in order_handler logging.error("payment_quickpay.views.callback(): starting subscription, order {}".format(order.id)) # Capture the initial subscription payment capture_subscription_order(order) # Starts async capture, next callback is 'accepted' elif data['accepted']: # Normal or subscription payment # If autocapture, the payment will have been captured. # If not autocapture, the payment will have been reserved only and must be captured later. # -- The order can be considered paid (reserved or captured) if and only if we get here. # -- An order is paid if and only if it has a transaction_id logging.info("payment_quickpay.views.callback(): accepted payment, order {}".format(order.id)) payment = update_payment() order.transaction_id = data['id'] logging.debug("payment_quickpay.views.callback(): calling order_handler, qp subscription = {}" .format(data.get('subscription_id', '-'))) order_handler(request=None, order_form=None, order=order, payment=payment) logging.debug("payment_quickpay.views.callback(): final order.status: {}".format(order.status)) return HttpResponse("OK")
2
2
python/archive/writedata.py
d-giles/KeplerML
0
12796801
# reads in both both .sav files: the long-cadence data and the variable supplement # removes all objects that lack data like effective temperatures # writes the dataset.npy and logdata.npy files # also building the training and test sets and runs a Gaussian Naive Bayes classifier import numpy as np import pyfits as pf import itertools from scipy.io.idl import readsav from scipy.spatial import distance import pylab as pl from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.mixture import GMM from astroML.datasets import fetch_sdss_specgals from astroML.decorators import pickle_results from sklearn import naive_bayes #from __future__ import print_function s = readsav('../data/grndsts9_vars.sav') s2 = readsav('../data/ts_stats.sav') #print int(s2.kepid[0]), s2.kepmag[0], s2.teff[0], s2.logg[0], s2.radius[0], s2.range[0], s2.rmsmdv[0], s2.mdv3[0], s2.mdv6[0], s2.mdv12[0], s2.mdv24[0], s2.mdv48[0], s2.mdv4d[0], s2.mdv8d[0], s2.npk[0], s2.maxpkht[0], s2.maxper[0], s2.maxflx[0], s2.sndht[0], s2.sndper[0], s2.sndflx[0], s2.np3d[0], s2.np9d[0], s2.nsigpks[0], s2.rms4[0], s2.cdpp3[0], s2.cdpp6[0], s2.cdpp12[0], s2.pdcvar[0], s2.crowd[0] print len(s.teff) n1 = len([x for x in s.teff if x>0]) print n1 for i in range(0,n1): if s.teff[i]>0 and s.cdpp3[i]==0: n1 = n1-1 print n1 n1 = 151797 n2 = n1 + len([x for x in s2.teff if x>0]) print n2 for i in range(n1,n2): if s2.teff[i-n1]>0 and s2.cdpp3[i-n1]==0: n2 = n2-1 print n2 dataset = np.empty([n2,30]) i=0 j=0 while i<n1: if s.teff[j]>0 and s.cdpp3[j]!=0: dataset[i,0] = s.kepid[j] dataset[i,1] = s.kepmag[j] dataset[i,2] = s.teff[j] dataset[i,3] = s.logg[j] dataset[i,4] = s.radius[j] dataset[i,5] = s.range[j] dataset[i,6] = s.rmsmdv[j] dataset[i,7] = s.mdv3[j] dataset[i,8] = s.mdv6[j] dataset[i,9] = s.mdv12[j] dataset[i,10] = s.mdv24[j] dataset[i,11] = s.mdv48[j] dataset[i,12] = s.mdv4d[j] dataset[i,13] = s.mdv8d[j] dataset[i,14] = s.npk[j] dataset[i,15] = s.maxpkht[j] dataset[i,16] = s.maxper[j] dataset[i,17] = s.maxflx[j] dataset[i,18] = s.sndht[j] dataset[i,19] = s.sndper[j] dataset[i,20] = s.sndflx[j] dataset[i,21] = s.np3d[j] dataset[i,22] = s.np9d[j] dataset[i,23] = s.nsigpks[j] dataset[i,24] = s.rms4[j] dataset[i,25] = s.cdpp3[j] dataset[i,26] = s.cdpp6[j] dataset[i,27] = s.cdpp12[j] dataset[i,28] = s.pdcvar[j] dataset[i,29] = s.crowd[j] i=i+1 j=j+1 if i>152780: print i,j print s.kepid[j] print dataset[i] print dataset[895] i=n1 j=0 while i<n2: if s2.teff[j]>0 and s2.cdpp3[j]!=0: dataset[i,0] = s2.kepid[j] dataset[i,1] = s2.kepmag[j] dataset[i,2] = s2.teff[j] dataset[i,3] = s2.logg[j] dataset[i,4] = s2.radius[j] dataset[i,5] = s2.range[j] dataset[i,6] = s2.rmsmdv[j] dataset[i,7] = s2.mdv3[j] dataset[i,8] = s2.mdv6[j] dataset[i,9] = s2.mdv12[j] dataset[i,10] = s2.mdv24[j] dataset[i,11] = s2.mdv48[j] dataset[i,12] = s2.mdv4d[j] dataset[i,13] = s2.mdv8d[j] dataset[i,14] = s2.npk[j] dataset[i,15] = s2.maxpkht[j] dataset[i,16] = s2.maxper[j] dataset[i,17] = s2.maxflx[j] dataset[i,18] = s2.sndht[j] dataset[i,19] = s2.sndper[j] dataset[i,20] = s2.sndflx[j] dataset[i,21] = s2.np3d[j] dataset[i,22] = s2.np9d[j] dataset[i,23] = s2.nsigpks[j] dataset[i,24] = s2.rms4[j] dataset[i,25] = s2.cdpp3[j] dataset[i,26] = s2.cdpp6[j] dataset[i,27] = s2.cdpp12[j] dataset[i,28] = s2.pdcvar[j] dataset[i,29] = s2.crowd[j] i=i+1 j=j+1 q=8 logdata = np.log10(dataset) testdata = np.empty([n2,q]) plotdata = np.empty([n2,q]) plotdata[:,0] = dataset[:,2] #teff plotdata[:,1] = dataset[:,3] #logg plotdata[:,2] = logdata[:,15] #maxpkht plotdata[:,3] = logdata[:,18] #sndht plotdata[:,4] = logdata[:,16] #maxper plotdata[:,5] = logdata[:,19] #sndper plotdata[:,6] = logdata[:,5] #range plotdata[:,7] = logdata[:,24] #rms4 np.save('../data/dataset',dataset) np.save('../data/logdata',logdata) #s.range = s.range/s.totf j=0 for i in [2,3,15,18,16,19,5,24]: mean = np.mean(logdata[:,i]) std = np.mean(logdata[:,i]) testdata[:,j] = (logdata[:,i]-mean)/std j=j+1 teff = dataset[:,2] rrlyrae = [5520878, 3733346, 5299596, 6070714, 6100702, 6763132, 6936115, 7176080] rtest = [7742534, 7988343, 8344381, 9508655, 9591503, 9947026, 10789273, 11802860] instrip = [2571868, 2987660, 3629496, 5356349, 5437206, 6668729, 7304385, 7974841, 8018827, 8324268] itest = [8351193, 8489712, 8915335, 9291618, 9351622, 10537907, 10974032, 11572666, 11874676, 12153021] detached = [1026032, 1026957, 1433962, 1571511, 1725193, 1996679, 2010607, 2162635, 2162994, 2305372, 2305543, 2306740] dtest = [2308957, 2309587, 2309719, 2437452, 2438070, 2440757, 2442084, 2445134, 2447893, 2556127, 2557430, 2576692] semidet = [4947528, 4949770, 5077994, 5120793, 5211385, 5215999, 5218441, 5374999, 5471619, 5774375, 5785586, 5792093, 5809827] sdtest = [5823121, 6283224, 6302051, 6353203, 6432059, 6606653, 6669809, 6692340, 6836140, 6852488, 6865626, 6962901, 7031714] overcontact = [7821450, 7830460, 7835348, 7839027, 7871200, 7877062, 7878402, 7879404, 7881722, 7889628, 7950962, 7973882, 7977261] octest = [8004839, 8035743, 8039225, 8053107, 8108785, 8111387, 8122124, 8143757, 8177958, 8190491, 8190613, 8192840, 8241252] ellipsoid = [9848190, 9898401, 9909497, 9948201, 10028352, 10030943, 10032392, 10123627, 10135584, 10148799, 10155563, 10285770, 10288502, 10291683, 10351735, 10417135] eltest = [10481912, 10600319, 10619506, 10855535, 11135978, 11336707, 11572643, 11714337, 11722816, 11751847, 11825204, 11875706, 12055421, 12059158, 12121738, 12166770] uncertain = [9237533, 9347868, 9347955, 9456920, 9469350, 9480516, 9532591, 9596355, 9655187, 9713664, 9716456, 9724080] utest = [9724220, 9832227, 9835416, 9874575, 9964422, 10086746, 10264744, 10350225, 10388897, 10556068, 10684673, 10799558] #candidate = [1027438, 1161345, 1431122, 1432214, 1432789, 1717722, 1718189, 1718958, 1721157, 1724719, 1725016, 1849702, 1865042, 1871056, 1872821, 1995519, 1996180, 2141783, 2142522, 2161536, 2162635, 2164169, 2165002, 2302548, 2303903, 2304320, 2306756, 2307199, 2307415, 2309719, 2438264, 2438513, 2439243, 2441495, 2442448, 2444412, 2449431] #falsepos = [892772, 1026957, 1433962, 1571511, 1722276, 1996679, 2157247, 2166206, 2309585, 2438070, 2440757, 2441151, 2441728, 2445129, 2445154, 2446113, 2452450] num = 100 sunlike = [0]*num kdwarf = [0]*num giant = [0]*num other = [0]*num stest = [0]*num ktest = [0]*num gtest = [0]*num otest = [0]*num sun=0 kdw=0 gnt=0 oth=0 j=0 while 1: if 3500<=teff[j]<=5100 and (s.logg[j]>=4.2 or s.logg[j]>=(2.2+0.0005*teff[j])): if kdw<100: kdwarf[kdw] = dataset[j,0] elif kdw<200: ktest[kdw-100] = dataset[j,0] kdw = kdw+1 elif 5600<=teff[j]<=5900: if sun<100: sunlike[sun] = dataset[j,0] elif sun<200: stest[sun-100] = dataset[j,0] sun = sun+1 elif 0<s.logg[j]<=(6.0-0.0004*teff[j]) and s.logg[j]<=4.0 and teff[j]>0: if gnt<100: giant[gnt] = dataset[j,0] elif gnt<200: gtest[gnt-100] = dataset[j,0] gnt = gnt+1 elif teff[j]>0: if oth<100: other[oth] = dataset[j,0] elif oth<200: otest[oth-100] = dataset[j,0] oth = oth+1 if kdw>=200 and sun>=200 and gnt>=200 and oth>=200: break j = j+1 #p = len(rrlyrae + instrip + detached + semidet + overcontact + ellipsoid + uncertain + sunlike + kdwarf + giant + other) #kidlist = [other, sunlike, kdwarf, giant, rrlyrae, instrip, detached, semidet, overcontact, ellipsoid, uncertain] #testlist = [otest, stest, ktest, gtest, rtest, itest, dtest, sdtest, octest, eltest, utest] p = len(rrlyrae + instrip + detached + semidet + overcontact + ellipsoid + uncertain) kidlist = [rrlyrae, instrip, detached, semidet, overcontact, ellipsoid, uncertain] testlist = [rtest, itest, dtest, sdtest, octest, eltest, utest] col=np.empty([p],dtype='S10') training = np.empty([p,q]) pd = np.empty([p,q]) h = 0 for i in kidlist: for j in i: #print h, j temp = testdata[np.where(dataset[:,0]==j)[0][0]] temp2 = plotdata[np.where(dataset[:,0]==j)[0][0]] for k in range(0,q): training[h,k] = temp[k] for k in range(0,q): pd[h,k] = temp2[k] if i==instrip: col[h] = 'blue' elif i==detached: col[h] = 'cyan' elif i==sunlike: col[h] = 'white' elif i==kdwarf: col[h] = 'white' elif i==giant: col[h] = 'white' elif i==other: col[h] = 'white' elif i==rrlyrae: col[h] = 'magenta' elif i==semidet: col[h] = 'green' elif i==overcontact: col[h] = 'yellow' elif i==ellipsoid: col[h] = 'orange' elif i==uncertain: col[h] = 'red' h = h+1 h=0 sampletest = np.empty([p,q]) pdtest = np.empty([p,q]) coltest=np.empty([p],dtype='S10') for i in testlist: for j in i: #print h, j temp = testdata[np.where(dataset[:,0]==j)[0][0]] temp2 = plotdata[np.where(dataset[:,0]==j)[0][0]] for k in range(0,q): sampletest[h,k] = temp[k] for k in range(0,q): pdtest[h,k] = temp2[k] if i==itest: coltest[h] = 'blue' elif i==dtest: coltest[h] = 'cyan' elif i==stest: coltest[h] = 'yellow' elif i==ktest: coltest[h] = 'orange' elif i==gtest: coltest[h] = 'red' elif i==otest: coltest[h] = 'white' elif i==rtest: coltest[h] = 'magenta' elif i==sdtest: coltest[h] = 'green' elif i==octest: coltest[h] = 'yellow' elif i==eltest: coltest[h] = 'orange' elif i==utest: coltest[h] = 'red' h = h+1 #q = len([x for x in testdata if x[0]>0]) ''' q=5000 i=0 j=0 sampletest = np.empty([q,n]) pdtest = np.empty([q,m]) #col=np.empty([q],dtype='S10') while i<len(sampletest): if testdata[j,0] > -10 and j>10000: sampletest[i] = testdata[j] pdtest[i] = plotdata[j] i=i+1 j=j+1 ''' sample = training ''' sample2 = np.empty([len(sample),q]) for i in range(0,q): temp = sample[:,i].argsort() sample2[:,i] = np.arange(len(sample[:,i]))[temp.argsort()] sample2 = sample2/len(sample) ''' print np.shape(sample) fig = pl.figure(1) pl.clf() ''' colors = itertools.cycle('bgrcmybgrcmybgrcmybgrcmy') for k, col in zip(set(labels), colors): for index in class_members: x = testdata[:,index] pl.plot(x[0], x[1], 'o', markerfacecolor=col, markeredgecolor=col, markersize=1) pl.plot(0,0) pl.show() i=1 while i<=1: clf = KMeans(n_clusters=i, max_iter=1, random_state=0) clf.fit(sample) ''' X_train = training y_train = col X_test = sampletest y_test = coltest gnb = naive_bayes.GaussianNB() gnb.fit(X_train, y_train) y_pred = gnb.predict(X_test) n=0 for i in range(0,len(y_pred)): if y_pred[i] != y_test[i]: #print i, y_pred[i], y_test[i] n = n+1 print n, 1.0 - n*1.0/len(y_test) ''' @pickle_results('forest.pkl') def compute_forest(depth): rms_test = np.zeros(len(depth)) rms_train = np.zeros(len(depth)) i_best = 0 clf = RandomForestClassifier(n_estimators=1, max_depth=5, min_samples_split=1, random_state=0) stuff = clf.fit(rms_train) stuff = clf.apply(rms_test) print stuff compute_forest([0,1,2,3,4]) for i, d in enumerate(depth): clf = RandomForestClassifier(n_estimators=10, max_depth=d, min_samples_split=1, random_state=0) stuff = cross_val_score(clf, rms_test, rms_train) print stuff ''' ''' def onpick(event): ind=event.ind s1 = ax1.scatter(X[ind,0],X[ind,1],c=col[ind],lw=1,s=36) s2 = ax2.scatter(pd[ind,0],pd[ind,1],c=col[ind],lw=1,s=36) s3 = ax3.scatter(pd[ind,4],pd[ind,5],c=col[ind],lw=1,s=36) s4 = ax4.scatter(pd[ind,6],pd[ind,7],c=col[ind],lw=1,s=36) pl.ion() pl.draw() s1.set_visible(False) s2.set_visible(False) s3.set_visible(False) s4.set_visible(False) ''' ax1 = pl.subplot(221,axisbg='black') ax1.scatter(pdtest[:,0],pdtest[:,1],c=y_pred,lw=0,s=7,picker=True) #ax1.scatter(sample[:,0],sample[:,1],c=col,lw=0,s=7,picker=True) #fig.canvas.mpl_connect('pick_event',onpick) #pl.xlim(2000,12000) #pl.ylim(0,6) pl.xlabel('T_eff') pl.ylabel('log(g)') ax2 = pl.subplot(222,axisbg='black') ax2.scatter(pdtest[:,2],pdtest[:,3],c=y_pred,lw=0,s=7,picker=True) #ax2.scatter(sample[:,2],sample[:,3],c=col,lw=0,s=7,picker=True) #fig.canvas.mpl_connect('pick_event',onpick) #pl.xlim(-1,4) #pl.ylim(-1,3.5) pl.xlabel('log-first peak height') pl.ylabel('log-second peak height') ax3 = pl.subplot(223,axisbg='black') ax3.scatter(pdtest[:,4],pdtest[:,5],c=y_pred,lw=0,s=7,picker=True) #ax3.scatter(sample[:,4],sample[:,5],c=col,lw=0,s=7,picker=True) #fig.canvas.mpl_connect('pick_event',onpick) #pl.xlim(-1.5,2.5) #pl.ylim(-1.5,2.5) pl.xlabel('log-first peak period (d)') pl.ylabel('log-second peak period (d)') ax4 = pl.subplot(224,axisbg='black') ax4.scatter(pdtest[:,6],pdtest[:,7],c=y_pred,lw=0,s=7,picker=True) #ax4.scatter(sample[:,6],sample[:,7],c=col,lw=0,s=7,picker=True) #fig.canvas.mpl_connect('pick_event',onpick) #pl.xlim(-4,2) #pl.ylim(-3,3) pl.xlabel('log-amplitude') pl.ylabel('RMS deviation') ''' ax1 = pl.subplot(221, axisbg='black') ax1.scatter(X[:,0],X[:,1],c=col,s=7,lw=0,picker=True) fig.canvas.mpl_connect('pick_event',onpick) pl.xlabel('component 1') pl.ylabel('component 2') ax2 = pl.subplot(223, sharex=ax1, axisbg='black') ax2.scatter(X[:,0],X[:,2],c=col,s=7,lw=0) pl.xlabel('component 1') pl.ylabel('component 3') ax3 = pl.subplot(224, sharey=ax2, axisbg='black') ax3.scatter(X[:,1],X[:,2],c=col,s=7,lw=0) pl.xlabel('component 2') ''' pl.show()
2.140625
2
neural_network/drawbox.py
PurdueMINDS/SAGA
1
12796802
# Copyright 2018 <NAME>, <NAME>, <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Draw plots""" import os import math import numpy as np import pandas as pd # forbid GUI import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import seaborn as sns # /** # * Multi Plots Container # */ class EqualGridFigure(object): """Distribute all axes with similar attributes with grids of same size It can have multi axes in one figure, but all axes will have the same height and width, so they should describe data of similar attribute. """ def __init__(self, num_rows, num_cols, ax_height, ax_width, title=None, font_size=None): super(EqualGridFigure, self).__init__() # global settings if not font_size is None: mpl.rcParams.update({'font.size': font_size}) # figure size self.num_rows = num_rows self.num_cols = num_cols self.fig, self.axes = plt.subplots( num_rows, num_cols, figsize=(ax_width * num_cols, max(ax_height * num_rows, 20))) # figure title if not title is None: if font_size is None: self.fig.suptitle(title) else: self.fig.suptitle(title, fontsize=font_size * 2) # buffer for each plot self.cnt = [[0 for cl in range(self.num_cols)] for rw in range(self.num_rows)] def __getitem__(self, idx_pair): assert len(idx_pair) == 2 row_id, col_id = idx_pair if self.num_rows == 1: if self.num_cols == 1: return self.axes else: return self.axes[col_id] else: if self.num_cols == 1: return self.axes[row_id] else: return self.axes[row_id][col_id] def close(self): plt.close(self.fig) def subtitle(self, row_id, col_id, subtitle, x_label=None, y_label=None): """Set ax title Args ---- row_id, col_id : int indices to specify the exact ax subtitle : str title for specified ax x_label : str title for x-axis y_label : str title for y-axis """ ax = self[row_id, col_id] ax.set_title(subtitle) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) def save_fig(self, path, close=True): """Save figure of all axes Args ---- path : str path to save the figure close : bool if close figure after saving """ dirname = os.path.dirname(path) _, extname = os.path.splitext(path) extname = extname[1:] if not os.path.isdir(dirname): os.makedirs(dirname) self.fig.savefig(path, format=extname, dpi='figure') if close: self.close() def lineplot(self, row_id, col_id, x_data, y_data, label=None, color=None, alpha=None, marker=None, linestyle=None, vmin=None, vmax=None): """Line plot Args ---- row_id, col_id : int indices to specify the exact ax x_data, y_data : <1D-array-like> data for x-axis and y-axis label : str label of data color : str specify color to plot marker : str point style to plot linestyle : str line style to plot vmin : float min value of data to plot vmax : float max value of data to plot Draw a line in ax (row_id, col_id). It can draw a line on ax which already has something. """ ax = self[row_id, col_id] # settings label = label or 'Line {}'.format(self.cnt[row_id][col_id]) color = color or 'C{}'.format(self.cnt[row_id][col_id]) alpha = alpha or 1 marker = marker or ',' linestyle = linestyle or '-' ax.plot(x_data, y_data, label=label, \ color=color, alpha=alpha, \ marker=marker, \ linewidth=6.0, linestyle=linestyle) if vmin: ax.set_ylim(ymin=vmin) if vmax: ax.set_ylim(ymax=vmax) self.cnt[row_id][col_id] += 1 def legend(self): """Place legend""" for rw in range(self.num_rows): for cl in range(self.num_cols): ax = self[rw, cl] if self.cnt[rw][cl] > 1: ax.legend()
2.796875
3
plugins/tasks_plugin/__init__.py
shivammmmm/querybook
1,144
12796803
# from tasks.delete_mysql_cache import delete_mysql_cache # delete_mysql_cache
1.046875
1
HW1/election_count.py
profrichto/handson
0
12796804
import mediacloud, datetime #Default key: The variable 'key' must be edited according to the specific mediacloud user key = '00' mc = mediacloud.api.MediaCloud(key) #Comparison of number of stories written about 'Trump' and 'Clinton' in September 2016 res = mc.sentenceCount('Trump', solr_filter=[mc.publish_date_query( datetime.date( 2016, 9, 1), datetime.date( 2016, 10, 1) ), 'tags_id_media:1' ]) res2 = mc.sentenceCount('Clinton', solr_filter=[mc.publish_date_query( datetime.date( 2016, 9, 1), datetime.date( 2016, 10, 1) ), 'tags_id_media:1' ]) person = 'Trump' if res['count'] > res2['count'] else 'Clinton' print 'The US Mainstream Media sources talked more about', person, 'in the September 2016.'
2.59375
3
db/tables/Base.py
Wanket/RnD-py
0
12796805
<gh_stars>0 from sqlalchemy.orm import declarative_base class Base(declarative_base()): __abstract__ = True
1.664063
2
arjuna/interact/http/model/internal/repr/response.py
bhargavkumar-65/arjuna
13
12796806
<filename>arjuna/interact/http/model/internal/repr/response.py # This file is a part of Arjuna # Copyright 2015-2021 <NAME> # Website: www.RahulVerma.net # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from arjuna.tpi.helper.arjtype import CIStringDict from arjuna.interact.http.model.internal.processor.response import HttpExpectedResProcessor, HttpUnexpectedResProcessor class HttpResponseYamlRepr: def __init__(self, action, resp_yaml): self.__xproc = None self.__unexproc = None if "unexpected" in resp_yaml: self.__unexproc = HttpUnexpectedResProcessor(action._endpoint.service, CIStringDict(resp_yaml["unexpected"])) del resp_yaml["unexpected"] self.__xproc = HttpExpectedResProcessor(action._endpoint.service, CIStringDict(resp_yaml)) def validate(self, response): if self.__xproc: self.__xproc.validate(response) if self.__unexproc: self.__unexproc.validate(response)
1.914063
2
UServer/userver/object/gateway.py
soybean217/lora-python
0
12796807
from database.db0 import db0, ConstDB from database.db3 import db3, ConstDB3 from utils.errors import KeyDuplicateError, ReadOnlyDeny from utils.utils import eui_64_to_48, eui_48_to_64 from binascii import hexlify from enum import Enum import enum from userver.frequency_plan import FrequencyPlan from userver.object.asserts import Assertions from userver.user.models import User from sqlalchemy import Column, String, BINARY from sqlalchemy import orm, ForeignKey from database.db_sql import db_sql import eviltransform class Platform(Enum): rpi = 'Raspberry Pi' rpi3 = 'Raspberry Pi 3' linklabs = 'LinkLabs' @staticmethod def assert_isinstanceof(value): assert isinstance(value, Platform), '%r is not a valid Platform' % value class Model(Enum): imst = 'IMST' linklabs = 'LinkLabs' menthink = 'MenThink' risinghf = 'RisingHF' @staticmethod def assert_isinstanceof(value): assert isinstance(value, Model), '%r is not a valid Model' % value class Field: id = 'id' mac_addr = 'mac_addr' name = 'name' platform = 'platform' model = 'model' freq_plan = 'freq_plan' public = 'public' disable = 'disable' time = 'time' lng = 'lng' lat = 'lat' alt = 'alt' location = 'location' user_id = 'user_id' restart = 'restart' class Location: _assert_switcher = {Field.lng: Assertions.a_float, Field.lat: Assertions.a_float, Field.alt: Assertions.a_int, } def __setattr__(self, key, value): self._assert_switcher[key](value) self.__dict__[key] = value def __init__(self, lng, lat, alt): self.lng = lng self.lat = lat self.alt = alt self.switch_wgs2gcj() def __str__(self): return '%s,%s,%s' % (self.lng, self.lat, self.alt) def obj_to_dict(self): info = {} for key, value in self.__dict__.items(): if key in (Field.lng, Field.lat, Field.alt): info[key] = value return info def switch_wgs2gcj(self): self.lat, self.lng = eviltransform.wgs2gcj(self.lat, self.lng) @staticmethod def assert_isinstanceof(value): assert isinstance(value, Location), '%r is not a valid Location' % value class objects: @staticmethod def str_to_obj(string): string = string.split(',') try: return Location(float(string[0]), float(string[1]), int(string[2])) except Exception as error: raise error class Gateway(db_sql.Model): redis_fields = (Field.user_id, Field.platform, Field.model, Field.freq_plan, Field.public, Field.disable, Field.location) __vars_can_write = (Field.platform, Field.model, Field.freq_plan, Field.public, Field.disable, Field.name, Field.location) _assert_switcher = { Field.user_id: Assertions.a_not_negative_int, Field.id: Assertions.a_eui_64, Field.mac_addr: Assertions.a_eui_48, Field.name: Assertions.a_str, Field.platform: Platform.assert_isinstanceof, Field.freq_plan: FrequencyPlan.assert_isinstanceof, Field.model: Model.assert_isinstanceof, Field.public: Assertions.a_bool, Field.disable: Assertions.a_bool, Field.restart: Assertions.a_bool, Field.location: Location.assert_isinstanceof, Field.time: Assertions.a_int, } __table_args__ = {'schema': 'nwkserver'} __tablename__ = 'gateway' id = Column(BINARY(8), primary_key=True) name = Column(String(50)) user_id = db_sql.Column(db_sql.Integer(), ForeignKey(User.id, ondelete='CASCADE', onupdate='CASCADE'), nullable=False) @orm.reconstructor def init_on_load(self): self.mac_addr = eui_64_to_48(self.id) info = db0.hgetall(ConstDB.gateway + hexlify(self.id).decode()) self.freq_plan = FrequencyPlan(info[b'freq_plan'].decode()) self.public = bool(int(info[b'public'])) self.disable = bool(int(info[b'disable'])) self.platform = Platform[info[b'platform'].decode()] self.model = Model[info[b'model'].decode()] location = info.get(b'location') if location is not None: self.location = Location.objects.str_to_obj(location.decode()) else: self.location = Location(0.0, 0.0, 0) time = db3.get(ConstDB3.T_GATEWAY + hexlify(self.id).decode()) if time is not None: self.time = int(time) def __setattr__(self, key, value): try: attr = getattr(self, key) if attr is not None and key not in self.__vars_can_write: raise ReadOnlyDeny except AttributeError: pass if key in self._assert_switcher: self._assert_switcher[key](value) super.__setattr__(self, key, value) def __init__(self, user_id, mac_addr, name, platform, model, freq_plan=FrequencyPlan.EU863_870, public=True, disable=False, location=None): """ :param id: 8 bytes :param name: str :param platform: Platform :return: """ self.user_id = user_id self.id = eui_48_to_64(mac_addr) self.name = name self.platform = platform self.freq_plan = freq_plan self.public = public self.disable = disable self.model = model if location is not None: self.location = location else: self.location = Location(0.0, 0.0, 0) def _zip_vars(self): return dict(zip(self.redis_fields, (self.user_id, self.platform.name, self.model.name, self.freq_plan.value, self.public.real, self.disable.real, str(self.location)))) def _zip_vars_can_write(self): dd = {} for field in self.redis_fields: if field in self.__vars_can_write: value = getattr(self, field) if isinstance(value, enum.Enum): value = value.value if field == Field.freq_plan else value.name elif isinstance(value, bool): value = value.real dd[field] = value return dd def send_restart_request(self): db0.hset(ConstDB.gateway + hexlify(self.id).decode(), 'restart', 1) def save(self): db_sql.session.add(self) id_str = hexlify(self.id).decode() key = ConstDB.gateway + id_str if db0.exists(key): raise KeyDuplicateError(key) db0.hmset(key, self._zip_vars()) #save to sql db_sql.session.commit() db_sql.session.registry.clear() def update(self): print(self._zip_vars_can_write()) db0.hmset(ConstDB.gateway + hexlify(self.id).decode(), self._zip_vars_can_write()) db_sql.session.commit() def delete(self): db_sql.session.delete(self) db_sql.session.commit() # delete from sql id = hexlify(self.id).decode() gateway_trans = db0.keys(pattern=ConstDB.trans_params + '*' + id) pipe = db0.pipeline() for key in gateway_trans: key = key.decode() pipe.delete(key) dev_eui = key.split(":")[1] pipe.zrem(ConstDB.dev_gateways + dev_eui, self.id) pipe.delete(ConstDB.gateway + id) pipe.delete(ConstDB.gateway_pull + id) pipe.execute() def obj_to_dict(self): dd = { 'id': hexlify(self.id).decode().upper(), 'mac_addr': hexlify(self.mac_addr).decode().upper(), 'name': self.name, 'platform': self.platform.value, 'model': self.model.value, 'freq_plan': self.freq_plan.value, 'public': self.public, 'disable': self.disable, 'location': self.location.obj_to_dict(), } if hasattr(self, 'time'): dd['last_data'] = self.time self.get_pull_info() if hasattr(self, 'ip_addr'): dd['ip'] = self.ip_addr if hasattr(self, 'prot_ver'): dd['ver'] = self.prot_ver return dd def get_pull_info(self): key = ConstDB.gateway_pull + hexlify(self.id).decode() info = db0.hgetall(key) if info: self.ip_addr = info[b'ip_addr'].decode() self.prot_ver = int(info[b'prot_ver']) if __name__ == '__main__': print(Model('IMST'))
2.046875
2
okteam/tsurka.py
o-fedorov/okteam
0
12796808
<gh_stars>0 from typing import Tuple from pgzero.builtins import Actor from pygame import Vector2 from .settings import ANIMATION_SPEED, HEIGHT, SPEED, WALK_IMAGES, WIDTH _TIME = 0.0 ALL = {} X = Vector2(1, 0) Y = Vector2(0, 1) def add(direction: Tuple[int, int]): actor = Actor(WALK_IMAGES[0]) ALL[actor] = Vector2(direction) return actor add((1, 0)).midright = (WIDTH, HEIGHT / 2) add((0, 1)).midbottom = (WIDTH / 2, HEIGHT) def draw(): for actor in ALL: actor.draw() def update(dt): global _TIME _TIME += dt for actor in ALL: update_one(actor, dt) def update_one(actor, dt): image_num = int(_TIME * ANIMATION_SPEED) % len(WALK_IMAGES) actor.image = WALK_IMAGES[image_num] if not image_num: return direction = ALL[actor] delta = direction * SPEED * dt if actor.left + delta.x <= 0 or actor.right + delta.x >= WIDTH: ALL[actor] = direction.reflect(X) delta = delta.reflect(X) if actor.top + delta.y <= 0 or actor.bottom + delta.y >= HEIGHT: ALL[actor] = direction.reflect(Y) delta = delta.reflect(Y) actor.x += delta.x actor.y += delta.y
2.859375
3
mission_control/navigator_missions/__init__.py
saltyan007/kill_test
0
12796809
print "i amde it" from nodes.mission_planner import MissionPlanner
0.980469
1
src/ol_openedx_canvas_integration/client.py
MAbdurrehman12/open-edx-plugins
0
12796810
import logging import pytz from urllib.parse import urlencode, urljoin, urlparse, parse_qs import requests from django.conf import settings from ol_openedx_canvas_integration.constants import DEFAULT_ASSIGNMENT_POINTS log = logging.getLogger(__name__) class CanvasClient: def __init__(self, canvas_course_id): self.session = self.get_canvas_session() self.canvas_course_id = canvas_course_id @staticmethod def get_canvas_session(): """ Create a request session with the access token """ session = requests.Session() session.headers.update({ "Authorization": "Bearer {token}".format(token=settings.CANVAS_ACCESS_TOKEN) }) return session @staticmethod def _add_per_page(url, per_page): """ Add per_page query parameter to override default value of 10 Args: url (str): The url to update per_page (int): The new per_page value Returns: str: The updated URL """ pieces = urlparse(url) query = parse_qs(pieces.query) query['per_page'] = per_page query_string = urlencode(query, doseq=True) pieces = pieces._replace(query=query_string) return pieces.geturl() def _paginate(self, url, *args, **kwargs): """ Iterate over the paginated results of a request """ url = self._add_per_page(url, 100) # increase per_page to 100 from default of 10 items = [] while url: resp = self.session.get(url, *args, **kwargs) resp.raise_for_status() items.extend(resp.json()) links = requests.utils.parse_header_links(resp.headers["link"]) url = None for link in links: if link["rel"] == "next": url = link["url"] return items def list_canvas_enrollments(self): """ Fetch canvas enrollments. This may take a while, so don't run in the request thread. Returns: dict: Email addresses mapped to canvas user ids for all enrolled users """ url = urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/enrollments".format(course_id=self.canvas_course_id) ) enrollments = self._paginate(url) return { enrollment["user"]["login_id"].lower(): enrollment["user"]["id"] for enrollment in enrollments } def list_canvas_assignments(self): """ List Canvas assignments Returns: list: A list of assignment dicts from Canvas """ url = urljoin(settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments".format( course_id=self.canvas_course_id )) return self._paginate(url) def get_assignments_by_int_id(self): assignments = self.list_canvas_assignments() assignments_dict = { assignment.get("integration_id"): assignment["id"] for assignment in assignments if assignment.get("integration_id") is not None } assignments_without_integration_id = sorted([ assignment["id"] for assignment in assignments if assignment.get("integration_id") is None ]) if assignments_without_integration_id: log.warning( "These assignments are missing an integration_id: %s", ", ".join(str(assignment_id) for assignment_id in assignments_without_integration_id) ) return assignments_dict def list_canvas_grades(self, assignment_id): """ List grades for a Canvas assignment Args: assignment_id (int): The canvas assignment id """ url = urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments/{assignment_id}/submissions".format( course_id=self.canvas_course_id, assignment_id=assignment_id, ) ) return self._paginate(url) def create_canvas_assignment(self, payload): """ Create an assignment on Canvas Args: payload (dict): """ return self.session.post( url=urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments".format(course_id=self.canvas_course_id) ), json=payload, ) def update_assignment_grades(self, canvas_assignment_id, payload): return self.session.post( url=urljoin( settings.CANVAS_BASE_URL, "/api/v1/courses/{course_id}/assignments/{assignment_id}/submissions/update_grades".format( course_id=self.canvas_course_id, assignment_id=canvas_assignment_id ) ), data=payload, ) def create_assignment_payload(subsection_block): """ Create a Canvas assignment dict matching a subsection block on edX Args: subsection_block (openedx.core.djangoapps.content.block_structure.block_structure.BlockData): The block data for the graded assignment/exam (in the structure of a course, this unit is a subsection) Returns: dict: Assignment payload to be sent to Canvas to create or update the assignment """ return { "assignment": { "name": subsection_block.display_name, "integration_id": str(subsection_block.location), "grading_type": "percent", "points_possible": DEFAULT_ASSIGNMENT_POINTS, "due_at": ( None if not subsection_block.fields.get("due") # The internal API gives us a TZ-naive datetime for the due date, but Studio indicates that # the user should enter a UTC datetime for the due date. Coerce this to UTC before creating the # string representation. else subsection_block.fields["due"].astimezone(pytz.UTC).isoformat() ), "submission_types": ["none"], "published": False, } } def update_grade_payload_kv(user_id, grade_percent): """ Returns a key/value pair that will be used in the body of a bulk grade update request Args: user_id (int): The Canvas user ID grade_percent (numpy.float64): The percent score of the grade (between 0 and 1) Returns: (tuple): A key/value pair that will be used in the body of a bulk grade update request """ return ( "grade_data[{user_id}][posted_grade]".format(user_id=user_id), "{pct}%".format(pct=grade_percent * 100) )
2.359375
2
sensirion_shdlc_driver/commands/device_version.py
Sensirion/python-shdlc-driver
3
12796811
<reponame>Sensirion/python-shdlc-driver # -*- coding: utf-8 -*- # (c) Copyright 2019 Sensirion AG, Switzerland from __future__ import absolute_import, division, print_function from ..command import ShdlcCommand from ..types import FirmwareVersion, HardwareVersion, ProtocolVersion, Version import logging log = logging.getLogger(__name__) class ShdlcCmdDeviceVersionBase(ShdlcCommand): """ SHDLC command 0xD1: "Get Version". """ def __init__(self, *args, **kwargs): super(ShdlcCmdDeviceVersionBase, self).__init__(0xD1, *args, **kwargs) class ShdlcCmdGetVersion(ShdlcCmdDeviceVersionBase): def __init__(self): super(ShdlcCmdGetVersion, self).__init__( data=[], max_response_time=0.5, min_response_length=7, max_response_length=7 ) def interpret_response(self, data): data_bytes = bytearray(data) # Make the [] operator returning a byte return Version( firmware=FirmwareVersion( major=data_bytes[0], minor=data_bytes[1], debug=bool(data_bytes[2]) ), hardware=HardwareVersion( major=data_bytes[3], minor=data_bytes[4] ), protocol=ProtocolVersion( major=data_bytes[5], minor=data_bytes[6] ) )
2.421875
2
swine/terminal/commands/standard/__init__.py
DeflatedPickle/swine
4
12796812
<filename>swine/terminal/commands/standard/__init__.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- from .command_help import CommandHelp from .command_commands import CommandCommands
1.328125
1
distil/active_learning_strategies/glister.py
SatyadevNtv/distil
1
12796813
<gh_stars>1-10 from .strategy import Strategy import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import math class GLISTER(Strategy): """ This is implementation of GLISTER-ACTIVE from the paper GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning :footcite:`killamsetty2020glister`. GLISTER methods tries to solve a bi-level optimisation problem. .. math:: \\overbrace{\\underset{{S \\subseteq {\\mathcal U}, |S| \\leq k}}{\\operatorname{argmin\\hspace{0.7mm}}} L_V(\\underbrace{\\underset{\\theta}{\\operatorname{argmin\\hspace{0.7mm}}} L_T( \\theta, S)}_{inner-level}, {\\mathcal V})}^{outer-level} In the above equation, :math:`\\mathcal{U}` denotes the Data without lables i.e. `unlabeled_x`, :math:`\\mathcal{V}` denotes the validation set that guides the subset selection process, :math:`L_T` denotes the training loss, :math:`L_V` denotes the validation loss, :math:`S` denotes the data subset selected at each round, and :math:`k` is the `budget`. Since, solving the complete inner-optimization is expensive, GLISTER-ONLINE adopts a online one-step meta approximation where we approximate the solution to inner problem by taking a single gradient step. The optimization problem after the approximation is as follows: .. math:: \\overbrace{\\underset{{S \\subseteq {\\mathcal U}, |S| \\leq k}}{\\operatorname{argmin\\hspace{0.7mm}}} L_V(\\underbrace{\\theta - \\eta \\nabla_{\\theta}L_T(\\theta, S)}_{inner-level}, {\\mathcal V})}^{outer-level} In the above equation, :math:`\\eta` denotes the step-size used for one-step gradient update. Parameters ---------- X: Numpy array Features of the labled set of points Y: Numpy array Lables of the labled set of points unlabeled_x: Numpy array Features of the unlabled set of points net: class object Model architecture used for training. Could be instance of models defined in `distil.utils.models` or something similar. handler: class object It should be a subclass of torch.utils.data.Dataset i.e, have __getitem__ and __len__ methods implemented, so that is could be passed to pytorch DataLoader.Could be instance of handlers defined in `distil.utils.DataHandler` or something similar. nclasses: int No. of classes in tha dataset args: dictionary This dictionary should have keys 'batch_size' and 'lr'. 'lr' should be the learning rate used for training. 'batch_size' 'batch_size' should be such that one can exploit the benefits of tensorization while honouring the resourse constraits. valid: boolean Whether validation set is passed or not X_val: Numpy array, optional Features of the points in the validation set. Mandatory if `valid=True`. Y_val:Numpy array, optional Lables of the points in the validation set. Mandatory if `valid=True`. loss_criterion: class object, optional The type of loss criterion. Default is **torch.nn.CrossEntropyLoss()** typeOf: str, optional Determines the type of regulariser to be used. Default is **'none'**. For random regulariser use **'Rand'**. To use Facility Location set functiom as a regulariser use **'FacLoc'**. To use Diversity set functiom as a regulariser use **'Diversity'**. lam: float, optional Determines the amount of regularisation to be applied. Mandatory if is not `typeOf='none'` and by default set to `None`. For random regulariser use values should be between 0 and 1 as it determines fraction of points replaced by random points. For both 'Diversity' and 'FacLoc', `lam` determines the weightage given to them while computing the gain. kernel_batch_size: int, optional For 'Diversity' and 'FacLoc' regualrizer versions, similarity kernel is to be computed, which entails creating a 3d torch tensor of dimenssions kernel_batch_size*kernel_batch_size* feature dimenssion.Again kernel_batch_size should be such that one can exploit the benefits of tensorization while honouring the resourse constraits. """ def __init__(self,X, Y,unlabeled_x, net, handler, nclasses, args,valid,X_val=None,Y_val=None,\ loss_criterion=nn.CrossEntropyLoss(),typeOf='none',lam=None,kernel_batch_size = 200): # super(GLISTER, self).__init__(X, Y, unlabeled_x, net, handler,nclasses, args) if valid: self.X_Val = X_val self.Y_Val = Y_val self.loss = loss_criterion self.valid = valid self.typeOf = typeOf self.lam = lam self.kernel_batch_size = kernel_batch_size #self.device = "cuda" if torch.cuda.is_available() else "cpu" def distance(self,x, y, exp = 2): n = x.size(0) m = y.size(0) d = x.size(1) x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) if self.typeOf == "FacLoc": dist = torch.pow(x - y, exp).sum(2) elif self.typeOf == "Diversity": dist = torch.exp((-1 * torch.pow(x - y, exp).sum(2))/2) return dist def _compute_similarity_kernel(self): g_is = [] for item in range(math.ceil(len(self.grads_per_elem) / self.kernel_batch_size)): inputs = self.grads_per_elem[item *self.kernel_batch_size:(item + 1) *self.kernel_batch_size] g_is.append(inputs) with torch.no_grad(): new_N = len(self.grads_per_elem) self.sim_mat = torch.zeros([new_N, new_N], dtype=torch.float32).to(self.device) first_i = True for i, g_i in enumerate(g_is, 0): if first_i: size_b = g_i.size(0) first_i = False for j, g_j in enumerate(g_is, 0): self.sim_mat[i * size_b: i * size_b + g_i.size(0), j * size_b: j * size_b + g_j.size(0)] = self.distance(g_i, g_j) if self.typeOf == "FacLoc": const = torch.max(self.sim_mat).item() #self.sim_mat = const - self.sim_mat self.min_dist = (torch.ones(new_N, dtype=torch.float32)*const).to(self.device) def _compute_per_element_grads(self): self.grads_per_elem = self.get_grad_embedding(self.unlabeled_x) self.prev_grads_sum = torch.sum(self.get_grad_embedding(self.X,self.Y),dim=0).view(1, -1) def _update_grads_val(self,grads_currX=None, first_init=False): embDim = self.model.get_embedding_dim() if first_init: if self.valid: if self.X_Val is not None: loader = DataLoader(self.handler(self.X_Val,self.Y_Val,select=False),shuffle=False,\ batch_size=self.args['batch_size']) self.out = torch.zeros(self.Y_Val.shape[0], self.target_classes).to(self.device) self.emb = torch.zeros(self.Y_Val.shape[0], embDim).to(self.device) else: raise ValueError("Since Valid is set True, please pass a appropriate Validation set") else: predicted_y = self.predict(self.unlabeled_x) self.X_new = np.concatenate((self.unlabeled_x,self.X), axis = 0) self.Y_new = np.concatenate((predicted_y,self.Y), axis = 0) loader = DataLoader(self.handler(self.X_new,self.Y_new,select=False),shuffle=False,\ batch_size=self.args['batch_size']) self.out = torch.zeros(self.Y_new.shape[0], self.target_classes).to(self.device) self.emb = torch.zeros(self.Y_new.shape[0], embDim).to(self.device) self.grads_val_curr = torch.zeros(self.target_classes*(1+embDim), 1).to(self.device) with torch.no_grad(): for x, y, idxs in loader: x = x.to(self.device) y = y.to(self.device) init_out, init_l1 = self.model(x,last=True) self.emb[idxs] = init_l1 for j in range(self.target_classes): try: self.out[idxs, j] = init_out[:, j] - (1 * self.args['lr'] * (torch.matmul(init_l1, self.prev_grads_sum[0][(j * embDim) + self.target_classes:((j + 1) * embDim) + self.target_classes].view(-1, 1)) + self.prev_grads_sum[0][j])).view(-1) except KeyError: print("Please pass learning rate used during the training") scores = F.softmax(self.out[idxs], dim=1) one_hot_label = torch.zeros(len(y), self.target_classes).to(self.device) one_hot_label.scatter_(1, y.view(-1, 1), 1) l0_grads = scores - one_hot_label l0_expand = torch.repeat_interleave(l0_grads, embDim, dim=1) l1_grads = l0_expand * init_l1.repeat(1, self.target_classes) self.grads_val_curr += torch.cat((l0_grads, l1_grads), dim=1).sum(dim=0).view(-1, 1) if self.valid: self.grads_val_curr /= self.Y_Val.shape[0] else: self.grads_val_curr /= predicted_y.shape[0] elif grads_currX is not None: # update params: with torch.no_grad(): for j in range(self.target_classes): try: self.out[:, j] = self.out[:, j] - (1 * self.args['lr'] * (torch.matmul(self.emb, grads_currX[0][(j * embDim) + self.target_classes:((j + 1) * embDim) + self.target_classes].view(-1, 1)) + grads_currX[0][j])).view(-1) except KeyError: print("Please pass learning rate used during the training") scores = F.softmax(self.out, dim=1) if self.valid: Y_Val = torch.tensor(self.Y_Val,device=self.device) one_hot_label = torch.zeros(Y_Val.shape[0], self.target_classes).to(self.device) one_hot_label.scatter_(1,Y_Val.view(-1, 1), 1) else: one_hot_label = torch.zeros(self.Y_new.shape[0], self.target_classes).to(self.device) one_hot_label.scatter_(1, torch.tensor(self.Y_new,device=self.device).view(-1, 1), 1) l0_grads = scores - one_hot_label l0_expand = torch.repeat_interleave(l0_grads, embDim, dim=1) l1_grads = l0_expand * self.emb.repeat(1, self.target_classes) self.grads_val_curr = torch.cat((l0_grads, l1_grads), dim=1).mean(dim=0).view(-1, 1) def eval_taylor_modular(self, grads,greedySet=None,remset=None): with torch.no_grad(): if self.typeOf == "FacLoc": gains = torch.matmul(grads, self.grads_val_curr) + self.lam*((self.min_dist - \ torch.min(self.min_dist,self.sim_mat[remset])).sum(1)).view(-1, 1).to(self.device) elif self.typeOf == "Diversity" and len(greedySet) > 0: gains = torch.matmul(grads, self.grads_val_curr) - \ self.lam*self.sim_mat[remset][:, greedySet].sum(1).view(-1, 1).to(self.device) else: gains = torch.matmul(grads, self.grads_val_curr) return gains def select(self, budget): """ Select next set of points Parameters ---------- budget: int Number of indexes to be returned for next set Returns ---------- chosen: list List of selected data point indexes with respect to unlabeled_x """ self._compute_per_element_grads() self._update_grads_val(first_init=True) numSelected = 0 greedySet = list() remainSet = list(range(self.unlabeled_x.shape[0])) if self.typeOf == 'Rand': if self.lam is not None: if self.lam >0 and self.lam < 1: curr_bud = (1-self.lam)*budget else: raise ValueError("Lambda value should be between 0 and 1") else: raise ValueError("Please pass a appropriate lambda value for random regularisation") else: curr_bud = budget if self.typeOf == "FacLoc" or self.typeOf == "Diversity": if self.lam is not None: self._compute_similarity_kernel() else: if self.typeOf == "FacLoc": raise ValueError("Please pass a appropriate lambda value for Facility Location based regularisation") elif self.typeOf == "Diversity": raise ValueError("Please pass a appropriate lambda value for Diversity based regularisation") while (numSelected < curr_bud): if self.typeOf == "Diversity": gains = self.eval_taylor_modular(self.grads_per_elem[remainSet],greedySet,remainSet) elif self.typeOf == "FacLoc": gains = self.eval_taylor_modular(self.grads_per_elem[remainSet],remset=remainSet) else: gains = self.eval_taylor_modular(self.grads_per_elem[remainSet])#rem_grads) bestId = remainSet[torch.argmax(gains).item()] greedySet.append(bestId) remainSet.remove(bestId) numSelected += 1 self._update_grads_val(self.grads_per_elem[bestId].view(1, -1)) if self.typeOf == "FacLoc": self.min_dist = torch.min(self.min_dist,self.sim_mat[bestId]) if self.typeOf == 'Rand': greedySet.extend(list(np.random.choice(remainSet, size=budget - int(curr_bud),replace=False))) return greedySet
3
3
dr-sender.py
valerio-vaccaro/disaster.share
0
12796814
<gh_stars>0 import time import serial import math import base64 import hashlib MAX_SIZE = 200 MAGIC = b'BTC' def serwrite(buff): for i in range(0, len(buff)): ser.write(buff[i].encode('ascii')) time.sleep(0.001) ser.write('\r'.encode('ascii')) ser.write('\n'.encode('ascii')) def serread(): out = '' while 1: buf = ser.read(1000).decode('ascii') time.sleep(0.1) if len(buf) == 0: break out += buf return out ser = serial.Serial( port='/dev/cu.SLAB_USBtoUART', baudrate=115200, timeout=0.1, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, xonxoff = False, #disable software flow control rtscts = False, #disable hardware (RTS/CTS) flow control dsrdtr = False, #disable hardware (DSR/DTR) flow control writeTimeout = 2, #timeout for writ ) ser.isOpen() out = serread() if out != '': print(">>" + out) serwrite('/join BTC') out = serread() if out != '': print(">>" + out) big_tx_b = b'+'+b'12345678'*200+b'+' big_tx = base64.a85encode(big_tx_b) packet_num = math.ceil(len(big_tx)/MAX_SIZE) hash = hashlib.sha256(big_tx_b).hexdigest()[:8] for i in range(0, packet_num): packet = '{}:{}:{}:{}:{}'.format(MAGIC.decode('ascii'), hash, hex(i+1)[2:], hex(packet_num)[2:], big_tx[i*MAX_SIZE:(i+1)*MAX_SIZE].decode('ascii')) serwrite(packet) time.sleep(2) out = serread() if out != '': print(">>" + out) ser.close()
2.53125
3
databutler/mining/kaggle/static_analysis/pandas_mining_utils.py
rbavishi/databutler
0
12796815
import builtins import collections import contextlib import glob import io import os import string from typing import Dict, Any, Tuple, List, Collection, Optional import attrs import pandas as pd from databutler.pat import astlib from databutler.pat.analysis.type_analysis.mypy_types import SerializedMypyType DF_TYPE = "pandas.core.frame.DataFrame" SERIES_TYPE = "pandas.core.series.Series" DF_GROUPBY_TYPE = "pandas.core.groupby.generic.DataFrameGroupBy" SERIES_GROUPBY_TYPE = "pandas.core.groupby.generic.SeriesGroupBy" BASE_GROUPBY_TYPE = "pandas.core.groupby.groupby.GroupBy" GROUPBY_TYPES = { BASE_GROUPBY_TYPE, DF_GROUPBY_TYPE, SERIES_GROUPBY_TYPE, } NewTarget = astlib.AstNode DfArgs = List[str] SeriesArgs = List[str] NodeReplMap = Dict[astlib.AstNode, astlib.AstNode] JsonDict = Dict _BUILTIN_FUNCS = {k for k in builtins.__dict__ if not k.startswith("_")} @attrs.define(eq=False, repr=False) class MinedResult: code: str template: str kind: str nb_owner: str nb_slug: str uid: str expr_type: Optional[SerializedMypyType] type_map: Dict[str, SerializedMypyType] df_vars: List[str] series_vars: List[str] template_vars: Dict[str, List[str]] lib_usages: Dict[str, str] = attrs.field(factory=dict) def to_json(self) -> JsonDict: pass @classmethod def from_json(cls, json_dict: JsonDict) -> 'MinedResult': pass def prettify(self) -> str: with contextlib.redirect_stdout(io.StringIO()) as f_out: url = f"https://kaggle.com/{self.nb_owner}/{self.nb_slug}" print(f"UID: {self.uid}\nKind: {self.kind}\nURL: {url}") print("----------") print(f"Code:\n{self.code}") print("----------") print(f"Templatized:\n{self.template}") print("----------") print(f"Value Type: {'Any' if self.expr_type is None else self.expr_type.type_json}") print("==========") return f_out.getvalue() def __repr__(self): return self.prettify() def __str__(self): return self.prettify() def is_purely_df_or_series_like(expr_type: SerializedMypyType): if not (expr_type.equals(DF_TYPE) or expr_type.equals(SERIES_TYPE)): return False if expr_type.is_union_type(): return all(is_purely_df_or_series_like(i) or i.is_any_type() for i in expr_type.unpack_union_type()) else: return True def find_library_usages( code_ast: astlib.AstNode ) -> Dict[astlib.Name, str]: """Finds variable uses that correspond to imports / library usage""" # TODO: Perform proper dataflow analysis (reaching defs) result: Dict[astlib.Name, str] = {} defs, accesses = astlib.get_definitions_and_accesses(code_ast) for def_ in defs: if def_.enclosing_node is not None and isinstance(def_.enclosing_node, (astlib.Import, astlib.ImportFrom)): key_dict = {} if isinstance(def_.enclosing_node, astlib.Import): prefix = "" elif isinstance(def_.enclosing_node, astlib.ImportFrom) and def_.enclosing_node.module is not None: prefix = astlib.to_code(def_.enclosing_node.module).strip() + "." else: continue for alias in def_.enclosing_node.names: name_str = astlib.to_code(alias.name).strip() if alias.asname is None: key_dict[name_str] = f"{prefix}{name_str}" else: key_dict[astlib.to_code(alias.asname.name).strip()] = f"{prefix}{name_str}" for access in accesses: if isinstance(access.node, astlib.Name): if access.node.value in key_dict: result[access.node] = key_dict[access.node.value] return result def find_constants(code_ast: astlib.AstNode) -> Dict[astlib.BaseExpression, Any]: """Finds constant expressions in the AST. Sound but not necessarily complete right now.""" # TODO: Perform proper dataflow analysis (constant propagation) result: Dict[astlib.BaseExpression, Any] = {} defs, accesses = astlib.get_definitions_and_accesses(code_ast) # We will only focus on accesses whose defs are top-level statements to avoid # having to bother about loops etc. top_level_stmts = set(astlib.iter_body_stmts(code_ast)) accesses = [a for a in accesses if all(d.enclosing_node in top_level_stmts for d in a.definitions)] numbering: Dict[astlib.AstNode, int] = {} for idx, stmt in enumerate(astlib.iter_body_stmts(code_ast)): for node in astlib.walk(stmt): numbering[node] = idx for access in accesses: num = numbering[access.node] # Find the closest top-level def cur, score = None, None for def_ in access.definitions: d_num = numbering[def_.enclosing_node] if d_num < num and (score is None or d_num > score): cur, score = def_, d_num if cur is None: continue if not isinstance(cur.enclosing_node, (astlib.AnnAssign, astlib.Assign)): continue if astlib.is_constant(cur.enclosing_node.value): val = astlib.get_constant_value(cur.enclosing_node.value) result[access.node] = val return result def replace_constants( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], constants: Dict[astlib.BaseExpression, Any], ) -> Tuple[NewTarget, NodeReplMap]: """Replace any constant variables with their concrete values, and update the inferred types dict""" repl_dict = {} for node in true_exprs: if (not isinstance(node, astlib.Name)) or node not in free_vars: continue if node in constants: repl_dict[node] = astlib.parse_expr(repr(constants[node])) if len(repl_dict) == 0: return target, {n: n for n in astlib.walk(target)} output_mapping = {} target = astlib.with_deep_replacements(target, repl_dict, output_mapping) return target, output_mapping def has_undefined_references( target: astlib.AstNode, free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], lib_usages: Dict[astlib.Name, str], ) -> bool: """Checks if there are any undefined variables that are not library usages and not dfs/series""" for node in free_vars: if node not in lib_usages: if node not in inferred_types: return True typ = inferred_types[node] is_builtin_func = typ.is_callable_type() and node.value in _BUILTIN_FUNCS if not (typ.equals(DF_TYPE) or typ.equals(SERIES_TYPE) or typ.is_bool_type() or is_builtin_func): return True return False def normalize_df_series_vars( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], ) -> Tuple[NewTarget, DfArgs, SeriesArgs, NodeReplMap]: """Replaces variables corresponding to dataframes or series with standard names""" seen_dfs: Dict[str, int] = {} df_repl_map: Dict[astlib.Name, astlib.Name] = {} seen_series: Dict[str, int] = {} series_repl_map: Dict[astlib.Name, astlib.Name] = {} for node in true_exprs: if (not isinstance(node, astlib.Name)) or node not in inferred_types or node not in free_vars: continue # NOTE: If there is a union type of DataFrame and Series, DataFrame will be picked. if inferred_types[node].equals(DF_TYPE): if node.value not in seen_dfs: seen_dfs[node.value] = len(seen_dfs) + 1 df_repl_map[node] = node # Will update later elif inferred_types[node].equals(SERIES_TYPE): if node.value not in seen_series: seen_series[node.value] = len(seen_series) + 1 series_repl_map[node] = node # Will update later if len({i.value for i in df_repl_map.keys()}) <= 1: def df_arg_creator(ctr: int): return "df" else: def df_arg_creator(ctr: int): return f"df{ctr}" if len({i.value for i in series_repl_map.keys()}) <= 1: def series_arg_creator(ctr: int): return "series" else: def series_arg_creator(ctr: int): return f"series{ctr}" for node in df_repl_map.keys(): df_repl_map[node] = astlib.create_name_expr(df_arg_creator(seen_dfs[node.value])) for node in series_repl_map.keys(): series_repl_map[node] = astlib.create_name_expr(series_arg_creator(seen_series[node.value])) output_map: NodeReplMap = {} target = astlib.with_deep_replacements(target, {**df_repl_map, **series_repl_map}, output_map) return (target, sorted(i.value for i in df_repl_map.values()), sorted(i.value for i in series_repl_map.values()), output_map) def normalize_call_args( target: astlib.AstNode, inferred_types: Dict[astlib.BaseExpression, SerializedMypyType] ) -> Tuple[NewTarget, NodeReplMap]: """Normalize order of keyword arguments""" repl_map: NodeReplMap = {} for node in astlib.walk(target): if not isinstance(node, astlib.Call): continue call_expr = node if (call_expr.func not in inferred_types) or (not inferred_types[call_expr.func].is_callable_type()): continue if any(arg.star != "" for arg in call_expr.args): # TODO: How to handle starred args? continue pos_args = [arg for arg in call_expr.args if arg.keyword is None] kw_args = [arg for arg in call_expr.args if arg.keyword is not None] arg_order = inferred_types[call_expr.func].get_callable_arg_order() new_args = [*pos_args] + sorted(kw_args, key=lambda x: arg_order.get(x.keyword.value, 0)) if len(new_args) > 0: new_args[-1] = new_args[-1].with_changes(comma=astlib.cst.MaybeSentinel.DEFAULT) if new_args != call_expr.args: repl_map[call_expr] = call_expr.with_changes(args=new_args) output_mapping: NodeReplMap = {} if len(repl_map) != 0: target = astlib.with_deep_replacements(target, repl_map, output_mapping) return target, output_mapping def normalize_col_accesses( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType] ) -> Tuple[NewTarget, NodeReplMap]: """Normalizes col accesses by converting attribute-based accesses like df.Price to subscript-based such as df['Price']""" repl_map: NodeReplMap = {} for expr in true_exprs: if expr not in inferred_types: continue expr_typ = inferred_types[expr] if isinstance(expr, astlib.Attribute): value = expr.value if value not in inferred_types: continue val_typ = inferred_types[value] okay = False # print("GOT HERE", val_typ, expr_typ) if val_typ.equals(DF_TYPE) and (expr_typ.equals(DF_TYPE) or expr_typ.equals(SERIES_TYPE)): try: if (not hasattr(pd.DataFrame, expr.attr.value)) and (not hasattr(pd.Series, expr.attr.value)): okay = True except: pass elif (val_typ.equals(DF_GROUPBY_TYPE) and (expr_typ.equals(DF_GROUPBY_TYPE) or expr_typ.equals(SERIES_GROUPBY_TYPE))): try: if not hasattr(pd.core.groupby.generic.DataFrameGroupBy, expr.attr.value): okay = True except: pass if okay: new_node = astlib.parse_expr(f"dummy[\"{expr.attr.value}\"]").with_changes(value=expr.value) repl_map[expr] = new_node output_mapping: NodeReplMap = {} if len(repl_map) != 0: target = astlib.with_deep_replacements(target, repl_map, output_mapping) return target, output_mapping def templatize( target: astlib.AstNode, true_exprs: Collection[astlib.BaseExpression], free_vars: Collection[astlib.Name], inferred_types: Dict[astlib.BaseExpression, SerializedMypyType], lib_usages: Dict[astlib.Name, str], ) -> Tuple[NewTarget, Dict[str, List[str]]]: """Replace constants and remaining variable names with standard ones to create a template suitable for clustering""" type_to_exprs: Dict[str, List[astlib.BaseExpression]] = collections.defaultdict(list) allowed_key_chars = set(string.ascii_letters + string.digits + "_") for node in true_exprs: is_const = astlib.is_constant(node) const_val = None if not is_const else astlib.get_constant_value(node) if not ((isinstance(node, astlib.Name) and node in free_vars) or (is_const and not isinstance(const_val, (set, dict, list, tuple)))): continue if node in lib_usages: continue if node not in inferred_types: if not is_const: continue key = type(const_val).__name__ else: typ = inferred_types[node] if typ.equals(DF_TYPE): key = "df" elif typ.equals(SERIES_TYPE): key = "series" elif typ.is_callable_type(): continue elif typ.is_str_type(): key = "str" elif typ.is_int_type(): key = "int" elif typ.is_bool_type(): if isinstance(node, astlib.Name) and node.value in {"True", "False"}: continue key = "bool" elif typ.is_float_type(): key = "float" else: while typ.is_union_type(): typ = typ.unpack_union_type()[0] if isinstance(typ.type_json, str): key = typ.type_json else: key = str(typ.type_json.get('.class', "VAR")) key = "".join(i if i in allowed_key_chars else '_' for i in key) type_to_exprs[key].append(node) # print("Adding", key, astlib.to_code(node)) ctr_map: Dict[str, Dict[str, int]] = {k: {} for k in type_to_exprs.keys()} repl_map: NodeReplMap = {} names_map: Dict[str, List[str]] = collections.defaultdict(list) for typ_key, exprs in type_to_exprs.items(): ctr_map_entry = ctr_map[typ_key] for expr in exprs: node_key = astlib.to_code(expr) if node_key not in ctr_map_entry: ctr_map_entry[node_key] = idx = len(ctr_map_entry) + 1 names_map[typ_key].append(f"{typ_key.upper()}{idx}") idx = ctr_map_entry[node_key] repl_map[expr] = astlib.create_name_expr(f"{typ_key.upper()}{idx}") return astlib.with_deep_replacements(target, repl_map), names_map def get_mypy_cache_dir_path(uid: int) -> str: """Returns a cache dir to use for mypy based on a UID. Useful for multiprocess safety.""" script_dir = os.path.abspath(os.path.dirname(__file__)) return os.path.join(script_dir, f".mypy_cache{uid}") def get_created_mypy_cache_dir_paths() -> List[str]: """Returns all the created mypy cache dirs""" script_dir = os.path.abspath(os.path.dirname(__file__)) return glob.glob(os.path.join(script_dir, ".mypy_cache*"))
2.1875
2
015_011_19.py
priyankakushi/machine-learning
0
12796816
<gh_stars>0 # File Input Output # Write in a file '''file = open("abc.txt", "w+") file.write("python is great language. \nYeah its great! !\n") file. write ("How are you. \nYeah its great! ! \n") file. write ("Hello Priyanka!\n") file.close() # Read through file file = open("abc.txt", "r+") #print(file.read()) #print(file.readlines()) print(file.readline()) print(file.readable()) file.close() # Use of Append in File # Difference between write and append file = open("abc.txt", "a+") file.write("How are you!\n") file.write("What are you doing today!\n") print(file.tell()) file.close()''' file = open("abc.txt", "w+") file.write("hello Soni!\n") file.write("how are you!\n") file.close() #read through file file = open("abc.txt", "r+") #print(file.read()) #print(file.readline()) #print(file.readlines()) print(file.readable()) print(file.read(3)) file.close() #use of append in file file = open("abc.txt", "a+") file.write("what are you doing!\n") print(file.tell()) file.close()
4.1875
4
pythia-gen/flow/models/ptconv.py
okitouni/HEP-Geometric
0
12796817
<reponame>okitouni/HEP-Geometric from torch_geometric.nn import MessagePassing from typing import Optional, Callable, Union from torch import Tensor from torch_geometric.typing import PairTensor, Adj class PtConv(MessagePassing): def __init__(self, nn: Callable, aggr: str = 'max', **kwargs): super(PtConv, self).__init__(aggr=aggr, **kwargs) self.nn = nn def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor: """""" if isinstance(x, Tensor): x: PairTensor = (x, x) # propagate_type: (x: PairTensor) return self.propagate(edge_index, x=x, size=None,test=None) # test here is place holder for anything that could used in the # message passing step def message(self, x_i: Tensor, x_j: Tensor, test) -> Tensor: return self.nn(x_i) def __repr__(self): return '{}(nn={})'.format(self.__class__.__name__, self.nn)
2.40625
2
Sprint_4/Practice/F/anagram_group.py
DimaZzZz101/Yandex_Practicum_Algorithms
0
12796818
<filename>Sprint_4/Practice/F/anagram_group.py def main(): n = int(input()) anagrams = input().strip().split()[:n] hashes = {} indexes = {} for index, anagram in enumerate(anagrams): key = ''.join(sorted(anagram)) if hashes.get(key) is None: hashes[key] = index indexes[index] = [index] else: indexes[hashes[key]].append(index) for index in indexes.keys(): print(' '.join(map(str, indexes[index]))) if __name__ == '__main__': main()
3.90625
4
bot/bot.py
Tw1ddle/geometrize-twitter-bot
13
12796819
## @package bot # Module that sets up the Geometrize Twitter bot. # # Invoke this script to run the bot i.e. "python bot.py". import sys import config import dependency_locator import geometrize import geometrize_bot import launch_text import on_status_event import tweepy # Print welcome text. launch_text.print_launch_text() # Check that secrets/app credentials have been filled out. if not config.validate_credentials(): print("Failed to validate app credentials, will exit. Did you remember to enter them in config.py?") sys.exit(1) # Check that the Geometrize executable is where we expect it to be. if not dependency_locator.geometrize_executable_exists(): print("Failed to locate the Geometrize executable, will exit. Did you copy it to the 'geometrize' subdirectory? Expected it to be here: " + dependency_locator.get_geometrize_executable_path()) sys.exit(2) # Run a quick test script to confirm Geometrize is in working order. print("Running startup tests to ensure Geometrize is working...\r\n") if geometrize.test_geometrize(): print("Geometrize startup tests succeeded!\r\n") else: print("Geometrize startup tests failed. Please report an issue here: https://github.com/Tw1ddle/geometrize-twitter-bot \r\n") sys.exit(3) # Connect to Twitter. tweepy_auth = tweepy.OAuthHandler(config.OAUTH_CONSUMER_KEY, config.OAUTH_CONSUMER_SECRET) tweepy_auth.set_access_token(config.OAUTH_ACCESS_TOKEN, config.OAUTH_ACCESS_SECRET) tweepy_api = tweepy.API(tweepy_auth) ## Callback triggered when the stream listener connects. def on_connect(api): print("Twitter stream listener did connect") ## Callback triggered when the stream listener times out. def on_timeout(api): print("Twitter stream listener did time out") return False ## Callback triggered when the listener encounters an error. def on_error(api, code): print("Encountered Twitter error response: %s" % code) return True ## Callback triggered when the stream listener for the Geometrize bot account reports a status event. def on_on_demand_status_event(api, status): print("Received Twitter stream listener status event") on_status_event.on_on_demand_status_event(api, status) ## Callback triggered when the stream listener for tracking specific Twitter accounts reports a status event. def on_account_watcher_status_event(api, status): print("Received Twitter stream listener status event") on_status_event.on_account_watcher_status_event(api, status) ## Callback triggered when setting up the stream filter for tracking the Geometrize bot account. def on_on_demand_filter_setup(stream): print("Setting up on demand tweet filter...") stream.filter(track = [config.TWITTER_BOT_USERNAME], is_async = True) ## Callback triggered when setting up the stream filter for tracking specific Twitter accounts. def on_account_watcher_filter_setup(stream): print("Setting up account watcher tweet filter...") stream.filter(follow = config.TWITTER_BOT_WATCH_ACCOUNTS, is_async = True) # Create and set up the on-demand Geometrize bot. # This bot waits for users to tweet images at the bot, which it then geometrizes. on_demand_bot = geometrize_bot.GeometrizeBot( tweepy_auth, tweepy_api, on_connect, on_timeout, on_error, on_on_demand_status_event, on_on_demand_filter_setup) # Create and set up the specific account watcher bot. # This bot watches specific accounts and geometrizes images they tweet. account_watcher_bot = geometrize_bot.GeometrizeBot( tweepy_auth, tweepy_api, on_connect, on_timeout, on_error, on_account_watcher_status_event, on_account_watcher_filter_setup)
2.734375
3
src/nn/repeat.py
renmengye/imageqa-public
100
12796820
<gh_stars>10-100 class Repeat(Stage): pass
0.710938
1
application/urls.py
openspending/cosmopolitan
4
12796821
<reponame>openspending/cosmopolitan from django.conf.urls import include from django.conf.urls import url from django.contrib.staticfiles.urls import staticfiles_urlpatterns from rest_framework import routers from cosmopolitan.viewsets import ContinentViewSet from cosmopolitan.viewsets import CountryViewSet from cosmopolitan.viewsets import RegionViewSet from cosmopolitan.viewsets import CityViewSet from cosmopolitan.viewsets import CurrencyViewSet from cosmopolitan.viewsets import PostcodeViewSet from cosmopolitan.viewsets import CountryPolygonViewSet from cosmopolitan.viewsets import CityPolygonViewSet from cosmopolitan.viewsets import RegionPolygonViewSet from cosmopolitan.viewsets import PolygonViewSet # Routers provide an easy way of automatically determining the URL conf. router = routers.DefaultRouter() router.register(r'continents', ContinentViewSet) router.register(r'countries', CountryViewSet, base_name='country') router.register(r'regions', RegionViewSet, base_name='region') router.register(r'cities', CityViewSet, base_name='city') router.register(r'currencies', CurrencyViewSet, base_name='currency') router.register(r'postcodes', PostcodeViewSet, base_name='postcode') router.register(r'countrypolygons', CountryPolygonViewSet, base_name='countrypolygon') router.register(r'citypolygons', CityPolygonViewSet, base_name='citypolygon') router.register(r'regionpolygons', RegionPolygonViewSet, base_name='regionpolygon') router.register(r'polygons', PolygonViewSet, base_name='polygon') urlpatterns = [ url(r'^', include(router.urls)), url(r'^v1/', include(router.urls)), ] urlpatterns += staticfiles_urlpatterns()
2.046875
2
share/oaipmh/views.py
felliott/SHARE
0
12796822
from django.views.generic.base import View from django.template.response import HttpResponse from share.oaipmh.repository import OAIRepository class OAIPMHView(View): CONTENT_TYPE = 'text/xml' def get(self, request): return self.oai_response(**request.GET) def post(self, request): return self.oai_response(**request.POST) def oai_response(self, **kwargs): repository = OAIRepository() xml = repository.handle_request(self.request, kwargs) return HttpResponse(xml, content_type=self.CONTENT_TYPE)
1.921875
2
klarg.py
tominekan/klarg
0
12796823
import sys from typing import Callable, Union # Some information about this package __version__ = "1.1.0" # All the command line arguments ALL_ARGS = sys.argv[1: len(sys.argv)] # The configuration settings, this can be changed with the config function CONFIG = { "needs_short_flags": False, "long_prefix": "--", "short_prefix": "-", "help_flag": ("--help", "-h"), "version_flag": ("--version", "-v") } """ Here is a list of all the base functions """ def base_exists(name: str, args_list: list) -> bool: return name in args_list def base_get_all(args_list: list) -> list: # bigoof return args_list def base_get_bool( name: str, args_list: list, short: str = "default-str" ) -> bool: long_name = CONFIG["long_prefix"] + name short_name = CONFIG["short_prefix"] + short if short == "default-short": if (CONFIG["needs_short_flags"]): raise Exception( "No short flag for get_bool()" ) else: if base_exists(long_name, args_list): return True else: return False else: if base_exists(long_name, args_list): return True if base_exists(short_name, args_list): return True else: return False def base_on_help(action: Callable, args_list: list) -> None: """ `action: function: NEEDED` The `action` is run when klarg detects the help flag. What klarg looks for can be configured in `CONFIG` with the option `"help_flag"`. Example: ```py # docs_example.py import klarg def display_help_message(): print("Here you go") klarg.on_help(display_help_message) # python docs_example.py --help # Here you go ``` """ long_help, short_help = CONFIG["help_flag"] if base_exists(long_help, args_list): action() if base_exists(short_help, args_list): action() def base_on_version(message: str, args_list: list) -> None: """ `message: str: NEEDED` Klarg displays the `message` when the version flag is detected. What klarg looks for can be configured in `CONFIG` with the option `"version_flag"`. Example: ```py # docs_example.py import klarg klarg.project_version("This project version is 1.2.3") # python docs_example.py --version # This project version is 1.2.3 ``` """ long_version, short_version = CONFIG["version_flag"] if exists(long_version) or exists(short_version): print(message) if base_exists(short_version, args_list): print(message) def base_get_str( name: str, args_list: list, short: str = "default-short", on_error: dict = {} ) -> Union[str, None]: """ `name: str: NEEDED` `short: str: optional` `on_error: function: optional` `get_str` is a function that collects a `name`, which is the multi letter flag, a `short`, which is the shortened version of the flag. There is only one type of errors it can encounter, which is when no value is provided. Because of this, `on_error` is not a dictionary, but a special function that handles when no value is provided. Example: ```py # docs_example.py import klarg def handle_error_none(): print(f"No values provided") some_str = klarg.get_str("--some-str", "-s", on_error=handle_error_none) print(f"{some_str} is cool") # python docs_example.py --some-str # No values provided # python docs_example.py -s "klarg" # klarg is cool ``` """ long_name = CONFIG["long_prefix"] + name short_name = CONFIG["short_prefix"] + short # Checks if a given argument is a value or not. def is_valid_value(arg: str) -> bool: # Makes sure it is not a multi letter flag if arg.startswith(CONFIG["long_prefix"]): return False # Makes sure it is not a short flag if arg.startswith(CONFIG["short_prefix"]): return False # Makes sure it is not part of the version or help flags if (arg in CONFIG["version_flag"]) or (arg in CONFIG["help_flag"]): return False else: return True # Default handling for ERR_NONE def default_handle_none(): print(f"ERR_NONE: There is no value provided for {long_name}") exit(1) # Default handling for ERR_MUL def default_handle_mul(): print(f"ERR_MUL: There are multiple values provided for {long_name}") exit(1) def is_key(key, dict: dict) -> bool: if key in dict.keys(): return True else: return False non_existent_long_name = not base_exists(long_name, args_list) non_existent_short_name = not base_exists(short_name, args_list) # Does not exist in command line args if non_existent_long_name and non_existent_short_name: return None # Configure error_handling if not is_key("ERR_NONE", on_error): on_error["ERR_NONE"] = default_handle_none if not is_key("ERR_MUL", on_error): on_error["ERR_MUL"] = default_handle_mul # ERR_NONE # Ther cannot be enough space for the argument and # it's value if len(ALL_ARGS) < 2: on_error["ERR_NONE"]() # ERR_MUL # If there is more than one occurence of short_name or long_name if (args_list.count(long_name) > 1) or (args_list.count(short_name) > 1): on_error["ERR_MUL"]() # ERR_MUL # if both short and long arguments exists long_args_exists = base_exists(long_name, args_list) short_args_exists = base_exists(short_name, args_list) if long_args_exists and short_args_exists: on_error["ERR_MUL"]() # Gets the next value of the given flag def get_next_value(flag: str) -> str: index_point = args_list.index(flag) next_value = args_list[(index_point + 1)] if (is_valid_value(next_value)): return next_value else: # ERR_NONE # If there is no argument passed to # long_args on_error["ERR_NONE"]() if short == "default-short": if (CONFIG["needs_short_flags"]): raise Exception( f"No short flag for {long_name}" ) else: return get_next_value(long_name) else: if base_exists(long_name, args_list): return get_next_value(long_name) elif base_exists(short_name, args_list): return get_next_value(short_name) else: # If it does not exist return None def base_get_num( name: str, args_list: dict, short: str = "default-short", on_error: dict = {}, ) -> Union[int, float, None]: def is_key(key, dict: dict) -> bool: if key in dict.keys(): return True else: return False def to_num(string: str) -> Union[int, float, str]: if "." in string: return float(string) else: try: return int(string) except ValueError: return string # Default handling for ERR_NUM def default_handle_num(value): print(f"ERR_NUM: \"{value}\" is not a number") exit(1) if not is_key("ERR_NUM", on_error): on_error["ERR_NUM"] = default_handle_num value = base_get_str( name=name, short=short, on_error=on_error, args_list=ALL_ARGS ) num = to_num(value) if type(num) == str: on_error["ERR_NUM"](value) else: return num """ -------------------------------------------- KLARG BASIC """ def exists(name: str) -> bool: """ `name: str: NEEDED` Checks if the `name` exists in the list of command line arguments given, this was designed to be an internal function for making things more readable, but then I realized that it could potentially be helpful. Example: ```py # docs_example.py import klarg something_exists = klarg.exists("something") if something_exists: print("Something exists") else: print("Nothing exists (that's kind of dark)") # python docs_example.py does something exist # Something exists # python docs_example.py does nothing exist # Nothing exists (that's kind of dark) ``` """ return base_exists(name=name, args_list=ALL_ARGS) def get_all() -> list: """ Collects all the arguments passed and returns them all as a tuple full of strings. This is useful when a program needs to collect a list of all the arguments passed on to operate on, it passes everything single option passed to the file Example: ` ```py # docs_example.py import klarg all_args = klarg.get_all() print(f"All args {all_args}") # python docs_example.py -a -b "c" -d --efgh --ijklmn 0 # All args ("-a", "-b", "c", "-d", "--efgh", "--ijklmn", "0") ``` """ return ALL_ARGS def get_bool(name: str, short: str = "default-short") -> bool: """ `name: str: NEEDED` `short: str: optional` `get_bool` is a function that collects `name`, a string, and `short`, also a string. `name` is the long name for the command line argument, i.e. (`--long-name`). `short` is the shorter name for the command line argument (`-s`). Normally, if `short` is not given, then it will not raise an error, unless `"needs_short_flags"` is set to `True` in `CONFIG`. Example: ```py # docs_example.py import klarg is_there = klarg.bool("--is-there", "-i") if (is_there): print("Is there") else: print("Is not there") # python docs_example.py # Is not there # python docs_example.py --is-there # is there ``` """ return base_get_bool( name=name, short=short, args_list=ALL_ARGS ) def on_help(action: Callable) -> None: """ `action: function: NEEDED` The `action` is run when klarg detects the help flag. What klarg looks for can be configured in `CONFIG` with the option `"help_flag"`. Example: ```py # docs_example.py import klarg def display_help_message(): print("Here you go") klarg.on_help(display_help_message) # python docs_example.py --help # Here you go ``` """ return base_on_help( action=action, args_list=ALL_ARGS ) def on_version(message: str) -> None: """ `message: str: NEEDED` Klarg displays the `message` when the version flag is detected. What klarg looks for can be configured in `CONFIG` with the option `"version_flag"`. Example: ```py # docs_example.py import klarg klarg.project_version("This project version is 1.2.3") # python docs_example.py --version # This project version is 1.2.3 ``` """ return base_on_version( message=message, args_list=ALL_ARGS ) def get_str( name: str, short: str = "default-short", on_error: dict = {} ) -> Union[str, None]: """ `name: str: NEEDED` `short: str: optional` `on_error: function: optional` `get_str` is a function that collects a `name`, which is the multi letter flag, a `short`, which is the shortened version of the flag. There is only one type of errors it can encounter, which is when no value is provided. Because of this, `on_error` is not a dictionary, but a special function that handles when no value is provided. Example: ```py # docs_example.py import klarg def handle_error_none(): print(f"No values provided") some_str = klarg.get_str("--some-str", "-s", on_error=handle_error_none) print(f"{some_str} is cool") # python docs_example.py --some-str # No values provided # python docs_example.py -s "klarg" # klarg is cool ``` """ return base_get_str( name=name, short=short, on_error=on_error, args_list=ALL_ARGS ) def get_num( name: str, short: str = "default-short", on_error: dict = {} ) -> Union[int, float, None]: """ `name: str: NEEDED` `short: str: optional` `on_error: dict: optional` `get_num` is a function that collects a `name`, which is the multi letter flag, a `short`, which is the shortened version of the flag. There are two possible types of errors it can encounter, one being that the value it got was not a number, it did not get a value at all, or that there are multiple declarations of that flag. he error names are `ERR_NUM`, `ERR_NONE` and `ERR_MUL` respectively. `on_error` is a dictionary, all three keys, `ERR_NUM`,`ERR_NONE` and `ERR_MUL` are not all needed, because there is default handling for those types of errors. However, if there is no flag with the name of `name`, then `get_num` returns None. Example: ```py # docs_example.py import klarg def handle_error_num(value): print(f"{value} is not a number") def handle_error_none(): print("No values provided") error_handlers = { "ERR_NUM": handle_error_num(), "ERR_NONE": handle_error_none() } number_something = klarg.get_num( name="--number-something", short="-n", on_error=error_handlers ) print(f"The suprise number is {number_something}") # python docs_example.py -n 1a # 1a is not a number # python docs_example.py -n # No values provided # python docs_example.py -n 12345 # The suprise number is 12345 ``` """ return base_get_num( name=name, short=short, on_error=on_error, args_list=ALL_ARGS ) class command(): """ `name: str: NEEDED` This creates a class with the command line that has the functions `project_version()`, `on_help()`, `get_num()`, `get_str()`, `get_bool()`, and `get_all()`. The only difference is that the arguments are parsed after the declaration of the command. This means that if you have a list of command line arguments `["-f", "reply", "-n", "12", "example.txt"]`, and the command name is `reply`. The available command line arguments are `["-n", "12", "example.txt"]` """ def __init__(self, name: str): beginning_index = ALL_ARGS.index(name) + 1 self.all_arguments = ALL_ARGS[beginning_index: len(ALL_ARGS)] def exists(self, name: str) -> bool: """ `name: str: NEEDED` Checks if the `name` exists in the list of command line arguments given, this was designed to be an internal function for making things more readable, but then I realized that it could potentially be helpful. Example: ```py # docs_example.py import klarg something_exists = klarg.exists("something") if something_exists: print("Something exists") else: print("Nothing exists (that's kind of dark)") # python docs_example.py does something exist # Something exists # python docs_example.py does nothing exist # Nothing exists (that's kind of dark) ``` """ return base_exists(name=name, args_list=self.all_arguments) def get_all(self) -> list: """ Collects all the arguments passed and returns them all as a tuple full of strings. This is useful when a program needs to collect a list of all the arguments passed on to operate on, it passes everything single option passed to the file Example: ` ```py # docs_example.py import klarg all_args = klarg.get_all() print(f"All args {all_args}") # python docs_example.py -a -b "c" -d --efgh --ijklmn 0 # All args ("-a", "-b", "c", "-d", "--efgh", "--ijklmn", "0") ``` """ return base_get_all(self.all_arguments) def get_bool(self, name: str, short: str = "default-short") -> bool: """ `name: str: NEEDED` `short: str: optional` `get_bool` is a function that collects `name`, a string, and `short`, also a string. `name` is the long name for the command line argument, i.e. (`--long-name`). `short` is the shorter name for the command line argument (`-s`). Normally, if `short` is not given, then it will not raise an error, unless `"needs_short_flags"` is set to `True` in `CONFIG`. Example: ```py # docs_example.py import klarg is_there = klarg.bool("--is-there", "-i") if (is_there): print("Is there") else: print("Is not there") # python docs_example.py # Is not there # python docs_example.py --is-there # is there ``` """ return base_get_bool( name=name, short=short, args_list=self.all_arguments ) def on_help(self, action: Callable) -> None: """ `action: function: NEEDED` The `action` is run when klarg detects the help flag. What klarg looks for can be configured in `CONFIG` with the option `"help_flag"`. Example: ```py # docs_example.py import klarg def display_help_message(): print("Here you go") klarg.on_help(display_help_message) # python docs_example.py --help # Here you go ``` """ return base_on_help( action=action, args_list=self.all_arguments ) def on_version(self, message: str) -> None: """ `message: str: NEEDED` Klarg displays the `message` when the version flag is detected. What klarg looks for can be configured in `CONFIG` with the option `"version_flag"`. Example: ```py # docs_example.py import klarg klarg.project_version("This project version is 1.2.3") # python docs_example.py --version # This project version is 1.2.3 ``` """ return base_on_version( message=message, args_list=self.all_arguments ) def get_str( self, name: str, short: str = "default-short", on_error: dict = {} ) -> Union[str, None]: """ `name: str: NEEDED` `short: str: optional` `on_error: function: optional` `get_str` is a function that collects a `name`, which is the multi letter flag, a `short`, which is the shortened version of the flag. There is only one type of errors it can encounter, which is when no value is provided. Because of this, `on_error` is not a dictionary, but a special function that handles when no value is provided. Example: ```py # docs_example.py import klarg def handle_error_none(): print(f"No values provided") some_str = klarg.get_str( "--some-str", "-s", on_error=handle_error_none ) print(f"{some_str} is cool") # python docs_example.py --some-str # No values provided # python docs_example.py -s "klarg" # klarg is cool ``` """ return base_get_str( name=name, short=short, on_error=on_error, args_list=self.all_arguments ) def get_num( self, name: str, short: str = "default-short", on_error: dict = {} ) -> Union[int, float, None]: """ `name: str: NEEDED` `short: str: optional` `on_error: dict: optional` `get_num` is a function that collects a `name`, which is the multi letter flag, a `short`, which is the shortened version of the flag. There are two possible types of errors it can encounter, one being that the value it got was not a number, it did not get a value at all, or that there are multiple declarations of that flag. he error names are `ERR_NUM`, `ERR_NONE` and `ERR_MUL` respectively. `on_error` is a dictionary, all three keys, `ERR_NUM`,`ERR_NONE` and `ERR_MUL` are not all needed, because there is default handling for those types of errors. However, if there is no flag with the name of `name`, then `get_num` returns None. Example: ```py # docs_example.py import klarg def handle_error_num(value): print(f"{value} is not a number") def handle_error_none(): print("No values provided") error_handlers = { "ERR_NUM": handle_error_num(), "ERR_NONE": handle_error_none() } number_something = klarg.get_num( name="--number-something", short="-n", on_error=error_handlers ) print(f"The suprise number is {number_something}") # python docs_example.py -n 1a # 1a is not a number # python docs_example.py -n # No values provided # python docs_example.py -n 12345 # The suprise number is 12345 ``` """ return base_get_num( name=name, short=short, on_error=on_error, args_list=self.all_arguments )
2.6875
3
src/Jupyter/Jupyter_frontend.py
Chaostheeory/Insight-DOTA-Mine
0
12796824
import pandas as pd import psycopg2 #from sqlalchemy import create_engine psql_credeintal = { 'database': 'wode', 'user': 'wode', 'password': '***', 'host': '192.168.3.11', 'port': '5432' } con = psycopg2.connect(**psql_credeintal) def get_winrate(user_id): query = "SELECT position, winrate FROM positions WHERE user_id='%s' order by position" % user_id query_results = pd.read_sql_query(query,con) return query_results get_winrate(119807644)
2.953125
3
python_tuto_string_formatting.py
khinthandarkyaw98/Python_Practice
0
12796825
# python string formatting # a placeholder where you want to display the price price = 49 txt = 'The price is {} dollars' print(txt.format(price)) # Display a number with two decimals txt = 'The price is {:.2f} dollars.' print(txt.format(price)) # multiple values quantity = 3 itemno = 567 price = 49 myorder = 'I want {} pieces of item number {} for {:.2f} dollars.' print(myorder.format(quantity, itemno, price)) # index number myorder = 'I want {0} pieces of item number {1} for {2:.2f} dollars.' print(myorder.format(quantity, itemno, prince)) # if you want to refer to the same value more than once, use the index number. age = 36 name = 'John' txt = 'His name is {1}. {1} is {0} years old.' print(txt.format(age, name)) # named indexes myorder = 'I have a {carname}, it is a {model}.' print(myorder.format(carname = 'Ford', model = 'Mustang'))
4.125
4
digits/inference/__init__.py
ojmakhura/DIGITS
0
12796826
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. from .images import ImageInferenceJob from .job import InferenceJob __all__ = [ 'InferenceJob', 'ImageInferenceJob', ]
1.054688
1
src/emmental/schedulers/scheduler.py
KeAWang/emmental
0
12796827
"""Emmental scheduler.""" from abc import ABC, abstractmethod from typing import Any, Iterator, List from emmental.data import EmmentalDataLoader from emmental.model import EmmentalModel class Scheduler(ABC): """Generate batch generator from dataloaders in designed order.""" def __init__(self) -> None: """Initialize Scheduler.""" pass def get_num_batches(self, dataloaders: List[EmmentalDataLoader]) -> int: """Get total number of batches per epoch. Args: dataloaders: List of dataloaders. Returns: Total number of batches per epoch. """ raise NotImplementedError() @abstractmethod def get_batches( self, dataloaders: List[EmmentalDataLoader], model: EmmentalModel = None ) -> Iterator[Any]: """Generate batch generator from all dataloaders for one epoch. Args: dataloaders: List of dataloaders. model: The training model, defaults to None. Returns: A generator of all batches. """ raise NotImplementedError()
3.234375
3
reports/utils.py
Rakib1508/django-sales-stat
0
12796828
from django.core.files.base import ContentFile import base64 import uuid def get_report_image(data): _, image_binary = data.split(';base64') decoded_image = base64.b64decode(image_binary) img_name = str(uuid.uuid4())[:10] + '.png' data = ContentFile(decoded_image, name=img_name) return data
2.1875
2
src/payloads/set_payloads/persistence.py
rockstar9788/socialtoolkit
0
12796829
#!/usr/bin/python # ########################################################################## # # Social-Engineer Toolkit Persistence Service # # Right now this is a pretty lame attempt at a service but will grow over time. The text file it reads in from isn't # really a good idea, but it's a start. # ########################################################################## # # ex usage: persistence.exe install, start, stop, remove # # You can see output of this program running python site-packages\win32\lib\win32traceutil for debugging # ########################################################################## import win32service import win32serviceutil import win32event import win32evtlogutil import win32traceutil import servicemanager import winerror import time import sys import os import subprocess class aservice(win32serviceutil.ServiceFramework): _svc_name_ = "windows_monitoring" _svc_display_name_ = "Windows File Monitoring Service" _svc_deps_ = ["EventLog"] def __init__(self, args): win32serviceutil.ServiceFramework.__init__(self, args) self.hWaitStop = win32event.CreateEvent(None, 0, 0, None) self.isAlive = True def SvcStop(self): # tell Service Manager we are trying to stop (required) self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) # set the event to call win32event.SetEvent(self.hWaitStop) self.isAlive = False def SvcDoRun(self): import servicemanager # wait for beeing stopped ... self.timeout = 1000 # In milliseconds (update every second) while self.isAlive: # wait for service stop signal, if timeout, loop again rc = win32event.WaitForSingleObject(self.hWaitStop, self.timeout) # expand the filesystem path windir = os.environ['WINDIR'] # grab homepath homedir_path = os.getenv("SystemDrive") homedir_path = homedir_path + "\\Program Files\\Common Files\\" # pull the windows operating system version number windows_version = sys.getwindowsversion()[2] # pull integer of version number windows_version = int(windows_version) # windows XP and below if windows_version < 3791: fileopen = open("%s\\system32\\isjxwqjs" % (windir), "r") # windows 7, vista, 2008, etc. that might have UAC so we write to # AppData instead if windows_version > 3791: fileopen = open("%s\\isjxwqjs" % (homedir_path), "r") for line in fileopen: # pull set-path, this is pulled from interactive shell and # written when persistence is called set_path = line.rstrip() # specify filename to execute the SET interactive shell subprocess.Popen('%s' % (set_path), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) # sleep 30 mins time.sleep(1800) self.ReportServiceStatus(win32service.SERVICE_STOPPED) return if __name__ == '__main__': # f its called with arguments then run if len(sys.argv) == 1: try: evtsrc_dll = os.path.abspath(servicemanager.__file__) servicemanager.PrepareToHostSingle(aservice) servicemanager.Initialize('aservice', evtsrc_dll) servicemanager.StartServiceCtrlDispatcher() except win32service.error as details: if details[0] == winerror.ERROR_FAILED_SERVICE_CONTROLLER_CONNECT: win32serviceutil.usage() else: win32serviceutil.HandleCommandLine(aservice)
1.953125
2
data_loader.py
prl900/generative_precipitation
0
12796830
<gh_stars>0 import numpy as np import xarray as xr class DataLoader(): def __init__(self): # Load ERA5 geopotential levels era5_ds1 = xr.open_dataset("./datasets/GEOP1000_GAN_2017.nc") era5_ds2 = xr.open_dataset("./datasets/GEOP800_GAN_2017.nc") era5_ds3 = xr.open_dataset("./datasets/GEOP500_GAN_2017.nc") era5_times = era5_ds1.time[:].data # Load ERA5 total precipitation prec_ds = xr.open_dataset("./datasets/TP_GAN_2017.nc") prec_times = prec_ds.time[:].data # Find common dates and shuffle times = np.intersect1d(era5_times, prec_times) np.random.shuffle(times) # Create geopotential normalised stack z500 = era5_ds3.Geopotential.sel(time=times[::10])[:].data z500 = (z500 - z500.min()) / (z500.max() - z500.min()) z800 = era5_ds2.Geopotential.sel(time=times[::10])[:].data z800 = (z800 - z800.min()) / (z800.max() - z800.min()) z1000 = era5_ds1.Geopotential.sel(time=times[::10])[:].data z1000 = (z1000 - z1000.min()) / (z1000.max() - z1000.min()) z = np.stack((z1000, z800, z500), axis=3) z = (z * 2) - 1 # Create precipitation normalised stack tp = prec_ds.tp.sel(time=times[::10])[:].data * 1000 tp = np.clip(tp, 0, 30) tp1 = tp / 30 tp2 = np.log(1+tp)/np.log(31) tp3 = np.log(1+np.log(1+tp)) tp3 = np.clip(tp3, 0, 1) tp = np.stack((tp3, tp3, tp3), axis=3) tp = (tp * 2) - 1 self.prec_train = tp[:600,:,:,:] self.era5_train = z[:600,:,:,:] self.prec_test = tp[600:750,:,:,:] self.era5_test = z[600:750,:,:,:] self.prec_val = tp[750:,:,:] self.era5_val = z[750:,:,:] def load_data(self, batch_size=1, is_testing=False): if is_testing: idx = np.random.choice(self.prec_test.shape[0], size=batch_size) return self.prec_test[idx,:,:,:], self.era5_test[idx,:,:,:] else: idx = np.random.choice(self.prec_train.shape[0], size=batch_size) return self.prec_train[idx,:,:,:], self.era5_train[idx,:,:,:] def load_batch(self, batch_size=1, is_testing=False): prec_data = None him_data = None if is_testing: prec_data = self.prec_test him_data = self.era5_test else: prec_data = self.prec_train him_data = self.era5_train self.n_batches = int(prec_data.shape[0] / batch_size) for i in range(self.n_batches-1): yield prec_data[i*batch_size:(i+1)*batch_size,:,:,:], him_data[i*batch_size:(i+1)*batch_size,:,:,:]
2.15625
2
tests/paradrop/lib/utils/test_utils.py
VegetableChook/Paradrop
1
12796831
<gh_stars>1-10 import copy import errno import os import tempfile from mock import MagicMock, Mock, patch from nose.tools import assert_raises from pdmock import MockChute, MockChuteStorage, writeTempFile from paradrop.lib.utils import pdos from paradrop.lib.utils import pdosq from paradrop.lib.utils.pd_storage import PDStorage NETWORK_WAN_CONFIG = """ config interface wan #__PARADROP__ option ifname 'eth0' option proto 'dhcp' """ class TestStorage(PDStorage): def __init__(self, filename): super(TestStorage, self).__init__(filename, 0) self.data = None def setAttr(self, data): self.data = data def getAttr(self): return self.data def attrSaveable(self): return (self.data is not None) def test_addresses(): """ Test IP address utility functions """ from paradrop.lib.utils import addresses ipaddr = "192.168.1.1" assert addresses.isIpValid(ipaddr) ipaddr = "192.168.1.256" assert not addresses.isIpValid(ipaddr) chute = MockChute(name="first") chute.IPs.append("192.168.1.1") chute.SSIDs.append("Paradrop") chute.staticIPs.append("192.168.33.1") storage = MockChuteStorage() storage.chuteList.append(chute) assert not addresses.isIpAvailable("192.168.1.1", storage, "second") assert addresses.isIpAvailable("192.168.2.1", storage, "second") assert addresses.isIpAvailable("192.168.1.1", storage, "first") assert not addresses.isWifiSSIDAvailable("Paradrop", storage, "second") assert addresses.isWifiSSIDAvailable("available", storage, "second") assert addresses.isWifiSSIDAvailable("Paradrop", storage, "first") assert not addresses.isStaticIpAvailable("192.168.33.1", storage, "second") assert addresses.isStaticIpAvailable("192.168.35.1", storage, "second") assert addresses.isStaticIpAvailable("192.168.33.1", storage, "first") assert not addresses.checkPhyExists(-100) ipaddr = "192.168.1.1" netmask = "255.255.255.0" assert addresses.incIpaddr("192.168.1.1") == "192.168.1.2" assert addresses.incIpaddr("fail") is None assert addresses.maxIpaddr(ipaddr, netmask) == "192.168.1.254" assert addresses.maxIpaddr(ipaddr, "fail") is None assert addresses.getSubnet(ipaddr, netmask) == "192.168.1.0" assert addresses.getSubnet(ipaddr, "fail") is None # Test with nothing in the cache assert addresses.getInternalIntfList(chute) is None assert addresses.getGatewayIntf(chute) == (None, None) assert addresses.getWANIntf(chute) is None # Now put an interface in the cache ifaces = [{ 'internalIntf': "eth0", 'netType': "wan", 'externalIpaddr': "192.168.1.1" }] chute.setCache("networkInterfaces", ifaces) assert addresses.getInternalIntfList(chute) == ["eth0"] assert addresses.getGatewayIntf(chute) == ("192.168.1.1", "eth0") assert addresses.getWANIntf(chute) == ifaces[0] def test_pdos(): """ Test pdos utility module """ assert pdos.getMountCmd() == "mount" assert pdos.isMount("/") assert pdos.ismount("/") assert pdos.oscall("true") is None assert pdos.oscall("false") is not None assert pdos.oscall("echo hello") is None assert pdos.oscall("echo hello 1>&2") is None # Make a file, check that our functions respond correctly to it path = writeTempFile("hello") assert pdos.fixpath(path) == path assert "text" in pdos.getFileType(path) assert pdos.exists(path) assert not pdos.isdir(path) assert pdos.isfile(path) # Remove the file, check that our functions detect that pdos.unlink(path) assert pdos.fixpath(path) == path assert pdos.getFileType(path) is None assert not pdos.exists(path) assert not pdos.isdir(path) assert not pdos.isfile(path) # Make a directory there instead pdos.mkdir(path) assert pdos.fixpath(path) == path assert "directory" in pdos.getFileType(path) assert pdos.exists(path) assert pdos.isdir(path) assert not pdos.isfile(path) # Now we will do some manipulations on files under that directory a = os.path.join(path, "a") b = os.path.join(path, "b") c = os.path.join(path, "c") d = os.path.join(path, "d") pdos.write(a, "hello") assert pdos.isfile(a) pdos.copy(a, b) assert pdos.isfile(b) pdos.symlink(a, c) assert pdos.isfile(c) pdos.move(a, b) assert not pdos.isfile(a) pdos.remove(b) assert not pdos.isfile(b) pdos.mkdir(a) pdos.copytree(a, b) assert pdos.isdir(b) # Remove a non-empty directory pdos.remove(path) assert not pdos.isdir(path) # This file is under a directory that no longer exists, so the write must # fail. # # TODO: These should not fail silently. They should either return an error # indicator or raise an exception. pdos.writeFile(a, "c") pdos.write(a, "c") # Test various ways to call writeFile pdos.writeFile(path, ["a", "b"]) pdos.writeFile(path, "c") pdos.writeFile(path, 5) # This one does nothing. # Test the content with readFile data = pdos.readFile(path, array=False, delimiter="") assert data == "abc" data = pdos.readFile(path, array=True) assert data == ["a", "b", "c"] pdos.remove(path) assert pdos.readFile(path) is None def test_pdosq(): """ Test pdosq utility functions """ # Test makedirs with an already-exists error, returns False. with patch('os.makedirs', side_effect=OSError(errno.EEXIST, "error")): assert pdosq.makedirs("/") is False # Test makedirs with a permission error, passes on the Exception. with patch('os.makedirs', side_effect=OSError(errno.EPERM, "error")): assert_raises(OSError, pdosq.makedirs, "/") def test_storage(): """ Test PDStorage class """ temp = tempfile.mkdtemp() filename = os.path.join(temp, "storage") storage = PDStorage(filename, 0) # PDStorage needs to be subclassed; the base class always returns not # saveable. assert storage.attrSaveable() is False storage = TestStorage(filename) data = {"key": "value"} with open(filename, "w") as output: output.write("BAD CONTENTS") # The first attempt to read it will fail and try to delete the file. We # will cause the unlink to fail on the first try and let it succeed on the # second try. with patch("paradrop.lib.utils.pdos.unlink", side_effect=Exception("Boom!")): storage.loadFromDisk() assert os.path.exists(filename) storage.loadFromDisk() assert not os.path.exists(filename) # The first write will fail because we have not provided data yet. storage.saveToDisk() assert not os.path.exists(filename) # Now we will save some data and verify that we can reload it. storage.setAttr(data) # Cause the save to fail on the first try, then let it succeed. with patch("paradrop.lib.utils.pdos.open", side_effect=Exception("Boom!")): storage.saveToDisk() storage.saveToDisk() assert os.path.exists(filename) storage.setAttr(None) storage.loadFromDisk() assert storage.getAttr() == data # Clean up pdos.remove(temp) def test_uci(): """ Test UCI file utility module """ from paradrop.lib.utils import uci from paradrop.base import settings # Test functions for finding path to UCI files settings.loadSettings(mode="unittest") assert uci.getSystemConfigDir() == "/tmp/.paradrop-test/uci/config.d/" assert uci.getSystemPath("network") == "/tmp/.paradrop-test/uci/config.d/network" # Test stringify function assert uci.stringify("a") == "a" blob = {"a": "b"} assert uci.stringify(blob) == blob blob = {"a": {"b": "c"}} assert uci.stringify(blob) == blob blob = {"a": ["b", "c"]} assert uci.stringify(blob) == blob blob = {"a": 5} strblob = {"a": "5"} assert uci.stringify(blob) == strblob assert uci.isMatch(blob, strblob) # Write a realistic configuration and load with uci module path = writeTempFile(NETWORK_WAN_CONFIG) config = uci.UCIConfig(path) # Test if it found the config section that we know should be there empty = {} assert config.getConfig(empty) == [] match = {"type": "interface", "name": "wan", "comment": "__PARADROP__"} assert len(config.getConfig(match)) == 1 match = {"type": "interface", "name": "wan", "comment": "chute"} assert config.getConfig(match) == [] assert config.getConfigIgnoreComments(empty) == [] assert len(config.getConfigIgnoreComments(match)) == 1 # More existence tests assert not config.existsConfig(empty, empty) match_config = { "type": "interface", "name": "wan", "comment": "__PARADROP__" } match_options = { "ifname": "eth0", "proto": "dhcp" } assert config.existsConfig(match_config, match_options) # Test adding and removing config.delConfigs([(match_config, match_options)]) assert not config.existsConfig(match_config, match_options) config.addConfigs([(match_config, match_options)]) assert config.existsConfig(match_config, match_options) config.delConfig(match_config, match_options) assert not config.existsConfig(match_config, match_options) config.addConfig(match_config, match_options) assert config.existsConfig(match_config, match_options) # Get configuration by chute name assert config.getChuteConfigs("none") == [] assert len(config.getChuteConfigs("__PARADROP__")) == 1 # Test saving and reloading config.save(backupToken="backup") config2 = uci.UCIConfig(path) # Simple test for the equality operators assert config == config2 assert not (config != config2) # Test chuteConfigsMatch function assert not uci.chuteConfigsMatch(config.getChuteConfigs("__PARADROP__"), config2.getChuteConfigs("none")) assert uci.chuteConfigsMatch(config.getChuteConfigs("__PARADROP__"), config2.getChuteConfigs("__PARADROP__")) # Further test the equality operators config2.filepath = "NOMATCH" assert not (config == config2) assert config != config2 config2.filepath = config.filepath config2.myname = "NOMATCH" assert not (config == config2) assert config != config2 config2.myname = config.myname config2.config = [] assert not (config == config2) assert config != config2 def test_uci_getLineParts(): """ Test the UCI getLineParts utility function """ from paradrop.lib.utils import uci line = "config interface wan" result = uci.getLineParts(line) assert result == line.split() # It should eat the apostrophes and give same result. line2 = "config 'interface' 'wan'" result2 = uci.getLineParts(line) assert result2 == result line = "option key '<PASSWORD>'" result = uci.getLineParts(line) assert result == ["option", "key", "<PASSWORD>"] line = "config interface 'oops" result = uci.getLineParts(line) assert result == ["config", "interface", "oops"]
2.171875
2
products/urls.py
okosamastar/nisshin_b2b
0
12796832
from django.urls import path from . import views # from django.views.generic import RedirectView urlpatterns = [ path("", views.CategoriesView.as_view(), name="products.category"), # path("detail/", RedirectView.as_view(url="/b2b/products/")), path("detail/<slug:slug>", views.ProductDetail.as_view(), name="products.detail"), path("<str:cat>/", views.ProductsView.as_view(), name="products.products"), path( "<str:cat>/<str:child>", views.ProductsView.as_view(), name="products.products" ), path("<str:cat>/<str:tag>/", views.ProductsView.as_view(), name="products.tags"), ]
1.921875
2
lesson5/utils.py
BaiduOSS/PaddleTutorial
33
12796833
<reponame>BaiduOSS/PaddleTutorial<filename>lesson5/utils.py #!/usr/bin/env python # -*- coding:utf-8 -*- """ Authors: <NAME>(<EMAIL>) Date: 2017/11/17 17:27:06 """ import h5py import matplotlib.pyplot as plt import numpy as np def initialize_parameters(layer): """ 初始化参数 Args: layer:各层所包含的节点数 Return: parameters:参数,包括w和b """ np.random.seed(2) parameters = {} # 随机初始化参数w,b初始化为0 for i in range(len(layer) - 1): parameters['w' + str(i)] = np.random.randn( layer[i + 1], layer[i]) / np.sqrt(layer[i]) parameters['b' + str(i)] = np.random.randn(layer[i + 1], 1) * 0 return parameters def forward_calculate(X, parameters): """ 前向计算 Args: X: features parameters: 参数w和b Return: A: 包含输入和各层输出值 Z: 包含隐藏层和输出层的中间值 """ A = [] A.append(X) Z = [] length = int(len(parameters) / 2) # 计算隐藏层 for i in range(length - 1): # 加权、偏移 z = np.dot(parameters['w' + str(i)], A[i]) + parameters['b' + str(i)] Z.append(z) # 激活 a = np.maximum(0, z) A.append(a) # 计算输出层 z = np.dot(parameters['w' + str(length - 1)], A[length - 1]) \ + parameters['b' + str(length - 1)] Z.append(z) a = 1. / (1 + np.exp(-z)) A.append(a) return A, Z def calculate_cost(A, Y): """ 计算Cost Args: A: 存储输入值和各层输出值 Y: 真实值 Return: cost: 成本cost """ m = Y.shape[1] # 样本个数 Y_out = A[len(A) - 1] # 取模型输出值 # 计算成本 probability = np.multiply( np.log(Y_out), Y) + np.multiply(np.log(1 - Y_out), 1 - Y) cost = -1. / m * np.sum(probability) cost = np.squeeze(cost) # 确保维度的正确性 return cost def update_parameters(p, dp, learning_rate): """ 更新参数 Args: p: 参数 dp: 该参数的梯度 learning_rate: 学习步长 Return: 更新后的参数 """ return p - learning_rate * dp def backward_calculate(A, Z, parameters, Y, learning_rate): """ 后向计算 Args: A: 存储输入值和各层输出值 Z: 存储各层中间值 parameters: 参数包括w,b Y: 标签 learning_rate: 学习步长 Return: parameters: 更新后的参数 """ m = A[0].shape[1] length = int(len(parameters) / 2) # 反向计算:计算输出层 da = - (np.divide(Y, A[length]) - np.divide(1 - Y, 1 - A[length])) dz = A[length] - Y # 反向计算:计算隐藏层 for i in range(1, length): da = np.dot(parameters['w' + str(length - i)].T, dz) dz = da dz[Z[length - i - 1] <= 0] = 0 # 更新参数 dw = 1. / m * np.dot(dz, A[length - i - 1].T) db = 1. / m * np.sum(dz, axis=1, keepdims=True) parameters['w' + str(length - i - 1)] = update_parameters( parameters['w' + str(length - i - 1)], dw, learning_rate) parameters['b' + str(length - i - 1)] = update_parameters( parameters['b' + str(length - i - 1)], db, learning_rate) return parameters def plot_costs(costs, learning_rate): """ 把cost图形化输出 Args: costs: 训练迭代过程中的cost learning_rate: 学习步长 Return: """ plt.plot(costs) plt.ylabel('cost') plt.xlabel('Iterations (per hundreds)') plt.title("learning rate =" + str(learning_rate)) plt.show() plt.savefig('costs.png') def deep_neural_network(X, Y, layer, iteration_nums, learning_rate=0.0075): """ 深层神经网络模型计算(包含前向计算和后向计算) Args: X: 输入值 Y: 真实值 layer: 各层大小 iteration_nums: 迭代次数 learning_rate: 学习率 Return: parameters: 模型训练所得参数,用于预测 """ # np.random.seed(1) costs = [] # 参数初始化 parameters = initialize_parameters(layer) # 训练 for i in range(0, iteration_nums): # 正向计算 A, Z = forward_calculate(X, parameters) # 计算成本函数 Cost = calculate_cost(A, Y) # 反向计算并更新参数 parameters = backward_calculate(A, Z, parameters, Y, learning_rate) # 每100次训练打印一次成本函数 if i % 100 == 0: print "Cost after iteration %i: %f" % (i, Cost) costs.append(Cost) # plot_costs(costs, learning_rate) return parameters def calc_accuracy(predictions, Y): """ 准确率计算 Args: predictions: 预测结果 Y: 标签即label Return: accuracy: 计算准确率 """ Y = np.squeeze(Y) right = 0 for i in range(len(predictions)): if predictions[i] == Y[i]: right += 1 accuracy = (right / float(len(predictions))) * 100 return accuracy def predict_image(parameters, X, Y): """ 使用模型进行预测来预测图片是否为猫(1 cat or 0 non-cat) Args: parameters: 包含权值和偏移量 X: 数据,形状为(px_num * px_num * 3, number of examples) Y: 标签 Return: accuracy: 准确率 """ # m为数据个数 m = X.shape[1] A = [] A.append(X) Z = [] predictions = [] # 预测结果,即前向传播过程 A, Z = forward_calculate(X, parameters) # 取输出值Y_out,即A的最后一组数 Y_out = A[len(A) - 1] # 将连续值Y_out转化为二分类结果0或1 for i in range(m): if Y_out[0, i] >= 0.5: predictions.append(1) elif Y_out[0, i] < 0.5: predictions.append(0) return calc_accuracy(predictions, Y) def load_data_sets(): """ 用于从两个.h5文件中分别加载训练数据和测试数据 Args: Return: train_x_ori: 原始训练数据集 train_y: 原始训练数据标签 test_x_ori: 原始测试数据集 test_y: 原始测试数据标签 classes(cat/non-cat): 分类list """ train_data = h5py.File('datasets/train_images.h5', "r") # train images features train_x_ori = np.array(train_data["train_set_x"][:]) # train images labels train_y_ori = np.array(train_data["train_set_y"][:]) test_data = h5py.File('datasets/test_images.h5', "r") # test images features test_x_ori = np.array(test_data["test_set_x"][:]) # test images labels test_y_ori = np.array(test_data["test_set_y"][:]) # the list of classes classes = np.array(test_data["list_classes"][:]) train_y_ori = train_y_ori.reshape((1, train_y_ori.shape[0])) test_y_ori = test_y_ori.reshape((1, test_y_ori.shape[0])) result = [train_x_ori, train_y_ori, test_x_ori, test_y_ori, classes] return result
3.109375
3
jiraclient/_deserialize.py
rcoenmans/jira-client
2
12796834
# ----------------------------------------------------------------------------- # The MIT License (MIT) # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ----------------------------------------------------------------------------- from .models import ( Project, Board, Issue, Sprint, Attachment, User, Comment, Epic, Worklog, Component ) def _parse_json_to_class(response, result_class, attrs): values = [] for value in response['values']: values.append(_map_attrs_values(result_class, attrs, value)) return values def _get_attr_value(attr, values, default=None): if attr in values: return values[attr] else: return default def _map_attrs_values(result_class, attrs, values): result = result_class() for attr in attrs: if attr in values: setattr(result, attr, _get_attr_value(attr, values)) return result def _parse_json_to_issues(response): issues = [] for issue in response['issues']: issues.append(_parse_json_to_issue(issue)) return issues def _parse_json_to_issue(response): issue = Issue() issue.id = _get_attr_value('id', response) issue.key = _get_attr_value('key', response) issue.summary = _get_attr_value('summary', response['fields']) issue.description = _get_attr_value('description', response['fields']) issue.labels = _get_attr_value('labels', response['fields'], []) issue.type = response['fields']['issuetype']['name'] issue.status = response['fields']['status']['name'] issue.created = response['fields']['created'] issue.updated = response['fields']['updated'] issue.creator = User() issue.creator.name = response['fields']['creator']['name'] issue.creator.email = response['fields']['creator']['emailAddress'] issue.creator.display = response['fields']['creator']['displayName'] issue.reporter = User() issue.reporter.name = response['fields']['reporter']['name'] issue.reporter.email = response['fields']['reporter']['emailAddress'] issue.reporter.display = response['fields']['reporter']['displayName'] if response['fields']['priority']: issue.priority = response['fields']['priority']['name'] if response['fields']['assignee']: issue.assignee = User() issue.assignee.name = response['fields']['assignee']['name'] issue.assignee.email = response['fields']['assignee']['emailAddress'] issue.assignee.display = response['fields']['assignee']['displayName'] if 'project' in response['fields']: if response['fields']['project']: issue.project = _parse_json_to_project(response['fields']['project']) if 'epic' in response['fields']: if response['fields']['epic']: issue.epic = _parse_json_to_epic(response['fields']['epic']) if 'closedSprints' in response['fields']: for resp in response['fields']['closedSprints']: issue.closed_sprints.append(_parse_json_to_sprint(resp)) if 'sprint' in response['fields']: if response['fields']['sprint']: issue.sprint = _parse_json_to_sprint(response['fields']['sprint']) if 'comment' in response['fields']: for resp in response['fields']['comment']['comments']: issue.comments.append(_parse_json_to_comment(resp)) if 'attachment' in response['fields']: for resp in response['fields']['attachment']: issue.attachments.append(_parse_json_to_attachement(resp)) if 'worklog' in response['fields']: for resp in response['fields']['worklog']['worklogs']: issue.worklog.append(_parse_json_to_worklog(resp)) if 'components' in response['fields']: for resp in response['fields']['components']: issue.components.append(_parse_json_to_component(resp)) for key, value in response['fields'].items(): if key.startswith('customfield_'): issue.custom[key] = value return issue def _parse_json_to_sprints(response): sprints = [] for value in response['values']: sprints.append(_parse_json_to_sprint(value)) return sprints def _parse_json_to_sprint(response): sprint = Sprint() sprint.id = _get_attr_value('id', response) sprint.state = _get_attr_value('state', response) sprint.name = _get_attr_value('name', response) sprint.goal = _get_attr_value('goal', response) sprint.board_id = _get_attr_value('originBoardId', response) sprint.start_date = _get_attr_value('startDate', response) sprint.end_date = _get_attr_value('endDate', response) sprint.complete_date = _get_attr_value('completeDate', response) return sprint def _parse_json_to_board(response): attrs = ['id', 'name', 'type', 'location'] return _map_attrs_values(Board, attrs, response) def _parse_json_to_epic(response): attrs = ['id', 'name', 'key', 'summary', 'done'] return _map_attrs_values(Epic, attrs, response) def _parse_json_to_project(response): attrs = ['id', 'key', 'name'] return _map_attrs_values(Project, attrs, response) def _parse_json_to_attachement(response): attachment = Attachment() attachment.id = response['id'] attachment.filename = response['filename'] attachment.created = response['created'] attachment.size = response['size'] attachment.mime = response['mimeType'] attachment.content = response['content'] attachment.author = User() attachment.author.name = response['author']['name'] attachment.author.email = response['author']['emailAddress'] attachment.author.display = response['author']['displayName'] return attachment def _parse_json_to_comment(response): comment = Comment() comment.id = response['id'] comment.body = response['body'] comment.created = response['created'] comment.updated = response['updated'] comment.author = User() comment.author.name = response['author']['name'] comment.author.email = response['author']['emailAddress'] comment.author.display = response['author']['displayName'] return comment def _parse_json_to_worklog(response): worklog = Worklog() worklog.id = response['id'] worklog.issue_id = response['issueId'] worklog.updated = response['updated'] worklog.comment = response['comment'] worklog.author = User() worklog.author.name = response['author']['name'] worklog.author.display = response['author']['displayName'] return worklog def _parse_json_to_component(response): attrs = ['id', 'name', 'description'] return _map_attrs_values(Component, attrs, response)
1.398438
1
models/__init__.py
danielism97/ST-MFNet
5
12796835
<gh_stars>1-10 from .stmfnet import STMFNet
1.078125
1
HSTB/kluster/fqpr_drivers.py
davesteps/kluster
0
12796836
<reponame>davesteps/kluster<filename>HSTB/kluster/fqpr_drivers.py<gh_stars>0 """ fqpr_drivers = holding place for all the file level access methods that are contained in the HSTB.drivers repository. Makes adding a new multibeam format a little easier, as if you have a new driver that can be included in all the relevant functions here, (and you add the format to kluster_variables supported_XXXXXX list) it will work in Kluster. """ import os import numpy as np from HSTB.kluster import kluster_variables from HSTB.drivers import kmall, par3, sbet, svp, PCSio sonar_reference_point = {'.all': ['tx_x', 'tx_y', 'tx_z'], '.kmall': ['tx_x', 'tx_y', 'tx_z']} def _check_multibeam_file(multibeam_file: str): fileext = os.path.splitext(multibeam_file)[1] if fileext not in kluster_variables.supported_multibeam: raise NotImplementedError('fqpr_drivers: File ({}) is not a Kluster supported multibeam file ({})'.format(multibeam_file, kluster_variables.supported_multibeam)) def _check_sbet_file(sbet_file: str): fileext = os.path.splitext(sbet_file)[1] if fileext not in kluster_variables.supported_ppnav: raise NotImplementedError('fqpr_drivers: File ({}) is not a Kluster supported post processed navigation (SBET) file ({})'.format(sbet_file, kluster_variables.supported_ppnav)) def _check_pos_file(pos_file: str): fileext = os.path.splitext(pos_file)[1] try: int(fileext[1]), int(fileext[2]), int(fileext[3]) except: raise NotImplementedError('fqpr_drivers: File ({}) is not a Kluster supported position (POS) file (.000 -> .999)'.format(pos_file)) def _check_export_log_file(log_file: str): fileext = os.path.splitext(log_file)[1] if fileext not in kluster_variables.supported_ppnav_log: raise NotImplementedError('fqpr_drivers: File ({}) is not a Kluster supported export log file ({})'.format(log_file, kluster_variables.supported_ppnav_log)) def _check_svp_file(svp_file: str): fileext = os.path.splitext(svp_file)[1] if fileext not in kluster_variables.supported_sv: raise NotImplementedError('fqpr_drivers: File ({}) is not a Kluster supported sound velocity file ({})'.format(svp_file, kluster_variables.supported_sv)) def fast_read_multibeam_metadata(multibeam_file: str, gather_times: bool = True, gather_serialnumber: bool = True): """ Return metadata from a multibeam file using the fast read methods. Fast read methods allow getting small amounts of data without reading the entire file. These include: the start and end time of the file in utc seconds, the serial number(s) of the multibeam sonar in the file. Use gather_times and gather_serialnumber to select which/both of these options. Multibeam file must be one of the multibeam files that we support in Kluster, see kluster_variables.supported_multibeam Parameters ---------- multibeam_file multibeam file gather_times if True, returns the start and end time of the file gather_serialnumber if True, returns the serial number(s) of the multibeam sonar in the file Returns ------- str the type of multibeam file discovered, i.e. 'kongsberg_all' list [UTC start time in seconds, UTC end time in seconds] or None if gather_times is False list [serialnumber: int, secondaryserialnumber: int, sonarmodelnumber: str] or None if gather_serialnumber is False """ _check_multibeam_file(multibeam_file) fileext = os.path.splitext(multibeam_file)[1] if fileext == '.all': mtype = 'kongsberg_all' aread = par3.AllRead(multibeam_file) if gather_times: start_end = aread.fast_read_start_end_time() else: start_end = None if gather_serialnumber: serialnums = aread.fast_read_serial_number() else: serialnums = None aread.close() elif fileext == '.kmall': mtype = 'kongsberg_kmall' km = kmall.kmall(multibeam_file) if gather_times: start_end = km.fast_read_start_end_time() else: start_end = None if gather_serialnumber: serialnums = km.fast_read_serial_number() else: serialnums = None km.closeFile() else: raise NotImplementedError('fqpr_drivers: {} is supported by kluster, but not currently supported by fast_read_multibeam_metadata'.format(multibeam_file)) return mtype, start_end, serialnums def return_xyz_from_multibeam(multibeam_file: str): """ Return the already sound velocity corrected data that is in the multibeam file. We use this to compare with Kluster data in a couple functions. Parameters ---------- multibeam_file multibeam file of interest Returns ------- np.ndarray one dimensional array of acrosstrack for the soundings np.ndarray one dimensional array of alongtrack for the soundings np.ndarray one dimensional array of depth offsets for the soundings np.ndarray one dimensional array of utc timestamps for the soundings np.ndarray one dimensional array of ping counters for the soundings """ _check_multibeam_file(multibeam_file) mbes_extension = os.path.splitext(multibeam_file)[1] if mbes_extension == '.all': print('Reading from xyz88/.all file with par Allread...') x, y, z, times, counters = _xyz_from_allfile(multibeam_file) elif mbes_extension == '.kmall': print('Reading from MRZ/.kmall file with kmall reader...') x, y, z, times, counters = _xyz_from_kmallfile(multibeam_file) else: raise NotImplementedError('fqpr_drivers: {} is supported by kluster, but not currently supported by return_xyz_from_multibeam'.format(multibeam_file)) return x, y, z, times, counters def sequential_read_multibeam(multibeam_file: str, start_pointer: int = 0, end_pointer: int = 0, first_installation_rec: bool = False): """ Run the sequential read function built in to all multibeam drivers in Kluster. Sequential read takes a multibeam file (with an optional start/end pointer in bytes) and reads all the datagrams of interest sequentially, skipping any that are not in the required datagram lookups. Parameters ---------- multibeam_file multibeam file of interest start_pointer the start pointer that we start the read at end_pointer the end pointer where we finish the read first_installation_rec if True, will just read the installation parameters entry and finish Returns ------- dict nested dictionary object containing all the numpy arrays for the data of interest """ _check_multibeam_file(multibeam_file) multibeam_extension = os.path.splitext(multibeam_file)[1] if multibeam_extension == '.all': ar = par3.AllRead(multibeam_file, start_ptr=start_pointer, end_ptr=end_pointer) recs = ar.sequential_read_records(first_installation_rec=first_installation_rec) ar.close() elif multibeam_extension == '.kmall': km = kmall.kmall(multibeam_file) # kmall doesnt have ping-wise serial number in header, we have to provide it from install params serial_translator = km.fast_read_serial_number_translator() recs = km.sequential_read_records(start_ptr=start_pointer, end_ptr=end_pointer, first_installation_rec=first_installation_rec, serial_translator=serial_translator) km.closeFile() else: raise NotImplementedError('fqpr_drivers: {} is supported by kluster, but not currently supported by sequential_read_multibeam'.format(multibeam_file)) return recs def read_first_fifty_records(file_object): if isinstance(file_object, par3.AllRead): par3.print_some_records(file_object, recordnum=50) elif isinstance(file_object, kmall.kmall): kmall.print_some_records(file_object, recordnum=50) elif isinstance(file_object, PCSio.PCSBaseFile): PCSio.print_some_records(file_object, recordnum=50) elif isinstance(file_object, np.ndarray): sbet.print_some_records(file_object, recordnum=50) else: print(f'read_first_fifty_records: Unsupported file object: {file_object}') def kluster_read_test(file_object): if isinstance(file_object, par3.AllRead): par3.kluster_read_test(file_object, byte_count=-1) else: print(f'read_first_fifty_records: Unsupported file object: {file_object}') def return_xarray_from_sbet(sbetfiles: list, smrmsgfiles: list = None, logfiles: list = None, weekstart_year: int = None, weekstart_week: int = None, override_datum: str = None, override_grid: str = None, override_zone: str = None, override_ellipsoid: str = None): """ Read all the provided nav files, error files and concatenate the result in to a single xarray dataset. Parameters ---------- sbetfiles list of full file paths to the sbet files smrmsgfiles list of full file paths to the smrmsg files logfiles list of full file paths to the sbet export log files weekstart_year if you aren't providing a logfile, must provide the year of the sbet here weekstart_week if you aren't providing a logfile, must provide the week of the sbet here override_datum provide a string datum identifier if you want to override what is read from the log or you don't have a log, ex: 'NAD83 (2011)' override_grid provide a string grid identifier if you want to override what is read from the log or you don't have a log, ex: 'Universal Transverse Mercator' override_zone provide a string zone identifier if you want to override what is read from the log or you don't have a log, ex: 'UTM North 20 (66W to 60W)' override_ellipsoid provide a string ellipsoid identifier if you want to override what is read from the log or you don't have a log, ex: 'GRS80' Returns ------- xarray Dataset data and attribution from the sbets relevant to our survey processing """ [_check_sbet_file(fil) for fil in sbetfiles] if smrmsgfiles is not None: [_check_sbet_file(fil) for fil in smrmsgfiles] if logfiles is not None: [_check_export_log_file(fil) for fil in logfiles] return sbet.sbets_to_xarray(sbetfiles, smrmsgfiles, logfiles, weekstart_year, weekstart_week, override_datum, override_grid, override_zone, override_ellipsoid) def return_xarray_from_posfiles(posfiles: list, weekstart_year: int, weekstart_week: int): """ Read all the provided pos files, error files and concatenate the result in to a single xarray dataset. Parameters ---------- posfiles list of full file paths to the pos files weekstart_year must provide the year of the posfiles here weekstart_week must provide the gpsweek of the posfiles here Returns ------- xarray Dataset data and attribution from the posfiles relevant to our survey processing """ [_check_pos_file(fil) for fil in posfiles] return PCSio.posfiles_to_xarray(posfiles, weekstart_year, weekstart_week) def return_offsets_from_posfile(posfile: str): """ Translate the MSG20 message in the POS File to xyzrph like sensor names. Use this to populate an existing xyzrph record built by kluster to get the POSMV imu/antenna related sensors. Parameters ---------- posfile path to a posmv file Returns ------- dict dictionary of offset/angle names to values found in the MSG20 message """ _check_pos_file(posfile) pcs = PCSio.PCSFile(posfile, nCache=0) try: pcs.CacheHeaders(read_first_msg=(20, '$MSG')) msg20 = pcs.GetArray("$MSG", 20) data = {'tx_to_antenna_x': round(msg20[0][10], 3), 'tx_to_antenna_y': round(msg20[0][11], 3), 'tx_to_antenna_z': round(msg20[0][12], 3), 'imu_h': round(msg20[0][21], 3), 'imu_p': round(msg20[0][20], 3), 'imu_r': round(msg20[0][19], 3), 'imu_x': round(msg20[0][7], 3), 'imu_y': round(msg20[0][8], 3), 'imu_z': round(msg20[0][9], 3)} return data except KeyError: try: print('Unable to read from {}: message 20 not found'.format(posfile)) print('Found {}'.format(list(pcs.sensorHeaders.keys()))) except: print('Unable to read from file: {}'.format(posfile)) return None def fast_read_sbet_metadata(sbet_file: str): """ Determine the start and end time of the provided sbet file by reading the first and last record. Parameters ---------- sbet_file full file path to a sbet file Returns ------- list list of floats, [start time, end time] for the sbet """ _check_sbet_file(sbet_file) tms = sbet.sbet_fast_read_start_end_time(sbet_file) return tms def fast_read_errorfile_metadata(smrmsg_file: str): """ Determine the start and end time of the provided smrmsg file by reading the first and last record. Parameters ---------- smrmsg_file full file path to a smrmsg file Returns ------- list list of floats, [start time, end time] for the smrmsg file """ _check_sbet_file(smrmsg_file) tms = sbet.smrmsg_fast_read_start_end_time(smrmsg_file) return tms def read_pospac_export_log(exportlog_file: str): """ Read the POSPac export log to get the relevant attributes for the exported SBET. SBET basically has no metadata, so this log file it generates is the only way to figure it out. Log file is plain text, looks something like this: -------------------------------------------------------------------------------- EXPORT Data Export Utility [Jun 18 2018] Copyright (c) 1997-2018 Applanix Corporation. All rights reserved. Date : 09/09/18 Time : 17:01:12 -------------------------------------------------------------------------------- Mission date : 9/9/2018 Input file : S:\\2018\\...sbet_H13131_251_2702.out Output file : S:\\2018\\...export_H13131_251_2702.out Output Rate Type : Specified Time Interval Time Interval : 0.020 Start time : 0.000 End time : 999999.000 UTC offset : 18.000 Lat/Lon units : Radians Height : Ellipsoidal Grid : Universal Transverse Mercator Zone : UTM North 01 (180W to 174W) Datum : NAD83 (2011) Ellipsoid : GRS 1980 Transformation type : 14 Parameter Target epoch : 2018.687671 -------------------------------------------------------------------------------- Processing completed. Parameters ---------- exportlog_file: str, file path to the log file Returns ------- attrs: dict, relevant data from the log file as a dictionary """ _check_export_log_file(exportlog_file) loginfo = sbet.get_export_info_from_log(exportlog_file) return loginfo def is_sbet(sbet_file: str): """ Check if the file is an sbet. Ideally we just rely on the checking if the file contains an even number of 17 doubles, but add in the time check just in case. Parameters ---------- sbet_file file path to a POSPac sbet file Returns ------- bool True if file is an sbet, False if not """ _check_sbet_file(sbet_file) return sbet.is_sbet(sbet_file) def is_smrmsg(smrmsg_file: str): """ Check if the file is an smrmsg file. Ideally we just rely on the checking if the file contains an even number of 10 doubles, but add in the time check just in case. Parameters ---------- smrmsg_file file path to a POSPac smrmsg file Returns ------- bool True if file is an smrmsg, False if not """ _check_sbet_file(smrmsg_file) return sbet.is_smrmsg(smrmsg_file) def read_soundvelocity_file(svp_file: str): """ Export out the information in the svp file as a dict. Keys include 'number_of_profiles', 'svp_julian_day', 'svp_time_utc', 'latitude', 'longitude', 'source_epsg', 'utm_zone', 'utm_hemisphere', 'number_of_layers', 'profiles'. Returns ------- dict dictionary of the class information """ _check_svp_file(svp_file) svp_object = svp.CarisSvp(svp_file) svp_dict = svp_object.return_dict() return svp_dict def _xyz_from_allfile(filname: str): """ function using par to pull out the xyz88 datagram and return the xyz for each ping. Times returned are a sum of ping time and delay time (to match Kluster, I do this so that times are unique across sector identifiers). Parameters ---------- filname str, path to .all file Returns ------- np.array 2d numpy array (time, beam) of the alongtrack offsets from the xyz88 record np.array 2d numpy array (time, beam) of the acrosstrack offsets from the xyz88 record np.array 2d numpy array (time, beam) of the depth offsets from the xyz88 record np.array numpy array of the times from the xyz88 record np.array numpy array of the ping counter index from the xyz88 record """ pfil = par3.AllRead(filname) pfil.mapfile() num88 = len(pfil.map.packdir['88']) numbeams = pfil.getrecord(88, 0).data['Depth'].shape[0] dpths = np.zeros((num88, numbeams)) xs = np.zeros((num88, numbeams)) ys = np.zeros((num88, numbeams)) tms = np.zeros(num88) cntrs = np.zeros(num88) for i in range(num88): try: rec88 = pfil.getrecord(88, i) rec78 = pfil.getrecord(78, i) dpths[i, :] = rec88.data['Depth'] ys[i, :] = rec88.data['AcrossTrack'] xs[i, :] = rec88.data['AlongTrack'] tms[i] = rec88.time + rec78.tx_data.Delay[0] # match par sequential_read, ping time = timestamp + delay cntrs[i] = rec88.Counter except IndexError: break # ideally this would do it, but we have to sort by prim/stbd arrays when cntr/times are equal between heads for dual head cntrsorted = np.argsort(cntrs) tms = tms[cntrsorted] xs = xs[cntrsorted] ys = ys[cntrsorted] dpths = dpths[cntrsorted] cntrs = cntrs[cntrsorted] pfil.close() return xs, ys, dpths, tms, cntrs def _xyz_from_kmallfile(filname: str): """ function using kmall to pull out the xyz88 datagram and return the xyz for each ping. Times returned are a sum of ping time and delay time (to match Kluster, I do this so that times are unique across sector identifiers). The kmall svcorrected soundings are rel ref point and not tx. We need to remove the reference point lever arm to get the valid comparison with kluster. Kluster sv correct is rel tx. Parameters ---------- filname str, path to .all file Returns ------- np.array 2d numpy array (time, beam) of the alongtrack offsets from the MRZ record np.array 2d numpy array (time, beam) of the acrosstrack offsets from the MRZ record np.array 2d numpy array (time, beam) of the depth offsets from the MRZ record np.array numpy array of the times from the MRZ record np.array numpy array of the ping counter index from the MRZ record """ km = kmall.kmall(filname) km.index_file() numpings = km.Index['MessageType'].value_counts()["b'#MRZ'"] numbeams = len(km.read_first_datagram('MRZ')['sounding']['z_reRefPoint_m']) dpths = np.zeros((numpings, numbeams)) xs = np.zeros((numpings, numbeams)) ys = np.zeros((numpings, numbeams)) tms = np.zeros(numpings) cntrs = np.zeros(numpings) install = km.read_first_datagram('IIP') read_count = 0 for offset, size, mtype in zip(km.Index['ByteOffset'], km.Index['MessageSize'], km.Index['MessageType']): km.FID.seek(offset, 0) if mtype == "b'#MRZ'": dg = km.read_EMdgmMRZ() xs[read_count, :] = np.array(dg['sounding']['x_reRefPoint_m']) ys[read_count, :] = np.array(dg['sounding']['y_reRefPoint_m']) # we want depths rel tx to align with our sv correction output dpths[read_count, :] = np.array(dg['sounding']['z_reRefPoint_m']) - \ float(install['install_txt']['transducer_1_vertical_location']) tms[read_count] = dg['header']['dgtime'] cntrs[read_count] = dg['cmnPart']['pingCnt'] read_count += 1 if read_count != numpings: raise ValueError('kmall index count for MRZ records does not match actual records read') cntrsorted = np.argsort(cntrs) # ideally this would do it, but we have to sort by prim/stbd arrays when cntr/times # are equal between heads for dual head tms = tms[cntrsorted] xs = xs[cntrsorted] ys = ys[cntrsorted] dpths = dpths[cntrsorted] cntrs = cntrs[cntrsorted] km.closeFile() return xs, ys, dpths, tms, cntrs
2.21875
2
01_Primeiros passos_Fundamentos/05_metros_centimentos.py
Basilio40/exercicios_Python
0
12796837
'''Faça um Programa que converta metros para centímetros.''' # Resposta: metro = float(input('Informe a media em metros: ')) cent = int(metro * 100) print(f'Convertendo {metro}m em centímetros, temos: {cent}cm')
4.34375
4
test/test_cam_v1.py
dondemonz/RestApi
0
12796838
import requests from model.json_check import * from model.input_data import * # Запрос на получение настроек всех объектов CAM def test_GetV1AllCamerasCode200(): data = "success" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["status"] assert data == n def test_GetV1AllCamerasStatus401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code # Запрос на получение настроек объекта CAM def test_GetV1CamerasByIdCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId, auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CamerasByIdCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId, auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CamerasByIdCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n #Запрос на получение поля status объекта CAM def test_GetV1CameraStatusCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/status", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraStatusCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/status", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraStatusCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/status", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp объекта CAM def test_GetV1CameraRtspCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp/live объекта CAM def test_GetV1CameraRtspLiveCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/live", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspLiveCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/live", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspLiveCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp/live", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n # Запрос на получение поля rtsp/archive объекта CAM def test_GetV1CameraRtspArchiveCode200(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/archive", auth=auth) user_resp_code = "200" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["data"]["id"] assert camId == n def test_GetV1CameraRtspArchiveCode401(): response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/"+camId+"/rtsp/archive", auth=("", "")) user_resp_code = "401" assert str(response.status_code) == user_resp_code def test_GetV1CameraRtspArchiveCode404(): data = "Unknown CAM id:0" response = requests.get(url="http://"+slave_ip+":"+restPort+"/api/v1/cameras/0/rtsp/archive", auth=auth) user_resp_code = "404" assert str(response.status_code) == user_resp_code body = json.dumps(response.json()) data1 = json.loads(body) n = data1["message"] assert data == n
2.6875
3
main.py
tuttofaredigitale/hangman-game
0
12796839
import random from impiccato_disegno import d_impiccato, logo from parole_impiccato import lista_parole scelta_parola = random.choice(lista_parole) print(logo) game_over = False energia = len(d_impiccato)-1 campo_gioco = [] for i in scelta_parola: campo_gioco += '_' while not game_over: indovina = input('Indovina la lettera: ') for posizione in range(len(scelta_parola)): lettera = scelta_parola[posizione] if lettera == indovina: campo_gioco[posizione] = lettera print(f"{' '.join(campo_gioco)}") if indovina not in scelta_parola: print(f"Hai tentato con la lettera {indovina}, non è la lettera corretta. Hai perso una vita.") energia -= 1 if energia == 0: game_over = True print(f"Hai perso! La parola corretta era {scelta_parola}") if not '_' in campo_gioco: game_over = True print('Complimenti hai vinto!') print(d_impiccato[energia])
3.421875
3
pythonbrasil/exercicios/decisao/DE resp 03.py
adinsankofa/python
0
12796840
fm = str(input("Digite o sexo - [M - Masculino] ou [F - Feminino]: ")) def foum(): if fm == "M": print("M - Masculino") if fm == "F": print("F - Feminino") def si(): while fm != "M" and fm != "F": print("Sexo inválido, tente novamente!") fm = str(input("Digite o sexo - [M - Masculino] ou [F - Feminino]: ")) foum() si() foum()
3.796875
4
python/tests/test_model.py
alexkreidler/oxigraph
403
12796841
import unittest from pyoxigraph import * XSD_STRING = NamedNode("http://www.w3.org/2001/XMLSchema#string") XSD_INTEGER = NamedNode("http://www.w3.org/2001/XMLSchema#integer") RDF_LANG_STRING = NamedNode("http://www.w3.org/1999/02/22-rdf-syntax-ns#langString") class TestNamedNode(unittest.TestCase): def test_constructor(self): self.assertEqual(NamedNode("http://foo").value, "http://foo") def test_string(self): self.assertEqual(str(NamedNode("http://foo")), "<http://foo>") def test_equal(self): self.assertEqual(NamedNode("http://foo"), NamedNode("http://foo")) self.assertNotEqual(NamedNode("http://foo"), NamedNode("http://bar")) class TestBlankNode(unittest.TestCase): def test_constructor(self): self.assertEqual(BlankNode("foo").value, "foo") self.assertNotEqual(BlankNode(), BlankNode()) def test_string(self): self.assertEqual(str(BlankNode("foo")), "_:foo") def test_equal(self): self.assertEqual(BlankNode("foo"), BlankNode("foo")) self.assertNotEqual(BlankNode("foo"), BlankNode("bar")) self.assertNotEqual(BlankNode('foo'), NamedNode('http://foo')) self.assertNotEqual(NamedNode('http://foo'), BlankNode('foo')) class TestLiteral(unittest.TestCase): def test_constructor(self): self.assertEqual(Literal("foo").value, "foo") self.assertEqual(Literal("foo").datatype, XSD_STRING) self.assertEqual(Literal("foo", language="en").value, "foo") self.assertEqual(Literal("foo", language="en").language, "en") self.assertEqual(Literal("foo", language="en").datatype, RDF_LANG_STRING) self.assertEqual(Literal("foo", datatype=XSD_INTEGER).value, "foo") self.assertEqual(Literal("foo", datatype=XSD_INTEGER).datatype, XSD_INTEGER) def test_string(self): self.assertEqual(str(Literal("foo")), '"foo"') self.assertEqual(str(Literal("foo", language="en")), '"foo"@en') self.assertEqual( str(Literal("foo", datatype=XSD_INTEGER)), '"foo"^^<http://www.w3.org/2001/XMLSchema#integer>', ) def test_equals(self): self.assertEqual(Literal("foo", datatype=XSD_STRING), Literal("foo")) self.assertEqual( Literal("foo", language="en", datatype=RDF_LANG_STRING), Literal("foo", language="en"), ) self.assertNotEqual(NamedNode('http://foo'), Literal('foo')) self.assertNotEqual(Literal('foo'), NamedNode('http://foo')) self.assertNotEqual(BlankNode('foo'), Literal('foo')) self.assertNotEqual(Literal('foo'), BlankNode('foo')) class TestTriple(unittest.TestCase): def test_constructor(self): t = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(t.subject, NamedNode("http://example.com/s")) self.assertEqual(t.predicate, NamedNode("http://example.com/p")) self.assertEqual(t.object, NamedNode("http://example.com/o")) def test_mapping(self): t = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(t[0], NamedNode("http://example.com/s")) self.assertEqual(t[1], NamedNode("http://example.com/p")) self.assertEqual(t[2], NamedNode("http://example.com/o")) def test_destruct(self): (s, p, o) = Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) self.assertEqual(s, NamedNode("http://example.com/s")) self.assertEqual(p, NamedNode("http://example.com/p")) self.assertEqual(o, NamedNode("http://example.com/o")) def test_string(self): self.assertEqual( str( Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) ), "<http://example.com/s> <http://example.com/p> <http://example.com/o> .", ) class TestQuad(unittest.TestCase): def test_constructor(self): t = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(t.subject, NamedNode("http://example.com/s")) self.assertEqual(t.predicate, NamedNode("http://example.com/p")) self.assertEqual(t.object, NamedNode("http://example.com/o")) self.assertEqual(t.graph_name, NamedNode("http://example.com/g")) self.assertEqual( t.triple, Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ), ) self.assertEqual( Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ), Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), DefaultGraph(), ), ) def test_mapping(self): t = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(t[0], NamedNode("http://example.com/s")) self.assertEqual(t[1], NamedNode("http://example.com/p")) self.assertEqual(t[2], NamedNode("http://example.com/o")) self.assertEqual(t[3], NamedNode("http://example.com/g")) def test_destruct(self): (s, p, o, g) = Quad( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), NamedNode("http://example.com/g"), ) self.assertEqual(s, NamedNode("http://example.com/s")) self.assertEqual(p, NamedNode("http://example.com/p")) self.assertEqual(o, NamedNode("http://example.com/o")) self.assertEqual(g, NamedNode("http://example.com/g")) def test_string(self): self.assertEqual( str( Triple( NamedNode("http://example.com/s"), NamedNode("http://example.com/p"), NamedNode("http://example.com/o"), ) ), "<http://example.com/s> <http://example.com/p> <http://example.com/o> .", ) class TestVariable(unittest.TestCase): def test_constructor(self): self.assertEqual(Variable("foo").value, "foo") def test_string(self): self.assertEqual(str(Variable("foo")), "?foo") def test_equal(self): self.assertEqual(Variable("foo"), Variable("foo")) self.assertNotEqual(Variable("foo"), Variable("bar")) if __name__ == "__main__": unittest.main()
3.015625
3
Modules-in-python/getpass/getpass-getpass-function.py
tverma332/python3
3
12796842
import getpass # importing getpass dpass = getpass.getpass(prompt = "Enter the password: ") # by default it shows 'password' print(f"The entered password is {dpass}")
3.375
3
filtering_posts/models.py
Unkorunk/filtering-posts
0
12796843
from django.db import models import datetime class Region(models.Model): name = models.CharField(max_length=200) class University(models.Model): address = models.CharField(max_length=255) affilation_name = models.CharField(max_length=255) author_count = models.IntegerField(default=0) city = models.CharField(max_length=200) country = models.CharField(max_length=200) date_created = models.DateField() document_count = models.IntegerField(default=0) eid = models.CharField(max_length=200) identifier = models.CharField(max_length=200) org_domain = models.CharField(max_length=200) org_type = models.CharField(max_length=200) org_url = models.CharField(max_length=200) postal_code = models.CharField(max_length=200) scopus_affiliation_link = models.CharField(max_length=200) search_link = models.CharField(max_length=200) self_link = models.CharField(max_length=200) state = models.ForeignKey(Region, on_delete=models.CASCADE) url = models.CharField(max_length=200) lat = models.FloatField(default=0.0) lon = models.FloatField(default=0.0) class Author(models.Model): affilation_current = models.ForeignKey(University, on_delete=models.CASCADE) citation_count = models.IntegerField(default=0) cited_by_count = models.IntegerField(default=0) coauthor_count = models.IntegerField(default=0) coauthor_link = models.CharField(max_length=255) date_created = models.DateField() document_count = models.IntegerField(default=0) eid = models.CharField(max_length=200) given_name = models.CharField(max_length=200) h_index = models.CharField(max_length=100) identifier = models.CharField(max_length=100) indexed_name = models.CharField(max_length=100) initials = models.CharField(max_length=100) orc_id = models.CharField(max_length=100) publication_range = models.CharField(max_length=100) scopus_author_link = models.CharField(max_length=255) search_link = models.CharField(max_length=255) self_link = models.CharField(max_length=255) status = models.CharField(max_length=100) surname = models.CharField(max_length=100) url = models.CharField(max_length=255) school_name = models.CharField(max_length=255, default='') russian_fullname = models.CharField(max_length=255, default='') job_category = models.CharField(max_length=255, default='') job_position = models.CharField(max_length=255, default='') job_unit = models.CharField(max_length=255, default='') job_parent_unit = models.CharField(max_length=255, default='') job_rate = models.CharField(max_length=255, default='0.0') type_employment = models.CharField(max_length=255, default='') date_birth = models.DateField(default=datetime.date(1900, 1, 1)) last_degree = models.CharField(max_length=255, default='') phd = models.BooleanField(default=False) last_academic_title = models.CharField(max_length=255, default='') relevant = models.BooleanField(default=False) class Journal(models.Model): sourcetitle = models.CharField(max_length=255) abbreviation = models.CharField(max_length=200) type_journal = models.CharField(max_length=100) issn = models.CharField(max_length=100) source_id = models.IntegerField(null=True) cnt_publications = models.IntegerField(default=0) class Document(models.Model): class Meta: db_table = 'api_document' eid = models.CharField(max_length=200) doi = models.CharField(max_length=200) pii = models.CharField(max_length=200, default="-1") pubmed_id = models.CharField(max_length=200) title = models.CharField(max_length=255) subtype = models.CharField(max_length=200) # subtype_description = models.CharField(max_length=200) creator = models.ForeignKey(Author, on_delete=models.CASCADE) author_count = models.IntegerField(default=0) cover_date = models.DateField() cover_display_date = models.CharField(max_length=200) publication_name = models.CharField(max_length=255) issn = models.ForeignKey(Journal, on_delete=models.CASCADE) source_id = models.CharField(max_length=200) eIssn = models.CharField(max_length=200) aggregation_type = models.CharField(max_length=200) volume = models.CharField(max_length=100, default="0") issue_identifier = models.CharField(max_length=200) article_number = models.CharField(max_length=200) page_range = models.CharField(max_length=200, default="-1") description = models.TextField() authkeywords = models.TextField() citedby_count = models.IntegerField(default=0) openaccess = models.IntegerField(default=0) fund_acr = models.CharField(max_length=200) fund_no = models.CharField(max_length=200) fund_sponsor = models.CharField(max_length=200) citation_by_year = models.TextField(default="") citation_by_year_with_self = models.TextField(default="") class Subject(models.Model): name = models.CharField(max_length=200) full_name = models.CharField(max_length=255) class DocumentSubject(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0) id_sub = models.ForeignKey(Subject, on_delete=models.CASCADE, default=0) class AuthorJournal(models.Model): id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0) id_journal = models.ForeignKey(Journal, on_delete=models.CASCADE, default=0) class AuthorUniversity(models.Model): id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) class DocumentAuthorUniversity(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0, null=True) id_auth = models.ForeignKey(Author, on_delete=models.CASCADE, default=0, null=True) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0, null=True) class AuthorSubject(models.Model): id_author = models.ForeignKey(Author, on_delete=models.CASCADE) id_sub = models.ForeignKey(Subject, on_delete=models.CASCADE) class DocumentUniversityAffiliations(models.Model): id_doc = models.ForeignKey(Document, on_delete=models.CASCADE, default=0, null=True) id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0, null=True) class Rankings(models.Model): name = models.CharField(max_length=255) class UniversityRankPlace(models.Model): id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) id_ranking = models.ForeignKey(Rankings, on_delete=models.CASCADE, default=0) year = models.IntegerField(default=0) place = models.CharField(max_length=255, default="") class UniversityRankCriteria(models.Model): id_university = models.ForeignKey(University, on_delete=models.CASCADE, default=0) id_ranking = models.ForeignKey(Rankings, on_delete=models.CASCADE, default=0) criteria = models.CharField(max_length=255, default="") score = models.FloatField(default=0.0) class DateCitationCount(models.Model): date = models.DateField(auto_now=True) citation_count = models.IntegerField(default=0) self_citation_count = models.IntegerField(default=0)
2.125
2
graphtransliterator/transliterators/__init__.py
seanpue/graphtransliterator
4
12796844
<filename>graphtransliterator/transliterators/__init__.py # -*- coding: utf-8 -*- """ graphtransliterator.transliterators ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Bundled transliterators are loaded by explicitly importing :mod:`graphtransliterator.transliterators`. Each is an instance of :mod:`graphtransliterator.bundled.Bundled`. """ from .bundled import Bundled # noqa from .schemas import MetadataSchema # noqa import inspect import pkgutil __all__ = ['Bundled', 'MetadataSchema', 'iter_names', 'iter_transliterators'] _transliterators = [] def _skip_class_name(name): """Determine if the class name should be skipped.""" return name == "Bundled" or name.startswith("_") def add_transliterators(path=__path__): """Walk submodules and loads bundled transliterators into namespace. Bundled transliterators are stored as ``Bundled`` subclass. Parameters ---------- path : list List of paths, must be an iterable of strings Raises ------ ValueError A transliterator of the same name already has been loaded.""" for loader, module_name, is_pkg in pkgutil.walk_packages(path): # if it is not a submodule, skip it. if not is_pkg: continue _module = loader.find_module(module_name).load_module(module_name) for name, _obj in inspect.getmembers(_module, inspect.isclass): # Skip Bundled, as it is already loaded # Skip any classes starting with _ if _skip_class_name(name): continue if name in __all__: raise ValueError( 'A transliterator named "{}" already exists'.format(name) ) # import module and add class to globals, so that it will show up as # graphtransliterator.transliterators.TRANSLITERATORNAME assert len(_module.__path__) == 1 # There should be only one path globals()[name] = getattr(_module, name) __all__.append(name) _transliterators.append(name) add_transliterators() def iter_names(): """Iterate through bundled transliterator names.""" for _ in _transliterators: yield _ def iter_transliterators(**kwds): """Iterate through instances of bundled transliterators.""" for _ in iter_names(): yield (eval(_ + "()"))
2.28125
2
employee_portal/chat_bots/sender_bots.py
Dmitriy200123/employee_portal
0
12796845
import enum import datetime from chat_bots.models import Sender from slack_bot.bot import SlackBot from telegram_bot.bot import TelegramBot class MessengerType(enum.Enum): Telegram = 'Telegram' Slack = 'Slack' class SenderBots: new_employee_channel_id = None new_employee_chat_bot = None access_request_channel_id = None access_request_chat_bot = None @staticmethod def updateBots(): sender = Sender.objects.first() if sender: employee_chat_bot = sender.newEmployeeChatBot access_chat_bot = sender.accessRequestChatBot SenderBots.new_employee_channel_id = sender.newEmployeeChannelId SenderBots.access_request_channel_id = sender.accessRequestChannelId SenderBots.new_employee_chat_bot = SenderBots.createBot(employee_chat_bot) SenderBots.access_request_chat_bot = SenderBots.createBot(access_chat_bot) @staticmethod def createBot(chat_bot): if chat_bot.botType.messenger_type == MessengerType.Telegram.name: return TelegramBot(chat_bot.token) if chat_bot.botType.messenger_type == MessengerType.Slack.name: return SlackBot(chat_bot.token) @staticmethod def getCorrectTime(): time = Sender.objects.filter(newEmployeeChannelId=SenderBots.new_employee_channel_id).first().sendTime now = datetime.datetime.now().time() date = datetime.date.today() if time < now: date = date + datetime.timedelta(days=1) return datetime.datetime.combine(date, time) @staticmethod def sendNewEmployeeMessage(data): message = f"Новый сотрудник: {data['first_name']} {data['second_name']}. Отдел: {data['department']}," \ f" должность: {data['position']}" correct_time = SenderBots.getCorrectTime() SenderBots.new_employee_chat_bot.post_scheduled_message(date=correct_time, message=message, channel_id=SenderBots.new_employee_channel_id) @staticmethod def sendAccessEmployeeMessage(user, services): message = f"{user.first_name} {user.second_name} запрашивает доступ к следующим сервисам: {', '.join(services)}" correct_time = SenderBots.getCorrectTime() SenderBots.access_request_chat_bot.post_scheduled_message(date=correct_time, message=message, channel_id=SenderBots.new_employee_channel_id) if Sender.objects.first(): SenderBots.updateBots()
2.3125
2
scripts/generate_gantt_chart.py
spisakt/PUMI
5
12796846
<reponame>spisakt/PUMI #!/usr/bin/env python # start it like: scripts/generate_gantt_chart.py # from the project folder import PUMI.utils.resource_profiler as rp rp.generate_gantt_chart('/Users/tspisak/Dropbox/comp/PAINTeR/szeged/run_stats.log', cores=8)
1.429688
1
zvt/domain/quotes/coin/coin_tick_kdata.py
manstiilin/zvt
1
12796847
<gh_stars>1-10 # -*- coding: utf-8 -*- from sqlalchemy.ext.declarative import declarative_base # 数字货币tick from zvdata.contract import register_schema from zvt.domain.quotes.coin import CoinTickCommon CoinTickKdataBase = declarative_base() class CoinTickKdata(CoinTickKdataBase, CoinTickCommon): __tablename__ = 'coin_tick_kdata' register_schema(providers=['ccxt'], db_name='coin_tick_kdata', schema_base=CoinTickKdataBase)
1.929688
2
cui/register/auth/GiHubApi.Authorizations.List.20170109081152453/AccountGetter.py
ytyaru/GitHub.Upload.UserRegister.Insert.Token.201704031122
0
12796848
<reponame>ytyaru/GitHub.Upload.UserRegister.Insert.Token.201704031122 #!python3 #encoding:utf-8 import sqlite3 #from AuthList import AuthList import AuthList import traceback import pyotp class AccountGetter: def __init__(self): def connect(self, db_path): self.connector = sqlite3.connect(db_path) self.cursor = connector.cursor()
1.984375
2
src/preprocessing/nodes_manager.py
NelloCarotenuto/Targeting-with-Partial-Incentives
0
12796849
import math import random __BASE_SEED = 1 def constant_thresholds(graph, value): """Sets a constant threshold for every node of the graph.""" # Store threshold assignment in a dictionary thresholds = dict() # Add a constant attribute to each node for node in graph.Nodes(): thresholds[node.GetId()] = value return thresholds def degree_proportional_thresholds(graph, fraction=0.5): """Sets a threshold for every node of the graph to be proportional to its in-degree.""" # Store threshold assignment in a dictionary thresholds = dict() # Compute the threshold based on the in-degree and add it to every node for node in graph.Nodes(): degree = node.GetInDeg() threshold = math.floor(degree * fraction) + 1 thresholds[node.GetId()] = threshold return thresholds def random_thresholds(graph, seed): """Sets a threshold for every node of the graph to be a random integer between 1 and its degree.""" # Store threshold assignment in a dictionary thresholds = dict() # Set the random seed to be able to reproduce results random.seed(__BASE_SEED + seed) # Add a random attribute to each node for node in graph.Nodes(): thresholds[node.GetId()] = random.randint(1, node.GetDeg()) return thresholds
3.859375
4
entity_relation_extraction/testmasp.py
Zeng-WH/MaterBERT
5
12796850
<reponame>Zeng-WH/MaterBERT import json import os import glob '''将MSP的语料库转化成可以识别的格式''' def find_all(sub, s): index_list = [] index = s.find(sub) while index != -1: index_list.append(index) index = s.find(sub, index + 1) if len(index_list) > 0: return index_list else: return -1 ''' with open('./mspcorpus/101002adma200903953.txt') as f1: text = f1.read() with open('./mspcorpus/101002adma200903953.ann') as f2: ann = f2.read() text1 = text.split('\n') space_all = find_all(' ', text) line_all = find_all('\n', text) line_all.append(10000000) text_list = [] for i in range(len(line_all)-1): temp_list = [] temp_list.append(line_all[i]+1) for j in space_all: if j>=line_all[i] and j<=line_all[i+1]: temp_list.append(j+1) text_list.append(temp_list) #print(text[text_list[1][-1]]) ann_list = ann.split('\n') entity_list = [] for ann_line in ann_list: ann_line = ann_line.split('\t') if len(ann_line)>2: if ann_line[0][0] == 'T': entity_list.append(ann_line) #print('bupt') ''' def convert_text(text): space_all = find_all(' ', text) line_all = find_all('\n', text) line_all.append(10000000) text_list = [] for i in range(len(line_all) - 1): temp_list = [] temp_list.append(line_all[i] + 1) for j in space_all: if j >= line_all[i] and j <= line_all[i + 1]: temp_list.append(j + 1) text_list.append(temp_list) return text_list def convert_sentence_new(text): #基于'. '来分割句子 space_all = find_all(' ', text) sent_all = find_all('. ', text) sent_all.append(10000000) sent_list = [] for i in range(len(sent_all) - 1): temp_list = [] temp_list.append(sent_all[i]+1) for j in space_all: if j>= sent_all[i] and j<= sent_all[i + 1]: temp_list.append(j+1) sent_list.append(temp_list) return sent_list def convert_ann(ann): ann_list = ann.split('\n') entity_list = [] for ann_line in ann_list: ann_line = ann_line.split('\t') if len(ann_line) > 2: if ann_line[0][0] == 'T': entity_list.append(ann_line) return entity_list def convert_relation(ann): ann_list = ann.split('\n') relation_list = [] for ann_line in ann_list: ann_line = ann_line.split('\t') if len(ann_line) > 2: if ann_line[0][0] == 'R': relation_list.append(ann_line) return relation_list def convert_entity(text, text_list, entity_list): text_line = text.split('\n') line_split = find_all('\n', text) entity_result = [] for i in range(len(text_list)): entity_result.append([]) for temp_entity in entity_list: temp_result = {} temp = (temp_entity[1]).split(' ') start_temp = int(temp[1]) end_temp = int(temp[2]) temp_result['type'] = temp[0] for row_index, row in enumerate(line_split): if start_temp > row: break for start_word, ele in enumerate(text_list[row_index]): if ele == start_temp: temp_result['start'] = start_word for end_word, ele in enumerate(text_list[row_index]): if end_temp < ele: temp_result['end'] = end_word entity_result[row_index].append(temp_result) return entity_result #result = convert_entity(text, text_list, entity_list) def convert_entity_v1(text, text_list, entity_list): text_line = text.split('\n') line_split = find_all('\n', text) entity_result = [] for i in range(len(text_list)): entity_result.append([]) for temp_entity in entity_list: temp_result = {} temp = (temp_entity[1]).split(' ') start_temp = int(temp[1]) end_temp = int(temp[2]) temp_result['type'] = temp[0] for row_index, row in enumerate(line_split): if start_temp > row: break for start_word, ele in enumerate(text_list[row_index]): if ele == start_temp: temp_result['start'] = start_word-1 for end_word, ele in enumerate(text_list[row_index]): if end_temp < ele: temp_result['end'] = end_word-1 entity_result[row_index].append(temp_result) return entity_result def convert_entity_new(text, text_list, entity_list): line_split = find_all('\n', text) line_split.append(10000000) entity_result = [] entity_dict ={} for i in range(len(text_list)): entity_result.append([]) for temp_entity in entity_list: temp_result = {} dict_temp = [] temp = (temp_entity[1]).split(' ') start_temp = int(temp[1]) end_temp = int(temp[2]) temp_result['type'] = temp[0] for row_index, row in enumerate(line_split): if start_temp < row: break dict_temp.append(row_index-1) for start_word, ele in enumerate(text_list[row_index-1]): if ele == start_temp: temp_result['start'] = start_word for end_word, ele in enumerate(text_list[row_index-1]): if end_temp < ele: temp_result['end'] = end_word break # print(end_temp) if end_temp > text_list[row_index-1][-1]: temp_result['end'] = len(text_list[row_index-1]) entity_result[row_index-1].append(temp_result) dict_temp.append(len(entity_result[row_index-1])-1) entity_dict[temp_entity[0]] = dict_temp return entity_result, entity_dict ''' result, dict_test = convert_entity_new(text, text_list, entity_list) relation = convert_relation(ann) ''' def convert_entity_new_v1(text, text_list, entity_list): line_split = find_all('. ', text) line_split.append(10000000) entity_result = [] entity_dict ={} for i in range(len(text_list)): entity_result.append([]) for temp_entity in entity_list: temp_result = {} dict_temp = [] temp = (temp_entity[1]).split(' ') start_temp = int(temp[1]) end_temp = int(temp[2]) temp_result['type'] = temp[0] for row_index, row in enumerate(line_split): if start_temp < row: break dict_temp.append(row_index-1) for start_word, ele in enumerate(text_list[row_index-1]): if ele == start_temp: temp_result['start'] = start_word-1 for end_word, ele in enumerate(text_list[row_index-1]): if end_temp < ele: temp_result['end'] = end_word-1 break # print(end_temp) if end_temp > text_list[row_index-1][-1]: temp_result['end'] = len(text_list[row_index-1]) entity_result[row_index-1].append(temp_result) dict_temp.append(len(entity_result[row_index-1])-1) entity_dict[temp_entity[0]] = dict_temp return entity_result, entity_dict def convert_relation_new(relation, text_list, entity_dict): relation_result = [] for i in range(len(text_list)): relation_result.append([]) for relation_line in relation: temp = (relation_line[1]).split(' ') if temp[1][5] == 'T' and temp[2][5] == 'T': arg1_temp = temp[1][5:] arg2_temp = temp[2][5:] if entity_dict[arg1_temp][0] == entity_dict[arg2_temp][0]: temp_dict = {} temp_dict['type'] = temp[0] temp_dict['head'] = entity_dict[arg1_temp][1] temp_dict['tail'] = entity_dict[arg2_temp][1] relation_result[entity_dict[arg1_temp][0]].append(temp_dict) return relation_result def joint_entity_relation_token(text, entity_result, relation_result, id, documents): text_line = text.split('\n') #document = [] for i in range(len(entity_result)): id = id + 1 document_dict = {} document_dict['tokens'] = (text_line[i+1]).split(' ') document_dict['entities'] = entity_result[i] document_dict['relations'] = relation_result[i] document_dict['orig_id'] = id documents.append(document_dict) return documents def joint_entity_relation_token_v1(text, entity_result, relation_result, id, documents): text_line = text.split('. ') #document = [] for i in range(len(entity_result)): id = id + 1 document_dict = {} document_dict['tokens'] = (text_line[i+1]).split(' ') document_dict['entities'] = entity_result[i] document_dict['relations'] = relation_result[i] document_dict['orig_id'] = id documents.append(document_dict) return documents ''' tess = convert_relation_new(relation, text_list, dict_test) document = joint_entity_relation_token(text, result, tess) ''' def main( ): documents =[] textfiles = glob.glob('/home1/wlw2020/head_motion/SpERT/corpus/data/*.txt') index = 1 for text_file in textfiles: temp = text_file.split('.txt') ann_temp = temp[0] ann_file = ''.join([ann_temp, '.ann']) with open(text_file) as f1: text = f1.read() with open(ann_file) as f2: ann = f2.read() text_list = convert_sentence_new(text) #print(len(text_list[1])) entity_list = convert_ann(ann) entity_result, entity_dict = convert_entity_new_v1(text, text_list, entity_list) relation = convert_relation(ann) relation_result = convert_relation_new(relation, text_list, entity_dict) documents = joint_entity_relation_token_v1(text, entity_result, relation_result, index, documents) index = index + len(entity_result) for document in documents: if len(document['tokens']) <= 2: documents.remove(document) for document in documents: if len(document['tokens']) <= 2: documents.remove(document) with open('./documents_example_v1.json', 'w') as f3: json.dump(documents, f3) if __name__ == '__main__': main() print('pku')
2.546875
3